YASKAWA

Machine Controller MP900/MP2000 Series

New Ladder Editor
PROGRAMMING MANUAL

Configuration E|
Engineering manager] Llger men] Uzer management] File tranzfer] Other 1
Controller type] Start up 1 Functional setup
C Language Ladder Editor l Flash Memamny Save] Drata Trace]

¥ Use the new ladder editor
Usze the new ladder editor.
[CAUTION]

& eantroller folder that was created with the oniginal ladder editor is disabled
when the new ladder editor iz being uzed.

PTH#: 41P¥:192.168.1.1 CPU: 1 I+ o] EEE

Frogram Comment =
) | thisis the main ladder program

awithn1 aniteh0z switoh03 calint
readyal readyo2 ready03 reados
LEOO00D MBOOOAN 1 MBODO002 [EEITEES
1L 1L 14
i i L4l

0000
LA

anitehd

readog
[08000008
l l

aniteh0s —
nomal0l
DBO0D00E

vliteh0s

namaliz

DBO0D00S
] L

ooa7
NL1

MANUAL NO. SIEZ-C887-13.1C

Copyright © 2001 YASKAWA ELECTRIC CORPORATION

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, mechanical, electronic, photocopying, recording,
or otherwise, without the prior written permission of Yaskawa. No patent liability is assumed
with respect to the use of the information contained herein. Moreover, because Yaskawa is con-
stantly striving to improve its high-quality products, the information contained in this manual is
subject to change without notice. Every precaution has been taken in the preparation of this
manual. Nevertheless, Yaskawa assumes no responsibility for errors or omissions. Neither is
any liability assumed for damages resulting from the use of the information contained in this
publication.

About This Manual

B This manual describes the programming instructons of the New Ladder Editor, a
programming software application that aids in the design and maintenance of
MP900-series and MP2000-series Machine Controllers.

B This manual is written for readers with a working knowledge of Microsoft Windows
95/98/2000/NT. Refer to Windows documentation provided with your computer for
information on basic operations, such as opening and closing windows and mouse
operations.

B Intended Audience
This manual is intended for the following users.
* Those responsible for designing the MP900 and MP2000 System
* Those responsible for writing MP900 and MP2000 motion programs
* Those responsible for writing MP900 and MP2000 ladder logic programs
B Description of Technical Terms
In this manual, the terms are defined as follows:
* PLC = Machine Controller
* MPE720 = MPE720 Engineering Tool

B Read this manual carefully to ensure the proper use of the New Ladder Editor. Also,
keep this manual in a safe place so that it can be referred to whenever necessary.

About The Software

B Precautions
* This software is to be installed on one and only one computer. You must purchase
another copy of the software to install it on another computer.

* This software is not to be copied for any reason other than when installing it on the com-
puter.

« Store the floppy disks containing the software in a safe place.

* This software is not to be decompiled, disassembled, or reverse engineered.

» This software is not to be given to, rent to, exchanged with, or otherwise released to a
third party without the prior permission of Yaskawa Corporation.

B Trademarks

* Windows and Windows 95/98/2000/NT are registered trademarks of Microsoft Corpora-
tion.

* Pentium is a registered trademark of Intel Corporation.

* Ethernet is a registered trademark of Xerox Corporation.

Visual Aids

The following aids are used to indicate certain types of information for easier refer-
ence.

IMPORTANT Indicates important information that should be memorized. Also indicates low-level

precautions that, if not heeded, may cause an alarm to sound but will not result in
the device being damaged.

<4 EXAMPLE » Indicates application examples.

INFO Indicates supplemental information.

Related Manuals

The MP900 series Machine Controllers consists of four models, the MP910, MP920,
MP930, and MP940.

The MP2000 series Machine Controllers consists of two models, the MP2100 and MP2300.

Manuals have been produced on these products line.

The following table shows related manuals for the MP900 and MP2000 series.

Refer to the following related manuals as reuqired.

Manual Name

Manual Number

Applicable Model

MP910 | MP920 | MP930 [MP940 | MP2100 | MP2300
Machine Controller MP930 User's Manual: | SIEZ-C887-1.1 V
Design and Maintenance
Machine Controller MP900/MP2000 Series | SIEZ-C887-1.2 v v v v v v
User's Manual: Ladder Programming
Machine Controller MP900/MP2000 Series | SIEZ-C887-1.3 v v v v v v
User's Manual: Motion Programming
Machine Controller MP900 Series SIEZ-C887-1.6 v v
Teach Pendant User's Manual
Machine Controller MP920 SIEZ-C887-2.1 N
User's Manual: Design and Maintenance
Machine Controller MP900 Series SIEZ-C887-2.3 N N N N
Programming Panel Software
User's Manual for Simple Operation
Machine Controller MP920 User's Manual: | SIEZ-C887-2.5 N
Motion Module
Machine Controller MP920 User's Manual: | SIEZ-C887-2.6 N
Communications Module
Machine Controller MP920 SIEZ-C887-2.50 N
Installation Manual
Machine Controller MP910 User's Manual: | SIEZ-C887-3.1 N
Design and Maintenance
Machine Controller MP940 User's Manual: | SIEZ-C887-4.1 N
Design and Maintenance
Machine Controller MP940 SIEZ-C887-4.50 v
Installation Manual
Machine Controller MP900/MP2000 Series | SIEZ-C887-5.1 v v v v
MECHATROLINK System User's Manual
Machine Controller MP900 Series SIEZ-C887-5.2 v N
2601IF DeviceNet System User's Manual
Machine Controller MP900 Series SIEZ-C887-12.1 v v v
MPLoader (Server) User’s Manual
for Server
Machine Controller MP900 Series SIEZ-C887-12.2 v v N

MPLoader (Client) User’s Manual
for Client

(cont'd)

Manual Name

Manual Number

Applicable Model

MP910 | MP920 | MP930 [MP940 | MP2100 | MP2300
Machine Controller MP900/MP2000 Series | SIEZ-C887-13.1 N N N v N N
New Ladder Editor Programming Manual
Machine Controller MP900/MP2000 Series | SIEZ-C887-13.2 N N N v N N
New Ladder Editor User’s Manual
Machine Controller MP2100/MP2100M SIEPC88070001 N
User’s Manual: Design and Maintenance
Machine Controller MP2300 Basic Module | SIEPC88070003 N
User’s Manual
Machine Controller MP2300 SIEPC88070004 N
User’s Manual: Communications Module
Machine Controller MP900/2000 Series SIEPC88070005 N N N v N N

MPE720 Software for Programming Device
User’s Manual

Vi

CONTENTS

About ThisManual - - - - ---------mm oo oo iii

About The Software - - - === === - e e iii
Visual AidS-- - == === s m e e e e iv
Related Manuals ----------------------- v
1 Ladder Program Instructions

1.1 Relay Circuit Instructions- - - - - == === - 1-4
1.1.1 N.O. Contact Instruction (NOC) === === === cmmmmmm e e e e oo a 1-4
1.1.2 N.C. Contact Instruction (NCC) - - ------mmmmmmmmm e e oo 1-5
1.1.3 10-MS ON-DELAY TIMER Instruction (TON [10mS]) ------------- 1-6
1.1.4 10-MS OFF-DELAY TIMER Instruction (TOFF [10ms])------------ 1-7
1.1.5 1-S ON-DELAY TIMER Instruction (TON [1S])------------------ 1-8
1.1.6 1-S OFF-DELAY TIMER Instruction (TOFF [1S]) == ------------- 1-10
1.1.7 RISING PULSE Instruction (ON-PLS)-------=cccccoooooooo- 1-11
1.1.8 FALLING PULSE Instruction (OFF-PLS)--------------------- 1-13
1.1.9 COIL Instruction (COIL)- === == === mmmmmmm e e o 1-14
1.1.10 SET COIL Instruction (S-COIL) == === == === s mm e e e e o o - 1-15
1.1.11 RESET COIL Instruction (R-COIL) === == == == e e e e mm e e oo - 1-17
1.2 Numeric Operation Instructions - - - - - == ------------- 1-19
1.2.1 STORE Instruction (STORE) - === ===--cccmmmmma oo 1-19
1.2.2 ADDITION Instruction (ADD) = == == === = = c s e s e e e e e o - - 1-21
1.2.3 EXTENDED ADDITION Instruction (ADDX) --=-==-==---------- 1-23
1.2.4 SUBTRACTION Instruction (SUB) === === === cccmmmmaaaa oo o 1-24
1.2.5 EXTENDED SUBTRACTION Instruction (SUBX)--------------- 1-27
1.2.6 MULTIPLICATION Instruction (MUL) ==----===ecccooooooaannn 1-28
1.2.7 DIVISION Instruction (DIV)-=======ccmmmmmama oo oo 1-31
1.2.8 MOD Instruction (MOD)- = = = = == = = == s s e e e e e e o m 1-33
1.2.9 REM Instruction (REM) = = = = = = = = s e e e e e e e o - 1-34
1.2.10 INC Instruction (INC)- = === = === s s o e e e e e e e e o - 1-35
1.2.11 DEC Instruction (DEC)----- === =ccmmmmmmmmm e e e e o - 1-36
1.2.12 ADD TIME Instruction (TMADD)- - === == === === oo oo oo o - 1-38
1.2.13 SUBTRACT TIME Instruction (TMSUB) -------------------- 1-39
1.2.14 SPEND TIME Instruction (SPEND) - - -----mccmmmmomoaaaann 1-41
1.2.15 SIGN INVERSION Instruction (INV) == == === ccemmmmmaaaaannn 1-43
1.2.16 1'S COMPLEMENT Instruction (COM) = === ====uccooooooonnn 1-44
1.2.17 ABSOLUTE VALUE CONVERSION Instruction (ABS) - - - ------- 1-45
1.2.18 BINARY CONVERSION Instruction (BIN) === ==--------------- 1-46
1.2.19 BCD CONVERSION Instruction (BCD) - -===-=-==------------- 1-48
1.2.20 PARITY CONVERSION Instruction (PARITY) == =-------ccncnnn 1-50
1.2.21 ASCII CONVERSION Instruction (ASCII) == =====------------ 1-51
1.2.22 ASCII CONVERSION 2 Instruction (BINASC) - - -------------- 1-52
1.2.23 ASCII CONVERSION 3 Instruction (ASCBIN) === ------------- 1-53

vii

1.3.1 AND Instruction (AND) - - = == = == - o m m e e e e - 1-55
1.3.2 OR Instruction (OR) === === === o s e e - 1-56
1.3.3 XOR Instruction (XOR)= = === === mmmmm e e e - 1-57
1.3.4 Comparison Instruction (<) === === ==ccccmmmmmm i o 1-59
1.3.5 Comparison Instruction (<=) == === == == o mmmmm e 1-60
1.3.6 Comparison Instruction (=) -----------------------~-~------ 1-61
1.3.7 Comparison Instruction (1=)--=-==-=--c-cmommmm e 1-62
1.3.8 Comparison Instruction (>=) = = === = - = cm e e m e 1-63
1.3.9 Comparison Instruction (>) == == === -=c-ccmmmmmm oo 1-64
1.3.10 RANGE CHECK Instruction (RCHK) - ------vccccomooanannon 1-65
1.4 Program Control Instructions---------=------------ 1-68
1.4.1 SUB-DRAWING CALL Instruction (SEE) - ------------cnnnn-- 1-68
1.4.2 MOTION PROGRAM CALL Instruction (MSEE) - -------------- 1-69
1.4.3 FUNCTION CALL Instruction (FUNC) == =====--------------- 1-70
1.4.4 DIRECT INPUT STRING Instruction (INS) == ----------------- 1-72
1.4.5 DIRECT OUTPUT STRING Instruction (OUTS) --------------- 1-74
1.4.6 EXTENSION PROGRAM CALL Instruction (XCALL)------------ 1-76
1.4.7 WHILE Instruction (WHILE, END_WHILE) - - - - === === - == - oo - - - 1-77
1.4.8 IF Instruction (IF, END_IF) == --=ccccmmmmm i em e - 1-79
1.4.9 IF Instruction (IF, ELSE, END_IF) == ==---------ocmmmmmmmm 1-80
1.4.10 FOR Instruction (FOR, END_FOR) == -------------nnmmm- 1-82
1.4.11 EXPRESSION Instruction (EXPRESSION)------------------ 1-84
1.5 Basic Function Instructions - - --------------------- 1-85
1.5.1 SQUARE ROOT Instruction (SQRT) ===-==------------------ 1-85
1.5.2 SINE Instruction (SIN) - ------mmmm oo 1-87
1.5.3 COSINE Instruction (COS) - - ------mmmmmmmmm e oo 1-88
1.5.4 TANGENT Instruction (TAN) = - == == = = s m e e e e e e - 1-90
1.5.5 ARC SINE Instruction (ASIN) - === --mmcmmmmme e - 1-91
1.5.6 ARC COSINE Instruction (ACOS) == - === -==---cmmommmann 1-92
1.5.7 ARC TANGENT Instruction (ATAN) === === =ccccmmmmao 1-93
1.5.8 EXPONENT Instruction (EXP)- == =====--c---comcmmmmn 1-94
1.5.9 NATURAL LOGARITHM Instruction (LN) === ==--------------- 1-95
1.5.10 COMMON LOGARITHM Instruction (LOG)------------------ 1-96
1.6 Data Manipulation Instructions--------------------- 1-98
1.6.1 BIT ROTATION LEFT Instruction (ROTL)-------------------- 1-98
1.6.2 BIT ROTATION RIGHT Instruction (ROTR) -=----------------- 1-99
1.6.3 MOVE BITS Instruction (MOVB) = === === mmmmmmmmma e 1-101
1.6.4 MOVE WORD Instruction (MOVW) = = = = === c oo e e e o 1-103
1.6.5 EXCHANGE Instruction (XCHG) - ----=---=---ccmocumnon- 1-105
1.6.6 SET WORDS Instruction (SETW) == =====------------n--- 1-106
1.6.7 BYTE-TO-WORD EXPANSION Instruction (BEXTD)----------- 1-108
1.6.8 WORD-TO-WORD COMPRESSION Instruction (BPRESS)- - - - - - 1-110
1.6.9 BINARY SEARCH Instruction (BSRCH)- - -----------ccnnn-- 1-111
1.6.10 SORT Instruction (SORT) == - === - cmmmmmm e e e - 1-113
1.6.11 BIT SHIFT LEFT Instruction (SHFTL)--------------------- 1-114
1.6.12 BIT SHIFT RIGHT Instruction (SHFTR) == ----------------- 1-115
1.6.13 COPY WORD Instruction (COPYW) -------cccoooooooonon 1-116
1.6.14 BYTE SWAP Instruction (BSWAP)--------ccoooooooooon 1-118

viii

1.7 DDC Instructions - - - === == cccmmmmmm e - 1-120

1.7.1 DEAD ZONE A Instruction (DZA)-=-----------c-cc---- 1-120
1.7.2 DEAD ZONE B Instruction (DZB)-------=--=-=--=--------- 1-122
1.7.3 UPPER/LOWER LIMIT Instruction (LIMIT) == ==-------------- 1-124
1.7.4 PI CONTROL Instruction (Pl)-========-ccmmmmmmaenaaaa - 1-127
1.7.5 PD CONTROL Instruction (PD) == =-------=----“---------- 1-131
1.7.6 PID CONTROL Instruction (PID) == --------c-ccoooocmmmm-- 1-135
1.7.7 FIRST-ORDER LAG Instruction (LAG) - -------------------- 1-139
1.7.8 PHASE LEAD/LAG Instruction (LLAG) - - === ====------------ 1-142
1.7.9 FUNCTION GENERATOR Instruction (FGN)--=--------------- 1-144
1.7.10 INVERSE FUNCTION GENERATOR Instruction (IFGN)---- - - - - 1-147

1.7.11 LINEAR ACCELERATOR/DECELERATOR 1 Instruction (LAU)- - - 1-151
1.7.12 LINEAR ACCELERATOR/DECELERATOR 2 Instruction (SLAU)- - 1-155

1.7.13 PULSE WIDTH MODULATION Instruction (PWM) - - - - == - - - - - - 1-163
1.8 Table Data Manipulation Instructions - -------------- 1-166
1.8.1 BLOCK READ Instruction (TBLBR) -------=-cmommomaonnn- 1-166
1.8.2 BLOCK WRITE Instruction (TBLBW) - - -------c-cmmmmomooo- 1-168
1.8.3 ROW SEARCH Instruction (TBLSRL)---------=------------ 1-170
1.8.4 COLUMN SEARCH Instruction (TBLSRC) ------------------ 1-171
1.8.5 BLOCK CLEAR Instruction (TBLCL)- == -=-==--==cccumocun--- 1-173
1.8.6 BLOCK MOVE Instruction (TBLMV) - - = - = = === o e e e e e oo - 1-175
1.8.7 QUEUE TABLE READ Instructions (QTBLR, QTBLRI)---------- 1177
1.8.8 QUEUE TABLE WRITE Instructions (QTBLW, QTBLWI) - ------- 1-179
1.8.9 QUEUE POINTER CLEAR Instruction (QTBLCL) ------------- 1-182

2 Standard System Function

2.1 Message Functions ----------------------------- 2-2
2.1.1 Send Message Function (MSG-SND) - - - - == === ccmmmmmmmmaaon 2-2
2.1.2 Receive Message Function (MSG-RCV)--------commomomnon-- 2-13

22 TraceFunctions - - - - - - - - == - - - - oo m oo 2-22
2.2.1 Trace Function (TRACE)----- === -cmmmmmm e ie e - 2-22
2.2.2 Data Trace Read Function (DTRC-RD)-----------unomomnon-- 2-23
2.2.3 Failure Trace Read Function (FTRC-RD) - ----------cuounon-- 2-26
2.2.4 Inverter Trace Read Function (ITRC-RD) - -------------=----- 2-31

2.3 Inverter Functions------------------------------ 2-34
2.3.1 Inverter Constant Write Function (ICNS-WR)- - - - - - - = - == == - - - 2-34
2.3.2 Inverter Constant Read Function (ICNS-RD)------------------ 2-39

2.4 Other Functions - - - - -----ommmmm e e oo - 2-42
2.4.1 Counter Function (COUNTER)--=---=--ccmmmmmm i aaea oo - 2-42
2.4.2 First-in First-out Function (FINFOUT) - - - ------cmmmmomomnonon 2-44

Appendix A Expression

A1 EXpression -------- - - mm e o A-2
A1 Operator---------cmm o A-2
A1.2 Operand---------mm s oo a oo A-4
A.1.3 Instructions Available in EXPRESSION Instruction - - - - - - - - - - - - - - A-5

A.2 Recognizable Expression------------------------- A-6
A.2.1 Arithmetic Operator - - - - === === - - e oo A-6
A.2.2 Comparison Operator -------=--=-=-----c--c-o- A-6
A.2.3 LogicOperator ------------mmmm o A-6
A.2.4 Substitution Operator------------------ccao oo A-7
A2.5 FUNCHON - = = = = = s oo m o e e e e A-7
A26 Others - ---- - mmm i m e e A-7

A.3 Application to Ladder Program -----------=--------- A-9
A.3.1 Conditional Expression of IF Instruction---------------------- A-9
A.3.2 Conditional Expression of WHILE Instruction - - - - - - ------------ A-9
A.3.3 Operational Expression of EXPRESSION Instruction - ---------- A-10

Revision History

1

Ladder Program Instructions

This chapter describes in the instructions for relay circuits, numeric operations,
logical operations and comparisons, program controls, basic functions, data

manipulation, DDC, and table data a manipulation.

1.1 Relay Circuit Instructions - ---------cccmomomot 1-4
1.1.1 N.O. Contact Instruction (NOC) == - === = === s e e ee e e e oo 1-4
1.1.2 N.C. Contact Instruction (NCC) - - ------mmmmmmm e e e oo 1-5
1.1.3 10-MS ON-DELAY TIMER Instruction (TON [10ms]) ---=-=-=-------- 1-6
1.1.4 10-MS OFF-DELAY TIMER Instruction (TOFF [10ms]) ----------- 1-7
1.1.5 1-S ON-DELAY TIMER Instruction (TON [1S]) -=-=----======c=-=-- 1-8
1.1.6 1-S OFF-DELAY TIMER Instruction (TOFF [1S]) === ------------ 1-10
1.1.7 RISING PULSE Instruction (ON-PLS) -------mmumemoaaaaao- 1-11
1.1.8 FALLING PULSE Instruction (OFF-PLS) ----------cuuuuo---- 1-13
1.1.9 COIL Instruction (COIL) = === == -cmmmmmmmmmme e e e e e e e o - 1-14
1.1.10 SET COIL Instruction (S-COIL) - ----------cmmmmmmaaao o 1-15
1.1.11 RESET COIL Instruction (R-COIL) = - === === s s e e e e e oo - 1-17

1.2 Numeric Operation Instructions - ------------------- 1-19
1.2.1 STORE Instruction (STORE) ----------ccmmmmmmmme e e oo - 1-19
1.2.2 ADDITION Instruction (ADD) - --- === mcmmmmmmm e e e e - 1-21
1.2.3 EXTENDED ADDITION Instruction (ADDX) -------==mmmueun-- 1-23
1.2.4 SUBTRACTION Instruction (SUB) - = = = = = = === mc e e e e e e - - 1-24
1.2.5 EXTENDED SUBTRACTION Instruction (SUBX) ---=-=--=------- 1-27
1.2.6 MULTIPLICATION Instruction (MUL) === - === ==-mmmmmmmaaaoo- 1-28
1.2.7 DIVISION Instruction (DIV) === === === mmmmmmmee e e e - 1-31
1.2.8 MOD Instruction (MOD) = ---------cccmmmmmmmmmee e e e - 1-33
1.2.9 REM Instruction (REM) === - == - s cmmm e o 1-34
1.2.10 INC Instruction (INC) -------mmmmmmm e e e e e oo 1-35
1.2.11 DEC Instruction (DEC) === --== === -cmmmmmmmmee o eem oo 1-36
1.2.12 ADD TIME Instruction (TMADD) ----------=ccmmmmmooo- 1-38
1.2.13 SUBTRACT TIME Instruction (TMSUB) -------------------- 1-39
1.2.14 SPEND TIME Instruction (SPEND) ---------cccuuooooo-- 1-41
1.2.15 SIGN INVERSION Instruction (INV) = = = = = = == cm e e e e o - 1-43
1.2.16 1°'S COMPLEMENT Instruction (COM) = = = = = == === cm e e e e e - - 1-44

11

1 Ladder Program Instructions

1.2.17 ABSOLUTE VALUE CONVERSION Instruction (ABS) - --------- 1-45
1.2.18 BINARY CONVERSION Instruction (BIN) === =--------------- 1-46
1.2.19 BCD CONVERSION Instruction (BCD) = === =-=-=--------------- 1-48
1.2.20 PARITY CONVERSION Instruction (PARITY) = --------------- 1-50
1.2.21 ASCII CONVERSION Instruction (ASCIl) == ----------------- 1-51
1.2.22 ASCII CONVERSION 2 Instruction (BINASC) - --------------- 1-52
1.2.23 ASCII CONVERSION 3 Instruction (ASCBIN) == -------------- 1-53
1.3 Logical Operation/Comparison Instructions - - - --------- 1-55
1.3.1 AND Instruction (AND) - ------cm i - 1-55
1.3.2 OR Instruction (OR) === === - - o mmm e e e - 1-56
1.3.3 XOR Instruction (XOR) == === === s mmmm e e - 1-57
1.3.4 Comparison Instruction (<) === -===-cccccmmmmmm i o 1-59
1.3.5 Comparison Instruction (<=) ------=--c-mmmmmmm e 1-60
1.3.6 Comparison Instruction (=) -----------------------~--~-~---- 1-61
1.3.7 Comparison Instruction (1=) === === == - cm e e 1-62
1.3.8 Comparison Instruction (>=) == -----cmmmmmm i 1-63
1.3.9 Comparison Instruction (>) === -==---ccccmmmmmm e - 1-64
1.3.10 RANGE CHECK Instruction (RCHK) =---=--=-=-------------- 1-65
1.4 Program Control Instructions - -----------=--------- 1-68
1.4.1 SUB-DRAWING CALL Instruction (SEE) ---------------cnn-- 1-68
1.4.2 MOTION PROGRAM CALL Instruction (MSEE) --------------- 1-69
1.4.3 FUNCTION CALL Instruction (FUNC) =--=-=---=-------ooonn-n 1-70
1.4.4 DIRECT INPUT STRING Instruction (INS) -=------------------ 1-72
1.4.5 DIRECT OUTPUT STRING Instruction (OUTS) --------------- 1-74
1.4.6 EXTENSION PROGRAM CALL Instruction (XCALL) - ----------- 1-76
1.4.7 WHILE Instruction (WHILE, END_WHILE) -------------nnn--- 1-77
1.4.8 IF Instruction (IF, END_IF) == ---cmmmmm i ee e - 1-79
1.4.9 IF Instruction (IF, ELSE, END_IF) --------ccccooooommaaann 1-80
1.4.10 FOR Instruction (FOR, END_FOR) =----------------------- 1-82
1.4.11 EXPRESSION Instruction (EXPRESSION) - ----------------- 1-84
1.5 Basic Function Instructions ----------------------- 1-85
1.5.1 SQUARE ROOT Instruction (SQRT) -=--=-=------------------- 1-85
1.5.2 SINE Instruction (SIN) - ------mmmm e e e oo - 1-87
1.5.3 COSINE Instruction (COS) -------mmmmmmmmmm oo 1-88
1.5.4 TANGENT Instruction (TAN) = - === - oo mmmm e e - 1-90
1.5.5 ARC SINE Instruction (ASIN) - -=---cmmmmmm e ie e - 1-91
1.5.6 ARC COSINE Instruction (ACOS) ---=-=-------mmmommman 1-92
1.5.7 ARC TANGENT Instruction (ATAN) =-----cccmcmmmmao 1-93
1.5.8 EXPONENT Instruction (EXP) === ====-----------ccnmmo-- 1-94
1.5.9 NATURAL LOGARITHM Instruction (LN) - =-=-=----------------- 1-95
1.5.10 COMMON LOGARITHM Instruction (LOG) - - ---------------- 1-96
1.6 Data Manipulation Instructions - - - - - - - - - == ---------- 1-98
1.6.1 BIT ROTATION LEFT Instruction (ROTL) ===-=----------------- 1-98
1.6.2 BIT ROTATION RIGHT Instruction (ROTR) ------------------ 1-99
1.6.3 MOVE BITS Instruction (MOVB) ---------mmmmmmmaa o 1-101
1.6.4 MOVE WORD Instruction (MOVW) == ---mmmmmmmaa e 1-103
1.6.5 EXCHANGE Instruction (XCHG) === --=---cmccmmmomaan 1-105
1.6.6 SET WORDS Instruction (SETW) ==-=-=-----------cmmmmmmnn- 1-106
1.6.7 BYTE-TO-WORD EXPANSION Instruction (BEXTD) - ---------- 1-108

1-2

1.6.8 WORD-TO-WORD COMPRESSION Instruction (BPRESS) ------ 1-110

1.6.9 BINARY SEARCH Instruction (BSRCH) --=-=----------ccnnnnn 1-111
1.6.10 SORT Instruction (SORT) ---------cmmmmmmmmim e e e e - 1-113
1.6.11 BIT SHIFT LEFT Instruction (SHFTL) -------=------------- 1-114
1.6.12 BIT SHIFT RIGHT Instruction (SHFTR) == ------------------ 1-115
1.6.13 COPY WORD Instruction (COPYW) - === cmmmmmmo e oo o 1-116
1.6.14 BYTE SWAP Instruction (BSWAP) - - === ccmmmmmman oo 1-118
1.7 DDC Instructions - --=-----=-mcmmmm e oo 1-120
1.7.1 DEAD ZONE A Instruction (DZA) -----==-=-cceeccooom- 1-120
1.7.2 DEAD ZONE B Instruction (DZB) - ------=-==-=--=-«------- 1-122
1.7.3 UPPER/LOWER LIMIT Instruction (LIMIT) -=-=--===----------- 1-124
1.7.4 PI CONTROL Instruction (PI) === === == ccmmmmmmcem e oo - 1-127
1.7.5 PD CONTROL Instruction (PD) ---------mmmmmmmoaamoo o 1-131
1.7.6 PID CONTROL Instruction (PID) --=---=====cceeccc----- 1-135
1.7.7 FIRST-ORDER LAG Instruction (LAG) -----=---====--------- 1-139
1.7.8 PHASE LEAD/LAG Instruction (LLAG) --------mmmmoooaooom- 1-142
1.7.9 FUNCTION GENERATOR Instruction (FGN) = === ==----------- 1-144
1.7.10 INVERSE FUNCTION GENERATOR Instruction (IFGN) - - - - - - - - 1-147

1.7.11 LINEAR ACCELERATOR/DECELERATOR 1 Instruction (LAU) - - -1-151
1.7.12 LINEAR ACCELERATOR/DECELERATOR 2 Instruction (SLAU) - - 1-155

1.7.13 PULSE WIDTH MODULATION Instruction (PWM) - ----------- 1-163
1.8 Table Data Manipulation Instructions --------------- 1-166
1.8.1 BLOCK READ Instruction (TBLBR) ==-------=============-= 1-166
1.8.2 BLOCK WRITE Instruction (TBLBW) ==-=--===ccceecemmmm-- 1-168
1.8.3 ROW SEARCH Instruction (TBLSRL) == === == === ===ccuummm-- 1-170
1.8.4 COLUMN SEARCH Instruction (TBLSRC) -----===========-- 1-171
1.8.5 BLOCK CLEAR Instruction (TBLCL) = = === === === ====cc===-- 1-173
1.8.6 BLOCK MOVE Instruction (TBLMV) == === === =c2ccecmmmmm-- 1-175
1.8.7 QUEUE TABLE READ Instructions (QTBLR, QTBLRI) - - -------- 1-177
1.8.8 QUEUE TABLE WRITE Instructions (QTBLW, QTBLWI) - - - - - - - - 1-179
1.8.9 QUEUE POINTER CLEAR Instruction (QTBLCL) - --==--==----- 1-182

1-3

1 Ladder Program Instructions

1.1.1 N.O. Contact Instruction (NOC)

1.1 Relay Circuit Instructions

1.1.1 N.O. Contact Instruction (NOC)

B Outline

The NOC sets the value of the bit output to ON if the value of the referenced register is 1
(ON), and to OFF is the value of the referenced register is 0 (OFF).

B Format
Symbol: NOC
Full Name: NO Contact
? Category: RELAY

ME00000 1 ,
—'l I_ Icon: '_I_H

B Parameter

Parameter Name Setting

Relay No. * Any bit type register
* Any bit type register with subscript

B Program Example

‘When MW000100 becomes ON, MB000101 becomes ON.

MBUUUIIUU HEO00101

ON

MB000100 OFF 4,—\—/ \—

ON
L] I

MB000101 OFF

1.1 Relay Circuit Instructions

1.1.2 N.C. Contact Instruction (NCC)

B Outline

The NCC sets the value of the bit output to OFF when the value of the referenced register is
1 (ON), and to ON when the value of the referenced register is 0 (OFF).

B Format
Symbol: NCC

Full Name: NC Contact
Category: RELAY

Icon: I,,I

9
MBOODOODZ

B Parameter

Parameter Name Setting

Relay No. * Any bit type register
* Any bit type register with subscript

B Program Example

When MB000100 becomes ON, MB000101 becomes OFF.

MBUD&IDD HEOO0101
1

orr — I 1|

MB000100 OFF \—
A I

MBO000101 OFF

1-5

1 Ladder Program Instructions

1.1.3 10-MS ON-DELAY TIMER Instruction (TON [10ms])

1.1.3 10-MS ON-DELAY TIMER Instruction (TON [10ms])

B Outline

The TON [10ms] is executed while the immediately-preceding value of the bit input is ON.
The value of the bit output is set to ON when the timer value reaches the set value. The
timer stops when the immediately-preceding value of the bit input is set to OFF during tim-
ing. When the bit input is set to ON again, timing restarts from the beginning (0). A value
equal to the actual timed time (10 ms Unit) is stored in the timer value register.

The maximum error of the count is 10 ms or less.

B Format
Symbol: TON [10ms]
Full Name: On-Delay Timer [10ms]
w={ TON[10ms] g]- Category: RELAY
Set 7 Icon: TON
MWOO00 1 ﬂ
Count ?
MWononz

B Parameter

Parameter Name Setting

Set (set value) * Any integer type register

* Any integer type register with subscript (0 to 65535:in 0.01 sec
unit)

* Constant

Count (timer value) * Any integer type register (except for # and C registers)
* Any integer type register with subscript (except for # and C reg-
isters)

1-6

1.1 Relay Circuit Instructions

B Program Example

MEODO100 HEOD0101
TON[10ms] =

Set 500

Count M¥OO0011

ON
MB000100 OFF Q ‘

ON ‘
MB000101 OFF

MB000011 0 5.00s-Ts

4
o

(Ts = Scan set value)

IMPORTANT MWO00011 works as timer count register. Thus, it is essential that there is no overlap. Set an unused

register.

1.1.4 10-MS OFF-DELAY TIMER Instruction (TOFF [10ms])

H Outline

The TOFF [10ms] is executed while the immediately-preceding value of the bit input is
OFF. The value of the bit output is set to OFF when the timer value reaches the set value.
The timer stops when the immediately-preceding value of the bit input is set to ON during
timing. When the bit input is set to OFF again, timing restarts from the beginning (0). A
value equal to the actual timed time (10 ms Unit) is stored in the timer value register.

The maximum error of the count is 10 ms or less.

B Format
Symbol: TOFF [10ms]
Full Name: Off-Delay Timer [10 ms]
=i TOF[10ms] g]- Category: RELAY
Set 7 Icon: TOF
My00003 ﬂ
Count ?
MW00004

1-7

1 Ladder Program Instructions

1.1.5 1-S ON-DELAY TIMER Instruction (TON [1s])

B Parameter

Parameter Name Setting

Set (set value) * Any integer type register

* Any integer type register with subscript (0 to 65535: 0.01 sec
unit)

* Constant

Count (timer value) * Any integer type register (except for # and C registers)

* Any integer type register with subscript (except for # and C reg-
isters)

B Program Example

WBOOO 100 WBOOO 101
s TOF[10ms] 2
Set 00

Count HMWOODD11

ON
MB000100 OFF

ON
MB000101 OFF

L

I

500

MB000011 [0 [
500s-Ts
< >

(Ts = Scan set value)

IMPORTANT MWO00011 works as timer count register. Thus, it is essential that there is no overlap. Set an unused
register.

1.1.5 1-S ON-DELAY TIMER Instruction (TON [1s])

B Outline

The TON [1s] times while the immediately-preceding value of the bit input is ON. The
value of the bit output is set to ON when the timer value reaches the set value. The timer
stops when the immediately-preceding value of the bit input is set to ON during timing.
When the bit input is set to OFF again, timing restarts from the beginning (0). A value equal
to the actual timed time (1 s Unit) is stored in the timer value register.

The maximum error of the count is 1 s or less.

1-8

1.1 Relay Circuit Instructions

B Format

Symbol: TON [1s]
Full Name: On-Delay Timer [1s]

—l TON[1s] E'- Category: RELAY

Set % Icon: TON
MWO0005 AFJ
Count ?
MWOO00e

B Parameter

Parameter Name Setting
Set (set value) * Any integer type register
* Any integer type register with subscript (0 to 65535: 1 sec unit)
* Constant
Count (timer value) * Any integer type register (except for # and C registers)
* Any integer type register with subscript (except for # and C reg-
isters)
B Program Example
MEODD100 MEODD101
Set BO0
Count MWOO011
ON
MB000100 OFF Q ‘
ON ‘
MB000101 OFF
0] J -
MB000011 0 I 500s-Ts
[>

(Ts = Scan set value)

IMPORTANT MWO00011 works as timer count register. Thus, it is essential that there is no overlap. Set an unused

register.

1-9

1 Ladder Program Instructions

1.1.6 1-S OFF-DELAY TIMER Instruction (TOFF [1s])

1.1.6 1-S OFF-DELAY TIMER Instruction (TOFF [1s])

B Outline

The TOFF [1s] times while the immediately-preceding value of the bit input is OFF. The
value of the bit output is set to OFF when the timer value reaches the set value. The timer
stops when the immediately-preceding value of the bit input is set to ON during timing.
When the bit input is set to OFF again, timing restarts from the beginning (0). A value equal
to the actual timed time (1 s Unit) is stored in the timer value register.

The maximum error of the count is 1 s or less.

B Format

Symbol: TOFF [1s]
Full Name: Off-Delay Timer [1s]

-l TOF [1s] El- Category: RELAY

Set 1 Icon: TOF
WW00007 14;1
Count 7
MWoooo8

B Parameter

Parameter Name Setting
Set (set value) * Any integer type register
* Any integer type register with subscript (0 to 65535: 1 sec unit)
* Constant
Count (timer value) * Any integer type register (except for # and C registers)

* Any integer type register with subscript (except for # and C reg-
isters)

1.1 Relay Circuit Instructions

IMPORTANT

B Program Example

HEOO0100

ON
MB000100 OFF

MB000101 OFF

500

MB000011 [0

Set 500

Count MWOOOT1

MEOD0101

N
ON

I

y 500s-Ts .

(Ts = Scan set value)

MWO00011 works as timer count register. Thus, it is essential that there is no overlap. Set an unused

register.

