YASKAWA

Machine Controller MP3000 Series

Motion Program
PROGRAMMING MANUAL

DREFR ST EE D o > e eB]
Ol £ Y0 S <s=#2>L0Mul:iNS]

Introduction to Motion Programs

Introduction to Sequence Programs

Program Development Flow

Registers

Programming Rules

Motion Language Instructions

e —————— = T Features of the MPE720
Engineering Tool

Specifications

Sample Programs

Differences between MP2000-series
and MP3000-series Machine Controllers

Precautions

MANUAL NO. SIEP C880725 14E

(1
| 2
EN
4
| 5
| 6

7

Copyright © 2012 YASKAWA ELECTRIC CORPORATION

All rights reserved. No part of this publication may be reproduced, stored in a retrieval sys-
tem, or transmitted, in any form, or by any means, mechanical, electronic, photocopying,
recording, or otherwise, without the prior written permission of Yaskawa. No patent liabil-
ity is assumed with respect to the use of the information contained herein. Moreover,
because Yaskawa is constantly striving to improve its high-quality products, the informa-
tion contained in this manual is subject to change without notice. Every precaution has been
taken in the preparation of this manual. Nevertheless, Yaskawa assumes no responsibility
for errors or omissions. Neither is any liability assumed for damages resulting from the use
of the information contained in this publication.

About this Manual

This manual provides information on motion programming for MP3000-series Machine Controllers.

Read this manual carefully to ensure the correct usage of the Machine Controller and apply the Machine Con-
troller to control your manufacturing system.

Keep this manual in a safe place so that it can be referred to whenever necessary.

Using this Manual

@ Intended Audience

This manual is intended for the following personnel.
* Designers for systems that use MP3000-series Machine Controllers
* Programmers of the motion programs and sequence programs for MP3000-series Machine Controllers

& Basic Terms

Unless otherwise specified, the following definitions are used:
* Fixed parameters: The motion fixed parameters.

* Setting parameters: The motion setting parameters.

* Monitor parameters: The motion monitor parameters.
Machine Controller: MP3000-series Machine Controller

MP3200: A generic name for the Power Supply Unit, CPU Unit, Base Unit, and Rack Expansion Interface
Unit.

MP3300: A generic name for the CPU Module and Base Unit.
MPE720: The Engineering Tool or a personal computer running the Engineering Tool

Motion Control Function Modules: The Function Modules in the Motion Modules and the Function Mod-
ules in the SVR, SVC, SVC 32, or SVR 32 built into the CPU Units/CPU Modules.

€ MPE720 Engineering Tool Version Number

In this manual, the operation of MPE720 is described using screen captures of MPE720 version 7.

€ The Meaning of “Torque” in This Manual

Although the term “torque” is commonly used when describing rotary Servomotors and “force” is used when
describing linear Servomotors, this manual uses “torque” when describing either one (excluding parameter
names).

& Visual Aids

The following aids are used to indicate certain types of information for easier reference.

°@ Indicates precautions or restrictions that must be observed.

important Indicates alarm displays and other precautions that will not result in machine damage.

Indicates items for which caution is required or precautions to prevent operating mistakes.

Note
Example Indicates operating or setting examples.

Information Indicates supplemental information to deepen understanding or useful information.

@ Indicates definitions of difficult terms or terms that have not been previously explained in this

manual.
Terms

Related Manuals

The following table lists the related manuals. Refer to these manuals as required.

Be aware of all product specifications and restrictions to product application before you attempt to use any

product.
Category Manual Name Manual Number Contents
Machine Controller MP2000/ Describes the functions of the MP2000/MP3000-series
MP3000 Series Machine Controller Machine Controllers and the procedures that are required to
SIEP C880725 00
System use the Machine Controller, from installation and connections
Setup Manual to settings, programming, trial operation, and debugging.
Machine Controller
MP3000 Series MP3200/MP3300 SIEP C880725 01 Describes troubleshooting an MP3000-series Machine Con-
. troller.
Troubleshooting Manual
Basic - -
. . Machine Controller MP3000 Series Describes the functions, specifications, setup method of the
functionality MP3100 User’s Manual SIEP C880725 24 MP3000-series MP3100 Machine Controller.
. . Describes the specifications and system configuration of the
Machine Cont,roller MP3000 Series SIEP C880725 10| Basic Units in an MP3000-series Machine Controller and the
MP3200 User’s Manual . .
functions of the CPU Unit.
. . Describes the specifications and system configuration of an
Machine Controller MP3000 Series | g11.p 80725 21 | MP3000-series MP3300 Machine Controller and the func-
MP3300 Product Manual .
tions of the CPU Module.
Communica- Describes the specifications, system configuration, and com-
tions ﬁl:nc_ Machine Controller MP3000 Series SIEP C880725 12 munications connection methods for the Ethernet communi-
. . Communications User’s Manual cations that are used with an MP3000-series Machine
tionality
Controller.
Describes the specifications, system configuration, and oper-
Machine Controller MP3000 Series SIEP C880725 11 ating methods for the SVC, SVC32, SVR, and SVR32
Motion Control User’s Manual Motion Function Modules that are used in an MP3000-series
Machine Controller.
Machine Controller MP2000 Series Describes the functions, specifications, and operating meth-
Pulsc: Output Motion Module PO-01 | SIEP C880700 28 ods of the MP2000-serics PO-01 Motion Module.
User’s Manual
Motion con- - -
trol function- g{j;%?i&ggggﬁgﬁizooo Series SIEP C880700 32 Describes the functions, specifications, and operating meth-
ality s ods of the MP2000-series SVA-01 Motion Module.
User’s Manual
Machine Controller MP2000 Series Describes the functions, specifications, and operating meth-
Built-in SVB/SVB-01 Motion SIEP C880700 33 | ods of the MP2000-series Motion Module (built-in Function
Module User’s Manual Modules: SVB, SVB-01, and SVR).
Machine Controller MP2000 Series Describes the functions, specifications, and operating meth-
SVC-01 Motion Module SIEP C880700 41 " - 5P > and operating

User’s Manual

ods of the MP2000-series SVC-01 Motion Module.

Program- Machine Controller MP3000 Series SIEP C880725 13 Describes the ladder programming specifications and instruc-
ming Ladder Programming Manual tions of MP3000-series Machine Controller.
Machine Controller MP2000/
Encineerin MP3000 Series
Tofl £ Engineering Tool SIEP C880761 03 | Describes how to operate MPE720 version 7.

MPE720 Version 7
User’s Manual

Vi

Safety Precautions

The following signal words and marks are used to indicate safety precautions in this manual.

Information marked as shown below is important for safety. Always read this information and heed the pre-
cautions that are provided.

Indicates precautions that, if not heeded, could possibly result in loss of life or
[A WARNING] serious injury.

Indicates precautions that, if not heeded, could result in relatively serious or
[A CAUTION j minor injury, or property damage.

If not heeded, even precautions classified as cautions ({A CAUTION]) can lead to
serious results depending on circumstances.

Indicates prohibited actions. For example, @ indicates prohibition of open
(S PROHBITED) P P P P

flame.

Indicates mandatory actions. For example, 9 indicates that grounding is
required.

(@ MANDATORY

The following precautions are for storage, transportation, installation, wiring, operation, maintenance, inspec-
tion, and disposal. These precautions are important and must be observed.

& General Precautions

A\ WARNING

« The installation must be suitable and it must be performed only by an experienced technician.
There is a risk of electrical shock or injury.

» Before connecting the machine and starting operation, make sure that an emergency stop pro-
cedure has been provided and is working correctly.
There is a risk of injury.

» Do not approach the machine after a momentary interruption to the power supply. When power
is restored, the Machine Controller and the device connected to it may start operation suddenly.
Provide safety measures in advance to ensure human safety when operation restarts.

There is a risk of injury.

» Do not touch anything inside the Machine Controller.
There is a risk of electrical shock.

» Do not remove the front cover, cables, connector, or options while power is being supplied.
There is a risk of electrical shock, malfunction, or damage.

» Do not damage, pull on, apply excessive force to, place heavy objects on, or pinch the cables.
There is a risk of electrical shock, operational failure of the Machine Controller, or burning.

» Do not attempt to modify the Machine Controller in any way.
There is a risk of injury or device damage.

€ Storage and Transportation

/A CAUTION

» Do not store the Machine Controller in any of the following locations.
+ Locations that are subject to direct sunlight
» Locations that are subject to ambient temperatures that exceed the storage conditions
» Locations that are subject to ambient humidity that exceeds the storage conditions
» Locations that are subject to rapid temperature changes and condensation
* Locations that are subject to corrosive or inflammable gas
» Locations that are subject to excessive dust, dirt, salt, or metallic powder
» Locations that are subject to water, oil, or chemicals
» Locations that are subject to vibration or shock
There is a risk of fire, electrical shock, or device damage.

+ Hold onto the main body of the Machine Controller when transporting it.
Holding the cables or connectors may damage them or result in injury.

* Do not overload the Machine Controller during transportation. (Follow all instructions.)
There is a risk of injury or an accident.

* Never subject the Machine Controller to an atmosphere containing halogen (fluorine, chlorine,
bromine, or iodine) during transportation.
There is a risk of malfunction or damage.

« If disinfectants or insecticides must be used to treat packing materials such as wooden frames,
pallets, or plywood, the packing materials must be treated before the product is packaged, and
methods other than fumigation must be used.

Example: Heat treatment, where materials are kiln-dried to a core temperature of 56°C for 30 minutes or
more.

If the electronic products, which include stand-alone products and products installed in machines, are
packed with fumigated wooden materials, the electrical components may be greatly damaged by the
gases or fumes resulting from the fumigation process. In particular, disinfectants containing halogen,
which includes chlorine, fluorine, bromine, or iodine can contribute to the erosion of the capacitors.

Vii

viii

& Installation

/A CAUTION

Do not install the Machine Controller in any of the following locations.

* Locations that are subject to direct sunlight

» Locations that are subject to ambient temperatures that exceed the operating conditions

* Locations that are subject to ambient humidity that exceeds the operating conditions

» Locations that are subject to rapid temperature changes and condensation

» Locations that are subject to corrosive or inflammable gas

» Locations that are subject to excessive dust, dirt, salt, or metallic powder

» Locations that are subject to water, oil, or chemicals

» Locations that are subject to vibration or shock

There is a risk of fire, electrical shock, or device damage.

Never install the Machine Controller in an atmosphere containing halogen (fluorine, chlorine,
bromine, or iodine).

There is a risk of malfunction or damage.

Do not step on the Machine Controller or place heavy objects on the Machine Controller.
There is a risk of injury or an accident.

Do not block the air exhaust ports on the Machine Controller. Do not allow foreign objects to
enter the Machine Controller.

There is a risk of internal element deterioration, malfunction, or fire.

Always mount the Machine Controller in the specified orientation.

There is a risk of malfunction.

Leave the specified amount of space between the Machine Controller, and the interior surface
of the control panel and other devices.

There is a risk of fire or malfunction.

Do not subject the Machine Controller to strong shock.

There is a risk of malfunction.

Suitable battery installation must be performed and it must be performed only by an experi-
enced technician.

There is a risk of electrical shock, injury, or device damage.

Do not touch the electrodes when installing the Battery.

Static electricity may damage the electrodes.

€ Wiring

/A CAUTION

Check the wiring to be sure it has been performed correctly.
There is a risk of motor run-away, injury, or accidents.

Always use a power supply of the specified voltage.

There is a risk of fire or accident.

In places with poor power supply conditions, ensure that the input power is supplied within the
specified voltage range.

There is a risk of device damage.

Install breakers and other safety measures to provide protection against shorts in external wir-
ing.

There is a risk of fire.

Provide sufficient shielding when using the Machine Controller in the following locations.

» Locations that are subject to noise, such as from static electricity

» Locations that are subject to strong electromagnetic or magnetic fields

» Locations that are subject to radiation

» Locations that are near power lines

There is a risk of device damage.

Configure the circuits to turn ON the power supply to the CPU Unit/CPU Module before the 24-
V 1/0 power supply. Refer to the following manual for details on circuits.

(A0 MP3000 Series CPU Unit Instructions (Manual No.: TOBP C880725 16)

(A0 MP3000 Series MP3300 CPU Module Instructions (Manual No.: SIEP C880725 23)

If the power supply to the CPU Unit/CPU Module is turned ON after the external power supply, e.g., the
24-V 1/O power supply, the outputs from the CPU Unit/CPU Module may momentarily turn ON when
the power supply to the CPU Unit/CPU Module turns ON. This can result in unexpected operation that
may cause injury or device damage.

Provide emergency stop circuits, interlock circuits, limit circuits, and any other required safety
measures in control circuits outside of the Machine Controller.

There is a risk of injury or device damage.

If you use MECHATROLINK I/0O Modules, use the establishment of MECHATROLINK commu-
nications as an interlock output condition.

There is a risk of device damage.

Connect the Battery with the correct polarity.

There is a risk of battery damage or explosion.

Suitable battery replacement must be performed and it must be performed only by an experi-
enced technician.

There is a risk of electrical shock, injury, or device damage.

Do not touch the electrodes when replacing the Battery.
Static electricity may damage the electrodes.

Select the 1/0 signal wires for external wiring to connect the Machine Controller to external
devices based on the following criteria:

* Mechanical strength

* Noise interference

» Wiring distance

* Signal voltage

A\ CAUTION

+ Separate the 1/O signal cables for control circuits from the power cables both inside and outside
the control panel to reduce the influence of noise from the power cables.
If the I/O signal lines and power lines are not separated properly, malfunction may occur.

Example of Separated Cables

Steel separator

1/0 signal
Power cable cables in

control circuits

0000 0000

€ Operation

A\ CAUTION

» Follow the procedures and instructions in the user’s manuals for the relevant Machine Control-
lers to perform normal operation and trial operation.
Operating mistakes while the Servomotor and machine are connected may damage the machine or even
cause accidents resulting in injury or death.

* Implement interlock signals and other safety circuits external to the Machine Controller to

ensure safety in the overall system even if the following conditions occur.

* Machine Controller failure or errors caused by external factors

» Shutdown of operation due to Machine Controller detection of an error in self-diagnosis and the subse-
quent turning OFF or holding of output signals

* Holding of the ON or OFF status of outputs from the Machine Controller due to fusing or burning of out-
put relays or damage to output transistors

» Voltage drops from overloads or short-circuits in the 24-V output from the Machine Controller and the
subsequent inability to output signals

» Unexpected outputs due to errors in the power supply, I/O, or memory that cannot be detected by the
Machine Controller through self-diagnosis.

There is a risk of injury, device damage, or burning.

» Observe the setting methods that are given in the manual for the following parameters.
» Parameters for absolute position detection when the axis type is set to a finite-length axis
» Parameters for simple absolute infinite-length position control when the axis type is set to an infinite-
length axis
(A0 MP3000 Series Motion Control User s Manual (Manual No. SIEP C880725 11)

If any other methods are used, offset in the current position when the power supply is turned OFF and ON
again may result in device damage.

+ OLOO0OA48 (Zero Point Position Offset in Machine Coordinate System) is always valid when
the axis type is set to a finite-length axis. Do not change the setting of OLOOO48 while the
Machine Controller is operating.

There is a risk of machine damage or an accident.

/A CAUTION

Always check to confirm the paths of axes when any of the following axis movement instruc-
tions are used in programs to ensure that the system operates safely.

* Positioning (MOV)

* Linear Interpolation (MVS)

* Circular Interpolation (MCC or MCW)

* Helical Interpolation (MCC or MCW)

* Set-time Positioning (MVT)

* Linear Interpolation with Skip Function (SKP)

» Zero Point Return (ZRN)

» External Positioning (EXM)

Axis 3

Example A

Each axis is moved independently -
at rapid traverse speed. End position

Axis 3
A)
Axis 1
———— AXis 1
/Current position
Axis 2

Axis 2
Example of Basic Path for Positioning (MOV) Instruction

There is a risk of injury or device damage.

The same coordinate word will create a completely different travel operation in Absolute Mode
and in Incremental Mode. Make sure that the ABS and INC instructions are used correctly
before you start operation.

There is a risk of injury or device damage.

The travel path for the Positioning (MOV) instructions will not necessarily be a straight line.
Check to confirm the paths of the axis when this instruction is used in programs to ensure that
the system operates safely.

There is a risk of injury or device damage.

The Linear Interpolation (MVS) instruction can be used on both linear axes and rotary axes.
However, if a rotary axis is included, the linear interpolation path will not necessarily be a
straight line. Check to confirm the paths of the axis when this instruction is used in programs to
ensure that the system operates safely.

There is a risk of injury or device damage.

The linear interpolation for the Helical Interpolation (MCW and MCC) instructions can be used
for both linear axes and rotary axes. However, depending on how the linear axis is taken, the
path of helical interpolation will not be a helix. Check to confirm the paths of the axis when this
instruction is used in programs to ensure that the system operates safely.

There is a risk of injury or device damage.

Xi

Xii

A\ CAUTION

+ Unexpected operation may occur if the following coordinate instructions are specified incor-

rectly: Always confirm that the following instructions are specified correctly before you begin
operation.

» Absolute Mode (ABS)

¢ Incremental Mode (INC)

* Current Position Set (POS)

Axis 2
Example A Axis 2

A (Axis 1) : Current

™ position
(Axis 2)
(0, 0) Working coordinate Axis 1

system .

Axis 1

(0,0) Machine coordinate system

Example of Working Coordinate System Created
with the Set Current Position (POS) Instruction

There is a risk of injury or device damage.

The Set Current Position (POS) Instruction creates a new working coordinate system. There-
fore, unexpected operation may occur if the POS instruction is specified incorrectly. When you
use the POS instruction, always confirm that the working coordinate system is in the correct
position before you begin operation.

There is a risk of injury or device damage.

The Move on Machine Coordinates (MVM) instruction temporarily performs positioning to a
coordinate position in the machine coordinate system. Therefore, unexpected operation may
occur if the instruction is executed without confirming the zero point position in the machine
coordinate system first. When you use the MVM instruction, always confirm that the machine
zero point is in the correct position before you begin operation.

There is a risk of injury or device damage.

€ Maintenance and Inspection

/A CAUTION

» Do not attempt to disassemble or repair the Machine Controller.
There is a risk of electrical shock, injury, or device damage.
* Do not change any wiring while power is being supplied.
There is a risk of electrical shock, injury, or device damage.
+ Suitable battery replacement must be performed and it must be performed only by an experi-
enced technician.
There is a risk of electrical shock, injury, or device damage.
* Replace the Battery only while power is supplied to the Machine Controller.
Replacing the Battery while the power supply to the Machine Controller is turned OFF may result in loss
of the data stored in memory in the Machine Controller.
» Do not touch the electrodes when you replace the Battery.
Static electricity may damage the electrodes.

+ Do not forget to perform the following tasks when you replace the CPU Unit/CPU Module:
+ Back up all programs and parameters from the CPU Unit/CPU Module that is being replaced.
* Transfer all saved programs and parameters to the new CPU Unit/CPU Module.
If you operate the CPU Unit/CPU Module without transferring this data, unexpected operation may
occur. There is a risk of injury or device damage.

* Do not touch the heat sink on the CPU Unit/CPU Module while the power supply is turned ON
or for a sufficient period of time after the power supply is turned OFF.
The heat sink may be very hot, and there is a risk of burn injury.

@ Disposal

/A CAUTION

+ Dispose of the Machine Controller as general industrial waste.
» Observe all local laws and ordinances when you dispose of used Batteries.

& Other General Precautions

Observe the following general precautions to ensure safe application.

» The products shown in the illustrations in this manual are sometimes shown without covers or
protective guards. Always replace the cover or protective guard as specified first, and then
operate the products in accordance with the manual.

+ The illustrations that are presented in this manual are typical examples and may not match the
product you received.

+ If the manual must be ordered due to loss or damage, inform your nearest Yaskawa representa-
tive or one of the offices listed on the back of this manual.

Xiii

@ Details of Warranty

B Warranty Period

The warranty period for a product that was purchased (hereinafter called “delivered product”) is one year from
the time of delivery to the location specified by the customer or 18 months from the time of shipment from the
Yaskawa factory, whichever is sooner.

® Warranty Scope

Yaskawa shall replace or repair a defective product free of charge if a defect attributable to Yaskawa occurs
during the warranty period above. This warranty does not cover defects caused by the delivered product reach-
ing the end of its service life and replacement of parts that require replacement or that have a limited service
life.

This warranty does not cover failures that result from any of the following causes.

 Improper handling, abuse, or use in unsuitable conditions or in environments not described in product cata-
logs or manuals, or in any separately agreed-upon specifications

 Causes not attributable to the delivered product itself
* Modifications or repairs not performed by Yaskawa
* Abuse of the delivered product in a manner in which it was not originally intended

* Causes that were not foreseeable with the scientific and technological understanding at the time of shipment
from Yaskawa

» Events for which Yaskawa is not responsible, such as natural or human-made disasters

€ Limitations of Liability

* Yaskawa shall in no event be responsible for any damage or loss of opportunity to the customer that arises
due to failure of the delivered product.

* Yaskawa shall not be responsible for any programs (including parameter settings) or the results of program
execution of the programs provided by the user or by a third party for use with programmable Yaskawa
products.

 The information described in product catalogs or manuals is provided for the purpose of the customer pur-
chasing the appropriate product for the intended application. The use thereof does not guarantee that there
are no infringements of intellectual property rights or other proprietary rights of Yaskawa or third parties,
nor does it construe a license.

* Yaskawa shall not be responsible for any damage arising from infringements of intellectual property rights
or other proprietary rights of third parties as a result of using the information described in catalogs or manu-
als.

Xiv

@ Suitability for Use
* It is the customer’s responsibility to confirm conformity with any standards, codes, or regulations that apply
if the Yaskawa product is used in combination with any other products.

* The customer must confirm that the Yaskawa product is suitable for the systems, machines, and equipment
used by the customer.

Consult with Yaskawa to determine whether use in the following applications is acceptable. If use in the
application is acceptable, use the product with extra allowance in ratings and specifications, and provide
safety measures to minimize hazards in the event of failure.
* Outdoor use, use involving potential chemical contamination or electrical interference, or use in conditions or
environments not described in product catalogs or manuals
* Nuclear energy control systems, combustion systems, railroad systems, aviation systems, vehicle systems, medi-
cal equipment, amusement machines, and installations subject to separate industry or government regulations
+ Systems, machines, and equipment that may present a risk to life or property
+ Systems that require a high degree of reliability, such as systems that supply gas, water, or electricity, or systems
that operate continuously 24 hours a day
* Other systems that require a similar high degree of safety

Never use the product for an application involving serious risk to life or property without first ensuring that

the system is designed to secure the required level of safety with risk warnings and redundancy, and that the

Yaskawa product is properly rated and installed.

¢ The circuit examples and other application examples described in product catalogs and manuals are for ref-
erence. Check the functionality and safety of the actual devices and equipment to be used before using the
product.

* Read and understand all use prohibitions and precautions, and operate the Yaskawa product correctly to pre-

vent accidental harm to third parties.

@ Specifications Change

The names, specifications, appearance, and accessories of products in product catalogs and manuals may be
changed at any time based on improvements and other reasons. The next editions of the revised catalogs or
manuals will be published with updated code numbers. Consult with your Yaskawa representative to confirm
the actual specifications before purchasing a product.

XV

XVi

[Contonts)

Aboutthis Manual e iii
Using this Manual e e iii
Related Manuals v
Safety Precautions. e e Vi
Warranty Xiv

0 Introduction to Motion Programs

=Y Y Y By S
~goflofl >~ v

RN
oo

RN
((e]

What Is a Motion Program? 1-3
Features of Motion Programs 1-4
Motion Program Execution Methods 1-4
Full Synchronization of Sequence Control and Motion Control 1-4
Advanced Motion Control. e 1-5
Easy-to-understand Motion Language Instructions 1-5
Numerical Calculations in Motion Programs 1-5
Data Transfer to and from Ladder Programs.. 1-6
Memory Usage Reduced by Use of Subprograms 1-6
Parallel Execution of Programs 1-7
Axis Alarm Checks. 1-10
Online Editing of Programs 1-12
Easy Programming Functions (MPE720 Version 7.0orlLater) 1-13
Motion Program System Configuration. 1-14
Types of Motion Programs 1-15
Motion Program Groupst 1-16
Motion Program Execution Timing 1-17
Executing Motion Programs i 1-19
Execution Processing Method 1-19
Program Execution Registration Methods, 1-22
Work Registers 1-23
Advanced Programming 1-31
Indirect Designation of a Program Number Using a Register 1-31
Controlling Motion Programs Directly from an External Device.................... 1-32
Monitoring Motion Program Execution Information 1-33
Application Examples 1-43
Conveyance DeviCe.ttt e 1-43
Part Inserter. 1-43
Panel Processing Machine e 1-44
Metal Sheet Pressing Equipment. 1-44

9 Introduction to Sequence Programs

e

24

What Is a Sequence Program?. i 2-2
Features of a Sequence Program. 2-3
Sequence Program Execution Methods. 2-3
Same Language as Motion Programs e 2-3
Data Transfer to and from Motion Programs 2-3
Memory Usage Reduced by Use of Subprograms. 2-4
Easy Programming Functions 2-4
Types of Sequence Programs 2-5
Executing Sequence Programs 2-6
Execution Processing Method 2-6
Registering Program Execution 2-8
Work Registers. 2-9

9 Program Development Flow

Program Development Flow. 3-2
Program Development Procedures 3-3
Preparation for Devicestobe Connected 3-3
Creating a Project. 3-4
Self Configuration. 3-6
Going ONliNe e 3-6
Group Definition Settings 3-6
Creating Programsot 3-8
Registering Program Execution 3-10
Transferring the Programs 3-13
Debugging Programs 3-16
Saving the Programs to Flash Memory 3-17
Executing the Programs. e 3-18

a Registers

Registers. e 4-2
Types Of Registers e 4-2
Global Registers. e e e 4-5
Local Registers. e e e 4-6
Data TYPES . . oot e e e 4-8
Using Registers e 4-11
System Registers (SRegisters) o 4-11
Data Registers (M Registers). i e 4-12
Data Registers (G Registers) e e e 4-13
Input Registers (I Registers). e e 4-14
Output Registers (O Registers) e 4-15
C RegIStErS. . .. e 4-16
D REegiSters. . . .o e 4-17

XVii

Using Indices i and joooiuuiiiiiiiiaaaaaiiaa, 4-18

Using Array Registers. 4-20
e Programming Rules
Entering Programs 5-2
Motion Program Structure 5-2
Block Format 5-2
Notation for Constants and Registers i 5-8
Group Definition Details 5-9
Operation Priority Levels. 5-11
Instruction Types and ExecutionScans 5-13
Instruction Types 5-13
Instruction Type Table 5-15
Programming with Variables, 5-17
Declaring Variables 5-17
Variable Format 5-18
Strings That Cannot Be Used in Variable Names 5-20
Programming Examples. e 5-21

6 Motion Language Instructions

Axis Setting Instructions 6-4
Absolute Mode (ABS) 6-7
Incremental Mode (INC). e 6-11
Change Acceleration Time (ACC)o e e e 6-15
Change Deceleration Time (DCC).ot e e e e 6-21
Change S-curve Time Constant (SCC) i i 6-27
Set Speed (VEL) 6-33
Set Maximum Interpolation Feed Speed (FMX). 6-39
Set Maximum Individual Axis Speeds for Interpolation (IFMX) 6-42
Change Interpolation Feed Speed Unit (FUT) 6-45
Set Interpolation Feed Speed Ratio (IFP) i 6-47
Change Interpolation Acceleration Time (IAC) i 6-50
Change Interpolation Deceleration Time (IDC) 6-52
Change Interpolation S-curve Time (ISC) 6-54
Change Interpolation Deceleration Time for Temporary Stop (IDH) 6-58
Change Interpolation Acceleration/Deceleration Unit (IUT). 6-62
Set Interpolation Feed Speed Axes (+and-). i 6-64
Set Interpolation Acceleration/Deceleration Mode (ACCMODE). 6-67

XViii

Axis Movement Instructions 6-81
Positioning (MOV) e 6-85
Linear Interpolation (MVS) e 6-89
Circular Interpolation with Specified Center Point (MCW and MCC) 6-94
Circular Interpolation with Specified Radius (MCW and MCC) 6-99
Helical Interpolation with Specified Center Point (MCW and MCC)............... 6-103
Helical Interpolation with Specified Radius (MCW and MCC) 6-106
Zero Point Return (ZRN) 6-108
Position after Distribution (DEN) 6-111
Linear Interpolation with Skip Function (SKP) 6-113
Set-time Positioning (MVT) 6-115
External Positioning (EXM) 6-117
Axis Control Instructions. 6-119
Current Position Set (POS) 6-121
Move on Machine Coordinates (MVM). i 6-123
Update Program Current Position (PLD) i 6-124
In-position Check (PFEN). e 6-126
In-Position Range (INP) e e e 6-128
Positioning Completed Check (PFP) e 6-130
Coordinate Plane Setting (PLN).o i e 6-132
Program Control Instructions 6-133
Branching Instructions (IF, ELSE, and IEND). 6-135
Repetition Instructions (WHILE, WEND) 6-138
Repetition with One Scan Wait (WHILE and WENDX). 6-141
Parallel Execution Instructions (PFORK, JOINTO, and PJOINT). 6-144
Selective Execution Instructions (SFORK, JOINTO, SJOINT). 6-147
Call Motion Subprogram (MSEE). 6-152
Call Sequence Subprogram (SSEE) 6-153
Call User Function from Motion Program (UFC) 6-154
Call User Function from Sequence Program (FUNC) 6-162
Program End (END)o 6-163
Subprogram Return (RET) 6-164
Dwell Time (TIM) . ..o e e e e 6-165
Dwell Time (TIMTMS).o e e 6-166
I/0 Variable Wait (IOW) e 6-167
One Scan Wait (EOX)o e e 6-170
Disable Single-block Signal (SNGD) and Enable Single-block Signal (SNGE) 6-171
Numeric Operation Instructions 6-172
Substitute (Z)o 6-173
Add () .o 6-174
Subtract (=) 6-175
Extended Add (F+) oot e e 6-176
Extended Subtract (—-) e e 6-178
MURIPLY (%) e 6-180
DIVIAE ().« ottt 6-181
Modulo (MOD) . . . oo 6-182
Logic Operation Instructions. 6-183
Inclusive OR (]). - - - o oot 6-184
AND (&) .+ ot 6-185
EXCIUSIVE OR (M) o .o 6-186
NOT () e e 6-187

XiX

XX

65

Numeric Comparison Instructions. 6-188
Numeric Comparison Instructions (==, <>, >, <, >=/<=) 6-190
Data Manipulations 6-193
Bit Shift Right (SFR). 6-193
Bit Shift Left (SFL)o 6-195
Move Block (BLK) 6-196
Clear (CLR) . . .ot 6-197
Table Initialization (SETW). e e e 6-198
ASCIl Conversion 1 (ASCII). e e e e 6-200
Basic Functions. 6-202
SiNe (SIN) . .o 6-204
CoSIiNE (COS). . .t e 6-205
Tangent (TAN)o 6-206
Arc Sine (ASN). . . .o 6-207
Arc Cosing (ACS). . .t e 6-208
Arc Tangent (ATN) . ..ot 6-209
Square ROOt (SQT) . ..ottt 6-210
BCD to Binary (BIN). o 6-212
Binary to BCD (BCD)ottt e 6-213
Set Bit (S{). .ot 6-214
Reset Bit (R{}). ... oo 6-215
Rising-edge Pulse (PON). e e e 6-216
Falling-edge Pulse (NON) e e 6-218
On-delay Timer: Measurementunit=10ms (TON). 6-220
1-ms ON-Delay Timer (TONIMS) e e e 6-221
Off-delay Timer: Measurement unit=10ms (TOF)............. 6-222
1-ms OFF-Delay Timer (TOFIMS) i e 6-223

Vision Instructions. 6-224

71

7.5
7.6
7.7

7.8

e Features of the MPE720 Engineering Tool

Motion Editor. 7-2
Motion Instruction Entry Assistance 7-5
Task Assignments. 7-9
Debug Operation. 7-11
Drive Control Panel. 7-18
Test RUNS 7-20
Axis Monitor and Alarm Monitor 7-23
Cross References. 7-27

Specifications
AppendixA

Applicable Units and Modules A2

Machine Controller Specifications A-3

Sample Programs
AppendixB

Motion Program Control Program. B-2
Parallel Processing. B-3
Performing Speed Control with a Motion Program B-4
Simple Synchronized Operation with a Virtual Axis B-5
Sequence Programs. B-7

Differences between MP2000-series and MP3000-series Machine Controllers
AppendixC

Precautions
AppendixD

Index

General Precautions. D-2
Saving Data to Flash Memory when Changing Applications D-2
Debugging a Systemin Operation i e D-2
Precautions on Motion Parameters D-3
Performing Axis Movement Instructions on the Same Axis in Motion Programs D-3
Using a Subscript to Reference a Motion Register from an 1/0O Register. D-3
Referencing the Motion Register of a Different Circuit. D-4
OoLOOO1C (Position Reference Setting) Setting Parameter D-5
Axis Operation for Software Limit Alarms. D-5

Revision History

XXi

Introduction to Motion
Programs

This chapter introduces motion programs, their features, and how
to use them for first-time users of motion programs.

What s a Moton Program? 13
_
Motion Program Execution Methods
Full Synchronization of Sequence Control and Motion Control . . 1-4

Advanced Motion Control 1-5
Easy-to-understand Motion Language Instructions 1-5
Numerical Calculations in Motion Programs 1-5
Data Transfer to and from Ladder Programs 1-6
Memory Usage Reduced by Use of Subprograms 1-6
Parallel Execution of Programs 1-7
Axis Alarm Checks i, 1-10
Online Editing of Programs 1-12

Easy Programming Functions (MPE720 Version 7.0 or Later) . . 1-13

I Vioton Program System Configuration ... 1-14
I Types of Moton Programs ... 115
I Voton Program Growps ... 16
I ioton Program Executon Timing ... 117

Execution Processing Method
Program Execution Registration Methods
Work Registers

B Aovanced Programming ... 131

Indirect Designation of a Program Number

UsingaRegister i 1-31
Controlling Motion Programs Directly

froman External Device 1-32
Monitoring Motion Program Execution Information 1-33
Conveyance Devicecoiiiiiiiiininn.. 1-43
Partinserter 1-43
Panel ProcessingMachine 1-44

Metal Sheet Pressing Equipment 1-44

1.1 What Is a Motion Program?

What Is a Motion Program?

Motion programs are programs that are written in Yaskawa’s motion language, which is a textual program-
ming language.

In comparison with ladder programs, motion programs allow you to execute various operations with one
line of motion language code. As opposed to ladder programs, motion programs allow you to set the target
position, acceleration/deceleration times, or interpolation feed speeds for interpolation instructions to
automatically calculate the travel distance each scan based on parameters that are set in the system.

You can execute motion programs either by placing an MSEE instruction in a ladder program or by calling
the motion programs from the M-EXECUTOR program execution definitions.

You can create up to 512 motion programs. These are in addition to any ladder programs.

The following is an example of a motion program.

Start.~ MPMOO1 X
. b . ‘9 = |Ver.6 Compatible v| o ¥ 5 . m_z] . =

LINE BLOCK
1 "MPMOO1"; »~
2 5 OWg03C=3; "¥ Axis zero polnt return method(3: phase-C)"
3 1 OW80BC=3; "Y Axis zero polnt return method(3: phase-C)"
4 2 VEL [X]1000 [Y]1000; "Travel speed for positioning command"
5 3 ACC[X]100[Y]100; "Aoceleration time"
6 L DCC[X]100[Y¥Y]100; "Deceleration time"
7 5 OWg03E=100; "} Axis approach speed(mm-min)"
8 6 OwWg040=50; "¥ Axis creep speed(mm/min)"
2 7 OLE8042=10000; "} Axis final travel distance(0.001lmm)"
18 8 OW80BE=100; "Y Axis approach speed(mm-min)"
11 9 OWg0Co=50; "Y Axis creep speed(mm/min)"
12 16 0OLB0CZ=10000; "Y Axis final travel distance(0.001lmm)"
13 11 ZEN[X]00[Y]00; "Zero point return command”
14 12 END:
15

v
< >
[F2| Set/ Rele: [F4| Clase

Introduction to Motion Programs

H

1-3

1-4

1.2 Features of Motion Programs

Motion Program Execution Methods

Features of Motion Programs

This section describes the features of motion programs.

Motion Program Execution Methods

Motion programs are executed in a different way from ladder programs.
With a ladder program, processing from the start of the program to the END command is completed in one

scan.

With a motion program, the processing requested for even one instruction normally requires more than
one scan. Also, the instructions are executed sequentially in the order that they are programmed.

In this manual, the execution method for ladder programs is called scan execution, and the execution
method for motion programs is called sequential execution.

a R
Ladder Program Motion Program
(Scan Execution) (Sequential Execution)
Instructions 1B00000IBO0001 OB00000 The next instruction
are elxecuted in the sequence is
in a fixed executed only after v MOV [X]1000 [Y]2000;
period. 1B00002 DB000005 execution of the
current motion * MOV [X]-1000 [Y]-2000;
language instruction MVS [X]2000 [Y]1000 F30000;
1B00003 is completed. ' X1] '
v END;
1BO0004 DB0O00006 OB00001
——C____END O>—
_ J

Full Synchronization of Sequence Control and Motion Control

Execution of the processing that is programmed in a motion program is completely synchronized with the
high-speed scan of a MP3000-series Machine Controller. Execution of the motion program occurs within
one scan from when a start request is executed in a ladder program. There is no time delay.

s
Sequence Control
Ladder Program
(High-speed Scan)
T
-
| |
j—_— E2
;_!_1. T
-
e —
L E— £y B,
. T
-
L N - 0
L s —
-

~

Motion control is completely
synchronized with the

high-speed scan.

Motion Program

MPMO001

VEL [X]2000 [Y]2000;

/ ACC [X]100 [Y]100;
DCC [X]100 [Y]100;

MOV [X]O [Y]0;
MVS [X]100.0 [Y]200.0;

4 I
Motion Control Functions
)
Synchronized
phase control
«
@
% Position
€ control
P N/
(]
o
S T
kel
© Speed
= control
Motion
parameters ——
are set.
Torque
control
.
G J

1.2 Features of Motion Programs

Advanced Motion Control

Advanced Motion Control

In addition to basic motion control, motion programs can also be used to easily achieve motion control for
complex movements.

Helical interpolation

Positioning

Circular interpolation

Linear interpolation

Easy-to-understand Motion Language Instructions

A motion program uses intuitive motion language commands such as VEL to set a velocity and MOV for

positioning.
Speed setting
VEL [A1]1000 [B1]500;
m MOV [A1]100 [B1]200;

Numerical Calculations in Motion Programs

The motion language includes commands for arithmetic operations and logic operations.
These commands allow you to include various calculations, such as calculations of target positions, in
motion programs.

DL00000 = DL00002 + DW00004;
DL00000 = DWO00002 = DL00004;
MWO00000 = MWO00000 & 00FFH;
MFO00000 = SIN(30.0);

Introduction to Motion Programs

H

1-5

1.2 Features of Motion Programs

Data Transfer to and from Ladder Programs

Data Transfer to and from Ladder Programs

You can pass data between ladder programs and motion programs.
Data registers (M registers) are used to transfer data.
For example, this allows a value that is updated in a ladder program to be used in a motion program, and

vice-versa.
Y
Ladder Program Motion Program
(" N
1 a0~ [WLFOD] Sreh [WLFE rcB [WLFOD] Dest
MLOODOZ MLOOOO4 MLODOD .
TWLF GO v oF TTWLFEO] S cB ot bast Read Refreshedy| Data registers Read Refreshed i
= ML KLOOD00 WLOODDE MLODOD (M registers) MOV [A1] MLOOOOO,
N—

Memory Usage Reduced by Use of Subprograms

Subprograms can be created within a motion program. Subprograms are created to perform common oper-
ations. They help minimizing the number of program steps and allow the efficient use of memory.

Main Program Main Program Main Program

MPMO001 MPMO002 MPMO003

Called
(MSEE)

The common
process is
written as a
subprogram.

MPS010

Subprogram

1.2 Features of Motion Programs

Parallel Execution of Programs

Parallel Execution of Programs

Up to 32 tasks can be executed simultaneously with a single MP3000-series Machine Controller using
motion programs. This type of parallel execution can be used to control many different motion operations
simultaneously.

Use the PFORK instruction in a main program or subprogram to perform operations in parallel. Up to 8
forks can be performed in parallel for each task.

The parallel execution mode is set in the Program Properties Dialog Box.

There are four parallel execution modes for the PFORK instruction. The following sections describe these
modes individually.

Main 4 x Sub 2 (MP2000-compatible Mode)

In this mode, up to four forks can be executed in parallel in a main program, and up to two forks can be
executed in parallel in a subprogram.

This is the default mode.

PFORK
Main
programs L l l l
(MPMOOO)
Fork 1 Fork 2 Fork 3 Fork 4
IMSEE]| MSEE| MSEE]| MSEE|
Subprograms
(MPSOOO) y y A A
Fork 1 Fork 2 Fork 1 Fork 2 Fork 1 Fork 2 Fork 1 Fork 2

Main 8 x Sub 1

This mode allows the parallel execution of up to 8 forks in a main program.

Parallel execution is not possible for subprograms in this mode.

Main programs v l l l l l l l
(MPMOOO)
Fork 1 Fork 2 Fork 3 Fork 4 Fork 5 Fork 6 Fork 7 Fork 8
MSEE MSEH MSEE MSEE MSEH MSEE MSEE MSE
Subprograms
(MPSOIOO)

Introduction to Motion Programs

H

1-7

1.2 Features of Motion Programs

Parallel Execution of Programs

Main 2 x Sub 4

In this mode, up to two forks can be executed in parallel in a main program, and up to four forks can be
executed in parallel in a subprogram.

Main programs h 4 l
(MPMOOIC) Fork 1 Fork 2
SEE| MSE
Subprograms
Fork 1 Fork 2 Fork 3 Fork 4 Fork 1 Fork 2 Fork 3 Fork 4

Main 1 x Sub 8

This mode allows the parallel execution of up to 8 forks in a subprogram.

Parallel execution is not possible in main programs in this mode.

Main program
(MPMOOO)

SEE

Supogans| | ! | ! I | ! !

Fork 1 Fork 2 Fork 3 Fork 4 Fork 5 Fork 6 Fork 7 Fork 8

1.2 Features of Motion Programs

Parallel Execution of Programs

Setting the PFORK Parallel Execution Mode

This section describes how to set the PFORK parallel execution mode.

The parallel execution mode is set in the Program Properties Dialog Box of the main program. By default,
the parallel execution mode is set to Main 4 X Sub 2.

1. Right-click MPM001 under Motion Program - Main Program in the Motion Pane and select
Properties from the menu.

IMotion r 3X
83

Program
=[] [Pu-201]
(=l [Motion pragram
i Group Definition
= Main ram

Open

MPMO0Z

MPMO03 & cut Chrl+
Sub program
Sequence program B9 comy ChrlC
(il M-EXECUITOR: [paste Chrl+y
03 Drive Control Panel Delete Delete
Renarme
Compile

Set the Password

Cancel the Password

Property

[El]Ladder Motion

Cukpuk

Prink...

2. Select the parallel execution mode under PFORK Parallel Execution Mode in the Program
Properties Dialog Box.

1% program Property

Program Mo, MPMOO1

L

Program Mame | |

Configuration FFORK parallel mode 4 main programs and 2 sub program{kP2000 Compatible mode)
(= Dretail definition 2000
Dietail information
Real number - integral ce
Subscript register limit ches
PFORE parallel mode
Modified histary

8 main programs and 1 sub program
2 main programz and 4 sub program
1 main programs and 8 sub program

PFORK parallel mode
PFOREK. parallel mode iz set.

5] [Cemea]

B Timing at Which the Parallel Execution Mode Setting Becomes Valid

The parallel execution mode setting becomes valid as soon as the OK Button is clicked in the Program
Properties Dialog Box.

H Introduction to Motion Programs

1.2 Features of Motion Programs

Axis Alarm Checks

Axis Alarm Checks

With an MP3000-series Machine Controller, you can check for alarms (ILOCOO04) that can occur in axes
specified in axis movement instructions in a motion program.

You can enable or disable these checks in the environment settings of MPE720 version 7.

Refer to the following manual for information on the environment settings of MPE720 version 7.
(A0 MP2000/MP3000 Series Engineering Tool MPE720 Version 7 Users Manual (Manual No.: SIEP C880761 03)

Refer to the following appendix for details on checking for axis alarms.
I Appendix C Differences between MP2000-series and MP3000-series Machine Controllers

Checking for Axis Alarms (MP3000-series Standard Feature)

If an alarm occurs (ILOOO04 # 0) for an axis specified in an axis movement instruction, a motion pro-
gram alarm will occur, all axes will stop (OWOODOO09 Bit 1 = ON), and NOP (OWODOO08 = 0) motion
commands will be issued.

This is the default operation for the MP3000-series Machine Controllers.

Not Checking for Axis Alarms (MP2000-series Compatible)

Even if an alarm occurs (ILOOMO04 # 0) for an axis specified in an axis movement instruction, references
continue for axes for which no alarm has occurred.

If you use this mode, implement interlocks externally.

Information . Lhis mode produces the same operation as the MP2000-series Machine Controllers. Select this
mode if you are replacing an MP2000-series Machine Controller with an MP3000-series Machine
Controller or want to use the same operation as the MP2000-series Machine Controller.

1.2 Features of Motion Programs

Procedure to Check for Axis Alarms

This section describes how to set the mode to check for axis alarms.

Axis Alarm Checks

1. Select Environment Setting from the File Menu of the MPE720 Version 7 Window.

2. Select Motion - General in the Environment Setting Dialog Box.

3. Set Axis Alarm Check under Motion Program Operation Mode to Check (MP3000-series

Standard).

r

Envircnment Setting

e

-"Valid (MP3000 series standard)” : When axis alarm occurred (ILod04 1= 0}, al
axes of axis move command are stopped and the motion program alarm is
reported.

73 System = Compile Option

[Security Save to flash after complete compil... Disable

7 Setup = Shortcut Key

71 Ladder Allocation of function keys [Default Setting]

= Motion = Motion program operational mode

“» General Valid (MP2000 series standard)
Teb

i Font Valid {(MP3000 series standard)

7 Variable

71 Monitor

71 Transfer

73 Print

7] Message Axis alarm check
| Axis alarm (ILot04) check is carried out while axis move command is running.

-"Tnvalid (Compatibility with MP2000 series)" : When axis alarm occurred (ILxa04 1=
0), the command is continued in the axes that alarm has not occurred. When you
want to perform behavior like the MP2000 series, please choose it.

Combinations of MP3000-series Machine Controllers and MPE720
Version 7 Revisions

The following table shows the combinations of MP3000-series Machine Controller and MPE720 versions.

MP3000-series
Software Version

MPE720 Version 7.21.0100 or Later

MPE720 Version 7.20.0100 or Earlier

Axis Alarm Check
Selection

Axis Alarm Checks
(Performed/Not
Performed)

Axis Alarm Check
Selection

Axis Alarm Checks
(Performed/Not
Performed)

MP3000-series
Machine Control-
ler Version 1.05 or

Earlier

Cannot be selected.

Always performed.

Cannot be selected.

Always performed.

MP3000-series
Machine Control-
ler Version 1.06 or

Later

Can be selected.

Performed by
default.

Cannot be selected.

Always performed.

Information

If you enable axis alarm checks with an MP3000-series Machine Controller version 1.06 or later

and MPE720 version 7.21.0100 or later and then save the setting to flash memory, the setting will
be used in the future as well.

Introduction to Motion Programs

H

1-11

1.2 Features of Motion Programs

Online Editing of Programs

Online Editing of Programs

Motion programs can be edited online in the same way as ladder programs.

Online editing allows you to edit programs while you are logged onto the Machine Controller. In online
editing mode, the edited program is automatically transferred to the Machine Controller when the program
is saved. This helps save time through the elimination of any operations to manually transfer the program
to the Machine Controller.

Operation to Transfer a Program to the Machine Controller

Offline editing // ? O/

\ P
'
'

Debugging Pl
’

Programming
I .
’

Online editing // ‘

Information ~ Online editing is not possible while execution of the motion program is in process.

1.2 Features of Motion Programs

Easy Programming Functions (MPE720 Version 7.0 or Later)

Easy Programming Functions (MPE720 Version 7.0 or Later)

MPE720 Engineering Tool version 7.0 for MP3000-series Machine Controllers includes the following
easy programming functions.

(" R
e Instruction Entry Assistance e Test Runs

You can simply select an instruction and set the data in the You can control the axes from the following dialog box.

dialog box shown below to insert the instruction into the editor.

T
Sabct Comenand | | oy | FOSTTIONNG I Bt || (O3 Ak SVRIZ wirtsnd st
MOV [Axis1]- [Axis2]- i] et A
T I T

B
Enatle Dizsbie Morson
Inserts the instruction. o 3

[Snsed etasscs |

=
The s cperates onky whils hod down
Foruward button o reverse butten

ey O F
POSITICNING . s
— T & || B
Farwad Nevemca
st | [O | [hew |
o Axis Monitor e Task Assignments
You can view the operating status of each axis. You can easily register the programs to execute in the system.
o |] Tosk Alocation e -
Task Type Mition prigram L
Program Spechication pyp -

o Operation Control Panel o Debugging

You can execute motion programs from the Motion Editor. You can debug motion programs.
Common debugging operations, such as step-by-step

execution and setting breakpoints, are provided.

= Motan Progeam Control Sigrake
[
B | Pause request
B 2 : Shop request
B 3 : S bk s seevtan
B 4 : S bk et srapard

)

))))'}}}!)))g
33)33)))3333

o

[s[=]

[a] =]

[e] =]

[a]—

Bt E : Intermelation ovemid setting Ol
L SWOaIRE Swren
FLLT g o

I)2 Runving o o o

¢

-)

H Introduction to Motion Programs

1.3 Motion Program System Configuration

(N Voton Program System Confguraion

Motion programs are transferred to the MP3000-series Machine Controller after they are created in the

MPE720 Motion Editor. The transferred motion programs can be called with MSEE instructions in a lad-
der program, or from the M-EXECUTOR execution definitions. Motion language instructions are sent to
the Motion Control Function Module through the motion parameters to operate the axes.
The following figure shows the system configuration of a motion program.

1-14

Programming Dialog Box

"THCREMENTAL MODE "

1 10W MWI00=e1:

7 MOV [A1]150000 [B1]150000;

3 EHD:
Rl

1
3
E
[l
5 “POSITIOHIHG"
[
7
8
9

140 VARTADLE WAIT" |
“Conditional expression”: |
|
|

B B

MP3000-series Machine Controller

MPE720

The completed programs

are transferred.

Ladder Program

D HO1

H

>

_D HO1.01
_D

H01.02

HOZ_D
-]

MSEE Instruction

T Program WI[A]Data
aonol . WADDOOD

MPMO0O01

M-EXECUTOR

Program Execution Definitions

You can call motion pro-
grams without a ladder
program.

Called.

VEL [X]2000 [Y]2000;
ACC [X]100 [Y]100;
DCC [X]100 [Y]100;
MOV [X]0 [Y]0;

MVS [X]100.0 [Y]200.0;

MPMO002

Motion parameters

'You can call up
to 32 programs at
the same time.

MVS [C1]300 [D1]400 F1000;
END;

up to 512
programs.

You can create

A

SVR or
SVR32

A
\ 4

SVC or
SVC32

A

SVB-01

A
A

SVA-01

A

SVC-01

4

PO-01

1.4 Types of Motion Programs

Types of Motion Programs

There are two types of motion programs. These are given in the following table.

Designation
Type Method Features Number of Programs
* Main programs can be called .
from the M-EXECUTOR | You ¢an P e ilﬁ motion pro-
MpMOOO program execution defini- grams, INCiUdmg the 101iowing pro-

Main programs

(@O0 =1 to 512)

tions.

* Main programs can be called
from a DWG.H drawing.

Subprograms

MPSOOO
(OO0 =1to 512)

» Subprograms are called from
a main program.

grams:
* Motion main programs

* Motion subprograms

* Sequence main programs
» Sequence subprograms

@

Important

1. Use a unique program number for each motion program and sequence program. If the same number
is used more than once, an error will be displayed on the MPE720.
2. MP3000-series Machine Controllers can execute up to 32 motion programs simultaneously.
If 33 or more programs are executed simultaneously, a motion program alarm occurs (No System
Work Available Error).
* The No System Work Available Error is indicated by bit E in the Status Flags of the motion pro-
gram.

Information

drawing).

In this manual, the high-speed process drawing for a ladder program is called DWG.H (high-speed

Introduction to Motion Programs

H

1-15

1.5 Motion Program Groups

Motion Program Groups

With motion programs, the axes that have related operations are organized into individual groups. You can
create programs for each group. Motion program groups allow a single Machine Controller to control mul-
tiple machines independently. A group operation can be an operation as a single group or an operation
with multiple groups.

The definitions for axes to be grouped are made in the Group Definitions. Refer to the following section
for the procedure to set group definitions.
Iz 5.2 Group Definition Details (page 5-9)

W Operation with One Group

MP3000-series
Machine Controller

! 1
S >|
| [} ajf .
| 0] Qf
: (2] N |
! |
1
L @ @ |
Group1
W Operation with Multiple Groups
MP3000-series
Machine Controller
> >
. ol | ol
: Ol 1 |Of
! (720 n \
| @ @
Group1 Group2 Group3
Maotion - nx
=8
Program
[CPL-201]
lokion program
f B am
, 13 ¥z7 Main program
i AL
Groups are organized Ef horargm
i b G)
in a hierarchical tree T
structure. o AL]
“ [Sub program
--[# [3] Sequence program
o Bl MPEREICUTIOR,
[Drive Control Panel

1.6 Motion Program Execution Timing

Motion Program Execution Timing

The processing in a motion program is executed in full synchronization with the high-speed scan of the
MP3000-series Machine Controller.

In the high-speed scan cycle, 1/0 services are performed first, and then the motion programs that are regis-
tered in the M-EXECUTOR are executed. Next, the motion programs that are called with the MSEE
instructions that are programmed in DWG.H are executed when the individual MSEE instructions are exe-
cuted.

I/O Service
1/0 services process the execution of data I/O between the MP3000-series CPU Unit/CPU Module and
Terms external devices (i.e., the Optional Modules).

The following figure shows the execution timing of a motion program.

Introduction to Motion Programs

H

1-17

1.6 Motion Program Execution Timing

High-speed scan

High-speed scan

High-speed scan

/
\
/

A
A

A

Not used.

MP3000-series CPU
Function Module

Batch
input

| registers
O registers

External devices

1/0 service I/O service
(outputs) (inputs) e

N4

Motion Program

M-EXECUTOR MPMO001 Subprogram
LReported.| . MPS101
St N | MSEE <
Control Signals » :)
Execution] RET;
requested. END;

AV

re

quested.

DWG.H
MSEE [WlProgram WO [A]Data | MOtion Program
oono? MADODOO
MPMO002 Subprogram

Reported. . MPS102

sawe K "

Control Signals . . RET;

Execution END:

1.7 Executing Motion Programs

Execution Processing Method

Executing Motion Programs

This section describes how to execute motion programs.

Execution Processing Method

You must register the motion programs that you create in the system to execute them. The motion pro-
grams that are registered in the system are called in the high-speed scan cycle.

There are two execution methods that you can use when a motion program is registered in the system for
execution.

+ Calling the motion program from a ladder program with an MSEE instruction

* Calling the motion program using the M-EXECUTOR program execution definitions

Introduction to Motion Programs

H

1-19

1-20

1.7 Executing Motion Programs

Execution Processing Method

Calling the Motion Programs from a Ladder Program with an MSEE
Instruction

After you create the motion program, insert an MSEE (Call Motion Program) instruction in the high-speed
drawing.

Motion Program

DWG.H MPMO001

Called.
a [WProgrzm H/[&]Datz
00001 [DADQO0D > INC;

MSEE

VEL [A1]100 [B1]200;

MOV [A1]1000 [B1]2000;
Work Registers

Status END;
Control Signals

Interpolation Override
System Work Number

Motion programs can be called from any H drawing, regardless of whether it is a parent, child, or grand-
child drawing.

The following figure shows an execution example.

Execution is started by the system program
when the execution condition is met.

Parent Drawing Child Drawing Grandchild Drawing Motion Program
DWG.H DWG.HO1 DWG.H01.01 MPM001
SEE SEE HO1.01 T——» VEL [a1]5000 [b1]..
HO1 FMX T10000000;
MSEE ———pp IACT25;
MPMO001 IDC T30;
MOV [a1]300. [b1].
MVS [a1]200. [b1]..
DEND
END
MPMO002
MSEE
MPMO002
— | DEND END
MPMO03 Subprogram
MSEE MPS101
MPMO003
MSEE
MPS101
DEND END RET

The ladder instructions in the high-speed drawing are executed every high-speed scan cycle according to
the hierarchical organization of parent-child-grandchild drawings.

The above programming only prepares for execution of the motion program. The motion program is not
executed at the location where the MSEE instruction is inserted. To execute the motion program, use a
control signal to turn ON the request for start of program operation after the MSEE instruction has been
inserted.

The motion program is executed in the scan cycle, but unlike ladder programs, the entire program is not
executed in a single scan. Execution of motion programs is controlled by the system.

1.7 Executing Motion Programs

Execution Processing Method

Observe the following precautions when executing motion programs:
* Motion programs that are registered in the M-EXECUTOR cannot be executed with MSEE instruc-
tions.
» More than one instance of the same motion program (i.e., the same program number) cannot be exe-
cuted with MSEE instructions.
* Subprograms (MPSOOIO) cannot be executed with MSEE instructions in ladder programs.
You can call subprograms from other motion programs (MPMOOO and MPSOOO) only.
 Sequence programs (SPMOOO or SPSOOMN) cannot be called with MSEE instructions from lad-
der programs.

Note

Calling the Motion Programs Using the M-EXECUTOR Program
Execution Definitions

After creating a motion program, register it in the M-EXECUTOR program execution definitions.
Control registers (I/O registers) are used to start and stop the registered motion programs.

Programs registered in the M-EXECUTOR program execution definitions are executed in ascending
numeric order.

The following figure shows an execution example.

Motion Program
MPMO001

VEL [a1]5000 [b1].
FMX T10000000;
IAC T25;

IDC T30;

MOV [a1]300. [b1].
MVS [a1]200. [b1].

M-EXECUTOR Program Execution Definitions END

Hn Dl Execution tvpe [_Settine | Program
= | Sequence programiStart) Direct - MPMO002
1] |Motion proeram * |Direct MPR001
2 1 |Motion program = |Direct Ll e —
3 1 Mation proeram * |Direct M P M0O03

Y

Lele|e

END

MPMO003 Subprogram
MPS101

‘ MSEE

MPS101

END RET

To execute a motion program, first register the program in the M-EXECUTOR program execution defini-
tions, then use a control signal to turn ON the request for start of program operation.

A motion program that is registered in the M-EXECUTOR program execution definitions is executed in
the scan cycle, but unlike a ladder program, the entire program is not executed in a single scan. Execution
of motion programs is controlled by the system.

execution definitions:
+ Each motion program must be registered with a unique program number.
+ More than one motion program with the same number cannot be called using indirect designation.

Observe the following precautions when registering motion programs in the M-EXECUTOR program

Note

Introduction to Motion Programs

H

1-21

1.7 Executing Motion Programs

Program Execution Registration Methods

Program Execution Registration Methods

There are two methods to register a program for execution.
The following examples demonstrate how to register motion program MPMO001 for execution.

Inserting an MSEE Instruction into a Ladder Program

Program an MSEE instruction in the
high-speed drawing.
Program the MSEE instruction so
that it is executed every scan.
— =
& [[WIProgram Hi[AlData |
00001 DADDOOD

MSEE

MPM number

Registering Motion Programs in the M-EXECUTOR Program Exe-
cution Definitions

} Register the program to execute. ‘

Detail - [M-EXECUTOR] |
File Wiew
PTH#:- - CFU#:—- [/ n0con-o0c?e |
M-EXECUTORLigt) Individual digplay | Program definif pn number IB vl =
Proeram definition I Allocation Gortrol register |
| Execution tvpe | Settin_g/ | Frogram | Execution manitor register(S register?
- L Seguence proeram (Start) Direct - -
1 Maotion program = |Direct - | EPMDD‘I | SWO3264 - SWO3321
2 " hd
3 I e — ha
4 I e —— i
] I hd o
] I e — =]
L = | --—-—-—-——- hd
g | |————-—-—-- ha
|
4| | 1
| | | |
For Help, press F1 |— v

1-22

1.7 Executing Motion Programs

Work Registers

Work Registers

When a program is registered for execution, that program is assigned work registers to control and moni-
tor the execution of the program. The work registers are used to send commands to the motion programs
from the motion program control program, and to get the motion program status.

B When a Motion Program |s Called from a Ladder Program with an MSEE Instruction

Four registers (words) starting from the register that is specified with the Data parameter of the MSEE
instruction (MAOOOODO or DAOOOMOMN) are used as work registers.

Register Address

& [[WPragram W/[AlData

na0ot naonnng] |<@———— 3rdregister

MSEE

Work Register | "inthe Example Contents 1/10
1st register DWO00000 |[Status Flags ouT
2nd register DWO00001 | Control Signals IN

DWO00002 |Interpolation Override IN
4th register DWO00003 |System Work Number IN

B When the Motion Program Is Registered in the M-EXECUTOR Program Execution Defini-

tions

The M-EXECUTOR control registers are used as the work registers.
The M-EXECUTOR control registers are automatically assigned by the system.

Program definition fllocation Contral register | Work Register X
(M-EXECUTOR Reglster Address Contents 1/0
Na Hem M-EXEGUTOR Control Register) in the Example
: Control register
Program number MFKO07 Status IWO0CO00 Status Flags ouT
1 gtattus — cl;t:t:uuuﬂufsﬂut: Control Signals OWO0CO01 Control Signals IN
ontrol 2IEna
Override OW00G02 Override Ow0C02 Interpolation Override IN

Introduction to Motion Programs

H

1-23

1-24

1.7 Executing Motion Programs

Work Registers

Status Flags

The Motion Program Status Flags give the execution condition of the motion program.

The following table describes the meanings of the Status Flags.

Bit No Name Contents
This bit is set to 1 when a motion program is running.
Bit 0 Program Executing 0: Motion program is stopped.
1: Motion program is running.
This bit is set to 1 when execution of a motion program is paused by a
Request for Pause of Program.
. After a Request for Pause of Program control signal is input, it is confirmed
Bit 1 Program Paused that the axis decelerated to a stop and then the status flag is turned ON.
0: Program is not stopped by a pause request.
1: Program is stopped by a pause request.
This bit is set to 1 when execution of a motion program is stopped by a
Program Stopped for Request for Stop of Program.
Bit 2 Request for Stop q . P £
Request 0: Program ¥s not stopped by a stop request.
1: Program is stopped by a stop request.
Bit3 (Reserved for system.) | —
This bit is set to 1 when execution of a single block is stopped in Debug
Bit4 Program Single-block Opera.tion Mode. o
Execution Stopped 0: Single block execution is not stopped.
1: Single block execution is stopped.
Bit 5 (Reserved for system.) | —
Bit 6 (Reserved for system.) | —
Bit 7 (Reserved for system.) | —
This bit is set to 1 when a program alarm occurs.
When this bit is set to 1, details on the error will be displayed in the Error
Bit 8 Program Alarm Information Dialog Box and are given in the S registers.
0: There is no program alarm.
1: A program alarm occurred.
This bit is set to 1 when execution of a program stops at a breakpoint in
Bit 9 Program. Stopped at Debug Operation Mode. '
Breakpoint 0: Not stopped at a breakpoint.
1: Stopped at a breakpoint.
Bit A (Reserved for system.) | —
. This bit is set to 1 when a program is running in Debug Operation Mode.
. Debug Operation . . .
Bit B Mode 0: Not in Debug Operation Mode (Normal Execution Mode).
1: In Debug Operation Mode.
This bit reports whether the program that is being executed is a motion pro-
. gram or a sequence program.
BitC Program Type 0: Motion program
1: Sequence program
This bit is set to 1 when the Request for Start of Program Operation is ON.
Bit D Start Request History 0: Turn OFF the request to start the program.
1: Turn ON the request to start the program.
This bit is set to 1 when a system work number that was needed to execute a
No System Work motion program could not be obtained, or when an MSEE instruction is pro-
BitE Available Error or grammed in a drawing other than a DWG.H.

Execution Scan Error

0: There is no system work available error or execution scan error.
1: A no system work available error or execution scan error occurred.

Continued on next page.

1.7 Executing Motion Programs

Work Registers

Continued from previous page.

Bit No

Name

Contents

Error

Main Program Num-
BitF ber Limit Exceeded

This bit is set to 1 when the specified motion program number is out of range.
Motion program number range:1 to 512

0: There is no motion program number error.

1: A motion program number error occurred.

Note: If a motion program alarm occurs, program error information is provided in the Error Information Dialog Box and

in the S registers.

Introduction to Motion Programs

H

1-25

1-26

1.7 Executing Motion Programs

Work Registers

Control Signals

To control the execution of a motion program, you must input program control signals (Request for Start
of Program Operation, or Request for Stop of Program, etc.). The following table describes the control sig-
nals for motion programs.

— —: This symbol indicates that the signal must be kept ON until the system acknowledges it.

—f—: This symbol indicates that the signal needs to be turned ON only for one high-speed scan.

Bit No Name Description
This bit makes a request to start execution of a motion program. The
Bit 0 Request for Start | motion program starts when this bit changes from 0 to 1. This bit is
—A of Program Oper- | ignored when there is a program alarm.
— ation 0: Turn OFF the request to start the program.
1: Turn ON the request to start the program.
This bit makes a request to pause execution of a motion program.
Bit 1 Request for Pause Executiqn of the program that was paused will resume when the pause
- of Program request is turned OFF. _
0: Turn OFF the request to pause the program (i.e., cancels the pause).
1: Turn ON the request to pause the program.
This bit makes a request to stop execution of a motion program.
Bit 2 Request for Stop A m.otion program alarm occurs if this bit is set to 1 while the axis is in
£ Program motion.
=~ © g 0: Turn OFF the request to stop the program.
1: Turn ON the request to stop the program.
. This bit makes a request to select Program Single-block Execution Mode.
Bit3 Program Single- This mode can be used in place of Debug Operation Mode.
block Mode . P gvp
—_ - Selection 0: Deselec.t single block mode.
1: Select single block mode.
When this bit is changed from 0 to 1, program execution changes to single-
Bit 4 Program Single- block execution (step execution). This bit is only valid when bit 3 (Pro-
—A block Start gram Single-block Mode Selection) in the control signal word is set to 1.
— Request 0: Turn OFF the request to start a single program block.
1: Turn ON the request to start a single program block.
Bit 5 Program Reset This bit resets motion programs and alarms.
and Alarm Reset 0: Turn OFF the request to reset the program and alarms.
= Request 1: Turn ON the request to reset the program and alarms.
Bit 6 Request for Start | This bit makes a request to resume execution of a program that was
= of Continuous stopped by a Request for Stop of Program.
Program Opera- 0: Turn OFF the request to resume the program.
= tion 1: Turn ON the request to resume the program.
Bit 7 (Reserved for sys- |
tem.)
If this bit changes to 1 while an axis is in motion due to a SKP instruction
(when the skip input signal selection is set to SS1), the axis will decelerate
Bit 8 Skip 1 Informa- to a stop, and the reference in the remaining travel distance will be can-
- - tion celed.
0: Turn OFF the skip 1 signal.
1: Turn ON the skip 1 signal.
If this bit changes to 1 while an axis is in motion due to a SKP instruction
(when the skip input signal selection is set to SS2), the axis will decelerate
Bit9 Skip 2 Informa- to a stop, and the reference in the remaining travel distance will be can-
- tion celed.
0: Turn OFF the skip 2 signal.
1: Turn ON the skip 2 signal.

Continued on next page.

1.7 Executing Motion Programs

Work Registers

Continued from previous page.

Bit No Name Description
Bit A, B (Reserved for sys- |
tem.)
Bit C (Reserved for sys- |
tem.)
BitD System Work To specify a system work number, set this bit to 1.
. Ny ber Settine®! 0: Do not specify a system work number.
umber Setting 1: Specify a system work number.
BitE Interpolation To specify an interpolation override, set this bit to 1.
= Override Setting™ 0: Do not specify an interpolation override.
vernde Seting 1: Specify an interpolation override.
BitF (Reserved for sys- |
tem.)

*1.

*2.

System Work Number Setting

* When the Motion Program Is Registered in M-EXECUTOR:
The system work number cannot be specified. The system will use the definition number as the system work num-
ber.

* When a Motion Program Is Called from a Ladder Program with an MSEE Instruction:
OFF: The system will use an automatically acquired system work number. The system work number will be different each
time.
ON: The work number that is specified by the system will be used.
However, if the work number is assigned to the M-EXECUTOR, a No System Work Available Error (Status Flag
Bit E) is reported.

Interpolation Override Setting
OFF: The interpolation override is always 100%.
ON: The interpolation override in the parameter setting is used.

Note: 1. Use the specified signal types for the ladder program inputs.

2. At startup, the motion programs for which the Request for Start of Program Operation control signals are ON
will be executed.

Introduction to Motion Programs

H

1-27

1-28

1.7 Executing Motion Programs

Work Registers

B Motion Program Control Signals Timing Chart

Timing chart examples for axis operations and status flags after a control signal is input are provided
below.

» Request for Start of Program Operation

Control signal: Request for Start of

Program Operation i

] L

Status flag: Program Executing

Axis operation: Pulse distribution

* Request for Pause

Control signal: Request for Start of
Program Operation '

Control signal: Request for Pause _4|—| I_I

of Program

Status flag: Program Executing —

Status flag: Program Paused

Axis operation: Pulse distribution
* Status flags related to control signal input are updated after one scan.

* Request for Stop

Operation

Control signal: Request for Stop of Program

Control signal: Program Reset and Alarm ,—\—

Reset Request

Control signal: Request for Start of Program —I_l
|
1
1
|
[E—
1
1
I

Status flag: Program Executing :

Status flag: Program Stopped for Stop 4_’, "-

Request 1 scan

Status flag: Program Alarm

Axis operation: Pulse distribution for I

Interpolation instruction

1 scan*

Axis operation: Pulse distribution for
Positioning instruction

Axis operation: Pulse distribution for Zero I\

Point Return instruction

* Status flags related to control signal input are updated after one scan.

When restarting operation of a program that has been stopped by the Request for Stop of Program con-
trol signal, execute the Request for Start of Continuous Program Operation control signal instead of exe-
cuting the Program Reset and Alarm Reset Request control signal.

1.7 Executing Motion Programs

Work Registers

+ If a Motion Program Alarm Occurs

Control signal: Request for Start of
Program Operation

Control signal: Program Reset and Alarm
Reset Request

Status flag: Program Executing

|

Status flag: Program Alarm
i 1 scan*

Axis operation: Pulse distribution for J

Interpolation instruction 5

Axis operation: Pulse distribution for
Positioning instruction

Axis operation: Pulse distribution for J

Zero Point Return instruction

* Status flags related to control signal input are updated after one scan.

3 1. If the Request for Stop of Program control signal is turned ON while the axis is being controlled for
@ a motion language instruction, an alarm will occur.

2. If the Request for Stop of Program control signal is turned ON while the axis is being controlled for
an interpolation motion language instruction, the axes will stop immediately.
To perform a deceleration stop, use the Request for Pause of Operation control signal.

3. The Request for Pause of Program control signal is not acknowledged while a Zero Point Return
(ZRN) instruction is being executed.
To stop the operation, use the Request for Stop of Program control signal.

Important

4. If a motion program alarm occurs while an axis is in motion, the axis stops immediately.

Refer to the following section for programming examples for motion program control.
IZ B.1 Motion Program Control Program (page B-2)

Interpolation Override

An interpolation override allows you to change the output ratio of the axis movement speed reference for
interpolation motion language instructions.

Set the override value to use when executing interpolation instructions (MVS, MCW, MCC, or SKP).

The interpolation override is valid only when bit E (Interpolation Override Setting) in the control signals is
ON.

The setting range of the interpolation override is 0 to 32,767.
Unit: 1 =0.01%

System Work Number

When you call a motion program from a ladder program with the MSEE instruction, set the system work
number to use to call the motion program. This system work number is valid only when bit D (System
Work Number Setting) of the control signals is ON.

Setting range: 1 to 32

H Introduction to Motion Programs

1-29

1.7 Executing Motion Programs

Work Registers

x When using MSEE instructions in ladder programs along with the M-EXECUTOR, do not specify the
@ system work numbers that are for the M-EXECUTOR in the MSEE instructions in the ladder programs.
If you specify one, a No System Work Available Error will occur.

Important System work numbers for the M-EXECUTOR: 0 to the set value of the number of program definitions

Information You cannot set the system work numbers when you use the M-EXECUTOR. The system will use
system work numbers that are the same as the definition numbers.

1-30

1.8 Advanced Programming

Indirect Designation of a Program Number Using a Register

Advanced Programming

This section describes practical methods of executing motion programs.

Indirect Designation of a Program Number Using a Register

You can use a register to call a motion program with value stored in that register.

There are two methods of calling a motion program in this way.

When a Motion Program Is Called from a Ladder Program with an
MSEE Instruction

Specify the register (M, G, or D register) to use for the indirect designation in the Program No. parameter
of the MSEE instruction.

If a value of 3 is stored in MW00200, the MPMO0O03 program is called.

MPMO003
Call Motion Program Instruction - ABS;

MOV[X] _[Y]_

B = [[WProgram HI[ATData MVS[X] _[Y]_F

h HSEE | WWnozo0 § o pannono -
10W MB0001

MOV[X] _[Y]_

Register address

Ladder Program Motion Program

Calling Motion Program with the M-EXECUTOR Program Execu-
tion Definitions

Select the indirect designation method in the Setting Column. The register used for indirect designation
is assigned automatically by the system.

If a value of 3 is stored in OWO0CO00, the MPMO003 program is called.

MPMO003
> ABS
Program definition | Allocation Contral register | MOVIX] _[Y] _
Mo D] Execution tvpe | settine [Proeram | MVS[X] _[Y]_F
-] Sequence programiStart) Direct - - -
1 1 Maotion proeram lrIndirec:t LI CW00C00 I< 10OW MB0001
M-EXECUTOR Program Execution Definitions MOV[X] _[Y]_

Motion Program

Introduction to Motion Programs

H

1-31

1.8 Advanced Programming

Controlling Motion Programs Directly from an External Device

Controlling Motion Programs Directly from an External Device

The M-EXECUTOR allows you to assign M-EXECUTOR control registers.

This can be used to automatically exchange data between an M-EXECUTOR control register and the I/O
register connected to an external device.

The following are sample settings to directly control a motion program from an external device.
M-EXECUTOR Register Assignment Dialog Box

M. lipq OngntEr?;l—:I?gg-ﬁg Er Hgoi;a?IEn Dl P'rlnlaogcigttéorn Oont'ﬂ::‘lnléjtc‘ianttloerr1 lock
Program number M P MOO7
Status e lifaleduli] _ = owoonoo [BO000Z0

1 Control zignal OWoacom =] 4= noooo IB000020
Owerride OWoncoz = <= o002 1B000020

Assign the desired registers
and the interlock contacts.

1L

Execution Control
by the System

Program Number MPMO001
Status
i VEL [a1 1]..
'Io‘rftzﬁgslf Control Signals FMX %&0%00?00[?]

External Devices Allocated Registers Contacts - mierpolation Override IAC T25;

T ! : IDC T30;
« Host PLC | i Signals from External Devices MOV [a1] 300. 1]
. Touph Panel | T * Program nu_mber The M-EXECUTOR [> MVS [a] 200. o].
* Switch | T * Start operation control register is read. .
* LED, etc. — | +Hold -

+Stop,etc. |t
T ? Data will be ? r END

exchanged in

Motion P
high-speed scan cycle. ofion Frogram

The assigned interlock contacts are used to interlock motion program operation. If you assign registers,
always assign interlock contacts.

The following processes are performed according to the ON/OFF status of the assigned interlock contacts.

* When the assigned interlock contact is ON, the assigned register exchanges data with the M-EXECU-
TOR control register in the high-speed scan cycle. Motion program execution is enabled during this data
exchange.

* When the assigned interlock contact is OFF, the assigned register does not exchange data with the M-
EXECUTOR control register, and motion program execution is disabled.

+ If the assigned interlock contact changes from ON to OFF while the motion program is running, the
motion program stops and the axes stop moving. At this moment, the 1B hex motion program alarm
(Emergency Stop in Progress) occurs, and bit 8 (Program Alarm) in the status flags turns ON.

Use the following procedure to restart the motion program.
1. Turn ON the assigned interlock contact.

2. Turn ON bit 5 (Program Reset and Alarm Reset Request) in the control signals.
3. Confirm that bit 8 (Program Alarm) in the status flags turns OFF.

4. Turn OFF bit 5 (Program Reset and Alarm Reset Request) in the control signals.
5

Turn ON bit 0 (Request for Start of Program Operation) in the control signals.

1-32

1.8 Advanced Programming

Monitoring Motion Program Execution Information

Monitoring Motion Program Execution Information

The execution information for motion programs can be monitored using the S registers (SW03200 to
SW05119 and SL0O8192 to SL09214).

The execution information is monitored differently, depending on whether the motion program is called
from a ladder program with an MSEE instruction, or the motion program is registered in the M-EXECU-
TOR program execution definitions.

This section describes these two monitoring methods.

When a Motion Program Is Called from a Ladder Program with an
MSEE Instruction

When a motion program is called from a ladder program with an MSEE instruction, the effects of the set-
ting of bit D (System Work Number Setting) in the motion program control signal are as follows:

* When bit D (System Work Number Setting) in the Motion Program Control Signal is ON, the
execution information is reported in the Work n Program Information registers (SW03264 to
SWO05119 and SL08192 to SL09214).

For example, if the system work number is 1, you can monitor the execution information of the motion
program with the Work 1 Program Information registers (SW03264 to SW03321 and SL08192 to
SL08222).

» When bit D (System Work Number Setting) in the Motion Program Control Signal is OFF, the
system work number that is used is determined automatically by the system.
You can check the work numbers that are in use in the Active Program Numbers registers (SW03200 to
SW03231).

For example, if MPMO001 is the motion program to be monitored and SW03202 contains a 1, the system
work number is 3. You can therefore monitor the execution information of the motion program with the
Work 3 Program Information registers (SW03380 to SW03437 and SL08256 to SL08286).

When Execution the Motion Program Is Registered in the M-EXEC-
UTOR Program Execution Definitions

When the motion program is registered in the M-EXECUTOR program execution definitions, the system
work number used will be the same as the program execution registration number in the M-EXECUTOR.

For example, if the motion program is registered for execution as number 3, system work number 3 is
used. You can therefore monitor the execution information of the motion program with the Work 3 Pro-
gram Information registers (SW03380 to SW03437 and SL08256 to SL08286).

Introduction to Motion Programs

H

1-33

1-34

1.8 Advanced Programming

Monitoring Motion Program Execution Information

€ Register Ranges for Motion Program Execution Information

SW03200

SW03232

SW03264
SW03322
SW03380
SW03438
SW03496
SW03554
SW03612
SW03670
SW03728
SW03786
SW03844
SW03902
SW03960
SW04018
SW04076
SW04134
SW04192
SW04250
SW04308
SW04366
SW04424
SW04482
SW04540
SW04598
SW04656
SW04714
SW04772
SW04830
SW04888
SW04946
SW05004
SW05062

Numbers of Currently

Executing Main Programs
32w

Program Execution Bits
Executing while the
corresponding bit is ON. 32w

Work 1 Program Information 58W

Work 2 Program Information 58W

Work 3 Program Information 58W

Work 4 Program Information 58W

Work 5 Program Information 58W

Work 6 Program Information 58W

Work 7 Program Information 58W

Work 8 Program Information 58W

Work 9 Program Information 58W

Work 10 Program Information ~ 58W

Work 11 Program Information ~ 58W

Work 12 Program Information ~ 58W

Work 13 Program Information 58y

Work 14 Program Information 58w

Work 15 Program Information ~ 58W

Work 16 Program Information 58y

Work 17 Program Information 58w

Work 18 Program Information 58w

Work 19 Program Information 58w/

Work 20 Program Information 58w

Work 21 Program Information 58wy

Work 22 Program Information 58w

Work 23 Program Information ~ 58W

Work 24 Program Information 58w

Work 25 Program Information sgyy

Work 26 Program Information 58w

Work 27 Program Information 58y

Work 28 Program Information 58w

Work 29 Program Information ~ 58W

Work 30 Program Information 58w

Work 31 Program Information 58w

Work 32 Program Information 58w

SW032

SW03201
03202
SW03203
SW03204
SW03205
SW03206
SW03207
SW03208
SW03209
SW03210
SW03211
SW03212
SW03213
SW03214
SW03215
SW03216
SW03217
SW03218
SW03219
SW03220
SW03221
SW03222
SW03223
SW03224
W03225
03226
3227
SW03228
SWi 9

SWO03R3!
SW032%1

SW03232
SW03233
SW03234
SW03235
SW03236
SW03237
SW03238
SW03239
SW03240
SW03241
SW03242
SW03243
SW03244
SW03245
SW03246
W03247
W03248
SW03249
SW03250
SW03251
SWD3252
SW03253
SW0§254
SW03255
SW03256
SWO03257
SW032%8
SW032
SW0326
SW03261
SW03262
SW03263

Active Program Numbers

Number of Program Using Work Number 1

Number of Program Using Work Number 2

Number of Program Using Work Number 3

Number of Program Using Work Number 4

Number of Program Using Work Number 5

Number of Program Using Work Number 6

Number of Program Using Work Number 7

Number of Program Using Work Number 8

Number of Program Using Work Number 9

Number of Program Using Work Number 10

Number of Program Using Work Number 11

Number of Program Using Work Number 12

Number of Program Using Work Number 13

Number of Program Using Work Number 14

Number of Program Using Work Number 15

Number of Program Using Work Number 16

Number of Program Using Work Number 17

Number of Program Using Work Number 18

Number of Program Using Work Number 19

Number of Program Using Work Number 20

Number of Program Using Work Number 21

Number of Program Using Work Number 22

Number of Program Using Work Number 23

Number of Program Using Work Number 24

Number of Program Using Work Number 25

Number of Program Using Work Number 26

Number of Program Using Work Number 27

Number of Program Using Work Number 28

Number of Program Using Work Number 29

Number of Program Using Work Number 30

Number of Program Using Work Number 31

Number of Program Using Work Number 32

Program Execution Bits

MPLI016(Bit F) to MPLI001(Bit 0)

MPO032(Bit F) to MPI017(Bit 0)

MP1048(Bit F) to MPCI033(Bit 0)

MPLI064(Bit F) to MPCI049(Bit 0)

MPLI080(Bit F) to MPLI065(Bit 0)

MPLI096(Bit F) to MPLI081(Bit 0)

MPLI112(Bit F) to MPLI097(Bit 0)

MPLI128(Bit F) to MPLI113(Bit 0)
MPLI144(Bit F) to MPLI129(Bit 0)
MPLOI160(Bit F) to MPI145(Bit 0)
MPO176(Bit F) to MPI161(Bit 0) |
MPO192(Bit F) to MPO177(Bit 0)

MPLI208(Bit F) to MPLI193(Bit 0)
MPLI224(Bit F) to MPLI209(Bit 0)

MPLI240(Bit F) to MPLI225(Bit 0)

MPLI256(Bit F) to MPLI241(Bit 0)

MPLOI272(Bit F) to MPLI257(Bit 0)

MPO288(Bit F) to MPOI273(Bit 0
MPLI304(Bit F) to MPLI289(Bit 0)
MPLI320(Bit F) to MPLOI305(Bit 0)

MPLI336(Bit F) to MPLI321(Bit 0)
MPLOI352(Bit F) to MPLI337(Bit 0)
MPO368(Bit F) to MPOI353(Bit 0)

MPLI384(Bit F) to MPLI369(Bit 0)

MPO400(Bit F) to MPOI385(Bit 0)

MP416(Bit F) to MPI401(Bit 0)
MPO432(Bit F) to MPI417(Bit 0)
MPLI1448(Bit F) to MPCI433(Bit 0)

MPLI464(Bit F) to MPCI449(Bit 0)

MP1480(Bit F) to MPL1465(Bit 0)

MPO496(Bit F) to MP[1481(Bit 0)

MPLI512(Bit F) to MPLI497(Bit 0)

Note: The O in MPO for registers SW03232 to SW03263 is either an M or an S.

