

Specification: SIE-S626-1.2 July 1983

INTRODUCTION

These specifications cover the machine tool spindle drive system, Varispeed-626MTI (VS-626MTI). Before initial operation with a VS-626MTI, these specifications must be thoroughly read, and retained for future reference.

The maximum speed obtained with a VS-626MTH is substantially higher than those with conventional DC motor speed control systems. To prevent accidents resulting from these high speeds, care should be taken in operating machines with your VS-626MTH. When you intend to use your VS-626MTH in configurations not described in this manual, contact our service department.

Spindle Motor Flange-Mounted Type EEVA-51KM

Spindle Motor Foot-Mounted Type EEA-1KM

Controller VS-626MTII Type CIMR-MTI-7.5K

----- CONTENTS ------

-	
1.	SPINDLE AC MOTOR 3
1.1	Outline
1.2	Specifications and Characteristics 4
1.3	Dimensions
1.4	Installation8
1.5	Wiring
2.	VS-626MTI CONTROLLER11
2.1	Outline
2.2	System Configuration12
2.3	Specifications and Functions13
2.4	Dimensions16
2.5	Installation22
2.6	Wiring Diagram26
2.7	Control Signal
2.8	Spare Parts46
3.	MAGNETIC SENSOR TYPE SPINDLE ORIENTATION47
3.1	Outline
3.2	Configuration
3.3	Spindle Orientation Specifications48
3.4	Dimensions
3.5	Interconnections between Devices
3.6	Outline of Operation54
3.7	Description of Control Signal56
3.8	Installing Magneto and Magnetic Sensor60

1. SPINDLE AC MOTOR

1.1 Outline

The VS-626MTII spindle AC motor is an induction motor exclusively designed to drive machine tool spindles. It is available in two versions; a flange- and a foot-mounted type. The features of these spindle AC motors are as follows.

. 1500 to 6000 RPM(A Ratio of 1:4) at Constant Output Range The exceptionally rigid motor structure and precision manufactured bearings permit 6000 rpm.

Thorough analysis of application requirements plus drive motor structure and characteristics establish the most ideal motor-controller combination. This provides optimum drive performance for a wide constant output range at speeds from 1500 to 6000 rpm maximum.

. Exclusively-designed Motor for Spindle Drive

Totally-enclosed, external fan-cooled, squirrel-cage motors are specifically designed for operation where oil mist, iron particles, machining chips, etc. exist. To meet space requirements for machine tools, the motors are available in slender, flange-mounted types and conventional foot-mounted types: both are compact and light weight.

The drive motor incorporates endplay-free bearings, and allows both direct coupling and gear connection to the machine and all angle mounting (for 30-minute rating, 15 kW or less) with drive extension up or down.

The exclusively-designed cooling fan configuration accomplishes low noise operation (76-80 dB).

. Unique Motor Cooling System

Flange-mounted motors employ a unique cooling system. A small integrated fan circulates air inside the enclosure, and the outside fan induces fresh cooling air through openings on the drive end and exhausts the air from to the opposite. Thus the heat generated by the drive motor is not transmitted to the driven machine; the machine is entirely free from the influence of the heat.

. High Reliability

Totally-enclosed, multipole brushless resorver for speed detection provide maximum performance dependability in concert with that of the AC motor.

1.2 Specifications and Characteristics

													-
Rated Output kW (30- Minute/	Flange-mounted type EEVA-51kM	5.5	-	7.5	-	11 7.5	ł	15 11	-	18.5 15	-	22 18.5	-
Contin- uous Rating)	Foot-mounted type EEA-IKM	-	5.5 3.7	-	7.5		11 7.5	-	15 11	-	18.5 15	-	22 18.5
Control	Applicable VS-626MTH Controller Type CIMR-MTH-[]K		5	7.	5	1	1	15	5	18	.5	2	2
	urrent A ute/Continuous	34 25	40 29	43 35	53 42	7	4	97 75	103 - 80		00 85	12	1 05
Output ' rpm kg	Torque at 1500 .m	2	.40	3	.57	4	4,86		7.14		73	12.	00
Rotor G	Rotor GD^2 kg.m ²		0.063	0.081	0.12	0.15		0.200.27		0.42		0.49	
Overloa	d Capacity	12	120%, 60 sec of 30-minute rating										
Cooling	Method	Totally-enclosed externally fan-cooled type											
Insulat	ion	F	E	F	E	F	E	F	E	F			
of Ther	ng Temperature mal Protector mally Close Type)	155 ±7	120 ±5	155 ±7	120 ±5	155 ±7	120 ±5	155 ±7	120 ±5		155 ± 7		
Vibrati	on	V-	10 or	belo	w			·					
Noise (A) level	78	76	78	76	78	76	78	76		8	0	
Speed De	etector	Multipole resolver (TDIA-72B)											
Finish in	Flange-mounted type						N1.	5					
Munsell Notation	Foot-mounted type	2.5 PB 5/2											
Ambient Temperature, Humidity -10 to + 40°C, 90% RH or below													
Standar	ds	Co	mply	with	JIS*	, JEM	†, JE	c†					

Table 1.1 Specifications of AC Spindle Motors

* Japanese Industrial Standard
 † The standard of Japan Electrical Manufacturers' Association
 ‡ Standard of Japanese Electrical Committee

Fig. 1.1 (a) Output-Speed Characteristics

Fig. 1.1 (b) Torque-Speed Characteristics

1.3 Dimensions in mm

FLANGE-MOUNTED TYPE

Rated O kW (H		.	LA	LB	LC	I.H	LL	LR	D	I	КВ	ю	KE	KI			S	haft Exter	sic	a			Bearing	No.	Αρρτοχ	Cool
30- Minute Ratıng	Con- tinuous Rating														Q	QK	QR	s	т	U	w	d	Drive End	Opp Drive End	Weight kg	-ing Fan . Type
5.5(7.5)	3.7(5)	630	215	180-2.040	204	250	630	80	205	280	395	33	28	158	80	70	1	32-0.016	8	5	10	22	6308M2C3P6	6307C ₃ P6	73	17525-1
7.5(10)	5.5(7.5)	b10	215	180 - 8.040	204	250	630	80	205	280	395	33	28	158	80	70	1	32-8.016	8	5	10	22	6308M2C3P6	6307C3P6	85	17525-1
11 (15)	7.5(10)	715	265	230-20-6	250	300	605	110	260	365	360	33	65	195	110	90	1	48-0.016	9	5.5	14	40	6310M2C3P6	6307C3P6	113	200P5-3
15 (20)				230-20-6														48-8.016	9	5.5	14	40	6310M2C3P6	6307C3P6	1 32	200P5-3
18.5(25)				230-2046														48 - 8.016	9	5.5	14	40	6310M2C3P6	62 10M2C3P	6 140	20025-3
22 (30)				230-8.0+6														55;0.030	10	6	16	45	6311M2C3P6	6210M2C3P	6 170	200175-3

For Reference Only

- 7 -

1.4 Installation

1.4.1 Installing Spindle AC Motor

Location

- . See that air flow through the cooling fan is completely free from obstruction.
- . See that the motor is free from direct splashing of cutting oil from the machine tool.
- . Mounting base, bed or frame must be solid and rigid enough to sustain the motor or its dynamic load during operation so as to minimise vibration.