1.1.7 RISING PULSE Instruction (ON-PLS)

B Outline

The ON-PLS sets the value of the bit input to ON during one scan when the immediately-

preceding value of the bit output changes from OFF to ON. The designated register is used

to store the previous value of the bit output.

B Format

9
MBOODDDS

B Parameter

Symbol: ON-PLS
Full Name: Rise Pulse
Category: RELAY

Icon: £

Parameter Name

Setting

Register No.

* Any bit type register (except for # and C register)
* Any bit type register with subscript (except for # and C regis-
ters)

1 Ladder Program Instructions

1.1.7 RISING PULSE Instruction (ON-PLS)

B Program Example

When IB00001 turns ON from OFF, MB000101 turns ON and stays ON during 1 scan.
MBO000100 is used to store the previous value of IB000O1.

100001 MEODD 100 MBOOD101
I
ON
IBO0001 OFF
ON
MB000100 OFF
oN [[]
MB000101 OFF 1 i
1 scan 1 scan
Register status of Rising pulse instruction is shown in Table 1.1.
Table 1.1 Register Status with Rising Pulse Instruction
Input Result
1BO00O1 MB000100 MB000100 MB000101
(Previous value of (IBO0001 stored)
IBO0001)
OFF OFF OFF OFF
OFF ON OFF OFF
ON OFF ON ON
ON ON ON OFF

Note: Case of Program Example, the instruction is used not for rise detec-

tion of MB000100 but is used for rise detection of IBO0001.
MBO000100 is used only for storing the previous value of IBO0001.

1.1 Relay Circuit Instructions

1.1.8 FALLING PULSE Instruction (OFF-PLS)

B Outline

The OFF-PLS sets the value of the bit input to ON for one scan when the immediately-pre-
ceding value of the bit output changes from ON to OFF. The designated register is used to

store the previous value of the bit output.

B Format
Symbol: OFF-PLS
a Full Name: Fall Pulse
MBO00004 Category: RELAY

Icon: i

B Parameter

Parameter Name Setting
Register No. * Any bit type register (except for # and C register)
* Any bit type register with subscript (except for # and C regis-
ters)

B Program Example

When IB00001 turns OFF, MB000101 turns ON and stays ON during 1 scan. MB000100 is

used to store the previous value of IBO00O1.

IBOO001 MBODO100 WBO00101
1 |
1 -~

ON
IB00001 OFF

ON
MB000100 OFF

on] 1

MB000101 OFF T T

1 scan 1 scan

1 Ladder Program Instructions

1.1.9 COIL Instruction (COIL)

Register status of Falling pulse instruction is shown in Table 1.2.

Table 1.2 Register Status with Falling Pulse Instruction

Input Result
IBO0001 MB000100 MB000100 MB000101
(Previous value of (IBO0001 stored)
IBO0001)
OFF OFF OFF OFF
OFF ON OFF ON
ON OFF ON OFF
ON ON ON OFF

Note: Case of Program Example, the instruction is used not for fall detec-

tion of MB000100 but is used for fall detection of IBO00O01.
MBO000100 is used only for storing the previous value of IBO0001.

1.1.9 COIL Instruction (COIL)

B Outline

The COIL sets the value of the referenced register to 1 (ON) when the immediately-preced-

ing value of the bit input is ON, and to 0 (OFF) when the immediately-preceding value of

the bit input is OFF.

B Format

i
MBOOOODS

B Parameter

Symbol: COIL
Full Name: Coil
Category: RELAY

Icon: gJ

Parameter Name

Setting

Coil No.

* Any bit type register (except for # and C register)

* Any bit type register with subscript (except # and C registers)

1.1 Relay Circuit Instructions

B Program Example

When MB000100 becomes ON, MB000101 becomes ON.

MBEIDDIIDD

HEOO0101

e L]
MB000100 OFF [

o — T 1]
MB000101 OFF I—

1.1.10 SET COIL Instruction (S-COIL)

H Outline

The S-COIL turns ON the output when the execution condition is satisfied, and maintains

the ON state.

B Format

?
MBOOOO0OE

B Parameter

Symbol: S-COIL
Full Name: Set Coil
Category: RELAY

Icon: @

Parameter Name

Setting

Coil No.

* Any bit type register (except for # and C register)
* Any bit type register with subscript (except for # and C regis-
ters)

1 Ladder Program Instructions

1.1.10 SET COIL Instruction (S-COIL)

B Program Example

Case where the same output destination is designated multiple times.

G
MBOOOIOOO

i
OBOOD00

?
MBOOOIOO'I

1

OBOODOD

G
MBOOOIOO2

1

OBOOOOD

v
MBOOOIOOS

1

OBOODOD

The above example acts as in the graph below.

MB000000

MB000001

MB000002

MBO000003

0OB00000

* When OB00000 is OFF, with the "set coil" instruction, OB00000 turns

ON.

I

1.1 Relay Circuit Instructions

1.1.11 RESET COIL Instruction (R-COIL)

B Outline

The R-COIL turns OFF the output when the execution condition is satisfied, and maintains

the OFF state.

H Format

q
MBOOODO?

B Parameter

Symbol: R-COIL
Full Name: Reset Coil
Category: RELAY

Icon: @

Parameter Name

Setting

Coil No.

* Any bit type register (except for # and C register)
* Any bit type register with subscript (except for # and C regis-
ters)

B Program Example

Case where the same output destination is designated multiple times.

?
MBOOOIOOO

G
OBO0000

7
MBOOOIOO'I

1

0BO0000

?
MBOOOIOO 2

1

OEOO000

?
MBOOOIOO 3

1

OBO0O00

i

1 Ladder Program Instructions

1.1.11 RESET COIL Instruction (R-COIL)

The above example acts as in the graph below.

MB000000
MB000001
MB000002
MB000003
*
A A 4) 4 4
0OB00000

* When OB00000 is ON, with the "reset coil" instruction, OB00000 turns
OFF.

1.2 Numeric Operation Instructions

1.2 Numeric Operation Instructions

1.2.1 STORE Instruction (STORE)

H Outline

The STORE instruction stores the contents of Source in the Dest.

B Format
Symbol: STORE
Full Name: Store
- STORE fo) o Category: MATH
Source 7 Ieon:
MWoo0001 j
Dest 7

Myoonoz

B Parameter

Parameter Name Setting

Source * Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Dest * Any integer type, double-length integer type and real number
type register (except for # and C registers)

* Any integer type, double-length integer type and real number
type register with subscript (except for # and C registers)

* Subscript register

1 Ladder Program Instructions
1.2.1 STORE Instruction (STORE)

B Program Example

o B STORE g]

Source 12345
Dest MWOD100 (12345)

= STORE g]-

Source 1234587

Dest MLOO100 (1234567)

= STORE g]

Source 1.234560E+000

Dest DF00100 (1.234586)

— STORE Z}

Source 1.234587E+000
Dest DWOD100 (oooot)

—f STORE E]

Source 1.234567E+005

Dest DLOO10D (123456)

|NFO When a double-length integer type data is stored in an integer type register, the lower 16 bits are stored

as they are. Be careful since an operation error will not occur even if the data to be stored exceeds the
integer range (—32768 to 32767).

Y
STORE E'

Source MLOO100 (EEB3E)

Dest MWOOZOO (-00a013}

1-20

1.2 Numeric Operation Instructions

1.2.2 ADDITION Instruction (ADD)

B Outline

The ADD instruction adds integer, double-length integer, and real number values. Source B

is added to Source A and stored in the Dest. If the result of adding integer values is greater

than 32767, an overflow error occurs. If the result of adding double-length integer values is

greater than 2147483647, an overflow error occurs.

H Format

Symbol: ADD
Full Name: Add

meef] DD
Sourced ?
MY00003
SourceB ?
MY00004
Dest 7
M¥00005

B Parameter

Category: MATH

Icon: ﬂ

Parameter Name

Setting

Source A

* Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Source B

* Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Dest

* Any integer type, double-length integer type and real number
type register (except for # and C registers)

* Any integer type, double-length integer type and real number
type register with subscript (except for # and C registers)

* Subscript register

1-21

1 Ladder Program Instructions
1.2.2 ADDITION Instruction (ADD)

B Program Example

Addition of Integer Type Values

— ADD g]:
Sourced MY0D100 (300)
SourceB 12345
Dest MWOOD101 (15345)
— 4DD a]
Sourced MLOD102 {100000)
SourceB MLOD104 (zoooon)
Dest MLOOD108 (300000)

Addition of Real Number Type Values

—] ADD
Sourceh DFO0200 (10.0)
SourceB 1.234580E+000
Dest DF00202 (11.23458)
Sourced DFO0204 {0.15)
SourceB DW00D206 (00006)
Dest DF00208 (6.15)
—_—] ADD gr
Sourced DFOD210 (3.51)
SourceB DLOD212 (1o0000)
Dest DF00214 (100003.51)

In the case of double-length integer type values, an operation using addition and subtraction instruc-
tions (+, —, ++, --) will be a 32-bit operation. However, when an addition or subtraction instruction is
used in a remainder correction operation (where a multiplication instruction (X) is the immediately pre-
ceding instruction and a division instruction (+) is the immediately subsequent instruction), the opera-
tion will be a 64-bit operation.

1-22

1.2 Numeric Operation Instructions

1.2.3 EXTENDED ADDITION Instruction (ADDX)

B Outline

The ADDX instruction adds integer values. Source B is added to Source A and stored in the
Dest. No operation error occurs, even if the operation results in an overflow. Otherwise, the
ADDX is much the same as the ADD.

B Format

Symbol: ADDX
Full Name: Expanded Add

e | ADDX E]— Category: MATH

Sourced ? [con: j.ﬂ
MW0O000E
SourceB 7
M¥o0007
Dest ?
M¥00008

B Parameter

Parameter Name Setting

Source A * Any integer type and double-length integer type register

* Any integer type and double-length integer type register with
subscript

* Subscript register

* Constant

Source B * Any integer type and double-length integer type register

* Any integer type and double-length integer type register with
subscript

* Subscript register

* Constant

Dest * Any integer type and double-length integer type register
(except for # and C registers)

* Any integer type and double-length integer type register with
subscript (except for # and C registers)

* Subscript register

1-23

1 Ladder Program Instructions
1.2.4 SUBTRACTION Instruction (SUB)

B Program Example

This instruction is used in cases where it is desirable that operation errors do not occur in the

addition of integer type values.

ADD =
Sourced MWOI0100 (32767
SourceB 1
Dest WWOO101 (-32768)

} In the case of double-length integer type values, an operation using addition and subtraction instruc-
% tions (+, —, ++, --) will be a 32-bit operation. However, when an addition or subtraction instruction is
used in a remainder correction operation (where a multiplication instruction (X) is the immediately pre-
ceding instruction and a division instruction (+) is the immediately subsequent instruction), the opera-
tion will be a 64-bit operation.

1.2.4 SUBTRACTION Instruction (SUB)

B Outline

The SUB instruction subtracts integer, double-length integer, and real number values. Source
B is subtracted to Source A and stored in the Dest. If the result of subtracting integer values
is smaller than -32768, an underflow error occurs. If the result of subtracting double-length

integer values is smaller than -2147483648, an underflow error occurs.
B Format

Symbol: SUB
Full Name: Subtract

e | SUB g]- Category: MATH
Sourced 7 Teon: |
WWooons ——J

SourceB %
MYoo010

Dest %
MWoo011

1-24

1.2 Numeric Operation Instructions

B Parameter

Parameter Name Setting

Source A * Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Source B * Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register
* Constant

Dest * Any integer type, double-length integer type and real number
type register (except for # and C registers)

* Any integer type, double-length integer type and real number
type register with subscript (except for # and C registers)

* Subscript register

B Program Example

Subtraction of Integer Type Values

— SUB Z}

Sourced MWO0100 (03000)

SourceB 12345

Dest MWOO101 (-09345)
Sourced MLOD102 (100000}
SourceB MLOD104 (200000)

Dest MLOD10S (-100000)

1-25

1 Ladder Program Instructions
1.2.4 SUBTRACTION Instruction (SUB)

Subtraction of Real Number Type Values

—{ suB f=)
Sourced DFO0200 (10.0)
SourceB 1.234560E+000
Dest DFO0202 (8.76544)
—d SUB ZF
Sourced DFOD204 (0.15)
SourceB DW00206 (ooooe)
Dest DFDO0208 (-5.85)

—f SUB Z)

Sourced DFO0Z10 (3.51)
SourceB DLO0212 (100000)
Dest DFO0214 (-99996.49)

In the case of double-length integer type values, an operation using addition and subtraction instruc-

ﬁ
z
]
N~

tions (+, —, ++, --) will be a 32-bit operation. However, when an addition or subtraction instruction is

used in a remainder correction operation (where a multiplication instruction (X) is the immediately pre-
ceding instruction and a division instruction (<) is the immediately subsequent instruction), the opera-
tion will be a 64-bit operation.

1-26

1.2 Numeric Operation Instructions

1.2.5 EXTENDED SUBTRACTION Instruction (SUBX)

B Outline

The SUBX instruction subtracts integer values. No operation error occurs, even if the oper-

ation results in an underflow.

B Format
Symbol: SUBX
Full Name: Expanded Subtract
e | SUBY g]— Category: MATH
Sourced ? Teon: __
MWooo12
sourceB ?
MWoon13
Dest ?
MWoon14
B Parameter
Parameter Name Setting
Source A * Any integer type and double-length integer type register
* Any integer type and double-length integer type register with
subscript
* Subscript register
* Constant
Source B * Any integer type and double-length integer type register
* Any integer type and double-length integer type register with
subscript
* Subscript register
* Constant
Dest * Any integer type and double-length integer type register
(except for # and C registers)
* Any integer type and double-length integer type register with
subscript (except for # and C registers)
* Subscript register

1-27

1 Ladder Program Instructions
1.2.6 MULTIPLICATION Instruction (MUL)

B Program Example

This instruction is used in cases where it is desirable that operation errors do not occur in the

subtraction of integer type values.

SUBH =
Sourced WWO0100 (-32768)
SourceB 1
Dest MWOO101 (32787)

& In the case of double-length integer type values, an operation using addition and subtraction instruc-
% tions (+, —, ++, --) will be a 32-bit operation. However, when an addition or subtraction instruction is
used in a remainder correction operation (where a multiplication instruction (X) is the immediately pre-
ceding instruction and a division instruction () is the immediately subsequent instruction), the opera-

tion will be a 64-bit operation.

1.2.6 MULTIPLICATION Instruction (MUL)

B Outline

The MUL instruction multiplies integer, double-length integer, and real number values.

Source B is multiplied to Source A and stored in the Dest.

B Format
Symbol: MUL
Full Name: Multiply
sel] MUL EJ- Category: MATH
Sourced ? [eon:
MW00D15 -EJ
SourceB ?
MW0O0D 16
Dest 2
HW00D17

1-28

1.2 Numeric Operation Instructions

B Parameter

Parameter Name Setting

Source A * Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Source B * Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register
* Constant

Dest * Any integer type, double-length integer type and real number
type register (except for # and C registers)

* Any integer type, double-length integer type and real number
type register with subscript (except for # and C registers)
* Subscript register

B Program Example

Multiplication of Integer Type Values

— MUL Zl}
Sourced HWOD100 (01234}
SourceB 3
Dest MWOO0101 (03702)
] MUL E]
Sourced MW0D102 (ooo10)
SourceB M¥00103 (10000)
Dest MLOO104 (1o0000)

1-29

1 Ladder Program Instructions

1.2.6 MULTIPLICATION Instruction (MUL)

Multiplication of Double-length Integer Type Values

et WUL ﬂ]-
Source# MLOD100 (100000)
SourceB MLOD102 (003000)
Dest MLOOD104 (900000000)
- WUL ﬁ]
Sourced MLOO10E (100000)
SourceB MLOD108 (100000)
Dest MLOD112 (10000000000)

Multiplication of Real Number Type Values

o MUL z!}
Sourced DF00200 (10.0)
SourceB DFOD100 (3.0)
Dest DFOD202 (30.0)
Sourced DFO0204 {0.15)
SourceB DY00208 (ooooz)
Dest DF00208 (0.3)
— MUL g]
Sourced DFO0210 {0.15)
SourceB DLOD212 (100000)
Dest DFD0214 (15000.0)

In the case of double-length integer type values, an operation using addition and subtraction instruc-

ﬁ
z
o
N~

tions (+, —, ++, --) will be a 32-bit operation. However, when an addition or subtraction instruction is

used in a remainder correction operation (where a multiplication instruction (X) is the immediately pre-
ceding instruction and a division instruction () is the immediately subsequent instruction), the opera-
tion will be a 64-bit operation.

1-30

1.2 Numeric Operation Instructions

1.2.7 DIVISION Instruction (DIV)

B Outline

The DIV instruction divides integer, double-length integer, and real number values. Source
A is divided by Source B and stored in the Dest.

H Format

Symbol: DIV
Full Name: Divide

S DIY
Sourced ?
MWODD18
SourceB ?
MW00013
Dest %
MWo0020

B Parameter

Category: MATH

Icon: =
L.}
-

Parameter Name

Setting

Source A

* Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Source B

* Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Dest

* Any integer type, double-length integer type and real number
type register (except for # and C registers)

* Any integer type, double-length integer type and real number
type register with subscript (except for # and C registers)

* Subscript register

1-31

1 Ladder Program Instructions

1.2.7 DIVISION Instruction (DIV)

B Program Example

Division of Real Number Type Values

—

DIV

zr

Sourceé DFO0200 (1237.5)
SourceB 3.000000E+000
Dest DFODZD2 (412.5)
—] DIV E]—
Source# DFOD200 (1237.5)
SourceB 3.000000E+000 (3.0)
Dest DF00Z02 (412.5)
e DIY ﬁ]
Sourced DFO0DZ00 (1237.5)
SourceB DW00208 (oooos)
Dest DFO00Z210 (412.5)
— DIV E}
Sourced DFOD212 (100000.0)
SourceB DLOD214 (40000)
Dest DFO00218 (2.5)

1-32

1.2 Numeric Operation Instructions

1.2.8 MOD Instruction (MOD)

B Outline

The MOD instruction outputs the remainder of integer or double-length integer division to
the Dest. Always execute the MOD immediately after the division instruction. If the MOD
is executed somewhere else, the operation results obtained before the next entry instruction

cannot be guaranteed.

H Format

Symbol: MOD
Full Name: Integer Remainder

- MOD _aj— Category: MATH

Dest ? Teon: ,@
MLOODD 1

B Parameter

Parameter Name Setting

Dest * Any integer type and double-length integer type register
(except for # and C registers)

* Any integer type and double-length integer type register with
subscript (except for # and C registers)

* Subscript register

B Program Example

The quotient of an integer type division is stoned in MWO00101 and the remainder is stored

in MW00102.
—f DIV
Sourced MW00100 {ooo10)
SourceB 3
Dest MWOODID1 (0onng)

Dest MWOO102

(00001) I

1-33

1 Ladder Program Instructions

1.2.9 REM Instruction (REM)

1.2.9 REM Instruction (REM)

B Outline

The REM instruction outputs the remainder of real number division to the Dest. Here, the
remainder refers to the remainder obtained by repeatedly subtracting the Base designated by
the Source. Thus, the n is the number of times subtraction is repeated.

Dest = Source - (Base xn) (0 < Dest < Base)

B Format

Symbol: REM
Full Name: Real Remainder

e | REM g— Category: MATH

Source ? Icon: REM
MFOOD0D1 ——J
Base 7
MFOODD2
Dest 17
MFOODD3

B Parameter

Parameter Name Setting

Source * Any real number type register
* Any real number type register with subscript
* Constant

Base * Any real number type register
* Any real number type register with subscript
* Constant

Dest * Any real number type register (except for # and C register)
* Any real number type register with subscript (except for # and
C register)

B Program Example

The remainder of the division of the real number variable MF00200 by the constant value,

1.5, is determined and stored in DF00202.

il REM =}

Source MFO0200 (4.0}

Baze 1.500000E+000
Dest DFODZOZ (1.0}

1-34

1.2 Numeric Operation Instructions

1.2.10 INC Instruction (INC)

B Outline

The INC instruction adds 1 to the designated integer or double-length integer register. For
integer registers, no overflow error occurs even if the result of addition exceeds 32767.

Likewise, no overflow error occurs for double-length integer registers.

B Format

Symbol: INC
Full Name: Increment

= INC E]- Category: MATH
Dest ? Icon:
W¥oo021 +—1J

B Parameter

Parameter Name Setting

Dest * Any integer type and double-length integer type register
(except for # and C registers)

* Any integer type and double-length integer type register with
subscript (except for # and C registers)

* Subscript register

B Program Example

Integer Type

ADDY =
Sourced MWOOT00

SourceB 1

Dest MWOOD100

ﬁ equivalent

Dest WRWODT0D I

1-35

1 Ladder Program Instructions

1.2.11 DEC Instruction (DEC)

Double-length Integer Type

ADDH =)
Sourced MLOOD100

SourceB 1

Dest MLOODT0D

1’1 equivalent

Dest MLOO10D I

1.2.11 DEC Instruction (DEC)

B Outline

The DEC instruction subtracts 1 from the designated integer or double-length integer regis-
ter. For integer registers, no underflow error occurs even if the result of subtraction is less

than -32768. Likewise, no underflow error occurs for double-length integer registers.

B Format

Symbol: DEC
Full Name: Decrement

- - Category: MATH
Dest ? Icon: :ﬂ
Mio0022

B Parameter

Parameter Name Setting

Dest * Any integer type and double-length integer type register
(except for # and C registers)

* Any integer type and double-length integer type register with
subscript (except for # and C registers)

* Subscript register

1-36

1.2 Numeric Operation Instructions

B Program Example

Integer Type

SUBY F |
Sourced MWOO100

SourceB 1

Dest MWOOD100

ﬁ equivalent

Dest WWOD10D I

Double-length Integer Type

SURH =)
Sourced MLOOT0D

SourceB 1

Dest MLODT0D

ﬁ equivalent

Dest MLODTO0D I

1-37

1 Ladder Program Instructions
1.2.12 ADD TIME Instruction (TMADD)

1.2.12 ADD TIME Instruction (TMADD)

B Outline

The TMADD instruction adds one time (hours/minutes/seconds) to another time. The
Source is added to the Dest and the result is stored in the Dest. The formats of Source and

Dest are as follows.

Table 1.3 Data Format

Register Offset Data Contents Data Range (BCD)
0 Hours/minutes Upper byte (hours) : 0 to 23
Lower byte (minutes) : 0 to 59
1 Seconds 0000 to 0059

If the contents of the Dest and Source and the operation result are with the appropriate
ranges, the operation will be performed normally. After the operation is completed, the /Sta-
tus] is turned OFF. If the contents of the Dest and Source are outside the data ranges, the
operation is not performed. In this case, 9999H is stored in the column "second" of the Dest,
and the [Status] is turned ON.

B Format

Symbol: TMADD
Full Name: Time Add

=} THADD & Category: MATH
9 Icon:
Source 7 g‘

MWwoon22

Dest ?
MWo0024

[Status] ?
MBOD0ODD1

B Parameter

Parameter Name Setting
Source * Any integer type register
* Any integer type register with subscript
Dest * Any integer type register (except for # and C register)
* Any integer type register with subscript (except for # and C reg-
ister)
[Status]* * Any bit type register (except for # and C register)

* Any bit type register with subscript (except for # and C register)

* Possible to omit.

1-38

1.2 Numeric Operation Instructions

B Program Example

The time data in DW0000 to DW00101 is added to the time data in MW00100 to
MWO00101.

THADD Jr|

Source DYOOODOD
Dest M¥OO100
[Status] DEODDI0OD

8 hrs 40 min 32sec + 1 hrs 22 min 16 sec = 10 hrs 2 min 48 sec
(MWO00100) (MW00101) (DW00000) (DW00001) (MW00100) (MW00101)

Time Data Before Execution After Execution
MWO00100 0840H 1002H
MwWO00101 0032H 0048H
DWO00000 0122H 0122H
DWO00001 0016H 0016H

1.2.13 SUBTRACT TIME Instruction (TMSUB)

B Outline

The TMSUB instruction subtracts one time (hours/minutes/seconds) from another time. The

Source is subtracted from the Dest and the result is stored in the Dest. The formats of

Source and Dest are as follows.

Table 1.4 Data Format

Register Offset Data Contents Data Range (BCD)
0 Hours/minutes Upper byte (hours) : 0 to 23
Lower byte (minutes) : 0 to 59
1 Seconds 0000 to 0059

If the contents of the Dest and Source are with the appropriate ranges, the operation will be
performed normally. After the operation is completed, the /Status] is turned OFF. If the con-
tents of the Dest and Source are outside the data ranges, the operation is not performed. In
this case, 9999H is stored in the column "second" of the Dest, and the /Status] is turned ON.

1-39

1 Ladder Program Instructions

1.2.13 SUBTRACT TIME Instruction (TMSUB)

B Format

= THSUB Zj=

Source ?
Mwoonz4
Dest ?
M¥00026
[Status] ?
MBOODODO2

B Parameter

Symbol: TMSUB
Full Name: Time Sub
Category: MATH

Icon: %

Parameter Name

Setting

Source

* Any integer type register
* Any integer type register with subscript

Dest

* Any integer type register (except for # and C register)
* Any integer type register with subscript (except for # and C reg-
ister)

[Status]*

* Any bit type register (except for # and C register)
* Any bit type register with subscript (except for # and C register)

* Possible to omit.

B Program Example

The time data in DW0000 to DWO0001 is subtracted to the time data in MW00100 to

MWO00101.

TH3UB =

Source DWOOOOO
Dest MWOO10D
[Status] DBOOO10D

8 hrs 40 min 32sec + 1 hrs 22 min 16 sec = 7 hrs 18 min 16 sec

(MWO00100) (MW00101) (DW00000) (DW00001) (MW00100) (MW00101)

Time Data Before Execution After Execution
MWO00100 0840H 0718H
MWO00101 0032H 0016H
DwWO00000 0122H 0122H
DWO00001 0016H 0016H

1-40

1.2 Numeric Operation Instructions

1.2.14 SPEND TIME Instruction (SPEND)

B Outline

The SPEND instruction subtracts one time (year/month/day/hours/minutes/seconds) from

another time data and calculates the elapsed time. Source is subtracted from the Dest and the

result is stored in the Dest. The formats of Source and Dest are as follows.

Table 1.5 Source Format

Register Offset Data Contents Data Range (BCD) /0
0 Year (BCD) 0000 to 0099 IN
1 Month/Day (BCD) Upper byte (month) : 1 to 12 IN
Lower byte (day) : 1 to 31
2 Hours/minutes (BCD) Upper byte (hours) : 0 to 23 IN
Lower byte (minutes) : 0 to 59
3 Seconds (BCD) 0000 to 0059 IN
Table 1.6 Dest Format
Register Offset Data Contents Data Range (BCD) 1/0
0 Year (BCD) 0000 to 0099 IN/OUT
1 Month/Day (BCD) Upper byte (month) : 1 to 12 IN/OUT
Lower byte (day) : 1 to 31
2 Hours/minutes (BCD) Upper byte (hours) : 0 to 23 IN/OUT
Lower byte (minutes) : 0 to 59
Seconds (BCD) 0000 to 0059 IN/OUT
Total number of seconds | This is the number of records which is obtained | IN/OUT
by converting Year/Month/Day/Hour/Minutes/
Seconds, which is the results of operations, to
seconds. (Double-length integer)

If the contents of the Dest, Source and the operation result are with the appropriate ranges,

the operation will be performed normally. After the operation is completed, [Status] is

turned OFF. If the contents of the Dest and Source are outside the data ranges, the operation

is not performed. In this case, 9999H is stored in the column "second" of the Dest, and the
[Status] is turned ON.

B Format

e SPEND___ Z}=
Source ?
MWOD0D2E
Dest ?
MWonoze
[Status] ?
MBOODOOD2

1-41

Symbol: SPEND
Full Name: Time Spend
Category: MATH

Icon: g

1 Ladder Program Instructions
1.2.14 SPEND TIME Instruction (SPEND)

B Parameter

Parameter Name Setting
Source * Any integer type register
* Any integer type register with subscript
Dest * Any integer type register (except for # and C register)
* Any integer type register with subscript (except for # and C reg-
ister)
[Status]* * Any bit type register (except for # and C register)

* Any bit type register with subscript (except for # and C register)

* Possible to omit.

B Program Example

The time elapsed from the time data in MW00100 to MWO00103 to the time data in
DW00000 to DW00003 is stored to MW00100 - MW00105.

SPEND =

Source DWOOOOO
Dest M¥OO100
[Status] DEODOIOD

98 yrs S mos 11 days 15 hrs 4 min 47 sec - 98 yrs 4 mos 2 days 8 hrs 13 min 8 sec
(MW00100) (MW00101) (MW00102) (MW00103) (DW00000) (DW00101) (DW00102) (DW00103)
= 0yrs 39 days 6 hrs 51 min 39 sec

(MW00100) (MWO00101) (MW00102) (MW00103)

Time Data Before Execution After Execution

MWO00100 HO0098 H0000

MW00101 HO511 HO0039

MWO00102 H1504 HO0651

MW00103 H0047 H0039

MWO00104 -

NMW00105 — 3394299 (Decimal)
DwWO00000 H0098 H0098

DWO00001 H0402 H0402

DwWO00002 HO813 HO813

DWO00003 HO0008 HO0008

IN FO In the operation results, the year is counted as 365 days and a leap year is not taken into consideration.

Also, the number of months is not counted. It is counted in days.

1-42

1.2 Numeric Operation Instructions

1.2.15 SIGN INVERSION Instruction (INV)

B Outline

The INV instruction inverts the sign of the contents of the Source, and the result is stored in

the Dest.

H Format

] INY

Source ?
MWoooz4

Dest 17
MY00030

B Parameter

Symbol: INV
Full Name: Inverse

E]— Category: MATH

Icon: M

Parameter Name

Setting

Source

* Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Dest

* Any integer type, double-length integer type and real number
type register (except for # and C registers)

* Any integer type, double-length integer type and real number
type register with subscript (except for # and C registers)

* Subscript register

B Program Example

Integer Type Data

LMY

Source MWOO0100
Dest HWOD101

{ooion}
{-nn1on)

1 Ladder Program Instructions

1.2.16 1S COMPLEMENT Instruction (COM)

Double-length Integer Type Data

: |
INY EE'
Source MLOD100 {10000
Dest MLOOTDZ {-1000007

Real Number Type Data

. I
INY g,
Source DFOO200 (1.0)
Dest DFODZ02 (-1.0)

1.2.16 1’'S COMPLEMENT Instruction (COM)

B Outline

The COM instruction determines the 1’s complement of the contents of the Source and the
result is stored in the Dest.

B Format
Symbol: COM
Full Name: Complement
| COM g]- Category: MATH
Source ? Icon: M
MW0003 1 e
Dest 1%
MWoo032
B Parameter
Parameter Name Setting
Source * Any integer type and double-length integer type register
* Any integer type and double-length integer type register with

subscript
* Subscript register

Dest * Any integer type and double-length integer type register
(except for # and C registers)

* Any integer type and double-length integer type register with
subscript (except for # and C registers)

* Subscript register

1-44

1.2 Numeric Operation Instructions

B Program Example

Integer Type Data

Source MWOD100 (HE555)
Dest MWDO 101 (HARAS)

Double-length Integer Type Data

Source MW0D100 (HoG56666R)
Dest HWOD10Y CHA R A AR ARD D

1.2.17 ABSOLUTE VALUE CONVERSION Instruction (ABS)

B Outline

The ABS instruction determines the absolute value of the contents of the Source and the

result is stored in the Dest.

B Format
Symbol: ABS
Full Name: Absolute
- ABS gj- Category: MATH
Source ? Icon: In|
MWoooas
Dest ?
MW0o034
B Parameter
Parameter Name Setting
Source * Any integer type, double-length integer type and real number

type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

Dest * Any integer type, double-length integer type and real number
type register (except for # and C registers)

* Any integer type, double-length integer type and real number
type register with subscript (except for # and C registers)

* Subscript register

1-45

1 Ladder Program Instructions
1.2.18 BINARY CONVERSION Instruction (BIN)

B Program Example

Integer Type Data

1

#BS g,
Source MWOD100 (-00100)
Dest MWDO 101 {onion)

Double-length Integer Type Data

L
#BS E,

Source MLODION (-t1o00003%

Dest HWLOD1DZ crooonn

Real Number Type Data

L

4BE ,g,
Source DFOOZ00 1.0}
Dest DFOOZOZ2 (1.0}

1.2.18 BINARY CONVERSION Instruction (BIN)

B Outline

The BIN instruction converts a binary coded decimal (BCD) value in the Source and into a
binary value (binary conversion) and the result is stored in the Dest. If the 4-digit BCD
value in the integer is abcd, the output value (Dest) of the BIN instruction can be determined
by the following formula:

Dest = (a x 1000) + (b x 100) + (c x 10) +d
Although the above formula is applicable even if the value in the Source is not in BCD nota-

tion (e.g. 123FH), correct results are obtained in such cases.

1-46

1.2 Numeric Operation Instructions

B Format

Symbol: BIN
Full Name: Convert to Binary

gl— Category: MATH

=l BIN
Source ?
M¥00035
Dest 7
M¥00036

B Parameter

Icon: BIN
BC

Parameter Name

Setting

Source * Any integer type and double-length integer type register
* Any integer type and double-length integer type register with
subscript
* Subscript register
Dest * Any integer type and double-length integer type register

(except for # and C registers)

* Any integer type and double-length integer type register with
subscript (except for # and C registers)

* Subscript register

B Program Example

Integer Type Data

Source MWOOD100

Dest HWOODT1O01

(H1234)
(po12ad)

Double-length Integer Data

Source MLOOD10D

Dest MLODIOZ

(H12345678)
(D12345678)

1-47

1 Ladder Program Instructions
1.2.19 BCD CONVERSION Instruction (BCD)

1.2.19 BCD CONVERSION Instruction (BCD)

B Outline

The BCD instruction converts a binary value in the Source into a BCD value (BCD conver-

sion) and the result is stored in the Dest. If the 4 - digit decimal value in the Source is abed,

the output value (Desf) of the BCD instruction can be determined by the following formula:
Dest = (a X 4096) + (b x 256) + (c x 16) +d

Although the above formula is applicable even if the value in the Source cannot be

expressed in BCD notation (e.g. numbers greater than 9999 or negative numbers), correct

results are obtained in such cases.

B Format
Symbol: BCD
Full Name: Convert to BCD
ol BCD F) o Category: MATH
Source ? Icon: BCH
M¥00037 BiN
Dest 7
MWo0D38
B Parameter
Parameter Name Setting
Source * Any integer type and double-length integer type register
* Any integer type and double-length integer type register with

subscript
* Subscript register

Dest * Any integer type and double-length integer type register
(except for # and C registers)

* Any integer type and double-length integer type register with
subscript (except for # and C registers)

* Subscript register

1-48

1.2 Numeric Operation Instructions

B Program Example

Integer Type Data

Source MWOO100 (po1234)

Dest MWOO 101 {H1224)

Double-length Integer Type Data

Source MLOD10D (D12345678)

Dest MLODIOZ (H12345678)

1-49

1 Ladder Program Instructions
1.2.20 PARITY CONVERSION Instruction (PARITY)

1.2.20 PARITY CONVERSION Instruction (PARITY)

B Outline

The PARITY instruction counts the number of bits in the Source that are set to ON (or 1) and
the result is stored in the Dest.

B Format
Symbol: PARITY
Full Name: Count ON Bit
e | PARITY _ ZF= Category: MATH
Source 7 Icon: o101
M#00039 ﬁj
Dest 9
MWO0040

B Parameter

Parameter Name Setting
Source * Any integer type and double-length integer type register
* Any integer type and double-length integer type register with
subscript

* Subscript register

Dest * Any integer type and double-length integer type register
(except for # and C registers)

* Any integer type and double-length integer type register with
subscript (except for # and C registers)

* Subscript register

B Program Example

Integer Type Data

PariTy =k I
Source MWOO100 {HFOFO)

Dest HWOO101 {nooog)

Double-length Integer Type Data

PARITY =B I

Source MLOD100 {HFOFOFOFQ)

Dest HWLODI0Z (00016}

1-50

1.2 Numeric Operation Instructions

1.2.21 ASCII CONVERSION Instruction (ASCII)

B Outline

The ASCII instruction converts the specified characters (character string in Source) to the
corresponding ASCII character codes and stores them in the designated Dest. It recognizes

uppercase and lowercase characters separately.

The first character is stored in the lower-place byte of the first word and the second character

is stored in the higher-place byte of the first word. Other characters are stored in the same
way. If the number of characters is odd, the higher-place byte of the last word in the storage

register is set to 0. Up to 32 characters can be entered.
B Format

Symbol: ASCII
Full Name: Convert Character to ASCII

—| ASCII ﬂ'— Category: MATH

Icon:

Source ? ASC

Dest 7 J
MW00041

B Parameter

Parameter Name Setting
Source * ASCII characters
Dest * Any integer type register (except for # and C register)
* Any integer type register with subscript (except for # and C reg-
ister)

B Program Example

The character string "ABCD" is stored in MW00100 to MW00101.

Source ABCD
Dest HWOOD10D

Upper Lower
MWO00100 42H ('B") 41H ('A") MWO00100 = 4241H
MWO00101 44H ('D") 43H ('C") MWO00101 = 4443H

1-51

1 Ladder Program Instructions

1.2.22 ASCII CONVERSION 2 Instruction (BINASC)

The character string "ABCDEFG" is stored in MW00100 to MW00103.