1.8 Advanced Programming

Monitoring Motion Program Execution Information

€ Registers Used for System Work Numbers 1 to 32

The registers that are used for system work numbers 1 to 32 are given in the following table. Two system
registers are given in the register table for the alarm code, but we recommend that you use system registers
SL260000. You can use the system registers that are given in parentheses to check for alarms in most
cases, but they do not report all alarms.

Refer to the following manual for details on alarm codes.

(AN MP3000 Series MP3200/MP3300 Troubleshooting Manual (Manual No.: SIEP C880725 01)

* System Work Numbers 1 to 8

System Work Number | Work 1 | Work 2 | Work 3 | Work4 | Work5 | Work6 | Work 7 | Work 8

Executing Main Program No. SW03200 | SW03201 | SW03202 | SWO03203 | SW03204 | SW03205 | SW03206 | SW03207

Status SW03264 | SW03322 | SW03380 | SWO03438 | SW03496 | SWO03554 | SW03612 | SWO03670

Control Signals SW03265 | SW03323 | SWO03381 | SWO03439 | SW03497 | SWO03555 | SWO03613 | SWO03671

Program Number SW03266 | SW03324 | SW03382 | SWO03440 | SWO03498 | SWO03556 | SW03614 | SW03672

< Block Number SW03267 | SW03325 | SWO03383 | SWO03441 | SW03499 | SWO03557 | SWO03615 | SWO03673

£ Alarm Code SL26000 | SL26016 | SL26032 | SL26048 | SL26064 | SL26080 | SL26096 | SL26112
(SW03268) | (SW03326) | (SW03384) | (SW03442) | (SW03500) | (SW03558) | (SW03616) | (SW03674)

Program Number SW03269 | SW03327 | SWO03385 | SWO03443 | SWO03501 | SWO03559 | SWO03617 | SWO03675

” Block Number SW03270 | SW03328 | SW03386 | SWO03444 | SW03502 | SWO03560 | SWO03618 | SWO03676

£ Alarm Code SL26002 | SL26018 | SL26034 | SL26050 | SL26066 | SL26082 | SL26098 | SL26114
(SW03271) | (SW03329) | (SW03387) | (SW03445) | (SW03503) | (SW03561) | (SW03619) | (SW03677)

Program Number SW03272 | SW03330 | SW03388 | SWO03446 | SW03504 | SWO03562 | SW03620 | SWO03678

» Block Number SW03273 | SW03331 | SW03388 | SWO03447 | SWO03505 | SWO03563 | SW03621 | SWO03679

& Alarm Code SL26004 | SL26020 | SL26036 | SL26052 | SL26068 | SL26084 | SL26100 | SL26116
(SW03274) | (SW03332) | (SW03390) | (SW03448) | (SW03506) | (SW03564) | (SW03622) | (SW03680)

Program Number SW03275 | SW03333 | SWO03391 | SW03449 | SW03507 | SW03565 | SW03623 | SW03681

< Block Number SW03276 | SW03334 | SW03392 | SWO03450 | SWO03508 | SWO03566 | SW03624 | SWO03682

£ Alarm Code SL26006 | SL26022 | SL26038 | SL26054 | SL26070 | SL26086 | SL26102 | SL26118
(SW03277) | (SW03335) | (SW03393) | (SW03451) | (SW03509) | (SW03567) | (SW03625) | (SW03683)

Program Number SW03278 | SW03336 | SW03394 | SW03452 | SW03510 | SWO03568 | SW03626 | SW03684

< Block Number SW03279 | SW03337 | SW03395 | SWO03453 | SWO03511 | SW03569 | SW03627 | SWO03685

£ Alarm Code SL26008 | SL26024 | SL26040 | SL26056 | SL26072 | SL26088 | SL26104 | SL26120
(SW03280) | (SW03338) | (SW03396) | (SW03454) | (SW03512) | (SW03570) | (SW03628) | (SW03686)

Program Number SW03281 | SW03339 | SW03397 | SW03455 | SW03513 | SW03571 | SW03629 | SW03687

L Block Number SW03282 | SW03340 | SW03398 | SWO03456 | SW03514 | SW03572 | SW03630 | SW03688

£ Alarm Code SL26010 | SL26026 | SL26042 | SL26058 | SL26074 | SL26090 | SL26106 | SL26122
(SW03283) | (SW03341) | (SW03399) | (SW03457) | (SW03515) | (SW03573) | (SW03631) | (SW03689)

Program Number SW03284 | SW03342 | SW03400 | SWo03458 | SW03516 | SW03574 | SW03632 | SW03690

< Block Number SW03285 | SW03343 | SW03401 | SW03459 | SW03517 | SW03575 | SW03633 | SW03691

£ Alarm Code SL26012 | SL26028 | SL26044 | SL26060 | SL26076 | SL26092 | SL26108 | SL26124
(SW03286) | (SW03344) | (SW03402) | (SW03460) | (SW03518) | (SW03576) | (SW03634) | (SW03692)

Program Number SW03287 | SW03345 | SWO03403 | SW03461 | SW03519 | SW03577 | SWo03635 | SW03693

Y Block Number SW03288 | SW03346 | SW03404 | SWO03462 | SW03520 | SW03578 | SW03636 | SW03694

£ Alarm Code SL260014 | SL26030 | SL26046 | SL26062 | SL26078 | SL26094 | SL26110 | SL26126
(SW03289) | (SW03347) | (SW03405) | (SW03463) | (SW03521) | (SW03579) | (SW03637) | (SW03695)

Logical Axis 1 Program Current

Position SL03290 SL03348 SL03406 SL03464 SL03522 SL03580 SL03638 SL03696

Logical Axis 2 Program Current

Position SL03292 SL03350 SL03408 SL03466 SL03524 SL03582 SL03640 SL03698

Logical Axis 3 Program Current

Position SL03294 SL03352 SL03410 SL03468 SL03526 SL03584 SL03642 SL03700

Logical Axis 4 Program Current

Position SL03296 SL03354 SL03412 SL03470 SL03528 SL03586 SL03644 SL03702

Logical Axis 5 Program Current

Position SL03298 SL03356 SL03414 SL03472 SL03530 SL03588 SL03646 SL03704

Logical Axis 6 Program Current

Position SL03300 SL03358 SL03416 SL03474 SL03532 SL03590 SL03648 SL03706

Logical Axis 7 Program Current

Position SL03302 SL03360 SL03418 SL03476 SL03534 SL03592 SL03650 SL03708

Logical Axis 8 Program Current

Position SL03304 SL03362 SL03420 SL03478 SL03536 SL03594 SL03652 SL03710

Logical Axis 9 Program Current

Position SL03306 SL03364 SL03422 SL03480 SL03538 SL03596 SL03654 SL03712

Continued on next page.

H Introduction to Motion Programs

1-35

1.8 Advanced Programming

Monitoring Motion Program Execution Information

Continued from previous page.

System Work Number | Work 1 | Work 2 | Work 3 | Work4 | Work 5 | Work 6 | Work 7 | Work 8

l&gfi‘tcigLA’“s 10 Program Current | gy (33 SL03366 SL03424 SL03482 SL03540 SL03598 SL03656 SL03714

Logical Axis 11 Program Current

Position SL03310 SL03368 SL03426 SL03484 SL03542 SL03600 SL03658 SL03716

Logical Axis 12 Program Current

Position SL03312 SL03370 SL03428 SL03486 SL03544 SL03602 SL03660 SL03718

Logical Axis 13 Program Current

Position SL03314 SL03372 SL03430 SL03488 SL03546 SL03604 SL03662 SL03720

tgfi‘fg;m“s 14 Program Current |) 3316 SL03374 SL03432 SL03490 SL03548 SL03606 SL03664 SL03722

Logical Axis 15 Program Current

Position SL03318 SL03376 SL03434 SL03492 SL03550 SL03608 SL03666 SL03724

Logical Axis 16 Program Current

Position SL03320 SL03378 SL03436 SL03494 SL03552 SL03610 SL03668 SL03726

Logical Axis 17 Program Current

Position SL08192 SL08224 SL08256 SL08288 SL08320 SL08352 SL08384 SL08416

I];(‘fi‘tciz;“‘s 18 Program Current | gy ¢04 SL08226 SL08258 SL08290 SL08322 SL08354 SL08386 SL08418

Logical Axis 19 Program Current

Position SL08196 SL08228 SL08260 SL08292 SL08324 SL08356 SL08388 SL08420

Logical Axis 20 Program Current

Position SL08198 SL08230 SL08262 SL08294 SL08326 SL08358 SL08390 SL08422

Logical Axis 21 Program Current

Position SL08200 SL08232 SL08264 SL08296 SL08328 SL08360 SL08392 SL08424

I];(ffi‘tcizLAx‘s 22 Program Current | gy 070, SL08234 SL08266 SL08298 SL08330 SL08362 SL08394 SL08426

Logical Axis 23 Program Current

Position SL08204 SL08236 SL08268 SL08300 SL08332 SL08364 SL08396 SL08428

Logical Axis 24 Program Current

Position SL08206 SL08238 SL08270 SL08302 SL08334 SL08366 SL08398 SL08430

Logical Axis 25 Program Current

Position SL08208 SL08240 SL08272 SL08304 SL08336 SL08368 SL08400 SL08432

I];(‘fi‘tcizi]Ax‘s 26 Program Current | oy 0051 | SL08242 | SL0S274 | SL08306 | SLOS338 | SL08370 | SLO8402 | SLOS434

Logical Axis 27 Program Current

Position SL08212 SL08244 SL08276 SL08308 SL08340 SL08372 SL08404 SL08436

Logical Axis 28 Program Current

Position SL08214 SL08246 SL08278 SL08310 SL08342 SL08374 SL08406 SL08438

lﬁgfi‘tciim“s 29 Program Current | o1 1051 SL08248 SL08280 SL08312 SL08344 SL08376 SL08408 SL08440

Eﬁiﬁ?ﬁLAx‘s 30 Program Current | ;00718 | SL08250 | SL08282 | SLOS314 | SLOS346 | SL08378 | SLOS410 | SLOS442

Logical Axis 31 Program Current

Position SL08220 SL08252 SL08284 SL08316 SL08348 SL08380 SL08412 SL08444

Logical Axis 32 Program Current

Position SL08222 SL08254 SL08286 SL08318 SL08350 SL08382 SL08414 SL08446

1-36

1.8 Advanced Programming

Monitoring Motion Program Execution Information

* System Work Numbers 9 to 16

System Work Number | Work 9 | Work 10 | Work 11 | Work 12 | Work 13 | Work 14 | Work 15 | Work 16

Executing Main Program No. SW03208 | SW03209 | SW03210 | Swo3211 | Swo3212 | SW03213 | Swo3214 | Swo3215

Status SW03728 | SW03786 | SW03844 | SW03902 | SW03960 | SW04018 | SW04076 | SWo04134

Control Signals SW03729 | SW03787 | SW03845 | SW03903 | SW03961 | SW04019 | SW04077 | SWo04135

Program Number SW03730 | SW03788 | SWO03846 | SW03904 | SW03962 | SW04020 | SWO04078 | SW04136

2 Block Number SW03731 | SW03789 | SW03847 | SWO03905 | SW03963 | SW04021 | SW04079 | SWO04137

= Alarm Code SL26128 SL26144 SL26160 | SL26176 | SL26192 | SL26208 | SL26224 SL26240
(SW03732) | (SW03790) | (SW03848) | (SW03906) | (SW03964) | (SW04022) | (SW04080) | (SW04138)

Program Number SW03733 | SW03791 | SW03849 | SW03907 | SW03965 | SW04023 | SW04081 | SWo04139

" Block Number SW03734 | SW03792 | SW03850 | SWO03908 | SW03966 | SW04024 | SW04082 | SWO04140

= Alarm Code SL26130 SL26146 SL26162 SL26178 SL26194 | SL26210 | SL26226 SL26242
(SW03735) | (SW03793) | (SW03851) | (SW03909) | (SW03967) | (SW04025) | (SW04083) | (SW04141)

Program Number SW03736 | SW03794 | SW03852 | SWO03910 | SW03968 | SW04026 | SW04084 | SWo04142

> Block Number SW03737 | SW03795 | SW03853 | SW03911 | SW03969 | SW04027 | SW04085 | SWo04143

& Alarm Code SL26132 SL26148 SL26164 | SL26180 | SL26196 | SL26212 | SL26228 SL26244
(SW03738) | (SW03796) | (SW03854) | (SW03912) | (SW03970) | (SW04028) | (SW04086) | (SW04144)

Program Number SW03739 | SW03797 | SWo03855 | SW03913 | SW03971 | SW04029 | SWo04087 | Swo04145

< Block Number SW03740 | SW03798 | SW03856 | SWO03914 | SW03972 | SWO04030 | SW04088 | SWO04146

& Alarm Code SL26134 SL26150 SL26166 | SL26182 SL26198 SL26214 | SL26230 SL26246
(SW03741) | (SW03799) | (SW03857) | (SW03915) | (SW03973) | (SW04031) | (SW04089) | (SW04147)

Program Number SW03742 | SW03800 | SWO03858 | SW03916 | SW03974 | SW04032 | SW04090 | SWo04148

M Block Number SW03743 | SW03801 | SW03859 | SWo03917 | SW03975 | SW04033 | SW04091 | SWo04149

2 Alarm Code SL26136 SL26152 SL26168 SL26184 | SL26200 | SL26216 | SL26232 SL26248
(SW03744) | (SW03802) | (SW03860) | (SW03918) | (SW03976) | (SW04034) | (SW04092) | (SW04150)

Program Number SW03745 | SW03803 | SWo03861 | SW03919 | SW03977 | SW04035 | SW04093 | Swo4151

< Block Number SW03746 | SW03804 | SW03862 | SW03920 | SW03978 | SW04036 | SW04094 | SWo04152

& Alarm Code SL26138 SL26154 SL26170 | SL26186 | SL26202 | SL26218 | SL26234 SL26250
(SW03747) | (SW03805) | (SW03863) | (SW03921) | (SW03979) | (SW04037) | (SW04095) | (SW04153)

Program Number SW03748 | SWO03806 | SW03864 | SW03922 | SWO03980 | SW04038 | SW04096 | SW04154

< Block Number SW03749 | SW03807 | SW03865 | SW03923 | SW03981 | SW04039 | SW04097 | Swo04155

i Alarm Code SL26140 SL26156 SL26172 SL26188 SL26204 | SL26220 | SL26236 SL26252
(SW03750) | (SWO03808) | (SW03866) | (SW03924) | (SW03982) | (SW04040) | (SW04098) | (SW04156)

Program Number SW03751 | SWO03809 | SW03867 | SW03925 | SW03983 | SW04041 | SW04099 | SWo04157

» Block Number SW03752 | SW03810 | SWO03868 | SW03926 | SW03984 | SW04042 | SW04100 | SWo04158

£ Alarm Code SL26142 SL26158 SL26174 | SL26190 | SL26206 | SL26222 | SL26238 SL26254
(SW03753) | (SW03811) | (SW03869) | (SW03927) | (SW03985) | (SW04043) | (SWO04101) | (SW04159)

Introduction to Motion Programs

Logical Axis 1 Program Current

Position SL03754 SL03812 SL03870 SL03928 SL03986 SL04044 SL04102 SL04160

Logical Axis 2 Program Current

Position SL03756 SL03814 SL03872 SL03930 SL03988 SL04046 SL04104 SL04162

H

Logical Axis 3 Program Current

Position SL03758 SL03816 SL03874 SL03932 SL03990 SL04048 SL04106 SL04164

Logical Axis 4 Program Current

Position SL03760 SL03818 SL03876 SL03934 SL03992 SL04050 SL04108 SL04166

Logical Axis 5 Program Current

Position SL03762 SL03820 SL03878 SL03936 SL03994 SL04052 SL04110 SL04168

Logical Axis 6 Program Current

Position SL03764 SL03822 SL03880 SL03938 SL03996 SL04054 SL04112 SL04170

Logical Axis 7 Program Current

Position SL03766 SL03824 SL03882 SL03940 SL03998 SL04056 SL04114 SL04172

Logical Axis 8 Program Current

Position SL03768 SL03826 SL03884 SL03942 SL04000 SL04058 SL04116 SL04174

Logical Axis 9 Program Current

Position SL03770 SL03828 SL03886 SL03944 SL04002 SL04060 SL04118 SL04176

Logical Axis 10 Program Current

Position SL03772 SL03830 SL03888 SL03946 SL04004 SL04062 SL04120 SL04178

Logical Axis 11 Program Current

Position SL03774 SL03832 SL03890 SL03948 SL04006 SL04064 SL04122 SL04180

Logical Axis 12 Program Current

Position SL03776 SL03834 SL03892 SL03950 SL04008 SL04066 SL04124 SL04182

Logical Axis 13 Program Current

Position SL03778 SL03836 SL03894 SL03952 SL04010 SL04068 SL04126 SL04184

Logical Axis 14 Program Current

Position SL03780 SL03838 SL03896 SL03954 SL04012 SL04070 SL04128 SL04186

Logical Axis 15 Program Current

Position SL03782 SL03840 SL03898 SL03956 SL04014 SL04072 SL04130 SL04188

Continued on next page.

1-37

1-38

1.8 Advanced Programming

Monitoring Motion Program Execution Information

Continued from previous page.

System Work Number | Work 9 | Work 10 | Work 11 | Work 12 | Work 13 | Work 14 | Work 15 | Work 16
l&gfiitcigLA"is 16 Program Current | gy 3764 SL03842 SL03900 SL03958 SL04016 SL04074 SL04132 SL04190
Il;gsgiit‘;g;m‘is 17 Program Current | o/ nc448 | SL08480 | SLO8SI2 | SLOSS44 | SLO8576 | SLO8608 | SLOSG40 | SLOS672
[Egsg]ﬁg; Axis 18 Program Current | ge450 | SLog482 | SLOSSI4 | SLOSS46 | SLOSS7S | SLOS610 | SLO8642 | SLO8674
IL,zsgiitCizLAXis 19 Program Current | gy ge457 | L0844 | SLOSSI6 | SLOS548 | SLOSS80 | SLOS612 | SLO8644 | SL08676
tgfiifg;m‘is 20 Program Current | gy 10454 SL08486 SL08518 SL08550 SL08582 SL08614 SL08G646 SL08678
Il;gfiitcigLA"is 21 Program Current | ¢y 00456 | SL0S488 | SLO8520 | SLO8SS2 | SLO8S84 | SLO8616 | SLOS648 | SLOS68O
I[;;’Sgiit?zLA"is 22 Program Current | o ga4se | §08490 | SLOSS22 | SLO85S4 | SL08586 | SLOS6IS | SLOS6SO | SLO8682
Il;(‘)’sgl‘tfgil Axis 23 Program Current | oe460 | SL08492 | SLOSS24 | SLOSSS6 | SLOSS8S | SLO8620 | SL08652 | SLO8684
I];(‘fiitciz;“is 24 Program Current | gy 467 SL08494 SL08526 SL08558 SL08590 SL08622 SL08G654 SL08686
Il;(‘)’sgiit‘;gLA"is 25 Program Current | o ge4e4 | SL08496 | SLOSS28 | SLO8560 | SL08592 | SLO8S624 | SLOS6S6 | SLO868S
Iﬁﬁiﬁiﬁ Axis 26 Program Current | o1 gesc6 | SL08498 | SLO8S30 | SLO8S62 | SLOSS94 | SLOS626 | SLOS6SS | SLO8690
l&gfiigf)‘;mis 27 Program Current | gy 0e468 | SL08500 | SLOS532 | SLOSS64 | SLO8596 | SL08628 SLO8660 | SL08692
I];(‘fiitciz;“is 28 Program Current | gy 1¢470 SL08502 SL08534 SL08566 SL08598 SL08630 SL08662 SL08694
Il;gsgiit‘;:LA"is 29 Program Current | gy ge47> | SL08504 | SLOSS36 | SLO8568 | SL08600 | SLOS632 | SLOS664 | SLO8696
pogical Axis 30 Program Cument |) 0474 | SLOSSO6 | SLOSS3S | SLOSST0 | SLOSG02 | SLOS&34 | SLOS666 | SLOS69S
}L)gfiigi}f"is 31 Program Current | g 00476 | SLOS508 | SLO8540 | SLO8572 | SL08604 | SL08636 | SL08668 | SLOS700
Logical Axis 32 Program Current | o/ o478 | SL08510 | SLO8542 | SLO08574 | SL08606 | SL08638 | SLO8670 | SLOS702

Position

1.8 Advanced Programming

Monitoring Motion Program Execution Information

* System Work Numbers 17 to 24

System Work Number | Work 17 | Work 18 | Work 19 | Work 20 | Work 21 | Work 22 | Work 23 | Work 24

Executing Main Program No. SW03216 | SW03217 | Swo3218 | Swo03219 | Swo03220 | Swo3221 | swo3222 | swo3223

Status SWO04192 | SW04250 | SW04308 | SW04366 | SW04424 | SW04482 | SW04540 | SW04598

Control Signals SWO04193 | SW04251 | SW04309 | SW04367 | SWO04425 | SWo04483 | SW04541 | SW04599

Program Number SW04194 | SW04252 | SW04310 | SW04368 | SWO04426 | SW04484 | SW04542 | SW04600

< Block Number SWO04195 | SWO04253 | SWO04311 | SW04369 | SW04427 | SW04485 | SW04543 | SW04601

£ Alarm Code SL26256 | SL26272 SL26288 SL26304 | SL26320 | SL26336 | SL26352 | SL26368
(SW04196) | (SW04254) | (SW04312) | (SW04370) | (SW04428) | (SW04486) | (SW04544) | (SW04602)

Program Number SW04197 | SW04255 | SW04313 | SW04371 | SW04429 | SW04487 | SWo04545 | SW04603

o Block Number SWO04198 | SW04256 | SW04314 | SW04372 | SW04430 | SW04488 | SW04546 | SW04604

£ Alarm Code SL26258 SL26274 SL26290 SL26306 SL26322 SL26338 SL26354 | SL26370
(SW04199) | (SW04257) | (SW04315) | (SW04373) | (SW04431) | (SW04489) | (SW04547) | (SW04605)

Program Number SW04200 | SWO04258 | SW04316 | SW04374 | SW04432 | SW04490 | SW04548 | SW04606

) Block Number SW04201 | SW04259 | SW04317 | SW04375 | SW04433 | SW04491 | SW04549 | SW04607

£ Alarm Code SL26260 | SL26276 SL26292 SL26308 SL26324 | SL26340 | SL26356 | SL26372
(SW04202) | (SW04260) | (SW04318) | (SW04376) | (SW04434) | (SW04492) | (SW04550) | (SW04608)

Program Number SW04203 | SWO04261 | SW04319 | SW04377 | SW04435 | Swo04493 | Swo4551 | SW04609

< Block Number SW04204 | SW04262 | SW04320 | SW04378 | SW04436 | SW04494 | SW04552 | SW04610

£ Alarm Code SL26262 | SL26278 SL26294 | SL26310 SL26326 | SL26342 | SL26358 SL26374
(SW04205) | (SW04263) | (SW04321) | (SW04379) | (SW04437) | (SW04495) | (SW04553) | (SW04611)

Program Number SW04206 | SWO04264 | SW04322 | SW04380 | SW04438 | SW04496 | Swo4554 | Swo4612

M Block Number SW04207 | SW04265 | SW04323 | SWo04381 | SWo04439 | Swo04497 | Swo4sss | Swod6l3

£ Alarm Code SL26264 | SL26280 SL26296 SL26312 SL26328 SL26344 | SL26360 | SL26376
(SW04208) | (SW04266) | (SW04324) | (SW04382) | (SW04440) | (SW04498) | (SW04556) | (SW04614)

Program Number SW04209 | SW04267 | SW04325 | SW04383 | Swo4441 | SW04499 | Swo4s57 | Swodels

< Block Number SWO04210 | SWO04268 | SW04326 | SW04384 | SWO04442 | SW04500 | SW04558 | SWo04616

£ Alarm Code SL26266 | SL26282 SL26298 SL26314 | SL26330 | SL26346 | SL26362 | SL26378
(SW04211) | (SW04269) | (SW04327) | (SW04385) | (SW04443) | (SW04501) | (SW04559) | (SW04617)

Program Number SW04212 | SW04270 | SW04328 | SW04386 | SW04444 | SW04502 | SW04560 | SW04618

< Block Number SWO04213 | SW04271 | SW04329 | SW04387 | SW04445 | SW04503 | SW04561 | SWo04619

£ Alarm Code SL26268 SL26284 SL26300 SL26316 SL26332 SL26348 SL26364 | SL26380
(SW04214) | (SW04272) | (SW04330) | (SW04388) | (SW04446) | (SW04504) | (SW04562) | (SW04620)

Program Number SW04215 | SW04273 | SW04331 | SWo04389 | SW04447 | SW04505 | SW04563 | SWo4621

” Block Number SW04216 | SWO04274 | SW04332 | SW04390 | SW04448 | SW04506 | SW04564 | SW04622

i Alarm Code SL26270 | SL26286 SL26302 SL26318 SL26334 | SL26350 | SL26366 | SL26382
(SW04217) | (SW04275) | (SW04333) | (SW04391) | (SW04449) | (SW04507) | (SW04565) | (SW04623)

Introduction to Motion Programs

Logical Axis 1 Program Current

Position SL04218 SL04276 SL04334 SL04392 SL04450 SL04508 SL04566 SL04624

Logical Axis 2 Program Current

Position SL04220 SL04278 SL04336 SL04394 SL04452 SL04510 SL04568 SL04626

H

Logical Axis 3 Program Current

Position SL04222 SL04280 SL04338 SL04396 SL04454 SL04512 SL04570 SL04628

Logical Axis 4 Program Current

Position SL04224 SL04282 SL04340 SL04398 SL04456 SL04514 SL04572 SL04630

Logical Axis 5 Program Current

Position SL04226 SL04284 SL04342 SL04400 SL04458 SL04516 SL04574 SL04632

Logical Axis 6 Program Current

Position SL04228 SL04286 SL04344 SL04402 SL04460 SL04518 SL04576 SL04634

Logical Axis 7 Program Current

Position SL04230 SL04288 SL04346 SL04404 SL04462 SL04520 SL04578 SL04636

Logical Axis 8 Program Current

Position SL04232 SL04290 SL04348 SL04406 SL04464 SL04522 SL04580 SL04638

Logical Axis 9 Program Current

Position SL04234 SL04292 SL04350 SL04408 SL04466 SL04524 SL04582 SL04640

Logical Axis 10 Program Current

Position SL04236 SL04294 SL04352 SL04410 SL04468 SL04526 SL04584 SL04642

Logical Axis 11 Program Current

Position SL04238 SL04296 SL04354 SL04412 SL04470 SL04528 SL04586 SL04644

Logical Axis 12 Program Current

Position SL04240 SL04298 SL04356 SL04414 SL04472 SL04530 SL04588 SL04646

Logical Axis 13 Program Current

Position SL04242 SL04300 SL04358 SL04416 SL04474 SL04532 SL04590 SL04648

Logical Axis 14 Program Current

Position SL04244 SL04302 SL04360 SL04418 SL04476 SL04534 SL04592 SL04650

Logical Axis 15 Program Current

Position SL04246 SL04304 SL04362 SL04420 SL04478 SL04536 SL04594 SL04652

Continued on next page.

1-39

1-40

1.8 Advanced Programming

Monitoring Motion Program Execution Information

Continued from previous page.

System Work Number | Work 17 | Work 18 | Work 19 | Work 20 | Work 21 | Work 22 | Work 23 | Work 24
l&gfiitcigLA"is 16 Program Current | o1 474g SL04306 SL04364 SL04422 SL04480 SL04538 SL04596 SL04654
Il;gsgiit‘;g;m‘is 17 Program Current | gy 0e704 | SLOS736 | SLOS768 | SL08S00 | SLOS832 | SLOSSG4 | SLO8896 | SLOS928
[Egsg]ﬁg; Axis 18 Program Current | gy 0e706 | SL08738 | SLO8770 | SLOS802 | SLOS834 | SLOSS66 | SLOSS98 | SLOS930
IL,zsgiitciziAXis 19 Program Current | g1 o708 | SLO8740 | SL08772 | SLO8S04 | SLO8836 | SLOS86S | SLOS900 | SLOS932
tgfiifg;m‘is 20 Program Current | g1 48710 SL08742 SL08774 SL08806 SL08838 SL08870 SL08902 SL08934
Il;gfiitcigLA"is 21 Program Current | gy 6e715 | §L08744 | SLO8776 | SLOS80S | SLOS840 | SLOSS72 | SLOS904 | SL08936
Il;gsgiit?zLA"is 22 Program Current | o ac714 | SL08746 | SLO8778 | SLOS8IO | SLOSS42 | SL08874 | SLOS906 | SLO893S
Il;;’sgiitcig;mis 23 Program Current | gy 6e716 | SL08748 | SL08780 | SLOS8I2 | SLOS844 | SLOSS76 | SLOS9OS | SL08940
I];(‘fiitciz;“is 24 Program Current | g1 407)g SL08750 SL08782 SL08814 SL08846 SL08878 SL08910 SL08942
Il;(‘)’sgiit‘;gLA"is 25 Program Current | o 0e750 | SL08752 | SL08784 | SLOS8I6 | SLOSS48 | SL08S80 | SLOS9I2 | SLO8Y44
Il;gfiitcigLA"iS 26 Program Current | o e77 | gL08754 | SL08786 | SLOS8IS | SLOSSSO | SL08S82 | SLOS9I4 | SLO8Y46
l&(‘)’fiigi}f"is 27 Program Current | g1 gg774 | SLO8756 | SLOS788 | SLOS820 | SLO88S2 | SLO88S4 | SLOS9I6 | SLOS94S
I];(‘fiitciz;“is 28 Program Current | g1 8796 SL08758 SL08790 SL08822 SL08854 SL08886 SL08918 SL08950
Il;gsgiit‘;:LA"is 29 Program Current | o e738 | SL08760 | SLO8792 | SLOS824 | SL088S6 | SL08SS8 | SLO8920 | SLO89S2
pogical Axis 30 Program Cument | g 03730 | SLo8762 | SLO8T94 | SLOSS26 | SLOSSSS | SLOSSS0 | SLOS922 | SLOS9SA
}L)(‘)’fiigi}f"is 31 Program Current | g 69737 | SL08764 | SL08796 | SLOS828 | SLOS860 | SLOSS92 | SLOS924 | SL089S6
Logical Axis 32 Program Current | gy ne734 | 108766 | SLOS798 | SLOSS30 | SLOSS62 | SLOS894 | SL08926 | SLO89SS

Position

1.8 Advanced Programming

Monitoring Motion Program Execution Information

* System Work Numbers 25 to 32

System Work Number | Work 25 | Work 26 | Work 27 | Work 28 | Work 29 | Work 30 | Work 31 | Work 32

Executing Main Program No. SW03224 | SW03225 | SW03226 | Sw03227 | SWo03228 | Swo03229 | Swo03230 | Swo03231

Status SWO04656 | SW04714 | SW04772 | SW04830 | SWO04888 | SW04946 | SW05004 | SW05062

Control Signals SWO04657 | SW04715 | SW04773 | Swo04831 | Swo04889 | SW04947 | SW05005 | SW05063

Program Number SW04658 | SW04716 | SW04774 | SW04832 | SWO04890 | SW04948 | SW05006 | SW05064

< Block Number SWO04659 | SW04717 | SW04775 | SW04833 | SW04891 | SW04949 | SW05007 | SWO05065

£ Alarm Code SL26384 | SL26400 SL26416 SL26432 SL26448 SL26464 | SL26480 | SL26496
(SW04660) | (SW04718) | (SW04776) | (SW04834) | (SW04892) | (SW04950) | (SW05008) | (SW05066)

Program Number SWO04661 | SW04719 | SW04777 | SW04835 | SWo04893 | SW04951 | SW05009 | SW05067

o Block Number SWO04662 | SW04720 | SW04778 | SW04836 | SWO04894 | SW04952 | SW05010 | SW05068

£ Alarm Code SL26386 | SL26402 SL26418 SL26434 | SL26450 | SL26466 | SL26482 | SL26498
(SW04663) | (SW04721) | (SW04779) | (SW04837) | (SW04895) | (SW04953) | (SWO05011) | (SW05069)

Program Number SWO04664 | SW04722 | SW04780 | SW04838 | SWO04896 | SW04954 | SW05012 | SW05070

) Block Number SWO04665 | SW04723 | SW04781 | SW04839 | SW04897 | SW04955 | SW05013 | SW05071

£ Alarm Code SL26388 SL26404 SL26420 SL26436 SL26452 SL26468 SL26484 | SL26500
(SW04666) | (SW04724) | (SW04782) | (SW04840) | (SW04898) | (SW04956) | (SW05014) | (SW05072)

Program Number SWO04667 | SW04725 | Swo04783 | Swo4841 | Swo04899 | Sw04957 | Swos01s | Swo0s073

< Block Number SWO04668 | SW04726 | SW04784 | SW04842 | SWO04900 | SW04958 | SW05016 | SW05074

£ Alarm Code SL26390 | SL26406 SL26422 SL26438 SL26454 | SL26470 | SL26486 | SL26502
(SW04669) | (SW04727) | (SW04785) | (SW04843) | (SW04901) | (SW04959) | (SW05017) | (SW05075)

Program Number SWO04670 | SW04728 | SW04786 | SW04844 | SW04902 | SW04960 | SW0s5018 | SW05076

M Block Number SWO04671 | SW04729 | Swo04787 | SWo04845 | SW04903 | Swo04961 | SW05019 | SWo05077

£ Alarm Code SL26392 | SL26408 SL26424 | SL26440 SL26456 | SL26472 | SL26488 SL26504
(SW04672) | (SW04730) | (SWO04788) | (SW04846) | (SW04904) | (SW04962) | (SW05020) | (SW05078)

Program Number SWO04673 | SW04731 | Swo04789 | SW04847 | SW04905 | SwWo04963 | Swos021 | SW05079

< Block Number SWO04674 | SW04732 | SW04790 | SW04848 | SW04906 | SW04964 | SW05022 | SW05080

£ Alarm Code SL26394 | SL26410 SL26426 SL26442 SL26458 SL26474 | SL26490 | SL26506
(SW04675) | (SW04733) | (SW04791) | (SW04849) | (SW04907) | (SW04965) | (SW05023) | (SW05081)

Program Number SWO04676 | SW04734 | SW04792 | SW04850 | SWO04908 | SW04966 | SW05024 | SW05082

< Block Number SWO04677 | SW04735 | Sw04793 | Swo04851 | SwWo04909 | SW04967 | Swo0s025 | Swo05083

£ Alarm Code SL26396 | SL26412 SL26428 SL26444 | SL26460 | SL26476 | SL26492 | SL26508
(SW04678) | (SW04736) | (SW04794) | (SW04852) | (SW04910) | (SW04968) | (SW05026) | (SW05084)

Program Number SWO04679 | SW04737 | SW04795 | SW04853 | SW04911 | SW04969 | SW05027 | SWO05085

” Block Number SWO04680 | SW04738 | SW04796 | SW04854 | SWO04912 | SW04970 | SW05028 | SW05086

i Alarm Code SL26398 SL26414 SL26430 SL26446 SL26462 SL26478 SL26494 | SL26510
(SW04681) | (SW04739) | (SW04797) | (SW04855) | (SW04913) | (SW04971) | (SW05029) | (SW05087)

Logical Axis 1 Program Current

Position SL04682 SL04740 SL04798 SL04856 SL04914 SL04972 SL05030 SL05088

Logical Axis 2 Program Current

Position SL04684 SL04742 SL04800 SL04858 SL04916 SL04974 SL05032 SL05090

H Introduction to Motion Programs

Logical Axis 3 Program Current

Position SL04686 SL04744 SL04802 SL04860 SL04918 SL04976 SL05034 SL05092

Logical Axis 4 Program Current

Position SL04688 SL04746 SL04804 SL04862 SL04920 SL04978 SL05036 SL05094

Logical Axis 5 Program Current

Position SL04690 SL04748 SL04806 SL04864 SL04922 SL04980 SL05038 SL05096

Logical Axis 6 Program Current

Position SL04692 SL04750 SL04808 SL04866 SL04924 SL04982 SL05040 SL05098

Logical Axis 7 Program Current

Position SL04694 SL04752 SL04810 SL04868 SL04926 SL04984 SL05042 SL05100

Logical Axis 8 Program Current

Position SL04696 SL04754 SL04812 SL04870 SL04928 SL04986 SL05044 SL05102

Logical Axis 9 Program Current

Position SL04698 SL04756 SL04814 SL04872 SL04930 SL04988 SL05046 SL05104

Logical Axis 10 Program Current

Position SL04700 SL04758 SL04816 SL04874 SL04932 SL04990 SL05048 SL05106

Logical Axis 11 Program Current

Position SL04702 SL04760 SL04818 SL04876 SL04934 SL04992 SL05050 SL05108

Logical Axis 12 Program Current

Position SL04704 SL04762 SL04820 SL04878 SL04936 SL04994 SL05052 SL05110

Logical Axis 13 Program Current

Position SL04706 SL04764 SL04822 SL04880 SL04938 SL04996 SL05054 SL05112

Logical Axis 14 Program Current

Position SL04708 SL04766 SL04824 SL04882 SL04940 SL04998 SL05056 SL05114

Logical Axis 15 Program Current

Position SL04710 SL04768 SL04826 SL04884 SL04942 SL05000 SL05058 SLO5116

Continued on next page.

1-41

1-42

1.8 Advanced Programming

Monitoring Motion Program Execution Information

Continued from previous page.

System Work Number | Work 25 | Work 26 | Work 27 | Work 28 | Work 29 | Work 30 | Work 31 | Work 32
l&gfiitcigLA"is 16 Program Current | o1 4775 SL04770 SL04828 SL04886 SL04944 SL05002 SL05060 SLO5118
Il;gsgiit‘;g;m‘is 17 Program Current | oy 00050 | SL08992 | SL09024 | SL09056 | SLO90SS | SL09120 | SL09152 | SL09184
[Egsg]ﬁg; Axis 18 Program Current | gy 0e967 | SL08994 | SL09026 | SL09058 | SL09090 | SL09122 | SLO9IS4 | SLO9IS6
IL,zsgiitCizLAXis 19 Program Current | g1 40964 | SL08996 | SL09028 | SL09060 | SL09092 | SL09124 | SL09156 | SLO9ISS
tgfiifg;m‘is 20 Program Current | o1 3966 SL08998 SL09030 SL09062 SL09094 SL09126 SL09158 SL09190
Il;gfiitcigLA"is 21 Program Current | g ge068 | SL09000 | SL09032 | SL09064 | SL09096 | SLO9I28 | SLO9160 | SL09192
I[;;’Sgiit?zLA"is 22 Program Current | o 0s970 | SL09002 | SL09034 | SLO9066 | SL09098 | SL09130 | SL09162 | SLO9194
Il;(‘)’sgl‘tfgil Axis 23 Program Current | gy 0g97) | SL09004 | SL09036 | SL09068 | SL09100 | SLO9132 | SLO9I64 | SLO9196
I];(‘fiitciz;“is 24 Program Current | g1 397, SL09006 SL09038 SL09070 SL09102 SL09134 SL09166 SL09198
Il;(‘)’sgiit‘;gLA"is 25 Program Current | o1 00976 | SL09008 | SL09040 | SL09072 | SL09104 | SL09136 | SL09168 | SL09200
Iﬁﬁiﬁiﬁ Axis 26 Program Current | ;00978 | S109010 | SL09042 | SL09074 | SL09106 | SL09138 | SL09170 | SL09202
l&gfiigf)‘;mis 27 Program Current | g1 48980 | SLO9012 | SL09044 | SL09076 | SL09108 | SL09140 | SL09172 | SL09204
I];(‘fiitciz;“is 28 Program Current | o1 2945 SL09014 SL09046 SL09078 SL09110 SL09142 SL09174 SL09206
Il;gsgiit‘;:LA"is 29 Program Current | o 0sog4 | SLO9016 | SL09048 | SLO90SO | SLO91I2 | SL09144 | SL09176 | SL09208
Il;(‘)’fiitcigLA"is 30 Program Current | gy 68086 | SL09018 | SL09050 | SL09082 SL09114 | SL09146 | SL09178 | SL09210
}L)gfiigi}f"is 31 Program Current | gy ge0gg | §L09020 | SL09052 | SL09084 | SL09116 | SL09148 | SLO91SO | SL09212
Logical Axis 32 Program Current | gy 00999 | 109022 | SL09S4 | SL09086 | SLO9II8 | SLO9150 | SLO09182 | SL09214

Position

1.9 Application Examples

Application Exampl

€S

Conveyance Device

Motion programs can be used for a variety of different devices and systems.
This section gives some application examples.

Conveyance Device

In this example, a device stacks a specified number of cardboard boxes on a pallet and transports them to

the next process.

Three axes are controlled with motion control for the palletizing process and an automatic pallet feeding

sequence is performed.

Control Points

» Axes X1 and X2 are moved in synchronized
operation using a virtual axis.

* Interpolation is used to enable smooth move-
ment.

* Palletizing is performed by calculating the
position data with a motion program according
to predefined conditions (box dimensions, the
number of boxes in a horizontal row, the num-
ber of boxes in a vertical row, and the number
of boxes in a stack).

Part Inserter

In this example, a device inserts parts, such as connectors, into a printed circuit board.

The transport robot takes out the parts and brings them to the stand. The inserting robot inserts the parts at
the specified positions and angles on the circuit board.

=
Parts tray

Robot 1

Control Points

» Two groups of axes are created and a program is
created for each group so that each robot is
independently controlled.

* The tact time is shortened by using two-axis or
three-axis linear interpolation.

Introduction to Motion Programs

H

1-43

1.9 Application Examples

Panel Processing Machine

1-44

Panel Processing Machine

In this example, a device draws patterns on flat panels for construction materials.

More than ten cutters are mounted in series on the X axis so that the width of the pattern can be easily

changed.

Y2 Control Points

» The X and Y axes are moved with circular
interpolation to draw waveform patterns.

* Movement of the X1 and X2 axes is syn-
chronized by using a virtual axis.

<A
< <A
>] J
%
Wave pattern ° 9%
1%

Metal Sheet Pressing Equipment

In this example, a device is used to bend metal sheets.
A metal sheet is bent into various shapes by changing the adjustable axis while feeding a sheet using the

rolling axis.

Workpiece
ﬁplatform Adjustable roller
J j
orkpiece H
/ = o Control Points . . ‘ '
\ » Two axes, a linear axis and rotational axis,

are controlled by using linear interpolation.
* The motion program to call is changed
Motor for based on the processing that needs to be

performed.

Motor for
adjusting roller

Reduction
gears
Motor for roller

Introduction to
Sequence Programs

This chapter introduces sequence programs, their features, and
how to use them for first-time users of sequence programs.

B What s a Sequence Progiam? ... 22
N Festros ot Soqvnco Progam .23

Sequence Program Execution Methods

Same Language as Motion Programs 2-3
Data Transfer to and from Motion Programs 2-3
Memory Usage Reduced by Use of Subprograms 2-4
Easy Programming Functions 2-4

EEN Types of Sequence Programs 25
2 =

Execution ProcessingMethod

Registering Program Execution 2-8
Work Registers 2-9

2.1 What Is a Sequence Program?

A What Is a Sequence Program?

A sequence program is executed in a scan and it is written in the same language as a motion program.
An application to cyclically check status, such as interlock status, can be created by using a sequence pro-
gram.

Sequence programs can be executed by calling them from the M-EXECUTOR program execution defini-
tions.

You can create up to 512 sequence programs. However, you must also include motion programs in this

total.
An example of a sequence program is shown below.
im %, 't 4 g versiony.oo -l 6?5 BRI FL EWE KM G E
LINE BLOCK

1 "EFMO0L" =l
2 0 IF SBOO0D0L == 1; "HIGH SPEED FIRST SCAN ON ONLY":
3 "CLEAR"
4 1 CLR DWODOOOD W32;
5 2 IEND;
&
7 "ON PULSE"
8 3 IF DBOOODZ == 1;
5 "[A1: GROUP1] SERVO ON"
10 4 0BBODOD = 1;
11
12 "[Bl: GROUP1] SERVO ON"
13 5 0BB08O0 = 1;
14
15 6 IEMD;
16 ||
17 7 END:

o | _>l_I

| |
Set/ F[F) Close il il

2.2 Features of a Sequence Program

Sequence Program Execution Methods

Features of a Sequence Program

Sequence Program Execution Methods

Sequence programs are executed in the same way as ladder programs.

A sequence program is executed cyclically in a fixed scan. Processing from the start of the program to the
END instruction is completed in one scan. Sequence programs can be executed by calling them from the
M-EXECUTOR program execution definitions.

(R

Ladder Program Sequence Program
(Scan Execution) (Scan Execution)

1BO000O IBO0001 OB00000 Instructions
— —O— are executed

Instructions
are executed

in a fixed in a fixed
period. 1B00002 DB000005 period. 0B00000 = [B0000O & 1BO00OT;
DB000005 = 1B00002 | 1BO0003;
1B00003 0B00001 = PON(IB00004 DB000006);
END;

1B00004 DB000006 OB00001

———C_ _END >—

Same Language as Motion Programs

Sequence programs use the motion language, just like motion programs.

The motion language instructions that can be used in sequence programs, however, are limited to sequence
instructions, such as math instructions. Instructions for motion control, such as axis movement instruc-
tions, cannot be used.

You can use sequence programs to create applications for sequence control without using ladder programs.

Data Transfer to and from Motion Programs

You can transfer data between sequence and motion programs.
Data registers (M registers) are used to transfer data.

For example, this allows a value that is updated in a sequence program to be used in a motion program,
and vice-versa.

)
Sequence Program Motion Program
M\ e
ML00000 = ML00002 + ML00004;
MLO000O = MLO0OOO * MLO0006; ~ KRead Refreshedy| Data registers |l keaq Refresneq)
<::‘[> (M registers) MOV [A1] MLO000O;
END;
J ~
| —

H Introduction to Sequence Programs

2-3

2.2 Features of a Sequence Program

Memory Usage Reduced by Use of Subprograms

Memory Usage Reduced by Use of Subprograms

You can create sequence programs as subprograms.

Subprograms are created to perform common operations. They help minimizing the number of program
steps and allow the efficient use of memory.

Main program Main program Main program

SPMO001 SPM002 SPM003

Called.
(SSEE)

Called. Called.
(SSEE)

The common
SPS010 process is
written as a
subprogram.
Subprogram

Easy Programming Functions

The following easy programming functions can also be used for sequence programs.

-
e Instruction Entry Assistance e Debugging
Simply select an instruction and set the data in the This mode allows you to debug sequence programs.
Instruction Input Assistance Dialog Box shown Common debugging commands, such as step-by-step
below to insert the instruction into the editor. execution and setting breakpoints, are provided.
= - Stwl”SP0O1 |
= ([%% A B w700 Clie 2Bl SE:F 1 B ™

ENI;

_____ | 2 IF MO000000 == 1:

4 ELSE:
Inserts the instruction. 3 Hwoooos - 1

TEND;

END:

Sl ol BRI F S B >] E 2R
ptice resister Destination resister WNumber to be shifted the block data;

"BLOCE MOVE"
ELE MWDO100 MwOOS500 WZ20:

END;

2.3 Types of Sequence Programs

Types of Sequence Programs

There are two types of sequence programs.

Designation
Type Method Features Number of Programs
sePMO0O0O Main programs are called from You can create up to 512 motion pro-

Main programs | (OO0 =1 to

512)

the M-EXECUTOR program exe-
cution definitions.

sesOOO

Subprograms (OO0 =1to

512)

Subprograms are called from a
main program.

grams, including the following programs:
Motion main programs

Motion subprograms

Sequence main programs

Sequence subprograms

@

Important

The same numbers are used to manage the sequence programs and motion programs.

Use a unique number for each program.

» Motion program numbers are given in the form MPMODOO or MPSOOIO.
 Sequence program numbers are given in the form SPMOOO or SPSOOO.

H Introduction to Sequence Programs

2-5

2.4 Executing Sequence Programs

Execution Processing Method

Executing Sequence Programs

This section describes how to execute sequence programs.

Execution Processing Method

A sequence program is executed by calling it from the M-EXECUTOR execution definitions.
Sequence programs are executed in ascending order.

The following figure shows an execution example.
Sequence Programs
SPMOO1

IF MW000<32767;
MW000=MWO000+1;
ELSE;

Y MW000;

IEND:

M-EXECUTOR Program Execution Definitions END

ki Dl Execution tvpe | _settine | Proeram |

] Sequence programfStart) Direct SPMO01 SPM002
1 Sequence programiH-zcan) - |Direct J SPMODE g — 1
] |Sequence proeramiH-scan? = |Direct SPMO03

-

el el

END
Sequence

Subprogram
SPS101

SPMO003

\SSEE
SPS101 -

END RET

If the execution type is set to a high-speed scan sequence program or low-speed scan sequence program,
then the program will be executed as soon as the definition is saved. If the execution type is set to a startup
sequence program, then the program will be executed the next time when the power supply is turned ON.

2-6

2.4 Executing Sequence Programs

Execution Processing Method

M-EXECUTOR Program Execution Definitions

Example ~ Sequence Program Execution Example
The following figure shows an example of the sequence programs registered in the M-EXECU-

TOR.
Detail - [M-EXECUTOR] |
File View
PTa#: - - CPU#:-- iD0coo-oocyE |
M-EXECUTOR{Lizt) Individual dizplay Program definition number IB vI =
Program definition I Allocation Cortrol reeister |
D Execution tvpe | Settine | Proeram Execution maonitor reeister(S register)
= |-I Segquence program(Start) Direct - =
1 || Maotion program > |Direct LI hPRO0T SWO3264 - SW03321
z I=] Sequence programil-scan) > |Direct SPMO0Z =
2 |-l Sequence programiH-scan) = |Direct SPMO02 -
4 |01 Motion proeram > |Direct x| MPMOD4 SW03438 - SW03495
5 |-] Seguence proeramiH-scan} > |Direct SPMO0S = ||
5[] -
7 =] hd
g = hd
~|
0| | i)
For Help, press F1 |— CAP v

Execution Timing

This section describes the execution timing of programs in the above example.
The following figure shows program and drawing execution that is based on the order of registration in the
M-EXECUTOR program definitions.

Startup | SPM001|DWG.A

High-speed scan cycle | High-speed scan cycle

L

High-speed scan SPM003 VIV SPM005| DWG.H SPM003 VIV SPM005| DWG.H

Low-speed|scan cycle

A4

<
<

A4

A

Low-speed scan SPM002 SPM002| DWG.L|

¢ » Ladder program
1 This shows that the higher | processing

priority processing is interrupting
lower priority processing.

H Introduction to Sequence Programs

2.4 Executing Sequence Programs

Registering Program Execution

Registering Program Execution

Register the programs to execute as shown below. The following screen capture shows an example of reg-
istering the SPMO001 sequence program for execution in a high-speed scan cycle.

Register the program to execute.

Detail - [M-EXEGUTOR] |
FEile Wiew

PTH#: —— CPU#:—- // [00CO0-00C7F |
M-EXECUTOR{List} Tndividual dizplay | Proeram def Aition number IS vl

Proeram definition | Allocation Contral register |

| v

ol Execution type | Settng | Program Execution maonitar register(S resister)
(Startd Direct — -
(|1 sequence proeram(H-scan) Direct J SPMOO1)| =

_

ENRNEIEIEIENE K
|

fer= (RN = 9 S S 6 Y P
i

«| | 1

For Help, pres= F1 |— Cap 4

Information Sequence programs must be directly designated. Indirect designations cannot be used.

2.4 Executing Sequence Programs

Work Registers

Work Registers

When a sequence program is registered for execution, that program is assigned status flags to monitor its
status. The address of the status flags for a sequence program can be obtained with the following equation.

IwOOOOO + 4 x (Program execution registration No. 1)

|: First M-EXECUTOR /O register address™

*You can check the first I/O register address on the Module Configuration Definition Tab Page.

x Crcuit Ha fraisAddress Fegisinr Gnput/Oufpt)
Makiln Finction odde/Sinve | Statis - Pl oikn Rogister. el R o .

gt
o n e - o
== Crowl Mot ouirit 000 - 07FFIH] ame
5 (5o Drivieg < Cireuit Mol 2 PR e - BFF{H] 1004
[= CPLEM [Driving) . e OutPut
Dniving. @ Cirruit Nod 2 =
Driving e T DCTTIID 128

s First 1/O register

3 =SIREMEL == address

Status Flags

The Sequence Program Status Flags give the execution conditions of the sequence program.

The following table describes the meanings of the Status Flags.

Bit No Name Description

This bit is set to 1 when the sequence program is running.
Bit 0 | Program Executing 0: Sequence program is stopped.
1: Sequence program is running.

Oto3 Bit 1 | (Reserved for system.) | —
Bit2 | (Reserved for system.) | —
Bit3 | (Reserved for system.) | —
Bit4 | (Reserved for system.) | —
Bit 5 | (Reserved for system.) | —
4to07

Bit 6 | (Reserved for system.) | —

Bit 7 | (Reserved for system.) | —

Continued on next page.

H Introduction to Sequence Programs

2-10

2.4 Executing Sequence Programs

Work Registers

Continued from previous page.

Bit No Name Description
This bit changes to 1 when any of the following errors occur after calling
a sequence subprogram using an SSEE instruction. This bit changes
back to 0 when the error is cleared.
* The called program is not registered.
. * The called program is not a sequence program.
Bit8 | Program Alarm * The called program is not a subprogram (a main program was called).
* Called Program Number Limit Exceeded Error
* Too Many Nesting Levels Error
0: There is no program alarm.
§toB 1: A program alarm occurred.
This bit is set to 1 when execution of a program stops at a breakpoint in
Bit 9 Program. Stopped at Debug Operation Mode. ‘
Breakpoint 0: Not stopped at a breakpoint.
1: Stopped at a breakpoint.
Bit A | (Reserved for system.) | —
) This bit is set to 1 when a program is running in Debug Operation Mode.
. Debug Operation . . .
Bit B Mode 0: Not in Debug Operation Mode (Normal Execution Mode).
1: In Debug Operation Mode.
This bit reports whether the program that is being executed is a motion
BitC | ProgrmType | PO 07 sequenceprogan.
1: Sequence program
CtoF This bit is set to 1 when the sequence program is running.
Bit D | Start Request History 0: Sequence program is stopped.
1: Sequence program is running.
Bit E | (Reserved for system.) | —
Bit F | (Reserved for system.) | —
) Sequence Program Alarms
‘ 4" | Bit 8 (Program Alarm) in the Status Flags changes to 1 if an error is detected after calling a sequence

Note

subprogram with an SSEE instruction. This bit changes back to 0 when the error is cleared.

The following errors can occur.

* The called program is not registered.

 The called program is not a sequence program.

* The called program is not a subprogram (a main program was called).
* Called Program Number Limit Exceeded Error

» Too Many Nesting Levels Error

Program Development
Flow

This chapter describes the procedures from system setup to actual
operation using MPE720 Engineering Tool version 7.

[Program Development Flow ... 32
[Proram Doveleprent rocedrs 3

Preparation for Devices to be Connected

Creatinga Project 3-4
Self Configuration 3-6
GoingOnline 3-6
Group Definition Settings 3-6
Creating Programs, 3-8
Registering Program Execution 3-10
Transferring the Programs 3-13
Debugging Programs 3-16
Saving the Programs to Flash Memory 3-17

Executingthe Programs 3-18

3.1 Program Development Flow

Program Development Flow

In this chapter, motion program development procedures are described according to the following flow-
chart.

Install the MPE720 on a PC.
Assemble and wire all devices to be connected.

I System Configuration (page 3-3)
5 Installing MPE720 Version 7 (page 3-3)

A

Register the programs in the system to execute
them in high-speed scan.
IS Registering Program Execution (page 3-10)

A

Create a new project before starting program
development.
Create a project.

IZ Creating a Project (page 3-4)

N

Transfer the programs that you created to the
MP3000-series Machine Controller.

5 Transferring the Programs (page 3-13)

N

Perform self configuration and start the system.
5 Self Configuration (page 3-6)

A

Debug the programs that you created.
& Debugging Programs (page 3-16)

A

Set up communications between the Machine
Controller and the PC.

IS Going Online (page 3-6)

N

Save the debugged programs to flash memory.
5 Saving the Programs to Flash Memory (page 3-

17)
AVZ

Group axes together in axes groups based on the
machine configuration.

I Group Definition Settings (page 3-6)

A

Use the register list to execute the programs that
you created.
g Executing the Programs (page 3-18)

Write the programs in the Motion Editor.
5 Creating Programs (page 3-8)

A

Note: 1. The development procedure for sequence programs is basically the same as that for motion programs.

This section describes the development flow for motion programs.

2. The above flowchart is an example of the program development process. External devices must be set up to use programs

on the actual system.

3.2 Program Development Procedures

Preparation for Devices to be Connected

Program Development Procedures

This section describes the procedures to develop programs based on an example system.

Preparation for Devices to be Connected

This section describes an example system configuration for the devices connected to the Machine Control-
ler and the setup procedures that are required before starting the system.

System Configuration

The following figure shows a typical system configuration.

Power MECHATROLINK Cable
supply
SERVOPACK SERVOPACK
v v e
il il
ne [EJll MECHATROLINK Cable |5 [ET]i
© t o]

He0| ([© @0

o
o

udl®0
00
% |©0

s (@0

(=]

o
=]

(=]
oo

R
=] il - =

[=]u]
[=]u]
oo
oo
o0

(=)
=]

T

(==}
[=l=]

i
@R

[

a0l oIt =

Op=as
)

Machine Controller

Power
supply *

PP cable Motor cable Encoder cable

PC running the MPE720 Servomotor Servomotor

Note: In the system configuration example that is given above, the SERVOPACK station numbers are set to 1 and 2.

Installing MPE720 Version 7
Install MPE720 version 7 on a PC.

Refer to the following manual for the installation procedure.
(1 MP2000/MP3000 Series Machine Controller System Setup Manual (Manual No.: SIEP C880725 00)

H Program Development Flow

3-3

3.2 Program Development Procedures

Creating a Project

Creating a Project

A project file is the application file for MPE720 version 7. It includes the following information.

» System definitions

* Scan time definitions

* Module configuration definition
* Data tracing information

System Configuration

* Ladder programs (high-speed, low-speed, start, interrupt, and function programs)
* Motion programs (main programs, subprograms, and group definitions)

Program * Table data

* Variables (axis, I/0O, global, constant, and user-defined structure variables)

» Comments (I/O, global, and constant comments)

* M (data registers)

* D (internal registers)
* C (constant registers)
Registers * S (system registers)

* I (input registers)

* O (output registers)

* G (data registers)

The project file includes files for all of the above information but allows you to handle them as a single file
in Windows. The project file extension is .YMW7.

Opening a project file enables editing all of these files.

Only one project file can be opened in a single window with MPE720 version 7. The same project file can-
not be opened in more than one window with MPE720 version 7. If you try to open a project file that is
already open, the window that contains the open project file will move to the front.

. You can also use project files created in MPE720 version 6.0 (extension .YMV). In this case, the

extended features of the MP3000-series Machine Controllers cannot be used.
Important

Use the following procedure to create a new project.

3.2 Program Development Procedures

Creating a Project

1. Double-click the icon shown below on the computer desktop to start MPE720 version 7.

MPET20 “er?

2. Select New on the Start Tab Page.

M5 MPE?20 Ver.? - Sample - [Start]
n Ele Edit Wew Orine Compile Debug wWindow Help

U2 ES & BB 5 oo

Setup Transfer
ion

Systemn

=01l

-8x

Watiable

=1 T Histary

1 My tool

Contraller

Communications Setting
Connection
Disconnection
History
ETHERNET[1]1P192.168.1.1
laddermanual YMW7
CPU201_SMPL_E YMW7

28 8l

B33 Ladder Instru:tiwml\/aﬂame J

Watch 1

- ax

Varisble [Value [Comment [Pragram

ElLad.. | EMo... [Msys...| |Eioutout |Elwatch 1

Ready

CAP MUM SCRL

3. Specify the file name, file storage location, Machine Controller series, and model.

0)

Create New Project

®
@

®Specify the destination location in the Save in Box.

(@Enter the file name in the File name Box.

Select the applicable series in the Series Box.

@Select the applicable model in the Controller Box.

4. Click the Create Button.

Sdve in: | 19 SampleProject &) ? E* [l
3 MPSDDDSVC.\"MW?
My Recent
Documents
[
Deskiop
My Documents
59
My Computer -
File name: (| V| ! Create
‘TQ Save as type: | Project File [MW7) ~ | [Cancel]
Flaces
TypeSelect
Series (| MP3000 v))
Controller (| CPU-* VD
I

H Program Development Flow

3.2 Program Development Procedures

Self Configuration

Self Configuration

Set up the system by performing self configuration. Self configuration is used to automatically detect all
the Modules that are installed in the MP3000-series Machine Controller and all the slave devices that are
connected via the MECHATROLINK connector (such as Servo Drives), and then create the module con-
figuration definition files based on that information. This allows you to quickly and easily set up the sys-
tem. You can perform self configuration either when the power supply to the Machine Controller is turned
ON or by using the MPE720.

Refer to the following manual for details on self configuration.
(10 MP3000-series Basic Units User s Manual (Manual No.: SIEP C880725 10)
(0 MP3000 Series MP3300 Product Manual (Manual No.: SIEP C880725 21)

Going Online

Set the conditions for communications between the PC on which MPE720 version 7 is installed and the
Machine Controller.

Refer to the following manual for the procedure to set up communications.

[MP2000/MP3000 Series Machine Controller System Setup Manual (Manual No.: SIEP C880725 00)

Group Definition Settings

Before creating a motion program, group the axes together as required by the machine configuration.

1. Click the Motion Tab in the pane.
Motion Program is displayed in the tree hierarchy in the pane.

M5 MPE720 Ver 7 — Sample - MP3000 [CPU-201] - [Start] =10l x|
:FY fGle Edit Wiew Online Comple Debug Window Help - Ex
JRSEHR LB o AGGREFE SE ElD o ke ihas aBblETE /X ey 5]

OB BUZ ¥ X oo APt FYo D2 <s==#2>50FEL XS]

Wariable
2B 8y

1 @ Redister
i Commett List

By Histary #f| My tool

<o 16 |& |+ |8

Program

q prog i [System variable
-EXECUTOR

Scantime Module, fixis Setup Test Run - [A Variatle
- [P Drive Control Panel " muneclion ==l Confistihl G - [10 Wariable
Motion program is Glabal Variable
i : Constant Yariable
d ISplayed. E: E: User structure
Create New Open Ladder Create New Open Mation

Ladder Proeram Program Mation Proeram Program

=
Ii‘ m (&) Gt El5 L adder Instructinnl\.’ariah\e I

Watch 1 T LX

Variable | Yalue Camment Pragran

[ELadder Svstem C0utput | E=lwwatch 1

Ready CAP MUM SCRL 4

3.2 Program Development Procedures

Group Definition Settings

2. Right-click Motion Program in the pane, and then select Group Definition from the menu.

Bl History R

E copy Cri+C

B Ppaste Chrhs g_onnectio?_;’
o [Drive Cf ptrol Panel N g ==

Cormpile

Brint. .. Axiz Monitor

Refresh

II._

3. Set the detailed settings for the axes to use on the Axis Specification Tab Page and click the OK
Button.
Note: Refer to the following section for details on group definitions.
IZ 5.2 Group Definition Details (page 5-9)

[Group Definition

[~ Group Lisk

No. of Group 2

Group Mo.01 {Groupl)

Axis Specification |

Group Mame

jGrowpt | Contral Axis Mo IS vl
Mo. |Gircuit| vis Mo. | Logical Asis Mame
[i] 1 1Al

0z 1 2B

s CO—

< (a4 i > Cancel | Help |

A

Information The Group Definition Dialog Box also has a Vision Specification Tab Page.

L Al
Group Definition [

Group List
Group No.01 (Group1)
Mumber of Groups i -

Axis Definiti Wision Definition
Mumber of Gontral Units D]

Ma. | Circuit ‘ Unit Mame | Camera Mo, |Camer..
o1 1 WAl 1o
o2 P
0z 303

4 =%}

Group Mame

H Program Development Flow

3.2 Program Development Procedures

Creating Programs

Creating Programs

This section describes creating an example motion program under the following conditions in the Motion
Editor.
Conditions: Move the Servomotor 150,000 pulses and then stop.

If you perform this task with an actual motor, be sure to set the speed, acceleration time, and travel

distance to appropriate values.
Note

1. Right-click Main Program in the pane, and then select New from the menu.

Frograrm
E||I|:| MP3000 [CPU-201]
=1 2 Mation program

[l izcao

] & Paste Chrl+y
i o & Delete Delete

Compile Bcis

Brint...

2. Click the OK Button.

g
— Prograrn Mo, MPMOO1
-
'
Program Mame |
Configuration [= File privileee 01
Dekail definition Read 1]
Wirite 1
D register 32
" Cancel << Detail
——— 4
3. Enter the motion program.
s v | <
R e) RN |
LINE EBLOCKE
1 "INCREMENTAL MODE"
2 INC;
3 "POSITIONING"
4 MOW [A1]150000 [B1]150000;
5
6 EWD;
KiN| o

| |
g/ Seti(Ell [F4) ClosiES)

3-8

3.2 Program Development Procedures

Creating Programs

4. Select Compile — Compile from the menu bar to compile the program.
E File Edit Wiew Online Program Debug Window Help
DJE2SHEB & BB 3 «d cone e O& EED o re huo ad
DT E | HUS § K| 00 Cmidlbogans |36 5o cx=22>8BimE]iX

When the compilation is finished, the motion program will be saved automatically.

@ If an error was displayed in the Error List Dialog Box during compilation, the motion program will not

be saved.
Important

H Program Development Flow

3-9

3.2 Program Development Procedures

Registering Program Execution

Registering Program Execution

You can call the motion programs that you have created either by using MSEE instructions in ladder pro-
grams or by registering the motion programs in the M-EXECUTOR program execution definitions. Refer
to the following section for details on how to register a program for execution.

I Program Execution Registration Methods (page 1-22)

Calling Motion Programs from a Ladder Program

1. Click the Ladder Tab in the pane.
Ladder Program is displayed in the pane.

% MPEZ20 Ver.? — Sample — MP3000 [GPU-201] — [Start] P[] 3
:FY Ale Edit View Online Comple Debug window Help - 8%
RS dHe H oo hi @R SE BE:i% o ko D,
AT EUE § % eoo Bl i£To S <=—+2> 8]]

Setup Programming Monitor Transfer Utility

T Histary # My toal

[Program
= (]| MP3000 [CPU-201] &) —
- i+ [High-spesd 8 - System Variable
5 Low-speed Gonnection /| System Monitor Soantime Module fixis Setup Tes) Axis Variable
2 start - N Setting Contiguration Wizard 5 10 Variatle
R Ladder program is bl vt
[Function . Constartt Yariable
displayed.] E = g user struture
b2
Axis Monitor Alarm Monitor Create Mew Open Ladder Create Mew Open
Ladder Program Proaram Motian Program Pro
oy oy = ™ B e
« | » I"_—",QLa\jdEr Instruction l\/anab\e ‘
Output - ax
——— Start compiling : User structure ——
-~ Start compiling : MPMDDT -—-----=
Error 0 : Warning 0
[ElLacder IMDUUH l[[[lSvstem ‘ “’houtuut lWatch 1 J
Ready CAP MUM SCRL i

2. Right-click High-speed in the pane, and then select New from the menu.

By = By Histor
Prograrmn
=I[[]] MP3000 [cPU-201]
=] [Ladder program
S Hi)
(=0) e
car
MNew CP Ladder
[=] Inkerrupt
[E&] Function & cut Ctrl+X
ED Copy Ctrl+C
B paste Chri+ g
Cormpile
|
Enable Main Program
Dizable Main Program
Corwersion of CP ladder
Import bW
Export * _'.,{.l
Brint...
|

3-10

3.2 Program Development Procedures

3. Click the OK Button.

4. Create the following ladder program. After you finish entering the ladder program, compile it by

1% Create Mew Proeram

I@‘ Praogram Mo,

Prograrm Mame

—

Registering Program Execution

IMain Programn

Configuration
Detail definition

= File privilege

0.1

Read

lite

[Use register number

3200

D rezister

a2

‘Work register number

register

<< Detail |

A

pressing the F4 key on the keyboard or clicking the [[#* 1 Icon on the toolbar.

Information

» Make sure that bit 0 (Machine Controller Operation Ready) in the IWOCOO00 monitor parame-

. [B[I]U[I] 00 UBS{[_]E]UO
L servo on com servo on
mand
[BOOOO1 WBOOODO1 DBOOOOT0
I T 1. O
w2 start g:ommn --- start
[BOOD0OZ DBOCOOT1
[2 N I O
YO bl conmand Hiod
. [B[I]U[I] 03 0BO Q_QU 12
w abort cnjjamman abort
[B[I]U[Ij 04 DBO %O 15
e alam clear alam cear
commandd
DBOOOOOO MBO0000T DBO0004Z
|} T O
1 in run --- run finished
i EE == . |
B | DF[0R000042--t rue; |
— o —'I END_IF
E~|[WPrceran No.|[ATData
— 4[e 00001 | DADDOOO
17718 (Bl)

ter is ON before turning ON the MB000000 (Servo ON command).

* If the Machine Controller Operation Ready bit is OFF, the Servo ON command cannot be

accepted.

H Program Development Flow

3-11

3.2 Program Development Procedures

Registering Program Execution

Calling a Motion Program with the M-EXECUTOR

Use the following procedure to register a program in the M-EXECUTOR program execution definitions.

However, be sure to transfer the program before performing this procedure.

1. Click the Assign Task (E) Icon in the Motion Editor Pane of the completed program.

Start | H: Main Program,” MPMOOL |
(M %, A g version7.oo 1 B(E): ¥4 BuE &M FEE ER
LINE EBLOCK
1 . "INCREMENTAL MODE"
2 ooINC;
3 . "POSITIONING"
4 1 MOV [A1]150000 [E1]150000;
5
6 2 END;

The Task Allocation Dialog Box will be displayed.

2. Click the Set Button to register the program.
x|

Task Allocation Mo,

Task Type IMotion program j
Program Specification IDirect j
Program |MPMDDI

Allocation Register

Allocate register

Disabled allocation
B Control register allocate
b [Program Mo,

[[] status

[[] Contral signal

[] Owerride(1=0.01%)

Set Cancel

3-12

3.2 Program Development Procedures

Transferring the Programs

Transferring the Programs

Use the following procedure to transfer motion programs to the MP3000-series Machine Controller.
This procedure is not necessary if you created the motion program online.

1. Click Communications Setting on the Start Tab Page.

1% MPE720 Ver.7 - Sample - MP3000 [GPU-201] - [Start]
ﬂ Fle Edt View Onine Comple Debug window Help

DESE® YRR A o ARARE G Bk o ke nnuD a
oo ML AHFEO D <S=%z>50EE]

Mation

BR:ix
ISR

o

-&x

EHX mu el

o)

Frogram
=[] MP3000 [CPU-201]
=1 23 Matian pragram
<E Group Definition
=] FE Main pragram

MPMOOL
Sub program
1[5y Sequence program
& Main program
Sub program
M-EXECUTCR,
Drive Contral Panel

laddermanual. YMWZ
CPUZ01_SMPL_E YMW7

Output

Communications Setting

Connection

Disconnection

Error 0': Warning 0

[ElLadder |[Z]Motion |[TSystem 0utput |EElwatch 1

Ready

== ———————-=———— Start compiling : H: Main Program —————--————-——-

CAP WUM SCRL

Setting Dialog Box. Click the Connection Button.

M} Communications Setting

Set the communication setting

Commurication peft

[coveamn D

Select the desired communications port in the Communication Port Box on the Communications

x|

Setting

IP Setting

Cancel |

Target Paddress [122 . 168 . 1

1 Delete

Opkion CPU

Search Controller

I 0! Main CPU {Basic CPU Module) j

Search

Controller ‘ Communication Info,

‘ Maodule name ‘

™ Use the router

H Program Development Flow

3-13

3-14

3.2 Program Development Procedures

Transferring the Programs

3. Select Transfer — Write to Machine Controller from the Launcher.

M5 MPE720 Ver.7 - Sample - MP3000 [CPU-201] - [Start] -[a x|

Fle Edit View Orine Comple Debug Window Help

- 8%
SEHD 4BHE A o HRERR O Elinolrn bt aBliTE g wh 1D

TE BEUE ¥ % oo MRt fIo D& <=s=22=>ELEA1 XS]
(I online | cPU-201 C:¥zIPD1¥for_manual¥MP3000.YMWT ETHERNET[1] IP102.168.1.1 cPU-RuN =[]

Monitor
Read from

Transfer

IMation
)

£y History

2 e lec = [« [s
Cornection /- System Monitor Scantime Maodule fiziz Setup Test Run
Disconnection Setting Configuration ‘Wfizar

== - -
o 5 5

Hziz Manitor filarm Monitar Create New Open Ladder Create New Cpen Motion
Ladder Program Program Mation Program Program
ke,

£ a o) T

=i My tool

Program
P3000 [CPU-201]
Motion program
Sequence program
M-EXECLITOR,

i Drive Control Panel

I@Laﬂder ant\nn lD]]Eystem I I@Outuut lWatch 1 J

CAP NUM SCRL ¢

4. Click the Individual Button, then select only the Program Check Box. Then, click the Start But-
ton.

Transfer Program — Write into Controller

Source Project File : CPIU-201 {MP3000.YIMW7)

[0%

@y Batch

Transfer file type

[[]_system Confiquration

Ladder program
otion program
EqUENCE Program

| Reqister
zer Structure
[Comment ‘Watch

Transfer option
Wiite the parameter inta the SERVORAGE, A L4

[] save to flash after transferring to the controller,
Options | Close I
4

Note: 1. When an individual transfer is selected, the same file in the Machine Controller will be overwritten with the
selected project file data.
2. When a batch transfer is selected, the Machine Controller’s RAM will be cleared before the transfer, and all
project file data will be written in the RAM.

5. Click the CPU STOP Button.
x

- Controller i running.
\l) There iz a pozzibility to cauze the following problems when tranzfer during RLIRN.

1. There iz a poszibility that the application miscaloulation.
2 Tt will take mare time while to complete transfer.

Do you want to continue transfer?

Yes

' GCancel |

The transfer will start.

3.2 Program Development Procedures

6. Click the Yes Button in the MPE720 Ver. 7 Dialog Box.

MPETZ0 ¥er. ¥

-
\!‘) RUN the contraller?

]

The Machine Controller switches to RUN Mode.

Transferring the Programs

H Program Development Flow

3-15

3.2 Program Development Procedures

Debugging Programs

Debugging Programs

Debug the programs that you created.

1. Click the Register List 1 Tab.
The register list is displayed.

Specify MB000000 for the register. Turn ON MB000000 as shown below to turn ON the power to the Ser-

vomotor.

R

Register

MEODDDOO

MBOOO010 |OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
MBOO0020 |OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
MBOO0030 |OFF OFF OFF OFF OFF OFF OFF

OFF__OFE_(FF _ OFF
lmOutput lWatch 1 lTransfer (ERegister List D

OFF
OFF
OFF

OFF OFF
OFF OFF
OFF OFF

OFF
OFF
OFF

OFF
OFF
OFF

Note: When using the M-EXECUTOR to register the programs for execution, use the setting parameter to turn ON the

power to the Servomotor.

2. Clickthe ¥ Icon.
. Start”MPMODL |
% gElieern Fe !Bl al@4 EuE XA SEE R
LINE BLOCE END;

1 "INCREMENTAL MODE"
2 THC;
3 : '"POSITIONING"
4 1 MOV [A1]150000 [BE1]150000;
5
3 2 END:

3. Operation changes to Debug Mode.
- stat,/MPMO01
@ % el CR ol BR(3 L BNE KPR FIEERE
LINE BLOCK WOY [Axisl]Position [Axis2]1Position ...;

1 | "INCREMENTAL MODE"

=2 2 0 TER
3 "POSITIONING"
4 1 MOW [A1]150000 [B1]150000;
5
g 2 END;

q |

FJebug Mode 33> Suspend

Set/ Rele|F3) Close

4. Click the B Icon to execute the program line by line, and check the operation of the program.
_ Start,” MPMOD1
% onaBieovn Heeflh 2l BEE®N EOEERE
LINE BLOCK MOV [AxislJPosition [Axis2]Position ...;
i "INCREMEMTAL MODE"
TN

"POSITIONING"
MOV [A1]150000 [B1]150000;

[T RSP SV

L I

Debug Mode »>»» Suspend

Setf Rele(F3) Close

| |

il il

5. Step through the program until the END instruction. When debugging is completed, turn OFF the

power to the Servomotor.

3.2 Program Development Procedures

Saving the Programs to Flash Memory

Saving the Programs to Flash Memory

You can save the Machine Controller RAM data to the flash memory of the Machine Controller.

1. Select Transfer — Save to Flash Memory.

M5 MPE720 Ver.7 - Sample - MP3000 [GPU-201] - [Start] -0l x|
:FY Ele Edit Wiew Onine Comple Debug Window Help _&x

DESEB LB H o MEARRR 9@ Bl o ke Hnud aBli=E X e 1]
JETTE BEUE Y X oo MR HETO DG <S=FZ>4

ETHERNET[1] IP192.11

Setup
Wit it

Motion
By B History 5 My tool

@ |e |6 &= |« |®

Connection /- System Monitor Scantime Module Axis Setup Test Run
Disconnection Setting Gonfiguration lizar

Pragram
I ([[JMP3000 [CPU-201]
+ B Motion program
- & Group Defirition
%] m

£

ub program

\QUENCE program — —
M-EXECUTOR, u I@‘ I@‘ & &
E Drive Control Panel
Axis Monitor Alarm Monitor Greate New Cpen Ladder Greate New Open Mation
Ladder Proeram Program Mation Proeram Program

=== Start compiling . H . Main Program ————————————
Errar 0 Waming 0

[ElLadder |[E]Mation |[[Isystern E0utput | Elwatch 1 |42 Transfer | [ERegister List 1

CAP NUM SCRL 4|

2. Click the Start Button.

Writing target controller ; CPU-201 (Ethernet[1] IP192.168.1.1)

This may take some time, depending on the data to be saved.

Options | Close I

v

3. Click the No Button.

MPE?20 Ver.? - Sample x|

\i_) The controller iz running, 2o it may take more time to zave to flash,

Should the controller continue to run during zave to flash?
Yes |

The MPE270 begins saving the data to flash memory.

4. Click the Yes Button.

MPE720 Yer.7 =l

-
4) RN the controller?

The Machine Controller will switch to RUN Mode.

H Program Development Flow

3-17

3.2 Program Development Procedures

Executing the Programs

Executing the Programs

Use the following procedure to execute the programs that you created on the actual system. Turn ON the
Request for Start of Program Operation Control Signal to execute the motion program.

1. Click the Register List 1 Tab.
The register list is displayed.
Specify MB000000 for the register. Turn ON MBO000000 as shown below to turn ON the power to the Ser-

vomotor.

Register [(IB000000) |6
1 2 (3 |4 |5 |6 |z |8 |9 |a B |t b |E |F

ME000000
MBO0OOO10D |OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
MBO0O00Z0 |OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
MBO0O0030 |OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
MBO0OOO40 |OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
MBO0OOOS0 |OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
MRy NFF _NFFE_NFF _NFF _NFF_NFE_NFF_NFF_NFF_NFF NFF_OFF NFF OFF NFF NFF
|@ Register List ||::|Output |Watch 1 |Transfer |

2. Turn ON MBO000001 in the register list to execute the MPM00O1 motion program.

Turn ON MB00000O to turn ON
the power to the Servomotor.

sanple ladder prozram for calling motion progran

3-18

WBO00000 0B80000
—1 | -
il L) MPMO001 starts execution when #175erva N
DB000010 turns ON. 0561500
B17Servo ON
[BOODOT DBOODO40 i
. || ¥ \
33 start - start
. IB?OEOZ DBO000T]
6/0 hold hold
. IB?O?OS DBO0001Z
i) abort ahort
IBE]OPOA DBO00015
/10 UL
reset reset
cal | motion
B |[#Progran He[A]Data
| nsee oooo7 (0AC0E00
[E000000 DBO0O0 A1 [BO00042
P T
13/14 run - mnlinndstnn
Pel
| EE : ;
To/17 ' DBOUUOZ true \ First MSEE Work Register
here ig the treatment af 1
% DWO00000 Status Flags
— DW00001 Control Signals <q——
DWO00002 | Interpolation Override
DWO00003 | System Work Number

Registers

This chapter describes in detail the registers that you can use in
both motion programs and in sequence programs.