Mounting

- . Motors rated for 15 kW (30-minute) or below permit all angle mounting.
- . Motors rated for 18.5 or 22 kW (30-minute) permit to drive-end -down mounting (inclusive).

Connection with machine

- . For V-belt drive, the shafts of the motor and driven machine are parallel to each other, and align the sheaves.
- . For a gear drive, install the motor with the shaft paralleled with the machine spindle, and the gears meshing centrally.
- . The high speed of the spindle AC motor may induce vibration if the driven members are even slightly out of balance. Take this carefully into consideration when designing the driven machine members such as gears and pulleys.

1.5 Wiring

Make interconnections of the spindle motor and cooling fan with wires as follows.

		Spindle Motor	-	Coolin	ng Fan M	otor
	pindle Motor Putput kW	Connection	Termi- nal screw	Motor type	Termi- nal	Termi- nal screws
5.5,	Flange-mounted		M5	175P5-1	u, v	
^{5.5} / _{3.7}	Foot-mounted			200P5H3	u,v,W	
7.5,	Flange-mounted	X		175P5-1	u, v	
^{7.5} / _{5.5}	Foot-mounted		M8	200P5H3		
	Flange-mounted	o ^w		200P5-3		
¹¹ /7.5	Foot-mounted			200P5H3		
15	Flange-mounted		M10	200P5-3		M4
¹⁵ / ₁₁	Foot-mounted			300P54H-3	u,v,w	
	^{18.5} / ₁₅	8 ²	M8	200P5-3		
	²² / _{18.5}			20019-5		

Table 1.2 Terminals of Spindle Motor and Cooling Motor

For selection of protective relay, refer to Table 1.3.

Table 1.3 Specifications of Cooling Fan

Cooling		_	Input	Curr	ent A	Recommended Protective Relay [†]		
Fan Motor* Type	Phase	Power Supply	kW	With rated	With locked	Thermal ralay	Magnetic contactor	
175P5-1	Single		70/70/85	0.6/0.55 /0.6	1.1/0.66 /0.73	RH-18/ 1.2P		
200P5-3	ITh made	200 VAC, 50 Hz;	1 1	0.25/0.3			HI-10-2E	
200P5H3		200 VAC, 60 Hz;	/100	/0.3	/0.84	RH-18/		
300P54H-3		220 VAC,60 Hz	60/70 /80	0.4/0.35 /0.4	1.2/1.1 /1.2	0.8P		

* Made by Toryo Cosan Co., Ltd.
† Made by Yaskawa Electric Co., Ltd.

(3) Wiring of control signal lead

Connect resolver signal lead and detecting relay for motor overload according to Table 1.4.

Pin N	o. Signal	Connection in AC Spindle	Connector for AC Spindle	Lead	Connector of Controller		
r III N	Jignai	Motor	Motor	2004	Туре	Pin No.	
1	Resolver detec-		Type MLP-09	Vinly	MR-20LF	5	
2	tion signal (RES0)		made by Nippon pres-	cable with braided copper shield 0.3 mm ² twisted- pair 4P	made by Honda Tsushin Kogyo K.K.	6	
3	Resolver excita- tion signal	10 20 $\frac{RES}{RES} #$ 30 $\frac{RES}{RES} #$ 40 $\frac{SG}{RES} #$ 50 $\frac{RES}{RES} #$ 10 10 10 10 10 10 10 10	sure terminal Co., Ltd.			1	
4	SG (COMMON)					2.3	
5	Resolver excita- tion signal		Connector receptacle			4	
6	Ground terminal	800H ITHERNOSTAT					
7	SG	70 ^{SC}				20	
8	Motor overheat detection (OH)		4 5 6 7 8 9	SHIELD		7	
9	SG					8	

Table 1.4 Connection of Control Signal Lead

Note: Do not connect to connector for AC spindle motor.

2. VS-626MTI CONTROLLER

2.1 Outline

The VS-626MTI controller is vector-controlled, high-performance transistor inverter to control a machine tool spindle AC motor, with the following features.

(1) Compact size

With the use of integrated elements, the complete system has been built compact and light.

(2) Efficient control

With the adoption of a regenerative braking system, the braking efficiency is high, and with the use of the special circuitry, commutation failure during a power failure is eliminated.

(3) High reliability and ease of maintenance

Through the adoption of LSIs, high reliability has been achieved by miniaturizing parts and reducing their member. With the adoption of function modules, maintenance is simplified.

(4) Electric orientation control (option)

With the use of an electric orientation control system, the mechanism for spindle orientation has been simplified and the reliability and service life have been increased.

(5) Easy application for totally-enclosed control panels

Several special heat-dissipation designs suitable for incorporation in totally-enclosed control panels are available in semi-standard series.

2.2 System Configuration

VS-626MTH drive is composed of a spindle AC motor, Controller VS-626MTH and Optional units such as a spindle orientation controller and D/A converter.

Fig. 2.1 VS-626MTI System Configuration

2.3 Specifications and Functions

2.3.1 Specifications

VS-626MTE Controller Type CIMR-MTE-[]	5.5к	7.5K	11K	15K	18 . 5K	22К		
Power Supply	Three-phase, 200V (±10%),50 or 60Hz; 220V (±18%),50 or 60Hz; 240V (±20%),60Hz							
Rated Output Current A (120%/100%)	64/53	64/53	89/74	130/108	130/108	170/140		
Maximum Required Power Supply at 30-Minute Rating kVA	9	12	19	24	30	35		
Calorific Power W (Continuous Rating/30-Minute Rating)	320/400	400/520	530/750	780/ 1030	900/ 1080	1120/ 1320		
Weight kg	2	8	36	45	48	52		
Circuitry	PWM transistor inverter control							
Control System	Vector control with automatic field- weakening control					-		
Braking Method	Regenerative braking							
Adjustable Speed Range	40 - 60	00 rpm						
Speed Regulation	0.2% (1	oad var	iation	10 - 10	0%)			
Overload Capacity	120%, 6	0 sec o	f 30-mi	nute ra	ting			
Speed Command Voltage	± 10 VD signals		0 VDC (forward	l and re	verse		
Ambient Temperature	-10 to	+55°C						
Humidity	10 to 9	5% RH						
Allowable Vibration	0.5 G or below							
Installation	Free from dirt, dust, liquid and other harmful gases					her		
Standard	JIS*, JEM [†] , JEC [‡]							

Table 2.1 Specifications

* Japanese Industrial Standard
 † The Standard of Japan Electrical Manufacturers' Association
 ‡ Standard of Japanese Electrotechnical Committee

2.3.2 Functions

The VS-626MTH controller is designed basically to control the operation of the VS-626MTH spindle AC motor, driving it at commanded speeds at the rated output.