45CI1 =

Source ABCDEFG
De=zt MWOO100

Upper Lower
MWO00100 42H (B)) 41H (A
MWO00101 44H (D) 43H ('C)
MWO00102 46H (F 45H (E))
MWO00103 00H 47H (G)

)

MWO00100 = 4241H
MWO00101 = 4443H
MWO00100 = 4645H
MWO00101 = 0047H

"0" is entered in the extra byte.

1.2.22 ASCII CONVERSION 2 Instruction (BINASC)

B Outline

The BINASC instruction converts the 16-bit binary data stored in the Source into four-digit

hexadecimal ASCII character codes and stores them in the designated Dest (two words).

B Format

-l BINASC E'-

Source ?
W¥oon4z

Dest 7
WH¥oon43

B Parameter

Symbol: BINASC
Full Name: Convert Binary to ASCII
Category: MATH

Icon: %

Parameter Name

Setting

Source

* Constant

* Any integer type register
* Any integer type register with subscript

Dest

* Any integer type register (except for # and C register)

* Any integer type register with subscript (except for # and C reg-
ister)

1-52

1.2 Numeric Operation Instructions

B Program Example

The "1234H" binary stored in MW00200 is converted to a for digit hexadecimal ASICII
code and stored in MW00100 to MWO00101.

Source MW00200
Dest MWO00100

Upper Lower
MWO00100 32H ('2") 31H ("1") MWO00100 = 3231H
MW00101 34H ('4") 33H ('3) MWO00101 = 3433H

1.2.23 ASCII CONVERSION 3 Instruction (ASCBIN)

B Outline

The ASCBIN instruction converts four-digit hexadecimal ASCII character codes in the

Source into 16-bit binary data and stores it in the Dest.

Hm Format

Symbol : ASCBIN
Full Name : Convert ASCII to Binary

—| ASCBIN E'— Category : MATH

Source ? Ieon :
WWO0044 BiN
Dest %
MWo004s
B Parameter
Parameter Name Setting
Source * Any integer type register
* Any integer type register with subscript
Dest * Any integer type register (except for # and C register)
* Any integer type register with subscript (except for # and C reg-
ister)

1-53

1 Ladder Program Instructions
1.2.23 ASCIlI CONVERSION 3 Instruction (ASCBIN)

B Program Example

The for-byte ASCII code stored in MW00100 to MWO00101 is converted to two-byte binary
data, and the result is stored in MW00200.

ASCBIN =l

Source MWO00100
[ezt MW00200

Source
Upper Lower Upper Lower
MW00100 32H (2) 31H (1) —» MW00200 12H 34H
MWO00101 34H (4) 33H (3)

1-54

1.3 Logical Operation/Comparison Instructions

1.3 Logical Operation/Comparison Instructions

1.3.1 AND Instruction (AND)

H Outline

The AND instruction outputs the logical product (AND) of Source A and Source B to the

Dest.
Table 1.7 1 bit Truth Table for the Logical Product
Source A Source B Dest
0 0 0
0 1 0
1 0 0
1 1 1
B Format
Symbol: AND
Full Name: AND
=] AND gb Category: LOGIC
Sourced ? Icon:
MW00001 M
SourceB ?
MWooon2
Dest 2
MWo0003

B Parameter

Parameter Name Setting

Source A * Any integer type and double-length integer type register

* Any integer type and double-length integer type register with
subscript

* Subscript register

* Constant

Source B * Any integer type and double-length integer type register

* Any integer type and double-length integer type register with
subscript

* Subscript register

* Constant

Dest * Any integer type and double-length integer type register
(except for # and C register)

* Any integer type and double-length integer type register with
subscript (except for # and C register)

* Subscript register

1-55

1 Ladder Program Instructions

1.3.2 OR Instruction (OR)

B Program Example

The logical product of MW000100 and a constant is stored in MWO00101.

ﬂ‘

Sourced MWOO100 (H1234)
SourceB HOOFF {HOOFF)
Dest WWOOT01 (HOD34)

1.3.2 OR Instruction (OR)

B Outline

The OR instruction outputs the logical sum (OR) of Source A and Source B to the Dest.

Table 1.8 1 bit Truth Table for the Logical Sum

Source A Source B Dest
0 0 0
0 1 1
1 0 1
1 1 1
B Format
Symbol: OR
Full Name: Inclusive OR
==y OR E)— Category: LOGIC
Sourced ? Icon: J
M¥ooo04 v
SourceB ?
W¥o0oo0s
Dest 7
H¥00006

1-56

1.3 Logical Operation/Comparison Instructions

B Parameter

Parameter Name Setting

Source A * Any integer type and double-length integer type register

* Any integer type and double-length integer type register with
subscript

* Subscript register
* Constant

Source B * Any integer type and double-length integer type register

* Any integer type and double-length integer type register with
subscript

* Subscript register

* Constant

Dest * Any integer type and double-length integer type register
(except for # and C register)

* Any integer type and double-length integer type register with
subscript (except for # and C register)

* Subscript register

B Program Example

The logical sum of MW00100 and a constant is stored in MWO00101.

ﬂ‘

Sourced MWOO100 (H1234)
SourceB HOOFF {HOOFF)
Dest WWOOT01 (H12FF)

1.3.3 XOR Instruction (XOR)

H Outline

The XOR instruction outputs the exclusive logical sum (XOR) of Source A and Source B to
the Dest.

Table 1.9 1 bit Truth Table for the Exclusive Logical Sum

Source A Source B Dest
0 0 0
0 1 1
1 0 1
1 1 0

1-57

1 Ladder Program Instructions

1.3.3 XOR Instruction (XOR)

B Format

el XOR

o)

Sourced ?
M¥ooo00?

SourceB ?
M¥00008

Dest %
MYooons

B Parameter

Symbol: XOR
Full Name: Exclusive OR
Category: LOGIC

Icon: @

Parameter Name

Setting

Source A

* Any integer type and double-length integer type register
* Any integer type and double-length integer type register with

subscript
* Subscript register
* Constant

Source B

* Any integer type and double-length integer type register
* Any integer type and double-length integer type register with

subscript
* Subscript register
* Constant

Dest

* Any integer type and double-length integer type register

(except for # and C register)

* Any integer type and double-length integer type register with

subscript (except for # and C register)
* Subscript register

B Program Example

The exclusive logical sum of MW00100 and a constant is stored in MW00101.

Sourced WWO0100
SourceB HOOFF
De=t WWOO101

ﬂ‘

{HEEEE)
(HOOFF)
(HEEAL)

1.3 Logical Operation/Comparison Instructions

1.3.4 Comparison Instruction (<)

B Outline

This instruction compare Source A with Source B and stores the comparison result in the bit

output (the result is ON when true).

H Format

Symbol: <
Full Name: Less Than (A < B)

-{ e

g’- Category: LOGIC

Sourced ?
MYooo10

SourceB 7

M¥00011

B Parameter

Icon: ﬂ

Parameter Name

Setting

Source A

* Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Source B

* Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

B Program Example

If the value of MWO00100 is smaller than 100, after the instructions operation are executed.

| e

) e SRR

Sourced MWOD100

SourceB 100

Sourced MWO0101
SourceB WWOO10Z
De=t WWOO103

1-59

1 Ladder Program Instructions

1.3.5 Comparison Instruction (<=)

1.3.5 Comparison Instruction (<=)

B Outline

This instruction compare Source A with Source B and stores the comparison result in the bit
output (the result is ON when true).

B Format

Symbol: <=
Full Name: Less Than or Equal (A <= B)

—{ z

Sourced ?
M¥0ooo12

SourceB 7
M¥oo013

B Parameter

E]— Category: LOGIC

Icon: <

Parameter Name

Setting

Source A

* Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Source B

* Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

B Program Example

If the value of MWO00100 is under 100, after the instructions operation are executed.

| <=

(= 3

Sourcef WNOOT00
SourceB 100

Sourced WWO0101
SourceB MWOOD102
ezt WWOO103

1.3 Logical Operation/Comparison Instructions

1.3.6 Comparison Instruction (=)

B Outline

This instruction compare Source A with Source B and stores the comparison result in the bit

output (the result is ON when true).

H Format

Symbol: =
Full Name: Equal (A = B)
—[Category: LOGIC

Sourced ? Icon: ﬂ
M¥oo0014

SourceB ?
M¥00015

L

B Parameter

Parameter Name Setting

Source A * Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Source B * Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

B Program Example

If the value of MWO00100 is equal to 100, after the instructions operation are executed.

b %

— == El—| 400),
Sourced MNO0100 Sourced WW00101
SourceB 100 SourceB MWOOD102

Dest M¥OO103

1-61

1 Ladder Program Instructions

1.3.7 Comparison Instruction (!=)

1.3.7 Comparison Instruction (!=)

B Outline

This instruction compare Source A with Source B and stores the comparison result in the bit

output (the result is ON when true).

B Format

Symbol: !=
Full Name: Not Equal (A! = B)

o !

Sourced ?
MW0O0016

SourceB 7
Mwooo17

B Parameter

g]- Category: LOGIC

Icon: ﬂ

Parameter Name

Setting

Source A

* Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Source B

* Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

B Program Example

If the value of MWO00100 is not equal to 100, after the instructions operation are executed.

Z—{ 4DD =),

Sourced MWOO0100
SourceB 100

Sourced WMWO0101
Sourcel MWO0O102
De=zt MWWOO103

1.3 Logical Operation/Comparison Instructions

1.3.8 Comparison Instruction (>=)

B Outline

This instruction compare Source A with Source B and stores the comparison result in the bit

output (the result is ON when true).

H Format

Symbol: >=
Full Name: Greater Than or Equal (A >= B)

~ >

Sourced ?
MW00018

SourceB ?
MW00014

B Parameter

_ﬂj- Category: LOGIC

Icon: >

Parameter Name

Setting

Source A

* Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Source B

* Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

B Program Example

If the value of MWO00100 is above 100, after the instructions operation are executed.

=/ =

) e ST

Sourced WWO0100
SourceB 100

Sourced MWOO101
ZourceB WMWOO102
De=st WWOO103

1 Ladder Program Instructions

1.3.9 Comparison Instruction (>)

1.3.9 Comparison Instruction (>)

B Outline

This instruction compare Source A with Source B and stores the comparison result in the bit
output (the result is ON when true).

B Format

Symbol: >
Full Name: Greater Than (A > B)

=l >

Sourced 1
M¥o0020

SourceB ?
MWo0021

B Parameter

g]- Category: LOGIC

Icon: 1}

Parameter Name

Setting

Source A

* Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Source B

* Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

B Program Example

If the value of MWO00100 is bigger than 100, after the instructions operation are executed.

>

Z—{ ADD =)

Sourcef WWO0100
SourceB 100

Sourcef MWO0T01
SourceB MWOO102
De=zt MWWOO103

1.3 Logical Operation/Comparison Instructions

1.3.10 RANGE CHECK Instruction (RCHK)

B Outline

The RCHK instruction checks whether the input value in the /nput is within the Lower Limit
and Upper Limit, and then outputs the result to the bit output. The contents of the /nput are

retained.

Bit output = OFF
Upper limit T fe— e

Bit output = ON
Input

- Lower limit -----{------%X---
T Bit output = OFF

« If the Input value (Input) is greater than the Lower Limit and less than the Upper Limit,
the result (Bit Output) = ON.
* In the cases other than the above, the result (Bit Output) = OFF.

B Format
Symbol: RCHK
Full Name: Range Check
o | RCHK Q]_ Category: LOGIC
Input % [con: 'y

HINO0022 CHK

Lower Limit ?
MNO0023

Upper Limit ?
HNO0024

1-65

1 Ladder Program Instructions

1.3.10 RANGE CHECK Instruction (RCHK)

B Parameter

Parameter Name

Setting

Input

* Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Lower Limit

* Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Upper Limit

* Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

B Program Example

Integer Type Data

DBOOOODOD

RCHK g]

Input Wionino
Lower Limit -1000
Upper Limit 1000

Input (MWO00100) Output (DB000000)
-1000 > MW00100 OFF
-1000 <= MWO00100 <= 1000 ON
MWO00100 >1000 OFF

1-66

1.3 Logical Operation/Comparison Instructions

Double-length Integer Type Data

DEOOOODD

RCHE Zf
Input MLODTOO

Lower Limit -100000
Upper Limit 100000

Input (ML0O0100) Output (DBO00000)
-100000 > ML00100 OFF
-100000 <= ML00100 <= 100000 ON
ML00100 >100000 OFF

Real Number Type Data

DEOOOOOD

| REHE g}

Input DEOD10N0

Lower Limit -1.050000E+001
Upper Limit 1.060000E+007

Input (DF00100) Output (DBO00000)
-10.5>DF00100 OFF
-10.5 <=DF00100 <= 10.5 ON
DF00100 >10.5 OFF

1-67

1 Ladder Program Instructions
1.4.1 SUB-DRAWING CALL Instruction (SEE)

1.4 Program Control Instructions

1.4.1 SUB-DRAWING CALL Instruction (SEE)

B Outline

The SEE instruction is used to call a sub-drawing from a drawing or to call a sub-sub- draw-
ing from a sub-drawing. Calling is not possible between drawings of different types. For
example, SEE HOI cannot be specified in DWGL.

B Format

Symbol: SEE
Full Name: Call Program

SEE A Category: CONTROL

Name HO1 Icon: %

B Parameter

Parameter Name Setting

Name Program Name

B Program Example

SEE AO01
DWG.A
DWG.A01

Start of execution of

(SEE) child drawing A01 N

Name. A01 ¢ .
End of execution of
child drawing A01 END

1-68

1.4 Program Control Instructions

1.4.2 MOTION PROGRAM CALL Instruction (MSEE)

B Outline

MSEE instruction is used in referring to the motion program.
This instruction can be referred only from DWG.H.
It is not possible to refer from DWG.A and DWG.L.

B Format

Symbol: MSEE
Full Name: Call Motion Program

—{ MSEE Z)- Category: MOTION
Icon: M
P No. 1
rogram (u] l s

Data 7
MAODO100

B Parameter

Parameter Name Setting

Program No. * Direct specification: Numerical value of 1-256

(Motion Program No.) * Indirect specification: Register of integer type

Dest * Register address (except for # and C registers)
(Work Register)

B Program Example

DWG H Motion program
DWG.H MPMO001
E VEL [X] 6000 [Y] 6000 ;
! MOV [X] 1000 [Y] 1000 ;
(MSEE) / |
Program No. 1 MYS [X] 2000 ;
Data DA00000 |
| |
: !
X i
| |
I END

1-69

1 Ladder Program Instructions

1.4.3 FUNCTION CALL Instruction (FUNC)

1.4.3 FUNCTION CALL Instruction (FUNC)

B Outline

The FUNC instruction is used to call a user function or system function from a drawing, sub-

drawing, or user function. The user function to be called must be defined in advance. (Sys-

tem functions do not have to be defined by the user because they are already defined by the

system.)
B Format
Symbol: FUNC
Full Name: User Function
FUNC
;- E}" Category: CONTROL
Name FUNC1
Icon:
INPUT Arealy OUTPUT Brealy E”_’j‘j
MEDOD100 MEODOD200
ADDRESS 7
HADD 100

B Parameter

Parameter Name

Setting

Name

Program name

INPUT

Input parameter (the data type depends on function definition)

ADRESS

Address parameter (Address type register)

OUTPUT

Output parameter (the data type depends on function definition)

1-70

1.4 Program Control Instructions

The forms of parameter input and output are shown below.

Input Data
Form

Input Designa-
tion

Description

Bit Input

B-VAL

Designates the output to be of a bit type. The bit type data
become the input to the function.

Integer Type
Input

I-VAL

Designates the input to be of an integer type. The contents
(integer data) of the register with the designated number
become the input to the function.

I-REG

Designates the input to be the contents of an integer type
register. The number of the integer type register is desig-
nated when referencing the function. The contents (integer
data) of the register with the designated number become
the input to the function.

Double-length
Integer Type
Input

L-VAL

Designates the input to be of a double-length integer type
register.

When reference the function, the contents (double-length
integer data) of the register with the designated number
become the input to the function.

L-REG

Designates the input to be the contents of a double-length
integer type register. When reference the function, the con-
tents (double-length integer data) of the register with the
designated number become the input to the function.

Real Number
Type Input

F-VAL

Designates the input to be of a real number type. The con-
tents (real number data) of the register with the designated
number become the input to the function.

F-REG

Designates the input to be the contents of a real number
type register.

The number of the real number type register is designated
when referencing the function. The contents (real number
data) of the register with the designated number become
the input to the function.

Address Input

Hands over the address of the designated register (an arbi-
trary integer register) to the function. Only 1 input is
allowed in the case of a user function.

B Program Example

FUNC

Name
INFUT1 MBOOOOOD
INPUTZ TWOOT0
INPUTS MBOOOODO1
INPUT4 MLODD11
ADRESE MAOOTOD

F30
OUTFUTY OBOOOOD
OUTFUTZ MWOOO20
OUTPUTS MBOOOO21
OUTPUT4 MLOO201

1-71

1 Ladder Program Instructions

1.4.4 DIRECT INPUT STRING Instruction (INS)

1.4.4 DIRECT INPUT STRING Instruction (INS)

B Outline

The INS instruction continuously performs direct input to a single module according to the

contents of a previously-set parameter table. INS can only be used for LIO modules.

B Format
Symbol : INS
Full Name : Direct Input String
| INS E]- Category : CONTROL
Parameter ? Icon : IEN
MAOD100
[Status] ?
MBOD2000
B Parameter
Parameter Name Setting
Parameter * Register address (except for # and C registers)
* Register address with subscript
[Status]* * Any bit type register (except for # and C registers)
* Any bit type register with subscript

* Possible to omit.

Table 1.10 INS Instruction Parameter/Data

ADR Type Symbol Name Specifications Input or
Output
0 w RSSEL | Module designation 1 Designation of module for performing input<For IN
W | MDSEL | Module designation 2 details refer to (1) and (2) below> N
w STS Status Output of a bit equivalence of the status for each ouT
word input
3 w N Number of words Designation of number of continuous input words IN
4 w ID1 Input data 1 If there is an error in the output of input data, 0 is ouT
R R . R stored .
N+3 w IDN Input data N ouT

Method of Setting RSSEL

Designates the rack/slot where the target module is mounted.

Hexadecimal expression: xxyyH
xx = rack number (01H < xx < 04H)
yy = slot number (00H < yy < 0DH)

1-72

1.4 Program Control Instructions

(N
INFO The rack number = 1, slot number = 3 with tixation in MP930

Method of Setting MDSEL

F Cc 8 4 0
Hexadecimal:
a b ¢ d abcdH
a: Input module type 0: Discrete input module
b: Rack number (1 <b <4) 1: Register input module

c: Slot number (1 <c<9)
d: Data offset (0<d <7)

(N
INFO The input module type = 0, rack number = 1, slot number = 3, data offset = 0 with fixation in MP930

B Program Example

Data input from LIO mounted at rack 2, slot 4.

—t STORE g]

Source HO204
Dest MWOD100

— STORE g]

Source 0

Dest MWOD101

—_— STORE g]—

Source 1

Dest MW0O0103

INS

Parameter MADD10D
[Status] MBOODOOOO

1-73

1 Ladder Program Instructions

1.4.5 DIRECT OUTPUT STRING Instruction (OUTS)

1.4.5 DIRECT OUTPUT STRING Instruction (OUTS)

B Outline

The OUTS instruction continuously performs direct output to a single module according to

the contents of a previously-set parameter table. OUTS can only be used for LIO modules.

B Format
Symbol: OUTS
Full Name: Direct Output String
= ouTS g]— Category: CONTROL
Parameter ? Icon: OEUT
MADD100
[Status] ?
MBOD2000
B Parameter
Parameter Name Setting
Parameter * Register address (except for # and C registers)
* Register address with subscript
[Status]* * Any bit type register (except for # and C registers)
* Any bit type register with subscript

* Possible to omit.

Table 1.11 OUTS Instruction Parameter/Data

ADR Type | Symbol | Name Specifications Input or
Output

0 w RSSEL | Module designation 1 Designation of module for performing output” IN

w MDSEL | Module designation 2 IN

2 w STS Status Output of a bit equivalence of the status for each ouT
word output

w N Number of words Designation of number of words output continuously [IN

w OD1 Output data 1 Setting output data IN

N+3 W ODN Output data N IN

* Method of setting RSSEL and N (number of words) is the same as for INS.

1-74

1.4 Program Control Instructions

B Program Example

Two words output to LIO-01 mounted at rack 3, slot 10.

e STORE ﬁ]

Source HO30A
Dest MW00200

e STORE g]

Source 0

Dest MW0D201

e STORE g}

Source 2

Dest MWOOZ203

el STORE g]

Source 1

Dest HMWo0204

] STORE g]—

Source 1

Dest MW0OZ205

—l ouTS E'

Parameter MAOD200
[Status] MBOODOODD

(N
INFO Two outputs will be done by using the OUTS instruction because local 1/O is allocated by default for
MP930.

1-75

1 Ladder Program Instructions

1.4.6 EXTENSION PROGRAM CALL Instruction (XCALL)

1.4.6 EXTENSION PROGRAM CALL Instruction (XCALL)

B Outline

The XCALL instruction is used to call an extension program. Extension programs are table

format programs. Although a pulurality of XCALL instructions may be used in one draw-

ing, the same extension program cannot be called more than once.

B Format

XCALL

MName MCTEL

B Parameter

Symbol: XCALL
Full Name: Call Extended Program
Category: CONTROL

Parameter Name

Name

MCTBL: Constant table (M register)
IOTBL: I/O conversion table
ILKTBL: Interlock table

ASMTBL: Parts composition table

B Program Example

DWG.x.xx

(XCALL)

Expansion Conversion Program

Name ILKTBL *

1-76

XCALL ILKTBL

XPEND

The converted ladder
program cannot be
viewed at the Editor.

1.4 Program Control Instructions

1.4.7 WHILE Instruction (WHILE, END_WHILE)

B Outline

Instruction between WHILE and END_WHILE is repeatedly executed as long as the condi-
tion specified by WHILE instruction is satisfied. When the condition is no longer satisfied,
instruction sequence is not executed and the program proceeds with the instruction immedi-
ately after END WHILE.

H Format

* At instruction development display ON

Symbol: WHILE
END_ WHILE

=t WHILE E]— Full Name: While Do

1<100 End of While
Category: CONTROL

Icon: ,
o BETETTIC wHLE NS

At instruction development display OFF

Symbol: WHILE-END WHILE
Full Name: While Do and

-l WHILE-END_WHILE il— End of While
Category: CONTROL
Icon: w_mﬂ
/EN

B Parameter

Parameter Name Setting

Conditional Expression Description by Expression

1-77

1 Ladder Program Instructions

1.4.7 WHILE Instruction (WHILE, END_WHILE)

B Program Example

The total for 100 registers, from MWO00100 to MWO00199, is stored in MW00200.

— STORE

z}

Source 0

Dest I

—

STORE

Source 0

Dest MWOO200

___Hie 7

1€100
(1<100)

—{ ADD

Sourced MWOD200

=)

SourceB MWOD100i

Dest MW0D200

—

ADD

<),

Sourced [
SourceB 1

Dest I

I-' END_WHILE :

1-78

1.4 Program Control Instructions

1.4.8 IF Instruction (IF, END_IF)

B Outline

If the conditional expression in the IF instruction is approved, the instruction sequence
between IF and END_IF is executed. If the conditional expression in the IF instruction is

not approved, the instruction sequence between IF and END_IF is not executed.

B Format

* At instruction development display ON

Symbol: IF
END IF

= IF EJ- Full Name: If Then

End of If
LU LA Category: CONTROL

T S 1 Teon: il END
[Instruction Sequence [IF

* At instruction development display OFF

Symbol: IF-END __IF
Full Name: IF Then and

IF-END_IF # End of If
Category: CONTROL

Icon: |F
J/EN
B Parameter
Parameter Name Setting
Conditional Expression Description by Expression

INFO(J 1. Eight IF instructions can be nested.

(N
%
2. If an instruction is defined after a contact, this instruction is regarded as an IF instruction and

included in the nest.

1-79

1 Ladder Program Instructions
1.4.9 IF Instruction (IF, ELSE, END_IF)

B Program Example

If MB000108 is ON, MW00201 is added to MW00200, and MW00201 is incremented.

MEBOOO100==t rue

IF Zl}
|

i ADD ﬂ}

Sourced MWD0200
SourceB MW00201
Dest MW00200

Dest MUO0D201

I—' END_IF :

1.4.9 IF Instruction (IF, ELSE, END_IF)

B Outline

If the conditional expression in the IF instruction is approved, the instruction sequence 1
between IF and ELSE is executed. If the conditional expression in the IF instruction is not

approved, the instruction sequence 2 between ELSE and END_IF is executed.

B Format

* At instruction development display ON

Symbol: IF
ELSE

=f IF _ﬂj— END _IF

Full Name: If Then

MW0D100>100 Else
o T T X End of If
! Instruction Sequence 1 i Category: CONTROL

Icon: i , END.
e s P

1-80

1.4 Program Control Instructions

At instruction development display OFF

Symbol: IF-ELSE-
END IF
Full Name: IF Then and
={__IF-ELSE-END_IF §i}= Else and
End of If
Category: CONTROL

I |
con: IF
/EN

B Parameter

Parameter Name Setting

Conditional Expression Description by Expression

(N
INFO 1. Eight IF instructions can be nested.

2. If an instruction is defined after a contact, this instruction is regarded as an IF instruction and
included in the nest.

B Program Example

MWO00011 is set to 0 if MWO00010 is positive number, and set to 1 if MWO00010 is negative

number.

IF Zl}
I

M¥00010>0

STORE gj

Source 0

Dest MWoOO11

———

ELSE

1]

STORE g]
Source 1

Dest MWoOOO11

END_IF

i

1-81

1 Ladder Program Instructions

1.4.10 FOR Instruction (FOR, END_FOR)

1.4.10 FOR Instruction (FOR, END_FOR)

B Outline

The instruction sequence surrounded by the FOR instruction and the corresponding
END_FOR instruction are executed the specified number of times: N = (Max - Init + 1)/
Step. Variable starts from initial value (/nif) and is incremented by Step on each execution.

The instruction sequence is ended when Variable > Max.

B Format

* At instruction development display ON

Symbol: FOR
END_FOR

] FOR E'— Full Name: For

; End of For
Variable MWOD100 Category: CONTROL

Init 1 Icon: @,%

Max 99

Step |

END_FOR

* At instruction development display OFF

Symbol: FOR-END_FOR
Full Name: For and

-'l FOR-END_FOR ﬂ'- End of For

Category: CONTROL

Icon: Fo
o

1-82

1.4 Program Control Instructions

B Parameter

Parameter Name Setting

Variable * Any integer type register
* Any integer type register with subscript
* Subscript register (I and J registers)

Init * Any integer type register
* Any integer type register with subscript
* Subscript register

* Constant

Max * Any integer type register

* Any integer type register with subscript
* Subscript register

* Constant

Step * Any integer type register

* Any integer type register with subscript
* Subscript register

* Constant

B Program Example

The high byte and low byte, form MW00100 to MW00102, are exchanged.

FOR
VYariable I
Init 0
Max 2
Step 1

Dest MW00100

|—-| END_FOR =‘

1-83

1 Ladder Program Instructions
1.4.11 EXPRESSION Instruction (EXPRESSION)

1.4.11 EXPRESSION Instruction (EXPRESSION)

B Outline

EXPRESSION instruction is composed by one block. It considers on a par with a coil type
component, and an input line has the Instruction of Enable/Disable command. In the block,
Expression box for an operation formula description is prepared, and the description of the

operation formula to 1000 lines is possible.

B Format
Symbol: EXPRESSION
Full Name: Expression
-1 EXPRESSION g]- Category: CONTROL
WH00100=KHY00101+MW00102; Icon: | gx
WW00110=KHWOO0111-KHWOD112; Pr

MWOD120=MWO00121#MN00122/10;

B Parameter

Parameter Name Setting

Conditional Expression Description by Expression

B Program Example

EXPRESSION g}

MEODO100=KMY0D101+MW00102;
WWO0110=MP00111-KHW00112;
W00 120=KHN0012 1kMW00122/10;

1-84

1.5 Basic Function Instructions

1.5 Basic Function Instructions

1.5.1 SQUARE ROQOT Instruction (SQRT)

H Outline

The SQRT instruction calculates the square root of an integer or real number value as the

operation result. The input units and output results for integer and real number values are

different. This instruction cannot be used for double-length integer data.

Integer Type Data

The square root of Source is stored in Dest. The operation result of the SQRT instruction
slightly differs from the square root in mathematical terms. To be more precise, the opera-

tion result is expressed by the following formula:

32768 sign (A)* SQRT (JA|/ 32768)
sign (A): sign of the Source
|A| : absolute value of the Source

In other words, the operation result is equal to the mathematical square root multiplied by
approximately 181.02. If the input is a negative value, the square root of the absolute value
is calculated first and then the negative value of the square root is output as the operation
result.

The maximum error of the output value is +/-2.

Real Number Type Data

The square root of Source is stored in Dest. If the input is a negative value, the square root
of the absolute value is calculated first and then the negative value of the square root is out-

put as the operation result. This instruction can be used in a real number operation.

B Format
Symbol: SQRT
Full Name: Square Root
e | SORT Z- Category: FUNCTION
Source MW0O0OD1 Icon: ﬂ

Dest HWOOODO2

1-85

1 Ladder Program Instructions

1.5.1 SQUARE ROOT Instruction (SQRT)

B Parameter

Parameter Name

Setting

Source
(Input)

* Any integer type and real number type register

* Any integer type and real number type register with subscript
* Subscript register

* Constant

Dest
(Output)

* Any integer type and real number type register (except for #
and C registers)

* Any integer type and real number type register with subscript
(except for # and C registers)

* Subscript register

B Program Example

Integer Type Data

* When the input is a positive number

L

il SORT =}
Source HWO0100 (00064)
Dest MWOO102 (01443)

* When the input is a negative number

%

i | SORT =}
Source MWOO100 (-00064)
Dest HMWOD102 (-01448)

Real Number Type Data

* When the input is a positive number

N

= | SORT Z}
Source DFO0DZ00 (64,07
Dest MFOOD202 8.0

* When the input is a negative number

N

e | SORT =}
Source DFOO200 (-64.0)
De=t MFOOZ202 (-8.0)

1-86

1.5 Basic Function Instructions

1.5.2 SINE Instruction (SIN)

B Outline

The SIN instruction calculates the sine of an integer or real number value as the operation
result. The input units and output results for integer and real number values are different.

This instruction cannot be used for double-length integer data.

Integer Type Data

This instruction can be used between -327.68 and 327.67 degrees. The Source is used as the
input (1 = 0.01 degree) and the operation result is stored in the Destz. Upon output, the oper-
ation result is multiplied by 10,000.

If a value outside the range of -327.68 to 327.67 is entered, the correct result cannot be

obtained. For example, if 360.00 is entered, -295.36 degrees will be output as the result.

Real Number Type Data

The Source is used as the input (unit = degrees) and the sine of the input is stored in the Dest.

B Format
Symbol: SIN
Full Name: Sine
| SIN Q- Category: FUNCTION
Source WW00003 Icon: Sﬂ
Dest MWOODO4
B Parameter
Parameter Name Setting
Source * Any integer type and real number type register
(Input) * Any integer type and real number type register with subscript
* Subscript register
* Constant
Dest * Any integer type and real number type register (except for #
(Output) and C registers)

* Any integer type and real number type register with subscript
(except for # and C registers)
* Subscript register

1-87

1 Ladder Program Instructions
1.5.3 COSINE Instruction (COS)

B Program Example

Integer Type Data

ZIN g] I
Source WWDO100 ELTT]

Dest MWOOD102 [os0003

Input X = 30 degrees (MW00100 = 30"100 = 3000)
Output SIN (X) = 0.50 (MW00102 = 0.50*10000 = 5000)

Real Number Type Data

%
SIN E,

Source DFO0200 (30,07

Dest DFOOD202 (0.5

1.5.3 COSINE Instruction (COS)

B Outline

The COS instruction calculates the cosine of integer or real number values as the operation
result.

The input units and output results for integer and real number values are different. This

instruction cannot be used for double-length integer data.

Integer Type Data

This instruction can be used between -327.68 and 327.67 degrees. The Source is used as the
input (1 =0.01 degrees) and the operation result is stored in the Dest. Upon output, the oper-
ation result is multiplied by 10,000. If a value outside the range of -327.68 to 327.67 is
entered, the correct result is obtained. For example, if 360.00 is entered, -295.36 degrees is

output as a result.

Real Number Type Data

The Source is used as the input (unit = degrees) and the cosine of the input is stored in the
Dest.

1-88

1.5 Basic Function Instructions

B Format
Symbol: COS
Full Name: Cosine
—[cos E}- Category: FUNCTION
Source M¥00005 ICOHZCEI
Dest MWOODDE
B Parameter
Parameter Name Setting
Source * Any integer type and real number type register
(Input) * Any integer type and real number type register with subscript
* Subscript register
* Constant
Dest * Any integer type and real number type register (except for #
(Output) and C registers)
* Any integer type and real number type register with subscript
(except for # and C registers)
* Subscript register

B Program Example

Integer Type Data

L
COs g‘

Source MWOOD100 (06000}

Dest MWOD102 (050007

Input X = 60 degrees (MW00100 = 60100 = 6000)
Output COS (X) = 0.50 (MW00102 = 0.50*10000 = 500)

Real Number Type Data

N

COoS g,
Source DFO0O200 (RO.0)
Dest DFO0D202 (0.5)

1-89

1 Ladder Program Instructions
1.5.4 TANGENT Instruction (TAN)

1.5.4 TANGENT Instruction (TAN)

B Outline

The TAN instruction uses the Source as the input (unit = degrees) and stores the tangent of

the input in the Dest. This instruction can be used in a real number operation.

B Format
Symbol: TAN
Full Name: Tangent
e | T4N g]— Category: FUNCTION
Source MF00001 Icon: tan’
Dest MFOODDZ
B Parameter
Parameter Name Setting
Source * Any real number type register
(Input) * Any real number type register with subscript
* Constant
Dest * Any real number type register (except for # and C register)
(Output) * Any real number type register with subscript (except for # and
C register)

B Program Example

The tangent of the input value (X = 45.0 degrees) [TAN (X) = 1.0] is calculated.

Y
TAN g,
Source DFOOZ00 (45.0)
Dest DFOOZ202 .03

(N
INFO TANGENT Instruction cannot be used for integer type and double-length integer type data.

1-90

1.5 Basic Function Instructions

1.5.5 ARC SINE Instruction (ASIN)

B Outline

The ASIN instruction uses the Source as the input and stores the arc sine (unit = degrees) of

the input in the Dest. This instruction can be used in a real number operation.

B Format
Symbol: ASIN
Full Name: Arc Sine
=f ASIN g]— Category: FUNCTION
Icon: = 4
Source MFOO00D3 sin
Dest MWFOOOD4
B Parameter
Parameter Name Setting
Source * Any real number type register
(Input) * Any real number type register with subscript
* Constant
Dest * Any real number type register (except for # and C register)
(Output) * Any real number type register with subscript (except for # and
C register)

B Program Example

The arc sine of the input value (0.5) [ASIN (0.5) = 0 = 30.0 degrees] is calculated.

BEIN g,
Source DFO0O200 0.5
Dest DFO0Z02 (30,00

(N
INFO ARC SINE Instruction cannot be used for integer type and double-length integer type data.

1-91

1 Ladder Program Instructions
1.5.6 ARC COSINE Instruction (ACOS)

1.5.6 ARC COSINE Instruction (ACOS)

B Outline

The ACOS instruction uses the Source as the input and stores the arc cosine (unit = degrees)

of the input in the Dest. This instruction can be used in a real number operation.

B Format
Symbol: ACOS
Full Name: Arc Cosine
e | ACOS gl- Category: FUNCTION
Source MFOODOODS Icon: Cé‘

Dest MFOOODODB

B Parameter

Parameter Name Setting
Source * Any real number type register
(Input) * Any real number type register with subscript
* Constant
Dest * Any real number type register (except for # and C register)
(Output) * Any real number type register with subscript (except for # and
C register)

B Program Example

The arc cosine of the input value (0.5) [ACOS (0.5) = X = 60.0 degrees] is calculated.

4GOS g]

Source DFO0200 (0.5

Dest DFOO202 {E0.0)

ARC COSINE Instruction cannot be used for integer type and double-length integer type data.

ﬁ
z
o)
N%

1-92

1.5 Basic Function Instructions

1.5.7 ARC TANGENT Instruction (ATAN)

B Outline

The ATAN instruction calculates the arc tangent of integer or real number data as the opera-

tion result.

The input units and output results for integer and real number data are different. This

instruction cannot be used for double-length integer data.

Integer Type Data

This instruction can be used between -327.68 and 327.67 degrees. The Source is used as the
input (1 =0.01 degrees) and the operation result is stored in the Dest. Upon output, the oper-
ation result is multiplied by 100.

Real Number Type Data

The Source is used as the input (unit = degrees) and the arc tangent of the input is stored in
the Dest.
This instruction cannot be used for integer type and double-length integer data.