Typesof Registers

Global Registers i 4-5
LocalRegisters 4-6
DataTypeso e 4-8
System Registers (S Registers) 4-11
Data Registers (M Registers) 4-12
Data Registers (GRegisters) 4-13
Input Registers (I Registers) 4-14
Output Registers (O Registers) 4-15
CRegisters 4-16
DRegisters 4-17

EEN UsingIndices iandj ...l 418
EEN Using Array Registers 420

4-2

4.1 Registers

Types of Registers

Registers

This section describes registers.

In motion programs and sequence programs, registers are used in place of numeric values. When registers

are used in actual operations, the numeric values that are stored in the register area are retrieved.

Types of Registers

There are 11 different types of registers. The types of registers that can be used depend on the program.

The seven types of registers shown in the following table (S, M, G, I, O, C, and D) can be used in motion
programs and sequence programs.

S, M, G, I, O, and C registers are global registers that can be used in any program. D registers are local reg-
isters that are retained on an individual program basis. D registers are local registers that are retained on an
individual drawing basis. They are unique within each drawing, and therefore the value of a D register in

one drawing cannot be accessed from another drawing.

Types of Registers
Name Designation Usable Range Contents Features
Method
SBnnnnnh, These registers are prepared by the
SWnnnnn, system. They report the status of the
. Machine Controll d other inf -
System registers SLnnnnn, SW00000 to Machine Controller and other informa
(S registers) SQnnnn, SW65534 tion.
& SFnnnnn, The system clears the registers from
SDnnnnn, SW00000 to SW00049 to 0 at startup.
SAnnnnn They have a battery backup.
MBnnnnnnnh,
MWnnnnnnn,
. MLnnnnnnn, MWO0000000 These registers are used as interfaces
Data registers b
(M registers) MQnnnnnnn, to etween programs.
MFnnnnnnn, MW1048575 They have a battery backup.
MDnnnnnnn,
MAnnnnnnn
GBnnnnnnnh, Shared by
GWnnnnnnn, all
' GLnnnnnnn, GW0000000 to These registers are used as interfaces programs.
G registers GQnnnnnnn, GW2097151 between programs.
GFnnnnnnn, They do not have a battery backup.
GDnnnnnnn,
GAnnnnnnn,
TW00000 to
IWO7FFF, . .
IBhhhhhh IW10000 to These registers are used for input data.
Input registers ILhbhhh, These registers store the motion moni-
. IQhhhhh,
(I registers) IFhhhhh IW08000 to tor parameters.
Ithhhh’, IWOFFFF These registers are used for motion
IAhhhhh control.
TW20000 to These registers are used for CPU inter-
IW23FFF face input data.

Continued on next page.

4.1 Registers

Types of Registers

Types of Registers

Continued from previous page.

Designation

Type Name Method Usable Range Contents Features
OW00000 to
OWO7FFF, These registers are used for output
OBhhhhhh, OW10000to | data.
OWhhhhh, OW17FFF
Output registers OLhhhhh, These registers store the motion setting
O . OQhhhhh,
(O registers) OWO08000 to parameters.
OFhhhhh, OWOFFFF Th ist d fi ti
ODhhhhh, etse lregls ers are used for motion
OAhhhhh, contro’. Shared by
OW20000 to | These registers are used for CPU inter- all
OW23FFF face output data. programs.
CBnnnnnh,
CWnnnnn,
Th i i -
Constant regis- CLnnnnn, CW00000 to ese registers can be read in pro
C ters (C registers) CQnnnnn, CW16383 grams but they cannot be written.
& CFnnnnn, The values are set from the MPE720.
CDnnnnn,
CAnnnnn
DBnnnnnh,
DWnnnnn, These registers can be used for general
DLnnnnn, -
D | D reisters DQnnnnn DW00000 to purposes within a program. Program-
& ’ DW16383 By default, 32 words are reserved for specific
DFnnnnn, h drawi
DDnnnnn, each drawing.
DAnnnnn

Continued on next page.

E Registers

4-3

4-4

4.1 Registers

Types of Registers
Types of Registers
Continued from previous page.
Type Name Del\jgtrr]]ztcljon Usable Range Contents Features
#Bnnnnnh,
#Wnnnnn,
. #Lnnnnn, 4W00000 to These registers can only be ref.ere.nced.
| #registers #Qnnnnn, They can be referenced only within the
#W16383 .
#Fnnnnn, local drawing.
#Dnnnnn,
#Annnnn
These registers are used for inputs to
functions.
* Bit inputs: XB000000 to XB0O00O0OOF
XBnnnnnh, * Integer inputs: XW00001 to
XWnnnnn, XW00016
X Function input XLnnnnn, XWO00000 to * Double-length integers: XL00001 to
registers XQnnnnn, XWO00016 XL00015
XFnnnnn, * Quadruple-length integers: XQ00001
XDnnnnn to XQ00013
* Real numbers: XF00001 to XF00015
* Double-precision real numbers:
XD00001 to XD00013 Function-
These registers are used for outputs to | specific
functions.
* Bit outputs: YB000000 to
YBO0OOOOF
YBnnnnnh, * Integer outputs: YW00001 to
. Y Wnnnnn, YW00016
Y Fugctlon output | YLnnnnn, YW00000 to * Double-length integers: YL000O1 to
registers YQnnnnn, YW000016
YFnnnnn, YLO00015 .
YDnnnnn * Quadruple-length integers: YQ00001
to YQO00013
* Real numbers: YF00001 to YF00015
* Double-precision real numbers:
YDO00001 to YD00013
ZBnnnnnh,
ZWnnnnn, These are internal registers that are
7 Function inter- | ZLnnnnn, ZW00000 to unique within each function.
nal registers ZQnnnnn, ZW00016 These registers are used for internal
ZFnnnnn, processing in functions.
ZDnnnnn

Note: n: decimal digit, h: hexadecimal digit

@

Important

registers cannot be used in motion programs or sequence programs. If you attempt to use a # register
in either of these types of programs, a syntax error will occur when the program is saved.

4.1 Registers

Global Registers

Global Registers

Global registers are shared by ladder programs, user functions, motion programs, and sequence programs.

This allows the operation results of a ladder program to be used by other user functions, motion programs,
or sequence programs. Memory space for global registers is reserved by the system for each register type.

Ladder — User e Motion o
programs - functions - programs/sequence -
| | programs |
I A A
I I I
Y Y Y
Global Registers
S registers M registers G registers | registers O registers C registers
65,535 words 1,048,576 words 2,097,152 words 65,536 words 65,536 words 16,384 words
Input data + Output data +
Monitor Setting
parameters + parameters +
CPU interface CPU interface
inputs outputs

E Registers

4.1 Registers

Local Registers

Local Registers

Local registers can be used within each specific drawing. These registers cannot be shared with other
drawings. Local registers are stored in the program memory for each drawing.

Motion >
program
(MPMO001) Subprogram
(MPS002)
MSEE MPS002;
A A
Y Y
D registers D registers
(DW00000 to DW00031) (DW00000 to DW00031)
A A
/\ J\

These drawings are different, so the D registers
cannot be shared between them.

Note: With the default settings, 32 words of D registers are provided for each drawing.

The scope of registers that is used in each drawing is specified in the Program Property Dialog Box.
Up to 16,384 words of local registers can be used for one drawing.

Use the following procedure to extend the range of D registers.

1. Right-click MPMO001 in the Motion Pane, and then select Property from the menu.

Mation rox Start
B £y Histary

Program

=[][][cPu-za1]
(=l & Motion program
Connect
Dizconne

=& Group Definition
[Mai

T CHrl+¥
zrerol P AL Copy Ctri+C

[Paste Ctri+
Delete Delete
Rename
Cornpile

Set the Password
Cancel the Password

Property ’

Brint. ..

2. Change the range for D registers from 32 to 100 in the Program Property Dialog Box.

I Program Property

:’ Prograrm Mo, MPMO01

L2
Program Mame
Configuration = File privilege 01
Detail definition Read 1]

Madified histaory Wirite
D regizter

4.1 Registers

3. Click the OK Button.

ﬂ; Proeram Property

Lt

Prograrn Marne |

Progranm Mo, MPMOO1

Configuration
Ditail definition
Modified history

o

= File privilegs
Rzad
Wiite

[register

01
1]
1
100

This concludes the procedure to extend the range of D registers.

Local Registers

E Registers

4-7

4-8

4.1 Registers

Data Types

Data Types

There are various data types that you can use depending on the purpose of the application: bit, integer,
double-length integer, quadruple-length integer, real number, and double-length real number.

Symbol | Data Type Range of Values Data Size Description
. Used in relay circuits and to deter-
B | Bi 1(ON) or 0 (OFF) - mine ON/OFF status.
W | nteger | 327681032767 Lword | values n parentheses on th et ar
& (8000 to 7FFF hex) np .
for logical operations.
L | Double-length | -2,147.483,648 t0 2,147483,647 | , . g;i‘isf‘l’; “‘;‘;irt‘hce‘s’f:gafgzsi;:’zm
integer (80000000 to 7FFFFFFF hex) np .
for logical operations.
Quadruple- 9,223,372,036,854,775,808 to Used for numeric operations. The
Q length inte- 9,223,372,036,854,775,807 4 words values in parentheses on the left are
1 (8000000000000000 to . .
ger 7FFFFEFFFFFFFFEF hex) for logical operations.
Used for advanced numeric opera-
F Real number | + (1.175E® to 3.402E*) or 0 2 words tions.2
ions.
Double-length Used for advanced numeric opera-
D glq +(2.225E3% t0 1.798E"%) or 0 | 4 words . w P
real number tions.
A Address 010 2,097,152 _ psed only as pointers for address-

ing.

*1. These data types cannot be used for indirect designation of motion programs.
*2. Conforms to IEEE754 standards.

@

The MP3000-series Machine Controller does not have separate registers for each data type. As shown
in the following figure, the same address will access the same register even if the data type is different.
For example, MB00001003, a bit address, and the MW0000100, an integer address, have different data

Important - tvnes, but they both access the same register, MW0000100.

4.1 Registers

Data Types

— Data Types and Register Designations

Integer data

One word is allocated for each register address.

l { FEDCBAG9SB

An extra digit that specifies the bit (3) is appended
to the end of the register address (0000100).

76 5413210
IIII T

[MB00001003] (= Bit data

A
ddress data [MW0000100]

l L

[ML0000100]
[MF0000100]

[MAO000101] —mMwW0000101]

[MWO0000102]

R [ML0000102]

[MW0000103]

[MF0000102]

[MB0000103B]

If MAO000101 is specified as a pointer, it addresses a
continuous data area with the specified register
address (0000101) as the starting address. This data
area can be used with all data types in internal
processing for functions.

{_ Bit data Double-length integer"’pr

|

real number data type *

The addressed register (0000102) and the following
register (0000103) are combined as a 2-word area.
Therefore, the register addresses are specified at
intervals of 2.

Pointer Designation
@ When an address is passed to a function as a parameter, this is referred to as pointer designation. When
pointer designation is used, the continuous data area starting from the address of the specified register

Terms

number can be used in internal processing for functions with all data types.

E Registers

4.1 Registers

Data Types

@

Important

Precautions to Consider when Performing Register Operations
The following examples show what occurs if data is stored in a register of a different data type.
* Format
Substitute (=) is used for numeric operation instructions.
The destination register is written on the left, and the operation is written on the right.
MW00100 = MW00101 + MWO00102;
* Register Operations
Storing Real Number Data in an Integer Register
MWO00100 =MF00200; The real number data is converted to integer data and stored in the destination register,
(00001)(1.234)
There may be rounding error due to storing a real number in an integer register.
Whether numbers are rounded or truncated when converting a real number to an integer can be set in
the Program Properties Dialog Box.
MW00100 = MF00200 + MF00202;
(0124)(123.48) (0.02) The result of the operation may depend on the value of the register.
(0123)(123.49) (0.01)
Storing Real Number Data in a Double-length Integer Register
ML00100 =MF00200; The real number data is converted to integer data and stored in the destination register,
(65432)(65432.1)
Storing Double-length Integer Data in an Integer Register
MWO00100 = ML00200; The lower 16 bits of double-length integer data are stored in the destination register as
they are.
(-00001)(65535)
Storing Integer Data in a Double-length Integer Register
ML00100 =MWO00200; The integer data is converted to double-length integer data and stored in the destination
register.
(0001234)(1234)
» Examples of Syntax Errors
Storing Integer Data in a Bit Register
MB000100 = 123;= Syntax error
MBO000100 = MW00100;= Syntax error

4.2 Using Registers

System Registers (S Registers)

Using Registers

This section describes how to use the different types of registers.

System Registers (S Registers)

System registers (S registers) are provided by the MP3000-series Machine Controller system. They can be
used to read system error information, the current operating status, and other information.

These registers can be used in any motion program or sequence program.

Details

S registers are specified as follows:

SB000000 to SB65534F
SW00000 to SW65534
SL00000 to SL65532
SQ00000 to SQ65528
SF00000 to SF65532
SD00000 to SD65528

The register number is specified as a decimal number. However, when specifying a bit, the lowest digit of
the register number is specified in hexadecimal.

Programming Examples

+ Bit Designation
OB00010 = SB000402 | SB000403;

* Integer Designation
MWO00100 = SW00041;

* Double-length Integer Designation
ML00100 = SL00062;

S

& The system registers (S) are read-only. If they are written to, system operations will be unpredictable.
Note

E Registers

4-11

4.2 Using Registers

Data Registers (M Registers)

Data Registers (M Registers)

M registers are general-purpose registers that can be used in ladder programs, user functions, motion pro-
grams, and sequence programs.

They are global registers that can be used to interface between motion programs, sequence programs, and
ladder programs.

Details

M registers are specified as follows:
MBO00000000 to MB1048575F
MWO0000000 to MW1048575
MLO0000000 to ML1048574
MQO0000000 to MQ1048572
MF0000000 to MF1048574
MD0000000 to MD1048572

M registers can be used in operations to store the operation results, or specified to give positioning coordi-
nate values or speeds. The register number is specified as a decimal number.

Programming Examples

€ Specifying the Position and Speed in Axis Movement Instructions with Reg-

isters
In the following programming example, the reference unit is mm and the number of digits below the decimal point is set to 3.
MLO0000100 = 100000; — 100.000 mm
ML0000102 =200000; — 200.000 mm
MLO0000104 = 300000; — 300.000 mm
MLO0000106 = 500000; — 500.000 mm/min

MV [X]ML0000100 [Y]ML0000102 [Z]ML0000104 FML0000106;

€ Using Registers in Operations

+ Bit Designation
MBO00001001 = IB0000100 & IB0000201;

* Integer Designation
MW0000101 = (MWO0000101 | MW0000102) & FFOCH,;

* Double-length Integer Designation
ML0000200 = (ML0000202 * ML0000204) / ML0000206) * 3;

* Real Number Designation
MF0000200 = (MF0000202 = MF0000204) / MF0000206) * 3.14;

x When the travel distance coordinate values or speeds are specified in registers in the following motion
@ language instructions, double-length integer data must be used.
MOV, MVS, MCW/MCC, ZRN, SKP, MVT, EXM, POS, ACC, DCC, SCC, IAC, IDC, IFP, FMX,
INP, IDH

Important

4.2 Using Registers

Data Registers (G Registers)

Data Registers (G Registers)

Data registers (G registers) are general-purpose registers that can be used in ladder programs, user func-
tions, motion programs, and sequence programs.

They are global registers that can be used in any motion program or sequence program, but are not backed
up by battery.

Details

G registers are specified as follows:

GB00000000 to GB2097151F
GW0000000 to GW2097151
GL0000000 to GL2097150
GQO0000000 to GQ2097148
GF0000000 to GF2097150
GDO0000000 to GD2097148

The register number is specified as a decimal number. However, when specifying a bit, the lowest digit of
the register number is specified in hexadecimal.

Programming Examples

The following example shows how to use these registers in operations.

+ Bit Designation
GB00001001 =TB0000100 & IB0000201;

* Integer Designation
GWO0000101 = (GW0000101 | GW0000102) & FFOCH;

* Double-length Integer Designation
GL0000200 = ((GL0000202 * GL0000204) / GL0000206) * 3;

» Real Number Designation
GF0000200 = ((GF0000202 * GF0000204) / GF0000206) * 3.14;

x When the travel distance coordinate values or speeds are specified in registers in the following motion
@ language instructions, double-length integer data must be used.
MOV, MVS, MCW/MCC, ZRN, SKP, MVT, EXM, POS, ACC, DCC, SCC, IAC, IDC, IFP, FMX,
INP, IDH

Important

E Registers

4-13

4-14

4.2 Using Registers

Input Registers (I Registers)

Input Registers (I Registers)

These registers are used for input data and for monitor parameters. Monitor parameters are read-only. If
they are written to, operations will be unpredictable.

Details

I registers are specified as follows:

IB000000 to IB23FFFF

IW00000 to IWO7FFF, IW10000 to IW17FFF --- Input data
IW08000 to IWOFFFF --- Monitor parameter

IW20000 to IW23FFF --- CPU interface input data
1L00000 to IL23FFF

1Q00000 to IQ23FFC

IF00000 to IF23FFE

ID00000 to ID23FFC

The register addresses of input data depend on the addresses set in the Module configuration definition.

The register number is specified as a hexadecimal number.

Programming Examples

This example shows how to read input data and monitor parameters.

+ Bit Designation
MBO00001000 = IB0000010 & IB0000105;

* Integer Designation
MW0000100 = TW08008;

* Double-length Integer Designation
ML0000100 = IL08004;

4.2 Using Registers

Output Registers (O Registers)

Output Registers (O Registers)

These registers are used for output data and for setting parameters.

Details

O registers are specified as follows:

0OB000000 to OB23FFFF

OWO00000 to OWO7FFF, OW10000 to OW17FFF --- Output data
OWO08000 to OWOFFEFF --- Setting parameters

OW20000 to OW23FFF --- CPU interface output data

OL00000 to OL23FFF

0Q00000 to OQ23FFC

OF00000 to OF23FFE

0OD00000 to OD23FFC

The register addresses of output data depend on the addresses set in the Module configuration definition.

The register number is specified as a hexadecimal number.

Programming Example

This example writes output data and setting parameters.

+ Bit Designation
0OB01000 = MB00001000 & IB0000100;

* Integer Designation
OW08008 = MW0000100;

* Double-length Integer Designation
OL08010 = ML0000100+ML0000200;

E Registers

4-15

4-16

4.2 Using Registers

C Registers

C Registers

C registers can be referenced only from a program. They are read-only.

Details

C registers are specified as follows:

CB000000 to CB16383F
CWO00000 to CW16383
CL00000 to CL16382
CQ00000 to CQ16380
CF00000 to CF16382
CD00000 to CF16380

C registers cannot be written to from a program.

The register number is specified as a decimal number.

Programming Example

The following example shows how to use these registers in operations.
* Bit Designation
MBO00001000 = CB001001;

* Integer Designation
MWO0000100 = CW00100;

* Double-length Integer Designation
ML0000100 = CL00100;

» Quadruple-length Integer Designation
MQO0000100 = CQ00100;

* Real Number Designation
MF0000100 = CF00100;

* Double-length Real Number Designation
MD0000100 = CD00100;

4.2 Using Registers

D Registers

D Registers

These registers are unique, internal registers for motion programs and sequence programs. They are
unique within each program.

Details

D registers are specified as follows:

DB000000 to DB16383F

DWO00000 to DW16383 (maximum value)
DL00000 to DL.16382

DQ00000 to DQ16380

DF00000 to DF16382

DD00000 to DD16380

The above registers can be used in operations to store operation results, or specified to give positioning
coordinate values or speeds. The register number is specified as a decimal number. However, when speci-
fying a bit, the lowest digit of the register number is specified in hexadecimal. Specify the size in the pro-
gram configuration definitions (i.e., the Program Properties Dialog Box). The default size is 32 words.

Programming Example

€ Specifying the Position and Speed in Axis Movement Instructions with Reg-
isters

In the following example, the reference unit is mm and the number of digits below the decimal point is set
to 3.

DL00100 = 100000; — 100.000 mm
DL00102 =200000; — 200.000 mm
DL00104 = 300000; — 300.000 mm
DL00106 = 500000; — 500.000 mm/min

MVS [A1]DL00100 [B1]DL00102 [C1]DL00104 FDL00106;

€ Using Registers in Operations

+ Bit Designation
DB001000 =1B0001001 & MB00000101;

* Integer Designation
DWO00102 = (CW00103 | DW00104) & DW00105;

* Double-length Integer Designation
DL00106 = (DL00108 = ML0000011) / ML0000200;

* Real Number Designation
DF00200 = (MF0000202 * DF00202) * 3.14;

language instructions, double-length integer data must be used.
MOV, MVS, MCW/MCC, ZRN, SKP, MVT, EXM, POS, ACC, DCC, SCC, IAC, IDC, IFP, FMX,
INP, IDH

When the travel distance coordinate values or speeds are specified in registers in the following motion

Important

E Registers

4-17

4.3 Using Indices i and j

Using Indices i and j

There are two special registers, i and j, that are used to modify relay and register addresses. The functions
of'i and j are identical. They are used to handle register addresses like variables.

We will describe this with examples for each register data type.

B Attaching an Index to a Bit Register
Using an index is the same as adding the value of i or j to the register address.

For example, if i =2, MB00000000i is the same as MB00000002.

i=2 Equivalent

DB000000 = MB00000000i; ~ <@=——pp- DB0O00000 = MB0O0O00000Z;

W Attaching an Index to an Integer Register
Using an index is the same as adding the value of i or j to the register address.

For example, if j =30, MW0000001j is the same as MW0000031.

j=30; Equivalent
DWO00000 = MW0000001j; <4—) DW00000 = MW0000031;

B Attaching an Index to a Double-length Integer or a Real Number Register
Using an index is the same as adding the value of i or j to the register address.

For example, if j = 1, ML0000000j is the same as ML0000001. Similarly, if j = 1, MF0000000j is the same
as MF0000001.

Double-length Integer Upper Word Lower Word
MWO0000001 _ MWO0000000

If j = 0, MLO00000Oj is MLO000000.

MW0000002 MW0000001
Ifj = 1, MLO000000 is MLO0000O1. | | |

Real Number Upper Word Lower Word
MWO0000001 MWO0000000

If j = 0, MFOO00000j is MF0O000000. |

MW0000002 MW0000001
If j = 1, MFO000000] is MF0000001. | | |

using ML0000000j with both j =0 and j = 1, the one-word area of MW0000001 will overlap. Be
careful of overlapping areas when indexing double-length integer or real number register addresses.
Note . The setting range for indices i and j is - 2,147,483,648 to 2,147,483,647.

* Double-length integers and real numbers use a region that is 2 words in size. For example, when

4-18

4.3 Using Indicesiand j

B Attaching an Index to a Quadruple-length Integer or a Double-length Real Number Regis-
ter

Using an index is the same as adding the value of i or j to the register address.

For example, if j =2, MQO0000000j is the same as MQ0000002. Similarly, if j = 2, MD0000000j is the
same as MD0000002.
Quadruple-length Integer Upper ?\words Lower ?\words

s N (\
MWO0000003 MW0000002 MW0000001 _ MW0000000

If j = 0, MQO000000j is MQ0000000.

Upper 2 words Lower 2 words
r A N & N
MWO0000005 MW0000004 MWO0000003 MW0000002

If j =2, MQO000000j is MQ0000002.

Double-precision Real Number Upper 2 words Lower 2 words
A A
4 N \
MW0000003 MW0000002 MW0000001 _MW0000000

If j = 0, MD0000000;j is MD0000000.

Upper 2 words Lower 2 words
I 2 N & N
MWO0000005 MWO0000004 MWO0000003 MWO0000002

If j =2, MD0000000j is MD0000002.

example, when using MQO0000000j with both j = 0 and j = 2, the two-word area of MW0000002 and
MWO0000003 will overlap. Be careful of overlapping areas when indexing quadruple-length integer or
double-length real number register addresses.

Quadruple-length integers and double-precision real numbers use a region that is 4 words in size. For

Note

B Programming Examples
The following programming example uses indices.

Subscript j is used to calculate the total amount of 50 registers from ML0000100 to ML0000198.
That amount is then stored in ML0000200.

ML0000200=0;

J=0;

WHILE J <100 ;
ML0000200 = ML0000200 + ML0000100J ;
J=J+2;

WEND ;

Indices i and j can be specified in either lowercase or uppercase letters.
1=0;
1=0;
DWO00000 = MW0000000j ;
DWO00000 = MW0000000] ;

Information

E Registers

4-19

4.4 Using Array Registers

Using Array Registers

Array registers are used to modify register addresses.
They are used to handle register addresses like variables.

As with indices, an offset can be added to the register address.

W Attaching an Array Register to a Bit Register
Using an array register is the same as adding the value of the array register to the register address.

For example, if DW00000 = 2, MB00000000[DW00000] is the same as MB00000002.

DWO00000 = 2; Equivalent
DB000020 = MB0O0000000[DWO00000]; > DB000020 = MB0O0000002;

B Attaching an Array Register to a Register Other Than a Bit Register

Using an array register is the same as adding the word size of the data type of the array register times the
value of the array register to the register address.

For example, if DW00000 = 30, ML0000002[DW00000] is the same as ML0000062.
DL00002 = ML00000 (30 x 2 + 2) = ML0000062

DWO00000 = 30; Equivalent

DL00002 = MLOOOO002[DWOO0000]; - DL00002 = ML0000062;

B Format
This section describes the formats of array registers.

MOV[A1]ML0O0000[MW00100];
©) @

Description Use Usable Registers

©) Array name « All registers with any data type (excluding # and C registers)

» All registers with integer and double-length integer data types (excluding # and C registers)
(@) Array elements |+ Constant
* Subscript registers

B Programming Examples

In the following example, an array register is used to calculate the total amount of 50 registers from
ML0000100 to ML0000198. That amount is then stored in ML0000200.

MLO0000200 = 0;

DW00000 = 0;

WHILE DW00000 < 50;
ML0000200 = ML0000200 + ML0000100[DWO00000];
DWO00000 = DWO00000 + 1;

WEND;

END;

x Note that if you use a D register as array element when using an array register as the reference value

@ for an axis setting instruction, axis movement instruction, or control instruction (refer to 5.4 Instruc-
tion Types and Execution Scans (page 5-13)), an area that is 2 words in size is used.

For example, MOV [A1]ML0000002[DW00000]; is processed the same as ML0O000002[DL00000].

Important

4-20

Programming Rules

This chapter describes rules that must be followed when creating
motion programs and sequence programs.

Motion Program Structure
Block Format 5-2
Notation for Constants and Registers 5-8

EZ Group Defriion Detals .59

[Operaton ity Loves ... 511

Instruction Types i 5-13
Instruction Type Table 5-15

Declaring Variables i
Variable Format
Strings That Cannot Be Used in Variable Names
Programming Examples

5-2

5.1 Entering Programs

Motion Program Structure

Entering Programs

This section describes how to enter motion programs and sequence programs.
Motion programs and sequence programs are entered in the same way.

Motion Program Structure

A motion program consists of a program number, comment, the body of the program, and an END instruc-
tion. The processes executed by a motion program are written in the program body. The following figure

shows the structure of a motion program.

Start,”'MPMOO1 | s X
(@ % 5 2 i versonr.on e s DR FL RHE kMO E ZE
LINE BLOCE
1 ﬂProgram number and comment ‘
z | MPMOO1 "LINEAR INTERPOLATION“'
3
4 D§| LABEL: MVS [A1]20.0 [E1]30.0 [C1]40.0 F300000;: “COMMENT“l
e
o
7 1 END ; Program body
| : i
| |

Set/ Rel[F3) Close Fil Fil

Information

The line with the program number and comment can be omitted.

Block Format

One block is one unit of process execution. The program body consists of one or more blocks. Motion pro-

gram blocks are written in the following format:

LABEL: MVS [A1]20.0 [B1]30.0 [C1]40.0 F300000 ; “Comment”

®ENnd of block

@ Coordinate word @ Comment
B Logical axis name
®@Motion language instruction

® Specific character

®Label
No. ltem Meaning
® Label Indicates the target for a branching instruction, such as PFORK
© and SFORK.
Motion language
@ . . Specifies a motion program instruction.
nstruction
©) Logical axis name Specifies a logical axis name set in the group definition.
. Specifies the axis coordinate value or the incremental travel dis-
@ Coordinate word .
tance for the axis.
® Specific character Specifies additional data for the motion language instruction.
® End of block Specifies the end of the block.
@ Comment Gives a program comment.

5.1 Entering Programs

Block Format

Labels

A label consists of a character string of one to eight alphanumeric characters or symbols, a colon (:), and a
space or TAB.

LABEL Valid Label Characters

L Space or tab 26 and Symbols
Colon Letters AtoZ,atoz
%
Character string containing Numbers™ | 009
one to eight characters Symbol | — (Hyphen)

“Labels cannot start with a number.

Labels are required when using the PFORK (parallel execution) or SFORK (selective execution) instruc-
tions. You do not need to use labels if the PFORK or SFORK instructions are not used.

Example Label Notation Examples
PFORK LABI1, LAB2;
LABI: ZRN [A1]0 [B1]0 [C1]0;
JOINTO LAB3;
LAB2: MVS [D1]100.0 [E1]200.0 [F1]300.0;
JOINTO LAB3;
LAB3: PJOINT;

Motion Language Instructions

This is where the motion language instruction is given.
Refer to the following chapter for details on the motion language instructions.
Iz Chapter 6 Motion Language Instructions

Logical Axis Names

Give the logical axis name that is set in the group definition in square brackets ([]).

MVS[A1]20.0 ; Valid Logical Axis Name

Type
Logical axis name Characters

character string containing Letters AtoZ,atoz
one to eight characters Numbers | 0to 9

E Programming Rules

5-3

5.1 Entering Programs

Block Format

Coordinate Words

A coordinate word is a numerical value or a variable that is placed after an axis name. A coordinate word
specifies the reference position, speed, acceleration/deceleration, and other information.

€ Using a Numeric Value for the Coordinate Word

Write a numerical value after the axis name to directly specify the coordinate word.

Both integers and real numbers can be used for the numerical value. However, special care must be taken
when using integers.

For example, when the reference unit is set to 0.001 mm and a reference position of 1,000 is entered for
the coordinate word, the Machine Controller interprets this as 1.000 mm. When you enter 1.000 as a real
number, the Machine Controller interprets it as 1.000 mm.

MVS [A1]1000;— 1.000 mm
Or

MVS [A1]1.000;— 1.000 mm
Or

MVS [Al]l.;— 1.000 mm

€ Using a Register for the Coordinate Word

Write a double-length integer register address after the axis name to indirectly specify the coordinate
word.

When the reference unit is set to 0.001 mm with indirect designation using a register, and the register value
is set to 1000, the Machine Controller interprets the coordinate word as 1.000 mm in the same way as in
the previous example.

ML00000 = 1000;
MVS [A1]ML00000;— 1.000 mm

Information The coordinate word unit depends on the motion language instruction and the motion parameter
settings.

5.1 Entering Programs

@ Specific Characters

Block Format

The meaning of each special character is given in the following table along with some usage examples.

Character Meaning Usage Example Reference
. Set Interpolation Accelera-
M dAecCC;leiz?Oorf/mo de ACCOMDE M2; tion/Deceleration Mode
(ACCMODE)
F Interpolation feed | MVS [A1]1000 [B1]2000 F3000000; Linear Interpolation
speed MVS [A1]1000 [B1]2000 FML00000; (MVS)
W Continuous pro- MVS [A1]1000 FWMB00000000: Linear Interpolation
cess control signal MVS)
gﬁ?ﬁ:ﬁ;ﬁ;ﬁt“ FMX T30000000; Set Maximum Interpola-
FMX TML00000; tion Feed Speed (FMX)
speed
TIM T100;
TIM TMLO00000; Dwell Time (TIM)
TIMIMS TMW0000000; Set-time Positioning
MVT [A1]1000 [B1]2000 T100; (MVT) ,
. . MVT [A1]1000 [B1]2000 TML00000; Change Interpolation
Time setting IAC T100: Acceleration Time (IAC)
’) Change Interpolation
T TAC TML00000; Deceleration Time (IDC)
IDC T100; . .
Interpolation Deceleration
IDC TMLO00000; Time for Temporary Sto
porary Stop
IDH TMLO00000;
Circular Interpolation with
Number of turns MCW [A1]1000 [B1]2000 U500 V500 T2 Specified Center Point
for circular inter- F3000000; (MCW and MCC). .
polation MCW [A1]1000 [B1]2000 U500 V500 TMLO00000 | Circular Interpolation with
F3000000; Specified Radius (MCW
and MCC)
W Continuous pro- MVS [A1]1000 TWMB00000000: Linear Interpolation
cess control signal ’ (MVS)
Circular Interpolation with
Specified Center Point 3
. . MCW [A1]1000 [B1]2000 R500 F3000000; (MCW and MCC) &
R Radius of circle . . .
MCW [A1]1000 [B1]2000 RML00000 F3000000; | Circular Interpolation with 2
Specified Radius (MCW €
and MCC) §
Circular Interpolation with 8
Circle center point MCW [A1]1000 [B1]2000 U500 V500 T2 Specified Center Point o
U coordinate 1 (hor- F3000000; (MCW and MCC)
oontal wcs) MCW [A1]1000 [B1]2000 UMLO00000 V500 T2 | Circular Interpolation with
F3000000; Specified Radius (MCW
and MCC)
Circular Interpolation with
Circle center point MCW [A1]1000 [B1]2000 U500 V500 T2 Specified Center Point
v coordinate 2 (ver- F3000000; (MCW and MCC)
tical axis) MCW [A1]1000 [B1]2000 U500 VML00000 T2 Circular Interpolation with
F3000000; Specified Radius (MCW
and MCC)
p ig;eggzi[;?gef;;i IFP P50; Set Interpolation Feed
IFP PML00000; Speed Ratio (IFP)
percentage

Continued on next page.

5-5

5-6

5.1 Entering Programs

Block Format

Continued from previous page.

Character Meaning Usage Example Reference
SS Skip signal selec- | SKP [A1]1000 [B1]2000 F3000000 SS1; Linear Interpolation with
tion SKP [A1]1000 [B1]2000 F3000000 SS2; Skip Function (SKP)
Interpolation MVS [A1]1000 D1000; Linear Interpolation
D overlap distance MVS [A1]1000 DML0000000; (MVS)
External position- | EXM [A1]1000 D1000; External Positioning
ing travel distance | EXM [A1]1000 DML00000; (EXM)
. SFR MB001000 N5 W10; Bit Shift Right (SFR)
f shift
N Number of shifts | . \B001000 NMW00000 W10: Bit Shift Left (SFL)
Bit Shift Right (SFR)
W Bit width BLK MW00100 DW00100 W10; Bit Shift Left (SFL)
BLK MW00100 DW00100 WMW00000; Move Block (BLK)
Clear (CLR)
mps | Motion subpro- 1y yep e\ rpggo. Call Subprogram (MSEE)
gram number
Sequence subpro-) Call Sequence Subprogram
SPS aram number SSEE SPS002; (SSEE)
End of Block

The end of a block is designated by a semicolon (;). There is no limitation on the number of lines in a
block. Always place a semicolon to specify the end of the block.

Always insert Line Feed after the end of a block.

Example

End of Block Notation Example

MOV [A1]1O

Line feed

“Move axis A1.”

Block end code

MOV [A1]1000

[B1]2000
[C1]30

Line feed

“Move axis A1.”
“Move axis B1.”
“Move axis C1.”

Block end code

5.1 Entering Programs

Block Format

Comments

There are two symbols that can be used to enter comments: quotation marks (
slashes (//).

(135

) and double forward

€ Using Double Forward Slashes for Comments

All characters from the double forward slash to the next line feed are interpreted as a comment.

Example

Information

Line feed

Il Text string

Comment Notation Example 2
// Perform a zero point return for all axes.
ZRN [A1]0 [B1]0 [C1]0;

// Linear interpolation of three axes.
MVS [A1]100.0 [B1]200.0 [C1]300.0;

Comments can include double-byte characters as well as single-byte alphanumeric characters.

€ Using Double Quotation Marks for Comments

* Enclosing a Text String in Double Quotation Marks

A character string enclosed in double quotation marks is interpreted as a comment.

“Text string”

Example

Comment Notation Example 1
ZRN [A1]0 [B1]0 [C1]0; “Perform a zero point return for all axes.”
MVS [A1]100.0 [B1]200.0 [C1]300.0; “Linear interpolation of three axes.”

» Placing a Text String after One Double Quotation Mark

All characters from the double quotation mark to the next line feed are interpreted as a comment.

Example

Information

Line feed

“Text string

Comment Notation Example 2
“Perform a zero point return for all axes.
ZRN [A1]0 [B1]0 [C1]0;

“Linear interpolation of three axes.
MVS [A1]100.0 [B1]200.0 [C1]300.0;

Comments can include double-byte characters as well as single-byte alphanumeric characters.

E Programming Rules

5-7

5-8

5.1 Entering Programs

Notation for Constants and Registers

Notation for Constants and Registers

This section describes how to use constants and registers.

Constants

The constants that you can use in motion programs are listed in the following table.

Type Range Notation Examples

-9,223,372,036,854,775,808 to

9,223,372,036,854,775,807 823,-2493, 123k, 123K

Decimal integer

Hexadecimal integer | 0000000000000000 hex to FFFFFFFFFFFFFFFF hex | FFFABCDE hex, 2345 hex, F hex

-9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

Changes according to the setting of the number of dig-
its below the decimal point.

Real number

763.0, 824.2, 234.56, -321.12345

1. The - (minus) sign cannot be omitted, but the + (plus) sign can be omitted.
[A1]+123 = [Al1]123
[Al1]-123 = [Al]-123

Information

2. A decimal integer is multiplied by 1,000 by adding K to the value. For a value such as position

reference where there are many zeroes, using a K can make it easier to read.
[A1]123k = [A1]123000
[A1]123K = [A1]123000

Register Notation

The registers that you can use in motion programs are listed in the following table.

Type Register Type Data Type
BIT WORD LONG FLOAT QUAD DOUBLE
S registers SB SW SL SF SQ SD
M registers MB MW ML MF MQ MD
. G registers GB GW GL GF GQ GD
Global Registers -
I registers 1B w IL IF 1Q ID
O registers OB oW OL OF 0oQ OD
C registers CB CW CL CF CQ CD
Local Registers D registers DB DW DL DF DQ DD
Example Register Notation Example

M B 12345 F
T Bit position: Valid for bit addresses only.

Register number
Data type: B, W, L, F, Q, or D
Register type: S, M, G, I, O, C, or D

Zeroes cannot be omitted in some constants and registers.

Examples Where Zeroes Can Be Omitted

Example
[A1]00123 = [A1]123
[AII]MWO00010 = [A1IMW10
[A1]100.000 = [A1]100.
Example Examples Where Zeroes Cannot Be Omitted

MPMOO01; (Program number at the beginning of a program)
MSEE MPS002;

5.2 Group Definition Details

Group Definition Details

A group definition allows you to treat more than one axis as a single group.

This section describes the Group Definition Dialog Box.
@ @ ®

1% Group Definition x|

[~ Garoup List

Group Mo,01 (Groupl)
Mo, of Group Iw 'l

Axis Specification |

Contral Axiz Mo. IS VI

Group Marne

0z | Group2
03| Group3 Mo, |Circuit| Asis Mo, | Logical Asis Name
ol 1 1 Al
oz 1 z B

L ER—

O _I Cancel | Help

® 6 o

® Number of Groups

Set the number of groups for group operation.

Set this number to 1 for operation with one group.

For operation with more than one groups, set the number of groups for group operation.
@ Group Name

Give the name of the group.

® Number of Controlled Axes
Set the number of axes to control as a group.

@ Circuit
Set the circuit number for the Motion Control Function Module to use.
The circuit number can be checked in the Module configuration definition.

Circuit Number

Gircuit Mo/ fixisAddress Register Tnput/Output)

Start - End

Mation Register ‘

Function Madule/Slave Status

Disabled

Drivine - - - - —
Drivi = Gireut Mol 1 - L 2048 —
riving irouft Mo S
Drivine W | Gircuit Mol 2 2000 - BFFFTH] =P 00 - 0BFFIH] 02—
] OutPut
Driving A Gircuit Nod 2 9000 - OFFFH] — - - -
M-EXEGUTOR Drivine - - - - 0G0D - OGTFIH] 128 ——
— UMDEFINED — —

H Programming Rules

5.2 Group Definition Details

® Axis Number
Select the axis numbers of the axes to use.

You can check the axis numbers by clicking the + Button next to SVC32 in the Module Configuration.

Gircuit Na/#
Start

Module

Function Madule/Slave Status

01 GPU-201 : ——
—— UNDEFINED —

1 GPU Criving -

2 218IFD Criving E?E Gircuit Mo

[@ Driving &l Gircuit Mo
41[H

0 E@SGODV-eeeklh |- Eﬁﬁf[ﬁ]li""

(=) GPU201 [Driving] L e (35[[:]])
43[H

T T W N Eﬁﬁf[ﬁ]li""
04[H

04 E@SGOV-RRRl A |-—eee Eﬁﬁf[ﬁ]li""

|4 SWR32 Driving ol Gircuit No

® Logical Axis Name
Give the name of the specified axis.
The name that is defined here is used when writing a motion program.
MVS [A1]1000 [B1]2000 [C1]3000 F1000;

1
Logical axis names

5.3 Operation Priority Levels

Operation Priority Levels

A priority level is assigned to each operator used in an operation that uses motion language instructions.
Use parentheses () to specify the priority level for an operation involving three or more items.
The priority levels of operators are shown in the following table.

High P Low

Operator

Priority Level
1 2 3 4 5

Parentheses 0

NOT

AND

OR

XOR

Numeric

operations / -

Example

Numeric Operation Examples
* Operation Example
MWO00100 =1+ 2;
With this operation, 1 + 2 is calculated, and the result (3) is stored in MW00100.
» Example of Operation Involving Three or More Items
MWO00100 =1 + (2 * 3);
With this operation, 2 X 3 is calculated first, and 1 is added to the result (6). The final result (7)
is then stored in MW00100.
Therefore, MW00100 = 7.

Precautions for Operations Involving Three or More Items
Consider the following expression:
MWO00100 =1 + 2 * 3;
In this operation, first 2 X 3 is calculated. Then, 1 is added to the result of 6 for a final result of 7.

Note

The

Example

Note

final result of 7 is then stored in MWO00100. Therefore, MW00100 = 7.

Logic Operation Examples
* Operation Example
MWO00100 = 0001 hex | 0002 hex;
Here, ORs of the bits in 0001 hex and 0002 hex are taken, and the results are stored in MW00100.

» Example of Operation Involving Three or More Items
MWO00100 = (1111 hex | 2222 hex) & 00FF hex;
Here, the OR of the bits in 1111 hex and 2222 hex is performed first, and then ANDs of the bits of
the OR results and O0FF hex are taken. The final results are then stored in MW00100.
Therefore, MW00100 = 0033 hex.

sider the following expression:

Precautions for Operations Involving Three or More Items
MWO00100 = 1111 hex | 2222 hex & 00FF hex;

Here, ANDs of the bits in 2222 hex and 00FF hex are taken. Then, ORs of the AND results and the bits
in 1111 hex are taken. The final results are then stored in MW00100.
Therefore, MW00100 = 1133 hex.

E Programming Rules

5-11

5-12

5.3 Operation Priority Levels

Precautions for the Version 6 Compatible Compiler Version
The priority levels for operations performed under the version 6 compatible compiler version are

Note

shown in the following table.

Operator

Priority Level

2 3 4

Parentheses

0

NOT

AND

OR

XOR

Arithmetic
operations

Consider the following expression:
MWO00100 =1 + 2 * 3;

In this operation, first 1 + 2 is calculated. Then, the result of 3 is multiplied by 3 for a final result of 9.
The final result of 9 is then stored in MW00100. Therefore, MW00100 = 9.

5.4 Instruction Types and Execution Scans

5.4

Instruction Types

Instruction Types and Execution Scans

This section describes instruction types and execution scans.

Instruction Types

There are four types of motion language instructions. The number of scans required to execute an instruc-
tion depends on the instruction type. The following table shows the number of scans required to execute
each type of instruction.

Instruction Type Instruction Number of Scans Required
S type Operation instructions 1 scan
M type Axis movement instructions
T Ti i i .
type 1mer instructions . Multiple scans
Transfer command instruc-
F type .
tions

The following diagram shows the number of scans required to execute each instruction type.

4 N

S-type instruction
S-type instruction Executed in one scan.
S-type instruction

) Wait for next scan.

M-type instruction

Executed over

M-type instruction multiple scans.

is an M-type instruction, the S-type instruction is

%When the command before an S-type instruction

executed in the last scan of the M-type instruction.

S-type instruction
S-type instruction
S-type instruction

N
T-type instruction
Executed over
multiple scans.

Executed in one scan.

S-type instruction
S-type instruction
S-type instruction

Executed in one scan.

Wait for next scan.

F-type instruction

Executed over

F-type instruction
yp multiple scans.

_ END; /

H Programming Rules

5.4 Instruction Types and Execution Scans

Instruction Types

5-14

B S-type Instructions

S-type instructions, including operation instructions, are executed in one scan.
A program in which S-type instructions are continuously written is executed within one scan.

B M-type Instructions

M-type instructions include axis movement instructions and other instructions that require multiple scans
to execute.
One scan is required to change from an S-type instruction to an M-type instruction.

B T-type Instructions

T-type instructions include timer instructions, which require multiple scans to execute.

B F-type Instructions

Multiple scans are required to transfer commands from the CPU Unit/CPU Module to an Option Unit.
One scan is required to change from an S-type instruction to an F-type instruction.

5.4 Instruction Types and Execution Scans

Instruction Type Table

Instruction Type Table

The following table gives the instruction types.

Category Instruction S Type M Type T Type F Type
ABS O
INC @]
ACC
DCC
SCC
VEL
FMX
IFMX
Axis Setting Instructions IFP
FUT
IAC
IDC
ISC
IDH
IUT
+or-
ACCMODE
MOV
MVS
MCW
MCC
Axis Movement Instructions ZRN
DEN
SKP
MVT
EXM
POS O
MVM
PLD (@]
Control Instructions PFN (@)
INP
PFP O
PLN O

IF
ELSE (@)
IEND

WHILE
WEND

WHILE WENDX @)

PFORK
JOINTO ©)
PJOINT

SFORK
JOINTO @)
SJOINT

MSEE @)
SSEE @)
UFC @)
FUNC (@)
END (@)

O|0| 0|0

O|0|0|0O|0O|0O|0O|0O|0

O

o

O|0|0|0|0|0|0|0|0O

O

@)

O
E Programming Rules

Program Control Instructions

Continued on next page.

5-15

5.4 Instruction Types and Execution Scans

Instruction Type Table

Continued from previous page.

Category

Instruction

S Type

M Type

T Type

F Type

Program Control Instructions

RET

TIM

TIMIMS

IOW

EOX

O|0|0O|O

SNGD/SNGE

Numeric Operations

+

++

Logic Operations

Numeric Comparison
Instructions

Data Manipulations

Basic Functions

TONIMS

TOF

TOF1IMS

O|O|O|0O|O|0O|O|O0|O|O0|O|O|O|O|O|O|0O|0O|0O|0O|0|0|0|0O|0|0O|0O|0O|0O|0O|0O|0O|0O|0O|0O|0O|0O|0O|0O|0O|0O|0O

Vision Instructions

VCAPI

VCAPS

VFIL

VANA

VRES

O|0|0|0|O

5-16

5.5 Programming with Variables

Declaring Variables

Programming with Variables

When programming with variables, the user declares and uses text strings that are called variables to per-
form operations.

This allows for programming with variables that are independent of any registers, which increases pro-
gram reusability and extendability.

Variables can be used only within the program (within a single drawing) where they were declared.

Start” MPMOD1 |
EERE T @ #B ol 3l BEE &> 5 EEEE
LINE BLOCE
1 VAR
2 Ao TODD @ Add the wvariable here.
3 il WORD Count = 1:
4 LOMG ¥ Position *MLO0100; "¥_Position = MLOO100"
5 LOMG %Y _Position *MLO0DL10Z: "Y Position = MLOO102"
3 END_VAR:
7 S TODD @ Add the program here.
g 1 INC;
g ? WHILE Count <= 10;
10 3 MOV [Al]¥_Position [B1]Y_Position:
11 4 Count = Count + 1:
12 5 WEND:
13
14 g END;
KN
| |
[F2) Set/ Rel(F3) (F4) Close Fil Al

You can program with variables only with compiler version 7.00.
A compiling error will occur for the version 6 compatible compiler.

Note

Declaring Variables

Give the variable that you want to declare inside a block that starts with VAR and ends with END VAR.
You can declare up to 1,000 variables in one program.
After END VAR, you can use the declared variable in the same ways as a register.

VAR;

The variable you want to declare goes here.
END_VAR;

H Programming Rules

5-17

5-18

5.5 Programming with Variables

Variable Format

Variable Format

A variable consists of a data type, a text string containing alphanumeric characters or symbols that is
between 1 and 255 characters in length, and a semicolon (;).

The size of all variables that are declared cannot be more than 16,384 words per program.

VAR;

LONG Data ;

Data type Variable name End of block
END_VAR;

The following table lists the valid data types for variables.

Data Type Contents
BOOL Bit
WORD/SINT A signed integer that is one word in size.
LONG/DINT A signed integer that is two words in size.
QUAD/LONGLONG/LINT A signed integer that is four words in size.
FLOAT/REAL A single-precision floating point number.
DOUBLE/LREAL A double-precision floating point number.
ADDRESS An address.
Structure_name A structure.

Note: Arrays cannot be used for ADDRESS data.

The following table lists the characters that can be used in a variable name.

Type of Variable Name Usable Characters
Letters AtoZ,atoz
Numbers 0to9
Symbols _ (underbar)

Note: Variable names cannot start with a number.

Specifying a Default Value

The format to specify a default value for a variable is as follows:

VAR;
Data type Variable name Default value
END_VAR;

Information You cannot specify a register as a default value.

Example Examples of Specifying Default Values

VAR;

BOOL Complete = 1;

LONG Vel = 1000 ;

LONG Position[3] = {1000, 2000, 3000} ;
END VAR;

5.5 Programming with Variables

Variable Format

Associating Variables with Registers

You can specify that a declared variable should match the value of a specified register.

The format to specify a default value for a variable is as follows:

VAR;
Data type Variable name % register = Default value ;
END_VAR;

Information 1. You can also omit the default value from a variable declaration.
2. All registers except for # and C registers can be used in this way.

Example ~ Examples of Associating a Declared Variable with a Specified Register

VAR;

BOOL Complete %OB00010;

LONG Vel %ML00200 = 1000 ;

LONG Position[3] %ML00300 = {1000, 2000, 3000} ;
END_VAR;

Specifying Constants

Use the following format to specify constants.

VAR;
CONST Datatype Variable name = Constant value ;
END_VAR;

Information ~ Constants cannot be associated with a register.

Example Examples of Specifying Constants

VAR;

CONST WORD MotionCMD_NOP
CONST WORD MotionCMD_HOME
CONST LONG MaxSpeed = 600
END VAR;

0;
9;
0;

The strings in the following table cannot be used in variable names

E Programming Rules

5-19

5-20

5.5 Programming with Variables

Strings That Cannot Be Used in Variable Names

Strings That Cannot Be Used in Variable Names

The strings in the following table cannot be used in variable names

Strings
ABS FEND NON SWITCH
ACC FLOAT OFF TAN
ACCMODE FMX ON TCN
ACOS FOR PFN TCR
ACS GOTO PFORK TCS
ARCTAN I PJOINT TIM
ASIN IAC PLD TOF
ASN IDC PLN TON
ATAN IEND PON TPS
ATN IF POS TRUE
AUTO IFP R{ TYPEDEF
BCD INC REGISTER UFC
BIN INP RET UNION
BLK INT RETURN UNSIGNED
BREAK IOW S{ VCR
CASE J SCC VCS
CHAR JOINTO SFL VEL
CLR KCC SFORK VOID
CONST KCW SFR VOLATILE
CONTINUE LCC SHORT WAX
COS LCW SIGNED WCD
DCC LOG SIN WCE
DEFAULT LOGI10 SIZEOF WCT
DO LONG SJOINT WDA
DOUBLE MCC SKP WDB
ELSE MCW SNGD WDC
END MOD SNGE WDD
ENUM MOV SPH WEND
EOX MSEE SPL WHILE
EXM MUFC SQRT WPM
EXP MVM SQT WSA
EXTERN MVS STATIC ZRN
FALSE MVT STRUCT

5.5 Programming with Variables

Programming Examples

Programming Examples

The following is a programming example that uses variables.

This programming example moves the X and Y axes 50 reference units each to draw a circle with a radius
of 50 reference units 10 times.

VAR;
WORD Count; "Counter"
CONST WORD CountNum = 10; "Number of loops"
LONG X_radius %ML00100; "Radius of axis A1"
LONG Y_radius %ML00102; "Radius of axis B1"
LONG Speed = 8000; "Interpolation feed speed"”
END_VAR;

ZRN [A1]0 [B1]0;

Count = 1; "Preset counter"
INC;
PLN [A1][B1];
FMX T80000;
WHILE Count <= CountNum; "Loop for the specified number of times"

MCW [A1]0 [B1]0 U X_radius V Y_radius F Speed; "Circular interpolation”

MOV [A1]X_radius [B1]Y_radius; "Positioning"

Count = Count+1; "Increment counter”
WEND;
END;

B1 4
//
Circle 10 g

Circle 9

Circle 3

Cir

Circle 1

E Programming Rules

5-21

Motion Language
Instructions

This chapter describes the motion language instructions.

[s Seting Instuctons ... 64,

Absolute Mode (ABS) 6-7
Incremental Mode (INC) 6-11
Change Acceleration Time (ACC) 6-15
Change Deceleration Time (DCC) 6-21
Change S-curve Time Constant (SCC) 6-27
SetSpeed (VEL)t 6-33
Set Maximum Interpolation Feed Speed (FMX) 6-39
Set Maximum Individual Axis Speeds

for Interpolation (IFMX) 6-42
Change Interpolation Feed Speed Unit (FUT) 6-45
Set Interpolation Feed Speed Ratio (IFP) 6-47
Change Interpolation Acceleration Time (IAC) 6-50
Change Interpolation Deceleration Time (IDC) 6-52
Change Interpolation S-curve Time (ISC) 6-54
Change Interpolation Deceleration Time

for Temporary Stop (IDH) 6-58
Change Interpolation Acceleration/Deceleration Unit (IUT) . 6-62
Set Interpolation Feed Speed Axes (+and-) 6-64
Set Interpolation Acceleration/Deceleration Mode

(ACCMODE)t 6-67

Positioning (MOV)
Linear Interpolation (MVS)
Circular Interpolation with Specified Center Point
(MCWandMCC) 6-94
Circular Interpolation with Specified Radius

(MCWandMCC)ot 6-99

Helical Interpolation with Specified Center Point

(MCWandMCC) ...t 6-103
Helical Interpolation with Specified Radius

(MCWandMCC) ... 6-106
Zero PointReturn (ZRN) 6-108
Position after Distribution (DEN) 6-111
Linear Interpolation with Skip Function (SKP) 6-113
Set-time Positioning (MVT) 6-115
External Positioning (EXM) 6-117

Axis Control Instructions 6119,

Current Position Set (POS) 6-121
Move on Machine Coordinates (MVM) 6-123
Update Program Current Position (PLD) 6-124
In-position Check (PFN) 6-126
In-Position Range (INP) 6-128
Positioning Completed Check (PFP) 6-130
Coordinate Plane Setting (PLN) 6-132
Branching Instructions (IF, ELSE, and IEND) 6-135
Repetition Instructions (WHILE, WEND) 6-138

Repetition with One Scan Wait (WHILE and WENDX) ... 6-141
Parallel Execution Instructions

(PFORK, JOINTO, and PJOINT) 6-144
Selective Execution Instructions

(SFORK, JOINTO, SJOINT) . .. oo 6-147
Call Motion Subprogram (MSEE) 6-152
Call Sequence Subprogram (SSEE) 6-153
Call User Function from Motion Program (UFC) 6-154
Call User Function from Sequence Program (FUNC) 6-162
Program End (END) i 6-163
Subprogram Return (RET) 6-164
Dwell Time (TIM) e 6-165
Dwell Time (TIMIMS) 6-166
I/O Variable Wait (IOW) 6-167
One Scan Wait (EOX) 6-170
Disable Single-block Signal (SNGD) and Enable

Single-block Signal (SNGE) 6-171

‘Numerio Operation Insirucions 6-172

Substitute (=) 6-173
Add (F) .o 6-174
Subtract (-) 6-175
Extended Add (++) 6-176
Extended Subtract (--) 6-178
MUItiply (%)« 6-180
Divide (/) - oo e 6-181

Modulo (MOD) ... oo 6-182

InClusive OR ([) .+« oo oo 6-184
AND (&) oo 6-185
Exclusive OR (M) .o oot 6-186
NOT (1) e 6-187

[umerc Comparison instrucons . 6188

Numeric Comparison Instructions (==, <>, >, <, >=, <=) .

Bit Shift Right (SFR)

Bit Shift Left (SFL) i

Move Block (BLK)

Clear (CLR) e

Table Initialization (SETW)

ASCII Conversion 1 (ASCIl) ...,

Sine(SIN) 6-204
Cosine (COS) . ..ot 6-205
Tangent (TAN) e 6-206
ArcSine (ASN) 6-207
Arc Cosine (ACS) 6-208
Arc Tangent (ATN) 6-209
Square Root (SQT)o oo 6-210
BCDtoBinary (BIN) 6-212
BinarytoBCD(BCD)t 6-213
SetBit (S{}) ... 6-214
ResetBit (R{})o 6-215
Rising-edge Pulse (PON) 6-216
Falling-edge Pulse (NON) 6-218
On-delay Timer: Measurement unit =10 ms (TON) 6-220
1-ms ON-Delay Timer (TON1IMS) 6-221
Off-delay Timer: Measurement unit= 10 ms (TOF) 6-222
1-ms OFF-Delay Timer (TOF1IMS) 6-223

6.1 Axis Setting Instructions

Axis Setting Instructions

Axis setting instructions set the accelerations, decelerations, speeds, and other settings that are related to

axis movement.

There are 17 axis setting instructions. You can use these instructions only in motion programs.

The following table lists the axis setting instructions.

»
o | €
E|D®
c (LA <))
ie] o | 9
5 o S |
3 Name Format Description Tl o
@ s | 2
£ 2|0
° >
|3
n
ABS; .
or ’ Causes all subsequent coordi-
ABS | Absolute Mod nates to be treated as absolute val- | O | X
solte Mode | ABs MOV [Logical axis name 1] — ues eV
[Logical axis name 2] —, '
ING; .
Causes all subsequent coordi-
INC Incremental o nates to be treated as incremental | O | X
Mode INC MOV [Logical axis_name 1] — values
[Logical axis name 2] —, '
ACC [Logical_axi: 1] Accelera- L
. [ogical_axis_name_I] Accelera Sets the acceleration times for
tion_time positioning instructions
ACC Chapge Accel- . [Loglcal_axls_name_Z] Acceler- A maximum of 32 axes can be ol «x
eration Time ation_time
- R . des1gnated 1n one 1nstruction
[Logical axis_name_3] Acceler-
. : block.
ation_time ... ;
DCC [Logical_axi. 1] Decelera- S
. [ogical_axis_name_I} Decelera Sets the deceleration times for
tion_time positioning instructions
DCC Chapge l?ecel- . [L?gzcal_axzs_name_Z] Decel- A maximum of 32 axes can be ol «x
eration Time eration_time
-) designated in one instruction
[Logical axis name_3] Decel-
. . block.
eration_time ... ;
Sets the time constants for the
moving average filters.
SCC [Logical _axis_name_1I] S-curve_- | A maximum of 32 axes can be
SCC Change S-curve | time_constant designated in one instruction ol x
Time Constant [Logical_axis_name_2] S-cur- block.
ve_time_constant ... ; The filters are valid for both posi-
tioning instructions and interpola-
tion instructions.
VEL [Logical axi 1] Feed - e
spee d[ogical_axis_name_[] Feed Sets the speeds for positioning
P [Logical axi 2] Feed instructions.
VEL | Set Speed wpeed ogieat_axis_name_cJFeed_= 1 A maximum of 32 axes can be O| x
P . . designated in one instruction
[Logical axis name 3] Feed -
— = - - block.
speed ... ;

Continued on next page.

6.1 Axis Setting Instructions

Continued from previous page.

(2]
o | €
i i
2 2|8
g Name Format Description o %
1 c | 2
£ 2 o
2|8
(7]
Sets the maximum speed for inter-
polation instructions.
Set Maximum . . . The interpolation acceleration
FMX | Interpolation FM);Tmaxzmum_mterp olation_feed_- time is the time from a speed of O | x
Feed Speed peed; zero to this speed. The interpola-
tion deceleration time is the time
from this speed to a speed of zero.
) IFMX Sets the maximum speeds for the
Set .Max1mum. [Logical _axis name_I1Maximum_indi- | individual axes that are specified
IFMX Isndlv(lldlffal Axis vidual _axis_speed_for_interpolation for interpolation instructions. O | x
hﬁ:pcs)la(':iron [Logical _axis name 2]Maximum_indi- | You can set a different speed limit
vidual_axis_speed_for_interpolation for each axis.
FUT E‘lsiil;g;;:(;erpo_ FUT Uinterpolation_feed - Changes ‘the spegd unit for inter- ol x
Speed Unit speed_unit_number, polation instructions.
S Sets the speed for interpolation
‘et Interpola- IFP Pinterpolation_feeding speed ra- | instructions.
IFP tion Feed Speed | . . O | x
Ratio tio; Specify the speed as a percentage
of the maximum speed.
Sets the acceleration time for
Change Inter- interpolation instructions.
IAC | polation Accel- | IAC Tinterpolation_acceleration_time; | Specify the time required to reach | O | X
eration Time the maximum speed from a speed
of 0.
Sets the deceleration time for
Change Inter- interpolation instructions.
IDC | polation Decel- | IDC Tinterpolation_deceleration_time; | Specify the time required to decel- | O | X
eration Time erate to a speed of 0 from the
maximum speed.
Sets the moving average filter
Change Inter- Fime copstant for interpolation
ISC polation S- ISC Tinterpolation_S-curve_time; 1nstru'ct10ns. O | x
curve Time The time constant can be used for
S-curve acceleration and decelera-
tion.
Sets the deceleration time for
Change Inter- interpolation instructions when
IDH polation Decel- | IDH Tinterpolation_deceleration - the axis is temporarily stopped. ol x
eration Time for | time_for_temporary stop; Specify the time required to decel-
Temporary Stop erate to a speed of 0 from the
maximum speed.
g(l:lzltligoilit:;l_ . . . Clllanges. the gcceleratiqn/deceler—
0T | eration/ IUT Umt(?rpolat{on_acceleratzon/ gtlon unllt for interpolation ol «x
Deceleration deceleration_unit_number, instructions (MVS, SKP, MCW,
Unit and MCC).

Continued on next page.

Motion Language Instructions

6.1 Axis Setting Instructions

Continued from previous page.

(2]
o | €
E|S
c O | o
2 | £
§ Name Format Description o %
7] = | 2
£ S| o
° >
S| g
()
Specifies the axes to use as com-
ponent axes for the interpolation
MVS feed speed.
[+ Logical axis _name_I] Refer- If “+” or nothing is given before
Set Interpola- ence_position the logical axis name, the axis is
(tor-) | tion Feed Speed | [+ Logical_axis_name_2] Refer- used as one of the component axes | O | X
Axes ence_position for the interpolation feed speed.
[- Logical _axis name 3] Reference_po- | 1f “-” is given before the logical
sition ...; axis name, the axis operates at a
speed that is synchronized with
the interpolation feed speed.
Sets the acceleration/deceleration
Set Interpola- . .
tion Accel mode for interpolation instruc-
ion Accelera- tions.
ACCMODE | tion/ ACCMODE Mmode_number; . . O | x
Deceleration This allows you to specify pro-
Mode cessing multiple interpolation

instructions in succession.

6.1 Axis Setting Instructions

Absolute Mode (ABS)

Absolute Mode (ABS)

The ABS instruction causes the coordinate words that control axis movement to be treated as final target
positions.

After the ABS instruction is executed, it remains in effect until the INC instruction is executed. Absolute
Mode is the default mode when program operation is started.

Coordinate words
ABS; / \

MOV [Logical_axis_name_1] Reference_position_1 [Logical_axis_name_2] Reference_position_2;

Logical axis 2
A

Reference Final target position

position 2

Program
current position

» Logical axis 1

Reference position 1

Fig. 6.1 Movement Mode for ABS Instruction

In this manual, a coordinate word that follows a logical axis name in an axis movement instruction is
called the reference position or the position reference value.

A\ CAUTION

» The same coordinate word will create a completely different travel operation in Absolute
Mode and in Incremental Mode. Make sure that the ABS and INC instructions are used cor-
rectly before you start operation.

There is a risk of injury or device damage.

Program Current Position
This is the position in the work coordinate system when an axis is moved by an axis movement instruc-
Terms tion.

Motion Language Instructions

6-7

6-8

6.1 Axis Setting Instructions

Absolute Mode (ABS)

Format

The format of the ABS instruction is as follows:

* When Specified Independently
ABS;

* When Specified in the Same Block as an Axis Movement Instruction
ABS MOV [Logical _axis_name_1] - [Logical _axis_name_2]-;

Programming Example

A programming example that uses the ABS instruction is given below.

ABS; "Absolute Mode

MOV [A1]10000 [B1]40000;"Positioning
MOV [A1]50000 [B1]20000;"Positioning
END;

B1

!

(10000, 40000)

Program current position

40000 f-----
i (50000, 20000)
20000 fe---mmfemnemneeneen
: : > A1
0 10000 50000

Fig. 6.2 Programming Example for the ABS Instruction

Additional Information on the ABS Instruction

€ Related Motion Parameters

The ABS instruction is not related to any setting parameters.

The movement mode (Absolute Mode or Incremental Mode) for axis movement instructions is treated as
control data that is reserved exclusively for motion programs. There is no setting parameter that you can
use to specify these modes.

The movement mode (Absolute Mode or Incremental Mode) for axis movement instructions is not the

same as the position reference type that is specified in bit 5 of the OWOOOO09 setting parameter.
Note

6.1 Axis Setting Instructions

Absolute Mode (ABS)

€ Finite-length Axes and Infinite-length Axes

The position reference value of a coordinate word for a finite-length axis must be handled differently from
one for an infinite-length axis.

The following table tells how to specify position reference values for finite-length and infinite-length
axes.

Movement Mode
Axis Type for Axis Move- Specification Method for Position Reference Values
ment Instruction

Finite-length Absolute Mode Specify the final target position for the position reference value.

axis Incremental Mode | Specify the relative travel distance for the position reference value.

Specify the final target position to a value between 0 and POSMAX for the
position reference value.

Infinite- Absolute Mode The sign of the position reference value indicates the travel direction. You
length axis specify a positive direction with a positive value, and a negative direction
with a negative value.

Incremental Mode | Specify the relative travel distance for the position reference value.

1. Use bit 0 (Axis Selection) of fixed parameter No. 1 (Function Selection Flags 1) to select either
a finite-length axis or an infinite-length axis.
Use finite-length axes or infinite-length axes as required according to the machine configura-
tion. Refer to the following manual for information on setting motion parameters for the
machine you are using.
(A0 MP3000 Series Motion Control User’s Manual (Manual No.: SIEP C880725 11)

2. Use fixed parameter No. 10 (Infinite-length Axis Reset Position (POSMAX)) to set POSMAX.

Information

The operation of a finite-length axis and an infinite-length axis in Absolute Mode is described below.
Refer to the following section for details on operation in Incremental Mode.
IZ Incremental Mode (INC) (page 6-11)

B Using Absolute Mode for a Finite-length Axis

Specify the final target position for the position reference value.
For example, the following operation occurs from a current position of 1,000 when the final target position
is set to 2,000 or -2,000.

ABS;

MOV [A1]2000;

Current End
position position

O PO > A
-2000 0 1000 2000
ABS;
MOV [A1]-2000;
End Current
position position
O« O > A1
-2000 0 1000 2000

Motion Language Instructions

6-9

6-10

6.1 Axis Setting Instructions

Absolute Mode (ABS)

B Using Absolute Mode for an Infinite-length Axis

Specify the final target position to a value between 0 and POSMAX for the position reference value.

The sign of the position reference value indicates the travel direction. You specify a positive direction with

a positive value, and a negative direction with a negative value.

For example, the following operation occurs from a current position of 450 for an infinite-length axis with

a POSMAX of 3,600 when the final target position is set at 2,700 or -2,700.

ABS;
MOV [A1]2700;

End
position
2700

ABS:
MOV [A1]-2700;

2700

Current
position
450
900
1800
0 Current

End
position

Note

1800

\):())sition
450

900

Current position

The axis moves in the positive
direction for positioning to 2,700.

3600
(POSMAX)

2700
1800
900
0

3600

/

~ End position

Current position

(POSMAX)
- 2700

- 1800
- 900

0

The axis moves in the negative
direction for positioning to 2,700.

1. When a position reference value of +0 is specified for an infinite-length axis in Absolute Mode, the
axis moves in the negative direction.
Specify the POSMAX value to move the axis in the positive direction.

. If the final target position (the absolute value of the position reference value) exceeds the POSMAX

value for an infinite-length axis in Absolute Mode, an alarm will occur for the motion program.

3. When the current position is 0 for an infinite-length axis in Absolute Mode, if an instruction is exe-
cuted with the final target position set to 0 (+0, -0), the axis will move in the amount of POSMAX
(one revolution) in the negative direction.

6.1 Axis Setting Instructions

Incremental Mode (INC)

Incremental Mode (INC)

The INC instruction causes the coordinate words that control axis movement to be treated as relative travel
distances.

After the INC instruction is executed, it remains in effect until the ABS instruction is executed. Absolute
Mode is the default mode when program operation is started.

Coordinate words
INC; / \

MOV [Logical_axis_name_1] Reference_position_1 [Logical_axis_name_2] Reference_position_2,
Logical axis 2

Final target position

Reference position 2

Program current position f
|Reference position 1

| . - | ogical axis 1

Fig. 6.3 Movement Mode for INC Instruction

In this manual, a coordinate word that follows a logical axis name in an axis movement instruction is
called the reference position or the position reference value.

/A CAUTION

» The same coordinate word will create a completely different travel operation in Absolute
Mode and in Incremental Mode. Make sure that the ABS and INC instructions are used cor-
rectly before you start operation.

There is a risk of injury or device damage.

Program Current Position
This is the position in the work coordinate system when an axis is moved by an axis movement
Terms instruction.

Motion Language Instructions

6-11

6.1 Axis Setting Instructions

Incremental Mode (INC)

Format

The format of the INC instruction is as follows:

* When Specified Independently
INC;

* When Specified in the Same Block as an Axis Movement Instruction
INC MOV [Logical_axis_name_1] - [Logical_axis_name_2] -;

Programming Example

A programming example that uses the INC instruction is given below.

INC; "Incremental Mode

MOV [A1]20000 [B1]30000;"Positioning
MOV [A1]20000 [B1]10000;"Positioning
END;

300

20000

Program current position

> A1

0

Fig. 6.4 Programming Example for the INC Instruction

Additional Information on the INC Instruction

€ Related Motion Parameters

The INC instruction is not related to any setting parameters.

The movement mode (Absolute Mode or Incremental Mode) for axis movement instructions is treated as
control data that is reserved exclusively for motion programs. There is no setting parameter that you can
use to specify these modes.

6-12

6.1 Axis Setting Instructions

Incremental Mode (INC)

€ Finite-length Axes and Infinite-length Axes

The position reference value of a coordinate word for a finite-length axis must be handled differently from
one for an infinite-length axis.

The following table tells how to specify position reference values for finite-length and infinite-length
axes.

Movement Mode
Axis Type for Axis Move- Specification Method for Position Reference Values
ment Instruction

Finite-length Absolute Mode Specify the final target position for the position reference value.

axis Incremental Mode | Specify the relative travel distance for the position reference value.

Specify the final target position to a value between 0 and POSMAX for the
position reference value.

Infinite- Absolute Mode The sign of the position reference value indicates the travel direction. You
length axis specify a positive direction with a positive value, and a negative direction
with a negative value.

Incremental Mode | Specify the relative travel distance for the position reference value.

1. Use bit 0 (Axis Selection) of fixed parameter No. 1 (Function Selection Flags 1) to select either
a finite-length axis or an infinite-length axis.
Use finite-length axes or infinite-length axes as required according to the machine configura-
tion. Refer to the following manual for information on setting motion parameters for the
machine you are using.
(A0 MP3000 Series Motion Control User’s Manual (Manual No.: SIEP C880725 11)

2. Use fixed parameter No. 10 (Infinite-length Axis Reset Position (POSMAX)) to set POSMAX.

Information

The operation of a finite-length axis and an infinite-length axis in Incremental Mode is described below.
Refer to the following section for details on operation in Absolute Mode.
I Absolute Mode (ABS) (page 6-7)

B Using Incremental Mode for a Finite-length Axis

Specify the relative travel distance for the position reference value.
For example, the following operation occurs from a current position of 1,000 when the final target position is set to
2,000 or -2,000.

INC;
MOV [A1]2000;

Current position End position
O -0 > A1
-2000 0 1000 2000 3000
INC;
MOV [A1]-2000;
End position Current position
O« O > A1
-1000 0 1000 2000 3000

Motion Language Instructions

6-13

6.1 Axis Setting Instructions

Incremental Mode (INC)

B Using Incremental Mode for an Infinite-length Axis

Specify the relative travel distance for the position reference value.
For example, the following operation occurs from a current position of 450 for an infinite-length axis with
a POSMAX of 3,600 when the final target position is set at 2,700 or -2,700.

INC;

MOV [A1]2700;
End 0 Current A1
position position A
3150 450 ‘ 3600
(POSMAX)
2700 900 ition o |/ Ty 2reo
Fr=—4--1---f---F--1- 1800
rff----1-/-----F--1- 900
Current position 0
1800
INC;
MOV [A1]-2700;
0 Current A1l
position A

/]

450 A 3600
(POSMAX)

- 2700

2700 \ 900
“End position' “crmc/mmqof -1 1800
jO1350 //— memebzf - —q-f-- oo ----1- 900

End Current position
position 0

1800

Information . 1f the absolute value of the position reference value (coordinate word) exceeds the POSMAX
value, the position reference value (coordinate word) is used for the relative movement amount to
move the axis in Incremental Mode.

INC;
MOV [A1]6300; "16300}>3600(POSMAX)
0
End Current A1
position position A
3150 450 R 3600
r
______________ ”| _End position 2| | (;2(? MAX)
2700 900
-------------- r—-4--1--4------1- 1800
-------------- rff----1f-------1- 900
Current position
v 0
1800

6.1 Axis Setting Instructions

Change Acceleration Time (ACC)

Change Acceleration Time (ACC)

The ACC instruction changes the acceleration times or acceleration rates of the specified axes for all of the
following axis movement instructions.

* MOV (Positioning)

* MVT (Set-time Positioning)

* EXM (External Positioning)

The values can be changed for up to 32 axes with one instruction. The acceleration time for any unspeci-
fied axis is not changed.

The acceleration times that are set by the ACC instruction remain in effect until they are changed by
another ACC instruction.

Speed (V) A

Time
Before acceleration time is changed
Speed A
] < >] -
; : Time (t)
After acceleration time is changed

Fig. 6.5 Change Acceleration Time

Information. 1- The ACC instruction changes the acceleration time for the MOV, EXM, and MVT positioning
instructions. Use the IAC instruction to set the acceleration time for the MVS, MCW, MCC,
and SKP interpolation instructions.

2. The ACC, DCC, and SCC instructions are supported by all Motion Control Function Modules.

Format

The format of the ACC instruction is as follows:

ACC [Logical_axis_name_1] Acceleration_time [Logical _axis_name_2] Acceleration_time [Logi-
cal_axis_name_3] Acceleration_time. . . ;

ltem Unit Applicable Data

* Directly designated value
* Indirect designation with a double-length integer register

Acceleration time or

. ms or reference units/s
acceleration rate

Note: The unit is set in bits 4 to 7 (Acceleration/Deceleration Rate Unit Selection) of the OWOOO03 setting parameter.

Motion Language Instructions

6.1 Axis Setting Instructions
Change Acceleration Time (ACC)

Settings for the ACC Instruction

This section describes the settings for the ACC instruction.
Either acceleration times (ms) or acceleration rates (reference units/ 52) can be selected for the setting unit

of the ACC instruction.

The unit to use is set in bits 4 to 7 (Acceleration/Deceleration Rate Unit Selection) of the OWOOOO03 set-
ting parameter.

Parameter Name Acceleration/Deceleration Rate Unit

Function Settings 1 0: Reference units/s’
Acceleration/Deceleration Rate Unit Selection | 1: ms (default)

* When Bits 4 to 7 (Acceleration/Deceleration Rate Unit Selection) in the OWOOOO03 Setting
Parameter Are Set to 1 (ms)

Speed (V)
A

(@Rated speed ””””””””””

® Positioning speed 777777777777777777
(VEL) = >

i > Time (t)

@ Linear acceleration time constant (ACC)

® Acceleration Time
The settings in the ACC instruction are used as the acceleration times (the time required to reach the rated
speed from a speed of 0). The valid range is 1 to 32,767 ms.

@ Rated Speed
The rated speed for each axis is set in fixed parameter No. 34 (Rated Motor Speed).

® Positioning Speed
This speed is used by the MOV, MVT, and EXM positioning instructions.
The positioning speed for each axis is set with the VEL instruction.

For the MVT instruction, the positioning speed is not the reference value of the VEL
instruction.

The MVT instruction changes the positioning speed according to the set positioning time and
the amount of movement.

Information

6-16

6.1 Axis Setting Instructions

Change Acceleration Time (ACC)

* When Bits 4 to 7 (Acceleration/Deceleration Rate Unit Selection) in the OWOMOOO03 Setting
Parameter Are Set to 0 (Reference Units/s?)
Speed (V)

A

@ Positioning speed|______. >
(VEL)

P Time (t)

@ Linear acceleration rate (ACC)

@ Linear Acceleration Rate
The settings in the ACC instruction are used as the linear acceleration rates.

The valid range is 1 to 2311 (reference units/s?).

@ Positioning Speed
This speed is used by the MOV, MVT, and EXM positioning instructions.
The positioning speed for each axis is set with the VEL instruction.

Information For the MVT instruction, the positioning speed is not the reference value of the VEL
instruction.
The MVT instruction changes the positioning speed according to the set positioning time and
the amount of movement.

Motion Language Instructions

6-17

6-18

6.1 Axis Setting Instructions

Change Acceleration Time (ACC)

Programming Examples

Programming examples that use the ACC instruction are given below.

* When Bits 4 to 7 (Acceleration/Deceleration Rate Unit Selection) in the OWOOOO03 Setting
Parameter Are Set to 1 (ms)
The following example executes the MOV instruction to accelerate axis A1 from 0 to the rated speed in
4 seconds, and then executes the MOV instruction to accelerate axis Al in 8 seconds.

INC; "Incremental Mode
VEL [A1]10000; "Set feed speed (10" reference units/min).
DCC [A1]8000; "Change deceleration time (ms).
ACC [A114000; "Change acceleration time (ms).
MOV [A1]5000000; "Positioning
DL00000 = 8000; "Acceleration time (ms)
ACC [A1]DL00000; "Change acceleration time (ms).
MOV [A1]5000000; "Positioning
END;

Speed (V)

(10" reference units/min)

A
20000 , f--4------ R — e Shmmmmme “~

Rated speed

10000
Positioning speed

S

.

-
- --————f-———=————p-
~

Time (t)
(s)

ACC
8s

>
Q
10

-
NN

N
»

* The unit used for the rated speed (min™') must be converted to the same unit as the unit that is used for posi-
tioning speed (10" reference units/min).

Fig. 6.6 Programming Example 1 for the ACC Instruction

6.1 Axis Setting Instructions

Change Acceleration Time (ACC)

* When Bits 4 to 7 (Acceleration/Deceleration Rate Unit Selection) in the OWOMOOO03 Setting
Parameter Are Set to 0 (Reference Units/s?)
The following example executes the MOV instruction to accelerate axis Al at a rate of 60.000 (mm/s?)

and then executes the MOV instruction to accelerate axis A1 at a rate of 100.000 (mm/s?). In this exam-

ple, 1 reference unit is 0.001 mm.

INC;
VEL [A1]18000;
DCC [A1]100000;
ACC [A1]60000;
MOV [A1]5000000;
DL00000 = 100000;
ACC [A1]DL00000;
MOV [A1]5000000;
END;

Speed (V)
(0.001 mm/s)
A

300000 f----------- >

"Incremental Mode

"Set feed speed (10" reference units/min).
"Change deceleration time (reference units/s?).
"Set acceleration rate (reference units/s?).
"Positioning

"Acceleration rate (reference units/s?)

"Set acceleration rate (reference units/s?).
"Positioning

ACC
60.000 mm/s?

Y

18000 (mm/min)

= 300000 (0.001mm/s)
ACC

100.000 mm/s?

v

Time (t)
(s)

Fig. 6.7 Programming Example 2 for the ACC Instruction

Motion Language Instructions

6-19

6.1 Axis Setting Instructions
Change Acceleration Time (ACC)

Additional Information on the ACC Instruction

& Related Motion Parameters

The ACC instruction changes the acceleration times in the setting parameters.

Register

Address Description

Parameter Name

Linear Acceleration Rate/

. . OLOOO36 | Sets the linear acceleration rate or linear acceleration time constant.
Acceleration Time Constant

The acceleration times can be changed by directly changing the settings of the OLOOO36 (Linear Accel-
eration Rate/Acceleration Time Constant) setting parameters instead of by using the ACC instruction.
Refer to the following table for details on how to directly change the acceleration time settings.