The VS-626MTI is further provided with a protection and monitoring functions to protect, and insure full display of performance of, the spindle drive motor, its electrical circuits and the driven machine.

Tables 2.2 and 2.3 show the protection and monitoring functions respectively.

Name	Code	Description	Detection Method	Operation & Display					
Motor overheated	ОН	Motor burnout	Built-in thermostat operates.						
Cooling fan	FAN M		Thermal overload relay operates.						
malfunctioned	FAN C		Heat sink mounted thermostat operates.						
Instantaneous overcurrent	ос	Destruction of controller elements	Transistor instanta- neous overcurrent.						
Overload	OL		120% of 30-min rated current for 60 sec.	Current interruption					
Overvoltage	ov		DC bus voltage	by base blocking					
Undervoltage	UV	Spindle system malfunctioned	Supply voltage	Red LED illuminates					
	ACFU	Destruction of controller elements	Input AC fuse blown	TITUMINALES					
Blown fuse	DCFU	Controller destruction	DC fuse blown						
		Spindle system malfunctioned	Speed detection by resolver and motor						
Overspeed	OS	Motor mechanism damaged	current frequency. detection						
<u></u>	. Whe the	n one of the proto closed contact s	ective functions above a ignal (1C) will be sent.	ctivates,					
Optioned status		ional status is a her normal or tro	ctivated at all times to uble condition.	indicate					
	. Whe thi	. When one of the protective functions above activities, this function holds in the respective circuit.							
Function hold	. To VS-	. To reset the function, push the reset button in the VS-626MTI or make an external signal.							

Table 2.2 Protection Functions

Name	Code	Description
Zero-speed signal	Z-SPD	Indication of motor stop (below 30 rpm)
Speed coincidence signal	AGREE	Indication of motor speed coincident with commanded speed
Speed detecting signal	N-DET	Indication of motor speed reaching set speed
Excessive speed deviation signal	DEV	Indication of actual speed 50% or more deviating to set speed
Torque detecting signal	T-DET	Indication of torque reaching set level
Speedometer signal	SMSIG	External display of motor speed
Load meter signal	LMSIG	External display of load factor with respect to 30-minute rated output

Table 2.3 Status Monitoring Function

2.4 VS-626MTI Dimensions in mm

For 5.5 kW/3.7 kW (Enclosed type)

FINISH IN MUNSELL NOTATION	517/1	
APPROX. WEIGHT	28KG	

CONTROLLER TYPE

CONTROL SIGNAL CONNECTOR TYPE

CONNECTOR NO.	TYPE
101	MR-SORMA(G) SOP
2CN	MR-16RMA(G) 16P
301	MR-34RMA(G) 34P
4CN	MR-20RMA(G) 20P

FINISH IN MUNSELL NOTATION	5¥7/1
APPROX. WEIGHT	28KG

CONTROLLER TYPE

CONTROL SIGNAL CONNECTOR TYPE

CONNECTOR NO.	TYPE
1CN	MR-SORMA(G) SOP
2CN	MR-16RMA(C) 16P
3 CN	MR-34 RMA(C) 34 P
4CN	MR-20RMA(C) 20P

THIRD ANGLE PROJECTION

For 15 kW/11 kW (Enclosed type)

For 22 kW/ 18,5 kW (Enclosed type)

* CONTACT YASKAWA REPRESENTATIVE WHEN ORDERING

THIRD ANGLE PROJECTION

* CONTACT YASKAWA REPRESENTATIVE WHEN ORDERING

For 18.5 kW/15 kW (Totally-enclosed type)*

104

2CN

3CN

4CN

MR-SORMA(G) SOP

MR-16RMA(C) 16P

MR-34 RMA(G) 34 P

MR-20RMA(G) 20P

* CONTACT YASKAWA REPRESENTATIVE WHEN ORDERING

2.5 Installation

2.5.1 Installing controller

To install the VS-626MII controller in a power control panel or the like, take the following into consideration.

- (1) Heat dissipation
 - . Incorporate heat dissipating features into the design, in due consideration of the heat generating rate.
 - . For the heat generation rates of the different types, refer to Table 2.1. STANDARD SPECIFICATIONS.
 - . Maintain the ambient temperature of the controller between -10 to +55°C.
 - . To maintain the cooling performance of the controllers, maintain 150 mm space both above (discharge side) and below (suction side) the controller, as far as possible. Be sure to secure at least 100 mm and 50 mm spaces above and below the controller respectively.
- (2) Maintenance
 - . In designing the panel housing, take the convenience of maintenance work into consideration.
 - . For mounting and replacing the controller, secure at least 30 mm space on both the right and left sides between controller and the side walls.
 - . The front panel of the controller is hinged to open 90°. Be sure to allow sufficient space to fully open the front panel.
 - . The I/O terminals and the control signal connectors are located at the lowermost part of the controller.
 - . Be sure to allow space below the controller so that cables can be easily connected to the terminals and connectors.
 - . Fig. 2.2 shows the mounting space.

Fig. 2.2 Controller Mounting Space (Enclosed Type) - 22 -

- (3) Totally-enclosed type
 - . Be sure to provide the rear panel of the controller with a cooling air flow space. Secure 85 to 90 mm for dimension D in Fig. 2.3.
 - . The cooling air amount must be $3m^3/min$.
 - . Insert packings under the units when installing them, to avoid clearance.
 - . The front panel opens 140°.

Fig. 2.3 Controller Mounting Space (Totally-enclosed Type)

2.5.2 Wiring

In installing the power lines and control lines, take the following into consideration.

(1) Power line and terminal

Table 2.4 shows the type and size of the cables to be used, and the terminals sizes.

			Input		Output				
CIMR-MTI	Lea	ıd	VS-626	MII Contro	oller	Lea	đ	Mot	or
-53	Туре	Size	Terminal	Terminal Screw	Terminal	Туре	Size mm ²	Terminal	Terminal Screw
5.5K		5.5					5.5		*
7.5K		8				6007	8	U,V,W,	M8
 11K	600V Cabtyre	14	R,S,T,	M8	U,V,W,	600V Cabtyre	14	E	
15K	cable	22	E		Е	cable	22		M10
18.5K		30					30	U,V,W,	M8
22K		38					38	X,Y,Z, E	

Table 2	2.4	Lead	Specifications
---------	-----	------	----------------

* M5 for the flange-mounted type motor and M4 for foot-mounted type motor.

(2) Control power supply lead and cooling fan motor power lead

	Lea	d	Screw te:	Note	
Application	Type	Size	Terminal	Size	Noce
Control power supply lead	600V vinyl- insu-	2 mm ²	r,s,t	M4	
Cooling fan power lead	lated lead	2 400	(u,v,w)*		*

Table 2.5 Lead Specifications

* Since type EEVA-51KM flange-mounted motors (5.5kW/3.7kW, 7.5kW/5.5kW) are provided with a single-phase fan motor, only terminals U and V are furnished.