B Format
Symbol: ATAN
Full Name: Arc Tangent
e | ATAN g— Category: FUNCTION
Icon: = 4
Source MFOO00D7 tan
Dest MFOOOOZ
B Parameter
Parameter Name Setting
Source * Any integer type and real number type register
(Input) * Any integer type and real number type register with subscript
* Subscript register
* Constant
Dest * Any integer type and real number type register (except for #
(Output) and C registers)
* Any integer type and real number type register with subscript
(except for # and C registers)
* Subscript register

1-93

1 Ladder Program Instructions
1.5.8 EXPONENT Instruction (EXP)

B Program Example

Integer Type Data

N
ATAN g,

Source MWOD100 {oo100)

Dest MWOO102 (045007

Input X = 1.00 (MW00100 = 1.00*100 = 100)
Output X = 45 degrees (MW00102 = 45*100 = 4500)

Real Number Type Data

: |
ATaN E'
Source DFO0D200 (1.0)
Dest DFOOZ202 (45,07

1.5.8 EXPONENT Instruction (EXP)

B Outline

The EXP instruction uses the Source as the input (x) and stores the natural logarithmic base

(e) to the power of the input (€*) in the Dest as the operation result. This instruction can be

used only in a real number operation.

B Format
Symbol: EXP
Full Name: Exponential
- EXP g]— Category: FUNCTION
Source MFO00O0Y Icon: ﬂ

Dest MFOODO10

1-94

1.5 Basic Function Instructions

(N
(o

B Parameter

Parameter Name Setting
Source * Any real number type register
(Input) * Any real number type register with subscript
* Constant
Dest * Any real number type register (except for # and C register)
(Output) * Any real number type register with subscript (except for # and
C register)

B Program Example

e (=2.7183) to the power of the input value (x = 1.0) is calculated.

EXP zg
Source DFO0Z00 {1.0)
De=t DFOOZ0OZ [2.7183%)

Maximum value (3.4 * -+ E + 38) is stored and an operation error will not occur even if the operation
results of EXP instruction in an overflow.

1.5.9 NATURAL LOGARITHM Instruction (LN)

H Outline

The LN instruction uses the Source as the input (x) and stores the natural logarithm (Log,*)

of the input in the Dest as the operation result. This instruction can be used only in a real

number operation.

B Format
Symbol: LN
Full Name: Natural Logarithm
= LN Z- Category: FUNCTION
Source MFO0011 Ieon: an

Dest HFOOO12

1-95

1 Ladder Program Instructions
1.5.10 COMMON LOGARITHM Instruction (LOG)

B Parameter

Parameter Name Setting
Source * Any real number type register
(Input) * Any real number type register with subscript
* Constant
Dest * Any real number type register (except for # and C register)
(Output) * Any real number type register with subscript (except for # and
C register)

B Program Example

The natural logarithm of the input value (x = 10.0) [Log.(x) = 2.3026] is calculated.

%
T—)
Source DFOOZ0D (10,0}
Dest DFOO20Z (2.3026)

A
INFO LN instruction is input (x) value is checked, execute the following handling.
* When the input is minus LN (-1), calculate an absolute value.

* When the input is zero LN (0), take - for solution.

1.5.10 COMMON LOGARITHM Instruction (LOG)

B Outline

The LOG instruction uses the Source as the input (x) and stores the common logarithm
(Log ") of the input in the Dest as the operation result. This instruction can be used only in

a real number operation.

B Format
Symbol: LOG
Full Name: Logarithm Base 10
- LOG) o Category: FUNCTION
Source MF00013 Icon: |@

Dest MFOODT14

1-96

1.5 Basic Function Instructions

B Parameter

Parameter Name Setting
Source * Any real number type register
(Input) * Any real number type register with subscript
* Constant
Dest * Any real number type register (except for # and C register)
(Output) * Any real number type register with subscript (except for # and
C register)

B Program Example

The common logarithm of the input value (x = 10.) [Log;((x) = 1.0] is calculated.

LOG

z)

Source DFOOZOO0
Deszt DFOOZ0Z

{1n.0)
(1.0}

LOG instruction is input (x) value is checked, execute the following handling.

* When the input is minus LOG (-1), calculate an absolute value.

* When the input is zero LOG (0), take -eo for solution.

1-97

1 Ladder Program Instructions
1.6.1 BIT ROTATION LEFT Instruction (ROTL)

1.6 Data Manipulation Instructions

1.6.1 BIT ROTATION LEFT Instruction (ROTL)

B Outline

The ROTL instruction is used to rotate bits to the left the number of times designated in the
bit table designated by the leading bit address and bit width.

I: Bit width (m) >I

«— Head bit address

A
A
)

A
A

——>—— Number of rotations

B Format
Symbol: ROTL
Full Name: Bit Rotate Left
-1 ROTL E,_ Category: MOVE
Head Bit Address % Icon: RoT
MEOOODO1 L
Number of Rotations ?
HWooo01
Bit Width 1
MWoooo2
B Parameter
Parameter Name Setting
Head Bit Address * Any bit type register (except for # and C registers)
* Any bit type register with subscript (except for # and C regis-
ters)
Number of Rotations * Any integer type register
* Any integer type register with subscript
* Constant
Bit Width * Any integer type register

* Any integer type register with subscript

* Constant

1-98

1.6 Data Manipulation Instructions

B Program Example

The data having MBOO0OOOA (bit A of MW00000) as the head address and a bit width of 10
are rotated five times to the left.
ROTL g] I

Head Bit Address WBOOOODA
Mumber of Rotationz B 1
Bit Width 10

Rotation symmetry range (Bit width = 10)

F C 9 4 0
evooution| 0 [o[1] rjof | | | [[[] | | [mwooooo
-—
L] | | | [1]o]o]o]|mwoooo1
= c :9 v A .
et |0|1|0|0|0|0| | | | | | | | | | |MW00000

execution

‘—
A I O A B A R

1.6.2 BIT ROTATION RIGHT Instruction (ROTR)

B Outline

The ROTR instruction is used to rotate bits to the right the number of times designated in the
bit table designated by the leading bit address and bit width.

}: Bit width (m) >}

< Head bit address

——<— Number of rotations

1-99

1 Ladder Program Instructions
1.6.2 BIT ROTATION RIGHT Instruction (ROTR)

B Format
Symbol: ROTR
Full Name: Bit Rotate Right
o | ROTR é]- Category: MOVE
Head Bit Address 7 Icon: RoT
MBOOODO2 R
Mumber of Rotations %
W#00003
Bit Width ?
Wnono4
B Parameter
Parameter Name Setting
Head Bit Address * Any bit type register (except for # and C registers)
* Any bit type register with subscript (except for # and C regis-
ters)
Number of Rotations * Any integer type register
* Any integer type register with subscript
* Constant
Bit Width * Any integer type register

* Any integer type register with subscript
* Constant

B Program Example

The data having MB00000 (bit 0 of MW00000) as the head address and a bit width of 10 are
rotated once to the right.
: I

ROTR g,

Head Bit Addresz WBOOOOODA
Number of Rotations 1
Bit Width 10

Rotation symmetry range (Bit width = 10)

F c 8 4 0
Before
execution|1|1|1|1|0|0|1|0|0|0|1|1|0|1|0|1|
- :
F c 8 v 4 0
After 1111 1]o]lol1]1]lo]lolo|l1|1]0]1]0
execution

1-100

1.6 Data Manipulation Instructions

1.6.3 MOVE BITS Instruction (MOVB)

B Outline

The MOVB instruction moves the designated number of bits (Width) from the beginning of
the move source bits (Source) to the beginning of the move destination bits (Dest). The

move process is performed one bit at a time in the direction in which the relay number

increases.

Unless the move source bits overlap with the move destination bits, the move source bit

table is stored. If there is overlap between them, the move source bit table may not be stored.

Source —»| Dest—»|
Transfer source Transfer _
data area = destination Width
data area
|<7 Number of transfers (m)4>|
m-1m-2m-3 5 4 3 2 1 0

| 1 | 1 | 0 | 1 | 0 | 1 le—Address of the head

L L ol
transfer source bit
Y Y Y U vy v v v v ¥
| | | 0 | 1 | 1 | | 1 | 1 | 0 | 1 | 0 | 1 le—Address of the
head transfer
destination bit

Transfer source Transfer destination Transfer source Transfer destination
c a

—
—
=

—
Q=

@

() (h) ()
When the transfer source and When the transfer source and
transfer destination overlap (1) transfer destination overlap (2)

B Format

Symbol: MOVB
Full Name: Move Bit

—l HOVE ﬂ'— Category: MOVE

Source ? Icon: MO
MBOO0D 03 LV‘

Dest 7
MBOOOOO4

Width 2
M¥0O0005

1-101

1 Ladder Program Instructions

1.6.3 MOVE BITS Instruction (MOVB)

B Parameter

Parameter Name

Setting

Source

* Any bit type register
* Any bit type register with subscript

Dest

* Any bit type register (except for # and C registers)

* Any bit type register with subscript (except for # and C regis-
ters)

Width

* Any integer type register
* Any integer type register with subscript
* Constant

B Program Example

The 10 bits of data starting from MB000000 (bit 0 of MW00000) are transferred to
MB000010 (bit 0 of MW0000).

Source MEODOOQOD
Dest MBOOOO1D
Width 10

4—— Transferrangg ————»

MWO00000 | 1 0O

MWO00001| 0 0| O

MWO00000 | 1 0|0

MWO00001| O 0| O

1 1 0] 1 1 0] 0] 1 0j]0]O0 01
0 oo} o 1 1 1 0 0| 1 0 1 0
After transfer l
4— Transferrange ———
1 1 0] 1 1 0] 0] 1 0j]0]O0 0|1
0 001 1 0] 0] 1 0j]0]O0 0|1

1-102

1.6 Data Manipulation Instructions

1.6.4 MOVE WORD Instruction (MOVW)

B Outline

The MOVW instruction moves the designated number of words (Width) from the beginning

of the move source registers (Source) to the beginning of the move destination registers

(Dest). The move process is performed one word at a time in the direction in which the reg-

ister number increases.

Unless the move source registers overlap with the move destination registers, the move

source word table is stored. If there is overlap between them, the move source bit table may

not be stored.

Source —»;

Transfer source

data area

Transfer source

Transfer desti

RN

Sla|=|o|alo

[

(h)

©

(h)

When the transfer source and
transfer destination overlap (1)

B Format

1-103

nation

Dest ——»|

Transfer
destination
data area

Transfer source

a

Width

Transfer destination

b
c
d
e

®

©

(h)

(h)

When the transfer source and
transfer destination overlap (2)

Symbol: MOVW

Full Name: Move Word

Category: MOVE

Icon: Ti\j
w

1 Ladder Program Instructions
1.6.4 MOVE WORD Instruction (MOVW)

B Parameter

Parameter Name Setting
Source * Any integer type register
* Any integer type register with subscript
Dest * Any integer type register (except for # and C registers)
* Any integer type register with subscript (except for # and C reg-
isters)
Width * Any integer type register

* Any integer type register with subscript
* Constant

B Program Example

The word data MW00000 to MWO00009 are transferred to MW00100 to MW00109.

Source MWO000Q
Dest MWOO100

Width 10
MW00000 1234H MW00100 1234H
MW00001 2345H MW00101 2345H
MW00002 3456H Afer MW00102 3456H
transfer
MW00009 9999H MW00109 9999H

1-104

1.6 Data Manipulation Instructions

1.6.5 EXCHANGE Instruction (XCHG)

B Outline

The XCHG instruction is used to
(Data Table2).

exchange data between data tables 1 (Data Tablel) and 2

Data Table 1— DataTable 2 ——p»f
Data Table 1 = Data Table 2 Width
Data Table 1 DataTable 2 Data Table 1 DataTable 2
a i i a
b j j b
c k k [
d | I | d
e m m e
f n n f
[¢] [¢] o g
h p p h
Before executing the XCHG instruction After executing the XCHG instruction
B Format
Symbol: XCHG
Full Name: Exchange
-{ KCHG g]- Category: MOVE
Data Table 1 % Icon: m
MY00009
Data Table 2 ?
M¥00010
Yidth ?
MW00011

B Parameter

Parameter Name

Setting

Data Table 1

* Any integer type register (except for # and C registers)
* Any integer type register with subscript (except for # and C reg-
isters)

Data Table 2

* Any integer type register (except for # and C registers)
* Any integer type register with subscript (except for # and C reg-
isters)

Width

* Any integer type register
* Any integer type register with subscript
* Constant

1-105

1 Ladder Program Instructions

1.6.6 SET WORDS Instruction (SETW)

B Program Example

The contents of MW00000 to MW00009 are exchanged to MW00100 to MW00109.

Data Table 1 MWO000D
Data Table 2 MWODT00

Width 10
MWO00000 | 1031H | MW00100 | 2050H MW00000
MW00001 | 1032H | MW00101 | 2051H MW00001
MW00002 | 1033H | MW00102 | 2052H MW00002
MW00003 | 1034H | MW00103 | 2053H MW00003
MW00004 | 1035H | MW00104 | 2054H | 5o - MW00004
MW00005 | 1036H | MW00105 | 2055H | """~ Mwoooos
MW00006 | 1037H | MW00106 | 2056H MW00006
MWO00007 | 1038H | MW00107 | 2057H MW00007
MWO00008 | 1039H | MW00108 | 2058H MW00008
MWO00009 | 1030H | MW00109 | 2059H MW00009

1.6.6 SET WORDS Instruction (SETW)

B Outline

2050H

2051H

2052H

2053H

2054H

2055H

2056H

2057H

2058H

2059H

MW00100

MWO00101

MW00102

MW00103

MWO00104

MWO00105

MW00106

MWO00107

MWO00108

MW00109

1031H

1032H

1033H

1034H

1035H

1036H

1037H

1038H

1039H

1030H

The SETW instruction stores the designated data (Set Data) in all registers designated by the

transfer destination register number (Dest) and the number of destination registers (Width).

The storage process is performed one word at a time in the direction in which the register

number increases.

Transfer data Transfer destination area
XXXXX VWxXXXXX <4— Transfer
XXXXX VWxXXXX + 1 destination
register no.

XXXXX VWxxXXX + 2

V=S,1,0,M D XXXXX VWxxxxx + 3
XXXXX VWxxxxx +(n-1)
XXXXX VWxxXXX +n

1-106

~

Number of
transfers

1.6 Data Manipulation Instructions

B Format
Symbol: SETW
Full Name: Set Word
== =) Category: MOVE
Dest ¢ Icon: SET
MW000 12 J“’
Set Data 7
Mwooo1a
Width 7
MW00014
B Parameter
Parameter Name Setting
Dest * Any integer type register (except for # and C registers)
* Any integer type register with subscript (except for # and C reg-
isters)
Set Data * Any integer type register (except for # and C registers)
* Any integer type register with subscript (except for # and C reg-
isters)
Width * Any integer type register
* Any integer type register with subscript
* Constant

B Program Example

The contents of MW00100 to MWO00119 are set to 0.

Dest MWOO100

Set Data (0
Width 20
Transfer data Transfer destination
00000 00000 MW00100
00000 MWO00101
00000 MWO00102
00000 MWO00103
00000 MWO00118
00000 MWO00119

1-107

1 Ladder Program Instructions

1.6.7 BYTE-TO-WORD EXPANSION Instruction (BEXTD)

1.6.7 BYTE-TO-WORD EXPANSION Instruction (BEXTD)

B Outline

The BEXTD instruction stores the byte sequence stored in the transfer source registers
(Source) one byte at a time in the word sequence in the transfer destination registers (Dest).

The higher-place bytes of the transfer destination registers are set to 0.

Source Dest
T VWxXXXXX a (Lower byte) » a (Lower byte) VWyyyyy
Number of b (Upper byte) \ b (Upper byte)
transfers — yyyyuxxx +1 | ¢ b VWyyyyy +1
(Number of bytes) ~ peeeeeeeieeii i N f e
d 00H
i VWxxxxx +2 | e c VWyyyyy +2
f 00H
d VWyyyyy +3
00H
V=S§,,0,M,D
e VWyyyyy +4
00H
e VWyyyyy +5
00H

B Format
Symbol: BEXTD
Full Name: Extend Byte toWord
e | BEXTD gk Category: MOVE
Source 7 Icon: B
MWO00 16 @I
Dest 1
MWooo17
Byte Width ?
MWa0018

1-108

1.6 Data Manipulation Instructions

B Parameter

Parameter Name Setting

Source * Any integer type register
* Any integer type register with subscript

Dest * Any integer type register (except for # and C registers)

* Any integer type register with subscript (except for # and C reg-
isters)

Byte Width * Any integer type register
* Any integer type register with subscript

 Constant

B Program Example

The 5 bytes beginning with MW00100 are expanded into five words beginning with
MW00200.

Source MWOOT00
Dest Wionzon

Byte Width &
MWO00100 | 10H (Lower byte) » 10H (Lower byte) | MW00200
MWO00101 | 11H (Upper byte) | 00H (Upper byte)

MW00102 | 12H \‘ 11H MW00201
MW00104 | 14H 12H MW00202
OOH\ ooH
13H MW00203

ooH
14H MW00204
ooH

1-109

1 Ladder Program Instructions

1.6.8 WORD-TO-WORD COMPRESSION Instruction (BPRESS)

1.6.8 WORD-TO-WORD COMPRESSION Instruction (BPRESS)

B Outline

The BPRESS instruction stores the lower-place bytes of the word sequence stored in the
transfer source registers (Source) in the byte sequence of the transfer destination registers
(Dest). The higher-place bytes of the transfer source registers are ignored. This function is
the reverse of that of the BEXTD instruction.

* In the case of BPRESS VWxxxxx to VWyyyyy B=N

Source Dest
VWXXXXX a (Lower byte) » a (Lower byte) VWyyyyy
Number of xxH (Upper byte; b (Upper byte)
transfers xxH (Upper by)/v (Upper byte)
(Number of bytes) VVWxooxxx+ b 17 G ViWyyyyy +1
xxH / d
VWxxxxx +2 | c e VWyyyyy + 2
xxH 00
VWxxxxx +3 | d
xxH
When the number of transfered bytes
VWxxxxx +4 1e is an odd number, "0" is set.
xxH V=S,1,0,M,D

B Format

Symbol: BPRESS
Full Name: Compress Word to Byte

| BPRESS E]— Category: MOVE

Source 7 Icon: g
HY00019 ﬁ
Dest ?
MWO0020
Byte Width ?
MWooo21

B Parameter

Parameter Name Setting
Source * Any integer type register
* Any integer type register with subscript
Dest * Any integer type register (except for # and C registers)
* Any integer type register with subscript (except for # and C reg-
isters)
Byte Width * Any integer type register

* Any integer type register with subscript
* Constant

1-110

1.6 Data Manipulation Instructions

B Program Example

The five words beginning with MW00100 are compressed into 5 bytes beginning with
MW00200.

ﬂ‘ I

BPRESS

Source MWOOT00
Dest Wionzon
Bvte Width &

MWO00100 | 10H (Lower byte) 10H (Lower byte) | MW00200

00H (Upper byte)

11H (Upper byte)

MWO00101 | 11H / 12H MW00201
00H / 13H
MW00102 | 12H / 14H MW00202

oo0H ooH |

MWO00103 | 13H
00H When the number of transfered
MW00104 14H o bytes is an odd number, "0" is set.
00H

1.6.9 BINARY SEARCH Instruction (BSRCH)

m Outline

The BSRCH instruction uses a binary search method to search the designated data (Search
Data) within the designated search range (Source). The search result (offset from the lead-
ing register number of the search range for the matching data) is stored in the designated reg-
ister (Result).

Note: 1. Before executing the BSRCH instruction, sort the data within the
search range in ascending order.
2. If there are two or more words with identical data, the first register
number that matches the data will be stored.
3. If no matching data is found, -1 will be stored.

B Format

Symbol: BSRCH
Full Name: Binary Data Search

] BSRCH g)— Category: MOVE

Source 9 Icon: BO-I
H¥00022 SA
Width ?
Mwoonza
Search Data ?
M¥00024
Result ?
M¥0O0025

1-111

1 Ladder Program Instructions

1.6.9 BINARY SEARCH Instruction (BSRCH)

B Parameter

Parameter Name

Setting

Source

* Any integer type and double-length integer type register
* Any integer type and double-length type register with subscript

Width

* Any integer type and double-length integer type register
* Any integer type and double-length type register with subscript

Search Data

* Any integer type and double-length integer type register
* Any integer type and double-length type register with subscript
* Constant

Result

* Any integer type register (except for # and C registers)

* Any integer type register with subscript (except for # and C reg-
isters)

B Program Example

Data matching with 01234 are searched for in registers MW00100 to MW00199, and the
result is stored in register DW00000.

Source oo 100
Width 100
Search Data 1234
Rezult ponnoo
MWO00100 0
MWO00101 00321
MWO00102 01234
MW00199 99765

1-112

DWO00000 00002

Offset number of MW00100
is stored in DW0000O.
DWO00000 « 00102 - 00100

b1

MWO00102 MWO00100

1.6 Data Manipulation Instructions

1.6.10 SORT Instruction (SORT)

B Outlin

e

The SORT instruction sorts data within the designated register range (Data Table, Width) in

ascending order.

H Format

{

SORT

Symbol: SORT
Full Name: Sort

g— Category: MOVE

Data Table ?
MY0O026

Width ?

B Parameter

MW00027

Icon: ﬂ

Parameter Name

Setting

Data Table * Any integer type and double-length integer type register
(except for # and C registers)
* Any integer type and double-length integer type register with
subscript (except for # and C registers)
Width * Any integer type register (except for # and C registers)

* Any integer type register with subscript (except for # and C reg-
isters)
* Constant

B Program Example

The data in registers MW00100 to MWO0O0119 are sorted in ascending order.

Data Table HNO0T0D
Vidth 20

1-113

1 Ladder Program Instructions

1.6.11 BIT SHIFT LEFT Instruction (SHFTL)

1.6.11 BIT SHIFT LEFT Instruction (SHFTL)

B Outline

The SHFTL instruction shifts the bit sequence designated by the leading bit address (Head
Bit Address) and bit width (Bit Width) to the left the designated number of bits (Number of

Shifts).
B Format
Symbol: SHFTL
Full Name: Bit Shift Left
il SHFTL g— Category: MOVE
Head Bit Address ? Icon: sH
MBOO0DOS L
Wumber of Shifts ?
MWoon2a
Bit Width ?
MWoon29
B Parameter
Parameter Name Setting
Head Bit Address * Any bit type register (except for # and C registers)
* Any bit type register with subscript (except for # and C regis-
ters)
Number of Shifts * Any integer type register
* Any integer type register with subscript
* Constant
Bit Width * Any integer type register

* Any integer type register with subscript

» Constant

B Program Example

A ten-bit wide section of data with MBOOOOA (bit A of MWO00000) as the head is shifted
five bits to the left.

SHFTL g}

Head Bit Address MBOODOOOA
Number of Shifts B
Bit Width 10

1-114

1.6 Data Manipulation Instructions

A

Mwooooo|1|1|0|0|o|1 |
3

wwoooot [o]0 7]

) A ¥ —

MW00000|1|0|0|0|0|0 |
0 is entered. 3

MW00001| 1|0|0|0‘

Po—

Note: The upper five bits are thrown away.

1.6.12 BIT SHIFT RIGHT Instruction (SHFTR)

H Outline

The SHFTR instruction shifts the bit sequence designated by the leading bit address (Head
Bit Address) and bit width to (Bit Width) the right the designated number of bits (Number of

Shifts).
B Format
Symbol: SHFTR
Full Name: Bit Shift Right
el SHFTR gl- Category: MOVE
Head Bit Address ? Icon: SHT
MBOOOOOG R
Number of Shifts ?
M¥00030
Bit Width 1
M¥00031
B Parameter
Parameter Name Setting
Head Bit Address * Any bit type register (except for # and C registers)
* Any bit type register with subscript (except for # and C regis-
ters)
Number of Shifts * Any integer type register
* Any integer type register with subscript
* Constant
Bit Width * Any integer type register

* Any integer type register with subscript

* Constant

1-115

1 Ladder Program Instructions
1.6.13 COPY WORD Instruction (COPYW)

B Program Example

A five-bit wide section of data with MB000005 (bit A of MW00000) as the head is shifted
three bits to the right.

SHF T g] I

Head Bit Addresz MBOOOOOA
Number of Shifts 3

Bit Width b
5
MWOO00O | « « = =« = v v e 1 1 1 1 T
S
MWOO0000 |+ + + v v v oo 0 0 0 1 1 e

Y Note: The lower three bits are thrown away.
0 is entered.

1.6.13 COPY WORD Instruction (COPYW)

B Outline

The COPYW instruction copies the designated number of words (Width) from the beginning
of the copy source register (Source) to the beginning of the copy destination register (Dest).
The copy process copies the entire block of data from the copy source to the copy destina-
tion. Even if there is overlap between the copy source and the copy destination, the full
copy data block is copied to the copy destination.

B Format

Symbol: COPYW
Full Name: Copy Word

—l COPYY ﬂ'— Category: MOVE

Icon:
Source ? ﬂ
MWOD 032 w

Dest 2
M¥00033

Width ?

M¥00034

1-116

1.6 Data Manipulation Instructions

B Parameter

Parameter Name Setting
Source * Any integer type register
* Any integer type register with subscript
Dest * Any integer type register (except for # and C registers)
* Any integer type register with subscript (except for # and C reg-
isters)
Width * Any integer type register

* Any integer type register with subscript
* Constant

B Program Example

The word data of MW00000 to MWO00009 are transferred to MW00100 to MW00109.

Source MWO000D
Dest MWOO100

Width 10

MWO00000 1032H MW00100 1032H

MWO00001 1133H MW00101 1133H
After

MW00002 1234H —> MW00102 1234H
transfer

MWO00008 1841H MW00108 1841H

MWO00009 1842H MW00109 1842H

1-117

1 Ladder Program Instructions
1.6.14 BYTE SWAP Instruction (BSWAP)

1.6.14 BYTE SWAP Instruction (BSWAP)

B Outline

The BSWAP instruction swaps the higher-place and lower-place bytes of the designated reg-
ister (Dest).

VWXXXXX VWXXXXX
Upper Lower Upper Lower V=S,1,0, M D
a : b » b : a
Before swap After swap
B Format

Symbol: BSWAP
Full Name: Byte Swap

Bswar A Category: MOVE

Dest 7 Icon: @
MW00035

B Parameter

Parameter Name Setting
Dest * Any integer type register (except for # and C registers)
* Any integer type register with subscript (except for # and C reg-
isters)

1-118

1.6 Data Manipulation Instructions

B Program Example

The upper and lower bytes of MWO00100 to MW00102 are swapped.

Init
Max

Step

ERESTR-)

Dest MWOO100

—| END_FOR :

FOR

Variable I

0
2
1

Upper Lower
MWO00100 12H © 34H
Before swap
Upper Lower
MW00101 13H @ 44H
Before swap
Upper Lower
MWO00102 14H : 54H

Before swap

1-119

» MW00100

» MW00101

» MWO00102

Upper Lower

34H

12H

After swap

Upper Lower

44H

13H

After swap

Upper Lower

54H

14H

After swap

1 Ladder Program Instructions
1.7.1 DEAD ZONE A Instruction (DZA)

1.7 DDC Instructions

1.7.1 DEAD ZONE A Instruction (DZA)

B Outline

The DZA instruction executes a dead zone operation on integer, double-length integer or

real number data.

The following operation is performed, where /nput is the input value, Zone is the designated

dead zone value, and Output is the output value:

* Output = Input (absolute value of /nput is greater than or equal to the absolute value of
Zone)

* Output = 0 (absolute value of /nput is less than the absolute value of Zone)

Y

B Format

Symbol: DZA
Full Name: Dead Zone A

—[DZA g]— Category: DDC

Icon: §
Input 7 i
MI0000 1 Bﬂ

Zone 7
M¥ooon2

Output ?
M¥00003

1-120

1.7 DDC Instructions

B Parameter

Parameter Name Setting

Input * Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Zone * Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register
* Constant

Output * Any integer type, double-length integer type and real number
type register (except for # and C registers)

* Any integer type, double-length integer type and real number
type register with subscript (except for # and C registers)
* Subscript register

B Program Example

Integer Type Operation

e nZé =}

Input HWWOD 100 (000803 (001807
Zone 100
Output MWOD102 (oooony €00150)

Within Outside
dead zone dead zone

Double-length Integer Type Operation

i | nZé =}

Input HWLOD1OO (2000003 (0500007
Zone 100000
Output MLOD1O2 (2ono00y (oooooo}

Outside Within
dead zone dead zone

1-121

1 Ladder Program Instructions
1.7.2 DEAD ZONE B Instruction (DZB)

Real Number Type Operation

—l DZd =}

Input DFOD200 f1E0.0) (50.0)

Zome 1,000000E+002
Output DFODZ0Z f160.0) (0.03

root

Outside Within
dead zone dead zone

1.7.2 DEAD ZONE B Instruction (DZB)

B Outline

The DZB instruction executes a dead zone operation on integer, double-length integer or real
number data.

The following operation is performed, where /nput is the input value, Zone is the designated

dead zone value, and Output is the output value:

* Output = Input - the absolute value of Zone (the absolute value of /nput is greater than or
equal to the absolute value of Zone; Input is greater than or equal to 0)

* OQutput = Input + the absolute value of Zone (the absolute value of Input is greater than
or equal to the absolute value of Zone; Input is less than or equal to 0)

* Output = 0 (the absolute value of /nput is less than the absolute value of Zone)

Y

+D X

1-122

1.7 DDC Instructions

B Format

Symbol: DZB
Full Name: Dead Zone B

=l DZB g]- Category: DDC

Input 7 Icon: 1
MU00004 ZIﬂ
Zone °?

MWO000S

Qutput ¢

MW00006

B Parameter

Parameter Name Setting

Input * Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Zone * Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Output * Any integer type, double-length integer type and real number
type register (except for # and C registers)

* Any integer type, double-length integer type and real number
type register with subscript (except for # and C registers)

* Subscript register

B Program Example

Integer Type Operation

i | DZE =}

Input HWWOD 100 (001503 (00080)
Zone 100
Output MWOD102 {ooos0y (ooooo)

Outside Within
dead zone dead zone

1-123

1 Ladder Program Instructions
1.7.3 UPPER/LOWER LIMIT Instruction (LIMIT)

Double-length Integer Type Operation

e DZE =}

Input MLOOTOD (200000 (050000}
Zopme 100000
Output MLOOD102 f1oooo0y (ooooon}

Outside Within
dead zone dead zone

Real Number Type Operation

| DZE Z}

Input DFODZ00 t1E0.0) (G0.0)

Zone 1,000000E+002
Output DFODEZ0Z (80,07} (0.0}

0 P

Outside Within
dead zone dead zone

1.7.3 UPPER/LOWER LIMIT Instruction (LIMIT)

B Outline

The LIMIT instruction executes an upper/lower limit operation on integer, double-length
integer, or real number data. The following operation is performed, where Input is the input
value, Lower Limit is the lower limit, Upper Limit is the upper limit, and Output is the output

value:

* Output = Lower Limit (Input is less than Lower Limit)

* Qutput = Input (Lower Limit is less than or equal to /nput which is less than or equal to
Upper Limit)

* Output = Upper Limit (Upper Limit is less than Inpuf)

Y

Upper limit: B

X

-| Lower limit: A

1-124

1.7 DDC Instructions

B Format

Symbol: LIMIT
Full Name: Limit

e | LIMIT gl- Category: DDC

Input 9 Icon: | |-
MI00007 249

Lower Limit ?
Mi00008

Upper Limit ?
MW00009

Output ?
M#00010

B Parameter

Parameter Name Setting

Input * Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Lower Limit * Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Upper Limit * Any integer type, double-length integer type and real number
type register

* Any integer type, double-length integer type and real number
type register with subscript

* Subscript register

* Constant

Output * Any integer type and double-length integer register (except for
and C registers)

* Any integer type and double-length integer register with sub-
script (except for # and C registers) (except for # and C regis-
ters)

* Subscript register

1-125

1 Ladder Program Instructions

1.7.3 UPPER/LOWER LIMIT Instruction (LIMIT)

B Program Example

Integer Type Operation

L
— LIMIT Z}

Input MWoo 100

Lower Limit -100
Upper Limit 100
Output W0 102

Input (MW00100) Output (MW0010)

-100 > MW00100 -00100 (under the lower limit)

-100 <MW00100 < 100 Value of MW00100 (within the upper
and lower limit)

MW00100 >100 00100 (above the upper limit)

Double-length Integer Type Operation

(L
—d| LIMIT Z}

Input MLOO 00
Lower Limit -100000
Upper Limit 100000

Dutput MLon1n?

Input (ML0O0100) Output (ML00102)
-100000 > ML00100 -100000 (under the lower limit)
-100000 < ML00100 < 100000 Value of ML00100 (within the upper and
lower limit)
ML00100 > 100000 100000 (above the upper limit)

1-126

1.7 DDC Instructions

Real Number Type Operation

L
= | LIMIT Z}

Input WFODZ200

Lower Limit -1.000000E+002
Upper Limit 1.000000E+002
Output HFOD202

Input (MF00200) Output (MF00202)
-100.0 > MF00200 -100.0 (under the lower limit)
-100.0 < MF00200 <100.0 Value of MF00200 (within the upper and
lower limit)
MF00200 > 100.0 100.0 (above the upper limit)

1.7.4 PI CONTROL Instruction (PI)

H Outline

The PI instruction executes a PI control operation according to the contents of a previously
set parameter table. The input (/npuf) to the PI operation must be integer or real number
data. Double-length integer data cannot be used. The configurations of the parameter tables

for integer and real number data are different. Operations are performed by processing each

parameter as an integer consisting of the lower-place 16 bits.

Table 1.12 Integer Type PI Instruction Parameters

ADR Type Symbol Name Specifications I/0
0 W RLY Relay 1/0 Relay input, relay output * IN/OUT
1 w Kp P gain Gain of the P offset (a gain of 1 is set to 100) IN
2 w Ki Integration adjustment Gain of the integration circuit input (a gain of 1 is set | IN

gain to 100)
3 w Ti Integration time Integration time (ms) IN
4 w IUL Upper integration limit Upper limit for the I offset IN
5 w ILL Lower integration limit Lower limit for the I offset IN
6 w UL Upper PI limit Upper limit for the P + I offset IN
7 w LL Lower PI limit Lower limit for the P + I offset IN
8 w DB PI1 output dead band Width of the dead band for the P + I offset IN
9 w Y Pl output PI offset output (also output to the A register) ouT
10 w Yi | offset Storage of the I offset OouT
11 w IREM | remainder Storage of the I remainder ouT

1-127

1 Ladder Program Instructions

1.7.4 PI CONTROL Instruction (PI)

* Relay I/0O Bit Assignment

BIT Symbol Name Specifications 1/0
0 IRST Integration reset "ON" is input when integration is reset IN
1to7 - (Reserved) Reserved relay for input IN
8toF - (Reserved) Reserved relay for output ouT
Table 1.13 Real Number Type PI Instruction Parameters
ADR Type Symbol Name Specifications /0
0 w RLY Relay 1/0 Relay input, relay output * IN/OUT
1 w - (Reserved) Reserved register -
2 F Kp P gain Gain of the P offset IN
4 F Ki Integration adjustment Gain of the integration circuit input IN
gain
F Ti Integration time Integration time (s) IN
F IUL Upper integration limit Upper limit for the I offset IN
10 F ILL Lower integration limit Lower limit for the I offset IN
12 F UL Upper PI limit Upper limit for the P + I offset IN
14 F LL Lower Pl limit Lower limit for the P + I offset IN
16 F DB Pl output dead band Width of the dead band for the P + I offset IN
18 F Y Pl output PI offset output (also output to the A register) ouT
20 F Yi | offset I stored ouT
* Relay I/0O Bit Assignment
BIT Symbol Name Specifications I/0
0 IRST Integration reset "ON" is input when integration is reset IN
1to7 - (Reserved) Reserved relay for input IN
8toF - (Reserved) Reserved relay for output ouT

Here, the PI operation is expressed as follows:

Y .
— =Kp+Kix

X Tix S

X: deviation input value
Y: output value

The following operation is performed within the PI instruction:
. Ti .
Y=Kpx X+ {(KixX+1IREM)/ Ts + Y1’}

Y1 previous output value
Ts: scan time setting

1-128

1.7 DDC Instructions

Block Diagram
LIMIT, DB
Input N L / Output
X Kp [LIMIT g '; © Y
Ki Ts/Ti

* When the P + I offset reaches the upper or lower PI limit (UL, LL) or the PI dead
band (DB)
When the present P offset and the I offset are the same in sign (diverging), the I offset is
not renewed but is kept at the previous value. Oppositely, if the P and I offsets are oppo-
site in sign (converging towards 0), the I offset is renewed by the present value.

* When the integration reset (IRST) is "ON"
Yi=0 and IREM = 0 are output.

B Format

Symbol: PI
Full Name: PI Control

-l PI Q- Category: DDC

Input 9 Icon: Rl
MWooo014 J
Parameter ?
M&00001
Output %
MW0O0015

B Parameter

Parameter Name Setting

Input * Any integer type and real number type register

* Any integer type and real number type register with subscript
* Subscript register

* Constant

Parameter * Register address (except for # and C registers)
* Register address with subscript (except for # and C registers)

Output * Any integer type and real number type register (except for #
and C registers)

* Any integer type and real number type register with subscript
(except for # and C registers)

* Subscript register

1-129

1 Ladder Program Instructions

1.7.4 PI CONTROL Instruction (PI)

B Program Example

Integer Type Operation

MWO00100 to MWO0O111 are used for the parameter table.

Pl g]

Input WMWOOD10 =——— Deviation input value

Parameter MAOD100 -=——— Head address of parameter table
Output MWOODO11 =——— Ploutputvalue

Real Number Type Operation

MF00200 to MF00220 are used for the parameter table.