Motion Control

Function Modules Specification Setting Procedure

The axes move according to the

SEI\I]{I;’Z acceleration times that are set in Set the ac?eleration times in j[he O'Ll:ll:ll:l36 (Linear
SVA-0 1’ tbe oLOOnse (L{near Accelera- Acceleratlon Rate/Acceleration Time Constant) set-
PO-01 ’ tion Rate/Acceleration Time Con- | ting parameters.
stant) setting parameters.
Set the acceleration times in the OLOOO36 (Linear
SVC, The axis moves at the acceleration Acceleration Rate/Acceleration Time Constant) set-
SV(C32, ting parameters. Then, set the OWOOO08 (Motion

SVC-01, rate that is set in the SERVOPACK Commands) setting parameters to 10 (Change Accel-

SVB-01 parameters. eration Time) to write the new acceleration times to
the SERVOPACK.

Note: The SVC, SVC32, SVC-01, and SVB-01 Function Modules can automatically set the acceleration rates in the
SERVOPACK parameters to the values of the OLOOOO36 (Linear Acceleration Rate/Acceleration Time Constant)
setting parameters. If this automatic writing function is enabled, you do not need to set the OWOOO08 (Motion
Commands) setting parameters to 10 (Change Acceleration Time).

Refer to the following manual for details on how to use the automatic writing function.

[J0 MP3000 Series Motion Control User’s Manual (Manual No.: SIEP C880725 11)

&€ Acceleration Times and Deceleration Times

With the following combinations of the Motion Control Function Module and SERVOPACK models, the
acceleration time and deceleration time for an axis cannot be set separately. If you set the acceleration
time, the deceleration time will be automatically set. The acceleration time and deceleration time for an
axis can be set separately using the ACC and DCC instructions for any SERVOPACK model other than
the SGD-N or SGDB-N.

Motion Control

Function Module SERVOPACK Remarks

« With the SVB-01 Function Module, an axis moves at the acceleration/
deceleration rate that is set in the SERVOPACK parameters.

* The SGD-N and SGDB-N SERVOPACKSs use the same parameter to set
both the acceleration time and deceleration time.

SGD-N
SVB-01

SGDB-N

6-20

6.1 Axis Setting Instructions

Change Deceleration Time (DCC)

Change Deceleration Time (DCC)

The DCC instruction changes the deceleration times or deceleration rates of the specified axes for all of
the following axis movement instructions.

* MOV (Positioning)

* MVT (Set-time Positioning)

* EXM (External Positioning)

The values can be changed for up to 32 axes with one instruction. The deceleration time for any unspeci-
fied axis is not changed.

The deceleration times that are set by the DCC instruction remain in effect until they are changed by
another DCC instruction.

Speed (V) A

Before deceleration time is changed

4

Speed (V) A

After deceleration time is changed

Fig. 6.8 Change Deceleration Time

Information. 1. The DCC instruction changes the deceleration time for the MOV, EXM, and MVT positioning
instructions. Use the IDC instruction to set the deceleration time for the MVS, MCW, MCC,
and SKP interpolation instructions.

2. The ACC, DCC, and SCC instructions are supported by all Motion Control Function Modules.

Format

The format of the DCC instruction is as follows:

Motion Language Instructions

DCC [Logical_axis_name_1] Deceleration_time [Logical_axis_name_2] Deceleration_time [Logi-
cal_axis_name_3] Deceleration_time. . . ;

ltem Unit Applicable Data
Deceleration time or | mg or reference units/s2 * Directly designated value
deceleration rate * Indirect designation with a double-length integer register

Note: The unit is set in bits 4 to 7 of the OWOOOO03 setting parameter.

6-21

6.1 Axis Setting Instructions
Change Deceleration Time (DCC)

Settings for the DCC Instruction

This section describes the settings for the DCC instruction.

Either deceleration times (ms) or deceleration rates (reference units/! sz) can be selected for the setting unit
of the DCC instruction.

The unit to use is set in bits 4 to 7 (Acceleration/Deceleration Rate Unit Selection) of the OWOOOO03 set-
ting parameter.

Parameter Name Acceleration/Deceleration Unit

Function Settings 1 0: Reference units/s”
Acceleration/Deceleration Rate Unit Selection | 1: ms (default)

* When Bits 4 to 7 (Acceleration/Deceleration Rate Unit Selection) in the OWOOOO03 Setting
Parameter Are Set to 1 (ms)

Speed (V)

A

(O I o= e | R —— A

® Positioning speed| >
(VEL)

>
q > Time (t)
@ Linear deceleration
time constant (DCC)

® Linear Deceleration Time Constant
The settings in the DCC instruction are used as linear deceleration times (the time required to reach a speed
of 0 from the rated speed).
The valid range is 1 to 32,767 ms.

@ Rated Speed
The rated speed for each axis is set in fixed parameter No. 34 (Rated Motor Speed).

® Positioning Speed
This speed is used by the MOV, MVT, and EXM positioning instructions.
The positioning speed for each axis is set with the VEL instruction.

For the MVT instruction, the positioning speed is not the reference value of the VEL
instruction.

The MVT instruction changes the positioning speed according to the set positioning time and
the amount of movement.

Information

6-22

6.1 Axis Setting Instructions

Change Deceleration Time (DCC)

* When Bits 4 to 7 (Acceleration/Deceleration Rate Unit Selection) in the OWOMOOO03 Setting
Parameter Are Set to 0 (Reference Units/s?)
Speed (V)

A

@ Positioning speed|_______ >
(VEL)

>
Time (t)

Linear deceleration rate (DCC)

@ Linear Deceleration Rate
The settings in the DCC instruction are used as linear deceleration rates.

The valid range is 1 to 2311 (reference units/s?).

@ Positioning Speed
This speed is used by the MOV, MVT, and EXM positioning instructions.
The positioning speed for each axis is set with the VEL instruction.

Information For the MVT instruction, the positioning speed is not the reference value of the VEL
instruction.
The MVT instruction changes the positioning speed according to the set positioning time and
the amount of movement.

Motion Language Instructions

6-23

6-24

6.1 Axis Setting Instructions

Change Deceleration Time (DCC)

Programming Examples

Programming examples that use the DCC instruction are given below.

* When Bits 4 to 7 (Acceleration/Deceleration Rate Unit Selection) in the OWOOOO03 Setting
Parameter Are Set to 1 (ms)
The following example executes the MOV instruction to decelerate axis Al from the rated speed to a
speed of 0 in 4 seconds, and then executes the MOV instruction to decelerate axis Al from the rated
speed to a speed of 0 in 8 seconds.

INC; "Incremental Mode
VEL [A1]10000; "Set feed speed (10" reference units/min).
ACC [A1]18000; "Change acceleration time (ms).
DCC [A1]4000; "Change deceleration time (ms).
MOV [A1]5000000; "Positioning
DL00000 = 8000; "Deceleration time (ms)
DCC [A1]DL00000; "Change deceleration time (ms).
MOV [A1]5000000; "Positioning
END;
Speed (V)

(10" reference units/min)

A

20000 ,
Rated speed” A \ e \

10000
Positioning speed

\\
.

.

:DCC' DCC Time (t)
4s 8s (s)

A

* The unit used for the rated speed (min™') must be converted to the same unit as the unit that is used for posi-
tioning speed (10" reference units/min).

Fig. 6.9 Programming Example 1 for the DCC Instruction

6.1 Axis Setting Instructions

Change Deceleration Time (DCC)

* When Bits 4 to 7 (Acceleration/Deceleration Rate Unit Selection) in the OWOMOOO03 Setting
Parameter Are Set to 0 (Reference Units/s?)
The following example executes the MOV instruction to decelerate axis Al at a rate of 60.000 (mm/s?),

and then executes the MOV instruction to decelerate axis Al at a rate of 100.000 (mm/s?). In this exam-
ple, 1 reference unit is 0.001 mm.

INC; "Incremental Mode

VEL [A1]18000; "Set feed speed (10" reference units/min).
ACC [A1]100000; "Set acceleration rate (reference units/s?).
DCC [A1]60000; "Set deceleration rate (reference units/s?).
MOV [A1]5000000; "Positioning

DL00000 = 100000; "Deceleration rate (reference units/s?)
DCC [A1] DL0O000O; "Set deceleration rate (reference units/s?).
MOV [A1]5000000; "Positioning

END;

Speed (V)

(0.001 mm/s)
A

300000 3> > VEL
18000(mm/min)
=300000(0.001 mm/s)
DCC DCC
60.000 mm/s? 100.000 mm/s?
>
Time (t)

(s)
Fig. 6.10 Programming Example 2 for the DCC Instruction

Motion Language Instructions

6-25

6.1 Axis Setting Instructions
Change Deceleration Time (DCC)

Additional Information on the DCC Instruction

€ Related Motion Parameters

The DCC instruction changes the deceleration times in the setting parameters.

Register

Address Description

Parameter Name

Linear Deceleration Rate/

. . OLOOO38 | Sets the linear deceleration rate or linear deceleration time constant.
Deceleration Time Constant

The deceleration times can be changed by directly changing the settings of the OLOOMO38 (Linear Decel-
eration Rate/Deceleration Time Constant) setting parameters instead of by using the DCC instruction.
Refer to the following table for details on how to directly change the deceleration time settings.

Motion Control

Function Modules Specification Setting Procedure

The axes move according to the

SEI\IIS’Z deceleration times that are set ig the | Set the deFeleration times in'the QLI:I 0038 (Linear
SVA-0 1’ oLanomnsg (L.mear. Deceleration l?eceleratlon Rate/Deceleration Time Constant) set-
PO-01 ’ Rat§/Decelerat10n Time Constant) | ting parameters.
sctting parameters.
Set the deceleration times in the OLOOO38 (Linear
SVC, The axis moves at the deceleration Deceleration Rate/Deceleration Time Constant) set-
SV(C32, ting parameters. Then, set the OWOOO08 (Motion

SVC-01, rate that is set in the SERVOPACK Commands) setting parameters to 11 (Change Decel-

SVB-01 parameters. eration Time) to write the new deceleration times to
the SERVOPACK.

Note: The SVC, SVC32, SVC-01, and SVB-01 Function Modules can automatically set the deceleration rates in the
SERVOPACK parameters to the values of the OLOOOMO38 (Linear Deceleration Rate/Deceleration Time Constant)
setting parameters. If this automatic writing function is enabled, you do not need to set the OWOOO08 (Motion
Commands) setting parameters to 11 (Change Deceleration Time).

Refer to the following manual for details on how to use the automatic writing function.

(10 MP3000 Series Motion Control User’s Manual (Manual No.: SIEP C880725 11)

&€ Acceleration Times and Deceleration Times

With the following combinations of the Motion Control Function Module and SERVOPACK models, the
acceleration time and deceleration time for an axis cannot be set separately. If you set the acceleration
time, the deceleration time will be automatically set. The acceleration time and deceleration time for an
axis can be set separately using the ACC and DCC instructions for any SERVOPACK model other than
the SGD-N or SGDB-N.

Motion Control

Function Module SERVOPACK Remarks

» With the SVB-01 Function Module, an axis moves at the acceleration/
deceleration rate that is set in the SERVOPACK parameters.

* The SGD-N and SGDB-N SERVOPACKSs use the same parameter to set
both the acceleration time and deceleration time.

SGD-N
SVB-01

SGDB-N

6-26

6.1 Axis Setting Instructions

Change S-curve Time Constant (SCC)

Change S-curve Time Constant (SCC)

The SCC instruction changes the S-curve time constants for axis movement instructions.

The S-curve time constant parameter for the S-curve acceleration/deceleration function suppresses
mechanical vibration during acceleration and deceleration.

The values can be changed for up to 32 axes with one instruction. The S-curve time constant for any
unspecified axis is not changed.

The S-curve time constants that are set by the SCC instruction remain in effect until they are changed by
another SCC instruction.

Speed (V) 4

v

<—> P Time (t)

Before S-curve time constant is changed

+

Speed (V) A

\J

< > e > Time (1)

After S-curve time constant is changed

Fig. 6.11 Change S-curve Time Constant

Format

The format of the SCC instruction is as follows:

SCC [Logical_axis_name_1] S-curve_time_constant [Logical_axis_name_2] S-curve_time_constant

ltem Unit Applicable Data

* Directly designated value

S-curve time constant | ms . L . . .
« Indirect designation with a double-length integer register

Motion Language Instructions

6-27

6-28

6.1 Axis Setting Instructions

Change S-curve Time Constant (SCC)

Settings for the SCC Instruction

This section describes the settings for the SCC instruction.

Speed (V)

A (When the acceleration/deceleration filter is disabled)

f

S-curve time constant (SCC)

Specify a numerical value or register for the S-curve time constant for each axis by using the SCC instruc-
tion.

The setting range of the S-curve time constants depends on the Motion Control Function Module that is
used, as shown below.

* For the SVR, SVR32, PO-01, and SVA-01 Motion Control Function Modules, the setting range is the
same as the setting range for the OWODOMO3A (Filter Time Constant) setting parameter.

» For the SVC, SVC32, SVC-01, and SVB-01 Motion Control Function Modules, the setting range is the
same as the setting range for the moving average time in the SERVOPACK parameters.

Refer to the following table for details on the setting range of the S-curve time constant.

Motion Control SCC Instruction

Function Modules | Setting Range (ms) Remarks
SVA-01 0to 6,553 -
SVC, _ .)
SV(C32 The S-curve acceleratlon/dece.leratlon cannot be used with the
SVC-0 1’ 0to 510 SGDJ SERVOPACK. because it does not have a parameter for the
SVB-OI’ average movement time.
PO-01 0to 6,553 -
SVR or SVR32 0to 6,553 —

which Motion Control Function Module is used.

2. If a reference value exceeds the upper limit (511 to 6,553 ms) when the SVC, SVC32, SVC-01, or
SVB-01 Motion Control Function Module is used, bit 1 of the ILCIOO02 (Setting Parameter Error)
monitor parameter is set to 1, and the upper limit (510 ms) is set for the moving average time in the
SERVOPACK parameters.

1. If a reference value of more than 6,553 ms is input, a motion program alarm will occur regardless of

Note

6.1 Axis Setting Instructions

Change S-curve Time Constant (SCC)

Programming Example

A programming example that uses the SCC instruction is given below.

The following example executes a MOV instruction with an S-curve time constant of 250 ms and a MOV

instruction with an S-curve time constant of 500 ms.

For this example, the setting parameters are set as follows:

* Bits 0 to 3 (Speed Unit Selection) of the OWOMOOO03 setting parameter are set to 0 (reference units/s).

* Bits 4 to 7 (Acceleration/Deceleration Rate Unit Selection) of the OWODOMOO03 setting parameter are
set to 0 (reference units/s?).

INC; "Incremental Mode
VEL [A1]10000; "Set feed speed (reference units/s).
ACC [A1]20000; "Set acceleration rate (reference units/s?).
DCC [A1]20000; "Set deceleration rate (reference units/s?).
SCC [A1]250; "Change S-curve time constant (ms).
MOV [A1]20000; "Positioning
DL00000 = 500; "S-curve time constant (ms)
SCC [A1]DL00000; "Change S-curve time constant (ms).
MOV [A1]20000; "Positioning
END;

Speed (V)

A

Time (t)
250 ms 250 ms 500 ms 500 ms (ms)
(SCC) (SCC) (SCC) (SCC)

Fig. 6.12 Programming Example for the SCC Instruction

Motion Language Instructions

6-29

6.1 Axis Setting Instructions
Change S-curve Time Constant (SCC)

Additional Information on the SCC Instruction

& Related Motion Parameters

The SCC instruction changes the S-curve time constants in the setting parameters.

Register

Parameter Name Address

Description

Sets the acceleration/deceleration filter time constants (1 = 0.1 ms).

» Make sure that reference pulse distribution has been completed (i.e., that

owOOnsA bit 0 of IWOOOOC is 1) before you change the filter time constant.

» Change the time constant only after you select the filter type to use in
bits 8 to B (Filter Type Selection) of the OWOOO03 setting parameter.

Filter Time Con-
stant

The S-filter time constants can be changed by directly changing the settings of the OWODOO3A (Filter
Time Constant) setting parameters instead of by using the SCC instruction. Refer to the following table for
details on how to directly change the S-curve time constants.

FL':/rII(::ttli(())rrll f\;ﬂ%rglrj?les Specification Setting Procedure
SVR If S-curve acceleration/decelergtion is . .
SVR3’2 enabled, the axes move according to Set the S-curve qme cqnstants in the .
SVA-0 1’ Fhe S-curve time constgnts thgt are set | OWODODO3A (Filter Time Constant) setting
PO-01 ’ in the OWOOO3A (Filter Time Con- | parameters.
stant) setting parameters.
Set the S-curve time constants in the
SVC, If S-curve acceleration/deceleration is | OWODOMO3A (Filter Time Constant) setting
SV(C32, enabled, the axes move according to parameters. Then, set the OWODOO08 (Motion
SVC-01, the moving average filter time con- Commands) setting parameters to 12 (Change Fil-
SVB-01 stants in the SERVOPACK parameters. | ter Time Constant) to write the new S-curve time
constants to the SERVOPACK.(¥*)

* The SVC, SVC32, SVC-01, and SVB-01 Function Modules can automatically set the moving average filter time con-
stants in the SERVOPACK parameters to the values of the OWODOMO3A (Filter Time Constant) setting parameters.
If this automatic writing function is enabled, you do not need to set the OWOOOO08 (Motion Commands) setting
parameters to 12 (Change Filter Time Constant).

Refer to the following manual for details on how to use the automatic writing function.

(10 MP3000 Series Motion Control User’s Manual (Manual No.: SIEP C880725 11)

6-30

6.1 Axis Setting Instructions

Change S-curve Time Constant (SCC)

€ Movement Paths for Interpolation Instructions and S-curve Acceleration/

Deceleration

The S-curve acceleration/deceleration rate affects the movement path for the MVS, MCW, MCC, and SKP

interpolation instructions.

* To achieve the same movement path as when the S-curve acceleration/deceleration is disabled for linear
interpolation, set the same S-curve time constant for all of the axes that are involved in the interpolation.

* When S-curve acceleration/deceleration is enabled for circular interpolation, the movement path will not
be the same as when S-curve acceleration/deceleration is disabled.

Linear Interpolation Movement Paths

Acceleration/deceleration
filter disabled.

Y1 N
End position

Start position

»

X1

S-curve acceleration/deceleration enabled.
S-curve time constants match.

S-curve acceleration/deceleration enabled.
S-curve time constants do not match.

A
Y1 End position

Start position

v1 4 End position

In this figure, X1 is
greater than Y1.

Start position

\

\

X1

Circular Interpolation Movement Paths

Acceleration/deceleration
filter disabled.

Y1

End position

Start position

\

X1

X1

S-curve acceleration/deceleration enabled.
S-curve time constants match.

S-curve acceleration/deceleration enabled.
S-curve time constants do not match.

v1 4

End position

Start position

\

Y1

End position

In this figure, X1 is
greater than Y1.

Start position

X1

X1

Motion Language Instructions

6-31

6-32

6.1 Axis Setting Instructions

Change S-curve Time Constant (SCC)

@ Filter Type Selection

Before you enable S-curve acceleration/deceleration, set the filter type for each axis by setting bits 8 to B
(Filter Type Selection) if OWOODOO03 to 2 (Moving Average Filter).

Register .
Parameter Name Address Filter Type
Function Settings 1 ownaoaoo3 0: No filter (default) . .
. . . 1: Exponential acceleration/deceleration filter
Filter Type Selection Bits 8§ to B .
2: Moving average filter

If you are using the SVC, SVC32, SVC-01, or SVB-01 Motion Control Function Modules and have the
automatic writing function disabled, set the OWOLOOO08 (Motion Commands) setting parameter to 13
(Change Filter Type) to write the settings to the SERVOPACK parameters.

The following programming example shows how to change the filter type from the motion program.

"See if changing the filter type is OK.
IOW IW8008 = = 0; "Wait for there to be no motion command in progress.
IOW IB800CO = = 1; "Wait for reference pulse distribution to be completed.

"Select the Moving Average Filter for the filter type.
DWO00000 = OW8003 & FOFFH; "Retain all information other than the Filter Type Selection.
OW8003 = DWO0O0000 | 0200H; "Filter type = Moving average filter

"Write the filter type from the built-in SVB/SVB-01 Module to the SERVOPACK.

Ow8008 = 13; Request changing the filter type.

IOW IW8008 = = 13; "Wait for the Change Filter Type operation to become active.
IOW IB80098 = = 1; "Wait for execution of the motion command to be completed.
OwW8008 = 0; "Clear the request.

IOW 1W8008 = = 0; "Wait for there to be no motion command in progress.

Information . When using the SVR, SVR32, PO-01, or SVA-01 Motion Control Function Module, the above
programming is not required.
The above programming is also not required even when using the SVC, SVC32, SVC-01, or SVB-
01 Motion Control Function Modules if automatic writing to the SERVOPACK parameters is
enabled.

Information Refer to the following manuals for details on how to automatically write settings to the
SERVOPACK parameters for the SVC, SVC32, SVC-01, or SVB-01 Motion Control Function
Module.

(A0 MP2000 Series Built-in SVB/SVB-01 Motion Module User’s Manual (Manual No.: SIEP C880700 33)
(A0 MP2000 Series Built-in SVC/SVC-01 Motion Module User’s Manual (Manual No.: SIEP C880700 41)
[J0 MP3000 Series Motion Control User’s Manual (Manual No.: SIEP C880725 11)

6.1 Axis Setting Instructions

Set Speed (VEL)

Set Speed (VEL)

The VEL instruction changes the feed speeds of the specified axes for all of the following axis movement
instructions.

* MOV (Positioning)
* EXM (External Positioning)

In this manual, the above axis movement instructions and the MVT (Set-time Positioning) instruction are
referred to as positioning instructions, and the term positioning speed refers to a feed speed for those
instructions.

The values can be changed for up to 32 axes with one instruction. The positioning speed for any unspeci-
fied axis is not changed.

The positioning speeds that are set by the VEL instruction remain in effect until they are changed by
another VEL instruction.

Speed (V) A

1/ \ .

Before the feed speed is changed Time (t)
Speed (V) A
Time (t)

After the feed speed is changed

Fig. 6.13 Set Speed
Information. The VEL instruction changes the positioning speed for the MOV and EXM positioning

instructions. Use an F reference or the IFP instruction to set the feed speed for the MVS, MCW,
MCC, or SKP interpolation instruction.

Format

The format of the VEL instruction is as follows:

VEL [Logical_axis_name_1] Positioning_speed [Logical_axis_name_2] Positioning_speed ... ;

Item Unit Applicable Data

10™ reference units/min,

Positioning | reference units/s,

speed 0.01% (percentage of rated speed), or
0.0001% (percentage of rated speed)

* Directly designated value
* Indirect designation with a double-
length integer register

Note: The unit is set in bits 0 to 3 (Speed Unit Selection) of the OWOOOO03 setting parameter.

Motion Language Instructions

6-33

6-34

6.1 Axis Setting Instructions

Set Speed (VEL)

Settings for the VEL Instruction

This section describes the settings for the VEL instruction.

Speed (V)

(® Acceleration unit)
A

@ Rated speed |-

@ Positioning speed -
(VEL) i

»

g Time (1)

!
@ Deceleration time (DCC)

@ Acceleration time (ACC)

® Rated Speed

The rated speed for each axis is set in fixed parameter No. 34 (Rated Motor Speed).

@ Acceleration Times and Deceleration Times
Use the ACC and DCC instructions to set the acceleration/deceleration times for each axis.
The times that are set with the ACC instruction designate the amount of time required to accelerate to or

decelerate from the rated speed.

® Speed Unit

The speed unit for each axis is set in bits 0 to 3 (Speed Unit Selection) of the OWOOMOO03 setting parameter.
The default setting for this parameter is 1 (10" reference units/min).

Parameter Name REYEL] Speed Unit Reference Range
Address
0: Reference units/s 0 to 231~ 1 (reference units/s)
Function Settings 1 ownOnOnOo3 | 1: 10" reference units/min | 0 to 2°'- 1 (10" reference units/min)
Speed Unit Selection Bits 0to 3 2:0.01% 0 to 32,767 (0.01%)
3: 0.0001% 0 to 3,276,700 (0.0001%)

Information

The setting unit for the VEL instruction when bit 1 (10" reference units/min) is selected for the

OownaO0O0o03 setting parameter is determined by fixed parameter No. 4 (Reference Unit Selec-

Remarks

tion).
Fixed Parameter No. 4 Speed Unit
(Reference Unit Selection) | (10n reference units/min)

pulse 1 =1,000 pulse/min
mm 1 =1 mm/min
deg 1 =1 deg/min
inch 1 =1 inch/min
wm 1 =1 um/min

» When the Reference Unit Selec-
tion is set to Pulses, n = 3.

* When the Reference Unit Selec-
tion is set to any setting other than
Pulses, n = fixed parameter No. 5
(Number of Digits Below Deci-
mal Point).

@ Positioning Speed

The positioning speed for each axis is set by specifying a numerical value or register in the VEL instruction.

6.1 Axis Setting Instructions

Set Speed (VEL)

Programming Example

A programming example that uses the VEL instruction is given below.
The following example executes the MOV instruction with a positioning speed that is 40% of the rated
speed, and then executes the MOV instruction with a positioning speed that is 20% of the rated speed.

INC; "Incremental Mode

ACC [A1]5000; "Change acceleration time (ms).
DCC [A1]15000; "Change deceleration time (ms).
VEL [A1]4000; "Change the feed speed (0.01%).
MOV [A1]3000000; "Positioning

VEL [A1]2000; "Change the feed speed (0.01%).
MOV [A1]3000000; "Positioning

END;

[A1] Speed (V)

(0.01%)
A
10000 f---=mmm=mmmmmmopemmssseeeos T o T Rated speed
4000 |- / > N— S N VEL, 40% of rated speed
2000 / \/ > \ 77777 VEL, 20% of rated speed
-
Time (t)

Fig. 6.14 Programming Example for the VEL Instruction

Additional Information on the VEL Instruction

This section describes three additional items about the VEL instruction.

€ Related Motion Parameters

The VEL instruction changes the positioning speeds in the setting parameters.

Parameter Name Register Address Description

Speed Reference Setting oLOOanio Sets the speed reference.

The positioning speeds can be changed by changing the settings of the OLOOO 10 (Speed Reference Set-
ting) setting parameters instead of by using the VEL instruction.

Motion Language Instructions

6-35

6-36

6.1 Axis Setting Instructions

Set Speed (VEL)

& Overrides

You can use the OWOOO18 (Override) setting parameters to specify what percentage of the positioning
speed specified by a VEL instruction to actually execute (i.e., the output ratio). The unit for the Override
parameters is 0.01%.

The default value for the OWODODO 18 (Override) setting parameters is 10,000 (100.00%).

VEL instruction Override = Positioning speed
reference value 0to 327.67%

VEL instruction
reference value

> Override (OWODOO18) > Positioning speed

Overrides
An override allows you to change the output ratio of the axis movement speed reference for interpola-
Terms tlon motion language instructions.

The OWODOMO18 (Override) setting parameters can be changed during axis movement.

Speed (V)
A
150% of VEL

[))
VEL instruction 100% cif VEL / \

reference value| g /

50% of VEL

One positioning instruction block

Time (t)
ownonoao1s
(Override)
A 150.00%
100.00%
50.00%
Time (t)

Fig. 6.15 OwWOOO18 (Override) and Positioning Instructions

—

. The SVR and SVR32 Function Modules do not support the OWODOMO 18 (Override) setting

parameters.

2. For the MVT instruction, the positioning speed used as the base for the override is not the VEL
instruction reference value. The positioning speed changed by executing the MVT instruction is
used as the base speed for the override.

3. If you use an override for the MVT instruction, positioning will not be completed within the
specified time. The positioning speed during execution of the MVT instruction is calculated
with an override value of 100%.

4. The speed unit of the rated speed that is specified in the motion fixed parameters is different

from the speed unit that is used for VEL instruction in a motion program.

Information

Speed Speed Unit

Fixed Parameter No. 34 (Rated Motor Speed) | Revolutions/min

Reference units/s, 10" reference units/min,

Positioning speed (VEL) 0.01%. or 0.0001%

Refer to the following section for how to calculate the rated speed according to the speed unit of
the VEL instruction.

T Motor Speed Specifications (page 6-37)

6.1 Axis Setting Instructions

Set Speed (VEL)

€ Motor Speed Specifications

In addition to the VEL instruction reference range, the rated motor speed and maximum speed must be
taken into consideration to determine the set value for the VEL instruction. To avoid causing an over-
speed, check the speed specifications of your motor before you set a value for the VEL instruction.

Information For rotational motors, the speed specification is expressed in rotations per specified time period.

The rated speed when the speed unit is 10" reference units/min is calculated according to the fixed
parameter settings, as shown below.

» Parameter Setting Example: When Electronic Gear Is Enabled
The electronic gear is enabled if fixed parameter No. 4 (Reference Unit Selection) is set to any unit other
than pulses.

Fixed Parameters

* No. 4: Reference Unit Selection = mm

* No. 5: Number of Digits Below Decimal Point = 3

* No. 6: Travel Distance per Machine Rotation = 10,000 reference units
* No. 8: Servomotor Gear Ratio Term = 3

* No. 9: Machine Gear Ratio Term = 2

* No. 34: Rated Motor Speed = 3,000 revolutions/min

Motor The machine shaft rotates two times when
the motor rotates three times (gear ratio).

Workpiece

The table moves 10 mm per revolution.
(travel distance per machine rotation)

When the electronic gear is enabled, » in the speed unit reference (10" reference units/min) is the number
of digits below the decimal point. Therefore, the speed unit is as follows:

(10" reference units/min) = (10> x 0.001 mm/min) = (mm/min)

The machine shaft rotation speed when the motor rotates at the rated speed is as follows:
Rated motor speed (revolutions/min) X Gear ratio

= 3,000 X (2/3) = 2,000 (revolutions/min)

If the number of rotations of the machine shaft is converted into reference units (0.001 mm),
Travel distance per machine rotation (0.001 mm/revolution) x 2,000 (revolutions/min)
=10,000 x 2,000 = 20,000,000 (0.001 mm/min)

If the speed unit is (mm/min),

20,000,000 (0.001 mm/min) = 20,000 (mm/min)

Motion Language Instructions

6-37

6-38

6.1 Axis Setting Instructions

Set Speed (VEL)

» Parameter Setting Example: Electronic Gear Disabled, SVA-01 Function Module
The electronic gear is disabled if fixed parameter No. 4 (Reference Unit Selection) is set to Pulses.

Fixed Parameters

* No. 4: Reference Unit Selection = Pulses

* No. 22: Pulse Counting Mode Selection = A/B x 4 (x 4)

* No. 34: Rated Motor Speed = 3,000 revolutions/min

* No. 36: Number of Pulses per Motor Rotation (before multiplication) = 16,384 pulses/revolution

When the electronic gear is disabled, » in the speed unit reference (10" reference units/min) is 3.
Therefore, the speed unit is as follows:

(10" reference units/min) = (10° pulses/min) = (1,000 pulses/min)
If the rated motor speed is converted into pulses,

Rated motor speed (revolutions/min) X (Number of pulses per motor rotation (pulses/revolution) X multi-
plier)

= 3,000 x (16,384 x 4) = 196,608,000 (pulses/min)
With a speed unit of 1,000 pulses/min,
196,608,000 (pulses/min) = 196,608 (1,000 pulses/min)

+ Parameter Setting Example: Electronic Gear Disabled, SVC, SVC32, SVR, SVR32, SVC-01,
SVB-01, or PO-01 Function Module
The electronic gear is disabled if fixed parameter No. 4 (Reference Unit Selection) is set to Pulses.

Fixed Parameters

* No. 4: Reference Unit Selection = Pulses

* No. 34: Rated Motor Speed = 3,000 revolutions/min

* No. 36: Number of Pulses per Motor Rotation = 65,536 pulses/revolution

When the electronic gear is disabled, » in the speed unit reference (10" reference units/min) is 3.
Therefore, the speed unit is as follows:

(10" reference units/min) = (10* pulses/min) = (1,000 pulses/min)

If the rated motor speed is converted into pulses,

Rated motor speed (revolutions/min) X Number of pulses per motor rotation (pulses/revolution)
= 3,000 x 65,536 = 196,608,000 (pulses/min)

With a speed unit of 1,000 pulses/min,

196,608,000 (pulses/min) = 196,608 (1,000 pulses/min)

Fixed parameters other than those given in the above examples may also need to be set correctly in order
to ensure proper axis operation.

Refer to the following manual for details on motion parameters.
(10 MP3000 Series Motion Control User’s Manual (Manual No.: SIEPSIEP C880725 11)

6.1 Axis Setting Instructions

Set Maximum Interpolation Feed Speed (FMX)

Set Maximum Interpolation Feed Speed (FMX)

The FMX instruction sets the maximum speed for the MVS, MCW, MCC, and SKP interpolation instruc-
tions.

The maximum interpolation feed speed that is set by the FMX instruction remains in effect until it is
changed by another FMX instruction.

The maximum interpolation feed speed is not set when program operation starts.

The FMX instruction must be executed before any of the following interpolation instructions are executed.
* MVS (Linear Interpolation)

MCC or MCW (Circular Interpolation)

MCC or MCW (Helical Interpolation)

SKP (Skip Function)

IFP (Set Interpolation Feed Speed Ratio)

IAC (Change Interpolation Acceleration Time)

IDC (Change Interpolation Deceleration Time)

IDH (Change Interpolation Deceleration Time for Temporary Stop)

Speed (V)
A
Specified
maximum
interpolation e B
feed speed ’ ~,
Interpolation | ___________
feed speed / ! ! \
, i ; : -
— —> Time (t)
Interpolation Interpolation
acceleration time deceleration time

Fig. 6.16 Set Maximum Interpolation Feed Speed

A motion program alarm will occur if any interpolation instruction (MVS, MCW, MCC, SKP, IFP,

IAC, IDC, or IDH) is executed before the FMX instruction is executed.
Note

Information 1 Interpolation instructions are processed with the assumption that the maximum interpolation
feed speed is set in advance. For example, the IAC, IDC, and IDH instructions all designate the
time required to reach the maximum interpolation feed speed from a speed of 0. Therefore, the
maximum interpolation feed speed must be set before any of these instructions can be executed.

2. The FMX instruction is not related to any setting parameters.
The maximum interpolation feed speed that is specified by the FMX instruction is treated as
control data that is reserved exclusively for motion programs. There is no setting parameter that
you can use to specify the maximum interpolation feed speed.

Motion Language Instructions

6-39

6-40

6.1 Axis Setting Instructions

Set Maximum Interpolation Feed Speed (FMX)

Format

The format of the FMX instruction is as follows:

FMX Tmaximum_interpolation_feed_speed,

Item

Unit

Applicable Data

Maximum interpolation
feed speed

Reference units/min

or reference units/s

(specified with FUT

instruction)

* Directly designated value

Settings for the FMX Instruction

This section describes the settings for the FMX instruction.

@ Specified maximum
interpolation feed
speed (FMX)
(composite speed)

Interpolation feed speed
(F reference or IFP)
(composite speed)

Speed (V)
A

A 4

> Time (t)

Interpolation > ~Interpolation
acceleration time (IAC) deceleration time (IDC)

® Specified Maximum Interpolation Feed Speed

The maximum interpolation feed speed is set by specifying a register or a numerical value after the character
“T” in the FMX instruction. The valid range for the maximum interpolation feed speed is 1 to 23! - 1 (refer-

ence units/min).

The maximum interpolation feed speed that is set is used for all interpolation instructions.

Therefore, the FMX instruction must be executed at the beginning of the motion program before the MVS,

MCW, MCC, or SKP interpolation instruction can be used.

Programming Example

A programming example that uses the FMX instruction is given below.

INC;

FMX T300000;
IAC T4000;
IDC T4000;
IFP P75;

MVS [A1]30000 [B1]30000;
MVS [A1]30000 [B1]30000 F150000;

END;

"Incremental Mode

"Set maximum interpolation feed speed.
"Change interpolation acceleration time (ms).
"Change interpolation deceleration time (ms).
"Set interpolation feed speed ratio (%).
"Linear interpolation

"Linear interpolation (F reference)

* Indirect designation with a double-length integer register

6.1 Axis Setting Instructions

Set Maximum Interpolation Feed Speed (FMX)

Composite speed (V)
(reference units/min)

300000
100%)
2500
(75%)

150000
(50%)

A

Y

7 TX

Y

FMX
IFP
F reference of MVS

>

4s 4s
IAC IDC

Fig. 6.17 Programming Example for the FMX Instruction

Time (t)
(s)

Motion Language Instructions

6-41

6.1 Axis Setting Instructions

Set Maximum Individual Axis Speeds for Interpolation (IFMX)

Set Maximum Individual Axis Speeds for Interpolation (IFMX)

The IFMX instruction sets the maximum feed speeds for individual axes that are used in the MVS, SKP,
MCW, and MCC interpolation instructions.

The maximum individual axis feed speeds that are set by the [FMX instruction remain in effect until they
are changed by another IFMX instruction.

If an actual axis feed speed exceeds a value that was set with the [FMX instruction, a motion program
alarm will occur and all axes will stop immediately.

The maximum individual axis feed speeds for interpolation are not set when program operation starts. The
individual axes will operate without any speed limits.

A timing chart for linear interpolation of two axes (Al and B1) when the IFMX instruction has been exe-
cuted to set the maximum feed speed only for the A1 axis is given below.

Composite Speed (A1 and B1 Axes)
Speed (V)

(reference units/min) .

Specified maximum

interpolation feed speed

(FMX)

Interpolation feed speed (F)

»
»

Time (t)

Expansion to Individual Axes

Speed of Axis A1
Speed (V)
(reference units/min) 4
Specified maximum

interpolation feed speed
(FMX)

The A1 axis exceeded the speed that
was set with the IFMX instruction, so
linear interpolation is stopped.

Ladl

Specified maximum individual
axis speed for interpolation
(IFMX)

»
»

Time ()

Speed of Axis B1
Speed (V)
(reference units/min) 4

Ladl

|

|

|

|

: The A1 axis exceeded the speed that
Specified maximum : was set with the IFMX instruction, so

|

|

|

|

|

interpolation feed speed all axes are stopped immediately.
(FMX) \ /

The A1 axis exceeded the speed that
was set with the IFMX instruction, so
the B1 axis is stopped.

Time (t)

Fig. 6.18 Maximum Individual Axis Speed Settings for Interpolation

6-42

6.1 Axis Setting Instructions

Set Maximum Individual Axis Speeds for Interpolation (IFMX)

Information 1. If the IFMX instruction is not executed or if a maximum speed of 0 is set, the individual axes
will operate without any speed limits.

2. The unit of the set value of the IFMX instruction is converted in the motion program from ref-
erence units/min to reference units/scan. When the unit is converted, the resulting value is
rounded down to the nearest integer to determine if the axis speed has exceeded the maximum
speed. This is different from processing for the interpolation feed speed (F).

Therefore, depending on the high-speed scan time and interpolation feed speed, axis operation
may occur even if the axis exceeds the speed limit that was set with the IFMX instruction but
does not exceed the interpolation feed speed (F). The interpolation feed speed will never be
exceeded.

The following formula is used to convert the interpolation feed speed and the set values of the
IFMX instruction (reference units/min).

Interpolation feed speed (or speed limit) [reference units/scan] = F value (or set value in [FMX
instruction)/60 (s)/1,000 (ms) x Ts, where Ts = high-speed scan time

Format

The format of the IFMX instruction is as follows:
IFMX
[Logical_axis_name_1lMaximum_Individual_axis_speed_for_interpolation [Logical_ax-
is_name_2)Maximum_Individual_axis_speed_for_interpolation ...;

ltem Unit Applicable Data

Reference units/min
Maximum individual axis speed or reference units/s
for interpolation (specified with FUT
instruction)

* Directly designated value

* Indirect designation with a double-length integer
register

Settings for the IFMX Instruction

This section describes the settings for the IFMX instruction.

Speed (V)

Specified maximum

interpolation
feed speed (FMX)
(composite speed)
® Specified maximum
individual axis speed for
interpolation (IFMX)

Interpolation feed speed
(F designation or IFP)
(composite speed)

Motion Language Instructions

v

Time ()

Interpolation acceleration time Interpolation deceleration time
(IAC) (IDC)

® Maximum Individual Axis Speed for Interpolation
The maximum individual axis feed speeds during interpolation are set by specifying registers or numerical
values in the IFMX instruction.
The setting range for the IFMX instruction is 0 to 23! - 1 (reference units/min).

If you set 0 for the IFMX instruction, the maximum individual axis feed speeds for interpolation will not be
set and the individual axes will operate without any speed limits.

6-43

6.1 Axis Setting Instructions

Set Maximum Individual Axis Speeds for Interpolation (IFMX)

Programming Example

A programming example that uses the IFMX instruction is given below.

FMX T600000; "Set maximum interpolation feed speed.”

IFMX [A1]1500000 [B1]550000; "Set maximum individual axis feed speeds for interpolation.”
INC; "Incremental Mode"

IAC T500; "Interpolation acceleration time = 500 ms"

IDC T500; "Interpolation deceleration time = 500 ms"

MVS [A1]30000 [B1]40000 F600000; "Linear interpolation instruction”

END;

Composite Speed (A1 and B1 Axes)
Speed (V)
(reference units/min)

600,000
(FMX)

y

Ll

) >
| Time (t)
|
Expansion to Individual Axes :
m |
|
|
Speed of Axis A1 :
Speed (V) :
(reference units/min) |
|
500,000 |
(IFMX) I
|
|
\
|
Y >
: Time (t)
|
Speed of Axis B1 |
|
Speed (V) |
(reference units/min) :
550,000 |
(IFMX) |
|
|
|
|
>
Time (t)

6-44

6.1 Axis Setting Instructions

Change Interpolation Feed Speed Unit (FUT)

Change Interpolation Feed Speed Unit (FUT)

The FUT instruction can be used to change the speed unit for the following interpolation instructions.
* Set Maximum Interpolation Feed Speed (FMX)

* Set Maximum Individual Axis Speeds for Interpolation (IFMX)

* Linear Interpolation (MVS)

* Circular Interpolation (MCW/MCC)

* Helical Interpolation (MCW/MCC)

* Linear Interpolation with Skip Function (SKP)

The interpolation feed speed unit that is selected is retained until it is set again with the FUT instruction.

The interpolation feed speed unit is reference units/min when program operation starts.
Speed (V)
A

Maximum interpolation feed speed
(reference units/min)

Interpolation feed speed

(reference units/min) / \

Time (t)
Before the Interpolation Feed Speed Unit Is Changed
Speed (V)
A

Maximum interpolation feed speed
(reference units/s)
Interpolation feed speed
(reference units/s)

Time (t)

After the Interpolation Feed Speed Unit Is Changed

1. If the FUT instruction has not been executed, the interpolation feed speed unit is reference
units/min.

2. If the FUT instruction is set out of range, a compiler error will occur.

3. You can use the FUT instruction with the following versions.

Information

Machine Controller or MPE720

Applicable Versions

MP3000-series Machine Controller

Ver. 1.08 or later

MPE720 Version 7

Version 7.23 or later

Motion Language Instructions

6-45

6-46

6.1 Axis Setting Instructions

Change Interpolation Feed Speed Unit (FUT)

Format

The format of the FUT instruction is as follows:

FUT Uinterpolation feed speed unit_number,

ltem Unit Applicable Data
Interpolation Directly designated value
feed speed - 0: Reference units/min
unit number 1: Reference units/s

When the FUT instruction is executed to change the unit, the values for FMX, IFMX, F, and IFP are

initialized to 0. After you change the unit, set the interpolation feed speeds according to the new unit.
Note

Programming Example

A programming example that uses the FUT instruction is given below.

FUT U1; "Change interpolation feed speed from reference units/min to reference units/s."
INC; "Incremental Mode’
FMX T600000; "Maximum interpolation feed speed (reference units/s)"
IAC T100; "Acceleration time = 100 ms"
IDC T100; "Deceleration time = 100 ms"
MVS [A1]10000 F600000; "Linear interpolation feed speed = 600,000 reference units/s"
FUT UQ; "Change interpolation feed speed from reference units/s to reference units/min."
FMX T600000; "Maximum interpolation feed speed (reference units/min)"
MVS [A1]10000 F600000; "Linear interpolation feed speed = 600,000 reference units/min"
END;
Speed (V)
600,000
(reference units/s)
600,000
(reference units/min) / \
« o « >ie > > Time (t)
Acceleration time Deceleration time Acceleration time Deceleration time
=100 ms =100 ms =100 ms =100 ms

6.1 Axis Setting Instructions

Set Interpolation Feed Speed Ratio (IFP)

Set Interpolation Feed Speed Ratio (IFP)

The IFP instruction sets the feed speed for the following axis movement instructions. The feed speed is
specified as a percentage of the maximum interpolation feed speed.
* MVS (Linear Interpolation)
* MCC or MCW (Circular Interpolation)
* MCC or MCW (Helical Interpolation)
» SKP (Linear Interpolation with Skip Function)
In this manual, the above axis movement instructions are referred to as interpolation instructions, and the
term interpolation feed speed refers to the feed speed for those instructions. The interpolation feed speed
that is set by the IFP instruction remains in effect until it is changed by another IFP instruction or until an
F reference is made in an interpolation instruction.
The interpolation feed speed is not set when program operation starts. Set the interpolation feed speed by
executing the Set Interpolation Feed Speed Ratio (IFP) instruction or by specifying an F reference before
executing any interpolation instructions.

Speed (V) A
100% = Maximum interpolation feed speed

100% [-

Interpolation ~ f---------- £ -
feed speed ratio / \

Time (t)

Fig. 6.19 Set Interpolation Feed Speed Ratio

3 1. You must execute the Set Maximum Interpolation Feed Speed (FMX) instruction before you exe-
@ cute the IFP instruction. A motion program alarm will occur if the IFP instruction is executed with-
out first executing the FMX instruction.
2. A motion program alarm will occur if an interpolation instruction is executed without setting the
interpolation feed speed even once.

Important

Information 1 F references can be used to specify the interpolation feed speed by writing a numerical value or
register following the character F in interpolation instructions. The interpolation feed speed is
specified in reference units/min.

2. If an IFP instruction is executed after an F reference, the interpolation feed speed specified by
the F reference will be canceled. If an F reference is made after an IFP instruction is executed,
the interpolation feed speed specified by the IFP instruction will be canceled.

3. The IFP instruction sets the feed speed for the MVS, MCW, MCC, and SKP interpolation
instructions. Use the VEL instruction to set the feed speed for the MOV and EXM positioning
instructions.

4. The IFP instruction is not related to any setting parameters.

The interpolation feed speed ratio that is specified by the IFP instruction is treated as control
data that is reserved exclusively for motion programs. There is no setting parameter that you
can use to specify the interpolation feed speed ratio.

Motion Language Instructions

6-47

6.1 Axis Setting Instructions

Set Interpolation Feed Speed Ratio (IFP)

Format

The format of the IFP instruction is as follows:

IFP Pinterpolation_feeding_speed._ratio;

ltem Unit Applicable Data

* Directly designated value

Interpolation feed d ratio | % . L . . .
fietpoiation feed speed ratio | 7o * Indirect designation with a double-length integer register

Information You cannot place an IFP instruction in the same block as any interpolation instruction (MVS,
MCW, MCC, or SKP).

Settings for the IFP Instruction

This section describes the settings for the IFP instruction.

Speed (V)
A
Maximum
, , \) interpolation feed
100% L fffff speed (FMX)

(composite speed)

@ Interpolation feed

speedratio (IFP) | |/ >
i N |
i] : 1 Time (t)
I S Em—— R S EEEE—
" Interpolation acceleration * ' Interpolation deceleration !
time (IAC) time (IDC)

@ Interpolation Feed Speed Ratio
The interpolation feed speed ratio is set by specifying a register or a numerical value following the character
“P” in the IFP instruction.
The time set with the IFP instruction designates the ratio of the interpolation feed speed to the maximum
interpolation feed speed.
The interpolation feed speed is the composite speed of all axes specified by the MVS, MCW, MCC, and SKP
interpolation instructions.
The valid range for the interpolation feed speed ratio is 1% to 100%.
You can select whether to apply an interpolation override to the interpolation feed speed.
Refer to the following section for how to use interpolation overrides.
I Work Registers (page 1-23)

6-48

6.1 Axis Setting Instructions

Set Interpolation Feed Speed Ratio (IFP)

Example When Not Specifying an Interpolation Override

FMX reference « IFPreference value _ Interpolation
value (1% to 100%) feed speed
FMX reference »| IFP reference value > Interpolation
value feed speed

Example When Specifying an Interpolation Override

FMX reference % IFP reference value % Interpolation override - Interpolation
value (1% to 100%) 0to 327.67% feed speed

FMX reference > IFP reference > Interpolation > Interpolation
value value override feed speed

@

Important

A motion program alarm will occur if a value that exceeds 100% is specified for the IFP reference
value (%).

Information

1. The interpolation feed speed can be specified by using either an IFP instruction or an F refer-
ence.
Refer to the following section for details on the interpolation feed speed.
I Linear Interpolation (MVS)-Settings for the MVS Instruction (page 6-90)

2. If the interpolation feed speed with interpolation override applied exceeds the FMX refer-
ence value, the output value of the interpolation feed speed will be reset to the FMX refer-
ence value.

Programming Example

A programming example that uses the IFP instruction is given below.

INC; "Incremental Mode

FMX T300000; "Set maximum interpolation feed speed (reference units/min).
IAC T4000; "Change interpolation acceleration time (ms).

IDC T4000; "Change interpolation deceleration time (ms).

IFP P75; "Set interpolation feed speed ratio (%).

MVS [A1]30000 [B1]30000; "Linear interpolation

DL00000 = 50; "Interpolation feed speed ratio (%)

IFP PDLO000O; "Set interpolation feed speed ratio (%).

MV'S [A1]30000 [B1]30000; "Linear interpolation

END;

Composite speed (V)

100% = Maximum interpolation feed speed

100% % ; - 300,000 (reference units/min)
75% / > \ = : > < 225,000 (reference units/min)
50% / \/ > \ 150,000 (reference units/min)

>
Time (t)

Fig. 6.20 Programming Example for IFP Instruction

Motion Language Instructions

6-49

6.1 Axis Setting Instructions

Change Interpolation Acceleration Time (IAC)

Change Interpolation Acceleration Time (IAC)

The TAC instruction changes the interpolation acceleration times for the following axis movement instruc-
tions.

* MVS (Linear Interpolation)

* MCC or MCW (Circular Interpolation)

* MCC or MCW (Helical Interpolation)

» SKP (Linear Interpolation with Skip Function)

The FMX instruction must be executed first before an IAC instruction is executed.

The acceleration time that is set by the IAC instruction remains in effect until it is changed by another IAC

instruction.

The interpolation acceleration time is set to 0 ms when program operation starts.

Speed (V) A

Specified maximum
interpolation feed |---------mm oo -
speed 7 »

Interpolation| ________ P

feed speed / : \
b e

IAC Time (t)
Before acceleration time is changed
Speed (V) A l
Specified maximum
interpolation feed [-------cccommooe oo .
speed L N .
Interpolationf------------
feed speed / ; \
« > Ny
' IAC ' Time (t)

After acceleration time is changed

Fig. 6.21 Change Interpolation Acceleration Time

1. The IAC instruction changes the acceleration time for the MVS, MCW, MCC, and SKP inter-
polation instructions.
Use the ACC instruction to set the acceleration time for the MOV, EXM, and MVT positioning
instructions.

2. The TAC instruction is not related to any setting parameters.
The interpolation acceleration time specified by the IAC instruction is treated as control data
that is reserved exclusively for motion programs. There is no setting parameter that you can use
to specify the interpolation acceleration time.

Information

Format

The format of the IAC instruction is as follows:

IAC Tinterpolation_acceleration_time;

ltem Unit Applicable Data

* Directly designated value
* Indirect designation with a double-length
integer register

ms or reference units/s>

Interpolation acceleration time . . >)
(specified with IUT instruction)

6-50

6.1 Axis Setting Instructions

Change Interpolation Acceleration Time (IAC)

Settings for the IAC Instruction

This section describes the settings for the IAC instruction.

Speed (V)

Specified maximum
interpolation feed

speed (FMX) H :
(composite speed) N RRCTCEEEEET L LR EEE PR EREEEERRDY EESREEEER Ey

Interpolation feed < ’

speed
(F reference or IFP)
(composite speed)

P > Time ()

< »

@Interpolation acceleration
time (IAC)

@ Interpolation acceleration time
The interpolation acceleration time is set by specifying a register or a numerical value following the charac-
ter “T” in the IAC instruction.
The time set with the IAC instruction designates the amount of time required to accelerate from a speed of 0
to the maximum interpolation feed speed.
The valid range for the interpolation acceleration time is 0 to 32,767 ms.

Programming Example

A programming example that uses the IAC instruction is given below.

INC; "Incremental Mode

FMX T300000; "Set maximum interpolation feed speed (reference units/min).
IDC T4000; "Change interpolation deceleration time (ms).

IAC T2000; "Change interpolation acceleration time (ms).

MVS [A1]130000 [B1]30000 F150000; "Linear interpolation

DL00000 = 4000; "Interpolation acceleration time (ms)

IAC TDLO0000O; "Change interpolation acceleration time (ms).

MVS [A1]30000 [B1]30000; "Linear interpolation

END;

Composite speed (V)
(reference units/min)

Motion Language Instructions

A
300,000 fffffffff oo R ffffffffffff e FMmX
150,000 / : > \/ —> \ F reference of MVS
— i | >
LA » A Time (t)
2s 4s (s)

Fig. 6.22 Programming Example for IAC Instruction

6-51

6-52

6.1 Axis Setting Instructions

Change Interpolation Deceleration Time (IDC)

Change Interpolation Deceleration Time (IDC)

The IDC instruction changes the interpolation deceleration time for the following axis movement instruc-
tions.
* MVS (Linear Interpolation)
* MCC or MCW (Circular Interpolation)
* MCC or MCW (Helical Interpolation)
» SKP (Linear Interpolation with Skip Function)
The FMX instruction must be executed first before an IDC instruction is executed. The deceleration time
that is set by the IDC instruction remains in effect until it is changed by another IDC instruction.
The interpolation deceleration time is set to 0 ms when program operation starts.
Speed (V) y
Specified maximum

interpolation feed
speed

Interpolation

feed speed
Dc Time (t)
Before deceleration time is changed

Speed (V) 4 l
Specified maximum
interpolation feed ~ -------====--mmmopmm s o mmmomo oo "
speed N

Interpolation [----------;

feed speed / \

' IDC * Time (t)

After deceleration time is changed

Fig. 6.23 Change Interpolation Deceleration Time

1. The IDC instruction changes the deceleration time for the MVS, MCW, MCC, and SKP inter-
polation instructions.
Use the DCC instruction to set the deceleration time for the MOV, EXM, and MVT positioning
instructions.

. The IDC instruction is not related to any setting parameters.
The interpolation deceleration time specified by the IDC instruction is treated as control data
that is reserved exclusively for motion programs. There is no setting parameter that you can use
to specify the interpolation deceleration time.

Information

Format

The format of the IDC instruction is as follows:

IDC Tinterpolation_deceleration_time;

ltem Unit Applicable Data

s o reference units/s2 * Directly designated value

Interpolation deceleration time

(specified with IUT instruction)

* Indirect designation with a double-length
integer register

6.1 Axis Setting Instructions

Change Interpolation Deceleration Time (IDC)

Settings for the IDC Instruction

This section describes the settings for the IDC instruction.

Speed (V)

A

Specified maximum
interpolation feed !
speed (FMX) -mmmmmmm oo L
(composite speed) s S

Interpolation feed

speed | ’

(F reference or IFP)
(composite speed)

'€ > Time (t)

@ Interpolation deceleration
time (IDC)

@ Interpolation Deceleration Time
The interpolation deceleration time is set by specifying a register or a numerical value following the charac-
ter “T” in the IDC instruction.
The time set with the IDC instruction designates the amount of time required to decelerate from the maxi-
mum interpolation feed speed to a speed of 0.
The valid range for the interpolation deceleration time is 0 to 32,767 ms.

Programming Example

A programming example that uses the IDC instruction is given below.

INC; "Incremental Mode

FMX T300000; "Set maximum interpolation feed speed (reference units/min).
IAC T4000; "Change interpolation acceleration time (ms).

IDC T2000; "Change interpolation deceleration time (ms).

MVS [A1]30000 [B1]30000 F150000; "Linear interpolation

DL00000 = 4000; "Interpolation deceleration time (ms)

IDC TDLO000O; "Change interpolation deceleration time (ms).

MVS [A1]30000 [B1]30000; "Linear interpolation

END;

Composite speed (V)
(reference units/min)

Motion Language Instructions

300,000 [mmmmmmmmmm e i """""" N == FMX

150,000 /

\f

IDC | e PC i Time()
b 2s i 4s i (s)

Fig. 6.24 Programming Example for IDC Instruction

6-53

6.1 Axis Setting Instructions

Change Interpolation S-curve Time (ISC)

Change Interpolation S-curve Time (ISC)

The ISC instruction changes the S-curve acceleration and deceleration times for the following axis move-
ment instructions. The interpolation S-curve time for the S-curve acceleration/deceleration function sup-
presses mechanical vibration during acceleration and deceleration.

* MVS (Linear Interpolation)

* MCC or MCW (Circular Interpolation)

* MCC or MCW (Helical Interpolation)

» SKP (Linear Interpolation with Skip Function)

The interpolation S-curve time that is set by the ISC instruction remains in effect until it is changed by
another ISC instruction. The interpolation S-curve time is set to 0 ms when program operation starts.

Speed (V)
Specified maximum 4
interpolation feed /
speed J
Interpolaton | /
feed speed

» Time (t)

>
9]

1 IDC
Before interpolation S-curve time is changed

Speed (V)
Specified maximum 4

interpolation feed | ; 7:
speed J 1:
Interpolation e
feed speed

» Time (1)

IAC

ISC |
After interpolation S-curve time is changed

1. To use the ISC instruction, set bits 8 to B (Filter Type Selection) of OWOOO03 for each axis to
0 (No filter).

2. The ISC instruction is not related to any setting parameters.
The interpolation S-curve time specified by the ISC instruction is treated as control data that is
reserved exclusively for motion programs. There is no setting parameter that you can use to
specify the interpolation S-curve time.

3. You can use the ISC instruction with the following versions.

Information

6-54

Machine Controller or MPE720

Applicable Versions

MP3000-series Machine Controller

Version 1.41 or later

MPE720 Version 7

Version 7.45 or later

6.1 Axis Setting Instructions

Format

The format of the IDC instruction is as follows:

ISC Tinterpolation_S-curve_time;

Change Interpolation S-curve Time (ISC)

ltem Unit Applicable Data
. . * Directly designated value
Interpolation S-curve time ms
* Indirect designation with a double-length integer register

Settings for the ISC Instruction

This section describes the settings for the ISC instruction.

Speed (V)
A
Specified maximum
interpolation feed speed |[----------------sr---z=q----
(FMX) (composite speed) S/ I/’/
Interpolation feed speed A
(F reference or IFP) |77 777777777 s

(composite speed)

~

A 4

- : —— Time (t)
! Interpolation ! Interpolation | i
acceleration tim \ deceleration time \
(IAC) (IDC)
® Interpolation S-curve time (ISC) @ Interpolation S-curve time (ISC)

@ Interpolation S-curve Time

The interpolation S-curve time is set by specifying a register or a numerical value after the character "T" in

the ISC instruction.

The time that is set with the ISC instruction designates the amount of time for the S-curve area when acceler-

ating and decelerating.

The following table gives the setting range of the interpolation S-curve time.

Machine Controller Type

Setting Range [ms]

MP3100, MP3200/CPU-202,
MP3300/CPU-301, MP3300/CPU-302, £-7C

0to510

MP3200/CPU-201

0to 32

A motion program alarm (1E hex: T Address out of range) will occur if the instruction is executed

with a time outside the setting range.
Note

Motion Language Instructions

6-55

6.1 Axis Setting Instructions

Change Interpolation S-curve Time (ISC)

Programming Example

A programming example that uses the ISC instruction is given below.

The following example executes a MVS instruction with an interpolation S-curve time of 0 ms and a MVS
instruction with an interpolation S-curve time of 100 ms.

INC; "Incremental Mode

FMX T300000; "Set maximum interpolation feed speed (reference units/min).
IAC T2000; "Change interpolation acceleration time (ms).

IDC T4000; "Change interpolation deceleration time (ms).

MVS [A1]30000 [B1]30000 F200000; "Linear interpolation

ISC T100; "Change interpolation S-curve time (ms).

MVS [A1]30000 [B1]30000; "Linear interpolation

END;

Composite speed (V)
(reference‘units/min)
4

300000

200000

Additional Information

€ Axis Movement Paths and S-curve Acceleration/Deceleration

The interpolation S-curve time set by the ISC instruction does not affect the movement path of the MVS,
MCW, MCC, or SKP interpolation instructions.

The operation will differ when bits 8 to B (Filter Type Selection) of OWLO03 for each axis are set to 2
(Moving average filter).

<Movement path of linear interpolation> <Movement path of circular interpolation>

Y Y
A A

Interpolation S-curve time = 0 Interpolation S-curve time = 0

------- Interpolation S-curve time # 0 -=-----|nterpolation S-curve time # 0

End point
End point
Start point Start point
» X » X

6-56

6.1 Axis Setting Instructions

Change Interpolation S-curve Time (ISC)

@ Filter Type Selection

The ISC instruction has an interpolation S-curve acceleration/deceleration function that differs from the
interpolation S-curve acceleration/deceleration filter set by bits 8 to B (Filter Type Selection) of the
OWO0OO03 setting parameter.

For example with the SVC, the S-curve acceleration/deceleration filter for bits 8 to B (Filter Type Selec-
tion) of the OWODOO03 setting parameter is a SERVOPACK function, whereas ISC (Change S-curve Inter-
polation Time) is a controller function.

You can use both of these functions, but normally use only one function.
€ Operation for Execution of Interpolation Instructions

B Request Temporary Stop Operation

The axis decelerates to zero speed and stops according to the deceleration time set by the IDC instruction
and the interpolation S-curve time.

If the IDH instruction was used, the axis decelerates and stops according to the deceleration time set by the
IDH instruction.

B Request Stop Operation

The deceleration time set by the IDC instruction and the interpolation S-curve time are ignored, and the
axis stops immediately.

B Interpolation Override Operation

* When Accelerating Due to an Interpolation Override Change
The axis accelerates to the target speed according to the acceleration time that was set and the interpola-
tion S-curve time.

* When Decelerating Due to an Interpolation Override Change
The axis decelerates to the target speed according to the deceleration time that was set and the interpola-
tion S-curve time.

B ACCMODE (Set Interpolation Acceleration/Deceleration Mode) Operation

A motion program alarm (33 hex: Interpolation S-curve acceleration/deceleration conditions error) will
occur if an MVS, MCC, MCW, or SKP interpolation instruction is executed.

B Operation When the Interpolation S-curve Time Is Less Than the High-speed Scan Set-
ting Value

The axis operates in the same manner as when the interpolation S-curve time is 0 ms. (Same operation as
ISC TO.)

B Operation When the Interpolation S-curve Time Is a Non-integral Multiple of the High-
speed Scan Setting

The axis operates with an interpolation S-curve time that is smaller than the setting value in the ISC
instruction.

If the interpolation S-curve time is 10 ms and the high-speed scan setting value is 3 ms, the axis

Example
operates in the same manner as when the interpolation S-curve time is 9 ms.

Motion Language Instructions

6-57

6-58

6.1 Axis Setting Instructions

Change Interpolation Deceleration Time for Temporary Stop (IDH)

Change Interpolation Deceleration Time for Temporary Stop

(IDH)

The IDH instruction changes the interpolation deceleration time for temporary stop for the following axis

movement instructions.

* MVS (Linear Interpolation)

* MCC or MCW (Circular Interpolation)
* MCC or MCW (Helical Interpolation)
» SKP (Linear Interpolation with Skip Function)

Use the IDH instruction when you want the axes to rapidly decelerate to a stop faster than the deceleration

time specified by the IDC instruction.

The FMX instruction must be used first to set the maximum interpolation feed speed before an IDH

instruction is executed.

The deceleration time that is set by the IDH instruction remains in effect until it is changed by another

IDH instruction.

If the IDH instruction is not used, the deceleration time set by the IDC instruction is used.

Speed (V) a

Specified maximum
interpolation feed [--------~ Caininiie DS
speed /

Interpolation |---
feed speed

I
I
I
I
I
I
I
I
I
I
I
I
I
[
<

» Time (1)

»
»

Control signal bit 1

(Request Temporary Stop)

|
1
I
|
1
1

IDC

Before interpolation deceleration time for temporary stop is set

Speed (V) &

Specified maximum
interpolation feed [~-------~ =
speed /

Interpolation [—--
feed speed

'

> Time (t)

%

Control signal bit 1

(Request Temporary Stop)

IDC

1
1
1
1
1
! >
T »
1
1
1
\

After interpolation deceleration time for temporary stop is set

Fig. 6.25 Change Interpolation Deceleration Time for Temporary Stop

6.1 Axis Setting Instructions

Change Interpolation Deceleration Time for Temporary Stop (IDH)

Format

The format of the IDH instruction is as follows:

IDH Tinterpolation_deceleration_time_for_temporary_stop;

ltem Unit Applicable Data

* Directly designated value

* Indirect designation with a double-
length integer register

Interpolation deceleration time for ms or reference units/s>
temporary stop (specified with IUT instruction)

Settings for the IDH Instruction

This section describes the settings for the IDH instruction.

Speed (V) 4

Specified maximum
interpolation feed speed | - ________________
(FMX) ;
(composite speed) ’

Interpolation feed speed | --- -
(F reference or IFP)

(composite speed)

@ Interpolation deceleration
time for temporary stop (IDH)

1
| »

1 »
Interpolation deceleration time (IDC)

Control signal bit 1
(Request Temporary Stop)

@ Interpolation Deceleration Time for Temporary Stop
The interpolation deceleration time for temporary stop is set by specifying a register or a numerical value fol-
lowing the character “T” in the IDH instruction.
The time set with the IDH instruction designates the amount of time required to decelerate from the maxi-
mum interpolation feed speed to a speed of 0.
The valid range for the interpolation deceleration time for temporary stop is 0 to 32,767 ms.

Programming Example

A programming example that uses the IDH instruction is given below.

INC; "Incremental Mode

FMX T300000; "Set maximum interpolation feed speed (reference units/min).
IAC T2000; "Change interpolation acceleration time (ms).

IDC T4000; "Change interpolation deceleration time (ms).

IDH T100; "Set the interpolation deceleration time for temporary stop (ms).

MVS [A1]30000 [B1]30000 F150000; ‘"Linear interpolation (request temporary stop during axis operation)
END;

Motion Language Instructions

6-59

6-60

6.1 Axis Setting Instructions

Change Interpolation Deceleration Time for Temporary Stop (IDH)

Composite speed (V)
(reference units/min)
A

300,000

150,000 F reference of MVS

_ Time (1)
T (s)

Control signal bit 1
(Request Temporary Stop)

Fig. 6.26 Programming Example for IDH Instruction

6.1 Axis Setting Instructions

Change Interpolation Deceleration Time for Temporary Stop (IDH)

Additional Information on the IDH Instruction

€ Operation When the Deceleration Time Specified by the IDH Instruction Is
Greater than the Deceleration Time Specified by the IDC Instruction

If the deceleration time specified by the IDH instruction is greater than the deceleration time specified by
the IDC instruction, the remaining travel distance for the interpolation instructions may be less than the
travel distance required to decelerate to a stop in the specified deceleration time.

If the remaining travel distance is less than the distance required to decelerate to a stop, the axis will stop
immediately when the remaining distance equals 0.

Speed (V) 4

Specified maximum

interpolation feed --------- e il N
speed /

Stops immediately when
the remaining distance is 0.

Interpolationf---
feed speed

== » Time (t)

It
%

Control signal bit 1

(Request Temporary Stop)

€ Operation When a Skip Signal Is Input

If a skip signal is input after the deceleration time is set by an IDH instruction while execution of an SKP
instruction is in progress, the deceleration time set by the IDH instruction is used.

€ Operation When the Acceleration/Deceleration Mode Is Set

The operation when a temporary stop request is made while execution of an interpolation instruction is in
progress after the acceleration/deceleration mode was set with the ACCMODE instruction described
below.

B Temporary Stop Request before the Interpolation Distribution for the Next Block Begins
The axis decelerates to a stop in the deceleration time specified by the IDH instruction.

Even if the remaining travel distance for the previous block reaches 0, the distribution for the interpolation
instructions in the next block has not started yet and therefore no interpolation between the blocks occurs.

B Temporary Stop Request after the Interpolation Distribution for the Next Block Begins
Both the previous block and the next block will use the deceleration time set with the IDH instruction.

After the temporary stop request is removed, distribution of the remaining distance is performed for both
the previous block and the next block.

Motion Language Instructions

6-61

6.1 Axis Setting Instructions

6-62

Change Interpolation Acceleration/Deceleration Unit (IUT)

Change Interpolation Acceleration/Deceleration Unit (IUT)

The IUT instruction can be used to change the acceleration/deceleration unit for interpolation instructions
(MVS, SKP, MCW, and MCC).

The unit set with the IUT instruction is used for the following instructions.

* Change Interpolation Acceleration Time (IAC)

* Change Interpolation Deceleration Time (IDC)

* Change Interpolation Deceleration Time for Temporary Stop (IDH)

The interpolation acceleration/deceleration unit that is selected is retained until it is set again with the IUT
instruction.

The interpolation acceleration/deceleration time unit is set to milliseconds when program operation starts.

Speed (V)
A

Maximum interpolation feed speed

Interpolation feed speed / : : \
> ' '

-

Time (t)

" IAC " Ipc
Before the Interpolation Acceleration/Deceleration Unit Is Changed

4

Speed (V)
A

Maximum interpolation feed speed

Interpolation feed speed / \

-

IAC IDC Time (t)

After the Interpolation Acceleration/Deceleration Unit Is Changed

1. If the IUT instruction has not been executed, the interpolation acceleration/deceleration unit is
milliseconds.

2. If the IUT instruction is set out of range, a compiler error will occur.

3. You can use the IUT instruction with the following versions.

Information

Machine Controller or MPE720 Applicable Versions
MP3000-series Machine Controller Ver. 1.08 or later
MPE720 Version 7 Version 7.23 or later

6.1 Axis Setting Instructions

Change Interpolation Acceleration/Deceleration Unit (IUT)

Format

The format of the IUT instruction is as follows:

T Uinterpolation _acceleration/deceleration unit_number;

ltem Unit Applicable Data
Interpolation accel- Directly designated value
eration/deceleration - 0: ms (default)
unit number 1: Reference units/s’

R 1. When the IUT instruction is executed to change the interpolation acceleration/deceleration unit, the
@ most gradual acceleration/deceleration is set to ensure safety. After you change the unit, set the
interpolation acceleration/deceleration rates according to the new unit.

IUT Set Value Set Value for IAC, IDC, or IDH

Changed from U0 to U1 | 1 (reference units/s?)
Changed from U1 to UO | 32,767 (ms)

Important

2. The setting ranges of the IAC, IDC, and IDH instructions depend on the acceleration/deceleration

unit.
|UT Set Value Set Value for IAC, IDC, or IDH
uo 0 to 32,767 (ms)
U1 1 to 2,147,483,647 (reference units/s?)

Programming Example

A programming example that uses the [UT instruction is given below.

INC; "Incremental Mode"
FMX T600000; "Maximum interpolation feed speed"
IUT U1; "Change interpolation acceleration/deceleration unit from ms to reference units/s<."
IAC T1000; "Acceleration rate = 1,000 reference units/s>"
IDC T1000; "Deceleration rate = 1,000 reference units/s"
MVS [A1]1000000 F600000; "MVS @’
IUT UO; "Change interpolation acceleration/deceleration unit from reference units/s? to ms."
IAC T1000; "Acceleration time = 1,000 ms"
IDC T1000; "Deceleration time = 1,000 ms"
MVS [A1]1000000 F600000; "MVS @"
END;
Speed (V)
(reference units/min) 4
600,000
1,000 (reference units/s2)
1,000 ms 1,000ms! Time (t)

Motion Language Instructions

6-63

6-64

6.1 Axis Setting Instructions

Set Interpolation Feed Speed Axes (+ and -)

Set Interpolation Feed Speed Axes (+ and -)

The Set Interpolation Feed Speed Axes (+ and -) instructions allow you to arbitrarily set the axes to use as
component axes for the interpolation feed speed.

These instructions can be used for the MVS, SKP, MCW Helical, and MCC Helical interpolation instruc-
tions.

If “4+” is given or nothing is given before the logical axis name, the axis is one of the component axes for
the interpolation feed speed.

If “-” is given before the logical axis name, the axis operates at a speed that is synchronized with the inter-
polation feed speed.

The following figure shows the linear operation for three axes when logical axes 1 and 2 are set as interpo-
lation feed speed axes (i.e., with “+”) and logical axis 3 is not set as an interpolation feed speed axis (i.e.,
with “-”).

Logical axis 3
A

N
RN

Synchronized — | L 3
with interpolation | 4 0ve 000t of axes™ End position
feed speed h

» Logical axis 1

OK

N
Program current ‘\\

position S
\\
/ S
N

Interpolation feed speed \\
(composite speed)

Logical axis 2

Information Normally when you need to maintain a constant speed for a specific axis when performing an
interpolated movement for more than one axis, you must calculate the composite interpolation
feed speed.

However, you can use these instructions to perform synchronized control for a constant speed of a
specific axis without calculating the composite speed.

The master axes (+) operate at the specified interpolation feed speed and the slave axes (-) operate
in synchronization with the master axes and at a speed that corresponds to the travel distances of
the slave axes.

6.1 Axis Setting Instructions

Set Interpolation Feed Speed Axes (+ and -)

Format

The format of the Set Interpolation Feed Speed Axes instructions is as follows:

* Format in the MVS Instruction
MVS [(+)Logical_axis_name_1] Reference_position [(+)Logical _axis_name_2] Reference_position
[-Logical_axis_name_3] Reference_position . . . Finterpolation_feed_speed;

* Format in the SKP Instruction
SKP [(+)Logical _axis_name_1] Reference_position [(+)Logical _axis_name_2] Reference_position
[-Logical _axis_name_3] Reference_position . . . Finterpolation_feed _speed SSskip_input_signal_se-
lection;

* Format in the MCW or MCC Helical Interpolation with Specified Center Point Instruction
MCW (or MCC) [Logical_axis_name_1] End_position [Logical_axis_name_2] End_position Ucen-
ter_point_position VVcenter_point_position
[-Logical_axis_name_3] End_position_for_linear_interpolation Tnumber_of _turns Finterpolation_-
feed_speed;

* Format in the MCW or MCC Helical Interpolation with Specified Radius Instruction
MCW (or MCC) [Logical_axis_name_1] End_position [Logical_axis_name_2] End_position Rradius
[-Logical_axis_name_3] End_position_for_linear_interpolation Finterpolation_feed_speed;

ltem Unit Applicable Data
Reference position Reference units
Interpolation feed speed Reference units/min

Skip input signal selection -

* Directly designated value

End position Reference units)) . . .
- ,. - * Indirect designation with a double-length integer
Center point position Reference units .
- - - — - register
Linear interpolation end position | Reference units
Number of turns Number of turns
Radius Reference units

o Precautions for the MVS and SKP Instructions
@ » If you add “+” before all of the logical axis names, the normal interpolation operation will be per-
formed.

 If you add “-” before all of the logical axis names, a compiler error will occur.

» Depending on the settings, the speed of an axis that is not set as an interpolation feed speed axis may
exceed the set value of the FMX instruction. To ensure safety, set the maximum speed for such an
axis with the [IFMX instruction before you use the axis.

« If the composite travel distance for the axes that are set as interpolation feed speed axes is 0, a
motion program alarm will occur and the axes will not operate.

Important

o Precautions for the MCW and MCC Helical Interpolation Instructions
@ » If you add “+” before all of the logical axis names of the linear interpolation axes for an MCW or
MCC Helical Interpolation instruction, the normal helical interpolation operation will be performed.
 Ifyou add “+” or “-” before the logical axis names of the circular interpolation axes, a compiler error
will occur.

* The MCW and MCC Circular Interpolation instructions (with specified center points or specified
radii) do not support this function.

» Depending on the settings, the speed of an axis that is not set as an interpolation feed speed axis may
exceed the set value of the FMX instruction. To ensure safety, set the maximum speed for such an
axis with the [FMX instruction before you use the axis.

+ If the composite travel distance for the axes that are set as interpolation feed speed axes is 0, a
motion program alarm will occur and the axes will not operate.

Important

Motion Language Instructions

6-65

6.1 Axis Setting Instructions
Set Interpolation Feed Speed Axes (+ and -)

Programming Example
Programming examples that use the Set Interpolation Feed Speed Axes instructions are given below.

€ Specification with the MVS Instruction
"Incremental Mode"
"Set maximum interpolation feed speed."
"Interpolation acceleration time = 100 ms"
"Interpolation deceleration time = 100 ms"
"Linear interpolation with specification of

INC;
interpolation feed speed axes"

FMX T1000000;
IAC T100;

IDC T100;

MVS [+A1]10000 [-B1]20000 [-C1]30000 F1000000;

END;
Speed (V)
(reference units/min) A
3,000,000 ; \
(Fx3) / |
-II \|
/ \ — A1 axis with “+”
2,000,000 ,'I ,
(Fx2) i/ o
2 N B1 axis with “-
i/
I/
1,000,000 [/ e L it 6
(F = FMX) /",/I C1 axis with
,III/
)
/ >
Time (t)

Fig. 6.27 Programming Example of MVS Instruction with Specification of Interpolation Feed Speed Axes

"Absolute Mode"
"Set maximum interpolation feed speed."

"Coordinate plane setting"
"Helical interpolation with specification of inter-

€ Specification with the MCW and MCC Helical Interpolation Instructions

ABS;
FMX T30000000;

PLN [A1][B1];
MCC [A1]1000 [B1]0 R1000 [-C1]500 F2000;
polation feed speed axes"

END;
C1
A
BOQ [------mmmmomm s End position
Linear interpolation
/ (Axis operates in synchronization with composite
Radius 1,000 speed (F) for circular interpolation.)
{ 1000
Q > B1

Circular interpolation end position

"""" e '\

Program
Circular interpolation

Al current position
Fig. 6.28 Programming Example of MCW or MCC Helical Interpolation Instruction with Specification of
Interpolation Feed Speed Axes

6-66

6.1 Axis Setting Instructions

Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

The ACCMODE instruction sets the acceleration/deceleration mode for the following interpolation
instructions. You can use the ACCMODE instruction to connect the speeds between continuous interpola-

tion instructions.

* MVS (Linear Interpolation)

* MCC or MCW (Circular Interpolation)

* MCC or MCW (Helical Interpolation)

* SKP (Linear Interpolation with Skip Function)

The interpolation acceleration/deceleration mode set by the ACCMODE instruction remains in effect until

it is changed by another ACCMODE instruction.

The interpolation acceleration/deceleration mode is set to the default mode (interpolation acceleration/

deceleration mode 0) when program operation starts.

Information - The interpolation acceleration/deceleration mode cannot be changed between continuous inter-

polation blocks.

Change the interpolation acceleration/deceleration mode only after the axes decelerate to a stop.
2. If the interpolation acceleration/deceleration mode is set out of range, the operation depends on

the version of the CPU Unit/CPU Module.

Software Version | MPE720 Version 7.24 or Later | MPE720 Version 7.23 or Earlier
CPU Unit/Mod- A motion program alarm (3.1 hex: A motlo_n program alarm (31 hex:
ule Version 1.09 Address M out of range) will occur | Not registered) will occur when an
’ when an interpolation instruction is | interpolation instruction is exe-
or Later
executed. cuted.
Gy Ur?lt/MOd- An alarm will not occur even when an interpolation instruction is executed.
ule Version 1.08
o Bl The current interpolation acceleration/deceleration mode will be retained.

3. When the PFORK instruction is used, the interpolation acceleration/deceleration mode setting
before branching to the forks is inherited by all of the forks. After branching, you can set the
interpolation acceleration/deceleration mode for each fork independently.

Motion Language Instructions

6-67

6-68

6.1 Axis Setting Instructions

Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

Speed (V)
A
>
Before the Interpolation Acceleration/Deceleration Mode Is Set Time (t)
Speed (V)
A
>
>
After the Interpolation Acceleration/Deceleration Mode Is Set Time (t)
Fig. 6.29 Set Interpolation Acceleration/Deceleration Mode
Format

The format of the ACCMODE instruction is as follows:

ACCMODE Minterpolation_acceleration_deceleration_mode;

Item

Unit

Applicable Data

Interpolation acceleration/deceleration mode | —

Directly designated number (0 to 4)

Settings for the ACCMODE Instruction

This section describes the settings for the ACCMODE instruction.

The interpolation acceleration/deceleration mode is set by specifying a numerical value following the

character “M” in the ACCMODE instruction.

There are five interpolation acceleration/deceleration modes.

* Interpolation acceleration/deceleration mode 0 (default mode)

* Interpolation acceleration/deceleration mode 1 (acceleration/deceleration mode with continuous process

control signal monitoring)

* Interpolation acceleration/deceleration mode 2 (acceleration/deceleration mode with interpolation over-

lapping)

* Interpolation acceleration/deceleration mode 3 with continuous deceleration for minute blocks (acceler-
ation/deceleration mode with continuous process control signal monitoring)

* Interpolation acceleration/deceleration mode 4 (acceleration/deceleration mode with next block speed

specification)

ACCMODE Details

This section describes the five interpolation acceleration/deceleration modes of the ACCMODE instruc-

tion.

6.1 Axis Setting Instructions

Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

@ Interpolation Acceleration/Deceleration Mode 0 (Default Mode) Details

In this mode, acceleration and deceleration are performed according to the acceleration/deceleration times
set with the IAC and IDC instructions.
This is the default mode when program operation starts.

Speed (V)

Acceleration and deceleration according IAC=IDC=0
to the IAC and IDC instructions

ARV EERV.

|-
»

N

v

Time (t)

B Format

Use the following code format to select interpolation acceleration/deceleration mode 0.
ACCMODE MO;

@ Interpolation Acceleration/Deceleration Mode 1 (Acceleration/Deceleration
Mode with Continuous Process Control Signal Monitoring) Details

This mode monitors a continuous process control signal and performs continuous processing between con-

tinuous interpolation blocks when the specified conditions are satisfied.

This mode can be used only when the same axes are used for all continuous interpolation blocks.