(3) Control signal lead

Table 2.6 shows the specifications for the connectors and cables for the control signals

Connector	Application	Conne	ctor	Lead		
No.	Application	Type MR-	Maker	Туре	Size	
1CN	I/O interface	50LF			0.3 mm ² coaxial 50-core	
2CN	Meter signal	16LF	Honda Tsushin	* Vinyl cable	0.3 mm ² twisted-pair 4-P	
3CN	-	34LF	Kogyo K.K.	with braided copper shield	-	
4CN	Motor interface				0.3 mm ² twisted-pair 4-P	

Table 2.6 Connector & Lead Specifications

- * Except for lines for analog signals, signal lines 1CN and 2CN may also be in conventional vinyl lead (0.5 mm²) for electric appliances, provided the following are observed.
 - . To minimize adverse effects of noise, the signal lead and the power lead should be separately run through as short a passage as possible.
 - . The outer diameter of the cable bundle must be smaller than the size of the connector outlet opening given below.

Connector	type	MR-50LF:	16 1	mm	diameter
Connector	type	MR-16LF:	9 r	mm	diameter
Connector	type	MR-20LF:	11 1	mm	diameter

2.6 Wiring Diagram

Fig. 2.4 shows the connection between the controller and the motor, and the input and output signals. The connector connections for the input and output signals are shown in Table 2.7 through 2.9. Refer to the diagram and tables when designing interfaces to NC and power sequencers.

Fig. 2.5 shows the block diagram for VS-626MTII controller.

Pin No.	Signal	Pin No.	Signal	Pin No.	Signal
1	+15 V				
2	+12 V				Malfunction (FALT)
3	SG	19	Soft start cancel (S SCAN)	35	
4	56	20	M gear selection (M GEAR)	36	Orientation completion
5	-15 V	21	L gear selection (L GEAR)	37	(OREND)
6	-13 V	22	Orientation (ORICM)	38	-
7	-	23	Zero speed (Z-SPD)	39	-
8	SG	24	Zero speed (Z-SrD)	40	-
9	Speed command (N COM)	25	Speed detecting	41	
10	SG	26	(N DET)	42	
11	Malfunction reset (RESET)	27	Speed coincidence	43	
12	Ready signal (RUN SB)	28	(AGREE)	44	
13	Emergency stop (EM STP)	29	Torque detecting	45	SG
14	Override cancel (ORCAN)	30	(T DET)	46	
15	SG	31	Excessive speed	47	
16	Forward run (FORRN)	32	deviation (DEV)	48	
17	Reverse run (REVRN)	\sim		49	
18	Torque limit selection (T LIM)			50	

Table 2.7 1CN Signal List

Pin No.	Signal	Pin No.	Signal	Pin No.	Signal
1	Speed meter (SMSIG)			11	_
2	SG	7	SG	12	-
3	Load meter (LM SIG)	8	-	13	-
4		9	-	14	-
5	Override(ORCOM)	10	-	15	-
6				16	SG

Table 2.9 4CN Signal List

Pin No.	Signal	Pin No.	Signal	Pin No.	Signal
1	Resolver exciting (RES a)	8	SG	14	SG
2	50	9	-	15	-
3	SG	10	-	16	-
4	Resolver exciting (RES β)	11	-	17	-
5	Resolver Detecting(RES θ)	12	-	18	-
6		13	-	19	-
7	Motor overheat (OH)			20	SG

- 28 -

Fig. 2,5 VS-626MTE Controller Block Diagram

2.7 Control Signal

2.7.1 Contact input signal

When designing input signals, take the following conditions into consideration.

- . When relay contacts, etc. are used, the contact capacity must be 30 V or above (15 mA or above).
- . The filter in the level shifter circuit in the input section causes approximately 5 msec delay in the signals.
- . Since a pull-up resistor is incorporated in the circuit, contactless signals can also be inputted. In this case, input signals 20 V or above for the HIGH level, and 2 V or below for LOW level.
- . Fig. 2.6 shows the input circuit, and Table 2.10 gives the signal functions.

Fig. 2.6 Input Circuit

closes, and SOURCE (green) LED ligh . When [RUNSB] is opened during run, base is blocked instantly, and the current is interrupted. . Where a magnetic contactor is used the main circuit input, if the magn contactor is operated on and off independently, the input side AC fu	Signal	Connector No.	Pin No.	On Signal	Function
RUNSB to include an auxiliary contact for magnetic contactor or an equivalent contact in the [RUNSB] condition, a shown below. VS-626MT ##-O O.M FUSE CONTROL READY SIGNAL; POWER SUPI SG	-	lCN	12	CLOSE	base is blocked instantly, and the motor current is interrupted. . Where a magnetic contactor is used for the main circuit input, if the magnetic contactor is operated on and off independently, the input side AC fuse will be blown. To prevent this, be sure to include an auxiliary contact for the magnetic contactor or an equivalent contact in the [RUNSB] condition, as shown below. VS-626MT II #OOM FUSE CONTROL READY SIGNAL Net a contact on the supply CONTROL READY SIGNAL CONTROL READY SIGNAL

Table 2.10 (a) Functions of Input Signals

Table 2.10 (b) Function of Input Signals

Signal	Connector No.	Pin No.	On Signal	Function
2. Forward Run [FORRN] 3. Reverse Run [REVRN]	1 CN	16 17	CLOSE	. With [RUNSB] closed (SOURCE LED ON), and the speed command positive, when [FORRN] is closed, the motor runs CCW as viewed from drive end; and when [REVRN] is closed the motor runs CW. Therefore, when speed commands and run signals are combined, the motor runs in the directions shown below.
				Speed command + -
				Run [FORRN] CCW CW
				Signal [REVRN] CW CCW
			 When the signal is opened during run, the motor is stopped by the regenerative braking, and then, the motor current is interrupted by base blocking. The RUN LED (green) is on during run, and off during halt. The acceleration and deceleration time is set with the soft starter DIP switch. The time between halt and 100% rated speed can be set between 0.5 and 6.5 seconds at 0.5 sec increments. However, for some load GD² values, the set accel/decel time may be exceeded. When [FORN] and [REVRN] are closed simultaneously, the motor stops. In this 	
				case, if whichever of them becomes open, the motor resumes running, so that care must be taken to avoid accident.When [FORN] or [REVRN] is closed, the motor runs at the speed specified by a
		speed command. Be sure to first command a speed when running the motor.		
				[FORRN] OR [REVRN] CLOSED
				. When a trouble occurs during run, base is blocked immediately to interrupt the moto current, and the RUN LED is extinguished.

Signal	Connector No.	Pin No.	On Signal	Functions
4. Emergen- cy stop [EMSTP]	1CN	13	OPEN	. When [EMSTP] is opened during run, the motor is quickly stopped by regenerative braking, and then, the current is interrupted.
				 When [EMSTP] is closed again, the motor becomes ready to run again, so that if a speed command is sent, and [FORRN] or [REVRN] is closed, the motor is restarted. Therefore, be sure to open [FORRN] or [REVRN] before closing [EMSTP]. When [EMSTP] is not to be used, connect pin 13 to SG.