Pl g]

Input MFO0020 <——— Deviation input value

Parameter MAOO200 ~=————— Head address of parameter table
Output MFOO022 =———— Ploutput value

1-130

1.7 DDC Instructions

1.7.5 PD CONTROL Instruction (PD)

B Outline

The PD instruction executes a PD control operation according to the contents of a previously

set parameter table. The input (/nput) to the PD operation must be integer or real number

data.

Double-length integer data cannot be used. The configurations of the parameter tables for

integer and real number data are different. Operations are performed by processing each

parameter as an integer consisting of the lower-place 16 bits.

Table 1.14 Integer Type PD Instruction Parameters

ADR Type Symbol Name Specifications /0
0 W RLY Relay 1/0 Relay input, relay output * IN/OUT
w Kp P gain Gain of the P offset (a gain of 1 is set to 100) IN
2 w Kd D gain Gain of the differential circuit input (a gain of 1 is set | IN
to 100)
3 w Td1 Divergence differential The differential time (ms) used in the case of diverg- | IN
time ing input.
4 w Td2 Convergence differential The differential time (ms) used in the case of con- IN
time verging input.
5 w uL Upper PD limit Upper limit for the P + D offset IN
6 w LL Lower PD limit Lower limit for the P + D offset IN
7 w DB PD output dead band Width of the dead band for the P + D offset IN
8 w Y PD output PD offset output (also output to the A register) ouT
9 w X Input value storage Storage of the present deviation input value ouT
* Relay I/O Bit Assignment
BIT Symbol Name Specifications 1/0
Oto7 - (Reserved) Reserved relay for input IN
8toF - (Reserved) Reserved relay for output ouT

1-131

1 Ladder Program Instructions

1.7.5 PD CONTROL Instruction (PD)

Table 1.15 Real Number Type PD Instruction Parameters

ADR Type Symbol Name Specifications I/0
0 w RLY Relay 1/0 Relay input, relay output * IN/OUT
1 w - (Reserved) Reserved register -
2 F Kp P gain Gain of the P correction IN
4 F Kd D gain Gain of the differential circuit input IN
6 F Td1 Divergence differential The differential time (s) used in the case of diverging | IN

time input.
8 F Td2 Convergence differential The differential time (s) used in the case of converg- | IN
time ing input.
10 F UL Upper PD limit Upper limit for the P + D offset IN
12 F LL Lower PD limit Lower limit for the P + D offset IN
14 F DB PD output dead band Width of the dead band for the P + D offset IN
16 F Y PD output PD offset output (also output to the A register) ouT
18 F X Input stored Present deviation input value stored ouT
* Relay I/0O Bit Assignment
BIT Symbol Name Specifications 1/0
Oto7 - (Reserved) Reserved relay for input IN
8toF - (Reserved) Reserved relay for output ouT

Here, the PD operation is expressed as follows:

%:Kerdedes

X: deviation input value
Y: output value

The following operation is performed within the PD instruction:

Y=KpxX+Kdx (X-X) x

X’: previous input value
Ts: scan time setting

1-132

Td
Ts

1.7 DDC Instructions

Block Diagram
71
FO— Kd Td/Ts LIMIT, DB
Input + { _Output
X Kp s /Q Y

* When the change in deviation output (X-X") and the previous deviation input (X”)
are the same in sign (diverging) in the differential (D) operation
The divergence differential time (Td1) is used as the differential time.

* When the change in deviation output (X-X’) and the previous deviation input (X”)
are opposite in sign (converging) in the differential (D) operation
The convergence differential time (Td2) is used as the differential time.

B Format

Symbol: PD
Full Name: PD Control

—[PD g]— Category: DDC

Icon:
Input 7 PD
MW00016 J
Parameter ?
WMaooooz
Qutput 7
WWooo17

B Parameter

Parameter Name Setting

Input * Any integer type and real number type register

* Any integer type and real number type register with subscript
* Subscript register

* Constant

Parameter * Register address (except for # and C registers)
* Register address with subscript (except for # and C registers)

Output * Any integer type and real number type register (except for #
and C registers)

* Any integer type and real number type register with subscript
(except for # and C registers)

* Subscript register

1-133

1 Ladder Program Instructions

1.7.5 PD CONTROL Instruction (PD)

B Program Example

Integer Type Operation

MWO00100 to MWO00109 are used for the parameter table.

P g}

Input Myoopi1p <=———— Deviation input value

Parameter MAOD100 <=——— Head address of parameter table
Output MWODD11 =——— PD output value

Real Number Integer Type Operation

MF00200 to MF00218 are used for the parameter table.

FD g]

Input HMFOOO20 <=—— Deviation input value

Parameter MAOOZ00 <=———— Head address of parameter table
Output MFOOOZ2Z =——— PD output value

1-134

1.7 DDC Instructions

B Outline

1.7.6 PID CONTROL Instruction (PID)

The PID instruction executes a PID control operation according to the contents of a previ-

ously set parameter table. The input (/nput) to the PID operation must be integer or real

number data.

Double-length integer data cannot be used. The configurations of the parameter tables for

integer and real number data are different. Operations are performed by processing each

parameter as an integer consisting of the lower-place 16 bits.

Table 1.16 Integer Type PID Instruction Parameters

ADR Type Symbol Name Specifications 110
0 W RLY Relay 1/0 Relay input, relay output * IN/OUT
w Kp P gain Gain of the P correction (a gain of 1 is set to 100) IN
2 w Ki I gain Gain of the integration circuit input (a gain of 1 is set | IN
to 100)
3 w Kd D gain Gain of the differentiation circuit input (a gain of 1 is | IN
set to 100)
w Ti Integration time Integration time (ms) IN
w Td1 Divergence differential The differential time (ms) used in the case of diverg- | IN
time ing input.
6 w Td2 Convergence differential The differential time (ms) used in the case of con- IN
time verging input.
w IUL Upper integration limit Upper limit for the I correction value IN
W ILL Lower integration limit Lower limit for the I correction value N
w UL Upper PID limit Upper limit for the P + 1+ D offset IN
10 w LL Lower PID limit Lower limit for the P + I+ D offset IN
1" W DB PID output dead band Width of the dead band for the P + I + D offset IN
12 w Y PID output PID offset output (also output to the A register) ouT
13 W Ti | offset I offset stored ouT
14 w IREM | remainder I remainder stored OuT
15 w X Input value storage Present deviation input value stored ouT
* Relay I/O Bit Assignment.
BIT Symbol Name Specifications 1/0
0 IRST | Integration reset "ON" is input when integration is reset. IN
1t07 - (Reserved) Reserved relay for input IN
8toF - (Reserved) Reserved relay for output ouT

1-135

1 Ladder Program Instructions

1.7.6 PID CONTROL Instruction (PID)

Table 1.17 Real Number Type PID Instruction Parameters

ADR Type Symbol Name Specifications 1/0
0 w RLY Relay 1/0 Relay input, relay output * IN/OUT
1 w - (Reserved) Reserved register -
2 F Kp P gain Gain of the P offset IN
4 F Ki | gain Gain of the integration circuit IN
6 F Kd D gain Gain of the differentiation circuit input IN
8 F Ti Integration time Integration time (ms) IN
10 F Td1 Divergence differential The differential time (s) used in the case of diverging | IN

time input.
12 F Td2 Convergence differential The differential time (s) used in the case of converg- | IN
time ing input.
14 F IUL Upper integration limit Upper limit for the T offset IN
16 F ILL Lower integration limit Lower limit for the I offset IN
18 F UL Upper PID limit Upper limit for the P + 1+ D offset IN
20 F LL Lower PID limit Lower limit for the P + I+ D offset IN
22 F DB PID output dead band Width of the dead band for the P + I+ D offset IN
24 F Y PID output PID offset output (also output to the A register) ouT
26 F Ti | offset I offset stored ouT
28 F X Input value storage Present deviation input value stored ouT
* Relay /0O Bit Assignment
BIT Symbol Name Specifications I/0
0 IRST [Integration reset "ON" is input when integration is reset. IN
1to7 - (Reserved) Reserved relay for input IN
8toF - (Reserved) Reserved relay for output ouT

Here, the PID operation is expressed as follows:

L Kp + Kix S —
X TP TR i
X: deviation input value
Y: output value

+KdX TdXS

The following opertion is performed within the PID instruction:

Y=KpX X+ {(KiXxX+IREM)/

X’: previous input value
Yi’: previous I output value
Ts: scan time setting

1-136

Ti
Ts

+Yi+Kd X (X-X) X

Td
Ts

1.7 DDC Instructions

Block Diagram
z-1
* x Kd |—* Td/Ts LIMIT, DB
Input vy +yt [Output
» » — L O—
X Kp TLIMIT ' '}_ v
Ki » Ts/Ti

* When the P + I + D offset reaches the upper or lower PID limit (UL, LL) or the PID
dead band (DB)
When the present P offset and the I offset are the same in sign (diverging), the I offset is
not renewed but is kept at the previous value. Oppositely, if the P and I offsets are oppo-
site in sign (converging towards 0), the I offset is renewed with the present value.

* When the change in deviation output (X-X’) and the previous deviation input X’

are the same in sign (diverging) in the differential (D) operation

The divergence differential time (Td1) is used as the differential time.

When the change in deviation output (X-X’) and the previous deviation input X’

are opposite in sign (converging) in the differential (D) operation

The convergence differential time (Td2) is used as the differential time.

When the integration reset (IRST) is "ON"

Yi=0 and IREM = 0 are output.

B Format

Symbol: PID
Full Name: PID Control

=] PID g]— Category: DDC

Input 2 Icon: PID
WM¥oo018
Parameter ©
MADDDDS
Output 7
MWoon19

1-137

1 Ladder Program Instructions

1.7.6 PID CONTROL Instruction (PID)

B Parameter

Parameter Name

Setting

Input

* Any integer type and real number type register

* Any integer type and real number type register with subscript
* Subscript register

* Constant

Parameter

* Register address (except for # and C registers)
* Register address with subscript (except for # and C registers)

Output

* Any integer type and real number type register (except for #
and C registers)

* Any integer type and real number type register with subscript
(except for # and C registers)

* Subscript register

B Program Example

Integer Type Operation

MWO00100 to MWOO115 are used for the parameter table.

=il PID

Input MWODOD10 ~=—— Deviation input value

Farameter MADD100 <=———— Head address of parameter table
Output HWOO011 <=——— PID output value

Real Number Type Operation

MF00200 to MF00228 are used for the parameter table.

=il PID

Input MFOoOo2g =———— Deviation input value

Parameter Ma00200 <=———— Head address of parameter table
Output MFOO022 = PID output value

1.7 DDC Instructions

1.7.7 FIRST-ORDER LAG Instruction (LAG)

B Outline

The LAG instruction calculates the first-order lag according to the contents of a previously

set parameter table. The input (/nput) to the LAG operation must be integer or real number

data.

Double-length integer data cannot be used. The configurations of the parameter tables for

integer and real number data are different. Operations are performed by processing each

parameter as an integer consisting of the lower-place 16 bits.

Table 1.18 Integer Type LAG Instruction Parameters

ADR Type Symbol Name Specifications /0
0 w RLY Relay I/0 Relay input, relay output * IN/OUT
1 w T First-order lag time con- First-order lag time constant (ms) IN

stant
2 w Y LAG output LAG output (also output to the A register) ouT
W REM Remainder Remainder stored OouT
* Relay I/0 Bit Assignment.
BIT Symbol Name Specifications 110

0 IRST [LAG reset "ON" is input when LAG is reset. IN

1to7 - (Reserved) Reserved relay for input IN
8toF - (Reserved) Reserved relay for output ouT

Table 1.19 Real Type LAG Instruction Parameters
ADR Type Symbol Name Specifications 110
0 w RLY Relay I/0 Relay input, relay output * IN/OUT
w - (Reserved) Reserved register -
2 F T First-order lag time con- First-order lag time constant (s) IN
stant
4 F Y LAG output LAG output (also output to the F register) ouT
* Relay I/O Bit Assignment
BIT Symbol Name Specifications 110
0 IRST [LAG reset "ON" is input when LAG is reset. IN
1to7 - (Reserved) Reserved relay for input IN
8toF - (Reserved) Reserved relay for output ouT

Here, the LAG operation is expressed as follows:

Y

1

X

= ;le.

1+TXS

1-139

T X (dY/dt) + Y =X

1 Ladder Program Instructions

1.7.7 FIRST-ORDER LAG Instruction (LAG)

The following operation is performed within the LAG instruction with dt = Ts and dY = Y-
Y’:

TXY +TsxX+ REM
T+Ts
X: input value

Y =

Y: output value
Y’ : previous output value
Ts: scan time setting

Y =0 and REM = 0 are output when the LAG reset (RST) is "ON".

B Format

Symbol: LAG
Full Name: First Order Lag

e | LAG g]- Category: DDC

Input 2 Icon: LAG
MYooozo —j
Parameter %
MADODD4
Output 7
MWoo021

B Parameter

Parameter Name Setting

Input * Any integer type and real number type register

* Any integer type and real number type register with subscript
* Subscript register

* Constant

Parameter * Register address (except for # and C registers)
* Register address with subscript (except for # and C registers)

Output * Any integer type and real number type register (except for #
and C registers)

* Any integer type and real number type register with subscript
(except for # and C registers)

* Subscript register

1-140

1.7 DDC Instructions

B Program Example

Integer Type Operation

MWO00100 to MWO00103 are used for the parameter table.

1)
LAG El
Input WWOD010 <=— Deviation input value

FParameter MADDI00 <=——— Head address of parameter table
Output WWOODO11 =——— [AG output value

Real Number Type Operation

MF00200 to MF00204 are used for the parameter table.

LAG E}
Input WFODO0D20 <=——— Deviation input value

Parameter MADD2Z00 <=——— Head address of parameter table
Dutput MFOOD0D22 =—— | AG output value

1-141

1 Ladder Program Instructions
1.7.8 PHASE LEAD/LAG Instruction (LLAG)

1.7.8 PHASE LEAD/LAG Instruction (LLAG)

B Outline

The LLAG instruction calculates the phase lead/lag according to the contents of a previously
set parameter table. The input (/npuf) to the LLAG operation must be integer or real number
data.

Double-length integer data cannot be used. The configurations of the parameter tables for
integer and real number data are different. Operations are performed by processing each

parameter as an integer consisting of the lower-place 16 bits.

Table 1.20 Integer Type LLAG Instruction Parameters

ADR Type Symbol Name Specifications /0
0 w RLY Relay 1/0 Relay input, relay output * IN/OUT
1 w T2 Phase lead time Phase lead time constant (ms) IN
constant

2 w T Phase lag time constant Phase lag time constant (ms) IN

3 w Y LLAG output LLAG output (may also be output to the A register) [OUT

4 w REM Remainder Remainder stored ouT

5 w X Input stored Input value stored ouT

* Relay I/O Bit Assignment

BIT Symbol Name Specifications I/0
0 IRST |LLAG reset "ON" is input when LLAG is reset. IN
1to7 - (Reserved) Reserved relay for input IN
8toF - (Reserved) Reserved relay for output ouT

Table 1.21 Real Number Type LLAG Instruction Parameters

ADR Type Symbol Name Specifications I/0
0 w RLY Relay 1/0 Relay input, relay output * IN/OUT
1 w - (Reserved) Reserved register -
2 W T2 Phase lead time constant | Phase lead time constant (s) IN
4 w T Phase lag time constant Phase lag time constant (s) IN
6 w Y LLAG output LLAG output (may also be output to the F register) [OUT
8 W X Input preservation Input value stored OuT

* Relay /0O Bit Assignment

BIT Symbol Name Specifications 1/0
0 IRST |LLAG reset "ON" is input when LLAG is reset. IN
1to7 - (Reserved) Reserved relay for input IN
8toF - (Reserved) Reserved relay for output ouT

1-142

1.7 DDC Instructions

Here, the LLAG operation is expressed as follows:

Y = 1+T2XS sie. TX (dY/dt) +Y =T2 X (dX/dt) + X
X - 1+Tixs ¢ B

The following operation is performed within the LLAG instruction with dt =Ts, dY = Y-Y’,
and dX = X-X’

T1 XY+ (T2 + Ts) XX -T2 XX’+ REM

Y =
T1+Ts

X: input value

Y: output value

X’ previous input value
Y’ previous output value
Ts: scan time setting

Y =0, REM =0, X =0, are output when the LLAG reset (RST) is "ON".
B Format

Symbol: LLAG
Full Name: Phase Lead Lag

| LLAG é]— Category: DDC

Input 2 Icon: UAG
MWoon2z2
Parameter ?
MADDDOG
Dutput 7
MW0o023
B Parameter
Parameter Name Setting
Input * Any integer type and real number type register
* Any integer type and real number type register with subscript
* Subscript register
* Constant
Parameter * Register address (except for # and C registers)
* Register address with subscript (except for # and C registers)
Output * Any integer type and real number type register (except for #
and C registers)
* Any integer type and real number type register with subscript
(except for # and C registers)
* Subscript register

1-143

1 Ladder Program Instructions
1.7.9 FUNCTION GENERATOR Instruction (FGN)

B Program Example

Integer Type Operation

MWO00100 to MWO00105 are used for the parameter table.

LLAG g,
Input WWOOOD10 <=———— Deviation input value

Farameter MAOO100 <=———— Head address of parameter table
Output WWOODD11 «=——— LLAG output value

Real Number Type Operation

MF00200 to MF00208 are used for the parameter table.

)] I
LLAG E}
Input MFOOD20 =——— Deviation input value

Parameter MAODD2Z00 <=———— Head address of parameter table
Output MWFOO02Z «=——— LLAG output value

1.7.9 FUNCTION GENERATOR Instruction (FGN)

B Outline

The FGN instruction generates a function curve according to the contents of a previously set
parameter table. The input to the FGN instruction can be integer, double-length integer, or

real number data. The configuration of the parameter table differs according to the type of

data.
Table 1.22 Integer Type FGN Instruction Parameters

ADR Type Symbol Name Specifications /0
0 w N Number of data Number of pairs of X and Y IN
1 w X1 Data 1 IN
2 w Y1 Data 1 IN
3 w X2 Data 2 IN
4 w Y2 Data 2 IN
2N-1 w XN Data N IN
2N w YN Data N IN

1-144

1.7 DDC Instructions

Table 1.23 Double-length Integer or Real Type FGN Instruction Parameters

ADR Type Symbol Name Specifications 110
0 w N Number of data Number of pairs of X and Y IN
1 w - (Reserved) Reserved register IN
2 L/F X1 Data 1 IN
4 L/F Y1 Data 1 IN
6 L/F X2 Data 2 IN
8 L/F Y2 Data 2 IN
4N-2 L/F XN Data N IN
4N L/F YN Data N IN

If the data set in the parameter table for the FGN instruction are X, and Y ,, the data must be

set so that X, < Y+;. The FGN instruction searches for an X,/ Y, pair within the parameter

table for which X, < X <Y, and computes the output value Y according to the following

formula:

Y:

Yy +

YnH - Yn
Xn+1 - Xn

X (X—=X,)(1<n<N-1)

If the X,/ Y, pair, which satisfies X, < X <Y, for an input value X, does not exist in the

parameter table, the result will be as follows:

« [FX <X,
Y,-Y,
= + = —
Y=Y, XX, X-X))

c [FX>X,

Yu— Yn-

Y =Yon + Xn——Xni (X-X)
n n-=

Output
value

X1 X2 X X3 X4

Input value

1-145

1 Ladder Program Instructions

1.7.9 FUNCTION GENERATOR Instruction (FGN)

B Format

Symbol: FGN
Full Name: Function Generator

e | FGN

g]— Category: DDC

Input ?
H¥00024

Parameter ?
MAODODOE

Output 7
M¥00025

B Parameter

Icon:
FGN

Parameter Name

Setting

Input

* Any integer type, double-length integer and real number type
register

* Any integer type register with subscript

* Any integer type, double-length integer and real number type
register with subscript

* Subscript register

* Constant

Parameter

* Register address (except for # and C registers)
* Register address with subscript (except for # and C registers)

Output

* Any integer type, double-length integer and real number type
register (except for # and C registers)

* Any integer type, double-length integer and real number type
register with subscript (except for # and C registers)

* Subscript register

B Program Example

Integer Type Operation (Number of Data: N = 20)

#WO00000 to #W00040 are used for the parameter table.

L
FGN g,
Input MW00010 <=———— Deviation input value

Farameter fa00000 <=———— Head address of parameter table
Output MWOOO11 —=——— FGN output value

1-146

1.7 DDC Instructions

Double-length Integer Type Operation (Number of Data: N = 20)

#1.00000 to #L.00080 are used for the parameter table.

il Fih =}

Input MLOD100 =—— Deviation input value

Parameter fa00000 <=———— Head address of parameter table
Output MLOD102 <=———— FGN output value

Real Number Type Operation (Number of Data: N = 20)

#F00000 to #F00080 are used for the parameter table.

] FGH =}

Input MFOODODZ0 <=——— Deviation input value

Parameter $a00000 <=——— Head address of parameter table
Output MFOO022 = FGN output value

1.7.10 INVERSE FUNCTION GENERATOR Instruction (IFGN)

H Outline

The IFGN instruction generates a function curve according to the contents of a previously
set parameter table. The input to the IFGN instruction can be integer, double-length integer,

or real number data.
The configuration of the parameter table differs according to the type of data.

If the data set in the parameter table for the IFGN instruction are X, and Y, the data must be
set so that Y, is less than or equal to Y,,;. The IFGN instruction searches for an X, /Y, pair
within the parameter table in which Y/, is less than or equal to Y which is less than or equal

to Y+ from input value Y and calculates the output value X.

Table 1.24 Integer Type IFGN Instruction Parameters

ADR Type Symbol Name Specifications /0
0 w N Number of data Number of pairs of X and Y IN
1 w X1 Data 1 IN
2 w Y1 Data 1 IN
3 w X2 Data 2 IN
4 w Y2 Data 2 IN
2N-1 w XN Data N IN
2N w YN Data N IN

1-147

1 Ladder Program Instructions

1.7.10 INVERSE FUNCTION GENERATOR Instruction (IFGN)

Table 1.25 Double-length Integer or Real Type IFGN Instruction Parameters

ADR Type Symbol Name Specifications 1/0
0 w N Number of data Number of pairs of X and Y IN
1 w - (Reserved) Reserved register IN
2 L/F X1 Data 1 IN
4 L/F Y1 Data 1 IN
6 L/F X2 Data 2 IN
8 L/F Y2 Data 2 IN
4N-2 L/F XN Data N IN
4N L/F YN Data N IN

If the data set in the parameter table for the IFGN instruction are X, and Y,,, the data must be
set so that X, < Y,;;. The IFGN instruction searches for an X/ Y,, pair within the parame-
ter table for which Y, <Y <Y, 4, and computes the output value Y according to the follow-

ing formula:

Xn+1 — Xn

X=X, +
Yn+1*Yn

X (Y_ Yn)

If the X,/ Y, pair, which satisfies Y,, <Y <Y, for an input value Y, does not exist in the

parameter table, the result will be as follows:

c [FX <Y,
X,—-X
=X, + -
X=X, Y,— Y, (Y-Y))
«IFY > Y,
X=Xy + Xo—=Xa1 (Y-Y1)
n— Yn—l
Y4 b QT
Y3
Input Y
value
Y2
Y1
X1 X2 X X3 X4
Ouput value

1-148

1.7 DDC Instructions

B Format

Symbol: IFGN
Full Name: Inverse Function Generator

-[IFGN g]— Category: DDC

Icon:
Input ? =
MWODD2E ﬂ
Parameter ?
WMADD007
Output 7
Wyoonz?

B Parameter

Parameter Name Setting

Input * Any integer type, double-length integer and real number type
register

* Any integer type register with subscript

* Any integer type, double-length integer and real number type
register with subscript

* Subscript register

* Constant

Parameter * Register address (except for # and C registers)
* Register address with subscript (except for # and C registers)

Output * Any integer type, double-length integer and real number type
register (except for # and C registers)

* Any integer type, double-length integer and real number type
register with subscript (except for # and C registers)

* Subscript register

1-149

1 Ladder Program Instructions

1.7.10 INVERSE FUNCTION GENERATOR Instruction (IFGN)

B Program Example

Integer Type Operation (Number of Data: N = 20)

#WO00000 to #W00040 are used for the parameter table.

IFGM g]

Input HWODO10 <=——— Deviation input value

Parameter §400000 <=———— Head address of parameter table
Output WWOOO11 «=——— IFGN output value

Double-length Integer Type Operation (Number of Data: N = 20)

#L.00000 to #L.0008O are used for the parameter table.

IFGM g]

Input MLOotog =——— Deviation input value

Parameter fa0000n =———— Head address of parameter table
Output MLOO102 «=———— IFGN output value

Real Number Type Operation (Number of Data: N = 20)

#F00000 to #F00080 are used for the parameter table.

(L
IFGN g,
Input MFOO200 =—— Deviation input value

Parameter 400000 <=———— Head address of parameter table
Output WFOO0DZZ «=——— IFGN output value

1-150

1.7 DDC Instructions

1.7.11 LINEAR ACCELERATOR/DECELERATOR 1 Instruction (LAU)

B Outline

The LAU instruction performs acceleration and deceleration at a fixed acceleration/deceler-
ation rate upon input of a speed reference (/nput). The operation is performed according to

the contents of a previously set parameter table.

The input to the LAU operation must be integer or real number data. Double-length data

cannot be used. The configurations of the parameter tables for integer and real number data
are different. Operations are performed by processing each parameter as an integer consist-

ing of the lower-place 16 bits.

Table 1.26 Integer Type LAU Instruction Parameters

ADR Type Symbol Name Specifications I/0
0 W RLY Relay I/0 Relay input, relay output * IN/OUT
1 w Lv 100% input level Scale of the 100% input value IN
2 w AT Acceleration time Time for acceleration from 0% to 100% (0.1 s) IN
3 W BT Deceleration time Time for deceleration from 0% to 100% (0.1 s) IN
4 w QT Quick stop time Time for quick stop from 100% to 0% (0.1 s) IN
5 w Vv Current speed LAU output (also output to the A register) ouT
6 w DVDT Current acceleration/de- Scale with the normal acceleration rate being setto | OUT

celeration speed 5000.
7 w - (Reserved) Reserved register -
VIM Previous speed instruction | For storage of the previous value of the speed ouT
nstruction mput
9 w DVDTK | DVDT coefficient Scaling coefficient of the current acceleration IN
(DVDT) (-32768 to 32767)
10 L REM Remainder Remainder of the acceleration/deceleration rate OouT
* Relay I/O Bit Assignment
BIT Symbol Name Specifications 1/0

0 RN Line is running "ON" is input while the line is running. IN

1 Qs Quick stop "OFF" is input upon quick stop. * IN

2 DVDTF | DVDT operation non- | "Closed" entered in DVDT operation non-execution | IN

execution
3 DVDTS | DVDT operation selec- | Selection DVDT operation method IN
tion

4t07 - (Reserved) Reserved relay for input IN
8 ARY In acceleration "ON" is output during acceleration. OuUT
9 BRY In deceleration "ON" is output during deceleration. ouT
A LSP Zero speed "ON" is output upon attainment of a speed of 0. OuT
B EQU Coincidence "ON" is output when input value = output value. ouT
CtoF - (Reserved) Reserved relay for input ouT

* When the quick stop (QS) is "OFF", the quick stop time (QT) is used as acceleration/decelera-

tion time.

1-151

1 Ladder Program Instructions
1.7.11 LINEAR ACCELERATOR/DECELERATOR 1 Instruction (LAU)

Table 1.27 Real Type LAU Instruction Parameters

ADR Type Symbol Name Specifications 1/0

0 w RLY Relay 1/0 Relay input, relay output * IN/OUT
1 w - (Reserved) Reserved register -

2 F Lv 100% input level Scale of the 100% input value IN

4 F AT Acceleration time Time for acceleration from 0% to 100% (s) IN

6 F BT Deceleration time Time for deceleration from 0% to 100% (s) IN

8 F QT Quick stop time Time for quick stop from 100% to 0% (s) IN

10 F \% Current speed LAU output (also output to the F register) OuUT

12 F DVDT Current acceleration/de- Scaled with the normal acceleration rate being set to | OUT

celeration speed 5000.

* Relay I/O Bit Assignment

BIT Symbol Name Specifications 1/0

0 RN Line is running "ON" is input while the line is running. IN
1 Qs Quick stop "OFF" is input upon quick stop.* IN
2to7 - (Reserved) Reserved relay for input IN

ARY In acceleration "ON" is output during acceleration. ouT

BRY In deceleration "ON" is output during deceleration. ouT

LSP Zero speed "ON" is output upon attainment of a speed of 0. ouT

B EQU Coincidence "ON" is output when input value = output value. ouT

CtoF - (Reserved) Reserved relay for input ouT

* When the quick stop (QS) is “OFF”, the quick stop time (QT) is used as
acceleration/deceleration time.

The following operations are performed inside integer type LAU instructions.

Integer Type LAU Instruction

LV xTs (0.1 ms)+REM When VI> V’(V’20),
Accelerationrate (ADV)= AT (0.1 s) x 1000 V=V’+ ADV: In acceleration (ARY)
ON
When VI < V’(V’20),
V=V’- ADV: In acceleration (ARY)
ON

LV x Ts (0.1 ms) + REM When VI>V’(V’<0)
Deceleration rate (BDV) = BT (0.1 s) x 1000 V=V’+ BDV: In deceleration (BRY)
ON
When VI<V’ (V> 0)
V=V’ - BDV: In deceleration (BRY)
ON

1-1562

1.7 DDC Instructions

LV x Ts (0.1 ms) + REM When QS =O0ON(VI>V’),
Quick stop rate (QDV) = QT (0.1 5)x 1000 V=V’+ QDV: In deceleration (BRY)
ON
At QS=ON(VI<V];V’>0)
V=V’- QDV: In deceleration (BRY)
ON

V’: previous speed output value
VI: Speed designated input

Ts: scan time setting
* Ifthe DVDT operation instruction (DVDTF) is ON, a current acceleration/deceleration
operation (DVDT) is performed.

* If DVDTF is OFF, DVDT = 0 is output. If DVDTF is ON, a current acceleration/decel-
eration operation (DVDT) is output after one of the following operations has been per-
formed through DVDT operation selection (DVDTS).

After (*S) operates (“O) of either as follows, the operation of addition-subtraction speed
(DVDT) is output by DVDT operation selection (DVDTS) now when DVDTF is turn-
ing on.

) V-V
N = - . X
If DVDTS is ON: DVDT DV 5000
If DVDTS is OFF: DVDT= (V x DVDTK)- (V' x DVDTK)

AtV =0, the zero velocity (LSP) is ON, at VI =V equality (EQU) turns ON.

* When the "line is running" signal (RN) is "OFF", V =0 and DVDT = 0 are output.
Real Type LAU Instruction

LVxTs(0.1ms) WhenVI>V (V>0),
Acceleration rate (ADV) = AT(s) x 10000 V=V+ ADV: ARY (in acceleration) is
ON
When VI<V(V’<0) ,
V=V’- ADV: ARY (in acceleration) is
ON

-LV X Ts (0.1 ms) When VI<V’(V’>0)
Decelerationrate (BDV) = BT(s) X 10000 V=V’+ BDV: BRY (in deceleration) is
ON
At VI>V’(V’<0)
V=V’ - BDV: BRY (in deceleration) is
ON

-LV xTs (0.1 ms) When QS = ON (V’> VI),
QT(s) x 10000 V=V’+ QDV: BRY (in deceleration) is
ON
When QS = ON (V’< VI)
V=V’-QDV: BRY (in deceleration) is
ON

Quick stop rate (QDV) =

V’: previous speed output value
VI: Speed designated input
Ts: scan time setting (ms)

1-153

1 Ladder Program Instructions
1.7.11 LINEAR ACCELERATOR/DECELERATOR 1 Instruction (LAU)

The current acceleration/deceleration (DVDT) is output after the following operation is car-

ried out:

gl

ADV

DVDT = X 5000

When the "line is running" signal (RN) is "OFF", V =0 and DVDT = 0 are output.

B Format

Symbol: LAU
Full Name: Linear Accelerator

-{ LAU 2]- Category: DDC

Input ? Icon:
M¥ooonza ﬂ
Parameter 7
MA00008
Output 7
M¥000239

B Parameter

Parameter Name Setting

Input * Any integer and real number type register
* Any integer and real number type register with subscript
* Subscript register

* Constant
Parameter * Register address (except for # and C registers)
* Register address with subscript (except for # and C registers)
Output * Any integer and real number type register (except for # and C
registers)

* Any integer and real number type register with subscript
(except for # and C registers)
* Subscript register

1-154

1.7 DDC Instructions

B Program Example

Integer Type Operation

MWO00100 to MWOO111 are used for the parameter table.

Lal g]

Input Wyoopiy =———— Deviation input value

Parameter M&00100 =———— Head address of parameter table
Output HWWOOOD11 —=———— LAU output value

Real Number Type Operation

MF00200 to MF00212 are used for the parameter table.

Lal g]

Input MFOOD20 <=——— Deviation input value

Parameter MAO0200 <=———— Head address of parameter table
Output MWFOODZZ «=——— LAU output value

1.7.12 LINEAR ACCELERATOR/DECELERATOR 2 Instruction (SLAU)

H Outline

The SLAU instruction performs acceleration and deceleration at a variable acceleration/
deceleration rate upon input of a speed reference (/nput). The operation is performed

according to the contents of the previously set parameter table.

Positive and negative values can be entered for speed reference input. Always set a value so
that the linear acceleration or deceleration time (AT or BT) is greater than or equal to the S-

curve acceleration or deceleration time (AAT or BBT).

The input to the SLAU operation must be integer or real number data. Double-length inte-
ger data cannot be used. The configurations of the parameter tables for integer and real

number data are different

1-155

1 Ladder Program Instructions

1.7.12 LINEAR ACCELERATOR/DECELERATOR 2 Instruction (SLAU)

Table 1.28 Integer Type SLAU Instruction Parameters

ADR Type Symbol Name Specifications 1/0
0 w RLY Relay 1/0 Relay input, relay output * IN/OUT
1 w LV 100% input level Scale of the 100% input IN
2 W AT Acceleration time Time for acceleration from 0% to100% (0.1 s) IN
3 w BT Deceleration time Time for deceleration from 0% to100% (0.1 s) IN
4 w QT Quick stop time Time for quick stop from 100% to 0% (0.1 s) IN
5 w AAT S-curve acceleration time | Time spent in the S-curve area during acceleration IN

(0.01 s)
6 w BBT S-curve deceleration time | Time spent in the S-curve area during deceleration IN
(0.01 s)
w \% Current speed SLAU output (also output to the A register) ouT
w DVDT1 | Current acceleration/ Scaled with the normal acceleration rate being setto | OUT
deceleration speed1 5000.
(DVDT1)
w - (Reserved) Reserved register -
10 w ABMD Speed increase upon Amount of change in speed after hold instruction and | OUT
holding until stabilization.
11 w REMA1 Remainder Remainder of acceleration/deceleration rate ouT
12 w - (Reserved) Reserved register -
13 w VIM Remainder For storage of the previous value of the speed desig- | OUT
nation input
14 L DVDT2 | Current acceleration/ 1000 times of actual acceleration/deceleration ouT
deceleration speed2
(DVDT2)
16 L DVDT3 | Current acceleration/ Current acceleration/deceleration (= DCDT2/1000) | OUT
deceleration speed3
(DVDT3)
18 L REM2 Remainder Remainder of S-curve area acceleration/deceleration | OUT
rate
20 w REM3 Remainder Remainder of the current speed ouT
21 w DVDTK | DVDT1 coefficient Scaling coefficient (-32768 to 32767) of current IN
acceleration/deceleration (DVDT1)

1-156

1.7 DDC Instructions

* Relay I/O Bit Assignment

BIT Symbol Name Specifications 1/0
0 RN Line is running "ON" is input while the line is running. IN
1 Qs Quick stop "OFF" is input upon quick stop™ IN
2 DVDTF | Non-execution of Input of "OFF" into non-execution of DVDT1 opera- | IN
DVDT1 operation tion.
3 DVDTS | DVDT1 operation se- Selection DVDT1 operation method IN
lection
4t07 - (Reserved) Reserved relay for input IN
8 ARY In acceleration "ON" is output during acceleration. OuUT
9 BRY In deceleration "ON" is output during deceleration. ouT
A LSP Zero speed "ON" is output upon attainment of a speed of 0. ouT
B EQU Coincidence "ON" is output when input value = output value. ouT
C EQU (Reserved) Reserved relay for output ouT
D CCF Work relay System internal work relay ouT
E BBF Work relay System internal work relay ouT
F AAF Work relay System internal work relay ouT
* When the quick stop (QS) is "OFF", the quick stop time is used for the acceleration/deceleration
time.
Table 1.29 Real Type SLAU Instruction Parameters
ADR Type Symbol Name Specifications /0
0 W RLY Relay 1/0 Relay input, relay output * IN/OUT
1 w - (Reserved) Reserved register -
2 F Lv 100% input level Scale of the 100% input IN
4 F AT Acceleration time Time for acceleration from 0% to 100% (s) IN
6 F BT Deceleration time Time for deceleration from 100% to 0% (s) IN
8 F QT Quick stop time Time for quick stop from 100% to 0% (s) IN
10 F AAT S-curve acceleration time | Time spent in the S-curve area during acceleration IN
(s)
12 F BBT S-curve deceleration time | Time spent in the S-curve area during deceleration IN
(s)
14 V Current speed SLAU output (also output to the F register) ouT
16 DVDT Current acceleration/de- Scaled with the normal acceleration rate being set. ouT
celeration
18 F ABMD Speed increase upon hold- | Amount of change in speed after hold instruction ouT
ing until stabilization.