Speed (V)
Acceleration and deceleration according Speed malntamed.

to the IAC and IDC instructions
\\ .

|

Time (t)

Continuous process Condition satisfied. — P Condition not satisfied
control signal

A 4

7

B Format

Use the following format to select interpolation acceleration/deceleration mode 1.
ACCMODE Mf1;
MVS [Logical _axis_name_1] Reference_position Finterpolation_feed_speed TWcontinuous_pro-
cess_control_signal,

Or

ACCMODE Mf1;
MVS [Logical_axis_name_1] Reference_position Finterpolation_feed _speed FWcontinuous_pro-
cess_control_signal,

ltem Unit Applicable Data

Continuous process control signal | — All bit data registers (excluding #, C, and D registers)

Note: The format is the same for the MCC, MCW, and SKP instructions.

If the characters “TW” or “FW” are added to the interpolation instruction, continuous process control sig-
nal monitoring is performed. The bit data register specified with the characters “TW” or “FW” is used as
the continuous process control signal.

If the characters “TW” or “FW” are not added to the interpolation instruction, or if the conditions are not
satisfied, the continuous process control signal is not monitored and acceleration/deceleration is per-
formed according to the acceleration/deceleration times set with the IAC and IDC instructions.

Motion Language Instructions

6-69

6.1 Axis Setting Instructions

Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

Information The characters "TW" and "FW" are valid only for interpolation acceleration/deceleration modes 1
and 3 (acceleration/deceleration modes with continuous process control signal monitoring). In
other modes, the operation depends on the software version of the CPU Unit/CPU Module.

Software Version MPE720 Version 7.24 or Later MPE720 Version 7.23 or Earlier

. A motion program alarm (32 hex:
(I B ORI Specified address error) will occur
when an interpolation instruction is
executed.

A motion program alarm (32 hex:
Not registered) will occur when an
interpolation instruction is executed.

Version 1.09 or
Later

CPU Unit/Module | An alarm will not occur even when an interpolation instruction is executed.

Version 1.08 or | The TW or FW address is ignored and the interpolation instruction is exe-
Earlier cuted.

The characters “TW” designate monitoring the continuous process control signal with positive logic.

Continuous process

control signal Operation Summary

ON The deceleration time specified with the IDC instruction is ignored. The current speed is
maintained and pulse distribution is completed with a deceleration time of 0 ms.

OFF The axis decelerates to a stop according to the deceleration time specified with the IDC
instruction.

The characters “FW” designate monitoring the continuous process control signal with negative logic.

Continuous process

control signal Operation Summary

ON The axis decelerates to a stop according to the deceleration time specified with the IDC
instruction.
OFF The deceleration time specified with the IDC instruction is ignored. The current speed is

maintained and pulse distribution is completed with a deceleration time of 0 ms.

Ry
@ If you specify a travel distance that is insufficient to perform continuous processing with the set decel-

eration time, unexpected operation may occur. Also specify a sufficient travel distance.
Important

B Programming Examples

The following example programming uses interpolation acceleration/deceleration mode 1 (acceleration/
deceleration mode with continuous process control signal monitoring).

FMX T30000000;

ABS;

IAC T1000;

IDC T1000;

ACCMODE M1,

MVS [A1] 4000 F50000 TWMBO000001; "®"

IOW MB000001=1; "o
MVS [A1] 8000; "
END;

6-70

6.1 Axis Setting Instructions

Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

The following examples show how to combine the MVS instruction and interpolation acceleration/decel-
eration mode 1.

* When the Continuous Process Control Signal Turns ON after Distribution for MVS Instruction
® Is Completed
The next block is executed after the axis decelerates to a stop for the MVS instruction ©.
For the MVS instruction @, acceleration begins when the speed is 0 (reference units/min).

IoOW @
@ ®

* When the Continuous Process Control Signal Turns ON during Distribution for MVS © (before
Deceleration)
MVS @ is executed at the same speed from MVS @ without decelerating.

Speed (V)
A

v

Time (1)

MB000001

Speed (V)
4 IOW @
(Do not wait if the conditions are already satisfied.)
O] ©)
Time (t)
MB000001

* When the Continuous Process Control Signal Turns ON during Distribution for MVS O (during
Deceleration)
MVS @ is executed with the same speed as when the continuous process control signal turned ON.

Speed (V)
A IoOW @
(Do not wait if the conditions are already satisfied.)
0] 1 ©)
2 >
Time (t)
MB000001

Information . 1- If the reference speed for MVS @ is higher than for MVS @, the end speed of @ is used for the
start speed of ®. The axis then accelerates to the specified speed.
2. If the reference speed for MVS ® is lower than for MVS @, the end speed of @ is used for the
start speed of ®. The axis then decelerates to the specified speed.
3. If the travel distance for MVS ® is shorter than the deceleration distance, distribution is fin-
ished during the deceleration of ®.

Motion Language Instructions

6-71

6-72

6.1 Axis Setting Instructions

Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

B Additional Information

Refer to the additional information below for details on operation in the acceleration/deceleration mode
with continuous process control signal monitoring.

» Request Temporary Stop Operation

Temporary Stop Request before the Interpolation Distribution for the Next Block Begins
The axis decelerates according to the interpolation deceleration time specified with the IDH instruction.
No continuous processing to the next interpolation block is performed.

Temporary Stop Request after the Interpolation Distribution for the Next Block Begins

The axis decelerates according to interpolation deceleration time specified with the IDH instruction for
both the previous block and the next block.

After the temporary stop request is removed, distribution of the remaining distance is performed for both
the previous block and the next block.

Request Stop Operation
The interpolation block for the axis in motion stops immediately.

Program Single-block Mode Operation
No continuous processing to the next interpolation block is performed.

Debug Mode Operation
No continuous processing to the next interpolation block is performed.

Operation When the Next Block Is Not an Interpolation Instruction Block
No continuous processing to the next block is performed.
Acceleration begins from a stopped state for the next block.

Operation When the Interpolation Deceleration Time (IDC) Is Setto 0 ms
Continuous processing to the next interpolation block is performed, regardless of the status of the con-
tinuous process control signal.

Continuous Operation during Parallel Execution (PFORK)
Continuous processing is not performed across a PFORK instruction.
Set the instructions so that processing for this mode ends during each fork.

6.1 Axis Setting Instructions

Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

@ Interpolation Acceleration/Deceleration Mode 2 (Acceleration/Deceleration
Mode With Interpolation Overlapping) Details

In this mode, pulse distribution for each interpolation block is made to overlap by starting acceleration for
the next interpolation block to perform continuous processing between consecutive interpolation blocks.

Each block accelerates and decelerates according to the acceleration times and deceleration times that are
set with the IAC and IDC instructions.

This mode is valid for the MVS, MCW, and MCC instructions.

Speed (V)

IAC =IDC IAC > IDC IAC <IDC

\ /ST = a
\ / 7
X Y v
SN X N,
/N A /N

Time (t)

B Format
ACCMODE M2;
MVS [Logical_axis_name_1] Reference_position Finterpolation_feed_speed Dinterpolation_over-
lap_distance;

ltem Unit Applicable Data

* Directly designated value
* Indirect designation with a double-length integer register

Interpolation overlap distance | Reference units

Note: The interpolation overlap distance can be omitted.
The format is the same for the MCC and MCW instructions.

In this mode, you can add the character "D" to an interpolation instruction to specify the maximum dis-
tance for the interpolation distribution to overlap.

When the character "D" is added to an interpolation instruction in this mode, distribution for the next inter-
polation block begins when the remaining travel distance for the current interpolation block falls below
the interpolation overlap distance. If 0 (reference units) is specified for the interpolation overlap distance,
distribution for the next interpolation block begins when the current interpolation block begins decelera-
tion.

If the character “D” is not specified for the interpolation instruction, the last interpolation overlap distance
that was specified in the motion program is used.

The interpolation overlap distance is set to 0 (reference units) when program operation starts.

1. The character “D” is valid only for this mode.
In other interpolation acceleration/deceleration modes, the operation depends on the version of
the CPU Unit/CPU Module.

Information

Software Version

MPE720 Version 7.24 or Later

MPE720 Version 7.23 or Earlier

CPU Unit/Module
Version 1.09 or
Later

A motion program alarm (32 hex:
Specified address error) will occur
when an interpolation instruction

is executed.

A motion program alarm (32 hex:
Not registered) will occur when an
interpolation instruction is exe-
cuted.

CPU Unit/Module
Version 1.08 or
Earlier

cuted.

An alarm will not occur even when an interpolation instruction is exe-

The D address is ignored and the interpolation instruction is executed.

2. The valid range for the interpolation overlap distance is 0 to 2,147,483,647 (reference units).
If a negative value is specified, the absolute value is used.

Motion Language Instructions

6-73

6-74

6.1 Axis Setting Instructions

Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

B Conditions to Begin Distribution for the Next Interpolation Block

Distribution for the next interpolation block begins when all of the following conditions are satisfied.

No. Condition
1 Not in Program Single-block Mode.
2 Control signal bit 1 (Request Temporary Stop) is OFF.
3 No PFN or PFP instructions have been added to the interpolation instructions.
4 The interpolation block must have started deceleration. (Refer to the timing of @ in the figure below.)
5 The remaining distance for the interpolation block is less than the interpolation overlap distance specified
after the character “D”. (Refer to the timing of @ in the figure below.)
6 The remaining deceleration time of the current interpolation block is less than the acceleration time of the

next interpolation block. (Refer to the timing of @ in the figure below.)

Current Interpolation

mP

Speed |The distance specified after the character D|

Block Speed
Waveform

|Acceleration time for the next block | Time

Y

Speed
P Distribution started for the next block.| (3

Next block
Block Speed

Waveform »
[

g g

Next Interpolation v

Time

Speed

Composite Speed
Waveform

Time

rogramming Example

A programming example for the acceleration/deceleration mode with interpolation overlapping is given
below.

FMX
INC;

T300000;

IAC T1000;
IDC T2000;

ACC

MODE M2;

MWO00010 = 30;

MVS [A1] 20000 [B1] 10000 F200000; "Linear interpolation ®©"
MWO00010 = 20;

MVS [A1] 10000 [B1] -20000 D100; "Linear interpolation @"
MWO00010 = 10;

MVS [A1] 20000 [B1] 10000; "Linear interpolation ®"
MWO00010 = 0;

END;

6.1 Axis Setting Instructions

Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

In processing for interpolation acceleration/deceleration mode 2, execution moves to the next execution
block in the program when deceleration occurs for the interpolation block or when the interpolation over-

lap distance becomes equal to or less than the specified interpolation overlap distance.

S-type instructions (e.g., operation instructions) that occur during continuous processing for interpolation

blocks are executed when program execution moves to the next block.

The speed waveform for the programming example is given below.

Composite speed (V)

(reference units/min) Region where the Region where the
A interpolation distribution interpolation distribution
overlaps overlaps

300,000 ----- 7 <

200,000 --- > =

yd

Linear interpolation (1) Linear interpolation (3)

The interpolated path for the above programming example is given below.

/ »
— . — . Time (t)
Interpolation distribution for linear interpolation Interpolation distribution for linear interpolation (3) [s]
(2) starts during the deceleration of linear starts when the remaining distance for linear
interpolation (1). interpolation (2) falls below the interpolation overlap
distance.

As shown in the figure below, some interpolation block end points (i.e., the start point for the next interpo-
lation block) do not pass through the movement path because the distribution for the next interpolation

block starts during deceleration of the current interpolation block.

Axis B1

A Linear interpolation @

Linear interpolation ®|

| Linear interpolation @

Interpolation overlap distance|

» Axis A1

Motion Language Instructions

6-75

6-76

6.1 Axis Setting Instructions

Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

B Additional Information

Refer to the following additional information for details on operation in the acceleration/deceleration
mode with interpolation overlapping.

Request Temporary Stop Operation

Before distribution for the next interpolation block begins, the interpolation block for axes currently in
motion decelerates in the deceleration time specified with the IDH instruction.

However, no continuous processing to the next interpolation block is performed.

After distribution for the next interpolation block begins, each interpolation block decelerates in the
deceleration time specified with the IDH instruction.

Request Stop Operation
Each interpolation block stops immediately.

Program Single-block Mode Operation

No continuous processing to the next interpolation block is performed.

Debug Mode Operation
No continuous processing to the next interpolation block is performed.

Operation When the Next Block Is Not an Interpolation Instruction Block
No continuous processing to the next block is performed.
Acceleration begins from a speed of 0 for the next block.

Continuous Operation during Parallel Execution (PFORK)

This mode cannot be used across a PFORK instruction.

Adjust the timing of pulse distribution for the interpolation block with the PFN or PFP instruction so
that processing (i.e., pulse distribution) for this mode is completed within each fork.

Operation for Execution of T-type Instructions
If a T-type instruction (e.g., a timer instruction) is executed in continuous processing for an interpolation
block, the distribution timing in the next interpolation block will be changed.

6.1 Axis Setting Instructions

Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

@ Interpolation Acceleration/Deceleration Mode 3 (Acceleration/Deceleration
Mode with Continuous Process Control Signal Monitoring) Details

In the same way as in interpolation acceleration/deceleration mode 1 (acceleration/deceleration mode with

continuous process control signal monitoring), interpolation acceleration/deceleration mode 3 (accelera-

tion/deceleration mode with continuous process control signal monitoring) monitors a continuous process

control signal and performs continuous processing between consecutive interpolation blocks when the

specified conditions are satisfied.

However, opposed to interpolation acceleration/deceleration mode 1 (acceleration/deceleration mode with

continuous process control signal monitoring), when continuous processing is performed for a minute
block with a minute travel distance, deceleration is performed as much as possible to the specified speed
in continuous processing between consecutive interpolation blocks.

Information

A minute block is an interpolation bock with a travel distance that is too small for the distance

required to decelerate to a stop at the specified deceleration rate from the speed for continuous pro-

cessing operation.

B Format

Use the following format to select interpolation acceleration/deceleration mode 3 (acceleration/decelera-

tion mode with continuous process control signal monitoring). Refer to the following section for details on

continuous processing control signals.

I3 ® Interpolation Acceleration/Deceleration Mode I (Acceleration/Deceleration Mode with Continuous Process Control Sig-

nal Monitoring) Details (page 6-69)

ACCMODE 3;

MVS [Logical_axis_name_1] Reference_position Finterpolation_feed_speed TWcontinuous_pro-

cess_control_signal,
Or

ACCMODE 3;

MVS [Logical_axis_name_1] Reference_position Finterpolation_feed_speed FWcontinuous_pro-

cess_control_signal;

Note: The format is the same for the MCC, MCW, and SKP instructions.

Information

The characters "TW" and "FW" are valid only for this mode and for interpolation acceleration/

deceleration mode 1 (acceleration/deceleration mode with continuous process control signal moni-
toring). In other modes, the operation when the characters "TW" or "FW" are specified depends on
the software version of the CPU Unit/CPU Module.

Software Version

MPE720 Version 7.24 or Later

MPE720 Version 7.23 or Earlier

CPU Unit/CPU Module Version
1.09 or Later

An alarm (32 hex: Specified address
error) will occur when an interpola-
tion instruction is executed.

An alarm (32 hex: No registered) will
occur when an interpolation instruc-
tion is executed.

CPU Unit/CPU Module Version
1.08 or Earlier

An alarm will not occur even when an interpolation instruction is executed.
The TW or FW address is ignored and the interpolation instruction is exe-

cuted.

Motion Language Instructions

6-77

6.1 Axis Setting Instructions
Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

B Programming Example

The difference between interpolation acceleration/deceleration modes 1 and 2 for the MVS instruction is
described below.

INC;

FMX T1000000;

IAC T5000;

IDC T5000;

MB1000=1; /I Continuous control signal bit
/lInterpolation acceleration/deceleration mode (ACCMODE M1 or ACCMODE M3 executed.)
ACCMODE Mf{; // ACCMODE M1 or ACCMODE M3
MVS [A1]100000 F600000 TWMB1000; // Linear interpolation @

MVS [A1]5000 F300000 TWMB1000; /I Linear interpolation (minute block) @
MVS [A1]100000 F300000 FWMB1000; // Linear interpolation ®

END;

The speed waveform for the programming is given below.

* Operation in Interpolation Acceleration/Deceleration Mode 1

Speed V
(reference units/min)

600,000
/énear
interpolation®

300,000

Linear Interpolation (Minute Block)®@

When it is determined that deceleration to the specified speed,
300,000 reference units/min, is not possible for the minute block, the
current speed is maintained and continuous processing is performed.

Linear interpolation®

Time t (s)
* Operation in Interpolation Acceleration/Deceleration Mode 3
Speed V
(reference units/min) Linear Interpolation (Minute Block)@

Even in the minute block, deceleration is performed as
A close as possible to the specified speed, 300,000 reference

units/min, and continuous processing is performed.
600,000 \(
/émar
interpolation®

300,000

Linear interpolation®

Time t (s)

B Additional Information

Refer to the following section for additional information on interpolation acceleration/deceleration mode 3
(acceleration/deceleration mode with continuous process control signal monitoring).
I W Additional Information (page 6-72)

6-78

6.1 Axis Setting Instructions

Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

@ Interpolation Acceleration/Deceleration Mode 4 (Acceleration/Deceleration
Mode with Next Block Speed Specification) Details

Interpolation Acceleration/Deceleration Mode 4 (Acceleration/Deceleration Mode with Next Block Speed
Specification) Details

This mode can be used only when the same axes are used for all consecutive interpolation blocks.

—>
Time

B Format
Use the following format to select interpolation acceleration/deceleration mode 4.
ACCMODE 4;

MVS [Logical _axis_name_1] Reference_position Finterpolation_feed_speed FEfinal_interpolation_-
feed_speed;

ltem Unit Applicable Data
. . Reference units/min or reference * Indirect designation with a double-
Final interpolation
units/s (specified with FUT instruc- length integer register
feed speed . . .
tion) * Directly designated value

Note: The final interpolation feed speed can be omitted. The format is the same for the MCC, MCW, and SKP instruc-
tions.

In this mode, you can add the characters "FE" to an interpolation instruction to specify the final speed for
the interpolation block.

If you add the characters "FE" to an interpolation instruction, pulse distribution is adjusted so that the
interpolation block ends at the specified final interpolation feed speed.

If the specified final interpolation feed speed is 0 (speed units), continuous processing is not performed
and the axes decelerate to a stop.

If the characters "FE" are not specified for the interpolation instruction, the final interpolation feed speed
that was last specified in the motion program is used.

The final interpolation feed speed is 0 (speed units) when program operation starts.

R 1. The characters "FE" are valid only for this mode. In other interpolation acceleration/deceleration
@ modes, a motion program alarm will occur.
2. The valid range for the final interpolation feed speed is 0 to 2,147,483,647 (speed units). A com-

Important
piler error will occur if a negative number is specified.

This mode can be used with the following or later versions.
* CPU Unit/CPU Module: Version 1.09
* MPE720 version: 7.24

Information

Motion Language Instructions

6-79

6-80

6.1 Axis Setting Instructions

Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

B Programming Example

FMX T6000000;

IAC T1000;

IDC T1000;

INC;

ACCMODE M4;

MVS [A1]300000 F6000000 FE4000000; "Linear interpolation @"
MVS [A1]300000 F3000000 FE6000000; "Linear interpolation @"
MVS [A1]300000 F6000000 FEO; "Linear interpolation ®"

END;

The speed waveform for the programming is given below.

Linear Interpolation®
The block is ended at a final interpolation feed speed of 4,000,000
(reference units/min) and continuous processing is performed.

Speed V

(reference units/min) Linear Interpolation@®
h

The block is ended at a final interpolation

feed speed of 6,000,000 (reference units/min)
and continuous processing is performed.
6,000,000 / \
4,000,000 Linear Inte.rpolation® .
/ / \ The block is ended at a final
3,000,000 : interpolation feed speed of 0
Linear Linear Linear (reference units/min).
interpolation® interpolation® interpolation®
Time t (s)

B Additional Information

Refer to the following additional information for details on operation in the acceleration/deceleration
mode with next block speed specification.

Request Temporary Stop Operation
If a temporary stop is requested, the axes decelerate to a stop at the set deceleration rates. If the travel
distance is insufficient, a quick stop is performed at the target position.

Request Stop Operation
The interpolation block stops immediately.

Operation When Final Interpolation Feed Speed Is Not Reached

Acceleration or deceleration to the final interpolation feed speed is continued and an immediate stop is
performed when the travel distance is reached.

If the next block is an interpolation instruction, continuous processing is performed when the immediate
stop occurs.

Program Single-block Mode Operation
No continuous processing to the next interpolation block is performed.

Debug Mode Operation
No continuous processing to the next interpolation block is performed.

Operation When the Next Block Is Not an Interpolation Instruction Block
No continuous processing to the next block is performed.
Acceleration begins from a speed of 0 for the next block.

Continuous Operation during Parallel Execution (PFORK)
Continuous processing is not performed across a PFORK instruction.
Set the instructions so that processing for this mode ends during each fork.

6.2 Axis Movement Instructions

Axis Movement Instructions

Axis movement instructions are used to move axes that are connected to a Motion Control Function Mod-

ule.

There are 11 axis movement instructions. You can use these instructions only in motion programs.

The following table lists the axis movement instructions.

0
o | E
E| S
c © o))
= o | ©
= — S (o
> Name Format Description Q| o
@ c | 2
£ 2|
° =
= |8
(2}
MOV [Logical axis_name_I] Refer-
ence_position
_p[Logical_axis name 2] Refer- Performs positioning at the
MOV | Positioning ogIcar_axis_ - positioning speed for up to 32 O | x
ence_position axes
[Logical axis_name_ 3] Refer- '
ence_position ...;
MVS [Logical _axis_name_1] Refer-
ence_position
Linear Interbo [Logical axis_name_ 2] Refer- Performs linear movement at
MVS P ence_position interpolation feed speed F forup | O | X

lation

[Logical axis_name_3] Refer-
ence_position ...
Finterpolation_feed_speed,

to 32 axes.

Continued on next page.

Motion Language Instructions

6-81

6-82

6.2 Axis Movement Instructions

Continued from previous page.

Name

Instruction

Format

Description

Motion Programs

Sequence Programs

Clockwise Cir-
cular Interpola-
tion

MCW

MCW [Logical_axis_name 1]
End_position
[Logical axis name 2]
End_position
Ucenter_point_position Vcen-
ter_point position
Tnumber_of turns Finterpola-
tion_feed speed,

MCW [Logical_axis_name_1I]
End _position
[Logical axis name 2]
End position
Rradius Finterpolation_feed -
speed;

Counterclock-
wise Circular
Interpolation

MCC

MCC [Logical _axis_name_1]
End_position
[Logical_axis_name_2]
End_position
Ucenter_point_position Vcen-
ter_point_position
Tnumber_of turns Finterpola-
tion_feed speed,

Radius Designation | Center Position Designation | Radius Designation | Center Position Designation

MCC [Logical_axis_name 1]
End_position
[Logical axis name 2]
End_position
Rradius Finterpolation feed -
speed,

Executes circular interpolation
at tangential speed F for two
axes simultaneously following
radius R or designated center
point coordinates.

Multiple circles can be specified
after “T” if the center point
coordinate is specified.

(“T” can be omitted.)

Continued on next page.

6.2 Axis Movement Instructions

Continued from previous page.

»
o | €
E| S
c (AN
.0 o | ©
5 — S | a
> Name Format Description T | o
@ c | 2
£ 2|0
° >
= |8
(7]
MCW [Logical_axis_name 1]
- End_position
2 [Logical axis name 2]
go End_position
'z Ucenter_point_position Vcen-
a ter_point_position
-2 [Logical axis_name 3]
g End_position_for_linear_in-
) i;:) terpolation
Clo?kw1se = Tnumber_of turns Finterpola-
MCW | Helical Inter- 3 tion_feed_speed:
polation AR
MCW [Logical axis name 1]
End_position
o [Logical axis name 2]
3] -
= End _position
g : M three axes simultane-
go Rradius ovest —)
2 [Logical_axis_name_3] ously ‘Wl'[h a combmatlop of cir-
A . . . cular interpolation and linear
n End_position_for_linear_in-) X . -
R= . interpolation outside the circu-
3 terpolation lar interpolation plane. Speed F
~ Finterpolation_feed speed, . P n plane. 5p
: i is the circular interpolation tan- | O | x
MCC [Loglcal_c.D.Cls_name_I] gential speed.
g E"d—P 08 mo;? The number of turns can be
g [Logzcal_.a.xls_name_Z] specified after “T” if the center
& E”d—posm@ N point coordinate is specified.
3 Ucenter _point position Vcen- (“T” can be omitted.)
a ter point _position
-2 [Logical axis_name_3]
g End _position_for_linear_in-
?3 terpolation
C(')unterc'lock- = Tnumber of turns Finterpola-
MCC | wise Helical 3 tion_feed _speed;
Interpolation . —
MCC [Logical axis_name_I]
End_position
g [Logical axis name 2]
g End_position
go Rradius
g [Logical axis name 3]
2 End_position_for_linear_in-
:-g terpolation
~ Finterpolation_feed_speed,
. ZRN [Logical axis name 110 . .
Zero Point . ; Returns each axis to its zero
ZRN [Logical axis name_ 210 . O | x
Return]] point.
[Logical axis name 3]0 ...;

Continued on next page.

Motion Language Instructions

6-83

6-84

6.2 Axis Movement Instructions

Continued from previous page.

»
o | €
E| O
c (LA o))
o] o | ©
5 - S |
3 Name Format Description T | o
1 c |2
£ 2|0
° >
S| g
()
MOV [Logical axis_name_I] Refer-
ence_position Performs positioning to the next
DEN Position after [Logical axis name 2] Refer- block after distribution is com- ol «x
Distribution ence_position pleted without waiting for a
[Logical _axis_name_3] Refer- Positioning Completed signal.
ence_position ... DEN;
SKP [Logical _axis_name_I] Refer-
ence_position
[Logl_’fal axis_name_2] Refer- Iftl}e SKIP sigr}al turns QN
ence_pos_i sion - during a linear interpolation
SKP | Skip Function [Logical axis name 3] Refer- operation, the remaining move- | O | X
enci osition . - ment is skipped and operation
. P o proceeds to the next block.
Finterpolation_feed speed
SSskip_input _signal_selection;
MVT [Logical_axis name 1] Refer-
ence_position
Lo ;fal axis_name 2] Refer- Executes positioning by adjust-
MVT Set-time Posi- encf osition - ing the feed speed so that travel ol x
tioning _p .) can be completed at the desig-
[Logical axis name_ 3] Refer- nated time
ence_position ... '
Tpositioning_time(ms);
If an external positioning signal
. EXM [Logical _axis_name_I] Refer- 15 mp ut durlng' e)'(ternal post-
External Posi- ence position tioning, the axis is moved only
EXM | tioning Din —? distanc externdl positio by the travel distance desig- O | x
. ave._ lsl . e_ﬁ: _externat_postion- | ated after "D" as an incremen-
ng_stgnai_tnput, tal value, and then the next
instruction is executed.

6.2 Axis Movement Instructions

Positioning (MOV)

Positioning (MOV)

The MOV instruction independently moves each axis from the program current position to the end posi-
tion at the positioning speed.

Up to 32 axes can be moved with one instruction. Any axis that is not specified in the instruction will not
be moved.

The movement path for the MOV instruction will not necessarily be linear like the one that occurs for lin-
ear interpolation.

Logical axis 3
A

Each axis is moved
independently at the
positioning speed.

/v Positioning

End position

» | ogical axis 1

Program
current position

Logical axis 2

Fig. 6.30 Movement Path for the MOV Instruction

/A CAUTION

» The travel path for the Positioning (MOV) instructions will not necessarily be a straight line.
Check to confirm the paths of the axis when this instruction is used in programs to ensure
that the system operates safely.

There is a risk of injury or device damage.

R
If an alarm occurs for any axis that is specified in an MOV instruction, a motion program alarm will

occur and the axis will stop.
Important

Format

The format of the MOV instruction is as follows:

MOV [Logical_axis_name_1] Reference_position [Logical_axis_name_2] Reference_position [Logi-
cal_axis_name_3] Reference_position. . . ;

ltem Unit Applicable Data

* Directly designated value

Reference position | Reference units
P * Indirect designation with a double-length integer register

Motion Language Instructions

6-85

6.2 Axis Movement Instructions

Positioning (MOV)

Settings for the MOV Instruction

This section describes the settings for the MOV instruction.

Speed (V)
A

@ Rated speed -

: . ® Acceleration/
Positioning speed| > deceleration type
(VEL)

@ Travel distance

> Time (t)

Acceleration time ' Deceleration time
(ACC) (DCC)

@ Travel distance
The travel amount of each axis depends on the movement mode (Absolute or Incremental Mode).
*Absolute Mode Travel Distance
In Absolute Mode, the difference between the program current position and the reference position is
the travel position.
*Incremental Mode Travel Distance
In Incremental Mode, the reference position is the travel distance.

@ Rated Speed
The rated speed for each axis is set in fixed parameter No. 34 (Rated Motor Speed).

® Acceleration/Deceleration Type
There are three acceleration/deceleration types for the MOV instruction.
The acceleration/deceleration type is set by a combination of the ACC, DCC, and SCC instructions and bits
4 to 7 (Acceleration/Deceleration Rate Unit Selection) or bits 8 to B (Filter Type Selection) in the
ownO0Omno3 setting parameter.

« No Acceleration/Deceleration
This method moves the axes with an acceleration time and deceleration time of 0.

Setting Method Operation Example
* Set bits 4 to 7 (Acceleration/Deceleration Rate Unit Selection) of
ownaoanoo3s to 1 (ms).
« Set bits 8 to B (Filter Type Selection) of OWOOO03 to 0 (No filter).
* Set 0 for the ACC instruction.
* Set 0 for the DCC instruction.

* 1Single-step Linear Acceleration/Deceleration
This method moves the axes with fixed acceleration and deceleration rates.

Setting Method Operation Example
* Set bits 4 to 7 (Acceleration/Deceleration Rate Unit Selection) of
ownaaoao3 to 1 (ms).
* Set bits 8 to B (Filter Type Selection) of OWOOO03 to 0 (No filter).
* Set any value other than 0 for the ACC instruction.
* Set any value other than 0 for the DCC instruction.

6-86

6.2 Axis Movement Instructions

* S-curve Acceleration/Deceleration

Positioning (MOV)

This method moves the axes with the S-curve acceleration and deceleration rates.

Setting Method

Operation Example

* Set bits 4 to 7 (Acceleration/Deceleration Rate Unit Selection) of

ownaaano3s to 1 (ms).

* Set bits 8 to B (Filter Type Selection) of OWOOO03 to 2 (Moving aver-

age filter).
* Set any value other than 0 for the ACC instruction.
* Set any value other than 0 for the DCC instruction.
* Set any value other than 0 for the SCC instruction.
* Set any value other than 0 for the ISC instruction.

Information

A PFN (in-position check) is performed to check if an axis that was moved with a MOV instruc-

tion is in the positioning completed range. After the in-position check, the next movement instruc-

tion block is executed.

The following figure shows the operation of the PFN instruction.

Distribution completed.

Speed (V) 4
Positioning instruction block

The feedback position
reaches the positioning
completion width.

Next instruction block

Monitor parameter
Bit 1 (Positioning Completed) in IWOOO0C

A\ 4

Time (t)

—>

l—

The value set in the OLOOO1E
(Positioning Completion Width)
in-position check setting parameter

Fig. 6.31 In-Position Check Operation

Motion Language Instructions

6-87

6.2 Axis Movement Instructions

Positioning (MOV)

Programming Example

A programming example that uses the MOV instruction in Absolute Mode is given below.

ABS;

ACC [A1]1000 [B1]1000 [C1]1000;
DCC [A1]1000 [B1]1000 [C1]1000;
VEL [A1]2000 [B1]2000 [C1]2000;

MOV [A1]4000 [B1]3000 [C1]2000;
END;

: End |
i position |

i Program
i current
i position

> A1
" 4,000

3,000 |

,,,

B1

Fig. 6.32 Programming Example for the MOV Instruction

6-88

6.2 Axis Movement Instructions

Linear Interpolation (MVS)

Linear Interpolation (MVS)

The MVS instruction moves each axis linearly at the interpolation feed speed from the program current
position to the end position.

Up to 32 axes can be moved with one instruction. Any logical axis that is not specified in the instruction
will not be moved.

Logical axis 3
A

End position

Interpolation feed speed
(composite speed)

> ogical axis 1
[Logical_axis_3]
[Logical_axis_1]

/
Program , [Logical_axis_2]

|
Logical axis 2 " :
current position 4

Fig. 6.33 Movement Path for the MVS Instruction

/A CAUTION

+ The Linear Interpolation (MVS) instruction can be used on both linear axes and rotary axes.
However, if a rotary axis is included, the linear interpolation path will not necessarily be a
straight line. Check to confirm the paths of the axis when this instruction is used in pro-
grams to ensure that the system operates safely.

There is a risk of injury or device damage.

If an alarm occurs for any axis that is specified in an MVS instruction, a motion program alarm will
occur and the axis will stop.

Motion Language Instructions

Important
Information A PFN (in-position check) is not performed to check if an axis that was moved with an MVS
instruction is in the positioning completed range. Use the PFN instruction when it is necessary to
check if the axis is in the positioning completed range.
Format

The format of the MV instruction is as follows:

MVS [Logical_axis_name_1] Reference_position [Logical_axis_name_2] Reference_position [Logi-
cal_axis_name_3] Reference_position . . . Finterpolation_feed_speed,

ltem Unit Applicable Data
Reference position Reference units
Reference units/min or ref- | ¢ Indirect designation with a double-length integer register
Interpolation feed speed | erence units/s (specified * Directly designated value
with FUT instruction)

Note: You can omit the interpolation feed speed.

6-89

6.2 Axis Movement Instructions

Linear Interpolation (MVS)

Settings for the MVS Instruction

This section describes the settings for the MVS instruction.

Speed (V)
A

Specified maximum
interpolation feed [S —
speed (FMX) 4

® Acceleration/
@ Interpolation feed speed deceleration type

(F reference or IFP)

Y

® Composite travel
distance

> Time (t)

| -

Acceleration time " Deceleration time
(IAC) (IDC)

® Composite travel distance
The composite travel distance depends on the movement mode: Absolute Mode or Incremental Mode.

*Absolute Mode Composite Travel Distance
In Absolute Mode, the difference between the program current position and the reference position is
the composite travel position.

*Incremental Mode Composite Travel Distance
In Incremental Mode, the reference position is the composite travel distance.

Example INC MVS[A1]1200 [B1]900;
For the above instruction block, the composite travel distance is calculated as follows:

The composite travel distance ,{1200% + 900%= 1500

A

i A

1,500 reference units

N

900 reference units

O/ 1,200 reference units

v

A1

6-90

6.2 Axis Movement Instructions

Linear Interpolation (MVS)

@ Interpolation feed speed (F reference or IFP)
You can set the interpolation feed speed by specifying a register or a numerical value after the character “F”
in the MVS instruction (F reference). The interpolation feed speed is the composite speed of all of the speci-
fied axes.
The valid range is 1 to the maximum interpolation feed speed (FMX) (reference units/min).

Example INC MVS[A1]1200 [B1]900 F500;
B1

b

Interpolation feed speed

900 500 reference units/min

reference units

et i

1200 reference units
The feed speed of each axis is calculated using the following formula.
The feed speed of each axis [reference units/min]
_ moving amount of each axis [reference units]
composite moving amount [reference units]

x interpolation feed speed [reference units/min]

For example, the feed speed of each axis in above condition is calculated as following.
Interpolation feed speed (the value of F) = 500 [reference units/min]

Composite moving amount = /12002+9002 = 1500 [reference units]

* The feed speed of Al axis = i?gg % 500 = 400 [reference units/min]
* The feed speed of B1 axis = % % 500 = 300 [reference units/min]

You can select whether to apply an interpolation override with an F reference.
Refer to the following section for how to use interpolation overrides.
I Work Registers (page 1-23)

* When Not Specifying an Interpolation Override

F reference = Interpolation feed speed

Interpolation
feed speed

F reference

* When Specifying an Interpolation Override

F reference x Interpolation override = |nterpolation feed speed
0% to 327.67%

Motion Language Instructions

Interpolation o | Interpolation
override "| feed speed

F reference

The interpolation feed speed can also be specified as a percentage of the maximum interpolation feed
speed (FMX).
Refer to the IFP instruction for how to specify the interpolation feed speed as a percentage.

R
@ A motion program alarm occurs if a value is specified with an F reference (reference units/min) that

exceeds the FMX reference value (reference units/min).
Important

6-91

6.2 Axis Movement Instructions

Linear Interpolation (MVS)

1. If the interpolation feed speed with the interpolation override applied exceeds the FMX refer-
ence value, the output value of the interpolation feed speed will be reset to the FMX refer-
ence value.

2. When the interpolation feed speed is not specified in the instruction block, the interpolation
feed speed that was specified in the previous instruction block is applied.

Information

The interpolation override can be changed during axis movement.

Speed (V)
A
150% of the interpolation
100% of the interpolation | feedspeed

feed speed !

Interpolation feed speed _ i
(F reference or IFP) - 509% of the interpolation
feedspeed i

1 interpolatibn instruction block

Time (t)
Interpolation
override
A .
150.00%
100.00%
50.00%
Time (t)

Fig. 6.34 Interpolation Override and Interpolation Instructions

® Acceleration/Deceleration Type
The acceleration/deceleration type is set by a combination of the IAC, IDC, and SCC instructions and bits 8
to B (Filter Type Selection) in the OWODOOO03 setting parameter.
There are three acceleration/deceleration types for the MVS instruction.
* No Acceleration/Deceleration
This method moves the axes with an acceleration time and deceleration time of 0.

Setting Method Operation

« Set bits 8 to B (Filter Type Selection) of OWOOO03 to 0 (No filter).
* Set 0 for the IAC instruction.
* Set 0 for the IDC instruction.

* Single-step Linear Acceleration/Deceleration
This method moves the axes with fixed acceleration and deceleration rates.

Setting Method Operation

* Set bits 8 to B (Filter Type Selection) of OWOOO03 to 0 (No filter).
* Set any value other than 0 for the IAC instruction.
* Set any value other than 0 for the IDC instruction.

e S-curve Acceleration/Deceleration
This method moves the axes with the S-curve acceleration and deceleration rates.

Setting Method Operation
* Set bits 8 to B (Filter Type Selection) of OWOOO03 to 2 (Moving aver-
age filter).
* Set any value other than 0 for the IAC instruction.
* Set any value other than 0 for the IDC instruction.
* Set any value other than 0 for the SCC instruction.

6-92

6.2 Axis Movement Instructions

Linear Interpolation (MVS)

9 You must specify the maximum interpolation feed speed (FMX) at the beginning of the motion pro-
@ gram.
important Otherwise, a motion program alarm will occur when the MVS instruction is executed.

1. If the acceleration/deceleration time is not specified, the default time of 0 ms is applied.

2. An in-position check is not performed to check if an axis that was moved with an MVS instruc-
tion is in the positioning completed range. Use the PFN instruction when it is necessary to
check if the axis is in the positioning completed range.

Information

Programming Example

A programming example that uses the MVS instruction in Absolute Mode is given below.

FMX T30000000;
ABS;
IAC T1000;
IDC T1000;
MVS [A1]4000 [B1]3000 [C1]2000 F50000;
END;
C1
A
2,000
O End
position
Program
current
position — > A1
<" 4,000
3,000
B1

Fig. 6.35 Programming Example for MVS Instruction

Motion Language Instructions

6-93

6.2 Axis Movement Instructions

Circular Interpolation with Specified Center Point (MCW and MCC)

6-94

Circular Interpolation with Specified Center Point (MCW and
MCC)

When used with specified center points, the MCW and MCC instructions move two axes simultaneously
from the program current position to the end position on the specified plane at the interpolation feed speed
along the circle determined by the center point position.

* MCW: Clockwise

* MCC: Counterclockwise

Logical axis 24

End position

O
MCW Center point
Number of turns

Interpolation feed speed
(tangential speed)

» Logical axis 1

x 1. Always specify the plane for circular interpolation with the PLN instruction before you execute a
@ circular interpolation instruction (MCW or MCC) for specified center points.
A motion program alarm will occur if an MCW or MCC Circular Interpolation instruction with a
specified center point is executed before the PLN instruction.

2. Specify the axes for the end position and center point position in the same order as the axes were
specified in the PLN instruction.

3. You must specify the maximum interpolation feed speed (FMX) at the beginning of the program.
A motion program alarm will occur if an MCW or MCC Circular Interpolation instruction with a
specified center point is executed before the FMX instruction.

4. If an alarm occurs for any axis that is specified in an MCW or MCC Circular Interpolation instruc-
tion with a specified center point, a motion program alarm will occur and the axes will stop.

Important

1. If the acceleration/deceleration time is not specified, the default time of 0 ms is applied.

2. An in-position check is not performed to check if an axis that was moved with an MCW or
MCC instruction is in the positioning completed range. Use the PFN instruction when it is nec-
essary to check if the axis is in the positioning completed range.

Information

Format

The format of the MCW instruction is as follows:

MCW [Logical_axis_name_1] End_position [Logical_axis_name_2] End_position Ucenter_point_posi-
tion Vcenter_point_position Tnumber_of turns Finterpolation_feed speed,

ltem Unit Applicable Data
End position Reference units
Center point position Reference units
Number of turns Number of turns * Directly designated value

Reference units/min or * Indirect designation with a double-length integer register

Interpolation feed speed | reference units/s (speci-
fied with FUT instruction)

Note: You can omit the number of turns and the interpolation feed speed.

6.2 Axis Movement Instructions

Circular Interpolation with Specified Center Point (MCW and MCC)

Settings for the MCW and MCC Instructions with Specified Center
Points

This section describes the settings for the MCW and MCC instructions with specified center points.

Logical axis 2
A

®End position

@)

(MCenter point
position

MCW

@ Number of turns

® Interpolation feed speed
(tangential speed)

»

» Logical axis 1

® End position or center point position
The end point is specified as a numerical value or register after the logical axis name.
The center point position is set by specifying a register or a numerical value after the characters “U” and “V”
to an MCW or MCC Circular Interpolation instruction with a specified center point.
The actual end position and center point position for the reference positions are different in Absolute and
Incremental Modes.

Absolute Mode

Example . .\ ... "
In Absolute Mode, the center point position and end position are treated as absolute positions.

FMX T30000000;

ABS;

PLN[A1][B1];

MCC [A1]1500 [B1]4000 U2500 V1000 F50000;

I

Center point position

End position

B1 End

A posm(:)n Circular interpolation with MCC
4,000 f----emeeeees /
2,000 o Program

i current position
Center'point :
position "
1,000 °
: : > A1
1,500 2,500 5,500

Motion Language Instructions

6-95

6-96

6.2 Axis Movement Instructions

Circular Interpolation with Specified Center Point (MCW and MCC)

Incremental Mode

In Incremental Mode, the center point position and end position are treated as relative positions
from the program current position.

Example

FMX T30000000;
INC;
PLN[A1][B1];

MCC [A1]-4000 [B1]2000 U-3000 V-1000 F50000;

\— Center point position

End position . >
(relative position) (relative position)
P -4,000
B1 Circular interpolation
A with MCC
4,000 Vel ¢ y
End
position | %
2,000
'\‘ Program
current position
2,000 T
Center point " -1,000
position .~
1 ,000 ‘v:: _3,000
: > A1
1,500 2,500 5,500

Set the start point radius and end point radius carefully. The circular interpolation path will become as

shown below if the start point radius is not equal to the end point radius.
Note

End position

Program
current position

6.2 Axis Movement Instructions

Circular Interpolation with Specified Center Point (MCW and MCC)

@ Number of turns
The number of turns is set by specifying a register or a numerical value after the character “T” to the MCW
or MCC Circular Interpolation instruction with a specified center point.
You can specify the number of turns to implement multiple circular operations. A motion program alarm
occurs if a negative value is set for the number of turns. The number of circular movements that will be per-
formed for the specified number of turns depends on the relationship between the program current position
and end position as shown below.

When the Number of Turns Is Set to 2

Example
 If program current position # end position, the circular path consists of 2 circles + 1/4 circle.

B1 4

End position

Program current position

»
>

A1

* If program current position = end position, the circular path consists of 3 circles.

B1 4

Program current position
or end position

A1

@ Interpolation feed speed
The interpolation feed speed for an MCW or MCC Circular Interpolation instruction with a specified center
point is the speed in the tangential direction.
The valid range is 1 to the maximum interpolation feed speed (reference units/min).

Example For MCC[A1]- [B1]- F200;
The interpolation feed speed for the above instruction block is calculated as follows:

Jvx+ Vy2 =200 (reference units/min).

B1

End position
200 (reference units/min)

Vy (reference units/min)
.

Vx (reference units/min)

Program
current position

\4

A1

Motion Language Instructions

6-97

6.2 Axis Movement Instructions

Circular Interpolation with Specified Center Point (MCW and MCC)

Programming Examples

Programming examples that use the MCW and MCC Circular Interpolation instructions with specified
center points in Absolute Mode are given below.

The MCW instruction turns axes clockwise, while the MCC instruction turns axes counterclockwise.

Rotational Direction Programming Example
ABS;
FMX T30000000;
PLN [A1][B1];
MCW [A1]0 [B1]0 U1000 VO F2000; "MCW (Clockwise)"
END;
B1 a
Clockwise (MCW)
(0,0) i
End posion —O———O———> A1
Center point
(10,00,0)
. . / ” Program current
C!rcular interpolation ! position
with MCW
Fig. 6.36 Programming Example for the MCW Instruction with a Specified
Center Point
ABS;
FMX T30000000;
PLN [A1][B1];
MCC [A1]0 [B1]0 U1000 VO F2000; "MCC (Counterclockwise)"
END;
B1
Circular
interpolation
Counterclockwise with MCC
(MCCQ)
End position - A1
i Center point
{ (1,000,0)
Program current position
Fig. 6.37 Programming Example for MCC Instruction with Specified Center
Point

6-98

6.2 Axis Movement Instructions

Circular Interpolation with Specified Radius (MCW and MCC)

Circular Interpolation with Specified Radius (MCW and MCC)

When used with a specified radius, the MCW or MCC instruction moves two axes simultaneously from
the program current position to the end position on the specified plane at the interpolation feed speed
along the circle determined by the radius.
* MCW: Clockwise
* MCC: Counterclockwise

Logical axis 2 4

Radius

End position

MCW

Interpolation feed speed
(tangential speed)

» Logical axis 1

< 1. Always specify the plane for circular interpolation with the PLN instruction before you execute the
@ circular interpolation instruction.
A motion program alarm will occur if an MCW or MCC Circular Interpolation instruction with a
specified radius is executed before the PLN instruction.

2. Specify the axes for the end position and center point position in the same order as the axes were
specified in the PLN instruction.

3. You must specify the maximum interpolation feed speed (FMX) at the beginning of the program.
A motion program alarm will occur if an MCW or MCC Circular Interpolation instruction with a
specified radius is executed before the FMX instruction.

4. If an alarm occurs for any axis that is specified in an MCW or MCC Circular Interpolation instruc-
tion with a specified radius, a motion program alarm will occur and the axes will stop.

Important

1. If the acceleration/deceleration time is not specified, the default time of 0 ms is applied.

Information
2. A PFN (in-position check) is not performed to check if an axis that was moved with an MCW
or MCC Circular Interpolation instruction with a specified radius is in the positioning com-
pleted range. Use the PFN instruction when it is necessary to check if the axis is in the position-
ing completed range.
Format

The format of the MCW instruction with a specified radius is as follows:

MCW [Logical_axis_name_1] End_position [Logical_axis_name_2] End_position Rradius Finterpola-
tion_feed_speed,

ltem Unit Applicable Data
End position Reference units
Radius Reference units

* Directly designated value
* Indirect designation with a double-length integer register

Reference units/min or
Interpolation feed speed | reference units/s (speci-
fied with FUT instruction)

Note: 1. You cannot specify the number of turns if you specify a radius.
2. You can omit the interpolation feed speed.

Motion Language Instructions

6-99

6.2 Axis Movement Instructions

Circular Interpolation with Specified Radius (MCW and MCC)

Settings for the MCW and MCC Instructions with Specified Radii

This section describes the settings for the MCW and MCC instructions with specified radii.

6-100

Logical axis 2
A

End position

MRadius

MCW

» Logical axis 1

® Radius

The radius is set by specifying a register or a numerical value after the character “R” to the MCW or MCC

Circular Interpolation instruction with a specified radius.
The circular interpolation path depends on the sign of the radius reference value as shown below.

Interpolation Path for the MCW and MCC Instructions with a Specified Radius
For the instruction block: MCW [A1] - [BI] -R - ;

If R > 0: Circular interpolation with an arc angle of 180° or less

If R < 0: Circular interpolation with an arc angle of greater than 180°

If R = 0: A motion program alarm occurs.

Example

Greater than 180° End position

180° or less

“~~ Center point
Center po%t\ if positive

if negative

Program current position

Information If you specify a radius for circular interpolation, you cannot specify the number of turns.

6.2 Axis Movement Instructions

Circular Interpolation with Specified Radius (MCW and MCC)

Programming Examples

Programming examples that use the MCW and MCC Circular Interpolation instructions with specified
radii in Absolute Mode are given below.

The MCW instruction turns axes clockwise, while the MCC instruction turns axes counterclockwise.
The sign of the arc angle radius reference value also determines the rotational direction.

Rotational

Direction Arc Angle Programming Example
ABS;
FMX T30000000;
PLN [A1][B1];
MCW [A1]1000 [B1]1000 R1000 F2000; "MCW (Clockwise)"
END;
B1
A
Circular interpolation with MCW
180° or less (Radius
reference value > 0) D End position
! (1,000,1,000)
Arc angle of
180° or less !
C ﬁ\ »
Program k:JCenter point Al
current position|Radius = 1,000{(1,000,0)
(0,0 '
Fig. 6.38 Programming Example for the MCW Instruction with a Spec-
ified Radius
Clockwise ABS;
MCW) FMX T30000000;
PLN [A1][B1];
MCW [A1]1000 [B1]1000 R-1000 F2000; "MCW (Clockwise)"
END;
B1
A
Circular interpolation with MCW
GreaFer than 180° gféft:??rﬁn Center point
(Radius reference 180° \((-) 1,000) o
_________________ N Endposition
value <0) (1,000, 1,000)
Radius = 1,000
) > A1
Program current position

(0,0)

Fig. 6.39 Programming Example for the MCW Instruction with a Spec-
ified Radius

Continued on next page.

Motion Language Instructions

6-101

6.2 Axis Movement Instructions

Circular Interpolation with Specified Radius (MCW and MCC)

6-102

Continued from previous page.

Rotational ;
Direction Arc Angle Programming Example
ABS;
FMX T30000000;
PLN [A1][B1];
MCC [A1]1000 [B1]1000 R1000 F2000; "MCC (Counterclock-
wise)"
END;
B1
A
Center point
180° or less (Radius (0. 1,000) p SN O-- End position
reference value > 0) j (1,000, 1,000)
Arc angle
Radius = 1,000| | less than : : ,
180° Circular interpolation
with MCC
A1
Program
current position
(0,0)
Fig. 6.40 Programming Example for the MCC Instruction with a Spec-
ified Radius
closkuie ABS;
(MCC) FMX T30000000;

Greater than 180°
(Radius reference
value < 0)

Fig.

PLN [A1][B1];
MCC [A1]1000 [B1]1000 R-1000 F2000; "MCC (Counterclock-

wise)"
END;
B1
A
End position
{ (1,000,1,000)
Circular interpolation
with MCC
— A1
Program
current position [\Radius = 1,000; Arc angle
(0,0) greater
than 180°

6.41 Programming Example for the MCC Instruction with a Spec-
ified Radius

6.2 Axis Movement Instructions

Helical Interpolation with Specified Center Point (MCW and MCC)

Helical Interpolation with Specified Center Point (MCW and

MCC)

When used with a specified center point, the MCW and MCC instructions simultaneously perform a linear
interpolation movement while moving along the circle that is determined by circular interpolation around
the specified center point position.
The interpolation feed speed is the composite of the circular interpolation tangential speed and linear inter-

polation.

* MCW: Clockwise
* MCC: Counterclockwise

/A CAUTION

» The linear interpolation for the Helical Interpolation (MCW and MCC) instructions can be
used for both linear axes and rotary axes. However, depending on how the linear axis is
taken, the path of helical interpolation will not be a helix. Check to confirm the paths of the
axis when this instruction is used in programs to ensure that the system operates safely.
There is a risk of injury or device damage.

[©

Important

. Always specify the plane for circular interpolation with the PLN instruction before you execute the

helical interpolation instruction.
Use logical axis 1 and logical axis 2 to specify the end positions and center points of circle of the
horizontal and vertical axes of the designated plane.

. Specify the axes for the end position and center point position in the same order as the axes were

specified in the PLN instruction.

. Any axis that has not been specified in the plane designation can be specified as a linear interpola-

tion axis. The axis does not need to be at right angles to the interpolation plane.

. If an alarm occurs for any axis that is specified in an MCW or MCC Helical Interpolation instruc-

tion with a specified center point, a motion program alarm will occur and the axes will stop.

Information

An in-position check (PFN) is not performed to check if an axis that was moved with an MCW or
MCC Helical Interpolation instruction with a specified center point is in the positioning completed
range.

Use the PFN instruction when it is necessary to check if the axis is in the positioning completed
range.

Motion Language Instructions

6-103

6.2 Axis Movement Instructions
Helical Interpolation with Specified Center Point (MCW and MCC)

Format

The format of the MCW instruction with a specified center point is as follows:

MCW [Logical axis_name_1 End_position] [Logical _axis_name_2] End_position Ucenter_point_posi-
tion Vcenter_point_position

[Logical_axis_name_3] End_position_for_linear_interpolation Tnumber_of turns Finterpola-
tion_feed_speed,

ltem Unit Applicable Data
End position Reference units
Center point position Reference units

* Directly designated value

* Indirect designation with a double-length integer
Reference units/min or refer- | regjgter

Interpolation feed speed ence units/s (specified with
FUT instruction)

Number of turns Number of turns

Note: 1. You cannot specify the number of turns if you specify a radius.
2. You can omit the interpolation feed speed.

Settings for the MCW and MCC Instructions with Specified Center
Points

This section describes the settings for an MCW or MCC Helical Interpolation instruction with a specified
center point.

Logical axis 3

End position (same as
for circular interpolation)

)) Linear
Logical axis 1 interpolation

Center point position
(same as for circular

! { : @ Interpolation feed speed
interpolation)...----> ===

(tangential speed)
Logical axis 2 1 e g

Program \

current position Circular interpolation

@ Interpolation feed speed

The interpolation feed speed for the MCW or MCC instruction is the composite of the speed of the linear
interpolation axis and the speed in the tangential direction of the circular interpolation.

Example For MCC[X]- [Y]- U- V- [Z]- F300;
The interpolation feed speed for the above instruction block is calculated as follows:

JVXT+Vy?+VZS =300 (reference units/min).
z

Interpolation feed speed
(composite speed of all 3 axes)

Vz (reference units/min)

Vy (reference units/min)

Vx (reference units/min)

6-104

6.2 Axis Movement Instructions

Helical Interpolation with Specified Center Point (MCW and MCC)

Programming Example

A programming example that uses the MCC instruction in Absolute Mode is given below.

ABS;

FMX T30000000;

PLN [A1][B1];

MCC [A1]1000 [B1]0 U0 VO [C1]500 F2000;
END;

500 F——----——-—-——————- End position

|
|
i Linear interpolation
|
|

e

Circle center point |
|

N
(0,0,0) WQJO >A1
Current -
positon " __——"__ - Circular interpolation
end position

B1

Fig. 6.42 Programming Example for the MCC Instruction with a Specified Center Point

Motion Language Instructions

6-105

6.2 Axis Movement Instructions
Helical Interpolation with Specified Radius (MCW and MCC)

Helical Interpolation with Specified Radius (MCW and MCCQC)

When used with a specified radius, the MCW and MCC instructions simultaneously perform a linear inter-
polation movement while moving along the circle that is determined by circular interpolation for the spec-
ified radius.

The interpolation feed speed is the composite of the circular interpolation tangential speed and linear inter-
polation.

* MCW: Clockwise
e MCC: Counterclockwise

/A CAUTION

» The linear interpolation for the Helical Interpolation (MCW and MCC) instructions can be
used for both linear axes and rotary axes. However, depending on how the linear axis is
taken, the path of helical interpolation will not be a helix. Check to confirm the paths of the
axis when this instruction is used in programs to ensure that the system operates safely.
There is a risk of injury or device damage.

S 1. Always specify the plane for circular interpolation with the PLN instruction before you execute the
@ helical interpolation instruction.
Use logical axis 1 and logical axis 2 to specify the end positions and center points of circle of the
Important o rizontal and vertical axes of the designated plane.
2. Specify the axes for the end position and center point position in the same order as the axes were
specified in the PLN instruction.
3. Any axis that has not been specified in the plane designation can be specified as a linear interpola-
tion axis. The axis does not need to be at right angles to the interpolation plane.
4. If an alarm occurs for any axis that is specified in an MCW or MCC Helical Interpolation instruc-
tion with a specified radius, a motion program alarm will occur and the axes will stop.

An in-position check is not performed to check if an axis that was moved with an MCW or MCC

Information . S) . . U .
Helical Interpolation instruction with a specified radius is in the positioning completed range.

Use the PFN instruction when it is necessary to check if the axis is in the positioning completed
range.

Format

The format of the MCW instruction with a specified radius is as follows:

MCW [Logical _axis_name_1] End_position [Logical_axis_name_2] End_position Rradius
[Logical_axis_name_3] End_position_for_linear_interpolation Finterpolation_feed_speed,

ltem Unit Applicable Data
End position Reference units
Center point position Reference units

* Directly designated value

Radius Reference units * Indirect designation with a double-length integer
Reference units/min or refer- | register
Interpolation feed speed ence units/s (specified with

FUT instruction)

Note: 1. You cannot specify the number of turns if you specify a radius.
2. You can omit the interpolation feed speed.

6-106

6.2 Axis Movement Instructions

Helical Interpolation with Specified Radius (MCW and MCC)

Settings for the MCW or MCC Instruction with a Specified Radius

This section describes the settings for the MCW or MCC instruction with a specified radius.

The method used to specify the radius and the end position for the helical interpolation with specified
radius instructions are the same as for the circular interpolation with specified radius instructions.

Additionally, the method used to specify the interpolation feed speed is the same as for the helical interpo-
lation with specified center point instructions.

Logical axis 3

End position
(same as for circular interpolation)
Linear

interpolation \
Radius

(same as for circular interpolation)

Logical axis 1

Interpolation feed speed
(same as for the center
point instructions)

Logical axis 2

Program \

current position Circular interpolation

Programming Example

A programming example that uses the MCC Helical Interpolation instruction with specified radius in
Absolute Mode is given below.

ABS:
FMX T30000000;

PLN [A1][B1];

MCC [A1]1000 [B1]0 R1000 [C1]500 F2000;

END;
A
500 F———-—-—=————=———— End position

|
|
I Linear
EA/ interpolation

Radius 1,000 !
L 1,000

»A1

______ Circular interpolation
T end position

Program)))
current position Circular interpolation

B1

Fig. 6.43 Programming Example for the MCC Instruction with a Specified Radius

Motion Language Instructions

6-107

6.2 Axis Movement Instructions

Zero Point Return (ZRN)

Zero Point Return (ZRN)

The ZRN instruction performs a zero point return.

Up to 32 axes can be moved with one instruction. Any axis that is not specified in the instruction will not
be moved. Execution moves to the next block only after the zero point return operation has been com-
pleted for all specified axes.

Logical axis 3
A

Program current position

Machine coordinate » Logical axis 1

system origin

Logical axis 2

Fig. 6.44 Movement Path for the ZRN Instruction

When the ZRN instruction is executed, the position that the axis returns to is set as the machine coordinate
origin. The working coordinate system previously set by the POS instruction is canceled at this time.
After the ZRN instruction is executed, the machine coordinate system will be the same as the working
coordinate system. The MVM instruction is then invalid until the POS instruction is executed again.
Refer to the following section for details on the machine coordinate system and the working coordinate
system.

I Current Position Set (POS) (page 6-121)

@ If an alarm occurs for any axis that is specified in an ZRN instruction, a motion program alarm will
occur and the axis will stop.

progress.

The Request for Pause of Program control signal is invalid while execution of a ZRN instruction is in
To stop an operation, use a Request for Stop of Program control signal instead.

Not . . .
“ " Refer to the following section for details on Request for Pause of Program and Request for Stop of Pro-
gram control signals.
I3 Work Registers (page 1-23)
Format

The format of the ZRN instruction is as follows:
ZRN [Logical_axis_name_1] O [Logical_axis_name_2] 0 [Logical_axis_name_3] 0 ...;

Note: Never omit the 0’s after the logical axis names.

6-108

6.2 Axis Movement Instructions

Zero Point Return (ZRN)

Settings for the ZRN Instruction

This section describes the settings for the ZRN instruction.

@ Zero Point Return Method

The zero point return method for each axis is set in the OWOOO3C (Zero Point Return Method) setting
parameter. The following table lists the usable zero point return methods.

Refer to the following manual for details on each method.

[0 MP3000 Series Motion Control User’s Manual (Manual No.: SIEP C880725 11)

SVB-01,

SVC32
DEC1 + phase-C pulse 0 Yes Yes No
ZERO signal 1 Yes Yes No
DECI + ZERO signal 2 Yes Yes Yes
Phase-C pulse 3 Yes Yes No
DEC2 + ZERO signal 4 Yes No Yes
DEC1 + LMT + ZERO signal 5 Yes No Yes
DEC2 + phase-C signal 6 Yes No No
DECI1 + LMT + phase-C signal 7 Yes No No
C pulse only 11 Yes Yes No
P-OT + phase-C pulse 12 Yes Yes No
P-OT 13 Yes Yes No
HOME LS & phase-C pulse 14 Yes Yes No
HOME LS 15 Yes Yes No
N-OT & phase-C pulse 16 Yes Yes No
N-OT 17 Yes Yes No
INPUT + phase-C pulse 18 Yes Yes No
INPUT 19 Yes Yes No

Yes: Usable, No: Not usable

€ Zero Point Return Speed

The zero point return speed depends on the zero point return method that is used.

Motion Language Instructions

6-109

6.2 Axis Movement Instructions

Zero Point Return (ZRN)

Programming Example

A programming example that uses the ZRN instruction in Absolute Mode is given below.

The stop position is set at the machine coordinate system origin of (0, 0).

ZRN [A1]0 [B1]0;

END;
B1
A
Program
current position
Zero point return operation
Stop position O > A1

Fig. 6.45 Programming Example for the ZRN Instruction

6-110

6.2 Axis Movement Instructions

Position after Distribution (DEN)

Position after Distribution (DEN)

The DEN instruction is an extended version of the MOV instruction.

Up to 32 axes can be moved with one instruction. Any axis that is not specified in the instruction will not

be moved.

The DEN instruction is executed in the next instruction block immediately after bit 0 (Distribution Com-
pleted) in IWODODOOC turns ON without waiting for bit 1 (Positioning Completed) in IWOOOOC.

The operation of the DEN instruction is not the same as a normal positioning operation.

The following figure shows a normal positioning operation.

Speed (V)

Positioning instruction block

Distribution completed.

Positioning Completed signal
turns ON.

Next instruction block

\

Bit 0 in the IWOOOOC monitor
parameter (Distribution Completed)

Bit 1 in the IWOOOOC monitor
parameter (Positioning Completed)

Time ()

This interval is not constant.

Normal Positioning

The following figure shows the positioning operation for the DEN instruction.

A
Speed (V)

Positioning instruction block

Distribution completed.

Next instruction block

Motion Language Instructions

\J

Bit 0 in the IWOOOOC monitor
parameter (Distribution Completed)

Bit 1 in the IWOOOOC monitor
parameter (Positioning Completed)

Time (t)

Position after Distribution

Fig. 6.46 Position after Distribution

6-111

6.2 Axis Movement Instructions

Position after Distribution (DEN)

Format

The format of the DEN instruction is as follows:

MOV [Logical_axis_name_1] - [Logical_axis_name_2] - [Logical_axis_name_J3] DEN;

ltem Unit Applicable Data

* Directly designated value

Reference position | Reference units
P * Indirect designation with a double-length integer register

Programming Example

A programming example that uses the DEN instruction and its positioning path are given below.

ABS;

MOV [A1]10000 DEN;
MOV [B1]10000 DEN;
MOV [A1]20000 DEN;

END;
B1 A
10,000 F-------==--mmmmmmmmm oo o >0
L E
Current position E
O P “.) i
10,(:300 20,600 A>1

Fig. 6.47 Programming Example for the DEN Instruction

6-112

6.2 Axis Movement Instructions

Linear Interpolation with Skip Function (SKP)

Linear Interpolation with Skip Function (SKP)

The SKP instruction is an extended version of the MVS instruction. If the skip input signal is turned ON during
axis movement for a SKP instruction, the axis decelerates to a stop and the remaining travel distance is can-
celed.
You can use the SKP instruction to program motion control operations that respond to external status changes.
The skip signal is input to the control signal for the MSEE instruction or the control register of M-EXECUTOR.
Speed (V)
A

Canceled travel distance

Linear interpolation operation / SKP instruction

‘ 3 reference position

OFF ON
Skip input signal
(control signal bit 8 or 9)
Skip Input Signal Selection Skip Input Signal Position where the axis stops after
the skip input signal turns ON
Skip Input Signal 1 (SS1) Control signal bit 8
Skip Input Signal 2 (SS2) Control signal bit 9

Fig. 6.48 Operation Example for SKP Instruction

N}
@ If an alarm occurs for any axis that is specified in an SKP instruction, a motion program alarm will
occur and the axis will stop.
Important

The moving axis decelerates to a stop when the skip input signal turns ON. However, the SKP instruc-
tion remains active until the Positioning Completed signal turns ON.
Note

Format

The format of the SKP instruction is as follows:

Motion Language Instructions

SKP [Logical_axis_name_1] Reference_position [Logical _axis_name_2] Reference_position [Logi-
cal_axis_name_3] Reference_position ... ;

Finterpolation_feed_speed SSskip_input_signal_selection;

ltem Unit Applicable Data
Reference position Reference units
Reference units/min or * Directly designated value

Interpolation feed speed | reference units/s (speci-

+ Indirect designation with a double-length integer register
fied with FUT instruction)

Skip Input Signal Selec-

B * Directly designated number (1 or 2)
tion

* Indirect designation with a double-length integer register

Note: You can omit the interpolation feed speed.

6-113

6.2 Axis Movement Instructions

Linear Interpolation with Skip Function (SKP)

Programming Example

A programming example that uses the SKP instruction in Absolute Mode is given below.

FMX T30000000;
ABS;

IAC T1000;

IDC T1000;

SKP [A1]4000 [B1]3000 [C1]2000 F50000 SS1;

END;

C1

Program
current position

B1

Position where the axis decelerates to a
stop after the skip input signal turns ON

2,000

*** = Final target position
s~)

—* > A1
~" 4,000

Fig. 6.49 Programming Example for SKP Instruction

6-114

6.2 Axis Movement Instructions

Set-time Positioning (MVT)

Set-time Positioning (MVT)

The MVT instruction is an extended version of the MOV instruction.

Up to 32 axes can be moved with one instruction. Any axis that is not specified in the instruction will not
be moved.

When the MVT instruction is used, the feed speed of each axis is adjusted to complete positioning in the

specified time. The MVT instruction does not use an interpolation operation, and there is no restriction on

completing the positioning for all the specified axes simultaneously.
There is a time lag for the acceleration/deceleration time setting.

Speed (V)
A

Feed Speed

/ | Clamped feed speed

i » Time (t)

A4

Positioning time

Fig. 6.50 Operation Example for MVT Instruction

Positioning cannot be completed in the specified time if an override is used.
If a filter is used, the positioning time will be delayed by the filter time constant.

Filter Time Constant

Fig. 6.51 Positioning Time Delay When a Filter Is used

x 1. The values set by the VEL instruction are overwritten for all axes specified in the MVT instruction.
@ Be sure to set the feed speeds again with the VEL instruction after the MVT instruction is executed.
2. A motion program alarm occurs if 0 is set for the positioning time.
3. A motion program alarm occurs if 0 is set for the travel distance of any axis.
4. If an alarm occurs for any axis that is specified in an MVT instruction, a motion program alarm will
occur and the axis will stop.

Important

Format

The format of the MVT instruction is as follows:

MVT [Logical_axis_name_1] Reference_position [Logical_axis_name_2] Reference_position [Logi-
cal_axis_name_3] Reference_position ... ;
Tpositioning_time;

Motion Language Instructions

ltem Unit Applicable Data
Reference position | Reference units * Directly designated value
Positioning time ms * Indirect designation with a double-length integer register

6-115

6.2 Axis Movement Instructions

Set-time Positioning (MVT)

The valid range for the positioning time is 1 to 2,147,483,647 ms.

The feed speed while execution of the MVT instruction is in progress is calculated internally by the
Machine Controller based on the positioning time and the travel distance.

This calculation is performed with an acceleration rate of 0, as shown below.

Speed (V)
A

Calculated | _— Travel distance L
feed speed V 4|

> Time (t)

-
v _

Positioning time T

The actual operation when the acceleration time T1 is less than the deceleration time T2 is as shown
below.

Speﬁd V)

Calculated |------

feed speed V Travel distance L

> Time (t)

A

T

Positioning time T |
| |
Acceleration time T1 Deceleration time T2
The values set for the VEL instruction are overwritten for all axes specified in the MVT instruction.

Be sure to set the feed speeds again with the VEL instruction after the MVT instruction is executed.

A PFN (in-position check) is performed to check if an axis that was moved with an MVT instruc-

Information ~" """, e
tion is in the positioning completed range, just like for the MOV instruction.

Programming Example

A programming example that uses the MVT instruction in Absolute Mode is given below.

ABS;
ACC [A1]1000;
DCC [A1]1000;

MVT [A1]4000 T1000;
END;
Positioning in one second
4,000
Program O pO— > A1
current position End position

Fig. 6.52 Programming Example for MVT Instruction

6-116

6.2 Axis Movement Instructions

External Positioning (EXM)

External Positioning (EXM)

The EXM instruction is an extended version of the MOV instruction.

The EXM instruction incrementally moves the axis by the specified travel distance to perform positioning
when the external positioning signal is turned ON. If the external positioning signal did not turn ON, posi-
tioning is performed to the reference position of the EXM instruction.

Only one axis can be specified for the EXM instruction.

Speed (V)

4 Travel distance from
when the external
positioning signal is input
| > Time (t)

External '
positioning signal —I

Fig. 6.53 Operation Example for EXM Instruction

If a negative value is specified for the travel distance, the axis decelerates to a stop and then moves in the
negative direction.

3 1. The EXM instruction cannot be used with the PO-01 Function Module.
@ A motion program alarm will occur if the EMX instruction is executed for a PO-01 Module.
2. Be careful if you use the external latch input signal, because it is also used for the zero point return
operation.
3. If an alarm occurs for any axis that is specified in an EXM instruction, a motion program alarm will
occur and the axis will stop.

Important

Format

The format of the EXM instruction is as follows:

EXM [Logical_axis_name_1] Reference_position Dtravel_distance_from_external_positioning_sig-

nal_input,
Item Unit Applicable Data
Reference position Reference units * Directly designated value
Travel distance from when the . * Indirect designation with a double-length integer reg-
e L Reference units .
external positioning signal is input 1ster

Motion Language Instructions

6-117

6.2 Axis Movement Instructions
External Positioning (EXM)

Settings for the EXM Instruction

This section describes the settings for the EXM instruction.

Speed (V
P 3 V) ®Travel distance from when the
external positioning signal is input

Rated speed -----rmmmemmmmemmoee oo oo 1 A
4 : Acceleration/deceleration type
(same as for the MOV instruction)

Positioning speed f------------------- = -
(VEL) ‘

Travel distance
(same as for the MOV instruction)

[l > Time (t)

Acceleration time Deceleration time
(ACC) : (DCC)
@ External positioning signal r_|

® Travel distance from when the external positioning signal is input

The travel distance after the external positioning signal is input is set as an incremental value.
The valid range is -2,147,483,648 to 2,147,483,647 reference units.

@ External positioning signal

The external positioning signal is set in bits 4 to 7 (Function Settings 2) of the OWOODOO04 setting parame-
ter.

Programming Example
A programming example that uses the EXM instruction in Absolute Mode is given below.

ABS;

ACC [A1]1000;

DCC [A1]1000;

VEL [A1]2000;

DL00000 = 1000;

EXM [A1]4000 DDL0000O;
END;

6-118

6.3 Axis Control Instructions

AXxis Control Instructions

Axis control instructions control details such as the positions or coordinates of assigned axes.

There are seven axis control instructions. You can use these instructions only in motion programs.

The following table lists the axis control instructions.

(2]
o | €
E|C
c (LA o))
.0 o | ©
B L S | a
> Name Format Description T | o
@ c | 2
£ 2|0
° >
= |8
(7]
POS [Logical_axis_ name 1] New_coordi- Changes the current values to
nate_values the desired coordinate values
Set Current . . .
POS Position [Logical axis name 2] New_coordi- for up to 32 axes. Subsequent | O | X
nate_values movement instructions use
s this new coordinate system.
Moves to the target position
MVM MOV [Logical_axis_name_1] Refer- in the machine coqrdmate
ence_position systet}?. The coordmate? S}ﬁ-
Move on [Logical _axis_name_2] Refer- tem that 1s set automatically
. . on completion of the zero
MVM | Machine ence_position . . O | x
. . . point return is called the
Coordinates [Logical axis_name_3] Refer- hi .
ion machine coordinate system.
ence_post) This coordinate system is not
” affected by the POS instruc-
tion.
Update Pro- Up@gtes the program current
. . position for axes that were
gram Cur- | PLD [Logical axis_name_1I]
PLD] - moved manually. O | x
rent [Logical axis name 2] ... ; .
Positi Up to 32 axes can be speci-
osition . . .
fied with one instruction.
MVS [Logical axis_name_1] -
[Logical axis name 2] - ... PFN;
Or Causes interpolation move-
N MVS [Logical_axis_name 1] - ment 1nstmct10ns 1n.the same
PEN In-Position [Logical axis name 2] - .. block or in the previous ol x
Check g = = e block to proceed to the next
PFN [Logical axis name 1] . .
; - block only after the in-posi-
[Logical_axis_name_2] tion range has been entered.
MVS [Logical_axis_name_1] -
[Logical axis name 2] - ...;
Sets the NEAR signal output
widths (i.e., the in-position
INP [Logical_axis_name_I] NEAR_signal_out- | ranges). The execution of
.. put_width subsequent interpolation
In-Position
INP [Logical axis name 2] NEAR_sig- movement instructions that O | x
Range) . .
nal_output width are used with a PFN instruc-
. tion proceed to the next block
only after the NEAR signal
output width is entered.

Motion Language Instructions

Continued on next page.

6-119

6.3 Axis Control Instructions

6-120

Continued from previous page.

%)
o | €
E| O
c O | o
o] o | 9o
3] o S | a
3 Name Format Description T | o
1 c |2
£ S| o
° >
S| g
()
MVS [Logical _axis_name_1] -
[Logical axis name 2] - ... PFP,;
Or Causes interpolation move-
Positioning | MVS [Logical_axis_name_I] - gienf(m:t;ligoni liliﬂf same
PFP | Completed [Logical axis_name 2] - ..; blgzk ?0 procze}?i fo t(l)lesnext O | x
Check PFP [Log ica.l_axis_'name_l] block only after positioning
[Logical_axis_name_2] has been completed.
MVS [Logical _axis_name_1] -
[Logical axis name 2] - ...;
Coordinate Designates the coordinate
PLN | Plane Set PLN [Logical _axis_name_1 (vertical axis)] plane to be used for an ol «x
ting [Logical axis name 2 (horizontal axis)]; | instruction that requires a

plane designation.

6.3 Axis Control Instructions

Current Position Set (POS)

Current Position Set (POS)

The POS instruction changes the current positions of the specified axes to the desired coordinate values
and creates new coordinate systems for those axes.

In this manual, the newly set coordinate system is called the working coordinate system, while the original
coordinate system of the machine is called the machine coordinate system.

Movement instructions executed after a POS instruction operate in the working coordinate system.

Coordinate System Description Remarks
Machine coordinate | The original coordinate system of the The position for a zero point return is the
system machine origin (0).

Working coordinate | A coordinate system that is constructed with | Create a new coordinate system with the
system user-defined positions POS instruction.

Logical axis 2

(Logical axis 1) | »
P Current position

Logical axis 2
A

Origin set by the POS instruction
(Origin of the working coordinate system)

(Logical axis 2)

. . .
0,0) Working P Logical axis 1

Zero point return position '
coordinate system

(Machine origin)

i
o
|
|
1
|
1
1
|
|
1
|
|
1
!
]
1
1
|
1
|
1
!

P Logical axis 1
(0,0 Machine coordinate system

Fig. 6.54 Working Coordinate System Set with POS Instruction

A\ CAUTION

* The Set Current Position (POS) Instruction creates a new working coordinate system.
Therefore, unexpected operation may occur if the POS instruction is specified incorrectly.
When you use the POS instruction, always confirm that the working coordinate system is in
the correct position before you begin operation.

There is a risk of injury or device damage.

The working coordinate system can be changed as often as desired by using the POS instruction.

Always set the machine coordinate system first.

The machine coordinate system is not affected by the POS instruction.

Up to 32 axes can be specified in one POS instruction. The working coordinate system for any unspecified
axis is not changed.

Movement instructions in a working coordinate system cannot exceed the maximum programmable value
when converted to coordinates in the machine coordinate system.

Motion Language Instructions

6-121

6.3 Axis Control Instructions

Current Position Set (POS)

The following table shows the setting status of the machine coordinate system and the working coordinate
system.

Table 6.1 Coordinate System Setting Timing

Fixed Parameter No. 30 (Encoder Selection)

Coordinate System Incremental Encoder/Absolute
Setting Timin
9 g Encoder Used as Incremental Encoder sl et

Machine coordinate system:
After the power supply is Machine coordinate system: Temporary! | Defined.*?

turned ON Working coordinate system: Canceled.*> | Working coordinate system:
Canceled.

After a ZRN instruction is | Machine coordinate system: Set. Working coordinate system:
executed Working coordinate system: Canceled. Canceled.
After a POS instruction is

Working coordinate system: Set. Working coordinate system: Set.
executed
After the zero point is set Machine coordinate system: Set. Machine coordinate system: Set.

*1. Temporary: The origin of the machine coordinate system is set as the current position when the power supply is
turned ON.
If a zero point return operation is not performed afterwards, software limit switches cannot be used.

*2. Defined: The origin of the machine coordinate system is created based on the position information from the abso-
lute encoder.

*3. Canceled: The previously set working coordinate system is canceled, and the working coordinate system is set to
equal the machine coordinate system.

3 1. For an infinite-length axis, set a value that is between 0 and POSMAX.
@ A motion program alarm occurs if a value is set that is outside of this range.
2. When the zero point return operation is executed without using a ZRN instruction, such as a zero
point return operation that is executed from a ladder program, the working coordinate system will
not be canceled.

Important

Format

The format of the POS instruction is as follows:

POS [Logical_axis_name_1] Coordinate_axis [Logical_axis_name_2] Coordinate_axis ...;

ltem Unit Applicable Data

* Directly designated value

Coordinate axis | Reference units
* Indirect designation with a double-length integer register

Programming Example

A programming example that uses the POS instruction is given below.
ABS; "Absolute Mode
MOV [A1]1000 [B1]2000;"Positioning

POS [A1]0 [B1]0;"Update the working coordinate system.
MOV [A1]3000 [B1]4000;"Positioning

DL00000 = IL8010;"Obtain the CPOS (Machine Coordinate System Calculated Position) for axis A1.
DL00002 = IL8090;"Obtain the CPOS (Machine Coordinate System Calculated Position) for axis B1.
POS [A1]DL00000 [B1]DL0O0002;"Cancel the working coordinate system.

END;

6-122

6.3 Axis Control Instructions

Move on Machine Coordinates (MVM)

Move on Machine Coordinates (MVM)

The MVM instruction is used to temporarily move axes in the machine coordinate system after a working
coordinate system that is different from the machine coordinate system has been set with the POS instruc-
tion.

Specify MVM for an axis movement instruction to temporarily move the axis to the absolute coordinate
position in the machine coordinate system. During execution of an MVM instruction, the axis moves in
Absolute Mode regardless of the setting of the movement mode.

The result of the MVM instruction is valid only in the block that contains the MVM instruction. For exam-
ple, the axes will move in the working coordinate system for the linear interpolation starting from the next
block after the MVM instruction.

/A CAUTION

* The Move on Machine Coordinates (MVM) instruction temporarily performs positioning to a
coordinate position in the machine coordinate system. Therefore, unexpected operation
may occur if the instruction is executed without confirming the zero point position in the
machine coordinate system first. When you use the MVM instruction, always confirm that
the machine zero point is in the correct position before you begin operation.

There is a risk of injury or device damage.

Format

The format of the MVM instruction is as follows:
MVM MOV :

Or
MVM MVS ;

Programming Example

A programming example that uses the MVM instruction is given below.

MVM MVS [A1]50 [B1]150 F1000: MVS [A1]50 [B1]50 F1000;

When the MVM

Instruction Is Specified When the MVM Instruction Is

B1 Not Specified

250

150

Motion Language Instructions

A1
Working coordinate system

100

Prograr'n current position
| (0,0)

|
|
|
|
|
|
|
! I
! I
o
! : » A1
(0,0) 50 100 150 Machine coordinate system

Fig. 6.55 Programming Example for MVM Instruction

6-123

6.3 Axis Control Instructions

Update Program Current Position (PLD)

6-124

Update Program Current Position (PLD)

The PLD instruction updates program current positions that have been changed manually (i.e., manual
intervention) or for some other cause. Up to 32 axes can be specified in one instruction.

If an axis is moved from another program (i.e., a ladder program or another motion program) while the
motion program is running, the program current position for that axis will not be updated. If the motion
program is executed in this status, the axis will move to a position that is offset by the travel distance that
occurred for manual intervention.

To solve this problem, the PLD instruction is used to update the program current positions.

1. The PLD instruction is executed by the user when necessary. The PLD instruction is not used in
some applications where manual intervention is required while the motion program is running.

2. The program current positions will not be updated for axes that are not specified in the PLD
instruction.

3. Use the PLD instruction while the axis is stopped.

Information

Format

The format of the PLD instruction is as follows:

PLD [Logical_axis_name_1] [Logical_axis_name_2] [Logical_axis_name_3] ...;

Programming Example

A programming example that uses the PLD instruction is given below.