Table 2.10 (b) Function of Input Signals (Cont'd)

Table 2.10 (c) Functions of Input Signals

Signal	Connector No.	Pin No.	On Signal	Function
5. Torque Limit	lcn	18	CLOSE	. This signal is for temporarily limiting the motor torque with a mechanically oriented spindle or gear shift.
[T LIM]				. When [T LIM] is closed, the torque is limited.
				. The torque limit level is preset by a potentiometer (T LIM) in the controller between 15 and 120%.
				TORQUE LIMIT LEVEL 120% $150^{\%}$ 100 50^{6} 0 2 4 6 8 10 100 50^{6} 0 2 4 6 8 10 100 0 2 4 6 8 10 0 0 2 4 6 8 10 0 0 2 4 6 8 10 0 0 100 0 0 0 0 0 0 0 0 0
				. When [T LIM] is not be used, leave pin (18) open.
6. Over- ride		14	OPEN	. This signal is for selectively applying an override to an external spindle speed command to change the cutting condition.
Cancel [ORCAN]				. When [ORCAN] is opened, the override is cancelled.
				. For the adjustment of the override value, refer to Table 2.11.
7. Soft- start Cancel [SSCAN]		19	CLOSE	. This signal is for cancelling the soft start function so that speed reference is changed by speed command without delay, for inching or other special control modes. (Speed reference N_{REF} : controller CH19)
				. When [SSCAN] is closed, the accel/decel set time is neglected, and the motor is accelerated or decelerated in short time by the current limit accel/decel function.
				. When [SSCAN] is not to be used, leave pin (19) open.

Signal	Connector No.	Pin No.	On Signal	Function
8. Mal- funct- ion Reset [RESET]	1 CN	11	OPEN CLOSE or CLOSE CLOSE CLOSE OPEN	 This signal is for restoring the run ready state after eliminating the cause of the tripping of the protective circuit, as the result of overload. [RESET] is effective only after the tripping of a protecting circuit. While [FORRN] or [REVRN] is closed, resetting is not possible. The [RESET] switch incorporated in the controller is equivalent to this signal in function. Resetting is effected at the edge of [RESET]. Therefore, close [RESET] if open, and open it if closed. In the protective circuit sequence, resetting has priority. The timing chart for resetting is given below. Therefore close [RESET] is ended on the control of the close o

Table 2.10 (c) Functions of Input Signals (Cont'd)

Signal	Connector No.	Pin No.	On Signal	Function
9. Motor Over- heat [OH]	4 CN	7 OPEN	OPEN	. This signal is for interrupting motor current and to display the malfuction, when the motor temperature exceeds the specified value.
				. When [OH] is opened, the motor current is instantly interrupted by baseblocking, and OH LED (red) lights.
				. To discriminate serious trouble from other trouble, connect pin (7) to SG (pin (8) or pin (14) of 4CN), where the thermostat contact is used in an external sequence. In this case, to avoid noise in the resolver signal, run separate cables for the resolver and for motor thermostat detection.

Table 2.10 (d) Functions of Input Signal
Table 2.10 (e) Functions of Input Signal

Signal	Terminal No.	On Signal	Function	
10. Cool- ing Fan Mal- funct- ion [FANM]	Screw Terminal (M4) 3	CLOSE	 This signal is for detecting trouble in cooling fan motor, and for interrupting the motor current and displaying the malfunction When [FANM] is opened, the motor current is instantly interrupted by base blocking, and the FANM LED (red) lights. Use shielded lead for wiring [FANM]. When the thermal relay for [FANM] is not used, or where it is used, but with an external sequence, connect terminal (3) to SG [terminal (1) or (2)]. Where [FANM] signal is generated after processing the thermal relay contact with an external sequence there are some cases that wrong signal is inputted 	
			<pre>there are some cases that wrong signal is inputted as the [FANM] signal with some circuits, as shown below. Care should be taken in designing.</pre>	

2.7.2 Analog Input Signal

When designing analog input signals, take the information given in Table 2.11 into consideration.

Signal	Connector No.	Pin No.	Function
l. Speed Com- mand [NCOM]	1CN	9	 Rated input voltage is ±10 VDC. The allowable input voltage is ±12 VDC. However, since the controller limits it at 105% of rated value, the maximum speed of the motor is limited at 105% of the rated speed. The input impedance of [NCOM] is 50 kΩ. With various combinations of [NCOM] and run signals, speeds and directions of rotation shown below are obtained.
			 INCOM] is effective and the motor runs when run signal [FORRN] or [REVRN] is closed. While [FORRN] or [REVRN] is on, sometimes the motor will not stop completely even when [NCOM] is set to 0 V. To stop the motor completely, open [FORRN] or [REVRN] whichever is closed. While either is closed, current flows.) To improve noise resistance, use shielded lead for the [NCOM] circuit. When setting [NCOM] manually, the output (±15 V) for the current flows.
			of the controller can be used, provided the current is kept up to 10 mA. SETTING SETTING VS-626 MT II 510 Ω SETTING 21Ω 1W min. Cutput (+15 V) is at pins 1 and ② of 1CN, and -15 V is at pins ⑤ and ⑥ of 1CN, and SG is either pin ③, ④ or ① of 1CN.

Table 2.11 Functions of Input Signals

Signal	Connector No.	Pin No.	Function
2. Over- ride [ORCOM]	1CN	5	 When applying a speed override, close [ORCAN]. Use a 2 kΩ resistor as the setting resistor, and use the following circuit. OVERRIDE SETTING RESISTOR 2 kΩ , 1W min. 0verride speeds can be set between 50 and 130% of the set speed, but actually, speeds above 105% of the rated speed is not obtained. The characteristic curves are shown below.
			$\begin{array}{c} 120\\ 100\\ SPEED\\ (\%) 50$

Table 2.11 Functions of Input Signals (Cont'd)

2.7.3 Contact Output Signal

Use these contact signals under the following conditions.

- . For output signals, reed relays are used. Their contact capacity is 24 VDC, 0.1 ADC.
- . The contact chattering time is within 1 msec.
- . To switch external relays or other inductive loads, be sure to connect a CR spark-killer in parallel to the load, and keep the surge voltage across the contacts below 200 V.
- . Where a capacitive load is to be controlled, connect a protective resistor in series to the load to limit current.
- . Fig. 2.7 shows the output circuit, and Table 2.12 gives functions of the output signals.

Fig. 2.7 Output Circuit

Signal	Connector No.	Contact and Pin No.	Function	
1. Zero Speed [Z-SPD]	1CN	Z-SPD 23	. When the motor speed drops below the set level (30 rpm), [Z-SPD] closes, and Z-SPD LED (green lights. [Z-SPD] CLOSE 6000 rpm REVERSE V FORWARD 6000 rpm 30 rpm . Since [Z-SPD] is outputted irrespective of [FORRN] and (REVRN), it can be used as a safet run interlock signal. An example for this usage is shown below.	
2. Speed Coinci- dence [AGREE]		AGREE 27	When the motor speed enters the preset range of [NCOM], [AGREE] closes, and AGREE LED (green) lights. However, while a run signal is open or [Z-SPD] is closed, it is not outputted. . When this signal is used as an answer to S command in NC program operation, the program is advanced to the next step.	