1-157

1 Ladder Program Instructions

1.7.12 LINEAR ACCELERATOR/DECELERATOR 2 Instruction (SLAU)

* Relay I/O Bit Assignment

BIT Symbol Name Specifications 1/0

0 RN Line is running "ON" is input while the line is running. IN

1 QS Quick stop "OFF" is input upon quick stop. IN
2to7 - (Reserved) Reserved relay for input IN

8 ARY In acceleration "ON" is output during acceleration. ouT

9 BRY In deceleration "ON" is output during deceleration. ouT

A LSP Zero speed "ON" is output upon attainment of a speed of 0. ouT

B EQU Coincidence "ON" is output when input value = output value. ouT
CtoF - (Reserved) Reserved relay for output ouT

The following operations are performed inside integer type SLAU instructions.
Integer Type SLAU Instruction

LV x Ts (0.1 ms) + REM1 Outside S- curvearea (ADVS > ADV)
AT(0.1s) x 1000 When VI> V' (V' 0)
V=V’+ADV: In acceleration (ARY)
ON
When VI<V’ (V' < 0)
V=V’- ADV: In acceleration (ARY)
ON

Acceleration rate (ADV) =

LV xTs (0.1 ms) + REM1 Outside S -curve area (BDVS > BDV)
BT (0.1s) x 1000 AtVI>V (V' <0)
V=V’+ BDV: In deceleration (BRY)
ON
When VI<V’ (V’>0)
V=V’ - BDV:In deceleration (BRY)
ON

Deceleration rate (BDV) =

LV x Ts (0.1 ms) + REM1 When QS=ON (VI>V’),

QT (0.1 s) x 1000 V =V’+ QDV: In deceleration(BRY)
ON
When QS=0N (VI<V’),
V=V’ -QDV: In deceleration(BRY)
ON
(NOTE) The quick stop rate is not S -
curve movement, but linear movement
(same as the quick stop rate of SLAU).

Quick stop rate (QDV) =

1-158

1.7 DDC Instructions

Acceleration rate in the S-curve area (ADVS) = ADVS’+ AADVS

AADVS =

ADV x Ts (0.1 ms) + REM2 ADVS’: previous value of ADVS
AAT (0.01 s) x 100 Inside the S-curve area (BDVS<BDV)

When VI>V’ (V’ 2 0),

V=V’+ ADVS: In acceleration (ARY)
ON

When VI <V’ (V’< 0),

V=V’ -ADVS: In acceleration (ARY)
ON

S character section moderation rate (BDVS) = BDVS’+ BBDVS

BDV x Ts(0.1 ms) + REM2 In(BDVS <BDV) in S character section
BBT (0.01 s) x 100 AtVI>V’ (V' <0)
V =V’ + BDVS; Moderation inside (BRY)
turning on
AtVI<V’ (V’>0)
V=V’-BDVS; (BRY) turning on when
being accelerating

BBDVS=

V’: Speed output value last time
VI: Speed instruction input
Ts: Scanning time setting

Addition-subtraction speed 1(DVDT1) is operated now when DVDT]1 operation instruc-
tion (DVDTF) is turning on.
When DVDTF is turning off, DVDT1 = 0 is output.

After (*S) operates (“O) of either as follows, the operation of addition-subtraction speed
1 (DVDT1) is output by DVDT1 operation selection (DVDTS) now when DVDTF is
turning on.

V-V)

When DVDTS is turning on: DVDT1=
ADV

X 5000

When DVDTS is turning off: DVDT = (V X DVDTK)-(V’ X DVDTK); DVDTK:
DVDT coefficient

Addition-subtraction speed 2 (DVDT2) is output as follows now.
("S) is accelerating: In S character section: DVDT2 = +ADVS.
Outside S character section: DVDT2 =+ADV
The moderation inside: In S character section: DVDT2 =+BDVS.
Outside S character section: DVDT2 = +BDV

It was output to operate (“O) as follows maintenance per hour degree rise (ABMD).

DVDT2’ X DVDT2’ Present value last time of addition-subtraction

ABMD =
2 X AADVS (BBDVS) speed 2 (DVDT2)

0 velocities (LSP) turn on in turning on with V = 0 and agreement (EQU) is turned on by
Vi=W.

When line in operation (RN) is "Open", V=0, DVDT1 =0, DVDT2 =0, DVDT3 =0,
ABMD =0, REM1 =0, REM2 = 0, and REM3 = 0 are output.

1-159

1 Ladder Program Instructions

1.7.12 LINEAR ACCELERATOR/DECELERATOR 2 Instruction (SLAU)

Real Type SLAU Instruction

LV xTs (0.1 ms) Outside S character section
AT (s) x 10000 (ADVS > ADV)

VI>V (V> >0):

V=V +ADV

Acceleration rate (ADV) =

LV xTs (0.1ms) Outside S character section
BT(s) x 10000 (BDVS <BDV)

VI<V (V' >0):

V=V +BDV

Moderation rate (BDV) =

LV xTs (0.1 ms) QS=ON (V’> VI):
QT(s) X 10000 V=V’+QDV

Rapid stop rate (QDV) =

S character section acceleration rate (ADVS) = ADVS’ + AADVS

ADV xTs (0.1 ms) : Value last time of ADVS’= ADVS
AAT(s) x 10000 In (ADVS <ADV) in S character section
VI>V’(V’>0):
V=V’+ ADVS

AADVS =

S character section moderation rate (BDVS) =BDVS’+ BBDVS

BDV x Ts (0.1 ms) :Value last time of BDVS’= BDVS

BBT(s) x 10000 Outside S character section
(BDVS >BDV)
VI<V’' (V' >0):
V=V’+BDVS

BBDVS =

V’: Speed output value last time
VI: Speed instruction input
Ts: Scanning time setting value

+ After (*S) operates (“O) as follows, addition-subtraction speed (DVDT) is output now.
("S) is accelerating: In S character section: DVDT = ADVS.
Outside S character section: DVDT = ADV
Moderation inside : In S character section: DVDT = BDVS.
Outside S character section: DVDT = BDV

« It was output to operate (“O) as follows maintenance per hour degree rise (ABMD).

DVDTX DVDT
2X AADVS (BBDVS)

ABMD =

* When line in operation (RN) is "Open", V=0, DVDT = 0, and ABMD = 0 are output.

1-160

1.7 DDC Instructions

B Format

Symbol: SLAU
Full Name: S-Curve Linear Accelerator

el SLAU E]— Category: DDC

Input 7 Icon:
MW00030 ﬂ
Parameter ?
Ma00004
Output 7
M¥00031

B Parameter

Parameter Name Setting

Input * Any integer and real number type register
* Any integer and real number type register with subscript
* Subscript register

* Constant
Parameter * Register address (except for # and C registers)
* Register address with subscript (except for # and C registers)
Output * Any integer and real number type register (except for # and C
registers)

* Any integer and real number type register with subscript
(except for # and C registers)

* Subscript register

B Program Example

Integer Type Operation

MWO00100 to MWO000121 are used for the parameter table.

SLAU Zl}
Input WWOO010 =———— Deviation input value

Parameter MAOD100 <=———— Head address of parameter table
Output WWOOO11 «=——— SLAU output value

1-161

1 Ladder Program Instructions

1.7.12 LINEAR ACCELERATOR/DECELERATOR 2 Instruction (SLAU)

Real Number Type Operation

MF00200 to MF00218 are used for the parameter table.

]’ I
SLaU ‘El —
Input WFODDZ0 ~=———— Deviation input value

Parameter Ma00200 <=———— Head address of parameter table
Output MFOOD022 = SLAU output value

Speed
(V)
VI
(100%)
Acceleration Deceleration
0,S-curve |Straight |S-curve S-curve |Straight [S-curve Ti
section line area | section section line area |section (tl)me
AAT AT-AAT AAT BBT BT-BBT BBT
AT BT
A A A A
AT + AAT BT + BBT
Acceleration Acceleration Deceleration Deceleration
start completed start completed

Note: Please note the following when you use integer type SLAU instruc-
tion.
Please do not change input value (VI) before reaching input value
(VI) (de-and acceleration inside).
When input value (VI) is changed in the de-and acceleration, over-
shooting/undershoot might be generated. (Refer to the figure below)
Please make the application program when you change input value
(VI) in the de-and acceleration by either the undermentioned.
* Please use real type SLAU instruction.
* Please use the LIMIT instruction together when you use inte-
ger SLAU instruction. The output value of integer type
SLAU instruction is limited, and that is, please assume the
output value of the LIMIT instruction to be a input value of
the LIMIT instruction, and limit overshooting/undershoot.

I will encourage the use of one real type SLAU instruction
from the easiness of making the application program.

1-162

1.7 DDC Instructions

/ Overshooting
Speed
Vi

Speed

/N Vi

(*S) the instruction

(input value)

changes while accelerating
(Change to VI— 0)

0 0
Time ~~< Time

N\ Undershoot

1.7.13 PULSE WIDTH MODULATION Instruction (PWM)

B Outline

The PWM instruction converts the value of the /nput to PWM as an input value (between -
100.00 and 100.00%, with increments of 0.01%) and outputs the result to the Output and the

parameter table.

Double-length integer and real number operations are not allowed.

PWMT (X + 10000)
20000

Time of ON output =

PWMT (X + 10000)

Number of ON outputs = Ts x 20000

X: input value

Ts: scan time set value (ms)

When 100.00% is input: all ON

When 0% is input: 50% duty (50% ON)
When -100.00% is input: all OFF

When the PWM reset (PWMRST) is ON, all internal operations are reset and PWM opera-
tions are performed with that instant as the starting point. After turning the power ON, set
PWMRST to ON to clear all internal operations, then use the PWM instruction.

1-163

1 Ladder Program Instructions

1.7.13 PULSE WIDTH MODULATION Instruction (PWM)

Table 1.30 Integer Type PWM Instruction Parameters

ADR Type Symbol Name Specifications /0
0 w RLY Relay 1/0 Relay input, relay output * IN/OUT
1 w PWMT | PWM cycle PWM cycle (1 ms) (1 to 32767 ms) IN
2 w ONCNT [ON output set timer Set timer for ON output (1 ms) ouT
3 w CVON ON output counting timer | Counting timer for ON output (1 ms) ouT
4 w CVON ON output counting timer | ON output counting timer remainder (0.1 ms) ouT

REM remainder
5 w OFFCNT [OFF output set timer Set timer for OFF output (1 ms) ouT
w CVOFF [OFF output counting timer | Counting timer for OFF output (1 ms) ouT
w CVOFF | OFF output counting timer | OFF output counting timer remainder (0.1 ms) ouT
REM remainder
* Relay I/0O Bit Assignment
BIT Symbol Name Specifications I/0
0 PWM PWM reset "ON" is input when PWM is reset IN
RST
2t07 |- (Reserved) Reserved relay for input IN
8 PWM PWM output PWM is output (2 value output: ON = 1, OFF = 0) ouT
ouT
9toF |- (Reserved) Reserved relay for output ouT
B Format

e | PN p<) o

Input ?
MWoona2

Parameter ?
MADDD1D

OQutput 7
MW00033

1-164

Symbol: PWM

Full Name: Pulse Width Modulation

Category: DDC

Icon: PW [

1.7 DDC Instructions

B Parameter

Parameter Name

Setting

Input

* Any integer type register

* Any integer type register with subscript
* Subscript register

* Constant

Parameter

* Register address (except for # and C registers)
* Register address with subscript (except for # and C registers)

Output

* Any integer type register (except for # and C registers)

* Any integer type register with subscript (except for # and C reg-
isters)

* Subscript register

* Constant

B Program Example

MWO00100 is used as PWM input and MW00200 to MW00207 as a parameter table.

SBB[IUlDIIS

MBOOZ00D

Input MW0D100 <— PWM deviation input value

Parameter MADDZ200 «=— Head address of parameter table
Output MWO0300 «—— PWM output value

INFO PWM reset with the first scan of DWG.L. (SB000001 when used with DWG.H)

1 Ladder Program Instructions

1.8.1 BLOCK READ Instruction (TBLBR)

1.8 Table Data Manipulation Instructions

1.8.1 BLOCK READ Instruction (TBLBR)

B Outline

The TBLBR instruction consecutively reads file register table elements in block format that
are specified by table name (7able Name), row number, and column number. It then stores
the elements in a continuous region starting with the specified register (Read Data). The
type of the element being read is automatically determined according to the specified table.
The type of the storage destination register is ignored and the read data is stored according to
the table element type without converting the data type.

If errors such as invalid table names, invalid row numbers, invalid column numbers, or
insufficient storage register data length are found, they are reported and the contents of the

storage destination register is retained without reading the data.

Upon normal termination, the number of words transferred is set in the [Output], and the
[Status] is turned OFF.

When an error occurs, the corresponding error code is set in the [Output], and the [Status] is
turned ON.

Table 1.31 List of Error Codes

Error Code Error Name Content

0001H Referenced table undefined The target table is not defined.

0002H Qutside row number range The row number of the table element is not within
the range of the target table.

0003H Outside column number range The column number of the table element is not
within the range of the target table.

0004H Number of elements incorrect The number of elements of the target is invalid.

0005H Insufficient space in storage destina- | There is not enough space for storing.

tion

0006H Incorrect element type The type of the specified element is a malfunction.

0007H Cue buffer error An attempt is made to read the cue buffer when it is
empty, or the buffer is written to by pointer advance
when it is full.

0008H Cue table error The specified table is not a table of the cue type.

0009H System error An unexpected error is detected internally in the sys-
tem during instruction execution.

1-166

1.8 Table Data Manipulation Instructions

Table 1.32 Block Read PI Instruction Parameters

ADR Type Symbol Name Specifications /0
0 L ROW1 Table element beginning Beginning row number of the target table element N
row number (1 to 65535)
2 L coL1 Table element beginning Beginning column number of the target table ele- IN
column number ment (1 to 32767)
w RLEN Number of row elements Number of row elements (1 to 32767) IN
w CLEN Number of column ele- Number of column elements (1 to 32767) IN
ments
B Format

e | TBLBR

Table Name ?

Read Data ?
MAOOOD1

Parameter 7
MADODD2

[Output] 2
M¥00001

[Status] 2
MEOOOOO1

B Parameter

Zr

Symbol: TBLBR
Full Name: Table Block Read
Category: TABLE

Icon: E
BR

Parameter Name Setting

Table Name Table name

Read Data * Register address (except for # and C registers)
* Register address with subscript

Parameter * Register address
* Register address with subscript

[Output]* * Any integer type register (except for # and C registers)
* Any integer type register with subscript
* Subscript register

[Status]* * Any bit type register (except for # and C registers)
* Any bit type register with subscript

* Possible to omit.

1-167

1 Ladder Program Instructions
1.8.2 BLOCK WRITE Instruction (TBLBW)

B Program Example

From the table defined as TABLE1, with DW00010 to DW00015 as a parameter table, data
(element type is integer type) from the starting table element position to the end position are
stored in block form in the area starting from MWO00100.

Table Mame TABLE1

Read Data WMAODIOO
Farameter DAODODID
[Output] MWOODO11

[Status] MEOOODDOD

1.8.2 BLOCK WRITE Instruction (TBLBW)

B Outline

The TBLBW instruction writes the contents of a continuous region starting with the speci-
fied register (Write Data) to the file register table elements in block format that are specified
by table name (Table Name), row number, and column number. The data is processed
assuming that the type of the table elements in the storage destination register is the same as

that of the table elements in the storage source register.

If errors such as invalid table names, invalid row numbers, invalid column numbers, or
insufficient storage register data length are found, they are reported and the contents of the

storage destination register is retained without writing the data.

Upon normal termination, the number of words transferred is set in the /Output] and the
[Status] is turned OFF.

When an error occurs, the corresponding error code is set in the [Output] and the [Status] is
turned ON.

Table 1.33 Block Write Instruction Parameters

ADR Type Symbol Name Specifications I/0
0 L ROW1 Table element beginning Beginning row number of the target table IN
row number element (1 to 65535)
2 L CoL1 Table element beginning Beginning column number of the target table IN
column number element (1 to 32767)
W RLEN Number of row elements Number of row elements (1 to 32767) IN
w CLEN Number of column Number of column elements (1 to 32767) IN
elements

1-168

1.8 Table Data Manipulation Instructions

B Format

Symbol: TBLBW
Full Name: Table Block Write

-[TBLBY E]' Category: TABLE
Table Name ? Icon: "TBL
Write Data ? BW
WMADD0DD3
Parameter ?
MADOODD4
[Output] 7
Muoooon2
[Status] ?
MEBOOODD2
B Parameter
Parameter Name Setting
Table Name Table name
Write Data * Register address (except for # and C registers)
* Register address with subscript
Parameter * Register address
* Register address with subscript
[Output]* * Any integer type register (except for # and C registers)
* Any integer type register with subscript
* Subscript register
[Status]* * Any bit type register (except for # and C registers)
* Any bit type register with subscript

* Possible to omit.

B Program Example

From the table defined as TABLE1, with DW00010 to DWO00015 as a parameter table, area
(element type is integer type) from the starting table element position to the end position are
stored in block form in the data from MW00100.

TELEW o |

Table Wame TABLEI

Write Data MAOO100
Parameter D&OOO10
[Output] MWOOD11

[Status] MEOOODOOD

1-169

1 Ladder Program Instructions

1.8.3 ROW SEARCH Instruction (TBLSRL)

1.8.3 ROW SEARCH Instruction (TBLSRL)

B Outline

The TBLSRL instruction searches for the column element of the file register table specified

by the table name (7able Name), row number, and column number. If there is data that

matches the data in the specified register (Search Data), the instruction reports that row

number. The type of the data to be searched is automatically determined according to the

specified table.

If errors such as invalid table names, invalid row numbers, invalid column numbers, or

insufficient storage register data length are found, they are reported.

Upon normal termination, if a matching column element is found, 1 is set in the search

result, the row number is set in the /Output], and the [Status] is turned OFF. If no matching

column element is found, 0 is set in the search result.

When an error occurs, the corresponding error code is set in the /Output/, and the [Status] is

turned ON.

Table 1.34 Row Search Instruction Parameters

e |

TBLSRL g]—

Table Name ?
Search Data 7

MADODOS
Parameter ?
MADOODR
[Output] 2
MWoooos
[Status] 2
MBOOOODS

1-170

Symbol: TBLSRL
Full Name: Table Row Search
Category: TABLE

Icon: TBL
L

ADR Type Symbol Name Specifications /0
0 L ROW1 Table element head row Head row number of the target table element IN
number (1 to 65535)
2 L ROW2 | Table element last row Last row number of the target table element IN
number (1 to 65535)
4 L COL- Table element column Column number of the target table element IN
UMN number (1 to 32767)
6 w FIND Search result Search results ouT
0: No matching row
1: Matching row exists
B Format

1.8 Table Data Manipulation Instructions

B Parameter

Parameter Name Setting
Table Name Table name
Search Data * Register address

* Register address with subscript

Parameter * Register address
* Register address with subscript

[Output]* * Any integer type register (except for # and C registers)

* Any integer type register with subscript
* Subscript register

[Status]* * Any bit type register (except for # and C registers)
* Any bit type register with subscript

* Possible to omit.

B Program Example

The table defined as TABLEI is searched for data which matchers MW00100 (when the
type of the searched table is integer) with DW00010 to DW00014 as a parameter table.

|
— TELSRL =}

Table Mame TAELET

Search Data MAODODIOO
Parameter DAODODIO
[Output] M¥oooi1

[Status] MEOOOOOO

1.8.4 COLUMN SEARCH Instruction (TBLSRC)

B Outline

The TBLSRC instruction searches for the row element of the file register table specified by
a table name (7able Name), row number, and column number. If there is data that matches
the data of the specified register (Search Data), the instruction reports that column number.

The type of the data to searched is automatically determined according to the specified table.

If errors such as invalid table names, invalid row numbers, invalid column numbers, or

insufficient storage register data length are found, they are reported.

Upon normal termination, if a matching row element is found, 1 is set in the search result,
the row number is set in the [Output], and the [Status] is turned OFF. If no matching col-

umn element is found, O is set in the search result.

When an error occurs, the corresponding error code is set in the /[Output] and the [Status] is
turned ON.

1-171

1 Ladder Program Instructions

1.8.4 COLUMN SEARCH Instruction (TBLSRC)

Table 1.35 Column Search Instruction Parameters

ADR Type Symbol Name Specifications /0
0 L ROW1 Table element row Row number of the target table element IN
number (1 to 65535)
2 L COL- Table element head Head column number of the target table IN
UMN1 | column number element (1 to 32767)
4 L COL- Table element last column | Last column number of the target table IN
UMN2 | number element (1 to 32767)
6 w FIND Search result Search results OouT
0: No matching column
1: Matching column exists
B Format

Symbol: TBLSRC
Full Name: Table Column Search

e TBLSRC g]— Category: TABLE

Table Name 7
Search Data ?
M&00007
Parameter %
M&00003
[Output] 2
MY00004

[Status] ?
MBOOODOD4

Icon: TBL

B Parameter
Parameter Name Setting
Table Name Table name
Search Data * Register address

* Register address with subscript

Parameter * Register address
* Register address with subscript

[Output]* * Any integer type register (except for # and C registers)
* Any integer type register with subscript
* Subscript register

[Status]* * Any bit type register (except for # and C registers)

* Any bit type register with subscript

* Possible to omit.

1-172

1.8 Table Data Manipulation Instructions

B Program Example

The table defined as TABLEI is searched for data which matchers MW00100 (when the
type of the searched table is integer) with DW00010 to DW00014 as a parameter table.

TEL SR g}

Table MWame T&HELE1

Search Data M&OO100
Parameter DADODOTO
[Output] MWooo11

[Status] MEOOOODOD

1.8.5 BLOCK CLEAR Instruction (TBLCL)

H Outline

The TBLCL instruction clears the data of the block element of the file register table speci-
fied by a table name (7able Name), row number, and column number. If the element type is

a character string, space is written. If the element type is a numeric value, 0 is writte n.

If both the table element leading row number and the table element leading column number

are 0, the entire table is cleared.

If errors such as invalid table names, invalid row numbers, invalid column numbers, or
insufficient storage register data length are found, they are reported and data is not written.
Upon normal termination, the number of words cleared is set in the /Output], and the [Sta-
tus] is turned OFF.

When an error occurs, the corresponding error code is set in the [Output], and the [Status] is

turned ON.

Table 1.36 Block Clear Instruction Parameters

ADR Type Symbol Name Specifications 110
0 L ROW Table element head row Head row number of the target table element IN
number (0 to 65535)
2 L COL- Target table element head | Head column number of the target table element IN
UMN column number (10 to 32767)
w RLEN Number of row elements Number of row elements (1 to 32767) IN
w CLEN Number of column Number of column elements (1 to 32767) IN
elements

1-173

1 Ladder Program Instructions

1.8.5 BLOCK CLEAR Instruction (TBLCL)

B Format
Symbol: TBLCL
Full Name: Table Block Clear
TELCL
-'II" o = EP Category: TABLE
aple Name 7 . T1BL|
Parameter ¢ Icon: CL
MAODODDS
[Output] ?
MW0O00D5
[Status] ?
MEOOOODS
B Parameter
Parameter Name Setting
Table Name Table name
Parameter * Register address
* Register address with subscript
[Output]* * Any integer type register (except for # and C registers)
* Any integer type register with subscript
* Subscript register
[Status]* * Any bit type register (except for # and C registers)
* Any bit type register with subscript

* Possible to omit.

B Program Example

The designated block in the table defined as TABLEI is cleared using DW00010 to
DWO00015 as a parameter table.

Table Mame TAELE1
Parameter DAOODODITO
[Output] MWOOOT1

[Status] HMEOOOOOO

1-174

1.8 Table Data Manipulation Instructions

1.8.6 BLOCK MOVE Instruction (TBLMV)

B Outline

The TBLMYV instruction transfers the data of the block elements of the file register table
specified by the table name (Table Name), row number, and column number to another
block. Block transfer between different tables and data transfer within the same table are
both possible. Ifthe column element types of the source and destination blocks are different,

an error is reported and data is not written.

If errors such as invalid table names, invalid row numbers, invalid column numbers, or
unmatched storage destination element type are found, they are reported and data is not writ-

ten.

Upon normal termination, the number of words transferred is set in the /Output], and the
[Status] is turned OFF.

When an error occurs, the corresponding error code is set in the /[Output], and the [Status] is
turned ON.

Table 1.37 Inter Table Block Transfer Instruction Parameters

ADR Type Symbol Name Specifications /0
0 L ROW1 Table element head row Head row number of the transfer source table IN
number element (1 to 65535)
2 L COL - Table element head col- Head column number of the transfer source IN
UMN1 | umn number table element (1 to 32767)
4 w RLEN Number of row elements Number of transfer row elements to be IN
transferred (1 to 32767)
5 W CLEN Number of column Number of transfer column elements to be IN
elements transferred (1 to 32767)
6 L ROW2 Table element head Head row number of the transfer destination IN
row number table element (1 to 65535)
8 L COL - Table element head Head column number of the transfer destination IN
UMN2 [column number table element (1 to 32767)

1-175

1 Ladder Program Instructions
1.8.6 BLOCK MOVE Instruction (TBLMV)

B Format
Symbol: TBLMV
Full Name: Table Block Move
= TBLMY QI- Category: TABLE
Src Table Name ? Icon: JBL
Dest Table Name ? M
Parameter ?
MADODTD
[Dutput] 7
MWOO0006
[Status] 7
MBOOOOOE
B Parameter
Parameter Name Setting
Src Table Name Table name
Dest Table Name Table name
Parameter * Register address

* Register address with subscript

[Output]* * Any integer type register (except for # and C registers)
* Any integer type register with subscript
* Subscript register

[Status]* * Any bit type register (except for # and C registers)
* Any bit type register with subscript

* Possible to omit.

B Program Example

There are tables defined as TABLE1 and TABLE2. The designated block in TABLE] is
transferred to the designated block in TABLE2 using DW00010 to DW00019 as a parameter
table.

TEL MY g]

Src Table Wame TABLE!

Dest Table Mame TABLEZ
Farameter pADOO10
[Output] MWooo11

[Status] MEOOOOOO

1-176

1.8 Table Data Manipulation Instructions

1.8.7 QUEUE TABLE READ Instructions (QTBLR, QTBLRI)

B Outline

The QTBLR/QTBLRI instruction consecutively reads file register table column elements
specified by table name (Table Name), row numbers, and column numbers and stores the
elements in the continuous region starting with the specified register (Read Data). The type
of the element being read is automatically determined according to the specified table. The
type of the storage destination register is ignored and the read data is stored according to the

table element type without converting the data type.

The QTBLR instruction does not change the queue table read pointer. The QTBLRI instruc-
tion advances the queue table read pointer by one row.

If errors such as invalid table names, invalid row numbers, invalid column numbers, insuffi-
cient storage register data length, or empty queue buffers are found, they are reported, data is
not read, and the queue table read pointer does not advance. The contents of the storage des-

tination register are retained.

Upon normal termination, the number of words transferred is set in the /Output], and the
[Status] is turned OFF.

When an error occurs, the corresponding error code is set in the /[Output], and the [Status] is

turned ON. The pointer value does not change.

Table 1.38 Queue Table Read Instruction Parameters

ADR Type Symbol Name Specifications 1/0
0 L ROW Table element correspond- | Corresponding row number of the target table IN
ing row number element (0 to 65535)
2 L COL- Table element beginning Beginning column number of the target table IN
UMN column number element (1 to 32767)
4 w CLEN Number of column Number of column elements continuously read out | IN
elements (1to 32767)
W Reserved
L RPTR Read pointer Read pointer of the queue after execution ouT
8 L WPTR | Write pointer Write pointer of the queue after execution ouT

1-177

1 Ladder Program Instructions

1.8.7 QUEUE TABLE READ Instructions (QTBLR, QTBLRI)

B Format

Symbol: QTBLR

QTBLRI
QTBLRI
-1 S E}— g E]_ Full Name: Queue Table Read
Table Name ? Table Name ?
Read Data ? Read Data h?'IAUDU ; Queue Table Read
MADDD 11 1 .
e e F pasie Category: TABLE
MADDD12 MADDD 14 Icon: @QTEL QTB
[Output] 7 [Output] ? R | RI
Myoooo7 H¥0000s8
[Status] 17 [Status] 7
MBOO0007 MEODOODS
B Parameter
Parameter Name Setting
Table Name Table name
Read Data * Register address (except for # and C registers)
* Register address with subscript
Parameter * Register address
* Register address with subscript
[Output]* * Any integer type register (except for # and C registers)
* Any integer type register with subscript
* Subscript register
[Status]* * Any bit type register (except for # and C registers)
* Any bit type register with subscript

* Possible to omit.

1-178

1.8 Table Data Manipulation Instructions

B Program Example

Column element data (element format assumed to be integer) from the table defined as
TABLE] is stored for the number of column elements beginning with MW00100 using
DWO00010 to DW00014 as a parameter table.

—l OTBLR ﬂl

Table Mame TABLE!
Read Data MADDI00
Parameter DAODOO10
[Output] M¥ODO11

[Status] MBOODOOOO

— AET-) o

Table Mame TABLE!
Read Data MAOO100
Parameter DAOOO1D
[Output] M¥OOD11

[Status] HBODDOOO

1.8.8 QUEUE TABLE WRITE Instructions (QTBLW, QTBLWI)

H Outline

The QTBLW/QTBLWI instruction writes the contents of the continuous region starting with
the specified register (Write Data) to the file register table column elements specified by

table name (7able Name), row numbers, and column numbers. The data is processed assum-
ing that the type of the table elements in the storage destination register is the same as that of

the table elements in the storage source register.

The QTBLW instruction does not change the queue table write pointer. The QTBLWI
instruction advances the queue table write pointer by one row.

If errors such as invalid table names, invalid row numbers, invalid column numbers, insuffi-
cient storage register data length, or full queue buffers are found, they are reported, data is

not written, and the queue table write pointer does not advance.

Upon normal termination, the number of words transferred is set in the [Output], and the
[Status] is turned OFF.

When an error occurs, the corresponding error code is set in the /Output], and the [Status] is

turned ON . The pointer value does not change.

1-179

1 Ladder Program Instructions

1.8.8 QUEUE TABLE WRITE Instructions (QTBLW, QTBLWI)

Table 1.39 Queue Table Write Instruction Parameters

ADR Type Symbol Name Specifications /0
0 L ROW Table element Corresponding row number of the target table IN
corresponding row num- element (0 to 65535)
ber
2 L COL- Table element Beginning column number of the target table IN
UMN beginning column number | element (1 to 32767)
4 w CLEN Number of column Number of column elements to be continuously IN
elements write (1 to 32767)
w Reserved
L RPTR Read pointer Read pointer of the queue after execution ouT
L WPTR | Write pointer Write pointer of the queue after execution ouT
B Format
Symbol: QTBLW
QTBLWI
= areLy Zp= = oreil A= Full Name: Queue Table White
Table Name ? Table Name ? Queue Table Pointer
Write Data 7 Write Data 7 Clear
MADDD 1S MAOOD17 Category - TABLE
Parameter ? Parameter 7
MADDO 16 MADDO18 Icon: QTBLI QrB
[Output] 7 [Output] 7 W | Wi
MRO0OD03 MROODTD .
[Status] 2 [Status] ?
MBOOODDA MEOODOO1D

1-180

1.8 Table Data Manipulation Instructions

B Parameter

Parameter Name Setting
Table Name Table name
Write Data * Register address (except for # and C registers)

* Register address with subscript

Parameter * Register address
* Register address with subscript

[Output]* * Any integer type register (except for # and C registers)

* Any integer type register with subscript
* Subscript register

[Status]* * Any bit type register (except for # and C registers)
* Any bit type register with subscript

* Possible to omit.

B Program Example

Integer form consecutive data for the number of column elements beginning with MW00100
is written in column element data in the table defined as TABLE1 using DW00010 to
DWO00014 as a parameter table.

—{ oteLy X

Table Name TABLE!
Write Data MADDI0D
Parameter DADDO1D
[Output] MW0O0OT1

(Status] MBOODOOOO

—l OTBLYI ﬂ'

Table Mame TABLE!
Write Data MADO10D
Parameter DADODD10
[Output] MWODO11

[Status] MBODOOOD

1-181

1 Ladder Program Instructions
1.8.9 QUEUE POINTER CLEAR Instruction (QTBLCL)

1.8.9 QUEUE POINTER CLEAR Instruction (QTBLCL)

B Outline

The QTBLCL instruction returns the queue read and queue write pointers of the file register

table specified by a table name (Table Name) to their initial state (first row).
Upon normal termination, 0 is set in the /Output/, and the [Status] is tarned OFF.

When an error occurs, the corresponding error code is set in the /[Output], and the [Status] is

turned ON.
B Format
Symbol: QTBLCL
Full Name: Queue Table Pointer
Clear
o ATBLCL E]— Category: TABLE
Icon:
Table Name % Q1B
[Output] 27 L’H
MWooo11
[Status] ?
MBOODO11

1-182

1.8 Table Data Manipulation Instructions

B Parameter

Parameter Name Setting
Table Name Table name
[Output]* * Any integer type register (except for # and C registers)

* Any integer type register with subscript
* Subscript register

[Status]* * Any bit type register (except for # and C registers)
* Any bit type register with subscript

* Possible to omit.

B Program Example

The cue read and cue write pointer of TABLEI are reset to initial status.

OTBLGL =k

Table Mame TAELE1
[Output] H¥OOOD11

[Status] MWBOOODOOD

1-183

2

Standard System Function

This chapter describes the details of standard system functions.

2.1 Message Functions ------------------------------ 2-2
2.1.1 Send Message Function (MSG-SND) - ---=----=ccommmommnonnn 2-2
2.1.2 Receive Message Function (MSG-RCV) -------mmommmmonnnon- 2-13

2.2Trace Functions - ------------------oo oo 2-22
2.2.1 Trace Function (TRACE) --------cmmmmmm e ee e oo 2-22
2.2.2 Data Trace Read Function (DTRC-RD) ---=----=----u--cum--- 2-23
2.2.3 Failure Trace Read Function (FTRC-RD) ----------n-mnomnn- 2-26
2.2.4 Inverter Trace Read Function (ITRC-RD) ---------nmomnomomn- 2-31

2.3 Inverter Functions - ----------------------------- 2-34
2.3.1 Inverter Constant Write Function (ICNS-WR) - ---------------- 2-34
2.3.2 Inverter Constant Read Function (ICNS-RD) ----------------- 2-39

2.4 Other Functions - ---------cmommm e oo - 2-42
2.4.1 Counter Function (COUNTER) ---------mmmommm e aeea oo 2-42
2.4.2 First-in First-out Function (FINFOUT) =-------ccmommnoamn-- 2-44

21

2 Standard System Function

2.1.1 Send Message Function (MSG-SND)

2.1 Message Functions

2.1.1 Send Message Function (MSG-SND)

B Outline

Sends a message to the called station which is on the line and which is designated by the
transmission device type. Supports a plurality of protocol types.
The execution command (Execute) must be held until Complete or Error becomes ON.

[Transmission Devices] CPU Module, 215IF, 2171F, 218IF, SVB-01 for MP920

[Protocols] MEMOBUS communication, non-procedural

B Format

Symbol: MSG-SND
Full Name: Message Send
MSG-SND
-gxecute 9 -y Category: SYSTEM

Busy ?
MEOODOO29 MBOOOO31 Icon: Mg
SN

Abort ? Complete ?
MBOOOO30 HEDDOO32

Dev-Typ 1 Error 7
MWnon24 MBOOOO33

Pro-Typ ?
MR00025

Cir-No 7
M¥00026

7
MR00027

Param ?
MADDODS

2-2

2.1 Message Functions

B Parameter

I/O Parameter /0 Setting
Definition Name Designation
Input Execute B-VAL Send message instruction

Abort B-VAL Send message forced interruption instruction

Dev-Typ I-REG Type of transmission device
CPU module =8 215IF =1 217IF =5
218IF =6 218-02=16 SVB-01 =11

Pro-Typ I-REG Transmission protocol
MEMOBUS =1
non-procedural = 2

Cir-No I-REG Line No.
CPU module =1, 2 215IF=1to 8 2171F=1t0 24
218IF=1to 8 SVB-01=1to 16

Ch-No I-REG Transmission buffer channel No.
CPU module =1, 2 215IF=1to 13 2171F =1
218IF=1to 10 SVB-01=1t08

Param Address in- | Head address of set data (MW, DW, #W)

put
Output Busy B-VAL Message is being sent.
Complete B-VAL The sending of the message has been completed.
Error B-VAL Occurrence of error

B Parameter Details

They adhere to contents-functions and so on and are collected into parameter numerical

order.
Table 2.1 is Parameter List.