€ Manual Intervention during Motion Program Operation

MOV [A1]1000;

"Axis A1 was jogged during execution of this instruction block.
PLD [A1];"Update the program current position.
MOV [A1]2000;

€ Axis Is Moved in a Motion Program User Function

MOV [A1]1000;

UFC FNC10 MB000000 IW0100 MB000020;"Axis A1 was moved by a user function.
PLD [A1];"Update the program current position.

MOV [A1]2000;

& Precautions

If you execute a PLD instruction immediately after an interpolation instruction (a MVS, SKP, MCW, or
MCC instruction) for an axis specified by a Motion Module (SVA-01, SVB-01, SVC-01, or PO-01),
always execute IOW instruction (I/O Variable Wait) and confirm Distribution completed (DEN).

If you do not execute IOW instruction, a delay in updating the data in the scan may prevent updating the
current position of the program correctly.

Example Example of Executing the IOW Instruction before the PLD Instruction

6.3 Axis Control Instructions

Update Program Current Position (PLD)

MVS [A1]1000; "Execute interpolation instruction for axis allocated to Optional Module.
IOW IB800CO == 1; "Confirm Distribution completed (DEN)

PLD [A1]; "Update the program current position.

MOV [A1]1000;

Motion Language Instructions

6-125

6.3 Axis Control Instructions

In-position Check (PFN)

In-position Check (PFN)

The PFN instruction checks to see whether the axes have entered the positioning proximity during an
interpolation operation.

An in-position check is not normally performed to check if an axis that was moved with an MVS, MCW,
MCC, or SKP interpolation instruction is in the positioning completed range. Use the PFN instruction
when it is necessary to check if an axis is in the positioning completed range.

Distribution completed. Near position signal turns ON.
Speed (V) 4
Interpolation instruction block

Next instruction block

\j

v

Monitor parameter Time (t)
Bit 3 (Near Position) in IWOOOO0C

—p —

In-position check performed
with a PFN instruction

Fig. 6.56 Operation of PFN Instruction

Bit 3 (Near Position Signal) in the IWOODOOC monitor parameter turns ON when | MPOS - APOS | <
NEAR Signal Output Width.
Set the NEAR signal output width with the INP instruction.

If the NEAR signal output width is set to 0, bit 3 in the IWOOOOC monitor parameter turns ON

Information IR . .
when reference pulse distribution, including the filter, is completed.

Format

The format of the PFN instruction is as follows:

* When Specified in the Same Block as an Interpolation Instruction
MVS [Logical_axis_name_1] - [Logical_axis_name_2] - [Logical_axis_name_J3] ... PFN;

* When Specified Independently
PFN [Logical_axis_name_1] [Logical _axis_name_2] [Logical _axis_name_3] ...;

6-126

6.3 Axis Control Instructions

In-position Check (PFN)

Programming Example

A programming example that uses the PFN instruction is given below.

€ When Specified in the Same Block as an Interpolation Instruction

MVS [A1]1000 F20000 PFN;
MOV [A1]3000;
END:

€ When Specified Independently

MVS [A1]1000 F20000;
PFN [A1];

MOV [A1]3000;

END;

Speed (V)
A

MOV instruction movement

MVS instruction movement

» Time (t)

Range check set with the INP instruction

Fig. 6.57 Programming Example for the PFN Instruction

Motion Language Instructions

6-127

6.3 Axis Control Instructions

In-Position Range (INP)

In-Position Range (INP)

The INP instruction sets the in-position range.
Up to 32 axes can be specified in one instruction. The OLOOO20 (NEAR Signal Output Width) setting

parameter is updated for each specified axis.
The valid range is 1 to 65,535 reference units.
Speed (V)
A

Monitor parameter nenoaiti
ILOOO6 (Machine Coordinate " PoSiion check started.

System Feedback Position (APOS))

Next instruction block

Interpolation
distribution

> Time (1)

Monitor parameter
Bit 3 (Near Position) in IWOOOO0C > e

In-position range specified
by the INP instruction

Fig. 6.58 How to Specify the INP Instruction

The SVR or SVR32 Function Module does not support the OLOOO20 (NEAR Signal Output

Width) setting parameter.
The in-position range is always 0 for the SVR or SVR32 Function Module.

Information

Format
The format of the INP instruction is as follows:

INP [Logical_axis_name_1] NEAR_signal_output_width [Logical_axis_name_2] NEAR_signal_out-

put_width ...;
ltem Unit Applicable Data
NEAR Signal Output Width | Reference units " Directly designated value
& P * Indirect designation with a double-length integer register

6-128

6.3 Axis Control Instructions

In-Position Range (INP)

Programming Example

A programming example that uses the INP instruction is given below.

ABS;

MOV [A1]0 [B1]0;"Positioning to origin

INP [A1]100 [B1]200;"Set the in-position range
MVS [A1]1000 PFN;

MVS [B1]1000 PFN;

MVS [A1]-1000 ;

END;

B1 4
1,000

Y

-1,000 (0,0)

Fig. 6.59 Programming Example for INP Instruction

Motion Language Instructions

6-129

6.3 Axis Control Instructions

Positioning Completed Check (PFP)

Positioning Completed Check (PFP)

The PFP instruction checks to see whether positioning has been completed for the specified axes moved
by an interpolation instruction.

A positioning completed check is not performed for axes moved by an MVS, MCW, MCC, or SKP inter-

polation instruction and execution moves to the next instruction block.

Use the PFP instruction when it is necessary to check if positioning has been completed for an axis.

Speed (V) A

Interpolation instruction block

Distribution completed.

Positioning Completed
signal turns ON.

Next instruction block

Monitor parameter
Bit 1 (Positioning Completed) in IWOOOO0C

y

Time ()

—p|

PFP instruction executed to perform
a positioning completed check

Fig. 6.60 Positioning Completed Check

Bit 1 (Positioning Completed Signal) in the IWOOOOC monitor parameter turns ON when distribution
has been completed and the current position is in the positioning completed range.

Set the positioning completion width in OWOOO1E.

Format

The format of the PFP instruction is as follows:

* When Specified in the Same Block as an Interpolation Instruction

MVS [Logical _axis_name_1] - [Logical_axis_name_2] - [Logical_axis_name_3] ... PFP;

* When Specified Independently
PFP [Logical_axis_name_1] [Logical_axis_name_2] [Logical _axis_name_J3] ...;

Programming Example

A programming example that uses the PFP instruction is given below.

€ When Specified in the Same Block as an Interpolation Instruction

MVS [A1]1000 F20000 PFP;"MVS instruction (1)

MVS [A1]3000 F50000;"MVS instruction (2)

END;

6-130

6.3 Axis Control Instructions

Positioning Completed Check (PFP)

€ When Specified Independently

MVS [A1]1000 F20000;"MVS instruction (1)
PFP [A1];

MVS [A1]3000 F50000;"MVS instruction (2)
END;

The ACCMODE instruction does not perform continuous interpolation processing between instruc-
tions if the PFP instruction is also used.

Speed

N
ote A

Movement for MVS
Instruction (2)

Movement for MVS
Instruction (1)

T > Time

Range check set
inoOLOOO1E

Motion Language Instructions

6-131

6.3 Axis Control Instructions
Coordinate Plane Setting (PLN)

Coordinate Plane Setting (PLN)

The PLN instruction specifies two logical axes in the parameters to define a coordinate plane. Always exe-
cute this instruction before you execute an MCW or MCC circular or helical interpolation instruction.
The designated coordinate plane remains in effect until it is reset by another PLN instruction or until the
END instruction.

Format
The format of the PLN instruction is as follows:

Horizontal axis name Vertical axis name
PLN [Logical_axis_name_1] [Logical_axis_name_2];

Specify the two axes to define the coordinate plane.

Programming Example

A programming example that uses the PLN instruction is given below.

PLN[A1][B1];"Specify axis A1 and axis B1 to make up the plane.
MCW [A1]50 [B1]50 R50 F1000;

End position
50

Program
current positiong > A1

(0,0) 50

Fig. 6.61 Programming Example for PLN Instruction

the same order used to specify the axes for the PLN instruction.

Specify the end position and center point position for circular interpolation or helical interpolation in

Note

PLN [Logical_axis_name_1] [Logical_axis_name_2]; l
4

A
MCC [A1]1500 [B1]4000 U2500 V1000 F150;

6-132

6.4 Program Control Instructions

Program Control Instructions

Program control instructions control the execution sequence of a program.
There are 16 program control instructions.

The following table lists the program control instructions.

(2]
o | €
E | B8
c © | >
ie] o | 9
3] o S o
3 Name Format Description Q| o
1 c |2
£ S|l
° | 3
= |8
(7]
IF (Conditional_expression); Executes process 1 if the con-
IF (Process_1); ditional expression is satis-
ELSE | Branching ELSE; fied, or executes process 2if | O | O
IEND (Process_2); the conditional expression is
IEND; not satisfied.
. N Repeatedly executes the pro-
WHILE (Conditional :
WHILE Repetition (_On itional_expression) cesses between WHILE and olo
WEND P v WEND as long as the condi-
WEND; . oo .
’ tional expression is satisfied.
Repeatedly executes the pro-
. . cesses between WHILE and
iti HILE dit l ;
wHILE | Repetition | W (Conditional_expression); WENDX as long as the condi-
with One s . .o . O| O
WENDX . tional expression is satisfied.
Scan Wait WENDX;
’ Executes one loop process per
scan.
PFORK Label 1, Label 2,
Label 3...;
Label_I: Process_I;]ilxecute(sl th.e blocl(;sb (folzks)
PFORK | b ottt Exe. | 'OINTO Label fbels in pralel,
JOINTO citrii)ne " Label_2: Process_2; The ENDpand R].ET instruc Ofx
PJOINT JOINTO Label X, . .
= . tions cannot be used in paral-
Label_3: Process_3, lel execution processing.
JOINTO Label X,
Label X: PJOINT;
SFORK Conditional_expression_1?
Label 1,
Conditional _expression_2?
Label 2,
Conditional _expression_3?
Label 3,
Conditional _expression_4?
Label _4; Executes process 1 if condi-
SFORK Selective Label I Process_I; tional expression 1 is satis-
JOINTO Execution JOINTO Label X: ﬁed(,1 or exel:cutes prgceszs 2 if |[O]O
SIOINT Label 2: Process_2; Z;[Iils fl_lt:()lna expression = 1s
JOINTO Label X, '
Label 3: Process_3;
JOINTO Label X:
Label 4: Process_4;
JOINTO

Label X;

abel X: SJOINT,;

Motion Language Instructions

Continued on next page.

6-133

6.4 Program Control Instructions

Continued from previous page.

(2]
o | E
E| 8
c (LN o))
o] o 9
5 L |
3 Name Format Description a|o
1 c |2
£ S|lo
° >
s |3
(0}
MSEE Call Subpro- MSEE MPSOIOC: Executes the MPSOOO sub- ol «
gram program.
Call Executes the SPSOOO sub-
SSEE | Sequence SSEE SpsO0O0; x| O
program.
Subprogram
UFC User _function_name Input data,
Call User Input_ad- Calls a user-created function
UFC . . O | x
Function dress, Out- from the motion program.
put_data;
FUNC User_function_name Input _data,
FUNC User 4 Input_ad- Calls a user-created function <o
Function dress, Out- from the sequence program.
put_data;
END Program End | END; Ends the program. O
RET Subprogram RET; Ends the subprogram. O] O
Return
Waits for the period of time
TIM Dwell Time TIM T—; specified by T, and then pro- | O | X
ceeds to the next block.
One-m Waits for the period of time
TIMIMS ems | TIMIMS T —; specified by T, and then pro- | O | X
Dwell Time
ceeds to the next block.
. Stops execution of the motion
IoOW I/O.Varlable IOW MB -==_ program until the conditional | O | x
Wait .. .
expression is satisfied.
Divides the execution of con-
secutive sequence instruc-
One Scan tions.
EOX . EOX; O
© Wait OX; The instruction block after %
EOX is executed in the next
scan.
Disable Sin-
gle-block
Signal .
SNGD;
SNGD/ | (SNGD) and Spec1ﬁe§ whether to enab}e or
. s disable single step operation O | x
SNGE Enable Sin- SNGE- durine debueein
gle-block ’ J ELing.
Signal
(SNGE)

6-134

6.4 Program Control Instructions

Branching Instructions (IF, ELSE, and IEND)

Branching Instructions (IF, ELSE, and IEND)

The IF, ELSE, and IEND instructions execute the blocks between IF and ELSE when a conditional expres-
sion is satisfied. If the conditional expression is not satisfied, the blocks between ELSE and IEND are exe-
cuted.

ELSE can be omitted. If ELSE is omitted and the conditional expression is not satisfied, execution will
continue from the block after IEND.

Conditional
expression

Satisfied.

Not satisfied.

A A

Process 1 Process 2

v

Information ~ The IF, ELSE, and IEND instructions can be nested to up to 8 levels.

Motion Language Instructions

6-135

6.4 Program Control Instructions

Branching Instructions (IF, ELSE, and IEND)

Format

The format of the IF, ELSE, and IEND instructions is as follows:

IF (Conditional_expression);
... (Process_1)

ELSE;
... (Process_2)

IEND;

The conditional expressions that can be used in branching instructions are described below.

Bit Data Comparison

B Format
The == (Match) instruction is used for numeric comparison.

Specify a register on the left, and either 0 or 1 on the right.

IF MB0O0000O == 0; "MB000000 =0
IF MB0O00000O ==1; "MBO000000 =1

Bl Operations for Conditional Expressions
&, |, and ! (AND, OR, and NOT) can be used for logical expressions.

IF (MB0O00000 & MB000001)
IF (MB00000O & IMB000001)
IF (MB0O0000O | MB000001)
IF (MB00000O | 'MB000001)

1; "MBO000000 = 1 and MB0O00001 = 1
1, "MBO000000 = 1 and MB000001 =0
1
1

; "MBO000000 = 1 or MB0O00001 = 1

; "MBO000000 = 1 or MB0O00001 =0

B Examples of Syntax Errors

A syntax error occurs in the following cases:

* If the <> (Mismatch) instruction is used for numeric comparison:

IF MBO0O00O0O0 <> 0; = Syntax error

* When a numerical value is specified on the left, and a register on the right:

IF 1 ==MBO000000; =Syntax error
IF MB0O0O0000 = = MB000001; = Syntax error

* When there is no numeric comparison instruction:

IF MB00000O0; = Syntax error
IF (0); = Syntax error

* When more than one numeric comparison instruction is used:

IF (MB00000O = = 0) & (MB000001 = = 1); = Syntax error

6-136

6.4 Program Control Instructions

Branching Instructions (IF, ELSE, and IEND)

@ Integer, Double-length Integer, or Real Number Data Comparison

B Format

All numeric comparison instructions (==, <>, >, <, >=, <=) can be used for these data types.

Specify a register on either the left or the right side.

IF MW00000 = = 3; "MWO00000 = 3
IF MLOOO0OO <> ML00002; "MLO00QO = ML00002
IF 1.23456 >= MF00000; "1.23456 > MF00000

B Operations for Conditional Expressions

Numeric and logic operations can be used in the expression.

IF MW00000 = = (MWO00001/3); "MWO00000 = (MW00001 =+ 3)
IF (MLOOOOO & FOO00000H) <> ML00002; "(MLOO0OO A FOO0O0000H) = ML0O0002
IF 1.23456 >= (MF00000 * MF00002); "1.23456 > (MF00000 x MF00002)

B Examples of Syntax Errors

A syntax error occurs in the following cases:

* When a constant is specified both on the left and right:

IFO0==3; = Syntax error
IF (3.14 = 2 = 1000) > 9000.0; = Syntax error

* When there is no numeric comparison instruction:

IF MWO000000; = Syntax error
IF (-1); = Syntax error

* When more than one numeric comparison instruction is used:

IF (MW00000 < 0) & (MW000001 > 0); = Syntax error

Programming Example

A programming example that uses the IF, ELSE, and IEND instructions is given below.

IF MB0O0000O = = 1;

MOV [A1] 10000; "If MB0O0000O is ON, A1 starts positioning.
ELSE;

MOV [B1] 10000; "If MBO000OQO is OFF, B1 starts positioning.
IEND;

Motion Language Instructions

6-137

6.4 Program Control Instructions

Repetition Instructions (WHILE, WEND)

6-138

Repetition Instructions (WHILE, WEND)

Use the WHILE and WEND instructions to repeatedly execute the instruction blocks between the WHILE
and WEND instructions as long as the conditional expression is satisfied. When the conditional expression
is no longer satisfied, execution jumps to the next block after WEND.

Not satisfied. _—Conditional
expression

Satisfied.

Process

[

3 If the repeated program section is created using only instructions for which processing is completed in
@ one scan, the Machine Controller may be overloaded by the scan processing, resulting in exceeding the
scan time or a watchdog timer error.
For instructions that are executed in one scan, use the WHILE and WENDX instructions instead or
insert an EOX or TIM instruction inside the repeated program section.
Refer to the following section for details on instructions that are executed in one scan.

Important

T 5.4 Instruction Types and Execution Scans (page 5-13)

Information The WHILE and WEND instructions can be nested to up to 8 levels.

Format
The format for WHILE and WEND instructions is as follows:

WHILE (Conditional_expression);
(Process);

WEND ; “End of repetition instructions

6.4 Program Control Instructions

Repetition Instructions (WHILE, WEND)

The conditional expressions that can be used in repetition instructions are described below.
€ Bit Data Comparison

B Format
The == (Match) instruction is used for numeric comparison.

Specify a register on the left, and either 0 or 1 on the right.

WHILE MB000000 = =0; "MBO000000 =0
WHILE MB000000 ==1; "MBO000000 =1

B Operations for Conditional Expressions
&, |, and ! (AND, OR, and NOT) can be used for logical expressions.

WHILE (MB000000 & MBO000001)
WHILE (MB000000 & 'MB000001)
WHILE (MB000000 | MB000001)
WHILE (MB000000 | 'MB000001)

1, "MB000000 = 1 and MB000001 =1
1, "MB000000 = 1 and MB000001 =0
1, "MBO000000 = 1 or MB0O00001 = 1
1, "MB000000 = 1 or MB0O00001 = 0

B Examples of Syntax Errors

A syntax error occurs in the following cases:

* If the <> (Mismatch) instruction is used for numeric comparison:

WHILE MB000000 <> 0; = Syntax error

* When a numerical value is specified on the left, and a register on the right:

WHILE 1 = = MB000000; = Syntax error
WHILE MB000000 = = MB000001; = Syntax error

» When there is no numeric comparison instruction:

WHILE MBO000000; = Syntax error
WHILE (0); = Syntax error

* When more than one numeric comparison instruction is used:

WHILE (MB000000 = = 0) & (MB000001 ==1); = Syntax error

@ Integer, Double-length Integer, or Real Number Data Comparison

B Format
All numeric comparison instructions (==, <>, >, <, >=, <=) can be used for these data types.

Specify a register on either the left or the right side.

WHILE MWO00000 = = 3; "MWO00000 = 3
WHILE ML00000 <> ML00002; "MLO0000 = ML00002
WHILE 1.23456 >= MF00000; "1.23456 > MF00000

Motion Language Instructions

6-139

6.4 Program Control Instructions

Repetition Instructions (WHILE, WEND)

B Operations for Conditional Expressions

Numeric and logic operations can be used in the expression.

WHILE MWO00000 = = (MW00001/3); "MW00000 = (MW00001 + 3)
WHILE (MLO0000 & FO000000H) <> ML00002; "(MLO000O A FOO00000H) # ML00002
WHILE 1.23456 >= (MF00000 * MF00002); "1.23456 > (MFO0000 x MF00002)

B Examples of Syntax Errors

A syntax error occurs in the following cases:

* When a constant is specified both on the left and right:

WHILE 0 == 3; = Syntax error
WHILE (3.14 = 2 = 1000) > 9000.0; = Syntax error

* When there is no numeric comparison instruction:

WHILE MWO000000; = Syntax error
WHILE (-1); = Syntax error

* When more than one numeric comparison instruction is used:

WHILE (MW00000 < 0) & (MW000001 > 0); — Syntax error

Programming Example

The following programming example uses the WHILE and WEND instruction to draw a circle ten times.

MOV [A1] 0 [B1] 0;"Positioning

MWO00100 = 1;"Preset counter.

INC; "Specify Incremental Mode.

PLN [A1] [B1];"Set coordinate plane.

WHILE MWO00100 <= 10 ;"Repetition instructions
MCW [A1]0 [B1]0 U50. V50. F8000 ; "Circular interpolation
MOV [A1]50. [B1]50.; "Positioning
MW00100 = MW00100 + 1; "Increment counter

WEND ;"End of repetition instructions

A Circle 10
B1

Circle 9

Circle 3 7

7
Circle2 7 N

Circle 1

50 "1

(0,0)

Fig. 6.62 Programming Example for the WHILE and WEND Instructions

6-140

6.4 Program Control Instructions

Repetition with One Scan Wait (WHILE and WENDX)

Repetition with One Scan Wait (WHILE and WENDX)

The WHILE and WENDX instructions are effectively a combination of the WHILE, WEND, and EOX
instructions. Use the WHILE and WENDX instructions to repeatedly execute the instruction blocks
between the WHILE and WENDX instructions as long as the conditional expression is satisfied. When the
conditional expression is no longer satisfied, execution jumps to the next block after the WENDX instruc-
tion.

Execution waits for one scan at the block before the WENDX instruction, then the processing for one scan
and one loop is executed.

Not satisfied.

Conditional
expression

Satisfied.

Process

\ 4

EOX
One Scan Wait

I

Format
The format for the WHILE and WENDX instructions is as follows:

WHILE (Conditional_expression);
(Process);

WENDX; "Wait for one scan, then end the repetition instruction.

Motion Language Instructions

6-141

6.4 Program Control Instructions

Repetition with One Scan Wait (WHILE and WENDX)

The conditional expressions that can be used in repetition instructions are described below.
Bit Data Comparison

B Format
The == (Match) instruction is used for numeric comparison.

Specify a register on the left, and either 0 or 1 on the right.

WHILE MB000000 = =0; "MBO000000 =0
WHILE MB000000 ==1; "MB000000 = 1

B Operations for Conditional Expressions
&, |, and ! (AND, OR, and NOT) can be used for logical expressions.

WHILE (MB000000 & MB000001) ==1; "MB000000 =1 and MB0O00001 = 1
WHILE (MB000000 & 'MB000001) ==1; "MB000000 =1 and MB0O00001 =0
WHILE (MB000000 | MB000001) ==1; "MB00000O =1 or MBO0O0001 = 1
WHILE (MB000000 | IMB000001) ==1; "MB00000O = 1 or MBO0O0001 =0

B Examples of Syntax Errors

A syntax error occurs in the following cases:

* If the <> (Mismatch) instruction is used for numeric comparison:

WHILE MB000000 <> 0; = Syntax error

* When a numerical value is specified on the left, and a register on the right:

WHILE 1 = = MB000000; = Syntax error
WHILE MB000000 = = MB0O00001; = Syntax error

* When there is no numeric comparison instruction:

WHILE MB000000; = Syntax error
WHILE (0); = Syntax error

* When more than one numeric comparison instruction is used:

WHILE (MB000000 = = 0) & (MB000001 = =1); = Syntax error

@ Integer, Double-length Integer, or Real Number Data Comparison

B Format
All numeric comparison instructions (==, <>, >, <, >=, <=) can be used for these data types.

Specify a register on either the left or the right side.

WHILE MWO00000 = = 3; "MWO00000 = 3
WHILE ML00000 <> ML00002; "MLO0000 = ML0O0002
WHILE 1.23456 >= MF00000; "1.23456 > MF00000

6-142

6.4 Program Control Instructions

Repetition with One Scan Wait (WHILE and WENDX)

B Operations for Conditional Expressions

Numeric and logic operations can be used in the expression.

WHILE MWO00000 = = (MW00001/3); "MW00000 = (MW00001 -+ 3)
WHILE (ML0O0000 & FO000000H) <> ML00002; "(MLO000O A FOO00000H) = ML00002
WHILE 1.23456 >= (MF00000 * MF00002); "1.23456 > (MFO0000 x MF00002)

B Examples of Syntax Errors

A syntax error occurs in the following cases:

* When a constant is specified both on the left and right:

WHILE 0 == 3; = Syntax error
WHILE (3.14 * 2 = 1000) > 9000.0; = Syntax error

* When there is no numeric comparison instruction:

WHILE MWO000000; = Syntax error
WHILE (-1); = Syntax error

* When more than one numeric comparison instruction is used:

WHILE (MW00000 < 0) & (MW000001 > 0); — Syntax error

Programming Example

A programming example that uses the WHILE and WENDX instructions is given below.
The following programming increments register MLO000O up to 100.

MLO0000 =0

WHILE MLO00000 == 100; "Repetition instruction"

MLO0000 = ML0O00O0O0 + 1; "Increment ML00000."

WENDX; "Wait for one scan, then end the repetition instruction.”
END;

Motion Language Instructions

6-143

6.4 Program Control Instructions

Parallel Execution Instructions (PFORK, JOINTO, and PJOINT)

6-144

Parallel Execution Instructions (PFORK, JOINTO, and
PJOINT)

The PFORK instruction performs parallel execution for blocks (i.e., forks) with the specified labels.
After each fork has been executed, execution is merged at the label designated by the JOINTO instruction.
A maximum of 8 forks (i.e., parallel processes) can be specified. Refer to the following section for details
on labels.

I Block Format (page 5-2)

PFORK

Label 1 Label 2 . Label8 |
Process 1 Process 2 P Process 8
[I
| JOINTO LabeI_X| | JOINTO Label_X| e JOINTO Label_X
| 1
Label X

PJOINT

Fig. 6.63 Using the PFORK, JOINTO, and PJOINT Instructions

In the above figure, the labeled blocks specified by the PFORK instruction (Process 1, Process 2, Process
3, etc.) are executed in parallel. After each fork has been executed, execution is merged at the label desig-
nated by the JOINTO instruction. These instructions enable the designation of any combination of instruc-
tions for parallel execution, such as axis movement instructions and sequence instructions, or axis
movement instructions and other axis movement instructions.

B Instructions Designated before PFORK

Values set by instructions executed before a PFORK instruction such as FMX, ABS/INC, F reference, IFP,
PLN, IAC/IDC, etc., are inherited by the forks that are executed in parallel by the parallel execution
instruction. These instructions can also be executed within individual forks. After merging the forks, pro-
cessing will continue using the values that were set in the leftmost process.

B Nesting Parallel Execution Instructions in Subprograms

Do not use a parallel execution instruction in a subprogram that will be called from a parallel execution
instruction in another subprogram.

B Parallel Execution Instructions in Subprograms

The following restrictions apply to parallel execution instructions in subprograms.

* The parallel execution of up to eight processes is allowed in a subprogram.
The actual number of processes that can be executed in parallel depends on the parallel execution mode
that was set in the main program.
A motion program alarm occurs if the maximum number of processes that can be executed in parallel is
exceeded.

» The MSEE instruction can be used only in the block specified by the first label.

6.4 Program Control Instructions

Parallel Execution Instructions (PFORK, JOINTO, and PJOINT)

PFORK 0001 0002;
0001:MVS [A1]100.[C1]100.;
JOINTO 0003;
0002:I10W MW10000= =1;
JOINTO 0008;

0003:PJOINT,

PFORK

0001 1 0002

MVS[A1]100.[C1]100. IOW MW10000= =

0003

Fig. 6.64 Parallel Execution Instructions in Subprograms

g * An error (“Duplicate labels are defined””) will occur if the same label is used more than once in a pro-
@ gram.
important ¢ 1f the number of PFORK forks and the number of labels are different, an error will occur.

Format

The format of the PFORK, JOINTO, and PJOINT instructions is as follows:
PFORK Label 1 Label 2 Label 3

Label _1: Process_1
JOINTO Label_X;
Label 2: Process 2
JOINTO Label_X;
Label _3: Process 3
JOINTO Label_X;
Label X:PJOINT

Motion Language Instructions

6-145

6.4 Program Control Instructions

Parallel Execution Instructions (PFORK, JOINTO, and PJOINT)

Programming Example
A programming example that uses the PFORK, JOINTO, and PJOINT instructions is given below.

MOV [A1]100. [B1]150.;
MVS [A1]200. [B1]250. F1000;
PFORK 0001 0002 0003;
0001:MVS [A1]300. [B1]100.
JOINTO 0004;
0002:MW12345=MW10000+MW10002;
IOW MB120001= =1;
JOINTO 0004;
0003:MVS [C1]100. [D1]100. F3000;
JOINTO 0004;
0004:PJOINT:
MOV [A1]500. [B1]500. [C1]500.;
[]
[]

MOV[A1]100.[B1]150.
MVS[A1]200.[B1]250.

| PFORK |

0001 oo|02 0003
[Mvsiatjzo0B11100. | MW12345=MW10000 | Mvs[c11100D1]100. |

+|v||w10002;
[low MB120001==1 |
[

| JoINTOOO04 | | JoINTOO004 | | JoINTOO004 |

0004 | |
| PJOINT |

[MOViATI500.[B1j500.C1j500. |

Fig. 6.65 Programming Example for the PFORK, JOINTO, and PJOINT Instructions

6-146

6.4 Program Control Instructions

Selective Execution Instructions (SFORK, JOINTO, SJOINT)

Selective Execution Instructions (SFORK, JOINTO, SJOINT)

The SFORK, JOINTO, and SJOINT instructions are used to execute a label following a “?” when the
specified conditional expression is satisfied. After each process has been executed, execution is merged at
the block with the label specified for the JOINTO instruction. Up to 16 conditional expressions including
DEFAULT can be designated.

If not all of the designated conditional expressions are satisfied, the labeled block following DEFAULT? is

executed.

DEFAULT can be specified only for the last conditional expression.
DEFAULT can be omitted in motion programs, but not in sequence programs.

Conditiona
expression

1

Conditional
expression

Conditiona
expression 3

Conditiona
expression 4

Label 1§ Label 2 Label 3 Label 4 Label n
Process 1 Process 2 Process 3 Process 4 " Process n
v v v v
JOINTO Label_X | | JOINTO Label_X | | JOINTO LabeI_X| | JOINTO Label_X| | JOINTO Label_X
v v .
Label X o
SJOINT
Fig. 6.66 Using the SFORK, JOINTO, and SJOINT Instructions
Information 1. The conditional expressions are examined in order from conditional expression 1. When more

than one conditional expression is satisfied, processing is executed from the label that first sat-
isfies the conditional expression.

. Be sure to use a conditional expression that can actually be satisfied when you use SFORK in

the motion program. If a condition is not satisfied, processing will remain in wait status at the
SFORK instruction block until a condition is satisfied.

Motion Language Instructions

6-147

6.4 Program Control Instructions

Selective Execution Instructions (SFORK, JOINTO, SJOINT)

Format

The format of the SFORK, JOINTO, and SJOINT instructions is as follows:

SFORK Conditional_expression_1 ? Label 1, Conditional_expression_2 ? Label_2, Conditional_ex-
pression_3 ? Label 3, Conditional_expression_4 ? Label_4,
..., DEFAULT ? Label_n;

Label _1: Process_1
JOINTO Label_X

Label 2: Process 2
JOINTO Label_X

Label _3: Process_3
JOINTO Label X

Label _4: Process 4
JOINTO Label_X
[)
[]

Label _n: Process_n
JOINTO Label_X

Label X:SJOINT

6-148

6.4 Program Control Instructions

Selective Execution Instructions (SFORK, JOINTO, SJOINT)

The conditional expressions that can be used with the SFORK instruction are described below.
€ Bit Data Comparison

B Format
The == (Match) instruction is used for numeric comparison.

Specify a register on the left, and either 0 or 1 on the right.

MBO000000 == 0?7 Label "MB000000 =0
MBO000000 == 1? Label "MB000000 = 1

B Operations for Conditional Expressions
&, |, and ! (AND, OR, and NOT) can be used for logical expressions.

(MB0O00000 & MB000001) == 1? Label "MBO000000 = 1 and MB000001 = 1
(MB0O00000 & IMB000001) == 1? Label "MB000000 = 1 and MB000001 =0
(MB0O00000O | MB0O00001) == 1? Label "MB000000 = 1 or MBO0O0001 = 1
(MB00000O0 | IMB000001) == 1? Label "MBO000000 = 1 or MBO00001 =0

B Examples of Syntax Errors

A syntax error occurs in the following cases:

* If the <> (Mismatch) instruction is used for numeric comparison:

MB000000 <> 07? Label = Syntax error

* When a numerical value is specified on the left, and a register on the right:

1 == MB000000 ? Label = Syntax error
MB000000 = = MB000001? Label = Syntax error

» When there is no numeric comparison instruction:

MB000000? Label = Syntax error
(0)? Label = Syntax error

* When more than one numeric comparison instruction is used:

(MB000000 = = 0) & (MB0O00001 = = 1)? Label = Syntax error

@ Integer, Double-length Integer, or Real Number Data Comparison

B Format
All numeric comparison instructions (==, <>, >, <, >=, <=) can be used for these data types.

Specify a register on either the left or the right side.

MWO00000 = = 3?7 Label "MWO00000 = 3
MLO000O <> ML000027? Label ~ "ML0O000O = MLO0002
1.23456 >= MF000007? Label "1.23456 > MF00000

Motion Language Instructions

6-149

6.4 Program Control Instructions

Selective Execution Instructions (SFORK, JOINTO, SJOINT)

6-150

B Operations for Conditional Expressions

Numeric and logic operations can be used in the expression.

MWO00000 = = (MW00001/3)? Label "MWO00000 = (MW00001 + 3)
(ML0O0000 & FO000000H) <> ML00002? Label "(MLO0O000 A FOOO0000H) = ML00002
1.23456 >= (MF00000 * MF00002)? Label "1.23456 > (MF00000 x MF00002)

B Examples of Syntax Errors

A syntax error occurs in the following cases:

* When a constant is specified both on the left and right:

0==37 Label = Syntax error
(3.14 = 2 *1000) > 9000.0? Label = Syntax error

* When there is no numeric comparison instruction:

MWO0O000007? Label = Syntax error
(-1)? Label = Syntax error

* When more than one numeric comparison instruction is used:

(MWO00000 < 0) & (MW000001 > 0)? Label = Syntax error

6.4 Program Control Instructions

Selective Execution Instructions (SFORK, JOINTO, SJOINT)

Programming Example

A programming example that uses the SFORK, JOINTO, and SJOINT instructions is given below.

MOV [A1]100.[B1]150.:
MVS [A1]200.[B1]250.F1000;
SFORK MWO00100= =1 ? 0001 MW00100= =2 ? 0002 MW00100= =3 ? 0003 DEFAULT ? 0004:
0001:MVS [A1]300.[B1]100.F3000;
JOINTO 0005:
0002:MVS [A1]300.[C1]100.F3000;
JOINTO 0005;
0003:MVS [C1]300.[S]100.F3000;
JOINTO 0005;
0004:JOINTO 0005;
0005:SJOINT:
MOV[A1]500.[B1]500.[C1]500.;

MOV[A1]100.[B1]150.
MVS[A1]200.[B1]250. F1000;

| SFORK |

DEFAULT
|

MVS[A1]300.[B1]100. F3000; MVS[A1]300.(C1]100. F3000; MVSIC1]300.S]100. F3000;

| JOINTO 0005 | | JOINTO 0005 | | JOINTO 0005 | JOINTO 0006
| |

| ssoNT |

MOV[A1]500.[B1]500.

Fig. 6.67 Programming Example for the SFORK, JOINTO, and SJOINT Instructions

Motion Language Instructions

6-151

6.4 Program Control Instructions

Call Motion Subprogram (MSEE)

6-152

Call Motion Subprogram (MSEE)

The MSEE instruction is used in a motion program to call a subprogram that is stored in the motion pro-
gram memory.
Up to 8 subprogram calls can be nested.

MPMO0O01

MOV [A1]1000;
MPSO002 (nesting level 1)

MSEE MPS002;

MOV [B1]1000;

MOV [C1]1000; MPS003 (nesting level 2)
MSEE MPS003;
RET, MOV [B1]1000;

MOV [C1]1000;

RET:

Fig. 6.68 Calling Subprograms

The RET instruction must be executed at the end of a subprogram.

Subprogram Restrictions
If a main program is called by the MSEE instruction, the program will not be executed.

Important

Format

The format of the MSEE instruction is as follows:

MSEE MPS Subprogram_number,

ltem Applicable Data

Subprogram number Any number between 001 and 512

Programming Example

A programming example that uses the MSEE instruction to call motion subprogram MPS101 is given
below.

MSEE MPS101;

6.4 Program Control Instructions

Call Sequence Subprogram (SSEE)

Call Sequence Subprogram (SSEE)

The SSEE instruction is used in a sequence program to call a subprogram that is stored in the sequence
program memory.

Up to 8 subprogram calls can be nested.

SPMO001
MWO00000=1;

SSEE SPS002; \

SPS002 (nesting level 1)

. Mwoo0000=2:

SSEE SPS003; \

SPS003 (nesting level 2)
~J MW00000=3;

END;

RET;

RET;

Fig. 6.69 Calling Subprograms

The RET instruction must be executed at the end of a subprogram.

Subprogram Restrictions
The following restrictions apply to sequence programs in subprograms.
Note If a main program is called by the SSEE instruction, the program will not be executed.

Format

The format of the SSEE instruction is as follows:

SSEE SPS Subprogram_number,;

ltem Applicable Data

Subprogram number Any number between 001 and 512

Programming Example

A programming example that uses the SSEE instruction to call sequence subprogram SPS101 is given
below.

SSEE SPS101;

Motion Language Instructions

6-153

6.4 Program Control Instructions

Call User Function from Motion Program (UFC)

Call User Function from Motion Program (UFC)

The UFC instruction is used in a motion program to call a user function.
When execution of the called user function is completed, the block after the UFC instruction block will be
executed.

motion program has been completed.

 If Execution of the User Function Is Completed When YB000000 Turns OFF
Execution of the user function is recognized as not being completed and the user function is called
again in the next scan.

 If Execution of the User Function Is Completed When YB000000 Turns ON
Execution of the user function is recognized as being completed and the UFC instruction proceeds to
the next block.

The YB00000O output bit is used to determine if execution of a user function that was called from the

Important

Format

The format of the UFC instruction is as follows:

UFC Function_name Input_data, Input_address, Output_data;

ltem Applicable Data
Function Name ASCII, 8 bytes
Input data Maximum: 16 data items (At least 1 data item is required.)
Input address Maximum: 1 address
Output data” Maximum: 16 data items (At least 1 data item is required.)

* You can omit the input address. The format “/nput data, ,Output_data” means that no input address is specified.
At least one input data item and one output data item are required.

Programming Example

A programming example that uses the UFC instruction is given below.

UFC KANSUU MB000000 IW0010 MB000002, MA00100 ,

Function Name Input data Input address
MB000001 MW00200 ML00201;
Output data

Function Name

| MB000000 MB000001
| | | INPUT-1 OUTPUT-1 4O—|

IW0010 == | INPUT-2 OUTPUT-2 =—>MW00200
| MB000002
| | INPUT-3 OUTPUT-3 =—>ML00201
INPUT-4
MA00100

Fig. 6.70 Programming Example for the UFC Instruction

6-154

6.4 Program Control Instructions

Call User Function from Motion Program (UFC)

UFC Instruction Specification Procedure

The procedure for specifying the UFC instruction is given below.

Determine the UFC instruction specifi-
cations.

Y

Set the following items in the Program
Properties Dialog Box:
e Configuration definition
¢ I/O definitions

U

Create the ladder user functions.

U

Create the motion program.

U

| Confirm Operation

* Determine the number of I/O and data type.
* Determine the function name.

Use the MPE720 to enter the definitions.

Create the user functions in the same way as for the
drawings.
However, the registers used are different.

Use the following format to specify the instruction:
“UFC Function_name Input_data, Input_address,
Output _data”.

Data Types of Registers Used in User Functions

The following data types can be used.

Data Type Type
B Bit data
W Integers
L Double-length integers
Q Quadruple-length integers
F Real numbers
D Double-length real numbers

Motion Language Instructions

6-155

6.4 Program Control Instructions

Call User Function from Motion Program (UFC)

Relationship between I/O Registers and Internal Function Registers

The relationship between the I/0 registers specified in the UFC instruction and the function registers is

shown below.

Inputs

Internal Function Registers

Outputs

X Registers Y Registers
Bit data input i (Input registers) (Output registers) Bit data output
%—gﬁlﬁs) ——>| | XB00000O to XBOOOOOF YB00000O to YBOOOOOF | | ———=> B-VAL
’ XW0001 YWO0001
XW0002 YW0002
XW0003 YWO0003
XW0004 YW0004
I-REG, I-REG,
L-REG input — L-REG output
(16 words max.)
XW00014 YW00014
L XW00016 YWO00016 i
Address Inputs A Registers
MA00100 MW00100 < > AW00000
MW00101 < > AW0001
MW00102 < > AW0002
MWO00103 < > AW0003
MWO00104 < > AW0004
Z Registers # Registers D Registers

6-156

6.4 Program Control Instructions

Call User Function from Motion Program (UFC)

The 12 types of registers listed in the following table can be used in functions.

Table 6.2 Function Registers

Type Name Designation Method Description Features
These registers are used for inputs to functions.
+ Bit inputs: XB000000 to XBO00OOF
« Integer inputs: XW00001 to XW00016
« Function Input | XB.XW.XL.XQ.XF, * Double-length inte.gers: XFOOOOI to XL00015
Registers XDnnnnn * Quadruple-length integers: XQ00001 to
XQ00013
* Real numbers: XF00001 to XF00015
* Double-length real numbers: XD00001 to
XD00013
These registers are used for inputs to functions.
* Bit inputs: YB000000 to YBOOOOOF
* Integer inputs: YW00001 to YW00016
y Function Out- YB.YW,YL.YQ.YF, * Double-length inte_gers: YPOOOOI to YL0O0O15
put Registers Ydnnnnn * Quadruple-length integers: YQ00001 to
YQO00013
* Real numbers: YF00001 to YF00015
* Double-length real numbers: YD00001 to 2
YDO00013 3
These are internal registers that are unique %
> | Function Inter- | ZB,ZW.ZL,ZQ,ZF, within each function. §
nal Registers ZDnnnnn These registers are used for internal processing a
in functions. =
These are external registers that use the address
Function Exter- | AB,AW,AL,AQ,AF, input value as the base address.
A nal Registers ADnnnnn For linking with S, M, 1, O, #, and DAnnnnn.
Register address nnnnn is a decimal number.
These registers are read-only in programs.
These registers can be referenced only from the
. #B #WH#L,#Q,#F, corresponding drawing.
| #Registers #Dnnnnn The actual usable range is specified by the user
from the MPE720. "
Register address nnnnn is a decimal number. 5
These registers are unique to each drawing. g
These registers can be referenced only from the ‘g:
. DB,DW,DL,DQ,DF, corresponding drawing. °
D | D Registers DDnnnnn The actual usable range is specified by the user g
from the MPE720. 2
Register address nnnnn is a decimal number. S
S System Regis- | SB,SW,SL,SQ,SF, é
ters SDnnnnn ‘23
M | Data Registers MB.MWMLMQMF, | Same as DWG registers. En
MDnnnnnnn These registers are used for both drawings and = n
G |Registers GB,GW,GL,GQ,GF, functions. Care must be taken when using them g
GDnnnnnnn to reference the same function from drawings -
. IB,IW,IL,IQ,IF, with different priority levels. i
I Input Registers IDhhhhh Register address nnnnn is a decimal number. @
Output Regis- OB,0W,0L,0Q,0F, Register address hhhhh is a hexadecimal num- =
O lters ODhhhhh ber. Z
c Constant regis- | CB,CW,CL,CQ,CF,

ter

CDnnnnn

Note: SA, MA, 1A, OA, DA, #A, and CA can also be used inside functions.

6-157

6.4 Program Control Instructions

Call User Function from Motion Program (UFC)

The following example shows the data transfer between 1/O registers.

MAO00100

6-158

Motion Program Notation

UFC TESTFUNC DB000000 DB000001 MW00030 MW00032, MA00100,DB000002 MWO00040

X Regist
|_D| 000000 egisters .
L vy Y Registers v | DB000002
DB000001 XW00000 | | YW00000 |
|_| > XW00001 YW00001 » MW00040
L XW00002 YW00002
MWO00030
XW00016 YWO00015
MWO00100 > AWO00000
MWO00101 > AW00001
MWO00102 > AW00002

Fig. 6.71 Motion Program Notation

6.4 Program Control Instructions

Call User Function from Motion Program (UFC)

Creating User Functions

The procedure used to create user functions is demonstrated here with the following user function specifi-
cations as an example.

Specification Motion Program

MWO00030 = Servo axis number (1 or 2)

MLO00032 = Feed forward speed

UFC FUNC-TI MW00030 ML00032,,DB000001;

Specify the servo axis number and speed data and set
this information in the OLOOO10 setting parameter.

Use the following procedure to create the user function.

1. Open the Ladder Pane. Right-click Function under Ladder Program and select New from the
menu.

By =

Prograrm
=[] MPa000 [CPU-201]
[[Ladder program
[High-speed
@ H i Main Program
Low-speed
[E7 start
[E7 Interrupt

B Function

[
MNew CP Ladder

& cut Crl+x

5 copy Ctr+C

B paste Chrl+y
Cormpile

Enable Main Program
Disable Main Program

Conwersion of CP ladder

Imnport 4
Expart 4

Brint...

2. Enter FUNC-T1 for the Program Number in the Create New Program Dialog Box.
x|

Program Ma, LIMC T1

Prograr Mame I

Configuration
1/ definition
Detail definition

BIT B-VAL BIT B-VAL

Motion Language Instructions

OF I Cancel << Detail |

4

The Ladder Pane is displayed.

6-159

6.4 Program Control Instructions

Call User Function from Motion Program (UFC)

6-160

3. Right-click FUNC-T1 and select Property from the menu.

By =

(Y Fle Edit
DESE3 &
Mo e EUE
= offline

Wiew

CPU-201

Programmir}

Scantir

e

Prograrm

=[] MPa000 [CPU-201]
[[Ladder program
. [E] High-speed
[E] Low-speed
=] Start
[E7 Interrupt

[
MNew CP Ladder

Open
Open[Other]

Cut Ctrl+x

Copy Ctr+C
Paste Chrl+y
Delete Delete
Rename I
Cormpile

Set the Password
Cancel the Password

Enable/ Disable
Corwersion of CP ladder

Imnport 4

Expart 4
Property
Brint...

4. In the Program Properties Dialog Box, click Function input definition and Function output
definition under I/O Definitions and set the number of function inputs and outputs and their data

types.

The code “UFC FUNC-T1 MW00030 ML00032, ,DB000001;” produces the following settings.

B Program Property

Prograrn Mo, IFUNC_TI

Programm Mame I

x|

:ﬂi:Prugram Property
Prograrn Mo. IFUNC_TI

Program Mame I

Configuration
= I/ definition

Function input no.

=

Function input definition |Type |Cnmment

Function address definition
Function output definition
Detail definition
Madified history

oL|worD = [No.
0z - | Yelocity

—

|

=< Detail

i

Configuration Function autput no,

= 1JO definition
Function input definition Type | Comment
Function address definition = | Complete

Function oukput ¢
[+ Detail definition
Maodified history

JE e 1)
|

Close

<< Detail

A

5. Close the DWG Configuration Definition Tab Page and edit the user function program in the Lad-

der Pane.

| EXPRESSION

FUNG_T1 :

0/

="

[=(¥W0000T-1)%0x80

B | ciencssion EN: -
" olso10i=xL00002
SB000004 YBOOOOOO
. [~
2/8 T p_—
Blways OH EES

4,8

Pt

EHD

R

6.4 Program Control Instructions

Call User Function from Motion Program (UFC)

6. Select Compile — Compile from the menu bar.

@ File Edit Yiew Onlne Program Debug wWindow Help
DRSEHB & BE 5 o one Ml 0@ EEit o re ihus aBbliZZ 7% s 6l
MU B EYUE § X e comedlrogams 35 58 cs—grz>alimalixo]

= Offline |LEzll bl b ek o (leh bqre “ompile Option...

7. Create a program in the Motion Editor that calls the user function.

MW00030 = 1;
MLOD032 = 500;
é{g FUNC-T1 Mw0O0030 MLOOD3Z, , DBODDOOD1;

This concludes the process to create a user function that is called from the motion program.
Execute the motion program and check the operation.

Motion Language Instructions

6-161

6.4 Program Control Instructions

Call User Function from Sequence Program (FUNC)

Call User Function from Sequence Program (FUNC)

The FUNC instruction calls a ladder user function from a sequence program.

Format

The format of the FUNK instruction is as follows:

UFC Function_name Input_data_1 Input_data_2 Input _data_3 ..., Input_address,
Output_data 1 Output_data_2 Output data 3...;

Item Applicable Data

Function

ASCII, 8 bytes
name

Input data Maximum: 16 data items (At least 1 data item is required.)

Input address | Maximum: 1 address

Output data Maximum: 16 data items (At least 1 data item is required.)

Note: 1. Multiple input and output data items can be specified in one instruction.
However, at least one of each is required. The input address can be omitted.
When the input address is omitted, only the comma is required in its place.
2. The above example calls a user function. Execution proceeds to the next block after the FUNC instruction
regardless of whether execution of the user function has been completed.

Programming Example

A programming example that uses the FUNC instruction is given below.

This example uses three input data items, an input address, and three output data items.

FUNC KANSUU MB000000 1W0010 MB000020, MAQ0100,
Function Name Input data Input address
MB000001 MW00201 ML00202;
Output data

Function Name

| MB000000 MBO000001
| | | INPUT-1 OUTPUT-1 4O—|

IW0010 == | |NPUT-2 OUTPUT-2 =——>MW00200
| MB000002
| |} INPUT-3 OUTPUT-3 ——>ML00201
INPUT-4
MA00100

Fig. 6.72 Programming Example for FUNC Instruction

6-162

6.4 Program Control Instructions

Program End (END)

Program End (END)

The END instruction ends program operation.

No other instructions can be executed in the same block as an END instruction.

The program ends operation after execution of the block containing the END instruction has been com-
pleted.

If there is a movement instruction in the previous block, the program operation ends after the in-position
check is completed.

Format

The format of the END instruction is as follows:

END;

Motion Language Instructions

6-163

6.4 Program Control Instructions

Subprogram Return (RET)

Subprogram Return (RET)

The RET instruction ends a subprogram.
After operation of the called subprogram is ended with the RET instruction, execution proceeds to the

block after the MSEE or SSEE instruction in the main program or subprogram that called the subprogram.

MPMO0O01
MOV [A1]1000;
MPS002
MSEE MPS002;
MOV [B1]1000;
MOV [C1]1000;
RET:;

Format

The format of the RET instruction is as follows:

RET;,

6-164

6.4 Program Control Instructions

Dwell Time (TIM)

Dwell Time (TIM)

The TIM instruction causes execution to pause for a specified period of time before the execution of the
next block begins.

Format

The format of the TIM instruction is as follows:

TIM Twait_time;

Item Unit Applicable Data Setting Range [s]
Directly designated value 0.00 to 600.00
Indirect designation with an integer 0.00 to 327.67

Wait time 0.01s

Programming Example

A programming example that uses the TIM instruction is given below.

MOV [A1]100;
TIM T250 ;

The TIM instruction is executed after positioning is completed.

VA

MOV Next block

I I
i |
| I
Fig. 6.73 Programming Example for the TIM Instruction

Motion Language Instructions

6-165

6.4 Program Control Instructions

Dwell Time (TIM1MS)

6-166

Dwell Time (TIM1MS)

The TIM1MS instruction causes execution to pause for a specified period of time before the execution of
the next block begins.
The unit for the time is 1 ms.

Format

The format of the TIM1MS instruction is as follows:

TIM1MS Twait_time;

ltem Unit Applicable Data Setting Range [s]
o Directly designated value 0.000 to 60.000
Wait time 1ms - - -
Integer registers (excluding # and C registers) 0.000 to 32.767

Programming Example

A programming example that uses the TIM1MS instruction is given below.
MOV [A1]1000;"Positioning
TIM1MS T5;"Wait for 5 ms after positioning is completed.
MOV [A1]1000;"Positioning

END;

Speed (V)
A
MON MOV

P Time (t)

-l
P

5ms

Fig. 6.74 Programming Example for TIM1MS Instruction

6.4 Program Control Instructions

1/0 Variable Wait (IOW)

/O Variable Wait (IOW)

The IOW instruction waits until the status specified by the conditional expression is satisfied, and then
execution proceeds to the next block.

Format

The format of the IOW instruction is as follows:

IOW 1B00001&IB00002 = = 1;

@

Description | Application

Applicable Data

Conditional
expression

* All integer, double-length integer, or real number registers (excluding # and C regis-
ters)

» Same as above except with a subscript.

* Subscript registers

» Constant

The conditional expressions that can be used with the IOW instruction are described below.

@ Bit Data Comparison

B Format

The == (Match) instruction is used for numeric comparison.

Specify a register on the left, and either 0 or 1 on the right.

IOW MB000000 =
IOW MB000000 =

0;
1;

"MB000000 =0
"MB000000 =1

B Operations for Conditional Expressions
&, |, and ! (AND, OR, and NOT) can be used for logical expressions.

Iow
Iow
Iow
Iow

o~~~ o~

MBO000000 & MBO000001
MBO000000 & !MB000001
MB000000 | MBO00001
MBO000000 | 'MB000001

1, "MB000000 = 1 and MB000001 =1
1; "MB000000 = 1 and MB000001 =0
1
1

; "MB000000 = 1 or MBO0O0001 = 1

~

; "MB000000 = 1 or MBO00001 =0

B Examples of Syntax Errors

A syntax error occurs in the following cases:

* If the <> (Mismatch) instruction is used for numeric comparison:

IOW MB000000 <> 0;

= Syntax error

* When a numerical value is specified on the left, and a register on the right:

IOW 1 = = MB00000O;

= Syntax error

IOW MB000000 = = MB0O00001; = Syntax error

» When there is no numeric comparison instruction:

IOW MB00000O;
IOW (0);

= Syntax error
= Syntax error

Motion Language Instructions

6-167

6.4 Program Control Instructions

I/O Variable Wait (IOW)

* When more than one numeric comparison instruction is used:

IOW (MB000000 = = 0) & (MB0O00001 = = 1); = Syntax error

@ Integer, Double-length Integer, or Real Number Data Comparison

B Format
All numeric comparison instructions (==, <>, >, <, >=, <=) can be used for these data types.

Specify a register on either the left or the right side.

IOW MWO00000 = = 3; "MWO00000 = 3
IOW MLO0000 <> ML00002; "MLO0000 = ML00002
IOW 1.23456 >= MF00000; "1.23456 = MF00000

B Operations for Conditional Expressions

Numeric and logic operations can be used in the expression.

IOW MWO00000 = = (MWO00001/3); "MWO00000 = (MW00001 =+ 3)
IOW (ML0O0000 & FO000000H) <> ML00002; "(ML0O0000 A FOO0O0000H) = ML00002
IOW 1.23456 >= (MF00000 * MF00002); "1.23456 > (MF00000 x MF00002)

B Examples of Syntax Errors

A syntax error occurs in the following cases:

* When a constant is specified both on the left and right:

IOW0==3; = Syntax error
IOW (3.14 = 2 = 1000) > 9000.0; = Syntax error

* When there is no numeric comparison instruction:

IOW MW000000; = Syntax error
IOW (-1); = Syntax error

* When more than one numeric comparison instruction is used:

IOW (MWO00000 < 0) & (MW000001 > 0); = Syntax error

6-168

6.4 Program Control Instructions

Programming Example

A programming example that uses the IOW instruction is given below.

IOW (MB001001&MB001002) = = 1;
MOV [A1]1000;

A
Speed

Positioning for A1

Time

v

MB001001

1

I

I

I
MB001002

Fig. 6.75 Programming Example for IOW Instruction

1/0 Variable Wait (IOW)

Motion Language Instructions

6-169

6.4 Program Control Instructions

One Scan Wait (EOX)

One Scan Wait (EOX)

The EOX instruction causes program execution to wait for one scan.
The block after the EOX instruction is executed in the next scan.

Format

The format of the EOX instruction is as follows:

EOX;

Programming Example

A programming example that uses the EOX instruction is given below.

» Used with Sequence Instructions

MWO00000 = 100;

EOX;

OB00011 =0;

» Used with a WHILE Instruction
WHILE OB00010==1;

EOX;
WEND;

6-170

6.4 Program Control Instructions

Disable Single-block Signal (SNGD) and Enable Single-block Signal (SNGE)

Disable Single-block Signal (SNGD) and Enable Single-block
Signal (SNGE)

The SNGD and SNGE instructions are used to specify whether to disable or enable single-step operation
in Debug Mode.

The blocks between the SNGD and SNGE instructions are executed continuously without single-block
stops, regardless of the single-block operation mode setting.

@ Single-block Operation Mode
In single-block operation mode, a stop is executed for each block.

Terms

Format

The format of the SNGD instruction is as follows:

SNGD;
The code you want to execute continuously without stopping
SNGE;

Programming Example

A programming example that uses the SNGD and SNGE instructions is given below.
In this example, blocks 1 to 3 between the SNGD and SNGE instructions are executed continuously with-
out single-block stops, even in single-block operation mode.

MVS [A1]0 [B1]0;

SNGD;

MVS [A1]100 [B1]200; "@"
MB000101 = 1; "@"
MB000102 = 1; "®"
SNGE;

MB000103 = 1;

Motion Language Instructions

6-171

6.5 Numeric Operation Instructions

Numeric Operation Instructions

There are eight numeric operation instructions. You can use these instructions in motion programs or in

6-172

sequence programs.

The following table lists the numeric operation instructions.

(2]
o | €
E| S
c © [))
g o | ©
4(—5 . . e D—
=] Name Format Description 2l o
@ c |2
£ S|l o
° =]
> |8
()
Substitutes the results of an operation. Calcula-
= Substitute Result = Math_expression tions are performed from left to right with no O0|0
order of priority.
Performs integer and real number addition. If
+ Add MwO=MwO + MWL, both integers and real numbers are included, O] O
calculations are performed with real numbers.
Performs integer and real number subtraction.
- Subtract MwO=Mw0O - MW, If both integers and real numbers are included, | O | O
calculations are performed with real numbers.
++ | Extended Add | MWO =MWO + + MWO,; | Performs extended addition of integers. o]0
-- Extended MwO =MWwWO - - MWO; | Performs extended subtraction of integers. o]0
Subtract
Performs integer and real number multiplica-
N Multiol MW = MW MWD tion. If both integers and real numbers are olo
Py ’ included, calculations are performed with real
numbers.
Performs integer and real number division. If
/ Divide MwO=MwO/MW0; both integers and real numbers are included, O] O
calculations are performed with real numbers.
When programmed in the next block after a
MwO =MwO/ MwO,; . . .
MOD Modulo ’ division, MOD stores the remainder in the des- | O | O

MwO =MOD;

ignated register.

Note: The O in the above formats indicates a register address.

Refer to the following section for details on the priority of numeric operations.
I 5.3 Operation Priority Levels (page 5-11)

6.5 Numeric Operation Instructions

Substitute (=)

Substitute (=)

This instruction substitutes the operation result on the right side of the expression into the register on the

left side.

Format

The format of the = (Substitute) instruction is as follows:

Result = Math_expression;

O] @
Description | Application Usable Registers
* All bit, integer, double-length integer, quadruple-length integer, real number, or
double-length real number registers (excluding # and C registers)
@ Result . .
» Same as above except with a subscript.
* Subscript registers
* All bit, integer, double-length integer, quadruple-length integer, real number, or
double-length real number registers (excluding # and C registers)
Math . .
@ . + Same as above except with a subscript.
expression . .
* Subscript registers
* Constant

Programming Examples

The = (Substitute) instruction can be used in motion programs, sequence programs, and ladder programs.

Programming examples that use the = (Substitute) instruction are given below.

Motion Language Instructions

Data Motion Programs/ .
Ladder Programming
Type Sequence Programs
B MB001000 = 1; Il HEDHL D00
HESOH I
& [[WLFRD]Sre T[WLFRD]Dest
w MWO00100 = 12345; STORE 12345 Wuooion -
a[[WLFRDlSre [[WLFRDIDest
L MLO00100 = 1234567, sTORE 1234567 WLooion -
a[[WLFRDTSrc T[WLFRDIDest
F MF00100 = 1.2345; STORE 1.23E+000 @ MFOODIOD
_ . «[[WCFADSre ([WLFAD]Dest |
Q MQO00100 = 123456789; STORE 129466789 ¢ HQ00100
_ . «[[WLFADTSre [[WLFBD]Dest |
D MDO00100 = 1.234567; STORE 1.23E+000 & WDOO1DO

6-173

6.5 Numeric Operation Instructions
Add (+)

Add (+)

The + (Add) instruction performs integer or real number addition on the right side and stores the result of
that operation in the register on the left side. Constants can also be used instead of registers for the addi-
tion operation on the right side. If both integers and real numbers are included, the result is stored in the
data type on the left side.

Format

The format of the + (Add) instruction is as follows:

MWO00101 = MWO0O0100 + 12345 ;
O) @ ®

Description | Application Usable Registers

« All integer, double-length integer, quadruple-length integer, real number, or double-
length real number registers (excluding # and C registers)

® Data output | | Same as above except with a subscript.
* Subscript registers
@ Data input « All integer, double-length integer, quadruple-length integer, real number, or double-
length real number registers (excluding # and C registers)
» Same as above except with a subscript.
©) Data to add

* Subscript registers
» Constant

Programming Examples

The + (Add) instruction can be used in motion programs, sequence programs, and ladder programs.
Programming examples that use the + (Add) instruction are given below.

Data Type AT e RITE SOEEES Ladder Programming
Programs
B — —
a[[WLFOD] Srch T[WLFOD] ZrcB [[WLFAD]Dest
W MW00101 = MW00100+12345; - A00 MWOo100 12245 Myooinl -
a[[WLFOD] Srch T[WLFORD] SrcB [[WLFRDIDest
L ML00106 = ML00102+ML00104; | - AOD MLOOD1D2 WLOO104 MLoo10g -
a[[WLFoD] SrcA [[WLFOD]SrcE [[WLFGD]Dest
F MF00202 = MF00200+1.23456; n ADD MFOO200 1.23E+000 © HWFOO202 -
Information If an operation is performed with registers of different data types, the result is stored according to

the data type on the left side.
Refer to the following sections for details on data types.
Iz Global Registers (page 4-5)

Im Local Registers (page 4-6)

6-174

6.5 Numeric Operation Instructions

Subtract (-)

Subtract (-)

The - (Subtract) instruction performs integer or real number subtraction on the right side and stores the

result of that operation in the register on the left side. Constants can also be used instead of registers for

the addition operation on the right side. If both integers and real numbers are included, the result is stored

in the data type on the left side.

Format

The format of the - (Subtract) instruction is as follows:

MWO00101 = MWO00100 - 12345;

O] @ (©)
Description | Application Usable Registers
« All integer, double-length integer, quadruple-length integer, real number, or
double-length real number registers (excluding # and C registers)
® Data output . .
» Same as above except with a subscript.
* Subscript registers
@ Data input + All integer, double-length integer, quadruple-length integer, real number, or
double-length real number registers (excluding # and C registers)
» Same as above except with a subscript.
©)] Data to subtract

* Subscript registers
» Constant

Programming Examples

The - (Subtract) instruction can be used in motion programs, sequence programs, and ladder programs.

Programming examples that use the - (Subtract) instruction are given below.

Motion Programs/Sequence

Data Type Programs Ladder Programming
B - —
a[[WLFOD]SrcA [[WLFAD]SrcE |[WLFED] Dest
w MWO00101 = MW00100-12345; - SUB MyO0100 12345 Myoniotl -
& [[WCFRDTSrehd [[WLFOD]SrcE [[WLFRD]Dest
L ML00106 = ML00102-ML00104; | - SUE WMLOD10? MLOOD104 MLODI10E -
& [[WCFRDTSrehm T[WLFRD] SrcE [[WLFRD]Dest
F MF00202 = MF00200-1.23456; 4 5UE WFOOZ00 o 1.23E+000 @ MWFOODZ202 -

Motion Language Instructions

6-175

6.5 Numeric Operation Instructions

Extended Add (++)

6-176

Extended Add (++)

The ++ (Extended Add) instruction adds integer values.

Overflows are not treated as operation errors. Instead, the calculation continues from the maximum value
in the negative direction.

Underflows are not treated as operation errors. Instead, the calculation continues from the maximum value
in the positive direction.

Otherwise, this instruction is the same as the + (Add) instruction.

M Integers

Decimal: 0—>1---32767 —-32768 ----1 =0
Hexadecimal: 0000 — 0001 - - - 7FFF — 8000 - - - FFFF — 0000

W Double-length Integers

Decimal: 0—1---2147483647 — -2147483648 - - - -1 =» 0
Hexadecimal: 00000000 — 00000001 - - - 7FFFFFFF — 80000000 - - - FFFFFFFF — 00000000

B Quadruple-length Integers

Decimal: 0—1---9223372036854775807 — -9223372036854775808 - - - -1 = 0
Hexadecimal: 0000000000000000 — 0000000000000001 - - - 7FFFFFFFFFFFFFFF —
8000000000000000 - - - FFFFFFFFFFFFFFFF — 0000000000000000

Format

The format of the ++ (Extended Add) instruction is as follows:

MWO00101 = MWO0O0100 + + 12345;
©) @ ()

Description | Application Usable Registers

* All integer, double-length integer, or quadruple-length integer registers (excluding
and C registers)

» Same as above except with a subscript.

* Subscript registers

©) Data output

+ All integer, double-length integer, or quadruple-length integer registers (excluding

© Data input # and C registers)

» Same as above except with a subscript.
©) Data to add | * Subscript registers

» Constant

Note: A compiler error will occur if a real number is used.

6.5 Numeric Operation Instructions

Programming Examples

Extended Add (++)

The ++ (Extended Add) instruction can be used in motion programs, sequence programs, and ladder pro-

grams.

Programming examples that use the ++ (Extended Add) instruction are given below.

Motion Programs/Sequence

Data Type Programs Ladder Programming

B — —
& [[WLaTSrcA [WLaT Sk B [WLalDes=t

\%% MWO00101 = MWO00100+ +1; ROD N MWoo10oo nooni pwooiol -
PRI ETET) [WLa] Sr B [WLalDest

L ML00106 = ML00102+ +ML00104; AOD N MLOO10% MLOO104 MLOOT0E -

F — —
A [Weal &rch [WLR] Sr cB [WLa] Dest

= ++ : BODY
Q MQOO116 = MQO0108++MQOOTI2; WMaooi0g Manni11e HAOD116

Motion Language Instructions

6-177

6.5 Numeric Operation Instructions

Extended Subtract (--)

6-178

Extended Subtract (--)

The -- (Extended Subtract) instruction subtracts integer values.

Overflows are not treated as operation errors. Instead, the calculation continues from the maximum value
in the negative direction.

Underflows are not treated as operation errors. Instead, the calculation continues from the maximum value
in the positive direction.

Otherwise, this instruction is the same as the - (Subtract) instruction.

M Integers

Decimal: 0—-1----32768 — 32767 ---1—=0
Hexadecimal: 0000 — FFFF - - - 8000 — 7FFF - - - 0001 — 0000

W Double-length Integers

Decimal: 0—-1----2147483648 — 2147483647 ---1 =0
Hexadecimal: 00000000 — FFFFFFFF - - - 80000000 — 7FFFFFFF - - - 00000001 — 00000000

B Quadruple-length Integers

Decimal: 0—-1----9223372036854775808 — 9223372036854775807 - - -1 =0
Hexadecimal: 0000000000000000 — FFFFFFFFFFFFFFFF - - - 8000000000000000 —
7FFFFFFFFFFFFFFE - - - 0000000000000001 — 0000000000000000

Format

The format of the -- (Extended Subtract) instruction is as follows:

MWO00101 = MWO00100 - - 12345;
©) @ ()

Description | Application Usable Registers

* All integer, double-length integer, or quadruple-length integer registers (excluding
and C registers)

» Same as above except with a subscript.

* Subscript registers

©) Data output

+ All integer, double-length integer, or quadruple-length integer registers (excluding

© Data input # and C registers)

» Same as above except with a subscript.
©) Data to add | * Subscript registers

» Constant

Note: A compiler error will occur if a real number is used.

6.5 Numeric Operation Instructions

Programming Examples

Extended Subtract (--)

The -- (Extended Subtract) instruction can be used in motion programs, sequence programs, and ladder

programs.

Programming examples that use the -- (Extended Subtract) instruction are given below.

Motion Programs/Sequence

Data Type Programs Ladder Programming

B — —
A [[WLAT Sk cA [WLaTSecE [WLalDest

W MWO00101 = MWO00100- -1; SUBN Muanino nonni wwaninl -
A [[WLRT Srch [WLRT ¢ B [WLa]De=t

L ML00106 = ML00102- -ML00104; SUEX WLooio? MLOD104 MLOO10E ~

F — —
& [[WLRTSrcA [WLe] 5rcE [WLelDest

= . SUEX
Q MQOOT16 =MQO0108- -MQOOT12 WMEO0108 MEoni112 MEOD116

Motion Language Instructions

6-179

6.5 Numeric Operation Instructions

Multiply (*)

Multiply

()

The * (Multiply) instruction performs integer or real number multiplication on the right side and stores the
result of that operation in the register on the left side. Constants can also be used instead of registers for
the multiplication operation on the right side. If both integers and real numbers are included, the result is
stored in the data type on the left side.

Format

The format of the * (Multiply) instruction is as follows:

MWO00101 = MWO0O0100 * 12345 ;

©) @ ©)
Description | Application Usable Registers
« All integer, double-length integer, quadruple-length integer, real number, or double-
length real number registers (excluding # and C registers)
0] Data output . .
» Same as above except with a subscript.
* Subscript registers
o Data input * All integer, double-length integer, quadruple-length integer, real number, or double-
p length real number registers (excluding # and C registers)
» Same as above except with a subscript.
Data to mul- . .
® ol * Subscript registers
Py » Constant

Programming Examples

The * (Multiply) instruction can be used in motion programs, sequence programs, and ladder programs.
Programming examples that use the * (Multiply) instruction are given below.

Data Type Motion Programs/Sequence Pro- Ladder Programming
grams
B - -
A [[WCFROTSrch [[WLFRDTSrcE [[WLFAD]Dest
W MW00102 = MWO00100 * MWO00101 KL MUI0100 MU0 Wwonine -
«[[WLFRD]Srch [[WLFRO]SrcB |[WLFAD] Dest
L MLO00106 = ML00102 * ML00104; MUL MLOOD102 HLOD104 MLOOTOR -
< |[[WLFRD]Sreh ([WLFOO]SrcE [[WLFAD] Dest
= . MUL A
F MF00202 = MF00200 * 1.23456; MEOOZ00 1.23E4000 @ WMFO0202

6-180

6.5 Numeric Operation Instructions

Divide (/)

Divide (/)

The / (Divide) instruction performs integer or real number division on the right side and stores the result of
that operation in the register on the left side. Constants can also be used instead of registers for the division

operation on the right side. If both integers and real numbers are included, the result is stored in the data

type on the left side.

Format

The format of the / (Divide) instruction is as follows:

MWO00101 = MWO0100 / 12345 ;

©) @ ©)
Description | Application Usable Registers
« All integer, double-length integer, quadruple-length integer, real number, or double-
length real number registers (excluding # and C registers)
® Data output . .
 Same as above except with a subscript.
* Subscript registers
. + All integer, double-length integer, quadruple-length integer, real number, or double-
@ Data input - . .
length real number registers (excluding # and C registers)
» Same as above except with a subscript.
Data to . .
® . * Subscript registers
divide
» Constant

Programming Examples

The / (Divide) instruction can be used in motion programs, sequence programs, and ladder programs.
Programming examples that use the / (Divide) instruction are given below.

Data Type AR (FEg RS OeEmED Ladder Programming
Programs

B — —

a[[WLFOD]SrcA [[WLFAD]SrcE |[WLFED] Dest
MWO00102 =

W MW00100/MWO00101; o I'.'I'.'.'?_EIJ 0o I'.'I'.'.'?EIJ 0 I'.'I'.'.'?_I]J 0z 1
a[[WLFROTSreA [[WLFRODTSreE [[WCFAD]Dest

L ML00106 = ML00102/ML00104; ol MLODT0? MLOOT04 MLOO10E F
a[[WLFBD] Sreh [[WLFRDTSrcB [[WLFRDIDest

F MF00202 = MF00200/1.23456; oy MFOODZ200 1.23E+000 @ MWFOODZ202 F

Motion Language Instructions

6-181

6.5 Numeric Operation Instructions
Modulo (MOD)

Modulo (MOD)

When the MOD instruction is specified in the next block after a division instruction, the remainder of the
division operation is stored in the specified variable.

Format

The format of the MOD instruction is as follows:

MWO00001 = 1000 / 999;
MW00002 = MOD;

O]
Description | Application Usable Registers
* All registers with integer and double-length integer data types (excluding # and C
registers)
@ Data output | | Same as above except with a subscript.
* Subscript registers

Programming Examples

The MOD instruction can be used in motion programs, sequence programs, and ladder programs.
Programming examples that use the MOD instruction are given below.

Data Type AN (FEg e Ee e Ladder Programming
Programs
B — —
A [[WLFaD]SrcA [[WLFRD] SrcE [[WLFRD]Dest
7 oy MWoo100 oonoa Wwootnt -
W MW00101 = MWO00100/3; --- --- ---
MWO00102 = MOD; ~[[WLalDest
KO D Wwootnz -
«[[WCFRD] SrchA ([WLFRDTSrcE [[WLFEO]Dest
y oy MLOD102 MLOO104 MLOOTOE r
L ML00106 = ML00102/ML00104; --- --- ---
ML00108 = MOD; ~[[WCRTDest
MO D MLOOTO®
F — —
e Programming Example for the MOD Instruction (Double-length Integers)

ML00106 = ML00100 * ML00102/ML00104;
(173575) (100000) (60000) (34567)

ML00108 = MOD:
(32975)

Important

The MOD instruction must always be executed immediately after the division instruction. If it is not
executed in the next block after the division instruction, the result will not be reliable.

6-182

6.6 Logic Operation Instructions

m Logic Operation Instructions

Logic operation instructions are used to perform logical TRUE or FALSE operations on numbers.
There are four logic operation instructions. You can use these instructions in motion programs or in
sequence programs.

The following table lists the logic operation instructions.

Name Format Description

Instruction
Motion Programs

Sequence Programs

MBO =MBO | MBO;
MBO =MBO | ;
MWO = MWO | MWL;
OR (Inclusive | MWO =MWO | 00FFH; Performs a bit or integer
| OR) MLO=MLO | MLO; inclusive OR operation.
MLO =MLO | 00FFOOFFH;

MQO =mMQO | MQO,

MQO =MQO | 00FFOOFF 00OFFOOFFH;

MBO = MBO & MBI,
MBO =MBO & 1;
MwO=MwO & MWL,
MwO=Mw0O & 00FFH; Performs a bit or integer
MLO=MLO & MLO,; AND operation.

MLO = MLO & 00FFOOFFH;

MQO =MQO & MQLO;

MQO =MQO & 00FFOOFF 00FFOOFFH;

& | AND (AND)

MwO=MwO "MW,
MwO =MWwWO ~ 00FFH,;
XOR (Exclu- MLO=MLO~MLLO; Performs an integer exclu-
sive OR) MLO =MLO ~ 00FFOOFFH; sive OR operation.

MQO = MQO ~ MQLI;

MQO =MwWQO » 00FFOOFF 00FFOOFFH;

MBO = 'MB0O,;
MBO =!1;
MwO = 'Mw0;
NOT (Logical MW = !00FFH; Returns the inverse of the
Complement) MLO ='MLO, specified bit.

MLO = !00FFO0FFH;

MQO = 'MQL;

MQO = 00FFOOFF 00FFOOFFH;

Motion Language Instructions

Note: The O in the above formats indicates a register address.

Although operations that combine math operations are also possible, real number operations cannot be
performed.

Refer to the following section for details on the priority of numeric operations.

Iz 5.3 Operation Priority Levels (page 5-11)

6-183

6.6 Logic Operation Instructions

Inclusive OR (|)

Inclusive OR (])

The | (OR) instruction performs an inclusive OR for the immediately preceding operation result and the
specified registers, and then returns the result of that operation. Real number registers cannot be used.

Table 6.3 Inclusive OR Truth Table for (A=B | C)

B C A

0 0 0

0 1 1

1 0 1

1 1 1
Format

The format of the | (OR) instruction is as follows:

MWO00100 = DW00102 | AAAAH;

O] @ ®

Descrip-
tion

Application

Usable Registers

@

Data output

* All bit, integer, double-length integer, or quadruple-length integer registers (exclud-
ing # and C registers)

» Same as above except with a subscript.

* Subscript registers

* Constant

« All bit, integer, double-length integer, or quadruple-length integer registers (exclud-
ing # and C registers)

Data input | * Same as above except with a subscript.

* Subscript registers

Programming Examples

The | (OR) instruction can be used in motion programs, sequence programs, and ladder programs.
Programming examples that use the | (OR) instruction are given below.

Data Motion Programs/ Ladder Programmin
Type Sequence Programs 9 9
MBUP}UTU MBODI00D |
B MBO001000 = il
MBO001010 | MBOO1011;
_ A [[WLAT Sk cA [WLaTSecE [WLalDest
W ﬁxggig? MW00102 ST MWOO101 MWODT0Z MWOO100 -
_ « [[WLa] Srch (WLl &r ek [WLelDest
L ﬁiggigg MLOO104 T MLOO10Z MLODTO4 MLOOT0E -
F _ _

6-184

6.6 Logic Operation Instructions

AND (&)

AND (&)

The & (AND) instruction performs an inclusive AND for the immediately preceding operation result and
the specified registers, and then returns the result of that operation. Real number registers cannot be used.

Table 6.4 AND Truth Table for (A=B & C)

B C A

0 0 0

0 1 0

1 0 0

1 1 1
Format

The format of the & (AND) instruction is as follows:

MWO00100 = DW00102 & AAAAH;

O) @

®

Description | Application

Usable Registers

0] Data output

 All bit, integer, double-length integer, or quadruple-length integer registers

(excluding # and C registers)

» Same as above except with a subscript.

* Subscript registers

Data input

« All bit, integer, double-length integer, or quadruple-length integer registers

(excluding # and C registers)

» Same as above except with a subscript.

* Subscript registers
 Constant

Programming Examples

The & (AND) instruction can be used in motion programs, sequence programs, and ladder programs.
Programming examples that use the & (AND) instruction are given below.

Data Motion Programs/ Ladder Programmin
Type Sequence Programs 9 9
B MB001000 =] wBOp 1010 BODIOtI MDD 1000 |
MBO001010&MBO001011; I = £ |

Motion Language Instructions

_ & [[WLR] 5rch [WLalsrcE [WLalDest
W OMO\S];)}(;_I(H_MWOOIOO& h AND Wwantoo HOOFF pHonoior
A (WL &r ch [WLal % cE [WLalDest
ML00106 = ML00102&
L ML00104: | AND MLOD1DZ MLOOT04 MLOOTOE
F - _

6-185

6.6 Logic Operation Instructions

Exclusive OR (%)

Exclusive OR (*)

The ” (XOR) instruction performs an exclusive OR for the immediately preceding operation result and the
specified registers, and then returns the result of that operation. Real number registers cannot be used.

Table 6.5 XOR Truth Table for (A=B * C)

B C A

0 0 0

0 1 1

1 0 1

1 1 0
Format

The format of the ~ (XOR) instruction is as follows:

MWO00100 = DW00102 * AAAAH;

©) @)
Description | Application Usable Registers
* All integer, double-length integer, or quadruple-length integer registers (excluding
and C registers)
@ Data output

» Same as above except with a subscript.
* Subscript registers

« All integer, double-length integer, or quadruple-length integer registers (excluding
and C registers)

0,0 Data input | * Same as above except with a subscript.

+ Subscript registers

* Constant

Programming Examples

The ~ (XOR) instruction can be used in motion programs, sequence programs, and ladder programs.
Programming examples that use the » (XOR) instruction are given below.

Data Type Motion P?rgoz\rrgrsr{SSequence Ladder Programming

B _ _
& [[WLa]Srch [WLaTsrcE [WLalDest

W MWO00101 =MWO00100 ~ 00FFH; N nOR Wuoo1on HOOFF Muoo101 -
& [[WLR]Srch [WLaTsrcE [WLelDest

ML00106 = ML00102 ~
L ML00104- N XOR MLoo1n? MLOn104 MLOO10E -
F _ _

6-186

6.6 Logic Operation Instructions

NOT (1)

NOT (1)

The ! (NOT) instruction inverts the data in the specified register and returns the result of that operation.

Real number registers cannot be used.

Format

The format of the ! (NOT) instruction is as follows:

MB001000 = ! MB001010;

@

@

Description

Application

Usable Registers

O]

Data output

» All bit, integer, double-length integer, or quadruple-length integer registers
(excluding # and C registers)
» Same as above except with a subscript.

* Subscript registers

Data input

« All bit, integer, double-length integer, or quadruple-length integer registers
(excluding # and C registers)

» Same as above except with a subscript.

* Subscript registers

« Constant™

* Bit data constants cannot be specified.

Programming Examples

The ! (NOT) instruction can be used in motion programs, sequence programs, and ladder programs.
Programming examples that use the ! (NOT) instruction are given below.

Data
Type

Motion Programs/
Sequence Programs

Ladder Programming

B MB001000 = 'MB001010;

MEDOTOOD

HE001010
14

a([WLR]Sr e [WLalDe=t

W MWO00100 = 'MWO00101; COH Muonin Myoni1on -
A [[WLR]Sr e [WLalDe=t

L MLO00100 = 'ML00102 COK MLOD10? MLOODT00 ¢

Motion Language Instructions

F

Example

Programming Example for the ! (NOT) Instruction
MWO00100 = IMW00101;

MW00101
[0001 [0010 [0o11 o100
1234H

MW00100
[1110 [1101 [1100 [1011]
EDCBH

6-187

6.7 Numeric Comparison Instructions

Numeric Comparison Instructions

6-188

This section explains the numeric comparison instructions that are used in conditional expressions.
There are six numeric comparison instructions. You can use these instructions in motion programs or in

sequence programs.

The following table lists the numeric comparison instructions.