Table 2.12 (a) Functions of Output Signals

Table 2.12 (b) Functions of Output Signal

Signal	Connector No.	Contact and Pin No.	Function
3. Mal- funct- ion [FALT]	1CN	FALT 33	. When protective circuit for overcurrent or overload tripped, the motor current is instantly interrupted, and the motor stops after running by ineatia. Upon current interruption, [FALT] is outputted.
			. The [FALT] relay may be selectively in the normally closed or normally-open mode. The contact is "C" type. (The normally- closed mode is the standard.)
			. While [FALT] is outputted, the motor cannot run.
			. When [FALT] is used to reset [NCOM], [FORRN] or [REVRN], displays a spindle alarm visual signal.
			. [FALT] is sent to LEDs on the controller to light. For these, refer to Section 3.2 and Table 3.2.
			. For the relationship between [FALT] and [RESET], refer to 8. Malfunction reset [RESET] in Table 2.10(c).
4. Speed Detect-		N-DET	. When the motor speed drops below a preset level, [N-DET] closes, and the N-DET LED (green) lights.
ion [N-DET]			. The speed detection level is set between 30 and 4000 rpm with potentiometer (N-DET) in the controller.
			DETECT LEVEL CLOSE CLOSE GRADUATION NDET 0 2 4 6 8 10 SCALE GRADUATION
			. [N-DET] operates regardless of the run direction signals.
			. [N-DET] can be used as the detection signal for the speed suitable for clutch actuation or gear shifting.
			. The standard setting is 600 rpm.

Signal	Connector No.	Contact and Pin No.	Function
5. Exces- sive Speed Deviat- ion [DEV]	1CN		 When the motor speed deviates 50% or more from the level set by [NCOM] due to overloading, etc., [DEV] is closed and the DEV LED (red) lights. When the speed deviation decreases below 50%, [DEV] opens automatically. Unless [AGREE] has been outputted during run previously, [DEV] will not close even when the speed deviation exceeds 50%. Therefore, where [FORRN] or [REVRN] is closed, and [NCOM] is inputted, but the motor remains still, [DEV] will not close. SET SPEED (FORRN] (FORRN] (CLOSE (CLOSE) (AGREE) (DEV) is outputted when the cutting tool takes an excessive cut or other conditions detrimental to the tool and the machine develop, it can be used as a spindle alarm signal.

Table 2.12 (b) Functions of Output Signal (Cont'd)

Table 2.12 (c) Function of Output Signal

Signal	Connector No.	Contact and Pin No.	Function
6. Torque Detect- ion [T-DET]		T - DET 29 30	. When torque increases above a specified level, [T-DET] closes, and the "T-DET" LED (green) lights. . The torque detection level can be set between 0 and 120% with the potentiometer (T-DET) in the controller. $\frac{120}{0} \frac{120}{246810}$ TDET $\frac{120}{0} \frac{120}{246810}$ TDET SCALE GRADUATION . [T-DET] can be used as a signal for checking the torque limit function, and for determining the load conditions.

2.7.4 Analog Output Signal

Use the analog output signals in the following conditions. Table 2.13 Function of Output Signal

Signal	Connector No.	Pin No.	Function	
1. Speedo-	2 CN	1	. When an external speedometer is connected, the motor speed can be monitored.	
meter Signal [SMSIG]			. [SMSIG] outputs DC current proportional to the motor speed, regardless of the run direction.	
[01010]			. Select a speedometer which satisfies the following specifications.	
			One-way Swing DC Ammeter	
			Type Moving coil	
			Rated current 1 mA full-scale	
			Quality class Class 2.5 or higher	
			Internal resistance 2 kn max.	
			. The level of [SMSIG] is adjustable with potentiometer [SMADJ].	
			1 mA 1.5r SMADJ 10 CRADUATIONS 6000 4000 2000 0 2000 4000 6000 0 2 4 6 8 10 SCALE GRADUATION	
			 *1. Internal resistance of tachometer is 100 G Since(SMADJ) is only for adjusting the speedometer, the actual speed is not influenced by it. The forward and reverse run speed accuracy is 	
			$\pm 2\%$ max. of the rated speed.	
2. Load meter Signal [LMSIG]		3	 The load meter indicates the percentage of the actual load to the 30-minute rated output of the motor. Select a load meter conforming to the same specifications as the speedometer. 	
			. [LMSIG] can be adjusted by the potentiometer (LMADJ).	
			$1 \text{ mA}_{\text{r}} - \underbrace{\begin{array}{c} & \text{mA} \\ 1.0 \\ 0.5 $	

2.8 Spare Parts

Main parts used in VS-626 MTH Controller are shown in Table 2.14. It is recommended that more than one set of fuses be stocked at all times.

Parts Name	VS-626MTI Controller Type CIMR-MTI-CIK		Parts Type	Code	Q'ty	Remarks
	5.5, 7.5		25 SH75	FU696	2	
AC circuit fuse (ACFU)	11,	15	25SH100	FU697	2	• • •
(ACEO)	18.5	5, 22	25SH150	FU699	2	
	5.5	, 7.5	25SH75	FU696	1	Required
	11		25SH100	FU697	1	spare [.] parts
DC circuit fuse	15		25SH125	FU698	1	P
(DCFU)	18.	5	25SH150	FU699	1	
	22		25SH200	FU700	1	
Control circuit fuse	5.5	-22	F-7161	FU383	2	
Surge absorber	5.5	-22	TNR-15G471K	XX139	3	
			MG100G1AL1	STR141	6	
	5.5, 7.5		EVK71-050	STR142	1	
	11				6	
Transister module			EVL31-050	STR143	1	
	15, 18.5		EVK71-050	STR142	11	
	22				3	
			EVL31-050	STR143	9	
	5.5-15		TM55DZ-H	SCR197	3	Optional
Thyristor module	18.5, 22		TM90DZ-H	SCR198	3	spare parts
Diode module	5.5-11		RM60C2Z-H	SID304	2	
	15-22				4	
Control circuit board	5.5	-22	JPAC-CO61	ETC581X	1	
Base drive board	5.5	-22	JPAC-CO62	ETC582X	1	
		Foot-	JPAC-C079	ETC599X	1	
	5.5	mounted type	JPAC-C070	ETC590X	1	
		Flange- mounted	JPAC-C071	ETC591X	1	
Motor card	7.5	type	JPAC-C072	ETC592X	1	
		11	JPAC-C073	ETC593X	1	
	1 1:	Foot-mounted type	JPAC-C074	ETC594X	1	
	15 Flange mour type		JPAC-C075	ETC595X	1	
	18.5		JPAC-C076	ETC596X	1	
		22	JPAC-C077	ETC597X	1	1

Table 2.14 Spare Parts for VS-626MTII

3. MAGNETIC SENSOR TYPE SPINDLE ORIENTATION

3.1 Outline

Instead of the conventional mechanical spindle orientation system for use with NC machine tools, VS-626MTH stops the spindle at a specified angular position by an electrical method. This system has the following features.