Table 2.1 Parameter List

Parameter No. IN/OUT Contents

MEMOBUS Non-procedural
PARAM 00 OouT Process result Process result
PARAM 01 ouT Status Status
PARAM 02 IN Called station number Called station number
PARAM 03 SYS System reserved System reserved
PARAM 04 IN Function code
PARAM 05 IN Data address Data address
PARAM 06 IN Data size Data size
PARAM 07 IN Called CPU number Called CPU number
PARAM 08 IN Coil offset
PARAM 09 IN Input relay offset
PARAM 10 IN Input register offset
PARAM 11 IN Holding register offset Register offset
PARAM 12 SYS For system use For system use

2-3

2 Standard System Function

2.1.1 Send Message Function (MSG-SND)

Table 2.1 Parameter List (cont'd)

Parameter No. IN/OUT Contents

MEMOBUS Non-procedural
PARAM 13 SYS System reserved System reserved
PARAM 14 SYS System reserved System reserved
PARAM 15 SYS System reserved System reserved
PARAM 16 SYS System reserved System reserved

Process Result (PARAMOO)

The process result is output to the upper byte. The lower byte is for system analysis.

* 00xx: In process (BUSY)
 10xx: End of process (COMPLETE)
 8xxx: Occurrence of error (ERROR)

Error Classification

81xx: Function code error

The sending of an unused function code was attempted. Or, an unused function code

was received.
82xx: Address setting error

The data address, coil offset, input relay offset, input register offset, or holding regis-

ter offset setting is out of range.

83xx: Data size error

The size of the sent or received data is out of range.
84xx: Line No. setting error

The line No. setting is out of range.

85xx: Channel No. Setting error

The channel No. setting error.

86xx: Station address error

The station No. setting is out of range.

88xx: Transmission unit error

An error response was returned from the transmission unit.
89xx: Device selection error

A non-applicable device is selected.

24

2.1 Message Functions

Status (PARAMO1)

Output the status of the transmission unit.

+ Bit Assignment

FEDZ CMBA® 987 6 5 43 2 10

| L[]
L]
COMMAND

RESULT

REQUEST

+ COMMAND

» PARAMETER

Command list is described below.

Code Symbol Meaning

1 U_SEND Send generic message

2 U _REC Receive generic message

3 ABORT Forced interruption

8 M_SEND Send MEMOBUS command ... completed upon receipt of
response.

9 M_REC Receive MEMOBUS command ... accompanies sending of
response.

C MR_SEND | Send MEMOBUS response.

* RESULT

Symbol and Meaning of the Result list is described in Table 2.2.

Table 2.2 Result List

Code Symbol Meaning
0 - Executing
1 SEND_OK [Sending has been completed correctly.
2 REC_OK Receiving has been completed correctly.
3 ABORT_OK | Completion of forced interruption
4 FMT_NG Parameter format error
5 SEQ_NG, Command sequence error
or INIT_NG | The token has not been received yet.
Not connected to a transmission system.
6 RESET_NG, | Reset state
or Out-of-ring. The token could not be received even when the
O_RING_NG | token monitor time was exceeded.
7 REC_NG Data receive error (error detected by a program of a lower
rank)

2-5

2 Standard System Function
2.1.1 Send Message Function (MSG-SND)

+ PARAMETER
One of the error codes of Table 2.3 is indicated if RESULT =4 (FMT_NG). Otherwise,

this indicates the address of the called station.

Table 2.3 Error Codes List

Code Error
00 No errors
01 Station address is out of range.
02 Monitored MEMOBUS response receiving time error
03 Resending count setting error
04 Cyclic area setting error
05 Message signal CPU No. error
06 Message signal register No. error
07 Message signal word count error
+ REQUEST
1 = Request

0 = Completion of receipt report

Called Station Number (PARAMO02)

Serial

1 to 254: Message is sent to the station of designated device address.

26

2.1 Message Functions

Function Code (PARAMO04)

The MEMOBUS function code to be sent is set. Refer to Table 2.4.

Table 2.4 Function Codes

Function Code Setting
00H Unused -
01H Read coil status OK
02H Read input relay status OK
03H Read contents of holding register OK
04H Read contents of input register OK
05H Change status of single coil OK
06H Write into a single holding register OK
07H Unused -
08H Loop-back test OK
09H Read contents of holding register (expanded) OK
0AH Read contents of input register (expanded) OK
0BH Write into holding register (expanded) OK
0CH Unused -
ODH Discontinuous readout of holding register (expanded) OK
OEH Discontinuous write into holding register (expanded) OK
OFH Change status of a multiple coil OK
10H Write into a plurality of holding register OK

11H to 20H | Unused -
21H to 3FH | System reserved -
40H to 4FH | System reserved -

50H to Unused -

Note: 1. —: cannot be set, OK: can be set
2.0Only MW (MB) can be used as the sending/receiving register dur-
ing master operation. The MB, MW, IB, and IW registers can be

used respectively as the coil, holding register, input relay, and input

registers during slave operation.

2-7

2 Standard System Function

2.1.1 Send Message Function (MSG-SND)

Data Address

The set contents will differ according to the function code as Table 2.5.

Table 2.5 Address Setting Range

Function Code Data Address Setting Range

00H Unused Ineffective

01H Read coil status 0 to 65535 (0 to FFFFH) *!
02H Read input relay status 0 to 65535 (0 to FFFFH)*!
03H Read contents of holding register 0 to 32767 (0 to 7FFFH)*2
04H Read contents of input register 0 to 32767 (0 to 7FFFH) *2
05H Change status of single coil 0 to 65535 (0 to FFFFH)*!
06H Write into a single holding register 0 to 32767 (0 to 7FFFH) *2
07H Unused Ineffective

08H Loop-back test Ineffective

09H Read contents of holding register (expanded) | ¢ o 32767 (0 to 7FFFH) *2
0AH Read contents of input register (expanded) | 0 to 32767 (0 to 7FFFH) *2
0BH Write into holding register (expanded) 0 to 32767 (0 to 7FFFH)*2
0CH Unused Ineffective

ODH Discontinuous readout of holding register 0 to 32767 (0 to 7FFFH) *3

(expanded)
OEH Discontinuous write into holding register 0 to 32767 (0 to 7FFFH) *3
(expanded)

OFH Change status of a multiple coil 0 to 65535 (0 to FFFFH) *!
10H Write into a plurality of holding register 0 to 32767 (0 to 7FFFH) *2

* 1. Request for readout from/write-in to coil or relay: Set the head bit
address of the data.
* 2. Request for continuous readout from/write-in to a register: Set head

word address of the data.

* 3. Request for discontinuous readout from/write-in to a register: Set head

word address of the data.

2-8

2.1 Message Functions

B Data Size (PARAMOG)

Set the size (in number of bits or number of words) of the data that is requested for readout
or write-in. The setting range will differ according to the transmission module and the func-

tion code to be used. Refer to Table 2.6.

Table 2.6 Serial Data Size Setting Range

Function Code Data Address Setting Range
215IF/218IF CPU Module/
2171F/SVB-01
O0H Unused Ineffective
01H Read coil status 1 to 2000 (1 to 07DOH) bits
02H Read input relay status 1 to 2000 (1 to 07DOH) bits
03H Read contents of holding register 1 to 125 (1 to 007DH) words
04H Read contents of input register 1 to 125 (1 to 007DH) words
05H Change status of single coil Ineffective
06H Write into a single holding register Ineffective
07H1 Unused Ineffective
08H Loop-back test Ineffective
09H Read contents of holding register 1 to 508 1 to 252
(expanded) (1 to 01FCH) (1 to 00FCH)
words words
0AH Read contents of input register 1 to 508 1 to 252
(expanded) (1 to 01FCH) (1 to 00FCH)
words words
0BH Write into holding register 1 to 507 1 to 252
(expanded) (1 to 01FBH) (1 to 00FBH)
words words
OCH Unused Ineffective
ODH Discontinuous readout of holding 1 to 508 1 to 252
register (expanded) (1 to 01FCH) (1 to 00FCH)
words words
OEH Discontinuous write into holding 1to 254 1t0 126
register (expanded) (1 to 00FEH) (1 to 007EH)
words words
OFH Change status of a multiple coil 1 to 800 (1 to 0320H) bits
10H Write into a plurality of holding reg- | 1 to 100 (1 to 0064H) words
ister

Called CPU Number (PARAMO07)

PARAMO7 sets the called CPU number.

Set the called CPU number to 1 if the called device is an MP2000 Series Machine Control-

ler.

If the called device is a Yaskawa Controller, but not in the MP2000 Series and it consists of

more than one CPU Module, set the destination CPU number.

In all other cases, set 0.

29

2 Standard System Function
2.1.1 Send Message Function (MSG-SND)

Coil Offset (PARAMOS)

Set the offset word address of the coil. This is valid in the case of function codes 01H, 05H,
and OFH.

Input Relay Offset (PARAMO09)

Set the offset word address of the input relay. This is valid in the case of function code 02H.

Input Register Offset (PARAM10)

Set the offset word address of the input register. This is valid in the case of function codes
04H and 0AH.

Holding Register Offset (PARAM11)

Set the offset word address of the holding register. This is valid in the case of function codes
03H, 06H, 09H, 0BH, 0DH, OEH, and 10H.

For System Use (PARAM12)

The channel No. being used is stored. Make sure that this will be set to 0000H by the user
program on the first scan after turning on the power. This parameter must not be changed by

the user program thereafter since this parameter will then be used by the system.

Relationship between the Data Address, Size and Offset

Relationship between the data address, size and offset are described in Figure 2.1.

[MSG-SND] [MSG-RCV]
mwooooo .
Offset Sending side Receiving side OfI ¢
¢ offset address offset address se
Data Sending side]) T
address data address Sending side Data
¢ data address address
MWxoookx [e ¢
Data size Data 4 _
* Data Data size
_____________ n

Fig. 2.1 Relationship between the Data Address, Size and Offset

When transmission protocol is set to non-procedural

The setting of PARAMO04, PARAMOS, PARAMO09, and PARAMI10 are not necessary.

Transmission enabled register is only MW.

2.1 Message Functions

H Input

EXECUTE (Send Message Execution Command)

When the command becomes "ON", the message is sent.

ABORT (Send Message Forced Interruption Command)

This command forcibly interrupts the sending of the message. This has priority over EXE-

CUTE (send message forced interruption command).

DEV-TYP (Transmission Device Type)

Designates transmission device type.
CPU Module =8, 215IF = 1, 217IF = 5, 218IF = 6, SVB-01 = 11
PRO-TYP (Transmission Protocol)

Designates transmission protocol. In non-procedural transmission, a response is not

received from the other station.
MEMOBUS : Setting = 1
Non-procedural : Setting = 2

CIR-NO (Circuit No.)

Designate the Circuit No.

CPU Module=1, 2,215IF=1t08,217IF=1to 24, 218IF =1 to 8§, SVB-01 =1 to 16

CH-NO (Channel No.)

Designate the channel No. of the transmission unit. However, the channel number should be

set so as not to be duplicated on a single line.

CPU Module =1, 215IF =1 to 13, 217IF =1, 218IF = 1 to 10, SVB-01 =1 to 8

PARAM (Set Data Head Address)

The head address of the set data is designated. For details of the set data, refer to "B Param-
eter Details" (on page 2-3).

BUSY (In Process)

Indicates that the process is being executed. Keep EXECUTE set to "ON".

COMPLETE (Completion of Process)

Becomes "ON" for only 1 scan upon normal completion.

2 Standard System Function
2.1.1 Send Message Function (MSG-SND)

ERROR (Occurrence of Error)

Becomes "ON" for only 1 scan upon occurrence of error. Refer to PARAMO0 and PARAM
01 of "M Parameter Details" (on page 2-3).

B Program Example

Program example is described in Figure 2.2.

SB000DD3
STORE g]
Source 0
Dest DWOOD12
SBO00035 DBO00211 DBO00212 SB000038 DB000201
[1A 14 11
11 L 4] L4 11T
DBO0O201
7L
11
— MSG-SND g
Execute DBO0D201 Busy DBO0D210

Abort DBO00208 Complete DBOOO211
Dev-Typ 1 Error DBODDZ12
Pro-Typ 1
Cir-No 1

Ch-No |

Param DA0DD0OOO

DBODD211

Dest DWOODD24

IF

DBOODZ12==t rue

Dest DWOODD25

2-12

2.1 Message Functions

— STORE g]

Source DWOODOO

Dest DWOOO2B

— STORE g}

Source DY00O0OD1
Dest DY00027

I—' END_IF :

Fig. 2.2 Program Sample

2.1.2 Receive Message Function (MSG-RCV)

m Outline

Receives a message from a calling station which is on the line and which is designated by

the transmission device type. Supports a plurality of protocol types.
The execution command (Execute) must be held until Complete or Error becomes ON.
[Transmission Devices] CPU module, 2151IF, 217IF, 218IF, SVB-01 for MP920

[Protocols] MEMOBUS, non-procedural

B Format

Symbol: MSG-RCV

Full Name: Message Receive
HSG-RCY F=)
-Lmteq J- Category: SYSTEM

Busy
HBOOO034 MBOOOO3E Icon: Msg
R

Abort ? Complete 7
MBOOO0O35 MEOO0037

Dev-Typ ? Error =i
Mi0o028 MBO0003S

Pro-Typ 7
Mwoonzg

Cir-No 7
WHW00030

Ch-No 7
MWoo0a

Param 7
MA00004

2-13

2 Standard System Function

2.1.2 Receive Message Function (MSG-RCV)

B Parameter

1/0 Parameter 110 Setting
Definition Name Designation
Input Execute B-VAL Receive message instruction

Abort B-VAL Receive message forced interruption instruction

Dev-Typ I-REG Type of transmission device
CPU module =8 215IF =1 2171IF =5
218IF =6 218-02=16 SVB-01 =11

Pro-Typ I-REG Transmission protocol (Set up of RTU and ASCII is module configu-

ration definition.)

MEMOBUS =1
non-procedural = 2

Cir-No I-REG Line No.
CPU module =1 215IF=1to 8 2171F =1 to 24
218IF=1to 8 SVB-01=1to 16

Ch-No I-REG Transmission buffer channel No.
CPU module = 1 215IF=1to 13 2171F =1
218IF=1to 10 SVB-01=1to8

Param Address in- | Head address of set data (MW, DW, #W)

put
Output Busy B-VAL Message is being received.
Complete B-VAL The receiving of the message has been completed.
Error B-VAL Occurrence of error

B Parameter Details

They adhere to contents-functions and so on and are collected into parameter numerical

order.

Table 2.7 is Parameter List.

Table 2.7 Parameter List

Parameter No. IN/OUT Contents

MEMOBUS Non-procedural
PARAM 00 ouT Process result Process result
PARAM 01 ouT Status Status
PARAM 02 ouT Called station number Called station number

IN'

PARAM 03 SYS System reserved System reserved
PARAM 04 ouT Function code
PARAM 05 ouT Data address Data address
PARAM 06 ouT Data size Data size
PARAM 07 ouT Called CPU number Called CPU number
PARAM 08 IN Coil offset
PARAM 09 IN Input relay offset
PARAM 10 IN Input register offset

2-14

2.1 Message Functions

Table 2.7 Parameter List (cont'd)

Parameter No. IN/OUT Contents
MEMOBUS Non-procedural
PARAM 11 IN Holding register offset Register offset
PARAM 12 IN Write-in range LO Register offset
PARAM 13 IN Write-in range HI Register offset
PARAM 14 SYS For system use For system use
PARAM 15 SYS System reserved System reserved
PARAM 16 SYS System reserved System reserved

* Applicable only for 218IF.

Process Result (PARAMOO)

The process result is output to the upper byte. The lower byte is for system analysis.

* 00xx: In process (BUSY)
* 10xx: End of process (COMPLETE)
» 8xxx: Occurrence of error (ERROR)

Error Classification
¢ 81xx: Function cord error

The sending of an unused function code was attempted. Or, an unused function code

was received.
» 82xx: Address setting error

The data address, coil offset, input relay offset, input register offset, or holding regis-

ter offset setting is out of range.
* 83xx: Data size error
The size of the sent or received data is out of range.
» 84xx: Line No. setting error
The line No. setting is out of range.
* 85xx: Channel No. Setting error
The channel No. setting error.
+ 86xx: Station address error
The station No. setting is out of range.
+ 88xx: Transmission unit error

An error response was returned from the transmission unit. (Refer to "B Parameter
Details" (on page 2-14)).

» 89xx: Device selection error

A non-applicable device is selected.

2-15

2 Standard System Function

2.1.2 Receive Message Function (MSG-RCV)

Status (PARAMO1)

Output the status of the transmission unit. See "Status (PARAMO1)" (on page 2-5) for

details.

Called Station Number (PARAMO02)

The station number of sending side is output.

Function Code (PARAMO04)

Output the MEMOBUS function code received. Refer to Table 2.8.

Table 2.8 Function Codes

Function Code Setting
O0H Unused -
01H Read coil status OK
02H Read input relay status OK
03H Read contents of holding register OK
04H Read contents of input register OK
05H Change status of single coil OK
06H Write into a single holding register OK
07H Unused -
08H Loop-back test OK
09H Read contents of holding register (expanded) OK
0AH Read contents of input register (expanded) OK
0BH Write into holding register (expanded) OK
OCH Unused -
ODH Discontinuous readout of holding register (expanded) OK
OEH Discontinuous write into holding register (expanded) OK
OFH Change status of a multiple coil OK
10H Write into a plurality of holding register OK
11H to 20H | Unused -
21H to 3FH | System reserved -
40H to 4FH | System reserved -
50H to Unused -

Note: 1. —: cannot be output, OK: can be output

2. The MB, MW, IB, and IW registers can be used respectively as the
coil, holding register, input relay, and input registers during slave

operation.

2-16

2.1 Message Functions

Data Address (PARAMO5)

The data address requested by the sending side is output.

Data Size (PARAMO6)

The data size (number of bits or number of words) of the requested read or write is output.

Called CPU Number (PARAMO7)

PARAMO7 outputs the called CPU number.

If the called device is an MP2000 Series Machine Controller, 1 is output.

If the called device is a Yaskawa Controller, but not in the MP2000 Series and it consists of
more than one CPU Module, the called CPU number is output.

In all other cases, 0 is output.

Coil Offset (PARAMOS)

Set the offset word address of the coil. This is valid in the case of function codes 01H, 05H,
and OFH.

Input Relay Offset (PARAMO09)

Set the offset word address of the input relay. This is valid in the case of function code 02H.

Input Register Offset (PARAM10)

Set the offset word address of the input register. This is valid in the case of function codes
04H and OAH.

Holding Register Offset (PARAM11)

Set the offset word address of the holding register. This is valid in the case of function codes
03H, 06H, 09H, 0BH, 0DH, OEH, and 10H.

Write-in Range LO (PARAM12), Write-in Range HI (PARAM13)

Set the write allowable range for the request for write-in. A request which is outside of this
range will cause an error. This is valid in the case of function code 0BH, OEH, OFH, and
10H.

0 < Write-in Range LO < Write-in Range HI < Maximum value of MW Address

For System Use (PARAM14)

The channel No. being used is stored. Make sure that this will be set to 0000H by the user
program on the first scan after turning on the power. This parameter must not be changed by

the user program thereafter since this parameter will then be used by the system.

2-17

2 Standard System Function

2.1.2 Receive Message Function (MSG-RCV)

When Non-procedural is set for Transmission Protocol

PARAMO4 has no function. The settings of PARAMO08, PARAMO09, and PARAM10 are not

necessary. The message receivable register is only MW.
Input

EXECUTE (Receive Message Exection Command)

When the command becomes "ON", the message is receive. This must be held until COM-

PLETE (completion of process) or ERROR (occurrence of error) becomes "ON".

ABORT (Receive Message Forced Interruption Command)

This command forcibly interrupts the receiving of the message. This has priority over EXE-

CUTE (receive message execution command).

DEV-TYP (Transmission Device Type)
Designates transmission device type.

CPU Module =8, 215IF =1, 2171F = 5, 218IF = 6, 218-02 = 16, SVB-01 = 11

PRO-TYP (Transmission Protocol)

Designates transmission protocol. In non-procedural transmission, a response is not sent to

the called station.
MEMOBUS : Setting =1

Non-procedural : Setting = 2

CIR-NO (Circuit No.)

Designate the circuit No.

CPU Module =1, 2,215[F=1t08,217[F=1to024,218IF =1 to 8, SVB-01 =1to 16

CH-NO (Channel No.)

Designate the channel No. of the transmission unit. However, the channel number should be

set so as not to be duplicated on a single line.

CPU Module =1, 215IF =1 to 13, 217IF =1, 218IF =1 to 10, SVB-01 =1 to 8

PARAM (Setting Data Head Address)

The head address of the set data is designated. For details of the set data refer to "M Param-
eter Details" (on page 2-14).

2.1 Message Functions

B Output
BUSY (In Process)

Indicates that the process is being executed. Keep EXECUTE set to "ON".

COMPLETE (Completion of Process)

Becomes "ON" for only 1 scan upon normal completion.

ERROR (Occurrence of Error)

Becomes "ON" for only 1 scan upon occurrence of error. Refer to PARAMOO and
PARAMO1 of "M Parameter Details" (on page 2-14).

2-19

2 Standard System Function

2.1.2 Receive Message Function (MSG-RCV)

B Program Example

Program example is described in Figure 2.3.

SB000003

STORE g]

Source 0

Dest DWODO14

— STORE g]

Source 0

Dest DWOOD12

— STORE a]

Source 32767

Dest DWOODD13

— WSG-RCY
Execute SB0O00004 Busy DBODO210
Abort DEODD208 Complete DEOOOZ1]
Dev-Typ 1 Error DBODD212
Pro-Typ 1
Cir-No 1
Ch=No 1

Param DAOODODOD

DBOODZ11

=3

Dest DWOOD24

IF ¥
DBOD0O212==true

Dest DWO0OO25

2-20

2.1 Message Functions

Source DWOOO01
Dest DWOODO27

STORE____7d) i
]
1

I—' END_IF :

Fig. 2.3 Program Sample

2-21

2 Standard System Function

2.2.1 Trace Function (TRACE)

2.2 Trace Functions

2.2.1 Trace Function (TRACE)

B Outline

Performs execution control of the traces of the trace data designated by the trace group No.

The trace is defined as "Data Trace Definition" screen.
* Tracing is executed when the trace execution command (Execute) is set to ON.
» The trace counter is reset when the trace reset command (Reset) is set to ON.
The trace end (7rc-End) output is also reset at this time.

» The trace end (7rc-End) output is set to ON when the trace execution count becomes
equal to the set count (set as Trace Definition).

B Format
Symbol: TRACE
Full Name: Trace
=] TRACE p) ol
Cecile “End 7 Category: SYSTEM
MBODD013 HBODDO15 Icon: TRA
Reset 9 Error 1 2
MBODOD14 MEODOD16
Group-HNo ? Status ?
HWao0o1 Mwoooo2
B Parameter
1/O Parameter I/O Setting
Definition Name Designation
Input Execute B-VAL Trace execution command
Reset B-VAL Trace reset command
Group-No I-REG Designation of the trace group
Output Trc-End B-VAL End of Trace
Error B-VAL Occurrence of error
Status I-REG Trace execution status

2-22

2.2 Trace Functions

Configuration of the trace execution status (STATUS) is described below.

Table 2.9 Configuration of the Trace Execution Status

Name

Bit No.

Remarks

Trace data full

bit 0

This becomes ON after one round of reading of the
contents in the data trace memory of the designated
group has been completed.

System reserved

bit 1 to bit 7

No trace definition

bit8

The function will not be executed.

Designated group
error

No.

bit9

The function will not be executed.

System reserved

bit 10 to bit
12

Execution timing error bitl3 The function will not be executed.
System reserved bit14
System reserved bitl5

2.2.2 Data Trace Read Function (DTRC-RD)

H Outline

Reads out the trace data of the main controller unit and stores this data in the user registers.

The data in the trace memory can be read out upon designating the record number and the

number of records. The readout can be performed by designating just the necessary items in

the record.
B Format
e | DTRC-RD g’—

Execute ? Conplete ?
MBOOOOD17 MBODDO 18

Group-No ? Error 1
Myoooo3 HBOODO19

Rec-No ? Status ?
Mwoooo4 Meoooo7

Rec-Size ? Rec-Size ?
MYo000s MRo0008

Select 17 Rec-Len ?
Mwooooe Weoooos

Dat-Adr 1
MADODOS

2-23

Symbol: DTRC-RD
Full Name: Data-Trace Read
Category: SYSTEM

Icon: [-)EI_FIl)ﬁ

2 Standard System Function

2.2.2 Data Trace Read Function (DTRC-RD)

B Parameter

/0 Parameter /O Setting
Definition Name Designation
Input Execute B-VAL Designation of the execution of data trace read
Group-No I-REG Designation of the data trace group No. (1 to 4)
Rec-No I-REG Designation of the head record No. for readout (0 to
maximum number of records-1)
Rec-Size I-REG Designation of the number of records requested for
readout (1 to maximum number of records)
Select I-REG Item to be read out (0001H to FFFFH)
Bits 0 to F correspond to data designations 1 to 16 of
the trace definition.
Dat-Adr Address in- | Designation of the No. of the head register for readout
put (address of MW or DW)
Output Complete B-VAL Completion of trace read
Error B-VAL Occurrence of error
Status I-REG Data trace read execution status
Rec-Size I-REG Number of records read
Rec-Len I-REG Length (in words) of 1 record that is read

Table 2.10 Configuration of the Data Trace Read Execution Status (STATUS)

Name Bit No. Note
System reserved bit0 to bit7
No trace definition bit8 The function is not executed.
Group No. error bit9 The function is not executed.
Designated record No. bit10
error
Error in the designated bitl1 The function is not executed.
number of records read
Data storage error bit12 The function is not executed.
System reserved bitl3
System reserved bit14
Address input error bitl5 The function is not executed.

2-24

2.2 Trace Functions

B Readout of Data

Readout of Data is described in Figure 2.4.

Data Trace Memory

Record No. 0

Ooid

No. of the head

record to be read N | Newy

Number of

read records Readout

—

Fig. 2.4 Data Read

User Register
<4— Head address of

the register into
which data is read

The most recent record No. of trace groups are each stored in SW00100 to SW00103.

Table 2.11 Newest Records Number

System Register Number Data Trace Definition
SW00100 For group 1
SW00101 For group 2
SW00102 For group 3
SW00103 For group 4
SW00104 -
SW00105 -
SW00106 -
SwW00107 -
B Configuration of the Read Data

Configuration of the read data is described in Figure 2.5.

Dat -Adr-> 1 to 32 words

Record 1 ITEM1

ITEM16

1 to 32 words

Record 2

1 to 32 words

Record n

Oold

Trace data

Max. 32512 words

Fig. 2.5 Configuration of the Read Data

2-25

2 Standard System Function

2.2.3 Failure Trace Read Function (FTRC-RD)

Record Length

A Record is composed of the data for the selected items.

Word length of 1 record =Bn x 1 word + Wn X 1 word + Ln X 2 words + Fn X 2 words

Bn: Number of bit type register selected points

Wn: Number of word type register selected points

Ln: Number of double-length integer type register selected points

Fn: Number of real number type register selected points

Maximum of record length = 32 words (e.g. when there are 16 double-length integer type or
real number type registers)

Minimum of record length = 1 words (e.g. when there is one bit type or integer type register)

Number of Records

The Number of Records is the following.

Maximum Number of Records 32512/ Record Length
Number of records when the record length is the 0to 1015
maximum
Number of records when the record length is the 0to 32511
minimum

2.2.3 Failure Trace Read Function (FTRC-RD)

B Outline

Reads the failure trace data and stores them in the user register. The data in the trace buffer
can be read out upon designating the number of records needed. Either the failure occur-
rence data or the restoration data are designated for readout. Enables the reset (initializa-

tion) of the failure trace buffer.

B Format

Symbol: FTRC-RD

Full Name: Failure-Trace Read
=] FTRC-RD f) ol

Category: SYSTEM

Execute ? Complete ?
MEODDOZD MBOOODD22 Icon: FI'Flj
Reset 17 Error 7 -RD
MEOOOO21 WBO000023
Type 7 Status 7
MWOOO10 WW00012
Rec-Size ? Rec-Size ?
Mwooo11 MW00013
Dat-Adr ? Rec-Len 7
MADDODG MW00014

2-26

2.2 Trace Functions

B Parameter

/0 Parameter I/0 Setting
Definition Name Designation
Input Execute B-VAL Failure trace readout instruction
Reset B-VAL Failure trace buffer reset instruction
Type I-REG Type of data read
1: Occurrence data
2: Restoration data
Rec-Size I-REG Number of read record
Occurrence data: 1 to 64 Restoration data: 450
Dat-Adr Address in- | Head register address for reading (address of MW or
put DW)
Output Complete B-VAL Completion of failure trace read
Error B-VAL Occurrence of error
Status I-REG Failure trace read execution status
Rec-Size I-REG Number of records read
Rec-Len I-REG Length of record read

Table 2.12 Failure Trace Reading Execution Status (STATUS)

Name Bit No. Remarks
System reserved bit0 to bit7
No trace definition bit8 The function will not be executed.
Designated type No. error | bit9 The function will not be executed.
System reserved bit10
Error in the designated bitl1 The function will not be executed.
number of records
Data storage error bit12 The function will not be executed.
System reserved bit13
System reserved bit14
System reserved bitl5 The function will not be executed.

B Failure Occurrence Data Readout

Failure occurrence data readout is described in Figure 2.6. The readout will always be

started from the most recent record.

Failure Occurrence Trace Memory

User Register

4— Head address of

the register into
which data is read

A —
Old
Number of Readout
read records
Most recent __p | New
record v — >

Fig. 2.6 Failure Occurrence Data Readout

2-27

2 Standard System Function

2.2.3 Failure Trace Read Function (FTRC-RD)

B Readout Data Configuration (Failure Occurrence Data)

Data Configuration

Time of occurrence-old

Trace data
Max. 320 words

Dat -Adr - 1 to 5 words Record 1
5 words Record 2
5 words Record n

Time of occurrence-new

Fig. 2.7 Data Configuration

Record Configuration

2 words
— Register Designation No. —

1 word | Year and month of occurrence | 1 record (5 words)

1 word [Minutes and seconds of occurrence

1 word Day and hour of occurrence l

Fig. 2.8 Record Configuration

Structure of Register Designation No.

Contain the failure detection relay information.

(2 words)

F 8 7 0 (Example) MB020001 (hexadecimal expression)

1word] @ o 01 |

83

1 word Data address 07DO0

Fig. 2.9 Structure of Register Designation No.

Table 2.13 Bit Configuration

No. Bit Configuration of @ Bit Configuration of @
7 Defined flag (1 = defined, 0 = unde- | System reserved (= 0)
fined)

System reserved (= 0)

Data Type
Bit =0, Integer =1,

N

0 =NO contact designation,
1 = NC contact designation

Double-length integer = 2,
Real Number =3

Type of register
S=0,

I=1,

0=2,

M=3

Ol =N ®

Bit Address 0 to F

2-28

2.2 Trace Functions

Number of Records

The Number of Records is the following.

Minimum number of records

0 (no failure restoration data)

Maximum number of records

64

Failure Restoration Data

Failure restoration data is described in Figure 2.10. The number (amount) of restoration data
is stored in SW00093 (ring counter for 1 to 9999).

Failure Restoration Trace Data

old 1

Record No. of
read record N | New,

Number of
read records

User Register

y <«— Head address of the

h
Old register into which
Readout data is read

New
v

—

Fig. 2.10 Failure Restoration Data

Readout Data Configuration (Failure Restoration Data)

Data configuration is described in Figure 2.11.

Time of restoration-old

Trace data

Dat - Adr -8 words Record 1
8 words Record 2
8 words Record n

Time of restoration-new

Fig. 2.11 Data Configuration

2-29

2 Standard System Function

2.2.3 Failure Trace Read Function (FTRC-RD)

Record Configuration

Record composition is shown in Figure 2.12.

2 words

1 word
1 word
1 word
1 word
1 word

1 word

— Register Designation No. —

Year and month of occurrence

Day and hour of occurrence

Minutes and seconds of occurrence

Year and month of restoration

Day and hour of restoration

Minutes and seconds of restoration

1 record (8 words)

Fig. 2.12 Record Configuration

Number of Record

The Number of Records is the following.

Minimum number of records

0 (no failure restoration data)

Maximum number of records

450

2-30

2.2 Trace Functions

2.2.4 Inverter Trace Read Function (ITRC-RD)

B Outline

Reads out the trace data of the inverter and stores this data in the user registers. The data in

the trace buffer can be read out upon designating the number of records needed. The readout

can be performed upon designating just the necessary items in the record.

Applicable inverters

¢ Connected MP930 via 216

e Connected SVB-01 for MP920 via 216
¢ Connected 215IF for MP920 and MP2000 series via 215

B Format
= ITRC-RD
Execute ? 1
MBOOOD24 MBOOOO26
Abort 7 Conplete 7
MBO00D025 MBODO0D27
Dev-Typ 7 Error %
MRO0015 MBOOO028
Cir-No ? Status 7
MW00016 MYoo0021
St-No ? Rec-Size ?
MW00017 Myoo022
Ch-No 7 Rec-Len ?
MRO0018 Myo0023
Rec-Size ?
M¥00019
Select ?
MRO0020
Dat-Adr ?
M&00007

2-31

Symbol: ITRC-RD

Full Name: Inverter-Trace Read

Category: SYSTEM

Icon : ITRC
RD

2 Standard System Function

2.2.4 Inverter Trace Read Function (ITRC-RD)

B Parameter

1/0 Parameter 110 Setting
Definition Name Designation
Input Execute B-VAL Inverter trace read instruction
Abort B-VAL Inverter trace read forced interruption instruction
Dev-Typ I-REG Type of transmission device
215IF =1 MP930 =4 SVB-01 =11
Cir-No I-REG Line No.
215IF =1 MP930 =1 SVB-01=1to 16
St-No I-REG Slave station No.
215IF =1 to 64 MP930=1to 14 SVB-01=1to 14
Ch-No I-REG Transmission buffer channel No. (No designation)
215IF=1to0 3 MP930 =1 SVB-01=1to08
Rec-Size I-REG Number of records to be read (1 to 64)
Select I-REG Items to be read (0001H to FFFFH)
Bits 0 to F correspond to trace data items 1 to 26
Dat-Adr Address in- | Head address of data buffer register (address of MW or DW)
put
Output Busy B-VAL The reading of inverter trace data is in progress.
Complete B-VAL Completion of inverter trace read
Error B-VAL Occurrence of error
Status I-REG Inverter trace read execution status
Rec-Size I-REG Number of read records
Rec-Len I-REG Length of read record (for 1 record)

Table 2.14 Configuration of the Inverter Trace Read Execution Status (STATUS)

Name Bit No. Remarks
System reserved bit0 to bit8
Transmission parameter bit9 The function will not be executed.
error
System reserved bit10
Error in the designated bitl1 The function will not be executed.
number of records
Data storage error bit12 The function will not be executed.
Transmission error bitl3 The function will not be executed.
System reserved bit14
Address input error bitl5 The function will not be executed.

2-32

2.2 Trace Functions

B Readout of Inverter Trace Data

The readout will always be started from the most recent record.

Inverter Trace Memory

Record Length

User Register

B — 4— Head address of
Oid the register into
Number of o jout which data is read
read records
Most recent —» | New
record >
B Readout Data Configuration
Data Configuration
Dat - Adr-> 1 to 16 words| Record 1 ITEM1 4014
ITEM16
1 to 16 words Record 2
Trace data
. Max. 1920 words
1 to 16 words Record n New

A record is composed of the data of the selected items.

Word length of 1 record = 1 to 16 words

Number of Records

Maximum number of records = 120

2-33

2 Standard System Function

2.3.1 Inverter Constant Write Function (ICNS-WR)

2.3 Inverter Functions

2.3.1 Inverter Constant Write Function (ICNS-WR)

B Outline

Writes the inverter constants.

The types and ranges of the inverter constants to be written can be designated.

Applicable inverters

¢ Connected MP930 via 216

¢ Connected SVB-01 for MP920 via 216

¢ Connected 215IF for MP920 and MP2000 series via 215

B Format

= ICNS-HR

Execute ?

MBOODDS

Abort 7
MBODOO40

Dev-Typ 7
MW00032

Cir-No ?
MWo0o033

St-No ?
WW00034

Ch-No ?
MW00035

Cns-Typ 7
MR00038

Cns-No 7
MRoo03?

Cns-Size ?
MW00038

Dat-Adr ?
MADODD1O

?
MBOOO041

Complete ?

MBODOD42

Error 1%
MEO0DD43

Status 7
MYoon3s

2-34

Zr

Symbol: ICNS-WR
Full Name: Inverter-Constant Write
Category: SYSTEM

Icon: IEN
-WR

2.3 Inverter Functions

B Parameter

I/0 Parameter I/0 Setting
Definition Name Designation
Input Execute B-VAL Inverter constant write instruction
Abort B-VAL Inverter constant write forced interruption instruction
Dev-Typ I-REG Type of transmission device
215IF =1 MP930 =4 SVB-01=11
Cir-No I-REG Line No.
215IF=1,2 MP930 =1 SVB-01=1to 16
St-No I-REG Slave station No.
2151F = 1 to 64 MP930=1to 14 SVB-0l=1to 14
Ch-No I-REG Transmission buffer channel No.
215IF=1to3 MP930 =1 SVB-01=1to0 8
Cns-Typ I-REG Type of inverter constant
0 = direct designation of reference No. 1 = An, 2 =Bn, 3 = Chn,
4=Dn,5=En,6=Fn,7=Hn,8=Ln,9=0n, 10=Tn
Cns-No I-REG Inverter constant No. (1 to 99)
The upper limit will differ according to the type of inverter.
If Cns-Typ = 0, designate the reference No.
Cns-Size I-REG Number of inverter constants (number of data to be written)1 to 100
Dat-Adr Address in- | Register address of set data (address of MW, DW, or #W)
put
Output Busy B-VAL Inverter constants are being written in.
Complete B-VAL The write-in of inverter constants has been completed.
Error B-VAL Occurrence of error
Status I-REG Inverter constant write execution status

2-35

2 Standard System Function

2.3.1 Inverter Constant Write Function (ICNS-WR)

Table 2.15 Configuration of Inverter Constant Write Execution Status (STATUS)

Name Bit No. Remarks
System reserved bit0 to bit7
Execution sequence error | bit8 The function will not be executed.
Transmission parameter bit9 The function will not be executed.
error
Designated type error bit10 The function will not be executed.
Designated No. error bitl1l The function will not be executed.
Error in number (amount) | bitl2 The function will not be executed.
of the designated data
Transmission error bit13 The function will not be executed.
Inverter response error bit14 The function will not be executed.
Address input error bitl5 The function will not be executed.