(2]
o | €
= | E
[O o
ie] o | 9
© e ° |
3 Name Format Description Tl o
® = | 2
£ S| o
° =}
=
()
IF MBO == MBLJ;
WHILE MBO == MB[;
IF MwWO ==MWLI;
WHILE Mw0O ==MW0;
IF MLO == MLO; , o
WHILE MLO = = MLO: Used in an IF or.WHILE .condlltlona expres-
== Equal IF MFO = = MFOI: sion. If the left side and right side are the O] O
- ’ same, the condition is TRUE.
WHILE MFO == MF0[;
IF MQO ==MQ0O;
WHILE MQO == MQLI;
IF MDO == MDLI;
WHILE MDO == MD0O;
IF MwO <>MWwWO;
WHILE MwO <> MWL,
IF MLO <>MLO;
WHILE MLO <> MLO; Used in an IF or WHILE conditional
IF MFOI < > MFOI: sed in an IF or conditional expres-
< Mismatch WHILE MFO < > I’\/IFEI' sion. If the left side and the right side donot | O | O
’ match, the condition is TRUE.
IF MQO < > MQL;
WHILE MQO < > MQLI;
IF MDO <> MDL0;
WHILE MDO <> MD0O;
IF MwO>MwWO;
WHILE MwO >MwW0;
IF MLO > ML,
WHILE MLO >MLO; di IF HILE ditional
IF MFO > MFO: Use in an or.W . conditiona expres-
> Greater Than WHILE MFO > MFOI: sion. If the left side is greater than the right (O N®)
’ side, the condition is TRUE.
IF MQO >MQ0O;
WHILE MQO > MQLIJ;
IF MDO > MDL;
WHILE MDO > MD[J;

Continued on next page.

6.7 Numeric Comparison Instruction

S

Continued from previous page.

»
o | €
E| GO
c (LA o))
o] o | ©
5 L S | o
3 Name Format Description T | o
3 c|g
£ Sl
° >
=3
(7]
IF MwO <MwO;
WHILE MwO <Mw0O;
IF MLO <MLL,
WHILE MLO <MLO; di ditional
IF MFO < MFLO; Use in an IF or WHILE con 1t10n§ expres-
< Less Than WHILE MFO < MFOI: sion. If the left side is less than the right side, | O | O
’ the condition is TRUE.
IF MQO <MQ0O,;
WHILE MQO <MQ0O;
IF MDO <MD0O;
WHILE MDO <MD0O,
IF MwO >=Mw0;
WHILE MwO >=Mw0O;
IF MLO >=ML0O;
WHILE MLO >=MLL; Used i IF or WHILE conditional
Greater Than | IF MFO] >= MFOI; Jsed in an IF or WE conditional expres-
>= or Equal To WHILE MFO >= MFO: sion. If the left side is greater than or equalto | O | O
d B ’ the right side, the condition is TRUE.
IF MQO >=MQ0O,;
WHILE MQO >=MQ0O,;
IF MDO >=MD0O,;
WHILE MDO >=MD0O,
IF MwO <= Mw0O;
WHILE MwO <=Mw0O,
IF MLO <= ML0O,
WHILE MLO <= MLO; Used i IF or WHILE conditional
Less Than or | IF MFOI <= MFOI; Jsed in an IF or WH conditional expres-
<= Equal T WHILE MFO <= MFO: sion. If the left side is less than or equal to o | O
quat 1o B ’ the right side, the condition is TRUE.
IF MQO <=MQO;
WHILE MQO <=MQ0O;
IF MDO <=MD0O;
WHILE MDO <= MD0O,

Note: The O in the above formats indicates a register address.

Motion Language Instructions

6-189

6.7 Numeric Comparison Instructions

Numeric Comparison Instructions (==, <>, >, <, >=, <=)

Numeric Comparison Instructions (==, <>, > <, >= <=)

These instructions are used to determine the value of conditional expressions for instructions such as
branching instructions, repetition instructions, instructions for repetition with one scan wait, or I/O wait
instructions.

The following table lists the six numeric comparison instructions.

Comparison Instruction Description
== Equal
<> Mismatch
> Greater Than
Less Than
>= Greater Than or Equal To
<= Less Than or Equal To
Format

The formats of the numeric comparison instructions are as follows:

IF MB001000 = = 1;
O]
Description | Application Usable Registers
» All bit*, integer, double-length integer, quadruple-length integer, real number, or
o Conditional double-length real number registers (excluding # and C registers)
expression | * Same as above except with a subscript.
* Subscript registers

* Only the == (Match) instruction can be used in bit data conditional expressions.

Programming Examples

Numeric comparison instructions can be used in motion programs, sequence programs, and ladder pro-
grams.
Programming examples that use the numeric comparison instructions are given below.

Data Motion Programs/ .
Ladder Programming
Type Sequence Programs
B IF MB001000 == 1; 4 |F E*|MEnoionn == true K
W | IF MW00100< >10; d (F B mwonioo 1= 10 R
L | IF ML00100>10000; 4 IF Bi*|WLootoo > 10000 N
F IF MF00100>= 3.0; 4 IF E* Wrootoo »= 3.0 B

The conditional expressions that can be used with numeric comparison instructions are described below.

6-190

6.7 Numeric Comparison Instructions

Numeric Comparison Instructions (==, <>, >, <, >=, <=)

€ Bit Data Comparison

B Format
The == (Match) instruction is used for numeric comparison.

Specify a register on the left, and either 0 or 1 on the right.

IF MB0O0000O = = 0; "MB000000 =0
IF MB0O0000O = = 1; "MB000000 =1

B Operations for Conditional Expressions
&, |, and ! (AND, OR, and NOT) can be used for logical expressions.

F (MB000000 & MB000001)
F (MB000000 & IMB000001)
F (MB000000 | MB000001)
F (MB000000 | 'MB000001)

- g n
__\A_\

B Examples of Syntax Errors

A syntax error occurs in the following cases:

* If the <> (Mismatch) instruction is used for numeric comparison:

IF MBO0O00O0O0 <> 0; = Syntax error

* When a numerical value is specified on the left, and a register on the right:

IF 1 ==MBO000000; = Syntax error
IF MBO0O0000 = = MB0000O01; = Syntax error

* When there is no numeric comparison instruction:

IF MB0O0000O; = Syntax error
IF (0); = Syntax error

* When more than one numeric comparison instruction is used:

IF (MB0O0000O = = 0) & (MB000001 == 1); = Syntax error

@ Integer, Double-length Integer, or Real Number Data Comparison

B Format
All numeric comparison instructions (==, <>, >, <, >=, <=) can be used for these data types.

Specify a register on either the left or the right side.

IF MW00000 = = 3;"MWO00000 = 3
IF MLOO0O0O <> ML00002;"ML00000 # ML0O0002
IF 1.23456 >= MF00000;"1.23456 > MF00000

; "MB000000 = 1 and MB000001 = 1

; "MBO000000 = 1 and MB000001 =0
"MBO000000 = 1 or MBO00001 = 1
"MBO000000 = 1 or MB0O00001 =0

Motion Language Instructions

6-191

6.7 Numeric Comparison Instructions

Numeric Comparison Instructions (==, <>, >, <, >=, <=)

6-192

B Operations for Conditional Expressions

Numeric and logic operations can be used in the expression.

IF MW00000 = = (MW00001/3);"MW00000 = (MW00001 + 3)
IF (MLO0000 & FO000000H) <> ML00002;"(ML00000 A FOO00000H) ML00002
IF 1.23456 >= (MF00000 * MF00002);"1.23456 > (MF00000 x MF00002)

B Examples of Syntax Errors

A syntax error occurs in the following cases:

* When a constant is specified both on the left and right:

IFO==3; = Syntax error
IF (3.14 = 2 = 1000) > 9000.0; = Syntax error

* When there is no numeric comparison instruction:

IF MWO000000; = Syntax error
IF (-1); = Syntax error

* When more than one numeric comparison instruction is used:

IF (MW00000 < 0) & (MW000001 > 0); = Syntax error

6.8 Data Manipulations

m Data Manipulations

Bit Shift Right (SFR)

Data manipulation instructions copy, move, and perform other operations on the data in the specified reg-

isters.

There are six data manipulation instructions. You can use these instructions in motion programs or in

sequence programs.

The following table lists the data manipulation instructions.

(2]
o | E
= | &g
= C |
2 o | 2
3 Name Format Description Q| o
= 3]
2 §|5
5|3
=8
()
SFR Right Shift SFR MBO NO WIOI; Shifts the bit varlgble by the specified num- olo
ber of bits to the right.
SFL Left Shift SFL MBO NO WOI: Shifts the bit variable by the specified num- olo
ber of bits to the left.
Copies the areas of specified blocks begin-
BLK | MoveBlock | BLK MwWO MwO w0, ning with the specified transfer source to o|O
the specified transfer destination.
CLR Clear CLR MWO WII; Qlears Fhe desired area to 0 s (zeros) begin- olo
ning with the specified register.
Table Stores the specified data in all registers
SETW s SETW MWO DWO; WO; | starting from the target register to the speci- | O | O
Initialization .
fied number of registers thereafter.
ASCII Converts the specified characters to ASCII
ASCII . ASCII “Text_string’ MW, text, and stores the results of that operation | O | O
Conversion 1 . . .
in the specified registers.

Note: The O in the above formats indicates a register address.

Bit Shift Right (SFR)

The SFR instruction shifts the bit string designated by the specified first bit number and bit width by the
specified number of bits to the right.

Format

The format of the SFR instruction is as follows:

SFR MBO001000 N5 W10 ;

O] @ 0

Motion Language Instructions

Description

Application

Usable Registers

* All bit data registers (excluding # and C registers)

0] First bit Same as above except with a subscript.
* Subscript registers
® Number of | ¢ Integer registers (excluding # and C registers)
bits to shift | « Same as above except with a subscript.
* Subscript registers
® Bit width piee

* Constant

6-193

6.8 Data Manipulations

Bit Shift Right (SFR)

Programming Example

The SFR instruction can be used in motion programs, sequence programs, and ladder programs.
A programming example that uses the SFR instruction is given below.

Motion Programs/Sequence

Data Type Programs Ladder Programming
B — _
«[[ETAdr [T Hum [WIWidth
W SFR MB001000 N5 W10; — SHFTR MEODTOO0D nonos nooto —
L — _
F - _
TR Programming Example for SFR Instruction
In this example, five bits starting from MB001005 (bit 5 of MW00100) are shifted three bits to the
right.
SFR MB001005 N3 WS5;
9 5 0
MwWO00100 | ------ |1 |1 |1 |1|1|- . | Before Execution
MW00100 | - - - - - loJo]o][1]1]- - | After Execution
-
0 is set here.
Information With the SFR instruction, if the number of bits to shift is greater than the bit width, all data in the

6-194

specified bit width will be set to 0.

6.8 Data Manipulations

Bit Shift Left (SFL)

Bit Shift Left (SFL)

The SFL instruction shifts the bit string designated by the specified first bit number and bit width by the
specified number of bits to the left.

Format

The format of the SFL instruction is as follows:

SFL MBO001000 N5 W10 ;

O] @ 0
Description | Application Usable Registers
 All bit data registers (excluding # and C registers)
0] First bit Same as above except with a subscript.

* Subscript registers

o) Number of | ¢ Integer registers (excluding # and C registers)
bits to shift | « Same as above except with a subscript.

* Subscript registers

©)] Bit width
* Constant

Programming Example

The SFL instruction can be used in motion programs, sequence programs, and ladder programs.
A programming example that uses the SFL instruction is given below.

Motion Programs/ .
Data Type Sequence Programs Ladder Programming
B — —
a [[ETHdr [W] Hum [WTWidth
A\ SFL MB001000 N5 W10; — SHFTL MEOD1000 noons nonin
L - _
F — _
Example Programming Example for SFL Instruction

In this example, ten bits starting from MB00100A (bit A of MW00100) are shifted five bits to the
left.

SFL MBO0100A N5 W10;

F A:
mwootoo [1[1]ofofo]1]- + - s |

MWOOT0T | e Jo]1]o[1]
U
F Al
mwootoo [1]ofo[o[o]o]- - - - | The lower five bits are padded with zeroes.
el b
0 is set here.

MWOO1O1 [e |1 |0]o]o] The upper five bits are removed.

With the SFL instruction, if the number of bits to shift is greater than the bit width, all data in the

Information . . .
specified bit width will be set to 0.

Motion Language Instructions

6-195

6.8 Data Manipulations
Move Block (BLK)

Move Block (BLK)

The BLK instruction moves the specified number of words from the beginning of the source register to the
beginning of the destination register.

Format

The format of the BLK instruction is as follows:

BLK MWwW00100 DWO00100 W10 ;

O] @ ©)
Description Application Usable Registers
. . * Integer registers (excluding # and C registers)
First register at . .
@ Source » Same as above except with a subscript.
* Subscript registers
@ First destination * Integer registers (excluding # and C registers)
register » Same as above except with a subscript.
Number of blocks | * Subscript registers
)
to be moved » Constant

Programming Example

The BLK instruction can be used in motion programs, sequence programs, and ladder programs.
A programming example that uses the BLK instruction is given below.

Motion Programs/Sequence ;
Data Type 9 q Ladder Programming
Programs
B — -
W &ro [WDest [WTWidth
W BLK MW00100 DW00100 W10; - Movw M¥oo1oo0 pHno10n gooin =
L _ —
F — -
E— Programming Example for the BLK Instruction
MWO00100 to MW00109 are moved to MW00200 to MW00209.
BLK MW00100 MW00200 W10;
Move source Move destination
MWO00100 1234 hex MW00200 1234 hex
MWO00101 1235 hex MW00201 1235 hex
MW00102 1236 hex MW00202 1236 hex
—>
MWO00108 123C hex MW00208 123C hex
MWO00109 123D hex MW00209 123D hex
Information As long as the source registers and destination registers do not overlap, the source data is moved to

the destination registers as it is. If the source and destination data overlap, the source data may not
be moved to the destination registers as it is.

6-196

6.8 Data Manipulations

Clear (CLR)

Clear (CLR)

The CLR instruction clears the specified number of blocks to 0 starting from the first specified data clear
register.

Format

The format of the CLR instruction is as follows:

CLR MWO00100 W10;
O] @

Description Application Usable Registers

. * Integer registers (excluding # and C registers)
First data clear . .
0] register » Same as above except with a subscript.
& * Subscript registers

* Integer registers (excluding # and C registers)
» Same as above except with a subscript.

* Subscript registers

* Constant

@ Number of blocks

Programming Example

The CLR instruction can be used in motion programs, sequence programs, and ladder programs.
A programming example that uses the CLR instruction is given below.

Motion Programs/ .
Data Type Sequence Programs Ladder Programming
B — -
a|[WDest [WIData [WWidth
w CLR MWO00100 W10; — SETHW W¥oo1oo noooo oo
L — —
F — —
[E— Programming Example for the CLR Instruction

The data in registers MW00100 to MWO00119 is cleared to 0.
CLR MWO00100 W20;

— 0000 MWO00100
N 0000 MWO00101

T 0000 MW00102

MWO00118
MWO00119

Motion Language Instructions

6-197

6.8 Data Manipulations
Table Initialization (SETW)

Table Initialization (SETW)

The SETW instruction stores the specified data in all registers starting from the target register to the spec-
ified number of registers thereafter. The storage process is performed one word at a time in order of
ascending register addresses.

First register

Move data at source V=§ M,0,D,G
-
XXXX XXXX VWyyyy
XXXX VWyyyy + 1
XXXX VWyyyy + 2
XXXX VWyyyy + 3 > Number of words to set
XXXX VWyyyy +(n-1)
XXXX VW +n
yyyy)
Format
The format of the SETW instruction is as follows:
SETW MW00100 DW00100 W10;
O] @ ©)
Description Application Usable Registers
. . * Integer registers (excluding # and C registers)
First register at . .
@ Source » Same as above except with a subscript.
* Subscript registers
@ Move data * Integer registers (excludi.ng # and C'registers)
» Same as above except with a subscript.
® Number of * Subscript registers
words to set * Constant

6-198

6.8 Data Manipulations

Programming Example

A programming example that uses the SETW instruction is given below.

DWO00100 = 1234;

SETW MW00100 DW00100 W7;

END;

Move data

1234

First register
at source

1234

1234

1234

1234

1234

1234

1234

MWO00100

MWO00101

MW00102

MWO00103

MWO00104

MWO00105

MWO00106

Table Initialization (SETW)

"Store the value of DW00100 in registers MW00100 to MW00106.

Motion Language Instructions

6-199

6.8 Data Manipulations

ASCII Conversion 1 (ASCII)

6-200

ASCII Conversion 1 (ASCII)

The ASCII instruction converts the specified characters to ASCII text, and stores the result of that opera-
tion in the specified integer register. The text string is case sensitive.

The first character is stored in the lower byte of the first word and the second character is stored in the
upper byte of the first word. The remaining characters are stored in order in that same way. If the number
of characters in the string is odd, the upper byte of the last word in the destination register is 0. The input
text string can contain up to 32 characters.

Format
The format of the ASCII instruction is as follows:

ASCIl 'ABCDEFG' MW00200;

O] @
Description Application Usable Registers
@ Text string ASCII text
@ Destination register address | Integer registers (excluding # and C registers)

The following tables show the characters that can and cannot be used in the ASCII instruction.

& Usable Characters

The following table lists the characters that can be used in the ASCII instruction.

Item ASCII Characters
Alphanumeric characters | atoz,AtoZ,0t09

Space character

Single-byte symbols LES%& ()4, - [i<=>2@[]\]~ " (|}~

€ Unusable Characters

The following table lists the characters that cannot be used in the ASCII instruction.

ltem ASCII Characters

3

Single quotation mark

113

Double quotation mark

Double slash //

Double-byte characters All double-byte characters

Single-byte Japanese characters | All single-byte Japanese characters

6.8 Data Manipulations

ASCII Conversion 1 (ASCII)

Programming Examples

Programming examples that use the ASCII instruction are given below.

€ Storing the Text String “ABCD” in Registers MW00100 to MWO00101

ASCIl 'ABCD' MWO00100;

Upper byte Lower byte
MWO00100 42H('B") 41H('A") MWO00100 = 4241H
MWO00101 44H('D") 43H('C") MWO00101 =4443H

€ Storing the Text String “ABCDEFG” in Registers MW00100 to MW00103

ASCIl 'ABCDEFG' MWO00100;

Upper byte Lower byte

MW00100 42H('B") 41H('A") MWO00100 = 4241H
MWO00101 44H('D") 43H('C") MWO00101 = 4443H
MW00102 46H('F") 45H('E") MWO00102 = 4645H
MW00103 00H 47TH('G") MW00103 = 0047H

The remaining bytes will be 0.

Motion Language Instructions

6-201

6.9 Basic Functions

m Basic Functions

Basic function instructions perform special operations through a combination of numeric and logic opera-
tions. There are 17 basic function instructions.

The following table lists the basic function instructions.

(2]
o | €
E| O
c (LA <))
2 o | 9
5 i e |
=) Name Format Description Q| o
? c |2
£ 2|0
° =}
= |3
n
Calculates the sine.
. SIN (Mw0O); . .
SIN Sine () The specifications depend on whether the | O | O
SIN (90); .
data type is integer or real number.
Calculates the cosine.
) COs (MwO); . .
COS Cosine () The specifications depend on whether the | O | O
COS (90); .
data type is integer or real number.
Calculates the tangent.
TAN (MFO); . .
TAN Tangent () Only a real number register can be speci- | O | O
TAN (45.0);
fied.
Calculates the arc sine.
. ASN (MF0O); . .
ASN Arc Sine () Only a real number register can be speci- | O | O
ASN (90.0);
fied.
Calculates the arc cosine.
. ACS (MFO); . .
ACS Arc Cosine () Only a real number register can be speci- | O | O
ACS (90.0);
fied.
Calculates the arc tangent.
ATN (MWwWO); . .
ATN | Arc Tangent () The specifications depend on whether the | O | O
ATN (45); .
data type is integer or real number.
Calculates the square root.
SQT (MwO);
SQT | Square Root QT () The specifications depend on whether the | O | O
SQT (100); .
data type is integer or real number.
BIN BCD—BIN | BIN (Mw0O);, Converts BCD data to binary data. OO
BCD | BIN—BCD | BCD MWDO); Converts binary data to BCD data. OO
If the logic operation result is TRUE, the
specified bit turns ON.
S{} Set Bit S {(MBO} = MBO & MBLI; However, the specified bit is not turned 0| O
OFF even if the result of the logic opera-
tion is FALSE.
If the logic operation result is TRUE, the
specified bit turns OFF.
R{} Reset Bit R {MBO} = MBO & MBO, However, the specified bit is not turned 0|0
ON even if the result of the logic opera-
tion is FALSE.
MBO = PON (MBO MB0O);
Risine-cdee Or The bit output turns ON for one scan
PON £-cC8 IF PON (MBO MBO) == 1; when the bit input status changes from x| O
Pulse
e OFF to ON.
IEND;

Continued on next page.

6-202

6.9 Basic Functions

Continued from previous page.

(2]
o | €
E| S
c (LA)
o] o | ©
B —r S|l
=) Name Format Description T | o
7] c [2
£ 2|0
° >
= |8
(7]
MBO = NON (MBO MBO);
Falling-edee Or The bit output turns ON for one scan
NON £-cC8 IF NON (MBO MB0O) == 1, when the bit input status changes from x | O
Pulse
ce ON to OFF.
IEND;
Counts the time whenever the bit input is
ON.
On-Delay _ .
TON Timer MBO =MBO & TON (O MBO), The bit output turns ON when the counted | x | O
value is equal to the set value.
Counting unit: 10 ms
Counts the time whenever the bit input is
1 ON ON.
TONIMS | S 2™ | pBO=DBO & TONIMS (O DBO); | The bit output turns ON when the counted | x | O
Delay Timer .
value is equal to the set value.
Counting unit: 1 ms
Counts the time whenever the bit input is
Off-Del OFE.
TOF T;mzray MBO = MBO & TOF (O MBO); | The bit output turns OFF when the x | O
counted value is equal to the set value.
Counting unit: 10 ms
Counts the time whenever the bit input is
OFF.
1-ms OFF- .
TOFIMS . DBO =DBO & TOFIMS (O DWO); | The bit output turns OFF when the x| O
Delay Timer

counted value is equal to the set value.
Counting unit: 1 ms

Note: The O in the above formats indicates a register address.

Motion Language Instructions

6-203

6.9 Basic Functions

Sine (SIN)

Sine (SIN)

The SIN instruction returns the sine of the specified integer or real number data as the operation result.
Double-length integers cannot be used.

Format

The format of the SIN instruction is as follows:

MWO00100 = SIN (3000);

O] @
Description | Application Unit Usable Registers
+ All integer, real number, or double-length real number registers
o Sine value (excluding # and C registers)
output B » Same as above except with a subscript.
* Subscript registers
* All integer, real number, or double-length real number registers
(excluding # and C registers)
@ Angle input | Angle (°)* » Same as above except with a subscript.
* Subscript registers
» Constant

* The input unit and output results will be different for integer and real number data.

* Integers
Use integers that are between -327.68° and 327.67°. The result of the immediately preceding operation (integer
data) is used as the input, and the operation result is returned in an integer register (input unit 1 = 0.01°). The oper-
ation result is multiplied by 10,000 before being output.

* Real Numbers
The result of the immediately preceding operation (real number data) is used as the input, and the sine is returned in
a real number register (unit = degrees).

Integer Data Real Number Data

Equivalent .

MW00102 = SIN (MW00100) : . 0.5-SIN30° MF00102 = SIN (MF00100) ;
(05000) (03000) (0.5) (30.0)

If an integer is input that is not between -327.68° and 327.67°, a correct result will not be obtained.
Note

Programming Examples

The SIN instruction can be used in motion programs, sequence programs, and ladder programs.
Programming examples that use the SIN instruction are given below.

Data Type | Motion Programs/Sequence Programs Ladder Programming
B - -
& [[WFD]5r e [WFO] Dest
w MW00102 = SIN(MW00100); H SIH Muo0n100 WWootnz -
L - -
& [[WFD]Sr e [WFO] Dest
F DF00202 = SIN(DF00200); y S1H DFOO200 DFOo202

6-204

6.9 Basic Functions

Cosine (COS)

Cosine (COS)

The COS instruction returns the cosine of the specified integer or real number data as the operation result.

Double-length integers cannot be used.

Format

The format of the COS instruction is as follows:

MWO00100 = COS (3000);

©) @
Description | Application Unit Usable Registers
 All integer, real number, or double-length real number registers
0 Cosine (excluding # and C registers)

value output » Same as above except with a subscript.

* Subscript registers

(excluding # and C registers)
» Same as above except with a subscript.
* Subscript registers
» Constant

® Angle input | Angle (°)*

* All integer, real number, or double-length real number registers

* The input unit and output results will be different for integer and real number data.

« Integers
Use integers that are between -327.68° and 327.67°. The result of the immediately preceding operation (integer
data) is used as the input, and the operation result is returned in an integer register (input unit 1 = 0.01°).
The operation result is multiplied by 10,000 before being output.

* Real Numbers
The result of the immediately preceding operation (real number data) is used as the input, and the cosine is returned
in a real number register (unit = degrees).

Integer Data Real Number Data

Equivalent - .
MWO00102 = COS (MW00100) ; — 0.5=COS60° MF00102 = COS (MF00100) ;

(05000) (06000) (0.5) (60.0)

If an integer is input that is not between -327.68° and 327.67°, a correct result will not be obtained.

Note

Programming Examples

The COS instruction can be used in motion programs, sequence programs, and ladder programs.
Programming examples that use the COS instruction are given below.

Motion Language Instructions

Data Type | Motion Programs/Sequence Programs Ladder Programming
B - —
a[[WFDT 5r o [WFO] Dest
w MWO00102 = COS(MW00100); 1 cos MWaoTo0 MWao102
L — —
«[[WFDT 5r o [WFD] Dest
F DF00202 = COS(DF00200); H cos DFOO200 DFOD202

6-205

6.9 Basic Functions

Tangent (TAN)

6-206

Tangent (TAN)

The TAN instruction uses the specified variable or constant (unit = degrees) as the input and returns the
tangent in a real number register.

Format

The format of the TAN instruction is as follows:

MWO00100 = TAN (1.0);

©) @
Description | Application Unit Usable Registers
* All real number, or double-length real number registers (excluding #
Tangent and C registers)
@ value output - » Same as above except with a subscript.
* Subscript registers
* All real number, or double-length real number registers (excluding #
and C registers)
@ Angle input | Angle (°)* » Same as above except with a subscript.
* Subscript registers
* Constant

* Example: To find the tangent of the input value (6 = 45.0°), the following calculation is performed: TAN(6) = 1.0.
DF00102=TAN(DF00100);
(1.0) (45.0)

@ The TAN instruction can be used only with real number data. A compiling error will occur when the

program is compiled if bit, integer, or double-length integer data is specified.
Important

Programming Example

The TAN instruction can be used in motion programs, sequence programs, and ladder programs.
A programming example that uses the TAN instruction is given below.

Data Type | Motion Programs/Sequence Programs Ladder Programming
B — —
W — —
L — —
A [[FO] Sr e [FOJDest
F DF00202 = TAN(DF00200); - ThH OFO0200 DFoo2oe F

6.9 Basic Functions

Arc Sine (ASN)

Arc Sine (ASN)

The ASN instruction uses the specified variable or constant as the input and returns the arc sine (unit =
degrees) in a real number register.

Format

The format of the ASN instruction is as follows:

MFO00100 = ASN (0.5);

O] @
Description | Application Unit Usable Registers
* All real number, or double-length real number registers (excluding #
© Angle o and C registers)
output Angle (°) » Same as above except with a subscript.
* Subscript registers
* All real number, or double-length real number registers (excluding #
) and C registers)
@ iSrIIrjlﬁtvalue - » Same as above except with a subscript.
+ Subscript registers
* Constant

* Example: To find the arc sine of the input value (0.5), the following calculation is performed: ASN(0.5) = 30.0°.
MF00202=ASN(MF00200);
(30.0) (0.5)

@ The ASN instruction can be used only with real number data. A compiling error will occur when the

program is compiled if bit, integer, or double-length integer data is specified.
Important

Programming Example

The ASN instruction can be used in motion programs, sequence programs, and ladder programs.
A programming example that uses the ASN instruction is given below.

Data Type | Motion Programs/Sequence Programs Ladder Programming
B - -
W — —
L - -
& [[FOT5rc [FOlDe=t
F DF00202 = ASN(DF00200); 4 ASIH DFOO200 pFooZog -

Motion Language Instructions

6-207

6.9 Basic Functions

Arc Cosine (ACS)

6-208

Arc Cosine (ACS)

The ACS instruction uses the specified variable or constant as the input and returns the arc cosine (unit =
degrees) in a real number register.

Format

The format of the ACS instruction is as follows:

MF00100 = ACS (0.5);

©) @
Description | Application Unit Usable Registers
* All real number, or double-length real number registers (excluding #
Angle . and C registers)
@ output Angle (°) » Same as above except with a subscript.
* Subscript registers
* All real number, or double-length real number registers (excluding #
. and C registers)
@ Cosm§ - » Same as above except with a subscript.
value input . .
* Subscript registers
* Constant

* Example: To find the arc cosine of the input value (0.5), the following calculation is performed: ACS(0.5) = 60.0°.
MF00100 = ACS (MF00102) ;
(60.0) (0.5)

@ The ACS instruction can be used only with real number data. A compiling error will occur when the

program is compiled if bit, integer, or double-length integer data is specified.
Important

Programming Example

The ACS instruction can be used in motion programs, sequence programs, and ladder programs.
A programming example that uses the ACS instruction is given below.

Data Type | Motion Programs/Sequence Programs Ladder Programming
B — —
W — —
L - —
a[[FOT5rc [FOIDest
F DF00202 = ACS(DF00200); 4 ACOS] pDFoOoZo? -

6.9 Basic Functions

Arc Tangent (ATN)

Arc Tangent (ATN)

The ATN instruction returns the arc tangent of the specified integer or real number data as the operation
result.
Double-length integers cannot be used.

Format

The format of the ATN instruction is as follows:

MWO00100 = ATN (100);
0) @

Descrip-

tion Application Unit Usable Registers

* All integer, real number, or double-length real number registers
Angle (excluding # and C registers)

@ output Angle ()’ » Same as above except with a subscript.
* Subscript registers
 All integer, real number, or double-length real number registers
(excluding # and C registers)
@ Tangent - » Same as above except with a subscript.

value input . .
P * Subscript registers

» Constant

* The input unit and output results will be different for integer and real number data.

¢ Integers
Use integers that are between -327.68 and 327.67.
The result of the immediately preceding operation (integer data) is used as the input, and the operation result is
returned in an integer register (input 1 = 0.01). The operation result is multiplied by 100 before it is output.

» Real Numbers
The result of the immediately preceding operation (real number data) is used as the input, and the arc tangent is
returned in a real number register.

Integer Data Real Number Data

Equivalent _ .

MWO00100 = ATN (MW00102) ; _ 45=ATN(1.0) MF00100 = ATN (MF00102) ;
(04500) (00100) (45.0) (1.0)

Programming Examples

The ATN instruction can be used in motion programs, sequence programs, and ladder programs.
Programming examples that use the ATN instruction are given below.

Data Type | Motion Programs/Sequence Programs Ladder Programming
B - —
A [[WFDISre [WFDO]Dest
W MWO00102 = ATN(MW00100); T ATAN Mioo1an Mwooio:
L — -
A [[WFD] Sr [WFD]Dest
F DF00202 = ATN(DF00200); 1 ATAN DFOO200 DFOOZOZ2

Motion Language Instructions

6-209

6.9 Basic Functions

Square Root (SQT)

Square Root (SQT)

The SQT instruction returns the square root of the specified integer or real number data as the operation
result.
Double-length integers cannot be used.

Format

The format of the SQT instruction is as follows:

MW00100 = SQT (100);

O] @
Description Application Usable Registers
* All integer, real number, or double-length real number registers (excluding
and C registers)
® Square root output | | Same as above except with a subscript.
* Subscript registers
» All integer, real number, or double-length real number registers (excluding
and C registers)
@ Data input » Same as above except with a subscript.
* Subscript registers
» Constant

Note: The input unit and output results will be different for integer and real number data.
* Integer Data
The result is different from that obtained for the mathematical square root, and is calculated with the following
formula:

sign(Input data) x 4/|Input data| x 32,768

sign(Input data): The sign of the input data.
[input data|: The absolute value of the input data.

This is the same as multiplying the result of the mathematical square root by 432768 . If the input is a nega-
tive number, the square root of the absolute value is calculated, and the negative value is given as the operation
result. The maximum operation error is 2.

* Real Number Data
The SQT instruction uses the immediately preceding operation result (real number data) as the input and
returns the square root as real number data.

Integer Data Real Number Data
Positive MWO00100 = SQT (MW00102); 464 x 432768 = 1448 MF00100 = SQT (MF00102) ;
input value (01448) (00064) @8 (181 (8.0) (64.0)
Negative MWO00100 = SQT (MW00102) ; - (/\/6_ x 4/32768)= -1448 MF00100 = SQT (MF00102) ;
input value | (-01448) (-00064) @ (181) (-8.0) (-64.0)

6-210

6.9 Basic Functions

Programming Examples

Square Root (SQT)

The SQT instruction can be used in motion programs, sequence programs, and ladder programs.
Programming examples that use the SQT instruction are given below.

Data Type | Motion Programs/Sequence Programs Ladder Programming
B — —
& | [WFD] 5re [WFD] Dest
W MW00102 = SQT(MW00100); SHRT MWao1o0 Wiooi1o2 -
L — —
& [[WFD]5rc [WFD] Dest
F DF00202 = SQT(DF00200); SERT DFODZO0 DFODZo? -

Motion Language Instructions

6-211

6.9 Basic Functions

BCD to Binary (BIN)

BCD to Binary (BIN)

The BIN instruction converts BCD data to binary data.
Only integer data can be used. If non-BCD data is specified, a correct result cannot be obtained.

BCD to Binary Conversion Example

Example
Converted.
mwootol [1 | 2 [3 [4 |I::>MWOO100| o [4« [o] 2]
(1234H) 1,234 (decimal)
Converted.
Mwoo1o1 [1 [2 [3 | F|I::>MWOO100| o [4 [o] b]
(123FH) 1,245 (decimal)
If non-BCD data is specified, a correct result cannot be obtained.
Note
Format
The format of the BIN instruction is as follows:
MWO00100 = BIN (1234H);
O] @
Description | Application Usable Registers
* All registers with integer and double-length integer data types (excluding # and C
o Bi out registers)
1nary ouipUut 1, Same as above except with a subscript.
* Subscript registers
» All registers with integer and double-length integer data types (excluding # and C
registers)
@ BCD input » Same as above except with a subscript.
* Subscript registers
» Constant

Programming Examples

The BIN instruction can be used in motion programs, sequence programs, and ladder programs.
Programming examples that use the BIN instruction are given below.

Data Type | Motion Programs/Sequence Programs Ladder Programming
B — —
& [[WLn] &r e [WLalDest
w MW00101 = BIN(MW00100); h EBIH WWao1oo Mwootot -
a[weal s [WLalDest
L ML00102 = BIN(ML00100); 1 BIH WLOO100 MLOO102 -
F — -

6-212

6.9 Basic Functions

Binary to BCD (BCD)

Binary to BCD (BCD)

The BCD instruction converts binary data to BCD data.

Only integer data can be used. If the binary data exceeds 270F or is a negative value, a correct result can-

not be obtained.

Example Binary to BCD Conversion Example

Converted.
Mwoo1o1 [o0 | 4 | b | 2 |I::>MWOO100| 1 1 2 [3] 4]
1,234 decimal 1234 hex
Converted.
Mwoo101 [3 [o | 3 | o |I::>MWOO100| c | 3] 4] 5 |
1,234 decimal C345 hex
If the binary data exceeds 270F, a correct result cannot be obtained.
Note
Format
The format of the BCD instruction is as follows:
MWO00100 = BCD (1234);
A B
Description | Application Usable Registers
 All registers with integer and double-length integer data types (excluding # and C
A BCD outout registers)
OUPUL 1L Same as above except with a subscript.
* Subscript registers
 All registers with integer and double-length integer data types (excluding # and C
registers)
B Binary input | * Same as above except with a subscript.
* Subscript registers
* Constant

Programming Examples

The BCD instruction can be used in motion programs, sequence programs, and ladder programs.
Programming examples that use the BCD instruction are given below.

Motion Language Instructions

Data Type | Motion Programs/Sequence Programs Ladder Programming
B — —
a (W] 5re [WLelDest
W MW00101 = BCD(MW00100); - ECD Muyooion Wuwooiol -
a (WLl Sre [WLalDest
L ML00102 = BCD(ML00100); . BLD WLOO100 MLOnio® -
F — —

6-213

6.9 Basic Functions

Set Bit (S{})

Set Bit (S{})

The S{} instruction turns ON the specified bit if the result of the specified logic operation is TRUE.
However, the specified bit is not turned OFF even if the result of the logic operation is FALSE.

Format

The format of the S{} instruction is as follows:

S { MB001000 } = MB001010 & MB001011;

©) @
Description Application Usable Registers
o Specified bit * All bit data registers (ex@udmg # agd C registers)
» Same as above except with a subscript.
+ All bit data registers (excluding # and C registers)
@ Logic operation expression | * Same as above except with a subscript.
» Constant

Programming Example

The S{} instruction can be used in motion programs, sequence programs, and ladder programs.
A programming example that uses the S{} instruction is given below.

Data Motion Programs/ .
Ladder Programming
Type Sequence Programs
B S{MB001000} = | HBODIO10 MBODID11 MED0 1000 |
MB001010&MB001011; |f il : |
w - _
L - _
F - _

6-214

6.9 Basic Functions

Reset Bit (R{ })

Reset Bit (R{ })

The R{} instruction turns OFF the specified bit if the result of the specified logic operation is TRUE.
However, the specified bit is not turned ON even if the result of the logic operation is FALSE.

Format

The format of the R{} instruction is as follows:

R {MB001000 } = MB001010 & MB001011;

O]
Description Application Usable Registers
® Specified bit All bit data registers (exc.:ludmg # ar?d C registers)
» Same as above except with a subscript.
» All bit data registers (excluding # and C registers)
@ Logic operation expression | ¢ Same as above except with a subscript.
» Constant

Programming Example

The R{} instruction can be used in motion programs, sequence programs, and ladder programs.
A programming example that uses the R{} instruction is given below.

Data Motion Programs/ .
Ladder Programming
Type Sequence Programs
B R{MB001000} =] MBOOTO10 MBODTOT1 MEOD 1000 |
MB001010&MB001011; | il il < |
w - _
L — _
F - _

Motion Language Instructions

6-215

6.9 Basic Functions
Rising-edge Pulse (PON)

Rising-edge Pulse (PON)

The PON instruction turns ON the bit output for one scan when the bit input changes from 0 to 1. The reg-
ister that stores the previous bit output value is used as the work register for PON instruction processing.
Set a register that is not used in any other processes.

Format

The format of the PON instruction is as follows:

DB000002 = PON (DB000000 DB000001) ;

0] @ (©)
Description Application Usable Registers
o Bit output * All bit data registers (excfluding # agd C registers)
» Same as above except with a subscript.
o) Bit input * All bit data registers ‘ .
» Same as above except with a subscript.
. . « All bit dat: ist luding # and C regist
©) Storage for the previous bit output value 1+ cata TEgISters (eX(.: uams ag registers)
» Same as above except with a subscript.

Programming Example

A programming example that uses the PON instruction is given below.

€ Outputting to a Coil

DB000002 = PON(DB000000 DB000001);

* Equivalent Ladder Programming Example

I DBOOODOOD DBOOODD1 peo0oO0OD2
| | f X
I I NS

* Timing Charts

DB000000

—
DB000001 Q I—,
1 []

DB000002

I
—

' +

1 scan 1 scan

6-216

6.9 Basic Functions

Rising-edge Pulse (PON)

€ When Used with the IF Instruction

IF PON(DB0O00000 DBO000001)==1;

IEND;

» Equivalent Ladder Programming Example

DBO0OOOO DBOOOOQI DE00000Z
{ } £F

|| \F Bl npo0ooong == true

—— END_IF

» Timing Charts

DB000000 Q

DB000001

Processing in ,_l I_I

the IF instruction
¥ +

Executed for only one scan. Executed for only one scan.

Motion Language Instructions

6-217

6.9 Basic Functions
Falling-edge Pulse (NON)

Falling-edge Pulse (NON)

The NON instruction turns ON the bit output for one scan when the bit input changes from 1 to 0. The reg-
ister that stores the previous bit output value is used as the work register for NON instruction processing.
Set a register that is not used in any other processes.

Format

The format of the NON instruction is as follows:

DB000002 = NON (DB000000 DB000001) ;

0] @ (©)
Description Application Usable Registers
o Bit output » All bit data registers (ex?luding # al?d C registers)
» Same as above except with a subscript.
o) Bit input » All bit data registers . '
» Same as above except with a subscript.
. . All bit dat ist luding # and C regist
©) Storage for the previous bit output value 1+ cata TEgISters (exc.; ucine al? registers)
» Same as above except with a subscript.

Programming Example

A programming example that uses the NON instruction is given below.

€ Outputting to a Coil

DB000002 = NON(DB000000 DBO000001);

* Equivalent Ladder Programming Example
I DBO0O0OOOD DBOOOODT DBO0O00D2 |

— + o

* Timing Charts

|

|
DB000000 Q
]

DB000001

DB000002

LI
T -

1 scan 1 scan

6-218

6.9 Basic Functions

Falling-edge Pulse (NON)

€ When Used with the IF Instruction

IF NON(DB000000 DB000001) == 1;

IEND;

» Equivalent Ladder Programming Example

DBU:][II[IUI] DBOOOODT DeOOONDZ
1T

|| |F B ppooonn: == true

—— EHD_IF

* Timing Charts

DB000000 Q
]

DB000001

Processing in
the IF instruction

| |
| |
n B
+ :

Executed for only one scan. Executed for only one scan.

Motion Language Instructions

6-219

6.9 Basic Functions

On-delay Timer: Measurement unit = 10 ms (TON)

On-delay Timer: Measurement unit = 10 ms (TON)

The TON instruction counts the duration that the bit input is ON with a measurement unit of 10 ms.

The bit output turns ON when the counted value is equal to the set value.

If the bit input turns OFF during counting, the timer stops. If the bit input turns ON again, the timer starts
counting again from 0. The actual counted time (in units of 10 ms) is stored in the Count register.

Format

The format of the TON instruction is as follows:

DB000001 = DB000000 & TON (500 DW00001);

©) @ ©) ®
Description Application Usable Registers
o Bit output « All bit data registers (excluding # and C registers)

» Same as above except with a subscript.

» All bit data registers

@ Bit input . .
P » Same as above except with a subscript.

« All integer data registers
©) Set Value » Same as above except with a subscript.
* Constants (0 to 65,535 (655.35 s) in 10 ms intervals)

» All integer data registers

@ Register for timer countin . .
& €|« Same as above except with a subscript.

& 1. Time is not counted while the debugging operation is stopped.
@ Counting starts again from the current value after the debugging operation restarts.
important 2. Never omit the “DBOOOON &” bit input.

Programming Example
A programming example that uses the TON instruction is given below.

DB000001 = DB0O00000 & TON (500 DWO00001);
T Set to 5 seconds.

+ Equivalent Ladder Programming Example

DEODODQOD [N Set [WCount pDeOOOOOT |
—— Tonl10ms] Q0s00 poooo |

* Timing Charts

DB000000 Q |7
—

DB000001

500

DWO00001 [5.00s - Ts

(Ts = Scan time set value)

6-220

6.9 Basic Functions

1-ms ON-Delay Timer (TON1MS)

1-ms ON-Delay Timer (TONTMS)

The TONIMS instruction counts the duration that the bit input is ON with a measurement unit of 1 ms,
and turns ON the bit output when the counted value is equal to the set value.

If the bit input turns OFF during counting, the timer stops. If the bit input turns ON again, the timer starts
counting again from 0. The actual counted time (in units of 1 ms) is stored in the Count register.

Format

The format of the TON1MS instruction is as follows:

DB000001 = DBO00000 & TON1MS(500 DW00001);

O] @ () @
Description Application Applicable Data
© Bit output « All bit data registers (excluding # and C registers)

» Same as above except with a subscript.

 All bit data registers (excluding # and C registers)

@ Bit input . .
P » Same as above except with a subscript.

+ All integer data registers

©) Set Value » Same as above except with a subscript.

* Constants (0 to 65,535 (65.535 s) in 1 ms intervals)
» All integer data registers

» Same as above except with a subscript.

@ Register for timer counting

Programming Example

A sequence programming example and a ladder programming example that use the TON1MS instruction
are given below.

DB000001 = DBO00000 & TON1MS(500 DW00001);

» Equivalent Ladder Programming Example

DeOOOOOD NIDESS [WTCount DEOOOODT |
—— ToNimel ones0o0 pwooont |

* Timing Charts
ON
DB000000 OFF |

Motion Language Instructions

ON

DB000001 OFF
500
DW00001 0 500ms-Ts

(Ts = Scan time set value)

6-221

6.9 Basic Functions

Off-delay Timer: Measurement unit = 10 ms (TOF)

6-222

Off-delay Timer: Measurement unit = 10 ms (TOF)

The TOF instruction counts the duration that the bit input is OFF with a measurement unit of 10 ms.

The bit output turns OFF when the counted value is equal to the set value.

If the bit input turns ON during counting, the timer stops. If the bit input turns OFF again, the timer starts
counting again from 0. The actual counted time (in units of 10 ms) is stored in the Count register.

Format

The format of the TOF instruction is as follows:

DB000001 = DB000000 & TOF (500 DW00001);

©) @ ©) ®
Description Application Usable Registers
o Bit output « All bit data registers (excluding # and C registers)

» Same as above except with a subscript.

» All bit data registers

@ Bit input . .
P » Same as above except with a subscript.

« All integer data registers
©) Set Value » Same as above except with a subscript.
* Constants (0 to 65,535 (655.35 s) in 10 ms intervals)

» All integer data registers

@ Register for timer countin . .
& €|« Same as above except with a subscript.

& 1. Time is not counted while the debugging operation is stopped.
@ Counting starts again from the current value after the debugging operation restarts.
important 2. Never omit the “DBOOOON &” bit input.

Programming Example

A programming example that uses the TOF instruction is given below.

DB000001 = DB0O00000 & TOF (500 DWO00001);

* Equivalent Ladder Programming Example

DEOOOOOD ~[[W5et [WCount peOODOD |
—— ToFF [10ms] nnenn owanoot |

* Timing Charts

DB000000

]
DB000001 J li
500

DWO00001 0 5.00s -Ts

(Ts = Scan time set value)

6.9 Basic Functions

1-ms OFF-Delay Timer (TOF1MS)

1-ms OFF-Delay Timer (TOF1MS)

The TOFIMS instruction counts the duration that the bit input is OFF with a measurement unit of 1 ms,
and turns OFF the bit output when the counted value is equal to the set value.

If the bit input turns ON during counting, the timer stops. If the bit input turns OFF again, the timer starts
counting again from 0. The actual counted time (in units of 1 ms) is stored in the Count register.

Format

The format of the TOF1MS instruction is as follows:

DB000001 = DBO00000 & TOF1MS(500 DW00001);

O] @ () @
Description Application Applicable Data

© Bit output + All bit data registers (exc.luding # agd C registers)
» Same as above except with a subscript.

o Bit input All bit data registers (exc.ludmg # an.d C registers)
» Same as above except with a subscript.
+ All integer data registers

©) Set Value » Same as above except with a subscript.
* Constants (0 to 65,535 (65.535 s) in 1 ms intervals)

. . . « Allint dat ist
@ Register for timer counting thfeger data registers

» Same as above except with a subscript.

Programming Example

A sequence programming example and a ladder programming example that use the TOF1MS instruction

are given below.

DB000001 = DBO00000 & TOF1MS(500 DW00001);

» Equivalent Ladder Programming Example

al[W5et " Caunt
noe0o DWoaom

DEOOOOON
——— ToFF[1ms]

» Timing Charts

ON
DB000000 OFF

DEOOOOOT |

ON
DB000001 OFF

Motion Language Instructions

| L

500

DWO00001 0

500ms-Ts

(Ts = Scan time set value)

6-223

6.10 Vision Instructions

6.10

6-224

Vision Instructions

The vision instructions are used to get or analyze images taken with the camera of a YVD-001 Vision

Unit.

There are five vision instructions. You can use these instructions only in motion programs.

The following table lists the vision instructions.

Instruc- o Motion | Sequence
. Name Format Description
tion Programs | Programs
VCAPI/Logical circuit_name.Logical -
camera_name]lmage_memory num- Gets an image
VCAPL | Capture Image ber[Logical circuit name.Logical cam | from the camera. O x
era_name]lmage _memory number..;
VCAPS/Logical_circuit_name.Logi- Gets an image
Capture Image | cal camera_name]lmage memo-
. . i .| from the camera
VCAPS | with External | ry_number[Logical circuit name.Logic O X
. on an external
Trigger Sync | al _camera_name]lmage memory num- triooer sienal
ber...TW(FW)Release_signal; geer sighal.
VFIL/Logical cir- Applies a filter
VFIL Filter Image cuit_name|Request_parameter[Logi- before image O X
cal_circuit_name]Request_parameter...; | analysis.
VANA/Logical cir-
cuit_name]Request _parameter Respon-
VANA ﬁ;:l};ze se_parameter[Logical circuit_ name]Re ﬁilsl}elzes an O X
g quest_parameter Response_parame- ge-
ter..;
VRES/Logical_cir-
Get Analysis cuzt_name]Reques{ _para.met'er Respon- Ge.ts the results
VRES Results se_parameter[Logical circuit nameJRe | of image analy- O X

quest_parameter Response_parame-
ter..;

S1S.

Features of the MPE720
Engineering Tool

This chapter describes the features of the MPE720 Engineering
Tool for motion programs and sequence programs.

GBI Voton Edior ... T2
[Vioton nsruton Enty Assistance ... 5
K Tosk Assignments .7
I Debug Operaton ... T
R Drive ContolPanel ... T
B TostRuns - T20
KR s oniorand Alarm Monior ... 723
I Cross Reforences ... 72T

7.1 Motion Editor

7.1 Motion Editor

The Motion Editor is a programming tool that is required to create and edit motion programs and sequence
programs. It has a full range of functions to create and edit these programs, including text editing, compil-
ing (saving), debugging, and monitoring.

The Motion Editor Tab Page is shown below.

- Start,”MPMOD1 | s X
[% 55k version7.00 e s DR FL PE kM)R] E
LINE BLOCE

1 MPMOO1:

2

3 "ACCELERATION TIME CHANGE"

4 0 ACC [A1]1000 [E1]1000:

5 "DECELERATION TIME CHANGE"

6 1 DCC [A1]1000 [E1]1000:

7 "SET SPEED"

8 Z VEL [A1]6000 [E1]6000:

3 "POSITIONING"

10 3 MOV [A1]1000 [E1]2000:

11

12 4 END;
KN | 2l

To start the Motion Editor, select a program to open in the Motion Pane.

i * QX
Igtmn 2 . END;
2] VAR
Program s TODD @ Add the wvariahle here.
=[] MPan0n [cPU-201]
= B Mation program EMD_VAR:

Gm“D Definition <« TODD @ Add the program here.

3 EMD:

Sub pragram
Sequence program
By M-EXECUTOR

B3 Drive Contral Panel

B e e

7.1 Motion Editor

B Motion Editor Tab Page

@
I bolihfAa e MO0 | d 7 7%
@ i_@_ﬁg}ﬁi\irsion?.uu v%’E?;E.J]¥$@@@R>i@DE|L&I 1O
LINE feLock | RET; L
1 RET;

®—d
L

® !

I i
—F)ebug Mode >»> Suspend |F0rk:1 Nest:T |MPMDD‘I T
® ®
No. Name Description

— | This icon causes the display to follow the Block Monitor so that it is
4 | always visible on the screen.
'ﬁ This icon displays the Motion Alarm Dialog Box.

® | Monitor Toolbar
11*_5 This icon calls a motion subprogram.
.E:—-'I'. This icon displays the Motion Tasks Tab Page.
a5 | This icon compiles the currently open program.
B@ This icon displays the Motion Command Assist Dialog Box.

@ | Programming Toolbar

; This icon automatically adds a semicolon.

! | This icon displays the Task Allocation Dialog Box.
§ This icon performs operation in Debug Operation Mode.
47 This icon performs operation in Normal Operation Mode.
This icon executes the program.
This icon stops execution of the program.
This icon forces the program in execution to end.

5 Motion Debugging EQ This icon performs a step-in operation.

Toolbar [}1

This icon performs a step-over operation.

~i

This icon moves the start point for execution.

This icon sets or removes a breakpoint.

This icon enables or disables a breakpoint.

This icon displays a list of all breakpoints.

R ([51|

This icon updates to the most recent state.

Continued on next page.

H Features of the MPE720 Engineering Tool

7-3

7-4

7.1 Motion Editor

Continued from previous page.

No.

Name

Description

Input Guidance

The guidance allows you to check the syntax of motion language instructions
as you create the motion program. Place the mouse cursor over any motion
language instruction (blue text) to display details on how to enter that instruc-
tion.

Line

This is the number of lines of text (instructions, comments, blank lines, etc.)
in the currently open program.

Block

This is the number of lines of actual code executed in the program. This does
not include lines such as comments or empty space.

Editor Area

This is the area where you enter the instruction in the program.

Status Bar

The status bar displays information such as the current operating mode or
alarms that have occurred.
Normal Operation Mode
Executing: Execution is in progress.
Alarm: An alarm occurred.
Debug Operation Mode
Executing in Debug Operation Mode: Debug Operation Mode
Single-block execution stopped: Single-block execution is stopped in Debug
Operation Mode.
Alarm: An alarm occurred in Debug Operation Mode

Parallel/Nest

The fork number and nesting level are displayed here.

Main Program

The number of the main program that is calling the currently open program is
displayed.

Compiler Version

The compiling options are specified.
Version 7.00
All MP3000 motion program functions are supported.
This setting is used for all programs created in MPE720 version 7.
Version 6 Compatible
Only MP2000 motion program functions are supported.
This setting is used for programs that were created on MPE720 version 6 or
version 5.

7.2 Motion Instruction Entry Assistance

Motion Instruction Entry Assistance

Instruction entry assistance helps you enter motion language instructions when you create motion pro-

grams.

Motion language instructions must be entered in the correct format in the text-based programming lan-

guage called motion language. You can use the Motion Command Assist Dialog Box to easily select
instructions to add to your program.

You can open the Motion Command Assist Dialog Box from the Motion Editor Tab Page. There are two
different methods to do so.

* Right-click and select Motion Command Assist from the menu.

Insert Cormmand

db cut i+
En copy Chrl+C
B paste Chrl+y

Delete Delete
dfy Find... Ctri+F
&% Replace... Ctrl+H
5,5 Motion Cormrnand Assist... F12

3

Refer to Motion Sub Program

Motion Alarm...

Maove Execution Position
Set/ Delete Breakpoint
Enable/ Disable Breakpoint
Ereakpoints. ..

Ctr+B

[FEEIETE @ ok

Add to Watch

Chrl+ad

Add to Scope...

Select Command :

B Motion Command Assist

CCELERATION TIME CHAMGE

IACC [Axis1]- [Axis2]- ..

Axis Mo, |3 vl Update |
Set to the arguments
Argument | Axis |Setting Wl |Unit |:|
[Axis1] A, | A1 [ms] |l
[Axis2] A... |B1 [mns]
[Axis3] &... |C1 [mns]
=]
¥ Comment
ACCELERATION TIME CHAMGE ;I
[~

Insert I

Close | Help |

* Or, right-click and select the instruction you want to insert under Insert Command.

X% Motion Gommand Assist

glect Command i [AcC : ACCELERATION TIME CHANGE LD
[acE [Axis 1) [Axis2)- ... |
Aixis Mo, & 5 - Update
Set bo the arguments :
Argurment | Axis |Setting Voo |Un\t \:l
[Axis1] A... |41 [ms] [
[Axis2] A... BL [ms]
[Axis3] A, | CL [ms]
¥ Comment
ACCELERATION TIME CHANGE =]
Insert | Close I Help I
A

H Features of the MPE720 Engineering Tool

7-5

7-6

7.2 Motion Instruction Entry Assistance

B Motion Command Assist Dialog Box

ﬂ% Motion Command Assist x|
@———Sekect Command [y ; FOSITIONING =l
@—— MOV [Asis1]- [AxisZ)- .. |
® > Aixis Na, 5 vl Update | @

Set ko the arguments :
Argument | Axis |Setting W |unit ‘:I
@ [Axis1]P... (Al [Reference units]
[Axis2] P... |B1 [Reference units]
[Axis3] P... [C1 [Reference units]
-
v Comment
POSITIONING =]
O—
[
Insert | Close Help |
T T T)

@ Select Command
Click the arrow to display a list of the instructions that you can insert.

B Motion Command Assist =
Select Command : [1oy ; POSITIONING | b
. MCC : HELICAL INTERPOLATION] Counterclockwise) -
|Ei':“"' [ARIS1]- [mcw'; CIRCULAR INTERPOLATION radius(Clockwise)
MCW ¢ CIRCULAR INTERPOLATION(Clackwise)
Axis No, MW ¢ HELICAL INTERPOLATION radius{Clockwise)
MCW ¢ HELICAL INTERPOLATION{ Clockwise)
MOD : REMAINDER,
ITIONING
Argument | Axis ' ROUTIMNE CALL
[axis1]P... |1 VM : MOVE ON MACHINE COORDINATES
52 e MYS ¢ LINEAR INTERPOLATION
[Axis2] P... |B1 |myT : SET TIME POSITIONING

Set bo the argumet

@ Instruction Format
This area displays the format of the currently selected instruction.
Example MOV: Positioning

MOV [Axis1 I- [Axis2]- ..;
+: Add

MLO01 06=MLO0102 + MLOO104;

® Number of Controlled Axes

For axis movement instructions, the number of controlled axes is selected from 1 to the number of axes set in
the group definition.

When the number of controlled axes is fixed, the fixed number of axes is displayed and the box is grayed out.

Example MOV (Positioning): Specify the number of controlled axes.

Axis Mo, IE - l

Set bo the argumet

armnment | s =

EXM (External Positioning): Fixed number of controlled axes

Axis Mo, |1 vl

7.2 Motion Instruction Entry Assistance

@ Parameter Settings
This area allows you to set the parameters (arguments) for the instruction. The setting items are listed in the
following table.

ltem Description
Displays the parameter names that are set as arguments to the instruction. These cannot
Argument
be changed. Arguments that can be omitted will be designated as optional.
Axis Displays the logical axis name. Change these as required.
Set value Specify a constant or register for the set value.
Unit Displays the unit for the parameter. The unit cannot be changed.

The logical axis names are defined in the group definitions.

The units are displayed according to the motion parameter setting for each axis. If a unit has not been speci-
fied in the motion parameter settings, the corresponding cell is displayed in yellow. Place the mouse cursor
over a cell to view its tooltip. Follow the instructions to set the motion parameters.

If the selected instruction does not require the number of controlled axes or any parameters to be specified,
the Input program Text Box is displayed in the Motion Command Assist Dialog Box as shown below.
Enter the instruction block referring to the instruction format.

B Motion Command Assist =

Select Command : |+ . 0D j

MLOD106=MLOO102 + MLOD104; |

Input prograrm

z B

" o

¥ Comment

ADD ;I

Insert I Close | Help |

® Comment Check Box and Comment Box
Select the Comment Check Box to enter a comment on the line above the instruction. When this check box is
not selected, the text box is grayed out and a comment cannot be entered.

Information The location to insert the comment cannot be changed.

® Update Button
This button updates the display of the Motion Command Assist Dialog Box.

Information Click the Update Button to refresh the display after changing any unit-related motion parameter.

H Features of the MPE720 Engineering Tool

7-7

7.2 Motion Instruction Entry Assistance

@ Insert Button
Click the Insert Button to insert the instruction in the Motion Command Assist Dialog Box at the cursor
position in the Motion Editor.

Start/™* MPMOOL1 |
B %558 vesonr.00 LI E PR

LIME ELOCE
111000000 [E1]1500000 [C1]-100 - <\

END:

= DD D

B Motion Command Assist =

Select Command :

MOV [Axis1]- [Axis2]- ..; |

Axis Mo, |3 vl Update |

Set to the arguments

Argument | Axis |Setting Wl |Unit |:|
[Axis1]P... |AL 1000000 [Reference units]
[Axis2] P... |B1 1500000 [Reference units]
[Axis3] P... |C1 -1000000 [Reference units]

¥ Comment

FOSITIONING =]

Insert I Close Help |

4
Close Button
This button closes the Motion Command Assist Dialog Box.
® Help Button
This button displays information on the relevant instruction.
zl 451 Posibmg (W)
Select Command : [11oy ; posITIONING =l [Wiotion Progroms | Sequence Programs |
’wnv [Axis1]- [Axis2]- ..; | [#opicatia | NotAppiicable |
. (1) Overview
E¥islin, 8 f - Update The ing (MOV) command independently moves each axis from the current position 1o the end position at
speed.
Set to the arguments : :‘ ~\P;.1||N'mo\;d simultancously. Any axis not specificd in the command will not be moved.

Argument | fuxis [Setting v [Unit [=] The path of movemeni with the MOV and is different from the lincar travel,
[Axis1]P... Al [Reference units] | Jumps to the help togga a3
page of the
selected instruction. sy spactd tpos. ope R
LI \ ,'/‘—’0
v comment f Positorung
POSITICHING = t
T Logca axis 1
-]
Insert | Close ‘ Help ir-:?“.‘“m“'"““‘“
‘ Logieal axis 2

Fig. 8.24 Movement Path with MOV Command

A\ CAUTION

+ Tho path of movement with the Posiioning (MOV) command is not always a straight ine. When program-
ming, be sufe 1o chack the path 1o make sure that there are no tools or olher obstacles in the way of the
WOrKpice.

Failure 10 carry out this check may result in damage (0 equipment. seriows personal injury. or even death

(2) Format

MOV [Lopal nss aame 1] Aslorumce poston [Logical aris name 7 Reference pouson [Logtal ars asme 3 Rofurence possicn

[hem T uea T Usadis Dt]
Reterance Directly designated vaive |
pesition + Dioubls integer Iy register (Indirect detijration)

Refenence unil

7.3 Task Assignments

Task Assignments

Task allocation is used to call motion programs or sequence programs.

The Task Allocation Dialog Box makes it easy to register the motion programs and sequence programs

that you create in the MP3000 system.
There are two methods to display the Task Allocation Dialog Box, as described below.

+ Click the [E] Icon in the Motion Editor.

_: ask Allocation =
Task Allocation Mo, ITaskl j
Task Type IMotion program j
Program Specification IDirect j
Program |MPMDDI
B A - Allocation Register
A GG _ : :
Disabled allocation | Allocate reqgister

= Control register allocate

iMWO0000
[Contral signal MWO0001
[Owerride{1=0.01%) MW00002

Set Cancel |

A

* Open the Detail Definition for the M-EXECUTOR under Module Configuration, then click the

[rasatdesy_|] lcon.

04 [+] 5VR32

I 05 M-EXECUTOR I

[f —= UNDEFINED —

8

=

[®)]

c

k5

m - »

M-EXEGUTOR{List) Individual display Program definition number IS Ta=kiAllos= Ry x| Q

Program definition | Allocation Contral register | Task Allocation Mo. ITaskl j ug;
Mo ol Execution tvpe | Settine | Proeram Task Tvpe -

= Sequence programiStart) Direct - b2 IMD':IDn program j 8

1 - e - N~

5 = Program Specification IDlrect j E

] -

7 — Program JMPraa01 =

5 - _) (]

& Allocation Register £

- -~

7 i Disabled allocation | Allocate register B

B - = Control register allocate $

—

MW00a00 =)

[Contrel signal MWO0001 3

[Override{1=0,01%1 Mw0000Z [

Set Cancel |
4

7-9

7.3 Task Assignments

B Task Allocation Dialog Box

:ﬂ%:Task Allocation x|

® ———» Task fllocation Mo.

@ ———» TaskType IMotion pragram j
Q) ————» Program Specification IDirect j
@ ——— » Frogram IMPMDEIl

® p Allocation Register

Dizabled allocation
B Control register allocate
[Program Mo,

L Status

i W] Conkral signal

L W] Owerride(1=0,01%)

Allocate register

Set Cancel |

v
® Task Allocation No.
This box displays the task number that is assigned to the program. You can select the task number when you
click the [&] Icon on the toolbar in the Motion Editor Tab Page.

@ Task Type
Set the execution type of the program.

Execution Type Supported Programs Execution Condition

Startup (These programs are executed once when
the power supply is turned ON.)

Startup sequence programs

Started at a fixed interval. (These drawings are

L-scan sequence programs | Sequence programs
d prog d prog executed once every low-speed scan cycle.)

Started at a fixed interval. (These drawings are

H- .
scan sequence programs executed once every high-speed scan cycle.)

Request for Start of Program Operation control
signal (The program is executed when the
Request for Start of Program Operation is turned
ON.)

Motion programs Motion programs

® Program Specification
Set the program designation method.
The designation method can be different for each program.

Designation Motion | Sequence Descriotion

Method Programs | Programs P

Direct The program is specified with the program number.
L S ted. | S rted.
Designation | PPOTCC | SUPPOTEA- | B iples: MPMO01 or SPM002
The program is specified by specifying a register that contains

Indirect Supported Not the program number.

Designation PPOTEC- 1 supported. | Example: OWOCOC (If 1 is stored in OWOCOC, MPMO01 s
executed.)
@ Program

Set the program number.

® Allocation Register
This area is used to assign registers. The assigned registers exchange data in realtime with the M-EXECU-
TOR control registers. I, O, and M registers can be assigned.

7-10

7.4 Debug Operation

Debug Operation

The Debug Operation Mode allows you to monitor the line of the motion or sequence program that is cur-
rent being executed. This makes it easier to find bugs in the program.

You can pause the execution of a program, set breakpoints, perform single-step execution (single-block
execution), and perform other operations to ensure proper operation of the programs that you developed.

In Debug Operation Mode, the program line that is being executed is displayed at the top of the tab page as

shown below.

Start,”'MPMOO1 |

s X

e .DJB : [version7.00

e s BEIFL BHHE R @ R RE

LINE EBLOCE END;

= 1
2 it

3 2

- : i
IDebug Mode >>> Suspend

END :

e ____________________________B
MOV [1]90000;

o

Setf Re(F3) Close

| |
Gl H

To start Debug Operation Mode, first connect to the Machine Controller, then click the [&] Icon on the

Motion Editor Tab Page.

In Debug Operation Mode, the program line that is being executed is highlighted at the top of the tab page.

Normal Operation Mode

Debug Operation Mode

MPMODL |

LINE BLOCE | END;

7\
E‘E‘ﬁg'{iivgrswunloo 1w s alig Uw

] E'&E : [versionz.o0

BELOCE END:
1 0

el BliFEL BEE R

1 INC;

2 MOV [A1]9000;
3 END;
Note

2 1
3 2

OV [£1]9000;
1D 5|

Highlighted.

You must register the program to execute before you can start Debug Operation Mode.

H Features of the MPE720 Engineering Tool

7-11

7-12

7.4 Debug Operation

B Debug Interface

0]
- start/MPMOD1 | r —_
i_@_‘ﬁj'ilﬁi[ersianlﬂﬂ -8 5?5 _Ediié_@@@?ﬂa_@_@@_lﬁd
LINE BLOCE VEND;

Cl |

T E
119000;

3 # END:

=]

Debug Made »3> Suspend

i

Help Next Bt[F3)

Cornpils F5) SetfDe (Fg| Move E[F7) Step Ir [F8] Step O (8] Go

Break Debug (fg Mation I

® Current Program Line

The program line that is currently being executed is displayed in blue.
If an alarm has occurred in the motion program, the line will be displayed in red.
Refer to the following manual for details on motion program alarms.

(1 MP3000 Series MP3200/MP3300 Troubleshooting Manual (Manual No.: SIEP C880725 01)

@ Toolbar Icons and Function Keys

The following table describes the icons and function keys that are used in Debug Operation Mode.

; Key r Motion | Sequence
Function Icon . Description
Operation Programs | Programs
Debug Operation ¥ F1 Starts Debug Operation Mode. O O
Mode
Normal Opera- Ends Debug Operation Mode and starts the
tion Mo dep 1 F11 continuous execution of the program in @) @)
Normal Operation Mode.
Move Start Point F6 Moves the start point for execution. O O
Breakpoint Set/ |: F7 Sets or removes a breakpoint. Displays the o o
Remove = breakpoints in the program.
Executes one block. For an MSEE or SSEE
Step In e, F4 instruction, debugging will move to the O O
first line of the subprogram.
Executes one block. For an MSEE or SSEE
instruction, the subprogram will be exe-
Step Over =] F5 cuted and debugging will continue at the O O
next block after the MSEE or SSEE
instruction.
Continuously executes a motion program in
Execute P> k8 Debug Operation Mode. © ©
Pauses the execution of a motion program
Break 0o F10 in Debug Operation Mode. © ©
End] F2 Ends execution of the motion program. O X
Update Current o . .
Position [= - Updates the current position coordinates. O X
. Sets the fork number, level number, and
Set Motion Task &(‘ - task of the selected program. © ©
Breakpoint Enables or disables breakpoints.
Enable/Disable - - g)iet }tl}llse S]ztettl)rlllgg Menu or the pop-up menu O O
Registers a register in the Quick Reference
Add Quick Watch - - Pane. O O

Use the pop-up menu for this setting.

Note: O: Possible, x: Not possible.

7.4 Debug Operation

* Debug Operation Mode ¥
In Debug Operation Mode, the program is executed one line at a time. Debugging starts from the first
line in the program.

LINE EBLOCE

The debug execution
line is in the first line.

TIM Ti00;
MOV [BE1]90000;
EMD;

Ly [SO R SN I

The line where debugging starts when the operating mode is changed to Debug Operation Mode
depends on whether the program you are editing is a motion program or a sequence program, as
described below.

* When Debug Operation Mode Is Started for a Motion Program that Is Not Currently Running
As shown in the above example, debugging starts from the first line in the program.

* When Debug Operation Mode Is Started for a Motion Program that Is Currently Running
When Debug Operation Mode is started during axis operation, debugging starts from the next
block position after the axis completes its movement.

* When Debug Operation Mode Is Started for a Sequence Program that Is Not Currently Running
Debugging cannot be performed.

* When Debug Operation Mode Is Started for a Sequence Program that Is Currently Running
As shown in the above example, debugging starts from the first line in the program.

Information

* Normal Operation Mode !
In Normal Operation Mode, the program is executed from the beginning to the end without interruption.
Debugging is canceled and program execution restarts from the currently executing line. All breakpoints
that have been set are removed.

E_@_f}l,l:_liﬂ\iersion?.ﬂﬂ '|W_E? -1}
LINE BLOCE END;
1 o INC;
2 1 MOV [A1]90000;
= 3 2
4 3 MO [B1]90000;
5 4 ENT;

Operation is resumed from the current
program execution line.

* Move Start Point
This moves the first line of execution to the selected line.

Click the Move First Line for
Execution Icon.

LINE BLOCKE _ END; LINE BLOCKE _ END;
! o : 1 oI
= 2 1 20000 2 1 MOV [A1]90000;
J 2 Eees 3 2 =
4 3 MOV [B1]90000; = 4 4 I 90000;
5 4 END; 5 4
Click the line you want This moves the first line for execution
to be executed first. to the selected line.

Note: The line MOV [A1]90000; is not executed.

H Features of the MPE720 Engineering Tool

7-13

7-14

7.4 Debug Operation

» Breakpoint Set/Remove [=
This icon sets or removes a breakpoint. You can set a maximum of up to four breakpoints.
Clicking the button for a line for which a breakpoint has been already set will delete the breakpoint.
=2

0

1 MOV [21]90000;
2 MOV [B1]90000:
E

= DD D

END:

» Step In =
This icon executes one line of the program.
If this icon is clicked at an MSEE or SSEE instruction, execution jumps to the first line of the called sub-

program.
MPMO001 MPS002
[1 0 INC;
] g ; I — LINE BLOCK
= 1 0
' 2 1
@ Click the Step In [}-.., Icon. /’

I
@ Execution moves to the first

line in the called subprogram.

» Step Over #
This icon executes one line of the program.
If this icon is clicked at an MSEE or SSEE instruction, the called subprogram is executed and then exe-
cution moves to the next line.

MPMO001 MPS002
1 o
= 2 L
3 Z :
1 0 MOV [A1]90000;
z 1 RET:

@ Click the Step Over B=| Icon.

@ The subprogram is executed.

1 o INC:
2 9, AL RATIC O
= 3 END ;
3 Execution moves to the next line after

the MSEE or SSEE instruction.

You can use the SNGD and SNGE instructions to set multiple processes as one unit for the step

Information . .
execution processing.

The instruction blocks that are SNGD;
between SNGD and SNGE
instructions form the processing
unit for execution of step in or

step over. SNGE;

Instruction blocks to be processed as one
unit for execution of step in or step over

7.4 Debug Operation

» Execute P>

This icon executes the program without stopping. Execution stops at any line with a breakpoint.

@ Set a breakpoint.

@ Click the Execute [B= Icon.

=

l.

* Break 1l

= DD D

INC
MOV [A1]90000;
MOV [E1]90000;
EMD;

1 i
z 1
3 Z
4 3

® Execution stops at the line with
the breakpoint.

This icon pauses execution of the program in Debug Operation Mode. To resume the program, click the

[=]1con.

® Execute the motion program.

@ Click the Break [][] Icon.

. End O

je I 6) [SN B N O

INC;
Dw0oooo=0;
WHILE Dw0000OO == 0O;

WEND ;
END:

IHC;

DWOOOO0=0;

WHILE DwO00DOO == 0O
MOV [A1]90000;
MOV [B1]

MOV [A1]90000;
MOV [E1]90000; =

WEND ;
END:

R sy S SV N

® Program execution stops.

This icon forces execution of the program in Debug Operation Mode to stop.

>

Ly [SO R SN I

INC;
MOV [21]30000; All of the processing after the current

IM T100; —> . AP
program execution line is not executed.

MOV [B1]90000;
EMD;

ol
» Update Current Position L=
This icon has the same function as the PLD command. When this icon is selected, the operation of the
PLD instruction is processed by the system when the Step In, Step Over, or Execute Icon is clicked.
Refer to the following section for details on the PLD instruction.
IZ Update Program Current Position (PLD) (page 6-124)

H Features of the MPE720 Engineering Tool

7-15

7-16

7.4 Debug Operation

+ Set Motion Task Gy (Subprograms Only)
Set the subprogram information to use for monitoring or debugging subprograms. The currently running
main program is displayed, and you can set which main program to call subprograms from.

i@ % B L [versonz.o0 E
[LINE BL(Wation task setting]

+ Set Call Stack = (Subprograms Only)
This icon allows you to set more detailed subprogram information.

Motion Task Settine =

® — > Main Frogram Mo,
@—> Forkhe,

O— »

Mest Mo,

[8]4 I Cancel |

® Main Program No.
This box sets the main program from which to call subprograms.

@ Fork No.
This box sets the fork of the main program from which to call subprograms.

For example, set 3 for the fork number to perform debugging and program monitoring of MPS004.
<For MPMO001>

PFORK Label1 Label2 Label3 Label4;
Label1: "Fork 1
MSEE MPS002;
JOINTO LabelX;
Label2: "Fork 2
MSEE MPS003;
JOINTO LabelX;
Label3: "Fork 3
MSEE MPS004;
JOINTO LabelX;
Label4: "Fork 4
MSEE MPS005;
JOINTO LabelX;
LabelX: PJOINT;

END;

® Nest No.
This box sets the nesting level of the call to the subprogram.
For example, set 2 for the nesting level to perform debugging and program monitoring of MPS003.

MPMO01
MWO0000=1;

MSEE MPS002 MPS002 (nesting level 1)
N

R~ MW0000=2, MPS003 (nesting level 2)

MSEE MPS003; ~x—__[Mw0000=3:

END;

RET;

RET;

7.4 Debug Operation

» Breakpoint Enable/Disable
This icon enables or disables a breakpoint.

Breakpoint enabled (red). —»I |§I

Breakpoint disabled (white). _>EO I

Debug Menu
- window

Help

¥ Debug Mode
J. Regular Mode

) ao
@ Ereak

@ Abort

1 k. Step Into
q B step Qver

4

@ Maove Execution Position

W
-~

Set/ Delete Breakpaint
E| Enable/ Disable Breakpoint

] Breakpoints...

Ctr+B

I’_;’J, Update Current Position
,D_l‘ Motion Task Setting...

+ Add Quick Watch
Any register that is displayed on the Motion Editor can be registered to the Watch Page of quick refer-
ences. You can monitor the values of registers that are registered as quick references.

1. Right-click the register to monitor and select Add to Watch from the menu.

=5 1 [T ILIC ;
2 1 MOV [A1]90000;
3 2 MOV [BE1]90000;
4 3 END;

=5 1 [T ILIC ;
2 1 MOV [A1]90000;
3 2 MOV [BE1]90000;
4 3 END;

Pop-up Menu in Motion Editor Tab Page

Insert Cormmand

db cut i+
5 copy Ctrkc
B paste Chrl+y

Delete Delete
dfy Find... Ctri+F
&% Replace... Ctrl+H
5,5 Motion Cormrmand Assist... F12

Refer to Motion Sub Program

Motion Alarm...

Maove Execution Position
Setf Delete Breakpaint

Enable/ Disable Breakpoint

FAEICTE & X

Ereakpoints. ..

Ctr+B

LINE EBLOCE

= 1 0
2 1

R B D

Copy Chrl+C
Paste Chrl+y
Delete Delete
Find... Ctr+F
Replace... Ctrl+H
Motion Cormrmand Assist... F12

Insert Cormmand

Refer to Motion Sub Program

Motion Alarm...

Maove Execution Position
Set/ Delete Breakpoint
Enable/ Disable Breakpoint
Ereakpoints. ..

Ctr+B

EI E R PT o o

Add to Watch

Chrl+w

Add to Scope...

2. The register is added to the Quick Reference Watch Tab Page.

Yariable

| Walue

| Camment

QBI0000 On

B1~Servo ON
El~Seryo O

H Features of the MPE720 Engineering Tool

7-18

7.5 Drive Control Panel

7.5

Drive Control Panel

The Drive Control Panel allows you to perform test runs of programs and monitor the operating status of
programs that are currently in execution.

To execute a motion program, the program must be registered in the MP3000 system and the program start
request must be issued using the user application.

If you want to execute a motion program before you create the user application, you can perform a test run
from the Drive Control Panel Dialog Box.

You can send commands, such as Request for Start of Program, Request for Stop of Program, and Alarm
Reset Request, from the Drive Control Panel.

[=] Motion Program Contral Signals O'_\;\égggl S\:;SSSSS S\:ggggl s\:;gg;gg
------ Bit 0 : Start request O e O 0O S
------ Bit 1 : Pause request O e O 0O S
------ Bit 2 : Stop request O e O 0O S
------ Bit 3 : Single block mode selection Lo T | O O 0
------ Bit 4 : Single block start request Lo T | O O 0
------ Bit 5 : Alarm reset request O w 0 O 0O
------ Bit & : Program continuous operation start request O [L] O O O
------ Bit & : Skip1 infarmation O e O 0O S
------ Bit 9 : Skip2 infarmation O e O 0O S
------ Bit [: System work number setting O enad O O O
------ Bit E : Interpolation override setting O enad O O O

= status Yoo | Cros | Crooo | wooso
------ Eit 0 : Running O 0 0O S
------ Eit 1 : Pausing O 0 0O S
------ Bit 2 : Stopped 0 o, S o
------ Bit 4 : Stopped under single block mode O O O 0
------ Bit & : Alarm O O o o
------ Bit 9 : Stopped at break point O O 0 O
------ Bit B : Debugging mode O O 0 O
------ Bit [: Start request signal history o, O O O
------ Bit E : Mo system work error O O 0 O
------ Bit F : Main program number limit error O O O 0O

Note: The Drive Control Panel does not support setting breakpoints or one-step execution (single-block execu-
tion) like Debug Operation Mode.

x 1. Make sure the area is safe before moving the axes with a test run operation.
@ 2. Be sure not to overwrite the motion program control registers from a sequence program or ladder
program. Doing so may disable the control from the Drive Control Panel.
3. Do not simultaneously execute axes movement instruction for one axis from more than one pro-
gram. Unexpected operation may occur.

Important

7.5 Drive Control Panel

Click the [I33] Icon in the Motion Pane to open the Drive Control Panel.

(- Mation Pragram Control Signals O'_\:Egggl S‘c:ggg? S\xggggl S\:ggggg
- - Bit 0 : Skart request O] O O o,
Motion v B Bit 1 : Pause request [s]mrmm] [e] [e] (e}
Eél Bit 2 ¢ Stop request Ol [o 0O (e
D . Bit 3 : Single block mods selection [e]m=m] [e] [e] [e]
SicPu-201] Bit 4 : Single block start request [S]m=e] [e] [e] [e]
H R - Bit’S : Alarm resst request O] O O o,
[Mation pragram
(roup Definition . Bit & : Program continuous operation start request | ©} 88 [e] [e] [
i i Bit & : Skip1 information Ol [o 0O (e
1S Main program . Bit 9 : Skip2 information [e]m=m] [e] [e] [e]
Bit D : System work number setting O e [a] [a] (e}
- Bit E : Interpolation override setting O] 0O O O
[sub program
IWOCOD SwsE22 SW33E0 SWr3438
MPSO03 =] Status HO000 Hoooo HODDD HODOD
Sequence program Bit 01 : Running 0O (e} 0O O
= - Bit 1 : Pausing O O O O
Eit 2 : Stopped (] [a] 0 e,
- Bit 4 : Stopped undsr single block made: (e O O o,
- Bit & : Alarm O lo) lo) o
Bit 9 : Stopped at break point e [o 0O (e
- Bit B : Dsbugging mode O O O O
Eit D : Start request signal history (] [a] 0 e,
- BitE : Mo system work error 0O 0O O O
- Bit F : Main program number limit error (o] (o] 0 o,

H Drive Control Panel

® Task

@ ——®|| = petion Frogram Contral Signals O%gggl 5‘::3033023 Evgfgggosl EV'_\:SSSSQ
Bit 0 ¢ Start request Olen 0O e [o
- BIE 1 : Pause request [l [o] [e] [e]
Bit 2 : Stop request Oen] [a] [a] [a]
-~ Bit3: Single block mode selection O e O (e O
Bit 4 : Single block start request [s]mm] [e] [e] [e]
- BitS: Alarm reset request O e 0O 0O 0O
- Bt 6 : Program continuous operation start request |) (8] [e] [e] [e]
Bit & : Skipl information Oen] [a] [a] [a]
- Bit 9 Skip2 information O e O (e O
Bit D : System wark number setting [s]mm] [e] [e] [e]
- BitE : Interpolation override setting O e 0O 0O 0O
O o ve | Ter | e | ww
Eit 0 ! Running O [} (] [}
- Bit 1 Pausing le. O O O
Bit 2 : Stopped Lo, 0 [} 0
- Bit4: Stopped under single black mode Lo O 0O 0O
- Bit® : Alarm O O O O
Eit 9 : Stopped at break point O [a] (] [}
- Bit B : Debugging mode le. O O O
Bit D : Skart request signal history Lo, 0 [} 0
- BItE : Mo system work errar Lo O 0O 0O
- Bit F : Main program number limit error e, [e] (o] (o]

This row displays the task numbers.