(1) Simple mechanism

A magnetic unit on the spindle and a magentic sensor on the stationary member are the only devices required. No stopper, pin, nor cylinder is required.

(2) Short orientation time

The position detection signal from the magnetic sensor forms a servo loop for accurate positioning in a short period of time even when the spindle is running at maximum speed.

(3) Reliability and service life improvement

Decisive reduction of positioning shock leading to higher reliability and longer service life.

(4) Economical advantage

Simplified mechanism and power control sequence make for substantial reduction in cost.

3.2 System Configuration

The spindle orientation system is composed of spindle AC motor, a VS-626MTM controller, an orientation card, a spindle position detector magnet and a magent sensor. See Fig. 3.1. The system operates at an orientation command (with NC, [M19] command).

3.3 Spindle Orientation Specifications

Table	3.1	Standard	Specifications

	Item	Functions
1.	Position detection mode	Displacement detection based on the detection of magnetic flux generated by a magneto and a magnetic sensor.
2.	Stop position	Position corresponding to the center-to-center alignment of the magneto body and the magnetic sensor head. Adjustable within ±1° with a potentiometer.
3.	Stop position repeating accuracy	±0.2° or below (When the magneto body is mounted on a 120 mm diameter outer surface, excluding mechanical error and error caused by external magnetic fields.)
4.	Reaction torque	Continuous rated torque/±0.1° displacement
5.	Required input signal 5.1 Orientation signal 5.2 M gear select signal 5.3 L gear select signal	Orientation mode: CLOSE 1CN 22 - SG M gear select: CLOSE 1CN 20 - SG L gear select: CLOSE 1CN 21 - SG * When H gear is selected, both M and L gear select signals are CLOSE.
6.	Output signal 6.1 Orientation end signal	Upon completing orientation, CLOSE signal 1CN 36 - 37
7.	Orientation card	Type: JPAC-C063
8.	Magneto	Type: MH-1378BS MG-1444 * Standard type is MG-1378BS
9.	Magnetic sensor	Type: FS-1378B FS-200-A * Standard type is FS-1378B.

3.3.1 Detector specifications

	Specifications		
Item	MG-1378BS	MG-1444	
Detection Range mm	±15	±13	
Allowable Speed rpm (Mounted on 120 mm dia. outer surface)	6000	3300	
Weight g	32	20	
Maker	Makome Corporation		

Table 3.2 Magneto Specifications

Table 3.3 Sensor Specifications

	Specifications			
Item	FS-1378B	FS-200A		
1. Configuration	Sensor head-amp separate type Sensor head: FSH-1378B Amplifier: FSD-1378B	Sensor head-amp integral type		
2. Power supply 2.1 Voltage 2.2 Current	150 VDC ±5% 100 mA max.	12 VDC ±10% 50 mA max.		
<pre>3. Output 3.1 Position signal (level) (for control) (offset) (Output imped- ance) 3.2 Position signal (range) (for monitor) (offset)</pre>	± 4 V min. ± 0.2 V max. 0 0 0 0 0 0 0 0 0 0 0 0 0	± 8 V min. ± 0.2 V max. 1.5 kΩ \int_{0}^{1} DISPLACEMENT		
4. Service temperature range	-10 to +50°C			
5. Output terminal	With round connector (Made by TAJIMI MUSEN DENKI K.K.) (Terminal arrangement) A: Position signal + B: SG C: +15 V D: Position signal - E: Range signal - F: Range signal +	With 5 meter cable 6 mm dia, 4-core rubber-sheathed cable [Wiring] (Red: +12 V Black: SG Green: Ouput + White: Output -		
6. Maker	MAKOME Corporation			

When magneto is mounted on 120 mm dia. outer surface on spindle.
 49 -

3.4 Dimensions in mm

3.4.1 Orientation card (Type JPAC-C063)

Notes:

1. Orientation card mtg. base is standard component.

2. When orientation card is ordered, it is mounted in VS-626MTI controller before shipment.

3.4.2 Magneto

(1) MG-1378BS

(2) MG-1444

3.4.3 Magnetic sensor

(1) Type FS-1378B

Dimensions in mm

(2) Type FS-200A

3.5 Interconnections between Devices

3.5.1 For type FS-1378B

Notes:

- Connection lead should be vinyl cable with braided copper shield (0.3 mm² twisted-pair 3-P).
- 2. _____ shows twisted-pair leads.

3.5.2 For type FS-200A

3.5.3 List of connector signal

Pin No.	Signal	Pin No.	Signal	Pin No.	Signal
1	-			11	SG
2	-	7	Position signal	12	+15 V
3	-	8	Position signal	13	SG
4	••	9	Range signal	14	+12 V
5		10	Range signal	15	SG
6	<u></u>			16	-

Table 3.4 List of Connector Signal

3.6 Outline of Operation

The VS-626MTI has two operating modes: the normal mode in which the spindle is controlled by external orientation signals, and the test mode in which the spindle is controlled by card test signals for adjustment.

3.6.1 Normal mode

When an orientation signal is received while the spindle is in motion (or standing still), the spindle immediately decelerates (or accelerates) to the preset orientation speed.

When the spindle passes the target stop position first time after attaining the preset speed, the soft start function incorporated in the orientation card is started, and the spindle is first decelerated to the preset creep speed, and then, as the magneto comes into alignment with the magentic sensor, it is stopped by the serveo loop.

Thereupon, the OR-END LED (green) lights, and an OR-END signal is outputted (contact CLOSE).

After stopping at the specified angular position, the spindle is under control to remain in the position until the command is cleared, so that it resists any external force exerted to displace it from the sotp position.

(a) Orientation when Spindle is Running

3.6.2 Test mode

When the selection connector on the orientation card (JPAC-CO63) is connected in the test mode, the LED (red) built into the test button [TPB] lights.

With FORRN or REVRN as well as ORICM (orientation signal) inputted, when TPB is pushed, the spindle starts to run at the orientation speed. When the spindle passes the stop position for the first time after TPB is released, the spindle stopping sequence, same as in the normal mode, is started to shortly stop the spindle at the specified angular position.

Upon stopping the spindle, the OR-END LED (green) lights, but no OR-END signal is outputted, so that the spindle can be repeatedly tested for the orientation motion with the TPB button.

Fig. 3.3 shows the time chart for the test mode orientation operation.

Fig. 3.3 Time Chart for Test Mode Orientation

*1 Since no OR-END signal is outputted in the test mode, a time-error state may be created with a system in which an orientation time monitoring arrangement is incorporated. With these systems, the relevant parameter or timer setting should be change for the intended orientation test in advance.

3.7 Description of Control Signals

3.7.1 Contact input signal

When designing input signals for the orientation system, take the following into consideration.

- . Relay contacts used for these signals must be of a capacity of 30 V or over (15 mA or over).
- . A delay of approximately 5 msec caused by a filter in the level conversion circuit in the input area is to be taken into account.
- . Since a pull-up resistor is incorporated, the use of non-contact input signals is also possible. In this case, input signals at 20 V min. for HIGH level and 2 V max. for LOW level.
- . Fig. 3.4 shows the input circuit, and Table 3.5 gives a description of signals.