Note: In the case of an inverter response error, the error codes from the
inverter are indicated in bit 0 to bit 7.
01H(1) : function code error
02H(2) : reference No. error
03H(3) : write-in count error
21H(33) : write-in data upper/lower limit error
22H(34) : write-in error (during running, during UV)
Numbers in () are of decimal expressions.

B Configuration of the Write-in Data

Cns-Typ

l Inverter Constants

bn-01| Acceleration time 1

User Register

Dat-Adr —» Constant data 1 ——» bn-05| ASR proportional gain | «— Cns-No
Constant data 2 ——» bn-06| ASR integration time
Cns-Size : :
l Constant data 10 — bn-14 PG dividing ratio

bn-25| AO optional output gain

2-36

2.3 Inverter Functions

B Method of Writing to an EEPROM

Procedures for writing constants to an EEPROM (inverter internal constant storage memory)
are shown in below.

|

Writing of a inverter constant
to work memory

A 4

WRITE ENTER command

|

Constants written with the system function "ICNS-WR" are once entered in work memory.
In order to actually store these in EEPROM, it is necessary to bring up the WRITE ENTER
command as shown in below.

Inverter
| "ICNS-WR" function
Work memory « q /
Shared
memory
Digital EEPROM
operator ™~ WRITE ENTER

command

WRITE ENTER Command

Using the "ICNS-WR" function, by writing the data "0" in the reference number "FFFD" the
WRITE ENTER command is entered for the inverter.

2-37

2 Standard System Function

2.3.1 Inverter Constant Write Function (ICNS-WR)

B Program Example

An example of a program (if MP930) that writes "200" in the constant "C1-01" is shown

below.
DEOOOOOD DEOOODD1 DEOOOOD2 DBOOODDS DBOOOON4
| |] A J L
i Vi i
DBO0O0O4
11
11
—f ICNS-YR
Execute DBOD00DD4 Busy DBO0DOOOG
#bort DBO0000S Complete DBO0OOOOZ
Dev-Typ 4 Error DBO000O3
Cir-No 1 Status DWODOD2
St-No 1
Ch-No 0
Cns-Typ 0
Cns-No 612
Cns-Size 1
Dat-Adr DADOODDI
IF } I
DBO0D002==true I
DBOODOOD

SBO00O0D4
A

In

STORE

Source

Dest DWD0OO3

END_IF

i

2-38

2.3 Inverter Functions

IF
DBO00003==t rue

—

STORE E'Z

Source DWOOOD2

Dest DWOODD3

SBI!I]EI‘BM DBOOOOOD
I

L

END_IF

i

2.3.2 Inverter Constant Read Function (ICNS-RD)

B Outline

Reads the inverter constants.

The types and ranges of the inverter constants to be read can be designated.
Applicable inverters

¢ Connected MP930 via 216
¢ Connected SVB-01 for MP920 via 216
* Connected 215IF for MP920 and MP2000 series via 215

B Format

Symbol: ICNS-RD
wf TCNS-RD E]‘ Full Nam.e: Inverter-Constant Read
Execute 7 Busy 7 Category: SYSTEM
MBOODD 44 MB0D004E Icon: %
Abort -RD

s Conplete 7
MBOOD045 MBOODO47

Dev-Typ 7 Error 2
MY00040 MBODODO48

Cir-No 17 Status 7
MWo0041 MWo0n047

St-Ne ?
MRoo042

Ch-No 17
MY00043

Cns-Typ ?
MWoo044

Cns-No 17
MYW00045

Cns-Size ?

MY00046

Dat-ddr ?
HADDD11

2-39

2 Standard System Function

2.3.2 Inverter Constant Read Function (ICNS-RD)

B Parameter

I/0 Parameter 110 Setting
Definition Name Designation
Input Execute B-VAL Inverter constant read execution instruction
Abort B-VAL Inverter constant read forced interruption instruction
Dev-Typ I-REG Type of transmission device
2151IF =1 MP930 =4 SVB-01 =11
Cir-No I-REG Line No.
2151F =1, 2 MP930 =1 SVB-01 =1to 16
St-No I-REG Slave station No.
2151F =1 to 64 MP930=1to 14 SVB-0l1=1to 14
Ch-No I-REG Transmission buffer channel No.
215IF=1to3 MP930 =1 SVB-01=1to08
Cns-Typ I-REG Type of inverter constant
0 = direct designation of reference No. 1 = An. 2 =Bn, 3 =Cn,
4=Dn,5=En, 6 =Fn,7=Hn,8=Ln,9=0n, 10=Tn
Cns-No I-REG Inverter constant No. (1 to 99)
The upper limit will differ according to the type of inverter.
If Cns-Typ = 0, designate the reference No.
Cns-Size I-REG Number of inverter constants (number of data to be read) 1 to 100
Dat-Adr Address in- | Register address of read-out destination (address of MW or DW)
put
Output Busy B-VAL Inverter constants are being read.
Complete B-VAL The reading of inverter constants has been completed.
Error B-VAL Occurrence of error
Status I-REG Inverter constant read execution status

Table 2.16 Configuration of Inverter Constant Read Execution Status (STASTUS)

Name Bit No. Remarks
System reserved bit0 to bit7
Execution sequence error | bit8 The function will not be executed.
Transmission parameter bit9 The function will not be executed.
error
Designated type error bit10 The function will not be executed.
Designated No. error bitl1 The function will not be executed.
Error in number (amount) | bitl2 The function will not be executed.
of the designated data
Transmission error bitl3 The function will not be executed.
Inverter response error bitl4 The function will not be executed.
Address input error bitl5 The function will not be executed.

Note: In the case of an inverter response error, the error codes from the

inverter are indicated in bit0 to bit7.

01H(1): function code error
02H(2): reference No. error
Numbers in () are of decimal expressions.

2-40

2.3 Inverter Functions

B Configuration of the Data Readout

Cns-Typ

i Inverter Constants

bn-01 Acceleration time 1

User Register

Dat-Adr —» Constant data 1 <4—— bn-05| ASR proportional gain| +— Cns-No
Constant data 2 <4—— bn-06| ASR integration time
Cns-Size : :
l Constant data 10 <+— bn-14 PG dividing ratio

bn-25| AO optional output gain

2-41

2 Standard System Function

2.4.1 Counter Function (COUNTER)

2.4 Other Functions

2.4.1 Counter Function (COUNTER)

B Outline

Increments or decrements the current value when the count up/down command (Up-Cmd,
Down-Cmd) changes from OFF to ON.

When the counter reset command (Resef) becomes ON, the current counter value is set to 0.

Also, the current counter value and the set value are compared and the comparison result is

output.

* The current value will not be incremented neither decremented if a

counter error (current value > set value) occurs.

B Format
Symbol: COUNTER
—{ S OUNTER =) Full Name: Counter
Up-Cd 2 Cnt-Up 2 Category: SYSTEM
ME0DOOO 1 MEODD0D4 Icon: muj
Down-Cmd ? Cnt-Zero ? TER
MB00O0D2 MEOD0005
Reset 17 Cnt-Err 1
ELE MBODOD0E
Cnt-Data ?
MADDDO1

B Parameter

I/O Parameter 110 Setting
Definition Name Designation
Input Up-Cmd B-VAL Count up command (OFF—ON) Data area for counter
Down-Cmd [B-VAL Count down command (OFF—ON) process
1: Set value
Reset B-VAL Counter reset command .
2: Current value
Cnt-Data Address in- | Head address of data area for counter pro- 3: Work flag
put cess (MW or DW register)
Output Cnt-Up B-VAL Becomes ON when current counter value = set value.
Cnt-Zero B-VAL Becomes ON when current counter value = 0.
Cnt-Err B-VAL Becomes ON when current counter value > set value.

2-42

2.4 Other Functions

The forms of parameter input and output are shown in below.

Input Data
Form

Input Desig-
nation

Description

Bit Input

B-VAL

Designates the output to be of a bit type. The bit type data
become the input to the function.

Integer
Type Input

I-VAL

Designates the input to be of an integer type. The contents
(integer data) of the register with the designated number
become the input to the function.

I-REG

Designates the input to be the contents of an integer type regis-
ter. The number of the integer type register is designated when
referencing the function. The contents (integer data) of the
register with the designated number become the input to the
function.

Double-
length Inte-
ger Type
Input

L-VAL

Designates the input to be of a double-length integer type.
When reference the function, the contents (double-length inte-
ger data) of the register with the designated number become
the input to the function.

L-REG

Designates the input to be the contents of a double-length inte-
ger type register. When reference the function, the contents
(double-length integer data) of the register with the designated
number become the input to the function.

Real Num-
ber Type
Input

F-VAL

Designates the input to be of a real number type. The contents
(real number data) of the register with the designated number
become the input to the function.

F-REG

Designates the input to be the contents of a real number type
register.

The number of the real number type register is designated
when referencing the function. The contents (real number
data) of the register with the designated number become the
input to the function.

Address
Input

Hands over the address of the designated register (an arbitrary
integer register) to the function. Only 1 input is allowed in the
case of a user function.

2-43

2 Standard System Function
2.4.2 First-in First-out Function (FINFOUT)

2.4.2 First-in First-out Function (FINFOUT)

B Outline

This is a first-in first-out type block data transfer function. The FIFO data table is composed
of'a 4-word header part and a data buffer. 3 words of the header part (data size, input size,

output size) must be set before this function is referenced.

* When the data input command (/n-Cmd) becomes ON, the designated number of data is
sequentially stored from the designated input data area to the data area of the FIFO
table.

* When the data output command (Out-Cmd) becomes ON, the designated number of data
are transferred from the head of the data area of the FIFO table to the designated output
data area.

* When the reset command (Reser) becomes ON, the number (amount) of data stored is set
to zero and the FIFO table empty output (75/-Emp) becomes ON.

« If "size of available space for data (empty size) < input size" or if "data size < output
size," the FIFO table error (7b/-Err) becomes ON.

B Format
Symbol: FINFOUT
~{ FINFOUT =) o Full Name: First-in First-out
In-Cnd ? Thi-Ful| ? Category: SYSTEM
WB000007 HB0000 10 Icon: EIN
Out-Cmd ? Tbl-Emp ? FO
MEBOOOOOS MBOOOO011
Reset 17 Thi-Err 1
MEBOOOOOS MBO00012
FIFO-TbI ?
WAaDooD2
In-Data ?
MADDODD3
Out-Data ?
MADDOO4

2-44

2.4 Other Functions

B Parameter

I/0 Parameter I/0 Setting
Definition Name Designation
Input In-Cmd B-VAL Data input command (IN-CMD) FIFO Table Configu-
Out-Cmd B-VAL Data output command (OUT-CMD) ration
0: data size
Reset B-VAL Reset command . .
1: input size
FIFO-TbI Address in- | Head address of FIFO table (MW or DW 2: output size
put address) 3: number of data
In-Data Address in- | Head address of input data (MW or DW stored
put address) 4: data
Out-Data Address in- | Head address of output data (MW or DW
put address)
Output Tbl-Full B-VAL FIFO table is full.
Tbl-Emp B-VAL FIFO table is empty.
Tbl-Err B-VAL FIFO table error.

2-45

Appendix A

Expression

It is necessary to describe the conditional expression and the operational
expression in IF, WHILE, and the EXPRESSION instruction in the ladder
instruction. Those expressions can be described by using "Expression".

This appendix describes the use rule of the Expression.

A1 EXPression = - - == - - - o - m e A-2
A1.10perator = ------ - - - e A-2
Al20perand ------- - - m o e e e e e A-4
A.1.3 Instructions Available in EXPRESSION Instruction - ------------- A-5

A.2 Recognizable Expression ------------------------- A-6
A.2.1 Arithmetic Operator - ----------- - e A-6
A.2.2 Comparison Operator - - ----- == - oo A-6
A.2.3 Logic Operator - -------=----cc oo a oo A-6
A.2.4 Substitution Operator - - === === === e m e e A-7
A25Function ------- - mm e e e - A-7
A2 B 0thers ------ - e i e e A-7

A.3 Application to Ladder Program ---------------------- A-9
A.3.1 Conditional Expression of IF Instruction - - -------------------- A-9
A.3.2 Conditional Expression of WHILE Instruction ------------------ A-9
A.3.3 Operational Expression of EXPRESSION Instruction ----------- A-10

A-1

Appendix A Expression
A.1.1 Operator

A.1 Expression

The Expression is composed of the operator, the operand (constant and variable), and functions.
The end of one Expression is shown by the semicolon “;”. The expressions can be united by

using parentheses “(”,*)”.

Each component of the Expression is explained here.

A.1.1 Operator

B Usable Operator

There is the following kinds of usable operators.

Arithmetic Operator
+ Addition

- Subtraction

* Multiplication

/ Division

% Surplus

& AND of each bit
| OR of each bit

Logic Operator (Only for the Bit Type)

&& Logical product
| Logical add

! Logical denial

Comparison Operator

Equal to a right value

1= Not equal to a right value

> Greater than a right value

>= Greater than or equal to a right value
< Less than a right value

<= Less than or equal to a right value

A-2

A.1 Expression

Substitution Operator

= A right value is substituted for a left value

Reserved Word

true/false Value to logical expression

B Priority Level and Uniting Rule

There is a priority level in the operator, and the uniting rule is applied.

The priority level and the uniting rule (order from which the operand is evaluated) of the
operator are settled in the next table. The table is sequentially shown from the operator with
a high priority level. The operator of the same line has the same priority level, and is evalu-

ated according to the uniting rule.

Operator Explanation Uniting Rule
[10) expression right from left
-1 monadic left from right
#[% multiplication, division, right from left
surplus
+ - addition, subtraction right from left
< > <= >= relation right from left
== I= relation (value) right from left
& AND of each bit right from left
| OR of each bit right from left
&& logical AND right from left
| logical OR right from left

INFO When using IF, WHILE and EXPRESSION instruction by hexadecimal, describe 0xOOOO. Descrip-
tion of HOOODO is error.

When using the others instruction, describe HOOOO.

A-3

Appendix A Expression

A.1.2 Operand

A.1.2 Operand

<4 EXAMPLE p»

B Constant

The constant is either the integer or the real number.

Integer

The integer can use the value within the range which can be expressed by 32 bit integer
value. (-2147483648 to 2147483647)

Real number

The real number can use the value within the range which can be expressed by 32 bit float
type. £ (1.175494351e-38F to 3.402823466¢+38F)

Variable

In Expression, it is possible to describe by associating the arbitrary variable name permitted
by C language with controller’s register.

Controller’s bit type register is handled as bool type though the bool type variable does not
exist in C language. The bool type variable takes only either of value of true or false. It can

be used only for the logical expression.
The following limitations are installed in the variable name which can be used.

e It is started from characters other than the numerical value.

[T L)

* The character which can be used is alphabet and underscore
ASCII characters.

* The same variable name as the following function names cannot be used.
Abc OK
get_input0 OK
lab NG
Sin NG

, and figures among

A4

A.1 Expression

A.1.3 Instructions Available in EXPRESSION Instruction

Instruction Contents Example R?;/zrr\(/jed
+ Addition MW00001 = MW00002 + MW00003)
- Subtraction MW00001 = MW00002 - MW00003 O
* Multiplication MWO00001 = MW00002 * MW00003 O
/ Division MW00001 = MW00002 / MW00003 O
% Surplus MW00001 = MW00002 % MW00003 O
& AND of each bit MWO00001 = MW00002 & 4096 O
| OR of each bit MWO00001 = MWO00002 | 4096 O
&& Logical product MBO000010 = MB000011 && MB000012 O
[l Logical add MBO000010 = MB000011 || MB000012 O
! Logical denial MB000010 = !MB000011 O
== Equal to a right value MB000010 =MB000011 == true O
>= Greater than or equal to a right MB000010 = MW00020 >= MW00021 O
value
> Greater than a right value MB000010 = MW00020 > MW00021 O
< Less than a right value MB000010 = MW00020 < MW00021 O
<= Less than or equal to a right value | MB000010 = MW00020 <= MW00021 O
= A right value is substituted MW00001 = MW00002 O
for a left value
true true MBO000010 = MB000011 == true O
false false MBO000010 = MB000011 == false O
sin() SIN MWO00001 = sin(MW00002) O
cos() | cos MF00002 = cos(MF00004) ¢
atan() ARCTAN MWO00001 = atan(MF00002) O
tan() | TAN MWO00001 = tan(MW00002) ¢
0 Parentheses MW00001 = (MW00002 + MW00003) / MW00004 O
asin() ARCSIN MWO00001 = asin(MW00002) O
acos() [ARCCOS MWO00001 = acos(MW00002) O
sqrt() AQRT MWO00001 = sqrt(MW00002) O
abs() ABS MWO00001 = abs(MW00002) O
exp() EXP MWO00001 = exp(MWO00002) O
log() LOG Natural logarithm MWO00001 =1og(MW00002) O
log10() | LOG10 Common logarithm MWO00001 = 1og10(MW00002) O

A-5

Appendix A Expression
A.2.1 Arithmetic Operator

A.2 Recognizable Expression

The Expression is described by combining the operand and the operator. There are some restric-

tions in the description method. The restriction is explained as follows.

A.2.1 Arithmetic Operator

This operator can be used for the operand of the integer type and the real type.

The monadic minus can be used only once. The bit operation can use only the integer type.
The arithmetic operation cannot be used for the operand of the bit type.

Even if the calculation value exceeds the range of the register, the type conversion is not

automatically done. Therefore, the user should allocate an appropriate type in the variable.
4 EXAMPLE > MW00001 = MW00002 + MW00003 OK
MWO00001 = MWO00002 / 345 OK

MF00002 = (MW00004 + MF00002) / (ML00018 + MW00008) OK

MWO00001 = MWO00002 & 4096 OK
MB000010 =MB000011 — MB000012 NG
MWO00001 = MB000011 * MWO00001 NG

A.2.2 Comparison Operator

This operator can be used for the operand of the integer type and the real type.
The register of the bit type should come left. In the case to do the comparison which uses “=

=" or “ |=" for the operand of the integer bit type, the comparison object should be an

expression of true/false.

<4 EXAMPLE B> MB000010 = MW00002 != MW00003 OK
MB000010 = MF00002 < 99.99 OK
MB000010 = MW00002 >=MW00003 OK
MB000010 = MB000011 = = true OK
MB000010 = MB000011 !=0 NG
MB000010 = MB000011 == NG

A.2.3 Logic Operator

This operator can be used only for the operand of the bit type.

<4 EXAMPLE > MB000010 = MB000011 && MB000012 OK
MB000010 = !MB000011 OK
MB000010 = (MW000020 >= 50) && MB000011 OK
MB000010 = MWO00001 || MW00002 NG
MB000010 = IMW00001 NG

A-6

A.2 Recognizable Expression

A.2.4 Substitution Operator

If it is a difference of the real type or the integer type even if a right, left type is different,

substitution is possible. However, the rounding error is caused when substituting from the

real type to the integer type.

Substitution for the bit type register can do only a logical value (bit type register or true/

false). In the case to substitute the values other than a logical value for the bit type register,

the values are compared with 0 (Or, 0.0), and the truth is converted into the substituted code.

The substitution of the bit type excluding the bit type register is assumed to be impossible.

4 EXAMPLE > MWO00001 = MW00002 OK
ML00003 = MW00002 OK
MF00006 = MW00002 * 343 OK
MB000010 = MB000011 OK
MW00001 = MF00012 OK
MB000102 = MW00010 OK
MB000102 = true OK
MWO00010 =MB000101 NG
MWO00010 = true NG

A.2.5 Function

The argument and the return value to the function depend on the specification of controller’s
function. That is, the output value is returned by the integer when the register of the integer
and the integer type is input to sin (), cos (), and atan (), and when the register of the real

number and the real type is input, the output value is returned by the real number. When the
register of the integer type is input because the argument of tan () is a real number, is treated

as a real type.

<4EXAMPLE > MWO00001 = sin (MW00002) OK
MF00001 = cos (MF00002 * 3.14) OK
MW00001 = — atan(MF00002) OK

A.2.6 Others

B Parentheses

Two or more expressions can be united by using “(” and “)”.

<4 EXAMPLE B> MWO00001 = — (MW00002 — MW00003) / (MW00004 + MW00005)) OK

A-7

Appendix A Expression

A.2.6 Others
B Array
The array can be specified by using “[”” and “]” B as well as C language.
<4 EXAMPLE > MW00001 = MW00002 [100] OK
MWO00001 = MW00002 [MW00100] OK
MBO00001 = MB000020 [0] OK

A-8

A.3 Application to Ladder Program

A.3 Application to Ladder Program

The use of Expression in the ladder program is divided into three kinds of the following.

» Conditional expression of IF instruction
* Conditional expression of WHILE instruction

* Operational expression of EXPRESSION instruction
The use example is explained as follows.
A.3.1 Conditional Expression of IF Instruction
The Expression is described in the conditional expression description area of the IF instruc-
tion and the ELSE instruction. However, only Expression which outputs the result of the

bool type can be described. Therefore, the description of the Expression which includes the

substitution operator is not recognized.

<4 EXAMPLE B> MB000001 = = true OK
MW00002 < 100 OK
MWO00003 != MW00004 OK
MB000005 = false NG
MW00007 = MWO00010 NG

A.3.2 Conditional Expression of WHILE Instruction

The Expression is described in the conditional expression description area of the WHILE
instruction. However, only Expression which outputs the result of the bool type can be
described. Therefore, the description of the Expression which includes the substitution oper-

ator is not recognized.

4 EXAMPLE P> Refer to the example of A.3.1 "Conditional Expression of IF Instruction”.

A-9

Appendix A Expression
A.3.3 Operational Expression of EXPRESSION Instruction

A.3.3 Operational Expression of EXPRESSION Instruction

The Expression is described in the conditional expression description area of the EXPRES-
SION instruction. The operational expression can be described according to the description

rule of Expression. However, Expression which outputs the result of the bool type cannot be

described.

<4 EXAMPLE B> MB000010 = MB000001 && MB000005; OK
MBO000011 = MB000010 = = true; OK
MWO00000 = (MW00001 + MW00005) / MW00004; OK
MWO00003 = MW00000/50; OK
MW00002 = MW00001 & 300; OK
MWO00010 = MW00003 — MW00002; OK
MB000001 == true; NG
MWO00006 >= 100; NG
MW00007 '=MWO00009; NG

A-10

Revision History

The revision dates and numbers of the revised manuals are given on the bottom of the back cover.

MANUAL NO. SIEZ-C887-13.1B <4>-1

e

Published in Japan January 2008

Web revision number
Revision number

Date of publication

s Rev. WEB . .
Date of Publication No. Rev. Section Revised Content
No.
February 2017 <6> 0 Front cover Revision: Format
- Printed version of the manual that is available on the web
(web version: SIEZ-C887-13.1C<5>-2)
Back cover Revision: Address and format
July 2013 <5> 2 1.6.4 Revision: Description of Outline of MOVE WORD Instruction (MOVW)
Back cover Revision: Address
January 2013 1 1.7.4,1.7.5,1.7.6 Revision: Information on P, D, I, and Integration adjustment gains of PI, PD and PID
CONTROL instructions
Back cover Revision: Address
January 2012 0 - SIEZ-C887-13.1B<4>-6, available on the web.
1.7.11 Revision: Description of integer type operation of program example
Back cover Revision: Address
October 2011 <4> 6 2.1.2 Revision: Information on IN/OUT of the parameter (PARAMO02)
July 2011 5 1.6.9 Addition: Notes for binary search instruction (BSRCH)
March 2011 4 1.4.10 Revision: Outline
1.7.11 Revision: Units of acceleration/deceleration/quick stop time in real type LAU instruction
parameters
1.7.11,1.7.12 Revision: Setting of parameter
December 2010 3 Front cover Revision: Format
2.1.1,2.1.2 Revision: Called station # — Called station number,
Called CPU # — Called CPU number,
Description of called CPU number (PARAMO07)
Back cover Revision: Address, format
March 2010 2 }}g, 1.14,1.1.5, Addition: Description of error of the count
1.7.4,1.7.5,1.7.6 Revision: Information on P, I and D gains of PI, PD and PID CONTROL instructions
1.7.12 Revision: S-curve acceleration/deceleration time
Chapter2 Partly revised
2.1.1 Addition: Type of transmission device in Dev-Type: 218-02 = 16
A.l.l Addition: INFO
A.l3 Revision: Instructions Available in EXPRESSION instruction
Back cover Revision: Address
January 2008 1 1.2.22,1.2.23 Revision: Program example
1.4.8,1.4.9 Addition: Information on the nesting of IF instructions
A2.5 Revision: arctan() — atan()
Back cover Revision: Address
August 2005 0 Back cover Revision: Address
March 2005 <3> - All chapters Addition: MP2000-series
Revision: CP-717 to MPE720
Windows 95 to Windows 95/98/2000/NT
Back cover Revision: Address
July 2003 <2> - Back cover Revision: Address
November 2002 <1> - Back cover Revision: Address

December 2001

First edition

Machine Controller MP900/MP2000 Series

New Ladder Editor
PROGRAMMING MANUAL

IRUMA BUSINESS CENTER (SOLUTION CENTER)
480, Kamifujisawa, Iruma, Saitama, 358-8555, Japan

Phone 81-4-2962-5151 Fax 81-4-2962-6138
http://www.yaskawa.co.jp

YASKAWA AMERICA, INC.
2121, Norman Drive South, Waukegan, IL 60085, U.S.A.

Phone 1-800-YASKAWA (927-5292) or 1-847-887-7000 Fax 1-847-887-7310

http://www.yaskawa.com
YASKAWA ELETRICO DO BRASIL LTDA.

777, Avenida Piraporinha, Diadema, Sao Paulo, 09950-000, Brasil

Phone 55-11-3585-1100 Fax 55-11-3585-1187
http://www.yaskawa.com.br

YASKAWA EUROPE GmbH

185, Hauptstrape, Eschborn, 65760, Germany
Phone 49-6196-569-300 Fax 49-6196-569-398
http://www.yaskawa.eu.com

YASKAWA ELECTRIC KOREA CORPORATION

35F, Three IFC, 10 Gukjegeumyung-ro, Yeongdeungpo-gu, Seoul, 07326, Korea

Phone 82-2-784-7844 Fax 82-2-784-8495
http://www.yaskawa.co.kr

YASKAWA ELECTRIC (SINGAPORE) PTE. LTD.

151, Lorong Chuan, #04-02A, New Tech Park, 556741, Singapore

Phone 65-6282-3003 Fax 65-6289-3003
http://www.yaskawa.com.sg

YASKAWA ELECTRIC (THAILAND) CO., LTD.

59, 1st-5th Floor, Flourish Building, Soi Ratchadapisek 18, Ratchadapisek Road, Huaykwang, Bangkok, 10310, Thailand

Phone 66-2-017-0099 Fax 66-2-017-0799
http://www.yaskawa.co.th

YASKAWA ELECTRIC (CHINA) CO., LTD.

22F, One Corporate Avenue, No.222, Hubin Road, Shanghai, 200021, China

Phone 86-21-5385-2200 Fax 86-21-5385-3299
http://www.yaskawa.com.cn

YASKAWA ELECTRIC (CHINA) CO., LTD. BEIJING OFFICE
Room 1011, Tower W3 Oriental Plaza, No.1, East Chang An Ave.,

Dong Cheng District, Beijing, 100738, China
Phone 86-10-8518-4086 Fax 86-10-8518-4082

YASKAWA ELECTRIC TAIWAN CORPORATION
9F, 16, Nanking E. Rd., Sec. 3, Taipei, 104, Taiwan
Phone 886-2-2502-5003 Fax 886-2-2505-1280

YASKAWA

YASKAWA ELECTRIC CORPORATION

In the event that the end user of this product is to be the military and said product is to
be employed in any weapons systems or the manufacture thereof, the export will fall
under the relevant regulations as stipulated in the Foreign Exchange and Foreign
Trade Regulations. Therefore, be sure to follow all procedures and submit all relevant
documentation according to any and all rules, regulations and laws that may apply.
Specifications are subject to change without notice for ongoing product modifications
and improvements.

© 2001-2017 YASKAWA ELECTRIC CORPORATION

MANUAL NO. SIEZ-C887-13.1C <6>-0

Published in Japan February 2017
16-12-12

	Front Cover

	About This Manual
	About The Software
	Visual Aids
	Related Manuals
	CONTENTS
	1
Ladder Program Instructions
	1.1 Relay Circuit Instructions
	1.1.1 N.O. Contact Instruction (NOC)
	1.1.2 N.C. Contact Instruction (NCC)
	1.1.3 10-MS ON-DELAY TIMER Instruction (TON [10ms])
	1.1.4 10-MS OFF-DELAY TIMER Instruction (TOFF [10ms])
	1.1.5 1-S ON-DELAY TIMER Instruction (TON [1s])
	1.1.6 1-S OFF-DELAY TIMER Instruction (TOFF [1s])
	1.1.7 RISING PULSE Instruction (ON-PLS)
	1.1.8 FALLING PULSE Instruction (OFF-PLS)
	1.1.9 COIL Instruction (COIL)
	1.1.10 SET COIL Instruction (S-COIL)
	1.1.11 RESET COIL Instruction (R-COIL)

	1.2 Numeric Operation Instructions
	1.2.1 STORE Instruction (STORE)
	1.2.2 ADDITION Instruction (ADD)
	1.2.3 EXTENDED ADDITION Instruction (ADDX)
	1.2.4 SUBTRACTION Instruction (SUB)
	1.2.5 EXTENDED SUBTRACTION Instruction (SUBX)
	1.2.6 MULTIPLICATION Instruction (MUL)
	1.2.7 DIVISION Instruction (DIV)
	1.2.8 MOD Instruction (MOD)
	1.2.9 REM Instruction (REM)
	1.2.10 INC Instruction (INC)
	1.2.11 DEC Instruction (DEC)
	1.2.12 ADD TIME Instruction (TMADD)
	1.2.13 SUBTRACT TIME Instruction (TMSUB)
	1.2.14 SPEND TIME Instruction (SPEND)
	1.2.15 SIGN INVERSION Instruction (INV)
	1.2.16 1’S COMPLEMENT Instruction (COM)
	1.2.17 ABSOLUTE VALUE CONVERSION Instruction (ABS)
	1.2.18 BINARY CONVERSION Instruction (BIN)
	1.2.19 BCD CONVERSION Instruction (BCD)
	1.2.20 PARITY CONVERSION Instruction (PARITY)
	1.2.21 ASCII CONVERSION Instruction (ASCII)
	1.2.22 ASCII CONVERSION 2 Instruction (BINASC)
	1.2.23 ASCII CONVERSION 3 Instruction (ASCBIN)

	1.3 Logical Operation/Comparison Instructions
	1.3.1 AND Instruction (AND)
	1.3.2 OR Instruction (OR)
	1.3.3 XOR Instruction (XOR)
	1.3.4 Comparison Instruction (<)
	1.3.5 Comparison Instruction (<=)
	1.3.6 Comparison Instruction (=)
	1.3.7 Comparison Instruction (!=)
	1.3.8 Comparison Instruction (>=)
	1.3.9 Comparison Instruction (>)
	1.3.10 RANGE CHECK Instruction (RCHK)

	1.4 Program Control Instructions
	1.4.1 SUB-DRAWING CALL Instruction (SEE)
	1.4.2 MOTION PROGRAM CALL Instruction (MSEE)
	1.4.3 FUNCTION CALL Instruction (FUNC)
	1.4.4 DIRECT INPUT STRING Instruction (INS)
	1.4.5 DIRECT OUTPUT STRING Instruction (OUTS)
	1.4.6 EXTENSION PROGRAM CALL Instruction (XCALL)
	1.4.7 WHILE Instruction (WHILE, END_WHILE)
	1.4.8 IF Instruction (IF, END_IF)
	1.4.9 IF Instruction (IF, ELSE, END_IF)
	1.4.10 FOR Instruction (FOR, END_FOR)
	1.4.11 EXPRESSION Instruction (EXPRESSION)

	1.5 Basic Function Instructions
	1.5.1 SQUARE ROOT Instruction (SQRT)
	1.5.2 SINE Instruction (SIN)
	1.5.3 COSINE Instruction (COS)
	1.5.4 TANGENT Instruction (TAN)
	1.5.5 ARC SINE Instruction (ASIN)
	1.5.6 ARC COSINE Instruction (ACOS)
	1.5.7 ARC TANGENT Instruction (ATAN)
	1.5.8 EXPONENT Instruction (EXP)
	1.5.9 NATURAL LOGARITHM Instruction (LN)
	1.5.10 COMMON LOGARITHM Instruction (LOG)

	1.6 Data Manipulation Instructions
	1.6.1 BIT ROTATION LEFT Instruction (ROTL)
	1.6.2 BIT ROTATION RIGHT Instruction (ROTR)
	1.6.3 MOVE BITS Instruction (MOVB)
	1.6.4 MOVE WORD Instruction (MOVW)
	1.6.5 EXCHANGE Instruction (XCHG)
	1.6.6 SET WORDS Instruction (SETW)
	1.6.7 BYTE-TO-WORD EXPANSION Instruction (BEXTD)
	1.6.8 WORD-TO-WORD COMPRESSION Instruction (BPRESS)
	1.6.9 BINARY SEARCH Instruction (BSRCH)
	1.6.10 SORT Instruction (SORT)
	1.6.11 BIT SHIFT LEFT Instruction (SHFTL)
	1.6.12 BIT SHIFT RIGHT Instruction (SHFTR)
	1.6.13 COPY WORD Instruction (COPYW)
	1.6.14 BYTE SWAP Instruction (BSWAP)

	1.7 DDC Instructions
	1.7.1 DEAD ZONE A Instruction (DZA)
	1.7.2 DEAD ZONE B Instruction (DZB)
	1.7.3 UPPER/LOWER LIMIT Instruction (LIMIT)
	1.7.4 PI CONTROL Instruction (PI)
	1.7.5 PD CONTROL Instruction (PD)
	1.7.6 PID CONTROL Instruction (PID)
	1.7.7 FIRST-ORDER LAG Instruction (LAG)
	1.7.8 PHASE LEAD/LAG Instruction (LLAG)
	1.7.9 FUNCTION GENERATOR Instruction (FGN)
	1.7.10 INVERSE FUNCTION GENERATOR Instruction (IFGN)
	1.7.11 LINEAR ACCELERATOR/DECELERATOR 1 Instruction (LAU)
	1.7.12 LINEAR ACCELERATOR/DECELERATOR 2 Instruction (SLAU)
	1.7.13 PULSE WIDTH MODULATION Instruction (PWM)

	1.8 Table Data Manipulation Instructions
	1.8.1 BLOCK READ Instruction (TBLBR)
	1.8.2 BLOCK WRITE Instruction (TBLBW)
	1.8.3 ROW SEARCH Instruction (TBLSRL)
	1.8.4 COLUMN SEARCH Instruction (TBLSRC)
	1.8.5 BLOCK CLEAR Instruction (TBLCL)
	1.8.6 BLOCK MOVE Instruction (TBLMV)
	1.8.7 QUEUE TABLE READ Instructions (QTBLR, QTBLRI)
	1.8.8 QUEUE TABLE WRITE Instructions (QTBLW, QTBLWI)
	1.8.9 QUEUE POINTER CLEAR Instruction (QTBLCL)

	2 Standard System Function

	2.1 Message Functions
	2.1.1 Send Message Function (MSG-SND)
	2.1.2 Receive Message Function (MSG-RCV)

	2.2 Trace Functions
	2.2.1 Trace Function (TRACE)
	2.2.2 Data Trace Read Function (DTRC-RD)
	2.2.3 Failure Trace Read Function (FTRC-RD)
	2.2.4 Inverter Trace Read Function (ITRC-RD)

	2.3 Inverter Functions
	2.3.1 Inverter Constant Write Function (ICNS-WR)
	2.3.2 Inverter Constant Read Function (ICNS-RD)

	2.4 Other Functions
	2.4.1 Counter Function (COUNTER)
	2.4.2 First-in First-out Function (FINFOUT)

	Appendix A Expression

	A.1 Expression
	A.1.1 Operator
	A.1.2 Operand
	A.1.3 Instructions Available in EXPRESSION Instruction

	A.2 Recognizable Expression
	A.2.1 Arithmetic Operator
	A.2.2 Comparison Operator
	A.2.3 Logic Operator
	A.2.4 Substitution Operator
	A.2.5 Function
	A.2.6 Others

	A.3 Application to Ladder Program
	A.3.1 Conditional Expression of IF Instruction
	A.3.2 Conditional Expression of WHILE Instruction
	A.3.3 Operational Expression of EXPRESSION Instruction

	Revision History
	Back Cover