@ Main Program
This row displays the numbers of the main programs for which to perform the test run.
The program number must be set in the M-EXECUTOR Program Execution Definitions in advance.

® Control Signals

This row displays the control signal status details.

@ Status

This row displays the status of the executed control signal.

Features of the MPE720 Engineering Tool

7-20

7.6 Test Runs

8 Test Runs

You can perform a test run of the axes that are connected to the Machine Controller from the Test Run Dia-

log Box.
This allows you to turn the Servo ON or OFF and perform jogging and step operations without writing a
program.
Test Run X
a =
Bxis. "(Cir#DS Axis#01) SYR3IZ virtual axis
Servo Enable Alarm

Bl o |

| 40| @]

Enable Disable Monitar
~ Jog | Step
{ 3000
[1 000pulse,min]

The axis operates only while hold down
forward butkon or reverse bukkon,

B | 8-

Forward Reverze

9 1. Make sure the area is safe before moving the axes with a test run operation.
@ 2. Before starting operation, design the system to enable stopping axis movement whenever necessary.
Important 3. Stop the execution of all ladder and sequence programs before you start a test run.

To display the Test Run Dialog Box, double-click Test Run in the System Pane.

Test Run X

123 n | @
= [CPU-201] i | ' : ! .
Cir#03 Axis#01) SYR3Z virtual
...... %System Setting == I(- o o
------ 32 scan Time Setting
------ & Module configuration

]

Servo Enable

Enable Dizable Manitor
B 2larmn maritar
Scope ~ Jog | Step
Logging
3000
[1 O00pulse.fmin]

The axis operates only while hold down
forward butkon or reverse bukkon,

B | 8-

Forward Reverze

7.6 Test Runs

B Test Run Dialog Box

® Axis Selection

Test Run X

a =
(D — Biis.. "(Cir#DS Axis#01) SYRIZ virbual axis

Servo Enable Alarm

© — » e T

& | 4
Enable Disable Monitar

~ Jog | Step

3000
[1 O00pulse.fmin]

The axis operates only while hold down
forward butkon or reverse bukkon,

@ —> -I-'E-B\ @-

Forward Reverze

Click the Jog or Step Tab to switch
between jogging and step execution.

Test Run X

a =
(D B —— Biiz.. "(Cir#DS Axis#01) SYRIZ virbual axis

Servo Enable Alarm

0 — T
o—| 41| 49| &

Enable Disable Monitar
- JD? Step
@ > Speed reference | 3000
[1 000pulse,min]
[1w

[pulse]

@ Direction Setting | Forward

@ Forward & Reverse

o—| J&& |

Fun Stop

This button is used to select the axis for the test run.

@ Servo Enabled/Disabled and Alarm Display
These indicators display the ON/OFF status of the Servo and the current alarm status for the axis.

® Enable, Disable, and Monitor
These buttons turn the Servo ON or OFF. These operations will change the setting parameters for the axis.

Click the Monitor Button to display details on alarms for the axis.

Features of the MPE720 Engineering Tool

H

7-21

7.6 Test Runs

@ Speed Reference
Use this button to set the speed reference. These operations will change the setting parameters for the axis.

® Step Distance
This button sets the step travel distance for step execution. These operations will change the setting parame-
ters for the axis.

® Direction Setting
This button displays the Direction Setting Dialog Box to set the axis direction for step execution.
Select either the Forward or Reverse Option in the Direction Setting Dialog Box. These operations will
change the setting parameters for the axis.
You can also specify repetitive run operation in this dialog box.

I Direction Setting x|

Click set button ko write the drive direction into OB90092,

Direction LOF " Reverse

v Repetitive running

Repeat time I 1 times (1 ko 100 times)
Repeat stop kime I 0 sec(0ko5 sec)

The step starts from the selected direction and repetition runs forward and reverse,
Step is run that Forward - = reverse, when direction is forward and repeat time is one
time, The repeat stop time is stop time of Forward and reverse at run distancedguide).

Set Cancel

@ Jog
These buttons are used to perform jogging.
The axis moves in the specified direction while the Forward or Reverse Button is clicked. The axis stops
when the button is released.

Step
These buttons perform step execution.
Click the Run Button to perform one step for the specified axis. Unlike with the jog operation, the button
does not need to be continuously pressed.
When the Repetitive running check box is selected in the Direction Setting dialog box, the step opera-
tion is repeated for the specified number of times, and then the axis stops. You can also stop the axis if repet-
itive operation is in progress.

7-22

7.7 Axis Monitor and Alarm Monitor

Axis Monitor and Alarm Monitor

Use the Axis Monitor to monitor the operating status of axes connected to the Machine Controller.

The axis status (operation ready, Servo ON, alarms, warnings, distribution/positioning completed, and
motion command) and selected monitor parameters are displayed in the Axis Monitor.
Use the Alarm Monitor to monitor the alarm status of axes connected to the Machine Controller.

Axis Monitor Alarm Monitor
C\r:u\t] Mormal speed manitor ~ I Monitoring... B8 (2]

Cir03 : SVR32 AxisHO1 : SVR32 virtu Axis#0? - SVR32 virtu Axis#03 - SWR32 virtuf

2] Manially refresh Il Monitaring...

e R —
]

o I — —
2 =]

= =]

=] =

To open the Axis Monitor or Alarm Monitor, double-click Axis monitor or Alarm monitor in the Sys-
tem Pane.

=]) Normal spead monitor = I Monitorng... BB ()

B[l [cPu-201]

------ Systern Setting

------ 32 scan Time Setting

------ & Module configuration

(=) Ais configuration
ol Axis Setup Wizard

Scope T
Logging & ewsww_ ||| | —

[&Imation al!w

G Mernsaly refresh
Cirdi0d . SVCE2 7

B Monitering....

H Features of the MPE720 Engineering Tool

7-23

7.7 Axis Monitor and Alarm Monitor

B Axis Monitor Tab Page
This section describes the Axis Monitor Tab Page.
O] @ ® o

| RN

Circuit |Cir#03 @ SYR32 : Virtuz =] Normal speed monitor = 1 Monitoring...

Cirfl03 : SVR32

Parameter.
Parameter..

@ Circuit
This box is used to select the circuit for which to display the monitor parameters.

@ Monitoring Cycle Selection
The monitor cycle is selected here.

| Mormal speed monitor v| 1

[P High speed monitar
[b¥] Mormal speed maonitor

] Low speed monitor

® Stop/Start Monitor
Click this button to start or pause monitoring.

@ Alarm Monitor
Click this icon to display the Axis Alarm Monitor.

® Refresh
Click this icon to update the Axis Monitor display.

® Status Display
This area displays the operation ready, Servo ON, alarms, warnings, distribution/positioning completed, and
motion command status for the axes. The display changes based on the current status.

7-24

7.7 Axis Monitor and Alarm Monitor

@ Monitor Parameter Selection Area

You can select up to eight monitor parameters to monitor at the same time.
By default, the APOS (Machine Coordinate System Feedback Position), PERR (Position Deviation), Feed-
back Speed, and Torque/Force Reference Monitor are displayed.

Parameter...

Click the [l
itor Parameter Dialog Box.

B Monitor Parameter

Monitar

ordinate feedback position (APOS) ¢

el -~

|] Button, and select the desired monitoring parameter from the list in the Mon-

Target position (CPOS) ¢ ILxx10
Machine coordinate system

Position error (PERRY : ILxxlA
POSMAY number of turns @ ILxx1E

Feedback speed : ILxxd40
Feedback torque/ thrust : ILxxd2

Machine coordinate target position {TPOS) : ILxx0E

IMachine coordinate feedback position (A
Machine coordinate latch position (LPOS) : ILxx18

Speed reference output monitor : ILxx20

Monitor Parameters in Monitor List

Monitor Parameter Register Unit
Machine Coordinate System Target Position (TPOS) 1ILOOO0E Reference units
Machine Coordinate System Calculated Position (CPOS) | ILOOO10 Reference units
Machine Coordinate System Reference Position (MPOS) | ILOOO12 Reference units
32-bit DPOS (DPOS) ILaooni4 Reference units
Machine Coordinate System Feedback Position (APOS) ILoonie Reference units
Machine Coordinate System Latch Position (LPOS) 1Laonoig Reference units
Position Deviation (PERR) ILaooomA Reference units
Number of POSMAX Turns ILOOO1E [rev]
Speed Reference Output Monitor 1La0omn20 [pulse/s]
Feedback Speed 1LO0O04o0 Speed Unit Selection
Torque/Force Reference Monitor ILOOO42 | Torque Unit Selection

Inf i
oMo 1W08000, for example).

Monitor Parameter Display

This area displays the status of the specified monitor parameters.

If you want to set a monitor parameter that is not in this list, specify the register directly

H Features of the MPE720 Engineering Tool

7-25

7-26

7.7 Axis Monitor and Alarm Monitor

B Alarm Monitor Tab Page
This section describes the interface of the Alarm Monitor Tag Page.

O] @

|

[£] Manually refresh [l Monitoring. ..

® Manually Refresh
Click this button to manually update the alarm and warning information.

@ Stop/Start Monitor
Click this button to start or pause monitoring.

® Alarm/Warning Display
This area displays the alarm and warning status.

Display Axis Status

RPN (Blue) No alarms or warnings have occurred.

Cicourred (Red) An alarm has occurred.

Occurred (Yellow) A warning has occurred.

7.8 Cross References

Cross References

This section describes cross-referencing.

Use cross-referencing to search for variables and registers that are used in programs.

When a search is performed, the program number and block number of any program that uses the register

that was searched for are displayed in the Cross Reference Pane.

Cross Reference 1 [MW30000-* : All program [/ Search Result 17]

Variable (MR Search ‘ Setting. ..

= Same Regisker

Execution Instruckion

Execution Step | Writs/Read

Commenk

MW30000 H i High-speed Main Program LOAD : Integer Entry 17 Read
MWE0000 H : High-speed Main Program STORE : Store 19 Write
30000 H : High-speed Main Program LOAD : Integer Entry 20 Read
MW30000 H : High-speed Main Pragram STORE : Store 24 Wirike
Mg 30000 H : High-speed Main Program LOAD @ Integer Entry 26 Read
430000 H i High-speed Main Program LOAD : Integer Entry 29 Read
Memary
MB300000 HOL : common settings for axes MOC : NO Conkack [Read Servo ON PB
ME300000 HO1 : commaon settings for axes MO : NO Contact 9 Read Servo ON PB
ME300001 HO1 : commaon setkings for axes MNOC ¢ NO Contact 12 Read Alarm reset PB
ME300001 HOL : common settings for axes NOC & NO Contact 14 Read Alarm reset PB
ME300001 HO4 : main program for positioning MNOC @ WO Contack 9 Read Alarm reset PE
ME300005 HD6.02 : phase control 2 {electronic... COIL @ Cail 36 Wrike Carn operation cammand
ME300008 HO6.02 : phase control 2 (electronic. .. MCC : MC Contact 65 Read Cam operation command
ME300008 HOE.02 : phase control 2 (eleckranic... NOC @ NO Contack 109 Read Zam opetation command
ME300008 HD6.02 : phase control 2 {electronic,,, MCC: MC Contact 114 Read iZamn operation cammand e
ME300003 HOE.02 : phase control 2 {electronic... NOC : MO Conkack 124 Read Cam operation command LI
gister List 1 lr.—_EOutput lWatch 1 l"EaTranstr lxcruss Reference 1 [MW20000-* ; Al program [Search Result 17] J
Select Cross Reference from the Debug Menu to open the Cross Reference Pane.
i Comnpile window Help
) o il ¥ Debug Mode o
Regular Mode -
Go
M Ereak
Zrogram Compi indaw Hel anste
T ? Lo Sal K g () abort
Ao i REARE @ MEih o ke W aD a] t
fooo Mt L£Fo D8 <cs=2>BEED: X T2x| % stepnto |
il ™ Step Qver
| | Fidl move Execution Position L
Start | Tuning Panel,” MPMOO4 [o] Set/ Delete Breakpaint 2
iT % tH B ersonz.on e YA [o¥] Enable/ Disable Breakpoint
LINE BLOCK Breakpoints... Ctr+B
1 iOVAR: 1
s H . e
g TODO Add the wvariable here Lz. Update Current Position
4 END_VAR; - ,D_l‘ Motion Task Setting...
g < TODO : Add the program here.
6 ”tj Refer to Motion Sub Program
— 7 END
Q9 mMotion Alarm...
—
<Ergss Reference Ctrl+RP
Q5 Check for Multiple Coils
4 .
|=| Force Coil List b
@ B Display Register Map [
|l add to watch Chrl+id
yram [Search
Add to Scope...
earch I | SEtorgT

Features of the MPE720 Engineering Tool

7-27

7.8 Cross References

B Cross Reference Window
(OO ® © ® ® @) ®

Cross Ref--ence 1 [MW3000C-* : Allp ogram / S arch Result 17]
A

Search | Setting. ..

Variable

H ! High-speed Main Program LOAD : Integer Entry
[W30000 H i High-speed Main Program STORE @ Stare 19 Wrike
— MW30000 H : High-speed Main Program LOAD : Tnteger Entry 20 Read
Iw30000 H : High-speed Main Program STORE @ Stare 24 ke
MWE0000 H : High-speed Main Program LOAD : Tnteger Entry 26 Read
Brogs QansIokener Eo] Eea

MB300000 + comman settings for axes MO MO Contact Servo OM PE
ME300000 HO1 : common settings For axes MOC ;MO Contact 9 Read Servo ON PE -—

ME300001 HO1 : common settings For axes MOC MO Contact 12 Read Alarm reset PB

@ ME300001 HO1 1 common settings For axes MOC T MO Contact 14 Read Alarm reset PE
MB300001 HO4 : main program For positioning MOC - MO Contact 9 Read Alarrn reset PB /
ME30000; HOE.02 : phase control 2 (electronic ., COTL: Coil jeis) Airite, Cam operation command ;I

® Variable Box
Enter the variable or register that you want to search for here.

@ Search Button
Click this button to perform the cross-reference search.

® Settings Button
Click this button to set the cross-reference conditions.
When you click the button, the Cross Reference Setting Dialog Box is displayed.
x

Yariable
Search Program

I* +all program j
¥ | The project file is searchied,

¥ The local register is searched in the opened program.
Search Address

¥ The same register is searched,

¥ The same memory address is searched.

Option
¥ The result of the search is displayed in the next Cross Reference 2 windaw,

Setting I Cancel |

ltem Description

Variable Enter the variable or register that you want to search for.

Search Program | Specify the program to search.

Search Address | Specify whether to search for the same register or the same address.

Option Specify how to display the next cross-reference search results.

@ Register
The variable or register address that was searched for is displayed here.

® Program
The number of the program that uses the variable or register address that was searched for is displayed here.

® Execution Instruction
The instruction that uses the variable or register address that was searched for is displayed here.

@ Execution Step
The number of the block that uses the variable or register address that was searched for is displayed here.

7-28

7.8 Cross References

Write/Read
This column designates whether the variable or register address that was searched for is written to or read
from. If the variable or register address is written to, the text is displayed in red. If the variable or register
address is read from, the text is displayed in blue.

® Comment
The comment for the variable or register address that was searched for is displayed here.

® Same Register

This area displays all registers that match the variable name or register type, data type, and address of the
variable or register address that was searched for.

® Same Memory Address

This area displays all registers that have the same memory address as the variable or register address that was
searched for.

For example, if you searched for MW00000, all locations that use ML00000 would be displayed here.

H Features of the MPE720 Engineering Tool

7-29

Specifications
Appendix A

This appendix describes the Units and Modules that support
motion programming and the specifications for motion programs.

G Avpiatle Unis and Modtles ... A2
EEA Vectine Contoler Specfatons ... A3

A.1 Applicable Units and Modules

Applicable Units and Modules

The following Units and Modules support motion programs.
The axes that are connected to any of the Units or Modules that are listed below can be controlled by a
motion program.

+ MP3000/CPU-200 SVC32

+ MP3000/CPU-200 SVR32

+ MP3000/CPU-300 SVC

+ MP3000/CPU-3000 SVR

* MP2000/SVA-01

* MP2000/SVB-01

* MP2000/SVC-01

* MP2000/PO-01

A.2 Machine Controller Specifications

Machine Controller Specifications

This section provides the specifications for programs for the Machine Controller.

Motion Programs

Specification CPU-200 and CPU-3000 Remarks
You can create a com-
Number of bined total of 512 motion
512 max.
Programs programs and sequence
programs.
Number of Groups | 16 groups -

32 tasks max. (This is the number of simultaneously exe-

Number of Tasks . -
cutable motion programs.)
8 parallel forks max. (select from these 4 modes)
Number of * 4 main program forks, 2 subprogram forks .
. Change the mode using
Parallel Forks per | * 8 main program forks the MPET20
Task * 2 main program forks, 4 subprogram forks '
* 8 subprogram forks
Execution * Use the MSEE instruction from a ladder program.
Registration * Use the M-EXECUTOR. -
Program execution starts on the rising edge of bit 0
Starting Method (Request for Start of Program Operation) in the control -
signals.
Override for
Positioning Can be specified from 0.01% to 327.67%. -
Speeds
The mode is changed
Operating Modes | Absolute Mode and Incremental Mode with the ABS and INC
instructions.

Reference Units

* SVC, SVC 32, SVC-01, SVB-01, SVR, and SVR 32
pulses, mm, deg, inches, or pm

* SVA-01/PO-01
pulse, mm, deg, inch

Minimum Refer-
ence Unit

* pulse
1
* mm, deg, inch, um
1,0.1,0.01, 0.001, 0.0001, 0.00001

Reference Range

-2,147,483,648 to 2,147,483,647 (signed, 32-bit data)

Number of
Simultaneously
Controlled Axes
per Task

* Positioning, Linear Interpolation, Zero Point Return,
Skip Function, and Set-time Positioning
32 axes max.
* Circular Interpolation
2 axes
* Helical Interpolation
3 axes
* External Positioning
1 axis

Continued on next page.

Specifications

e
=
=3

=

A-4

A.2 Machine Controller Specifications

Continued from previous page.

Specification CPU-200 and CPU-300 Remarks
. S You can create a com-
Number of ?12 max. (There are threc? settings for the executilon tim- bined total of 512 motion
ing: startup processing, high-speed scan processing, or
Programs . programs and sequence
low-speed scan processing.)
programs.
2 | Number of Tasks 32 tasks max. (This is the number of simultaneously exe- |
g cutable sequence programs.)
éﬁ Number of
% | Parallel Forks per | The PFORK instruction cannot be used. -
2 | Task
Q
& | Execution
3 Registration Use the M-EXECUTOR. -
The system starts
Starting Method Automatically started by the system. sequence programs that
are registered in the
M-EXECUTOR.
. These registers are
M Registers 1,048,576 words backed up with a battery.
. These registers are
S Registers 65,535 words backed up with a battery.
These registers are
2] G Registers 2,097,152 words shared by all programs.
ko & U They are not backed up
%n with a battery.
% [Reisters 65,536 words + Setting parameters + Registers for CPU B
s J interface
2 . 65,536 words + Monitor parameters + Registers for CPU
Q > _
g O Registers interface
C Registers 16,384 words -
These are internal regis-
ters that are unique
D Registers Can be specified from 0 to 16,384 words. within each DWG. They

can be referenced only
within the local drawing.

Sample Programs

Appendix B

This appendix provides programming examples for motion pro-
grams and sequence programs.

(G Voton Program Control Program ... B2
[Pl ProcessingB3
[EEN Performing Speed Conrlwih a Mation Program .84
[Simvle Synhvonized Operation witha Viua Ass .85
5 Sequence Progiams ... BT

B.1 Motion Program Control Program

Motion Program Control Program

This sample program controls the execution of a motion program.

An example ladder program is given below.

. [BOOOOO Power to the Servomotor is turned OBBODOO
| I, ON when 1B0000O turns ON. O
Se Vo O oom SeMvo on
mand
[BOOOO1 WMBOOOO01 OBOOOO10
I £ O
e start Cni:omman - start
. 1800002 The motion program is started when 0E00007T
o IBO0001 turns ON. N
command hlod
[ROODOS DRODOD1Z
E. |} O
i abort Cci:omrrrz-m abort
IB[I]U[I][M DBU%U]E)
g alam clear alam cear
command
DBOOOOO0 MBOC000T DBOO004Z
| T O
| i | in run --- run finished
ETS —_ . |
BEE. S 00m0e =t rue; |
a7, O
o | ENDLIF
B aMProgran Mo.[[AData
= 4[EE 00001 | DADOOOO
| c 5
17419

{ =] }
\‘ The MSEE instruction is used to register the
motion program for execution.

B.2 Parallel Processing

Parallel Processing

In this example, the PFORK instruction is used in a motion program to perform parallel execution.

ABS; "Absolute Mode Parallel processing
PFORK 001 002 003 004; Is started.

001:FMX T10000K; "Set maximum interpolation speed.
PLN [A1] [B1]; "Set circular interpolation plane. Fork 1: Performs circular
MCC [A1] 0 [B1]0 U100000 VO F10000K; "Circular — interpolation.
JOINTO 005: interpolation

002:FMX T10000K; "Set maximum interpolation speed. | Fork 2: Performs linear
MVS [C1] 131072 [D1] 20000 F10000K; "Linear . interpolation.
JOINTO 005: interpolation

003:10W 1L8016>130000; "Monitor the position of axis C1. Fork 3: Monitors the
OB00000=1; "When positioning is 2 position of axis C1.
JOINTO 005: completed, OB00000 turns ON.

004:10W 1L.8096>12000; "Monitor the position of axis D1. -
OB00001=1; "When positioning is Fork 4: Monitors the

position of axis D1.

JOINTO 005: completed, OB00001 turns ON.

005:PJOINT;
END;

The operation of the above sample program is shown in the following figure.

001 002 003 004
C!rcular interpolation Two-axis linear interpola- Monitoring the Monitoring the
with axes A1 and B1 tion with axes C1 and D1 position of axis C1 position of axis D1
005

>
% Sample Programs

B.3 Performing Speed Control with a Motion Program

Performing Speed Control with a Motion Program

In this example, a motion program is used to perform speed control.
For this example, bits 0 to 3 (Speed Unit Selection) in the OWOOMOO03 setting parameter are set to 0.01%
(percentage of rated speed).

OW8008=23;"Speed control mode

OL8010=6000;"Change the speed to 60% of the rated speed.
TIM T300;"Wait 3 seconds.

OL8010=10000;"Change the speed to the rated speed.

TIM T400;"Wait 4 seconds.

OL8010=5000;"Change the speed to 50% of the rated speed.
TIM T600;"Wait 6 seconds.

OWwW8008=0;"Stop speed control mode.

END;

The operation of the above sample program is shown in the following figure.

Speed (%)
A

Rated speed
100 [f— oo

U — -
| |
| |
| |
|

Setting parameter

OLOOO10 (Speed Reference Setting)
A |

10,000 [=== re— oo

> Time (s)

T e B

»Time (s)

B.4 Simple Synchronized Operation with a Virtual Axis

Simple Synchronized Operation with a Virtual Axis

This sample program moves an SVR (virtual axis) and distributes the feedback position of the SVR to two
physical axes to perform synchronized operation with two axes.
\ _

SVB
Axis 1

SVR (virtual axis)

> Axis 2

One-axis interpolation operation is
executed with a motion program. >

A ladder program is used to copy the
feedback position of the SVR to the
position references of axes 1 and 2 to
perform synchronized operation.

B Motion Program

FMX T10000K;"Set maximum interpolation speed K = 1,000.

INC; "Incremental Mode

IAC T500;"Interpolation acceleration time = 500 ms

IDC T500;"Interpolation deceleration time = 500 ms

MVS [SVR] 1000K F10000K;"Interpolation for travel distance of 1,000,000
END;

Sample Programs

g
=
=

o

B-5

B.4 Simple Synchronized Operation with a Virtual Axis

M Ladder Program

for wirtual motion module

sanp e

“ MH]I?;DIUUO IE%%U(I]UU 0B30000
L sarvé Ion co axisIMI resa A1 gervo on
i and ¥
IE%%U(I]UE
a1 Slys{em b
usy
1B30300 0B&0500
N O
axiz Bl rea Bl =zervo on
dy
IE%%U?U?
B1 Slysllem b
usy
1B30000 0BA0000
11 e
SYR ready SYR servo o
n
[E&0001 [B&0801 DEOOO040
.. N N O
58 ready - A1LEBT in ru
n
1B90001 DEOOO0D41
] O
SYR in run A1L.BT,5YR |
norun
DEOO0040
q — —— 10M _
PO e e | ORB008=4; /7 b1 axis intemolate
n OW8088=4; /7Bl axis interpolate
DED00040
“ I/} EXPRE T ON —
T anet e oru | QWRODS=D; /A axis NP
n OslE=0; /7 Bl axis NP
MBI 30001 DBODDO44 DBOOOO4T DBa0oa10
] - N O
noving axes Soo A1, B1.3YR 0 motion star
n run t
B+ [W]Prozram M [A]Data
- WSEE 00001 | DADODOO
“ EXPRE 10M J—
SO T0ie01CE119018; /2 Al axis pesition command = SWR feecback position
OLa0ac=109016; // Bl axis position command = SVR feechads position
% (. END)

3 This programming example does not include recovery processing for axis errors. If you decide to
incorporate this programming example into your application, be sure to add the necessary
Important Programming to ensure safe operation in the event of an axis error.

B.5 Sequence Programs

B.5

Sequence Programs

In this example, a sequence program is used to execute jogging and step operations for a single-axis Ser-
vomotor.

B Main Sequence Program (SPMO001)

"SPMO001: Main program"

SSEE SPS002; "Settings common to all axes
SSEE SPS003; "Jogging and step operation processing
END;

B Sequence Subprogram (SPS002)

"SPS002: Settings common to all axes

"Motion Command 0 Detection

IF IW8008 == 0;
MB300010 = 1;
ELSE;
MB300010 = 0;
IEND; Turn ON the Servo when

MB300000 turns ON.

"Turn ON the Servo. /

OB80000 = MB300000 & (IB80000 | IB80002); "Servo ON

"Resetting Alarms

OB8000F = MB300001; "Reset alarm.

"Speed Unit and Acceleration/Deceleration Rate Unit Selection

"Bits 0 to 3: Speed Unit Selection (0: reference units/s, 1: reference units/min, 2: percentage of maximum speed)
"Bits 4 to 7: Acceleration/Deceleration Rate Unit Selection (0: reference units/s*2, 1: ms)

DWO00010 = OW8003 & FFOOH; "Function Settings 1, Work
OW8003 = DW00010 | 0011H; "Function Settings 1

"Set linear acceleration/deceleration rate.

IF MB300020 = = 1;
0OL8036 = 100; "Linear Acceleration Rate/Acceleration Time Constant
0OL8038 = 100; "Linear Deceleration Rate/Deceleration Time Constant
IEND;
RET;

Sample Programs

g
=
=

o

B-7

B.5 Sequence Programs

B Sequence Subprogram (SPS003)
"SPS003: Jogging and Step Operation Processing"

"Jogging
IF IB80001 & ((DB00001Q & 'DB000011) | (\DB000010 & DB000011)) = = 1;
DB000000 = 1;
ELSE;

DB000000 = 0; Start jogging with positive rotation Start jogging with negative rotation
IEND; when DB000010 turns ON. when DB000011 turns ON.
DB000001 = PON(DB000000 DB000050) & MB300010; "Start jogging.

DB000002 = NON(DB000000 DB000051); "Stop jogging.
IF DB000001 = = 1;

0OL8010 = 1000;

OW8008 =7; "FEED motion command
IEND;

IF DB000002 = = 1;

Ows8008 = 0; "NOP motion command

IEND;

"Step operation

IF IB80001 & ((DB000012 & 'DB000013) | (IDB000012 & DB0O00013)) = = 1;
DB000008 = 1; \

ELSE;

DB000008 = 0; Start step operation with positive Start step operation with negative
IEND; rotation when DB000012 turns ON. rotation when DB000013 turns ON.
DB000009 = PON(DB000008 DB000058) & MB300010; "Start step operation.

DBO00000A = NON(DB000008 DB000059); "Stop step operation.
IF DB0O00009 = = 1;

OL8010 = 1000; "Set the STEP speed.

OL8044 = 1000; "Set STEP Travel Distance (1,000 pulses).

OW8008 = 8; "STEP motion command
IEND;

IF DBOOOOOA == 1;

OWwW8008 = 0; "NOP motion command

IEND;

"Negative Rotation Selection

0B80092 = (DB000000 & DBO00011) | (DBO00008 & DB0O00013); "Select negative rotation.

RET;

Differences between
MP2000-series and
MP3000-series Machine
Controllers

The differences between the MP2000-series and the MP3000-
series Machine Controllers in terms of motion programs are listed
in the following table.

Appendix C

C-2

B Motion Programs

ltem

MP2000-series
Machine Controller

MP3000-series
Machine Controller

Remarks

This number includes both motion

Number of Programs 256 512
programs and sequence programs.
Number of Groups 8 16 -
Number of Tasks 16 3 This is the number of simulta-
neously executable programs.
The timing of transmitting refer-
ences to slave stations via
Maximum Number of MECHATROLINK is different
Controlled Axes per 16 axes 32 axes between the SVC/SVC32 and the

Group

SVB-01/SVC-01. Therefore,
interpolation operations cannot be
performed between the SVC/
SVC32 and the SVB-01/SVC-01.

4 main program forks,

Select from the follow-

ing four options:

* 4 main program
forks, 2 subprogram
forks

5 Parallel Execution of Pro-

Number of forks 2 subprogram forks * 8 main program forks | grams (page 1-7)
* 2 main program
forks, 4 subprogram
forks
* 8 subprogram forks
G Registers Not supported. Supported. -
This data type cannot be used for
Quadruple-length Inte- Not supported. Supported. indirect deZil?gnation in motion lan-
gers guage instruction.
This data type cannot be used for
bDec:slble-length Real Num- Not supported. Supported. indirec.t deZiIfggation in motion lan-
guage 1struction.
Arrays Not supported. Supported. -

B Debug Operation Mode

ltem

MP2000-series
Machine Controller

MP3000-series
Machine Controller

Remarks

Number of Breakpoints

4

8

B Motion Program Operation When an Alarm Occurs for an Axis Specified in an Axis Move-
ment Instruction

The MP3000-series Machine Controllers are different from the MP2000-series Machine Controllers in
that they check for errors in all axes specified in axis movement instructions. If an alarm occurs, all of the
specified axes are stopped and NOP motion commands are issued. Therefore, with the MP3000-series
Machine Controllers, interlocks do not have to be created in the application for when alarms occur in spec-
ified axes, which improves safety in comparison the the MP2000-series Machine Controllers.

information. The following table describes the motion program operation when an alarm occurs for an
axis specified in an axis movement instruction. For the versions in the following table, you
can select an MP2000-compatible mode for the motion program operation to use an
MP3000-series Machine Controller in an application to replace an MP2000-series Machine
Controllers without changing the interlocks.

Machine Controller or MPE720 Applicable Versions
MP3000-series Machine Controller Version 1.08 or later
MPE720 Version 7 Version 7.21 or later

The following table describes the motion program operation when an alarm occurs for an axis specified in
an axis movement instruction.

MP2000-series Machine Controller MP3000-series Machine Controller
Axis Movement AXxis Axes . Axis Axes .
FelETen with | without Motion Pro.gram Opera- with | without Motion Prggram
tion Operation
Alarm | Alarms Alarm | Alarms

Moveto | References continue to

PEElgEiE (O] target | axes without alarms and

or.Se_t-tlme Posi- Stop. posi- | they move to the target Stop. Stop.
tioning (MVT) . .
tions. positions.
References continue until
Bl Fesifore bit 8 (Command Execution
ing (EXM) Stop. - Completed) in IWOODOO09 | Stop. -
9 (Motion Command Status)
turns ON.

A motion program
alarm occurs and
references to all

References continue until
Move to bit 5 (Zero Point Return/
Zero Point Return Setting Completed) in

(ZRN) Stop. zero | wOOoocC (Position Stop. Stop. | specified axes are
point. stopped (alarm
Management Status) turns .
. code: 8F hex (axis
ON for all specified axes.
. alarm)).
Linear Interpola- A motion program alarm
tion (MVS),* Circu- (84 hex: Duplicated
lar Interpolation/ Stop. | Motion Command) occurs
Helical Interpola- and references to all speci-
tion (MCW and Stop. fied axes are stopped. Stop. Stop.
MCC),* or Linear Moveto | References continue to
Interpolation with target | axes without alarms and
Skip Function posi- | they move to the target
(SKP)* tions. | positions.

* The operation is different between the MP2000-series Machine Controllers and MP3000-series Machine Controllers
when a software limit alarm occurs for an axis specified in an interpolation instruction.
Refer to the following section for details.
Iz W Operation When a Software Limit Alarm Occurs for an Axis Specified in an Interpolation Instruction

Note: The motion program execution block does not change to the next block for the MP2000-series External Positioning

(EXM) and Zero-point Return (ZRN) instructions. Therefore, you must execute a program reset or alarm reset
request after a program stop request is executed.

Differences between MP2000-series and MP3000-series Machine Controllers

T
=
=

D

C-3

C-4

B Operation When a Software Limit Alarm Occurs for an Axis Specified in an Interpolation
Instruction

A software limit alarm occurs before the software limit so that the specified software limit is not exceeded.

For an MP3000-series Machine Controller, the axes stop when the axis alarm occurs, so all of the axes
specified for the interpolation instructions stop when the axis with the alarm is before the software limit.

With an MP2000-series Machine Controller, the axis with the software limit alarm moves to the software
limit and then stops. The axes without software limit alarms continue moving to their target positions.

Item MP2000-series Machine Controller MP3000-series Machine Controller
Axis with the Soft- . . The axis stops when the alarm occurs
. The axis moves to the software limit. . .
ware Limit Alarm (it stops before the software limit).
A ithout ft- . .-
xes Wl. 0.u aSo The axes move to their target positions. The axes stop when the alarm occurs.
ware Limit Alarm
Motion Program .
Alarm Cogde None 8F hex (axis alarm)
Software limit alarm occurs. Software limit

Travel direction

)

@

Target position
Current position

\I Axis stopping position for an MP2000
motion program

Axis stopping position for an MP3000
motion program (All specified axes stop.)

B Procedure to Enable or Disable Axis Alarm Checks
This section describes how to enable and disable axis alarm checks.

The setting for axis alarm checks is performed on the Environment Setting Dialog Box of MPE720 ver-
sion 7.

Axis alarm checks are enabled by default.
1. Select File — Environment Setting from the menu bar.

Edit View Online Compile [

[] Mew Project... Ctrl+M
= Open Project... Cerl+0
Close Project
Save Project Ctrl+5

Save as a New Project...
Convert Project...

Update project
Close Ctrl+F4
% Environment Setting...

Import...
Export...

Print Preview
Print... Ctrl+P
Page Setup...

1 MP3300.YMW?

2 Cr\Users\...\KP1204Z#M1.YMW
3 Ver6_T1.YMW

4 ssa. YMWY

5 301-0117.¥YMW7

Exit

Differences between MP2000-series and MP3000-series Machine Controllers

—d
=
=]

D

2. Select the desired setting for Motion Program Operation Mode under Motion in the Environ-
ment Setting Dialog Box.

"
Envircnment Setting u
7 System = Compile Option
B3 Security Save to flash after complete cornpil... Disable
B3 Setup =1 Shortcut Key
B Ladder Allocation of function keys [Default Setting]
E= Motion [l Motion program operational mode
3 General Axis alarm check Valid (MP3000 series standard) D
Tab Invalid (Compatibility with MP2000 series
| Valid (MP3000 series standard)
Font
771 Variable
1 Monitor
7 Transfer
7 Print
P Message Axis alarm check
i5 alarm check is carried out while axis move command is running.
I Axis alarm (Ibox04) check i ied out while axi di i
-"Valid (MP3000 series standard)” : When axis alarm occurred (Tlo04 1= 0}, all
axes of axis move command are stopped and the motion program alarm is
reported.
-"Invalid {Cormpatibility with MP2000 series)” : When axis alarm occurred (ILo04 1=
0}, the command is continued in the axes that alarm has not occurred. When you
N want to perform behavior like the MP2000 series, please choose it.
ok || cancel Apply

B Timing at Which the Axis Alarm Check Setting Becomes Valid

The axis alarm setting becomes valid as soon as the OK Button is clicked in the Environment Setting Dia-
log Box.

Precautions

Appendix

This appendix provides precautions for motion programs and
sequence programs.

BN GeneralPrecautonsD2

Saving Data to Flash Memory when Changing Applications .D-2
Debugging a System in Operation D-2

[Precautions on Moton ParametersD3

Performing Axis Movement Instructions on

the Same Axis in Motion Programs D-3
Using a Subscript to Reference a Motion Register from an

IORegister D-3
Referencing the Motion Register of a Different Circuit D-4

OoLOOO1C (Position Reference Setting) Setting Parameter .D-5
Axis Operation for Software Limit Alarms D-5

D-2

D.1 General Precautions

Saving Data to Flash Memory when Changing Applications

D.1

General Precautions

This section provides general precautions for motion programs and sequence programs.

Saving Data to Flash Memory when Changing Applications

Always save the data to flash memory after you change motion programs, sequence programs, or other
application data. If you do not, any changes that were made to the applications will be lost when the power
supply to the Machine Controller is turned OFF.

Debugging a System in Operation

Never perform debugging on a system that is in operation. Debugging will cause changes in program
operation, such as in instruction execution timing, resulting in malfunction or failure of the system.
For debugging, use a special system for debugging.

D.2 Precautions on Motion Parameters

Performing Axis Movement Instructions on the Same Axis in Motion Programs

Precautions on Motion Parameters

This section describes general precautions to consider when using motion parameters in a motion pro-
gram.

Performing Axis Movement Instructions on the Same Axis in
Motion Programs

If a movement instruction is executed by a motion program for an axis that is already in motion, the axis
operation depends on the setting of bit 5 (Position Reference Type) in the OWOILI09 setting parameter.

The axis operation for each position reference type setting is described below.

Incremental Addition Method

This method adds the reference positions of both motion programs to perform positioning. The final posi-
tion will be different from both original reference positions.

Absolute Value Set Method

This method performs positioning to the last-issued target position.

Using a Subscript to Reference a Motion Register from an 1/0O
Register

I/0 registers and motion registers are not assigned to consecutive memory locations.
When using a subscript, make sure that you access registers within the range of I/O registers or within the
range of motion registers.

IW00000/0W00000
D Accessible.
I/O registers
IW07FFF/OWO7FFF
Not accessible.
Example:
|=1;
1W08000/0W08000 OWO7FFFi = 0;
Motion registers »
D Accessible. _S
=]
@®
]
IWOFFFF/OWOFFFF a

D-3

D.2 Precautions on Motion Parameters

Referencing the Motion Register of a Different Circuit

Referencing the Motion Register of a Different Circuit

Motion registers for different circuits are not assigned to continuous memory location, just as is true for I/
O registers and motion registers.
When using a subscript, access a register within the range of motion registers that is assigned to the circuit.
If the circuit numbers are the same, it is even possible to access registers for different axes.
The following table lists the motion registers.

Circuit Axis 1 Axis 2 Axis 16
Number
1 OW08000 to OW0807F | OWO08080 to OWO080FF OWO08780 to OWO87FF
3 OW09000 to OW0907F | OW09080 to OWO090FF OW09780 to OW097FF
5 OWO0A000 to OWOAO7F | OW0A080 to OWOAOFF OWO0A780 to OWOA7FF
7 OWO0B000 to OWOBO7F | OW0B080 to OWOBOFF OWO0B780 to OWOB7FF
9 OWO0C000 to OWOCO7F | OW0C080 to OWOCOFF OWO0C780 to OWOCT7FF
11 OWO0DO000 to OWODO7F | OW0DO080 to OWODOFF OWO0D780 to OWOD7FF
13 OWOE000 to OWOEO7F | OWOE080 to OWOEOFF OWOE780 to OWOE7FF
15 OWOF000 to OWOFO7F | OWO0F080 to OWOFOFF OWOF780 to OWOF7FF
Example Accessing the Motion Register of a Different Circuit
Axis 1 (IW08000 to IW0807F, OW08000 to OWO0807F) Accessible
| Axis 2 (IW08080 to IW0BOFF, OW08080 to OWOSOFF) D '
”””””””””””””””””””””””””””””””””””” Example:
Circuit 1 =1
OWO0807Fi = 0;
|Axis 16 (IW08780 to IW087FF, OW08780 to OW0BT7FF)
Not accessible.
Example:
|Axis 1 (IWD9000 to IW0907F, OW09000 fo OWO07F) I=1;
Axis 2 (IW09080 to IWO90FF, OW09080 to OW090FF) OWO087FFi = 0;

Circuit 3

Axis 16 (IW09780 to IW097FF, OW09780 to OW097FF)

D.2 Precautions on Motion Parameters

OoLOO0O1C (Position Reference Setting) Setting Parameter

OLOOO1C (Position Reference Setting) Setting Parameter

If the OLOODOIC (Position Reference Setting) setting parameter is changed in a program (e.g., a ladder
program) while axis motion is in progress for another motion program, the axes will move with the new
value of the parameter. This will result in a difference between the actual axis position and the position
specified in the motion program.

If the travel distance of axis A1 that is specified in OLOOO1C (Position Reference Setting) is
changed from 1,000 to 1,500 from a ladder program while execution of @ in the following motion
program is in progress, the axis will move to 1,500. This results in a difference between the actual
axis position and the reference position (1,000) that is specified in the motion program. Line @ in
the motion program is then executed. As a result, the actual final position of axis Al will be at a
different position from that specified in the motion program.

Example

INC;
ZRN [A1]0;

MOV [A1]1000; - - @
MOV [A1]1000; - - - @

END;

Position specified by O S 149 @ »0

the motion program :

Actual position of O 0 : >O—®‘—>Q

the axis i Traveldistance :) N
: : i Discrepancyin
- changed from the < e .
i ladderprogram ! f final position '

0 1,000 1,500 2,000 2,500

Axis Operation for Software Limit Alarms

When a software limit alarm (ILOOOOO04 bits 3 and 4) occurs during execution of an interpolation instruc-
tion, the axis may stop before the software limit depending on the speed setting. The stopping position
depends on the speed setting.

Precautions

D-5

Index

Index

Symbols
e 6-175
--- 6-178
A . 6-186
D il 6-187
e e 6-180
2 6-181
& m w ol lllll. 6-185
[(S N S T R R TP 4-4
il 6-174
b m e 6-176
S . 6-190
CE ol 6-190
> e e e 6-190
S e 6-173
. 6-190
> il 6-190
> e e 6-190

-- 6-184

Numerics
1-ms OFF-Delay Timer (TOFIMS) - - ----------nmoooo- 6-223
1-ms ON-Delay Timer (TONIMS)---------ncoommmooooo 6-221
A

ABS - - 6-7
Absolute Mode-----------------oe 6-7
Absolute Mode (ABS) -------ccmmmmi e 6-7
ACC - - s mmi i 6-15
acceleration times and deceleration times - - - - - - - = - = - - - - - - - 6-34
Acceleration/Deceleration Mode with

Continuous Process Control Signal Monitoring------------- 6-69
Acceleration/Deceleration Mode with Interpolation

Overlapping - ---------c-cmmm oo 6-73
acceleration/deceleration type - ------------------- 6-86, 6-92
ACCMODE - - - - - - - e e 6-67
ACS - ol 6-208
active program nUMbeErs - ---------------------------- 1-34
Add (F) == - mm 6-174
Add Quick Watch----------mmommme e 7-17
Alarm Monitor - = = = = = == = - oo 7-24
Alarm Reset Request - ---------commmmmoo 1-26
Allocation Register----------c--ommooooaa oo 7-10
AND (&) === - - mmmmme e 6-185
Arc Cosine (ACS)------mmmmmm e 6-208
Arc Sine (ASIN)----cccmm i 6-207
Arc Tangent (ATN)--------cmmmmmmi e 6-209
I e (e S R 4-20
ASCIL - - s e m e 6-200
ASCII Conversion 1 (ASCII)----------cocommmmaaaaon 6-200

Index-1

ASCIIteXt - === === m s s e o mm oo 6-200
ASN - - o 6-207
assigned interlock contact - - - = = = - - - - oo oo o oo 1-32
assigned registers - - - - ----------------oooooooo- 1-32
ATN - o oo e e 6-209
axis control instructions -------------------o----- - 6-119
AXIS MONILOTr = = = = = = = s oo 1-13
axis movement insStructions - - - - - - === - - - - oo oo oo 6-81
AXIS NUMDbEL - = == === oo oo oo oo 5-10
axis setting instructions------------------------ - 6-4
B
basic functions - - - - == === - - - oo 6-202
batch transfer - - - ------------ooo o 3-14
BCD - - - - m e ol 6213
BCD data- - ==« < <o e oo oo 6212, 6-213
BCD to Binary (BIN) == -----ccmmmmm oo 6-212
BIN - - oo oo m e e e e 6-212
binary data-----------cooomi o 6-212, 6-213
Binary to BCD (BCD) ----------mmmmmmmi e miea oo 6-213
Bit Shift Left (SFL) - --------mmmmmo oo 6-195
Bit Shift Right (SFR) - --------ccmmmmimicme oo 6-193
BLK - - - o e m el 6-196
bloCK - == = e 5-2
Branching Instructions (IF, ELSE, and IEND)- - - ---------- 6-135
Break-------comm o 7-15
Breakpoint Enable/Disable - -------ccoommmooaaa oo 7-17
Breakpoint Set/Remove -----------------cooooo- 7-14
C
Cregisters - - --------m oo 4-3, 4-16
Call Motion Subprogram (MSEE) - - - - - - == - - - - - - oo - 6-152
Call Sequence Subprogram (SSEE) - - ------------noo--- 6-153
Call User Function - - - - == === - oo mm e oo oo 6-154, 6-162
Call User Function from Motion Program (UFC) ---------- 6-154
Call User Function from Sequence Program (FUNC) - ------ 6-162
calling motion programs using the M-EXECUTOR program
execution definitions- - - - - - - - - - - - - oo oo oo 1-21
center point position - - === - -------c--ooooooaoo o 6-95
Change Acceleration Time (ACC) ---------------------- 6-15
Change Deceleration Time (DCC) - -------------mmoono- 6-21
Change Interpolation Acceleration Time (IAC)------------- 6-50
Change Interpolation Deceleration Time (IDC)------------- 6-52
Change Interpolation Deceleration Time for
Temporary Stop (IDH) - ----------ccoommmammie oo - 6-58
Change Interpolation S-curve Time (ISC)----------------- 6-54
Change S-curve Time Constant (SCC) ------------------- 6-27
character
D e TR 5-6
F oo m e e e 5-5
FW -oo e 5-5
M - m e e 5-5
MPS - - m e 5-6
R R T T 5-6

Index

P e 5-5
R om s 5-5
SP S - - m e oo 5-6
S m e 5-6
S 5-5
TW - - mm e e ol 5.5
U o mmm e e e 5-5
/2 5-5
22 5.6
CITCUIL = = = = = = = oo oo oo 5-9
CIrCUIt NUMDbET - - = = = = = = = m e e oo 5-9

Circular Interpolation with Specified Center Point

MCW andMCC) = -----mmmmimmi e - 6-94
Circular Interpolation with Specified Radius

MCW andMCC) = -----mmmmimmi e - 6-99
Clear (CLR)- - - === - s e e e e oo 6-197
Comment Check Box - ----------cooomm i 7-7
COMMENES - - === == - oo oo oo m oo 5-2, 5-7
compiling - -----mmm e 3-9
composite travel distance - --------------------------- 6-90
constant registers - - - === === - - - oo 4-3
control signals - - - - === - - - oo 1-26
conveyance device - - - == - == - - m oo oo oo 1-43
Coordinate Plane Setting (PLN) ----------c-oommmooon 6-132
coordinate wWords - - -------------oooooooooo 5-2, 5-4
COS = mmmmm e e 6-205
Cosineg (COS) - ---mmmmmm e e 6-205
creating @ project - == - === === === --- oo oo oo 3-4
creating programs------------------=----—~~“~-~-~-~-~-~--~-- 3-8
cross references - - - - - - - - - oo oo oo 7-27
Current Position Set (POS) - -------occmmmmomaae oo 6-121
current program line---------------oooooooo - 7-12

D

Dregisters----------- - 4-3, 4-17
data manipulations - - - - - - == - - - oo 6-193
data registers - - - - - - - - - - oo 4-2, 4-12
datatypes -------------mmmeee oo 4-8, 6-155
data types of registers used in user functions ------------- 6-155
DCC - - - m e 6-21
Debug Operation Mode -------------------- 1-24, 7-11, 7-13
Debugging------------ommmiie 1-13, 2-4
debugging programs-------------------ooooo- - 3-16
decimal integer - ---------co- - 5-8
DEFAULT - = = - < mm oo o me oo oo 6-147
DEN - - e e e e 6-111
direct designation--------------oooooooo o 2-8
Disable Single-block Signal (SNGD) and Enable Single-block
Signal (SNGE)--------cmmmmmie e 6-171
Divide (/)-=--------cm e 6-181
Drive Control Panel - - - - - - - - - - - oo oo e e 7-18
Dwell Time (TIM) === -----ccmmmme e - 6-165

E

easy programming functions----------------------- 1-13, 2-4
electronic gear----------------------------_-----_- 6-37
encoder cable----------oo oo o 3-3
END - - o m ool 6-163
o 7-15
end of block----------coommmii 5-2, 5-6
end position-------------o oo 6-95
EOX - -mimmii i 6-170
Error List Dialog Box--------------ccooomaiaoo o 39
Exclusive OR (M) === ----cmmmmmi e 6-186
Execute---------mmmiii e 7-15
executing Programs - - - - -----------=-=-===——=—=~——~--- 3-18
Execution Scan Error - - - - - - - - - o e e e e 1-24
€XECULION SCANS - = == = === === = == o= m— oo 5-13
EXMo-ccm i 6-117
Extended Add (++) =----cmmmmmm e 6-176
Extended Subtract (--) --------------““------------- 6-178
External Positioning (EXM) - - - ------mommmmmmoo oo 6-117
external positioning signal - ------------------------- 6-118
F
Freference ----------cooommmomm i 6-47, 6-91
Falling-edge Pulse (NON) ------coommmmia oo 6-218
Filter Time Constant- - - = - = = = = =« = oo o oo oo m oo o 6-28
filter type selection---------------ccoooomma 6-32
finite-length axis - ---------------oo 6-9
FMX - o s o mm i 6-39
FUNC----mmmie i 6-162
function keys----------c-ccmi e 7-12
Function Selection Flags-------------------------- 6-9, 6-13
G
G regISterS === = = = == = == m e e 4-2, 4-13
global registers- - -----------coooo o 4-5, 5-8
group definition - - = === === - oo 5-9
group definition settings - - - - - - == === - - - - oo oo 3-6
ErOUP NAME = = = = = = = = = = = = = = = = m e = m o oo — oo 5-9

H

Helical Interpolation with Specified Center Point

MCW andMCC) -------mmmmmmmm i 6-103
Helical Interpolation with Specified Radius

MCW andMCC) -------mmmmmmmm i 6-106
Help Button-----------commmmm oo 7-8
hexadecimal integer - - - - - === ----ccommmme oo 5-8
high-speed drawing - - -----------o-oo o 1-15
how to directly change the acceleration time settings - ----- - - 6-20
how to directly change the deceleration time settings - - - - - - - - 6-26

I

Iregisters = -------cmmmmm e 4-2, 4-14
/O services ----=-----mmmmmmi e 1-17
1/O Variable Wait (IOW)--------ccmmmme e 6-167
| O e 6-50

Index-2

Index

IDC - - mmm e e 6-52
IDH- - o 6-58
IF, ELSE,and IEND - = - - - - - - o oo oo 6-135
TFMX = - - m e e e lll. 6-42
| R e 6-47
INC-cme i 6-11
Inclusive OR (]) === ----cmmmmm oo 6-184
Incremental Mode (INC)-------mmmmmmoma oo 6-7, 6-11
11 4 R T 4-18
INAEeX j == - - - s s o s e 4-18
indirect designation- - - - = = == === - oo oo oo 1-31
indirect designation of a program number using a register - - - - - 1-31
infinite-length axis - ------------------ 6-9
Infinite-length Axis Reset Position------------------ 6-9, 6-13
INP - - oo e el 6-128
In-position Check (PFN)--------commmmm oo 6-126
IN-POSItiON range- - - === === -=-----“---“~““--------- - 6-128
In-Position Range (INP) - - - - - ---oommmm oo 6-128
INPUL TEIStErS- = = = = = = == - = o m e 4-2, 4-14
installing MPE720 version 7 - = === - === ----coommmoooono 33
Instruction Entry Assistance ---------------------- 1-13, 2-4
instruction format- - - - - - - - - - oo oo oo 7-6
instruction type table- - - = - - - - - oo oo 5-15
INStruction types - - - === === ------cooo oo 5-13
interpolation acceleration time------------------------- 6-51
interpolation deceleration time- - - - - - === - - - - - - - 6-53
interpolation feed speed -------------oooooo 6-47, 6-91
interpolation feed speed ratio--------------------~------ 6-48
interpolation instructions------------------------ 6-31, 6-47
interpolation override - - - - - - - - - - - oo oo 1-29
Interpolation Override Setting - - == - - === === -ccooommooooo 1-27
TOW - = - o e e el 6-167
J
JOEEGING = = = = = e oo m e e e 7-22
JOINTO- - - - e oo oo 6-144, 6-147
L
labels--------o oo 5-2,5-3
ladder programs - - - = = = = = - - oo e e 1-4
language instructions ---------------------- -~ 2-3
linear acceleration rate -----------------~----~-~-------- 6-17
linear deceleration rate - -----------------ooo- - 6-23
linear deceleration time constant - - - - - - - - - - - - - oo oo 6-22
Linear Interpolation (MVS)- - - == -« - - oo oo momma oo 6-89
Linear Interpolation with Skip Function (SKP) - ----------- 6-113
local registers-=-----------cooomm 4-6, 5-8
logic operation instructions - - - - - - === === -cooooooo- 6-183
logical axis NAME - == === == === - oo 5-10
logical axis names--------------------~-~---~-~-~----- 5-2, 5-3
M
M regiSters - = = = == = = === e e 4-2, 4-12
Machine Controller specifications - --------------------- A-3
machine coordinate system - - - - - - - ------ oo 6-121

Index-3

Main Program Number Limit Exceeded Error-------------- 1-25
Main Programs - - - - - == === === === ===~~~ ~—~~~—~~~ -~ 1-15, 2-5
maximum interpolation feed speed- - - ------------oo-- 6-40
Y (o 6-94, 6-99, 6-103, 6-106
MCW -emmmmie i 6-94, 6-99, 6-103, 6-106
metal sheet pressing equipment - - - - - === - - === - - - oo~ 1-44
M-EXECUTOR control registers--------------cuuooo--- 1-21
M-EXECUTOR program execution definitions------------- 1-21
MOD - - - s e e e e e o 6-182
Modulo (MOD) - - - - - c e mm e 6-182
Monitor Parameter Display - - - === === -cocmmmoaaa oo 7-25
Monitor Parameter Selection Area---------------------- 7-25
MONItor parameters--------------------------------- 4-14
monitoring motion program execution information using
the S registers------------ccooooo 1-33
Motion Control Function Module ---------------------- 1-14
Motion Editor------------cceoomaao o 1-13, 1-14, 3-8
motion language----------------“~“------------------ 1-3
motion language instructions----------------------- 5-2, 6-1
motion parameters - - ----------------“~~“~“~~—~—~~—~-~—~ -~ -~ 1-14
motion program execution timing figure- - - - - - - - - - - - - -~ - - - 1-17
motion program numbers ---------------------------- 1-15
MOtion Programs - ------------------—-~--~-~-~-~-~-~-~-- 1-3, 1-4
application examples ----------------ooooooo - 1-43
data transfer to and from ladder programs- - - - - ---------- 1-6
execution information----------------ooo_____ 1-34
execution methods - -----------oooomoo 1-4
execution processing methods - - - === -----------o---- 1-19
execution registration - - - - - ---------------------- 1-22
execution timing-------------------------------- 1-17
format - - - - = - - - - 5-2
BIOUPS = = = = = - = oo oo oo 1-16
motion control - - - - == - - - oo 1-5
online editing------------------------------- 1-12
parallel execution -------------------ooooo- 1-7
system configuration- - - - - - - - ----- oo 1-14
3 S e 1-15
use of subprograms---------------------------_--- 1-6
motor cable ---------- oo 3-3
MOV - e o e e 6-85
Move Block (BLK)- == === - cm e e e e 6-196
Move on Machine Coordinates (MVM) - - -----------o--- 6-123
Move Start Point-- - - - == - - - oo oo 7-13
movement paths for interpolation instructions and
S-curve acceleration/deceleration- - - - - - - = - - - - - oo oo 6-31
Moving Average Filter - --------cmmmoomm o 6-32
MPE720 version 7.0 - == === == oo - o e e oo i 1-13
MSEE - - - cmmmm e 6-152
M-type instructions- - - = == = == === - - oo oo oo 5-14
Multiply (¥) === -mm s e e e 6-180
MVM mem i e 6-123
MV S e o 6-89
MV - e e 6-115

Index

N

NEAR Signal Output Width - - ----------oooo - 6-126, 6-128
No System Work Available--------------cooooooooo 1-24
) 6-218
Normal Operation Mode- - - - - === === - oo mmmm oo 7-13
NOT (1)---mmmmmm e e e 6-187
notation for constants - - - - - - - - - - oo 5-8
number of controlled axes--------------~----------- 5-9, 7-6
number of groups - - - - - === o oo 5-9
number of tUrns - - - - = = = = - - oo e oo 6-97
numeric comparison instructions - - - - == - --------------- 6-190
numeric operation instructions ----------------------- 6-172
O

O registers------------coom oo 4-3, 4-15
Off-delay Timer

Measurement unit = 10 ms (TOF) - - - - - === - o e oo - - 6-222
On-delay Timer

Measurement unit = 10 ms (TON)------------------ 6-220
One Scan Wait (EOX) ------ccmmmmmm oo 6-170
online editing----------------““---------o-- 1-12
Operation Control Panel - - ----------ooomoooo o 1-13
operation priority levels - - ---------ooomoo 5-11
operation with multiple groups - - ---------ccoommooo- 1-16
operation with one group ---------------------------- 1-16
output registers - --------------------oooo oo 4-3, 4-15
OVerTides - - = === = - s s e 6-36

P

panel processing maching - - - - -----------cooooooo 1-44
Parallel Execution Instructions
(PFORK, JOINTO, and PJOINT) -« - - -« = o ceoomeeemaa- 6-144
parameter settings - --------------------------------- 7-7
part INSerter - - = = = = == === = - oo oo e 1-43
23 6-126
PFORK - - - < < - - e e ool 6-144
0 3 6-130
PJOINT - - - - - e mmm e 6-144
PLD - - - c o e ol 6-124
PLN - - o c o e d . 6-132
PON - - e e e oo 6-216
POS - - oo m e 6-121
Position after Distribution (DEN) - - ---- - - oo 6-111
position reference value - - ------------------oo--- 6-7
Positioning (MOV) = -----ccmmmmi e 6-85
Positioning Completed Check (PFP) - - --------ommooo- 6-130
positioning iNStructions- - - - = = = = = === = == - oo oo oo 6-33
positioning speed - - - - ------------o-oooo- 6-16, 6-17, 6-22
POSMAX == = === e mm e e 6-9, 6-13
PPcable -------mmmmm e 3-3
precautions to consider when performing register operations - - - 4-10
procedure to create the user function - - - ---------------- 6-159
Program Alarms------------------ooo o 1-24
program control instructions - - - - - === - ------- - 6-133

program current position------------------------------ 6-7
program development flow - - - - - - - - - - - - oo oo 3-2
Program End (END)- - - - === - c oo e e 6-163
Program Executing-----------------ccoomoi o 1-24
Program Paused - - - - ------------o-ooo 1-24
program properties - - - - - - -----=-=----------oo- - 4-17
Program Single-block Execution Stopped ---------------- 1-24
Program Single-block Mode Selection------------------- 1-26
Program Single-block Start Request -------------------- 1-26
program status - - - - - === - - - - oo 1-35
Program Stopped at Breakpoint- - - -------cocmooooooo- 1-24
Program Stopped for Request for Stop Request - ----------- 1-24
Program Type ---------cmmmmmm i 1-24
programming with variables - - - - - - - - - - - - 5-17
R
R{ b o mmm oo e 6-215
radius - - - - - - - oo 6-100
rated speed ---------- oo 6-16, 6-22
real NUMbEr - - - - - - -« m e e e o 5-8
reference position----------------oooooo-. 6-7
Reference Unit Selection --------------coomoomooooo 6-34
register list- - - - - = - c o e e e 3-2
registering motion programs in the M-EXECUTOR program
execution definitions - ----------------oooooo-- 1-22
registering program execution------------------------- 3-10
relationship between 1/O registers
and internal function registers - - - - - - - ----------------- 6-156
relative travel distances -----------------~-~-~-~-------_- 6-11
Repetition Instructions (WHILE, WEND) - - ------------- 6-138
Repetition with One Scan Wait (WHILE and WENDX) - - - - - 6-141
Request for Pause of Programs - - - --------------------- 1-26
Request for Start of Continuous Program Operation - - - - - - - - - 1-26
Request for Start of Program Operation - - - - - - - - - - -~ - - - - - - 1-26
Request for Stop of Program----------ccooomoooooo 1-26
Reset Bit (R{ })-----------cccmmmmm e e - - 6-215
2 g 6-164
Rising-edge Pulse (PON) - - - - - --ccmmmmom e 6-216
S
S registers - - - === - - - oo 4-2, 4-11
S{ b m i m e 6-214
sample programs
motion program control program- - - - - - - === == == - - - - - - - B-2
parallel processing - - - - ------------cooooo B-3
performing speed control with a motion program - - - - - - - - - B-4
SEqUENCE Programs- - - - === === === === - - = - B-7
simple synchronized operation with a virtual axis------- - - B-5
saving programs to flash memory - --------------------- 3-17
SCan €XeCution - - - === === - 1-4, 2-2, 2-3
SCC - m e 6-27
S-curve acceleration/deceleration - --------------------- 6-87
S-curve time constant---------------------- - 6-27, 6-30
Select Command - -------------ccmmmmm oo 7-6

Index-4

Index

Selective Execution Instructions
(SFORK, JOINTO, SJOINT)- - === - -cmommmmmm oo o 6-147

self configuration - - === ---------oooo oo 3-6

sequence programs

EXECULION - = = = = = = = = = e e e oo 2-6
execution methods - -------commmmm 2-3
execution processing method------------------------ 2-6
execution timing- - - - - = - - - == ----c-ooooooo oo 2-7
features - - - - - - - - - m e e e 2-3
M-EXECUTOR program execution definitions- - - - - - - - - - - 2-7
registering program execution - - - - - === === === == == oo 2-8
BYPES === m o m o m e e e e 2-5
use of subprograms-----------------oooo oo 2-4
sequential eXecution - - - - - = == - - - - s o e e 1-4
SERVOPACK - ----mmmmm e 33
SetBit (S{})----------mmmmmmmi i 6-214
Set Call Stack--------cccmmmm 7-16
Set Interpolation Acceleration/Deceleration Mode
(ACCMODE)-----ccmmmmm i 6-67
Set Interpolation Feed Speed Axes (+and -)--------------- 6-64
Set Interpolation Feed Speed Ratio (IFP) - - --------------- 6-47
Set Maximum Individual Axis Speeds for Interpolation
(IFMIX) = - - = = e e e e e e e 6-42
Set Maximum Interpolation Feed Speed (FMX) ------------ 6-39
Set Motion Task - - - - === - - - oo mmme 7-16
Set Speed (VEL)- - - - - - - c o e e e 6-33
Set-time Positioning (MVT) ---------commmooaaoo 6-115
setting parameters---------------------------------- 4-15
setting up the system--------------ooooo 3-6
SETW - cmme e 6-198
SFL - - - - - e f il 6-195
SFORK = = = = = = = e e 6-147
) o 6-193
SIN - - o o o c el 6-204
Sine (SIN) = = = - - mm e e e 6-204
single-block operation mode ------------------------- 6-171
single-step linear acceleration/deceleration---------------- 6-86
SJOINT - - - - s e 6-147
Skip I Information - ------------ccooommii oo 1-26
Skip 2 Information - -------------oooi 1-26
Skip Input Signal 1 (SS1) - -------ooommmm i - 6-113
Skip Input Signal 2 (SS2) - - ------mm oo 6-113
Skip Input Signal Selection - - - - == ------ooooooo 6-113
SK P - = mmm i 6-113
SNGD - - - - m s m i 6-171
SNGE ----cmmmmmi e 6-171
software limit switches - - - - - - - - - - o oo 6-122
specific characters ----------------------------_- 5-2, 5-5
specified center point - -----------ooooooo oo 6-103
specified radius ----------coommmi oo 6-99, 6-106
speed reference---------------ooooo 7-22
speed Unit- - - === - - - oo oo 6-34
570 6-210

Index-5

Square RoOt---------omimi e 6-202
Square Root (SQT)----------mmmmm e 6-210
SSEE- - m e 6-153
Start Request History - ----------cccommmoao 1-24
Status Display ----------ccoooiie e 7-24
Status Flags - - ---------mmmmmmm e 1-24, 2-9
step distance- - - - - === - - - e oo 7-22
Step EXECUtION = - - === === - oo oo 7-22
StepIn-------ommi i 7-14
Step In execution - -----------ooom oo 3-16
Step OVer------cc e e e e e 7-14
Stop/Start Monitor - -------------cooo o 7-24, 7-26
S-type instructions - ------------------oooooo- 5-14
Subprogram Return (RET) ------------ooomooo 6-164
SUbPrograms- - - - - = == === == - m oo 1-6, 1-15, 2-4, 2-5
Substitute (=) - === - - - oo 6-173
Subtract (-)------------ e 6-175
SVA-Ol - - m e e 1-14
SVB-01 - - cmemmi e 1-14
SVR - - - o e ol 1-14
SYNEAX €ITOL = = - = = = = - o - o oo oo oo oo 4-4
SyStem registers - - - - --------- oo oo 4-2, 4-11
system work number- - - - - - - - - - oo oo oo 1-29
System Work Number Setting - - - - -----------comoo-- 1-27
T
Table Initialization (SETW)- - = = = - - - oo o m e e 6-198
TAN - - - c e e ol 6-206
Tangent (TAN)------ccommmmm i 6-206
task assignments- - - - - - - - - - oo oo 7-9
Test RUNS- - = = - - o e e e e e e e e 1-13
TIMo = - - - oo e el 6-165
TIMIMS - - < = < e e e e 6-166
) 6-222
TOFIMS - - c e e 6-223
TON = - - c e e ol 6-220
TONTMS - < - = < e e f e e 6-221
toolbaricons - ---------- oo 7-12
transferring programs - - - - - - == == == - oo oo oo 3-13
T-type instructions - -------------ccoommooi oo 5-14
types of registers - --------------o oo 4-2
typical system configuration - - - - -----------ooo oo 3-3
U
5] @ 6-154
Update Current Position - -----------c-oommooooon 7-15
Update Program Current Position (PLD) ---------------- 6-124
user functions-------- - 6-155
USING TeEISters === === === oo mmm oo mm oo 4-11
V
VEL - --cmmi i 6-33
Virtual aXes ------------ oo 1-43

Index

w
Warning Display -------------omommmmi 7-26
WHILE and WENDX- - - - - - o - oo e oo 6-141
WHILE, WEND - ----ccmiimii i 6-138
WOTK TegISters == - - - - - - ccmm e e 1-23, 2-9
working coordinate system - - ------------------- 6-108, 6-121
4
Zero Point Return (ZRN) - - - - - - mmmmm e 6-108
Zero Point Return Method ---------ccmmmommmooooo 6-109
zero point return speed - - - - - - - - - - oo oo 6-109
ZRN - cm e 6-108

Index-6

Revision History

The revision dates and numbers of the revised manuals are given on the bottom of the back cover.

MANUAL NO. SIEP C880725 14A <0>-1
WEB revision number

Revision number
Published in Japan July 2012

Date of publication

Date of Rev. WEB . .
Publication No. Rev. Section Revised Contents
No.
January 2025 <4> 5 44,62 Partly revised.
June 2024 4 6.1 Partly revised.
Back cover Revision: Address
November 2022 3 6.1 Revision: Remarks on SCC (Change S-curve Time Constant) instruction setting
range.
Back cover Revision: Address
July 2021 2 6.2 Set-time Positioning (MVT): Partly revised.
Back cover Revision: Address
June 2019 1 6.2 Revision: The text of Position after Distribution (DEN)
6.3 Revision: Precautions on Update Program Current Position (PLD)
6.4 Revision: Programming Example of Selective Execution Instructions (SFORK,
JOINTO, SJOINT)
Back cover Revision: Address
June 2018 0 Preface Addition: MP3100 user's manual to related manuals
6.1 Addition: Description of ISC (Change Interpolation S-curve Time)
March 2018 <3> 0 1.7 Addition: Supplemental information for timing chart
5.5 Addition: Strings that Cannot Be Used in Variable Names
6.4 Addition: Using parallel execution instructions with subprograms
July 2016 <2> 2 43 Addition: Setting range for indices i and j
6.4 Revision: Radius of a circle drawn using the WHILE and WEND instruction
August 2015 1 Front covert Revision: Format
1.8 Revision: SW08192 to SW09215 — SL08192 to SL09214
SW03264 to SW03321 — SW03264 to SW03321 and SL08192 to
SL08222
SW03380 to SW03437 — SW03380 to SW03437 and SL08256 to
SL08286
6.2 Revision: Interpolation feed speed figure (INC MVS[A1]1200 [B1]900 F500;)
Appendix C Revision: Information on motion program operation for MP2000-series Machine Con-
trollers.
Back cover Revision: Address and format
June 2014 0 - Based on Japanese user’s manual, SIJP C880725 14D<3>-0, available on the Web in
March 2014
All chapters Addition: Description of MP3300
5.4 Addition: Description of FUT and IUT instructions
6.1 Addition: Description of FUT, IUT, and ACCMODE instructions
Back cover Revision: Address
September 2012 | <1> 0 - Based on Japanese user’s manual, SIJP C880725 14B<1>-1, available on the Web in
July 2012
Back cover Revision: Address
July 2012 <0> 1 6.2 Revision: Example of setting the interpolation feed speed in the MVS instruction
Back cover Revision: Address
March 2012 - - - First edition

Revision History-1

Machine Controller MP3000 Series

Motion Program
PROGRAMMING MANUAL

IRUMA BUSINESS CENTER (SOLUTION CENTER)
480, Kamifujisawa, Iruma, Saitama, 358-8555, Japan

Phone: +81-4-2962-5151 Fax: +81-4-2962-6138
www.yaskawa.co.jp

YASKAWA AMERICA, INC.

2121, Norman Drive South, Waukegan, IL 60085, U.S.A.

Phone: +1-800-YASKAWA (927-5292) or +1-847-887-7000 Fax: +1-847-887-7310
www.yaskawa.com

YASKAWA ELETRICO DO BRASIL LTDA.

777, Avenida Piraporinha, Diadema, Sdo Paulo, 09950-000, Brasil
Phone: +55-11-3585-1100 Fax: +55-11-3585-1187
www.yaskawa.com.br

YASKAWA EUROPE GmbH

Philipp-Reis-Str. 6, 65795 Hattersheim am Main, Germany
Phone: +49-6196-569-300 Fax: +49-6196-569-398
www.yaskawa.eu.com E-mail: info@yaskawa.eu.com

YASKAWA ELECTRIC KOREA CORPORATION
6F, 112, LS-ro, Dongan-gu, Anyang-si, Gyeonggi-do, Korea
Phone: +82-31-8015-4224 Fax: +82-31-8015-5034
www.yaskawa.co.kr

YASKAWA ASIA PACIFIC PTE. LTD.
30A, Kallang Place, #06-01, 339213, Singapore
Phone: +65-6282-3003 Fax: +65-6289-3003
www.yaskawa.com.sg

YASKAWA ELECTRIC (THAILAND) CO., LTD.

59, 1F-5F, Flourish Building, Soi Ratchadapisek 18, Ratchadapisek Road, Huaykwang, Bangkok, 10310, Thailand
Phone: +66-2-017-0099 Fax: +66-2-017-0799

www.yaskawa.co.th

YASKAWA ELECTRIC (CHINA) CO., LTD.

22F, Link Square 1, No.222, Hubin Road, Shanghai, 200021, China
Phone: +86-21-5385-2200 Fax: +86-21-5385-3299
www.yaskawa.com.cn

YASKAWA ELECTRIC (CHINA) CO., LTD. BEIJING OFFICE

Room 1011, Tower W3 Oriental Plaza, No.1, East Chang An Avenue,

Dong Cheng District, Beijing, 100738, China

Phone: +86-10-8518-4086 Fax: +86-10-8518-4082

YASKAWA ELECTRIC TAIWAN CORPORATION

12F, No. 207, Section 3, Beishin Road, Shindian District, New Taipei City 23143, Taiwan
Phone: +886-2-8913-1333 Fax: +886-2-8913-1513 or +886-2-8913-1519
www.yaskawa.com.tw

In the event that the end user of this product is to be the military and said product is to
be employed in any weapons systems or the manufacture thereof, the export will fall
under the relevant regulations as stipulated in the Foreign Exchange and Foreign
Trade Act. Therefore, be sure to follow all procedures and submit all relevant

YASKAWA ELECTRIC CORPORATION documentation according to any and all rules, regulations and laws that may apply.
Specifications are subject to change without notice for ongoing product modifications
and improvements.

© 2012 YASKAWA ELECTRIC CORPORATION

MANUAL NO. SIEP C880725 14E <4>-5

Published in Japan January 2025
24-10-20
Original instructions

	About this Manual
	Using this Manual
	Related Manuals
	Safety Precautions
	Warranty
	Contents
	1 Introduction to Motion Programs
	1.1 What Is a Motion Program?
	1.2 Features of Motion Programs
	Motion Program Execution Methods
	Full Synchronization of Sequence Control and Motion Control
	Advanced Motion Control
	Easy-to-understand Motion Language Instructions
	Numerical Calculations in Motion Programs
	Data Transfer to and from Ladder Programs
	Memory Usage Reduced by Use of Subprograms
	Parallel Execution of Programs
	Axis Alarm Checks
	Online Editing of Programs
	Easy Programming Functions (MPE720 Version 7.0 or Later)

	1.3 Motion Program System Configuration
	1.4 Types of Motion Programs
	1.5 Motion Program Groups
	1.6 Motion Program Execution Timing
	1.7 Executing Motion Programs
	Execution Processing Method
	Program Execution Registration Methods
	Work Registers

	1.8 Advanced Programming
	Indirect Designation of a Program Number Using a Register
	Controlling Motion Programs Directly from an External Device
	Monitoring Motion Program Execution Information

	1.9 Application Examples
	Conveyance Device
	Part Inserter
	Panel Processing Machine
	Metal Sheet Pressing Equipment

	2 Introduction to Sequence Programs
	2.1 What Is a Sequence Program?
	2.2 Features of a Sequence Program
	Sequence Program Execution Methods
	Same Language as Motion Programs
	Data Transfer to and from Motion Programs
	Memory Usage Reduced by Use of Subprograms
	Easy Programming Functions

	2.3 Types of Sequence Programs
	2.4 Executing Sequence Programs
	Execution Processing Method
	Registering Program Execution
	Work Registers

	3 Program Development Flow
	3.1 Program Development Flow
	3.2 Program Development Procedures
	Preparation for Devices to be Connected
	Creating a Project
	Self Configuration
	Going Online
	Group Definition Settings
	Creating Programs
	Registering Program Execution
	Transferring the Programs
	Debugging Programs
	Saving the Programs to Flash Memory
	Executing the Programs

	4 Registers
	4.1 Registers
	Types of Registers
	Global Registers
	Local Registers
	Data Types

	4.2 Using Registers
	System Registers (S Registers)
	Data Registers (M Registers)
	Data Registers (G Registers)
	Input Registers (I Registers)
	Output Registers (O Registers)
	C Registers
	D Registers

	4.3 Using Indices i and j
	4.4 Using Array Registers

	5 Programming Rules
	5.1 Entering Programs
	Motion Program Structure
	Block Format
	Notation for Constants and Registers

	5.2 Group Definition Details
	5.3 Operation Priority Levels
	5.4 Instruction Types and Execution Scans
	Instruction Types
	Instruction Type Table

	5.5 Programming with Variables
	Declaring Variables
	Variable Format
	Strings That Cannot Be Used in Variable Names
	Programming Examples

	6 Motion Language Instructions
	6.1 Axis Setting Instructions
	Absolute Mode (ABS)
	Incremental Mode (INC)
	Change Acceleration Time (ACC)
	Change Deceleration Time (DCC)
	Change S-curve Time Constant (SCC)
	Set Speed (VEL)
	Set Maximum Interpolation Feed Speed (FMX)
	Set Maximum Individual Axis Speeds for Interpolation (IFMX)
	Change Interpolation Feed Speed Unit (FUT)
	Set Interpolation Feed Speed Ratio (IFP)
	Change Interpolation Acceleration Time (IAC)
	Change Interpolation Deceleration Time (IDC)
	Change Interpolation S-curve Time (ISC)
	Change Interpolation Deceleration Time for Temporary Stop (IDH)
	Change Interpolation Acceleration/Deceleration Unit (IUT)
	Set Interpolation Feed Speed Axes (+ and -)
	Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

	6.2 Axis Movement Instructions
	Positioning (MOV)
	Linear Interpolation (MVS)
	Circular Interpolation with Specified Center Point (MCW and MCC)
	Circular Interpolation with Specified Radius (MCW and MCC)
	Helical Interpolation with Specified Center Point (MCW and MCC)
	Helical Interpolation with Specified Radius (MCW and MCC)
	Zero Point Return (ZRN)
	Position after Distribution (DEN)
	Linear Interpolation with Skip Function (SKP)
	Set-time Positioning (MVT)
	External Positioning (EXM)

	6.3 Axis Control Instructions
	Current Position Set (POS)
	Move on Machine Coordinates (MVM)
	Update Program Current Position (PLD)
	In-position Check (PFN)
	In-Position Range (INP)
	Positioning Completed Check (PFP)
	Coordinate Plane Setting (PLN)

	6.4 Program Control Instructions
	Branching Instructions (IF, ELSE, and IEND)
	Repetition Instructions (WHILE, WEND)
	Repetition with One Scan Wait (WHILE and WENDX)
	Parallel Execution Instructions (PFORK, JOINTO, and PJOINT)
	Selective Execution Instructions (SFORK, JOINTO, SJOINT)
	Call Motion Subprogram (MSEE)
	Call Sequence Subprogram (SSEE)
	Call User Function from Motion Program (UFC)
	Call User Function from Sequence Program (FUNC)
	Program End (END)
	Subprogram Return (RET)
	Dwell Time (TIM)
	Dwell Time (TIM1MS)
	I/O Variable Wait (IOW)
	One Scan Wait (EOX)
	Disable Single-block Signal (SNGD) and Enable Single-block Signal (SNGE)

	6.5 Numeric Operation Instructions
	Substitute (=)
	Add (+)
	Subtract (-)
	Extended Add (++)
	Extended Subtract (--)
	Multiply (*)
	Divide (/)
	Modulo (MOD)

	6.6 Logic Operation Instructions
	Inclusive OR (|)
	AND (&)
	Exclusive OR (^)
	NOT (!)

	6.7 Numeric Comparison Instructions
	Numeric Comparison Instructions (==, <>, >, <, >=, <=)

	6.8 Data Manipulations
	Bit Shift Right (SFR)
	Bit Shift Left (SFL)
	Move Block (BLK)
	Clear (CLR)
	Table Initialization (SETW)
	ASCII Conversion 1 (ASCII)

	6.9 Basic Functions
	Sine (SIN)
	Cosine (COS)
	Tangent (TAN)
	Arc Sine (ASN)
	Arc Cosine (ACS)
	Arc Tangent (ATN)
	Square Root (SQT)
	BCD to Binary (BIN)
	Binary to BCD (BCD)
	Set Bit (S{ })
	Reset Bit (R{ })
	Rising-edge Pulse (PON)
	Falling-edge Pulse (NON)
	On-delay Timer: Measurement unit = 10 ms (TON)
	1-ms ON-Delay Timer (TON1MS)
	Off-delay Timer: Measurement unit = 10 ms (TOF)
	1-ms OFF-Delay Timer (TOF1MS)

	6.10 Vision Instructions

	7 Features of the MPE720 Engineering Tool
	7.1 Motion Editor
	7.2 Motion Instruction Entry Assistance
	7.3 Task Assignments
	7.4 Debug Operation
	7.5 Drive Control Panel
	7.6 Test Runs
	7.7 Axis Monitor and Alarm Monitor
	7.8 Cross References

	Appendix A Specifications
	A.1 Applicable Units and Modules
	A.2 Machine Controller Specifications

	Appendix B Sample Programs
	B.1 Motion Program Control Program
	B.2 Parallel Processing
	B.3 Performing Speed Control with a Motion Program
	B.4 Simple Synchronized Operation with a Virtual Axis
	B.5 Sequence Programs

	Appendix C Differences between MP2000-series and MP3000-series Machine Controllers
	Appendix D Precautions
	D.1 General Precautions
	Saving Data to Flash Memory when Changing Applications
	Debugging a System in Operation

	D.2 Precautions on Motion Parameters
	Performing Axis Movement Instructions on the Same Axis in Motion Programs
	Using a Subscript to Reference a Motion Register from an I/O Register
	Referencing the Motion Register of a Different Circuit
	OL***1C (Position Reference Setting) Setting Parameter
	Axis Operation for Software Limit Alarms

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

	Revision History