Fig. 3.4 Input Circuit

Table 3.5 Description of Inpu

Name	Connector No.	Pin No.	On Level	Description
1. Orienta- tion [ORICM]	1CN	22	L (CLOSE)	 Command signal for use with the electric orientation system For executing an orientation command, a run signal, [FORRN] or [REVRN], is required, in addition to [ORICM]. Whe [ORICM] is inputted, the spindle immediately decelerates and comes to stop at the specified angular position. When the operation such as tool changing, for which spindle orientation is required is over, clear the run signal and [ORICM]. When the system is to be energized with the power supply switch, be sure [ORICM] is opened in advance. If the spindle is stopped in the EMERGENCY mode during the orientation process, be sure to clear [ORICM].
2. Gear Select [M GEAR]		20	L (CLOSE)	. This signal is for selectively engaging gears between the spindle and the spindle drive motor to obtain proper spindle speeds to shorten the time spent in the orientation process.
3. Gear Select [L GEAR]		21		 For the speed ratios and the gears, refer to Table 3. To engage the H gear, open both [M GEAR] and [L GEAR]. If [M GEAR] and [L GEAR] are inputted simultaneously, the orientation time and accuracy are adversely influenced. Never input them together.

Gear	Gear	Spindle Speed	Gear Select		
Stage		Gear Ratio (= <u>Spindle Speed</u>) Motor Speed	M GEAR	L GEAR	
	-	1.5 0.6	×	×	
1	-	0.6 0.13	0	×	
	-	0.2_0.05	×	0	
	HIGH	1.5 0.6	×	×	
	LOW	a. <u>6 a.</u> 15	0	×	
	HIGH	1.5 0.6	×	×	
2	LOW	0.2 0.05	×	0	
	HIGH	a. <u>6</u> a.15	0	×	
	LOW	0.2_9.05	×	0	
	HIGH	1.56	×	×	
3	MEDIUM	0.6 0.15	0	×	
	LOW	0.2 0.05	×	0	
te. Fo	r gear ratio (other than value in table,	00N,	contact	

Table 3.6 Gear Select and Gear Ratio

Note: For gear ratio other than value in table, contact the company.

O...ON, contact closed ×...OFF, contact opened

3.7.2 Contact output signal

Use the orientation signal under the following conditions

- . Use a reed relay for output signals. The contact capacity should be 24 VAC, 0.1 ADC.
- . The contact chatter must be lmsec max.
- . When switching an inductive load such as relay, be sure to connect a CR spark-killer in parallel to the load. Keep the surge voltage across the contacts below 200 V.
- . When a capacitive load is connected, connect a series resistor to restrict the current.
- . Fig. 3.5 shows the output circuit and Table 3.7 gives a description of the output signals.

Table 3.7 Description of Output Signals

Name	Connector No.	Contact & Pin No.	Description		
1. Orienta- tion end [OREND]		736 37	. [OREND] is outputted (contact CLOSE) when the spindle has been stopped at the specified angular position within ±0.2°, by [ORICM].		
			. While [OREND] is being outputted, the spindle angular displacement is compensated exerting a reaction torque against an external torque. However, if the spindle has been obviously displaced by a strong external torque, stop operation, and clear [OREND].		
			. Connect an external sequence circuit for outputting an alarm signal when [OREND] is not outputted within a preset time after receiving [ORICM].		

*1. When the FS-1378B magnetic sensor is used, a monitoring position signal can be used to open [OREND] if the spindle is displaced after the end of an orientation process. When the FS-200A is used, [OREND] cannot be opened when once the spindle has been oriented unless [ORICM] is opened, because FS-200A

spindle has been oriented, unless [ORICM] is opened, because FS-200A has no monitoring position signal.

3.8 Installing Magneto and Magnetic Sensor

The magento is installed on the spindle, and the magnetic sensor is installed on a stationary part. Their relative position must be such that when the spindle is in the intended stop position, the magneto and the magnetic sensor are aligned center-to-center.

3.8.1 Installing

Fig. 3 shows the installing method, and Table 3.8 gives the required mounting accuracy.

No.	Dimensions	Code	MG1378-BS/ FS-1378-B	MG-1444/ FS-200A
1	Radius of spindle member*	R	60-70 mm	60-70 mm
2	Gap (center of magneto to magnetic sensor [†])	L	6 mm (6-8 mm)	5 mm (3-7 mm)
3	Gap(end of magneto to magnetic sensor [†])	ΔL	1-2 mm	1-2 mm
4	Center position error of magneto and magnetic sensor [†]	ΔS1, ΔS2	0.5 mm max.	0.5 mm max.
5	Angular displacement error from datum planc ‡	δ	0.2° max.	0.2° max.

Table 3.8 Mounting Accuracy

* In determining the diameter of the spindle member for installing the magneto take the permissible maximum peripheral speed of the magneto into consideration.

- [†] The L value is a recommended value. Adjust the gap so as to satisfy the Δ L requirement.
- In aligning magneto to the mechanical center line of the system such as the spindle nose key of a machining center, observe the specified mounting accuracy standards for the center position and angular position of the magneto.

(a) MG-1378-BS/FS-1378-B

(b) MG-1444/FS-200A

Fig. 3.6 Installing Magneto and Magnetic Sensor

3.8.2 Mounting direction

In installing the magneto and the magnetic sensor, pay attention to their polarity. If they are mounted with the wrong polarity, operation will be malfunctioned

(1) For MG-1378-BS/FS-1378-B

As shown in Fig. 3.7, install the magneto and the magnetic sensor so that the identification hole on the magneto and the head pin groove on the sensor are on the same side of the center line.

With respect to the running direction of the magneto, install the magneto so that the identification hole is on the left of the center line viewed in the running direction.

Fig. 3.7 Magneto and Magnetic Sensor Mounting Direction

(2) For MG-1444/FS-200A

As shown in Fig. 3.8, where the spindle turns forward in the CCW direction, install the magneto so that its N comes on the right and S left as viewed from a stationary position, and install the magnetic sensor with the nameplate up.

Fig. 3.8 Magneto and Magnetic Sensor Mounting Direction

- 3.8.3 Precautions in Mounting
- (1) Although the sensor head is designed to be resistant to oil and water, seal the bushes with sillicone adhesive or the like where the sensor is subject to frequent splashing from oil or water.

- (2) In designing the mounting arrangement for the sensor amplifier and connecting cables, avoid exposing them to water and oil splashes.
- (3) Avoid bringing units generating magnetic fields such as solenoids and magnets near the magneto and the magnetic sensor.
- (4) In installing the magnetic sensor head and the magneto, take care not to mechanically damage them.
- (5) Take care to prevent iron powder or the like from depositing on the magneto.
- (6) Install the magneto on the spindle, in order to avoid stopping position deviations due to backlash.
- (7) Make the cable connecting the magnetic sensor amplifier and the orientation card not more than 20 meters in length.

