

WP.MTN.02, Copyright Yaskawa America, Inc. 11/30/2012, All Rights Reserved

Designing your first
PackML
implementation for
machine control
Three key design decisions to get you started

Douglas Meyer, Motion Application Engineer
Yaskawa America, Inc.

WP.MTN.02, Copyright Yaskawa America, Inc. 11/30/2012, All Rights Reserved

Table of Contents
PackML - not just for the Packaging Industry ... 3

Your Implementation – Key Design Decisions .. 4

Define the PackML Modes to be used .. 4

Assign functionality to PackML Modes and States ... 5

Modularize the machine code .. 5

Customize vendor-supplied templates ... 8

Using PackML to Drive the Machine Operation .. 11

Hooks for setting PackML commands ... 12

Extracting useful data for production statistics .. 12

Interfacing to upstream and downstream equipment ... 12

Conclusion ... 13

References .. 14

WP.MTN.02, Copyright Yaskawa America, Inc. 11/30/2012, All Rights Reserved

Designing your first PackML
implementation for machine control

There can be no doubt that a majority of controls engineers in the packaging industry have at least
heard of the term “PackML” by now. For the past two years, Dr. Bryan Griffen, co-chair of the OMAC
Packaging Workgroup and Electrical and Automation Group Manager at Nestlé, has led a renewed effort
to communicate the benefits of PackML at nearly every industry trade show and conference (Campbell,
2011). But understanding how PackML is actually implemented on a real machine, and having
experience in designing and coding such an implementation is likely a different story. For many
engineers in the packaging industry, and for nearly all engineers outside the industry, PackML remains
an amorphous concept, not completely understood and missing a clear best practice for getting started.
This Tactical Brief will set aside the discussions of ‘Why PackML?’ and instead focus on ‘How PackML’ so
that controls engineers in any industry can better understand the design and implementation process.

PackML - not just for the Packaging Industry
It is important to say up front that, despite its name and origins, PackML can be applied to any
automated machine, regardless of industry. Technically, PackML is known as ISA-TR88.00.02 and was
born out of the need to improve production efficiencies at packaging end-user locations and to reduce
the amount of time and expense involved with integrating machines from different suppliers into a
cohesive production line. The intention was to build a global standard for automated machine code
architecture that could be adopted by packaging OEMs to ease the line integration and support
processes. What emerged is a code architecture that applies to machinery beyond the packaging
industry.

The heart of the current PackML v3.0 standard is the machine state diagram. Starting in the early 2000’s,
the OMAC (The Organization for Machine Automation and Control) Packaging Workgroup (OPW) spent a
good deal of time breaking down the operational sequencing of automated machinery and creating a
standard model of logical states and transitions. The resulting state diagram for ISA_TR88.00.02 was
released in 2008 and is shown in Figure 1. (ISA, 2008). Note that this model contains nothing specific
about the machinery used in the packaging industry. Instead, the model uses a simple flow diagram to
define a generic, standard nomenclature for how machines operate. All machines will have a state
where the machine is running the intended process (Execute) and not running (Stopped or Idle).
Similarly, all machines must apply some sort of fault detection and recovery sequence (Aborting,
Aborted, Clearing).

The additional Held and Suspended branches were added by the OPW to further identify those times
when the machine may be capable of producing something, but other conditions are impeding
production. The Suspended branch is for use if the machine is waiting (starved) for material from an

WP.MTN.02, Copyright Yaskawa America, Inc. 11/30/2012, All Rights Reserved

upstream process or blocked by a downstream process. The Held branch is intended for operator-
induced production holds such as a Pause function.

Figure 1: PackML State Model.

The transitional flow of the model is important. Observe that the model forces states to be activated in a
sequential manner with exceptions only for Stop and Abort. Therefore the model is useful not only for
monitoring the current state, but also for driving to the next state, and thus can serve as the high-level
master for machine sequencing.

In addition to the standard state model, PackML provides for user-defined modes of operation that may
allow or restrict access to certain states or branches. Think of modes as a third dimension of the PackML
State Model that gives the model layers of depth, like floors in a building. Like a building, not all the
rooms (states) may be accessible, and movement between floors is only possible at stairway locations
(transition states). It is with the definition of these operational modes that the implementation process
begins.

Your Implementation – Key Design Decisions

Define the PackML Modes to be used
The first major decision to make in your new PackML-based application is which modes are included
and what they are named. Although PackML technically allows for an unlimited number of machine
modes, most applications have some version of these three: Automatic, Manual, Maintenance. The
names are user-definable and the programmer can also define which states are accessible when each
mode is active.

WP.MTN.02, Copyright Yaskawa America, Inc. 11/30/2012, All Rights Reserved

Typically, Automatic Mode is used for normal production and includes full access to all the PackML
states in the model. Maintenance Mode is often used to run all sections or individual sections of the
machine in a ‘dry cycle’ manner for setup, debug, or testing. Certain branches such as the Held or
Suspended branches are usually disabled while in Maintenance Mode. In many implementations,
Maintenance Mode is entry-protected with a password that limits access to only authorized users.
Manual Mode is used for manual operation of individual mechanisms on the machine, most often for
setup, commissioning or debug by an authorized user. It may be best to disable virtually all of the
PackML States while in Manual Mode.

To complete the mode definition, the user will specify the states at which the mode can be changed.
These transitional states are generally set to ‘quiet’ states such as Aborted, Stopped and Idle where the
machine is not producing anything.

Assign functionality to PackML Modes and States
While the PackML standard does a great job at defining the state names and transitions, it leaves the
decision of what happens in each of those states up to the user. Therefore, the second major decision is
to clearly define what machine functions happen in each state. For example, if there are servo axes on
the machine, when are they enabled – in the Stopped State?, during Resetting State? Where are servo
axes disabled – during Stopping? Only during Aborting? When Aborted is reached? Another good
example is in which state is a Homing function employed – Resetting? Starting? How about a CycleStop
function? Should CycleStop code reside in Stopping or Completing?

All these decisions and more should be clearly identified in a document so that all project engineers can
achieve a uniform understanding of what-happens-when during the overall machine sequence. Using
the PackML nomenclature and state model allows engineers to speak about machine operations in a
common, high-level manner that improves communication and speeds development. Bryan Griffen of
Nestlé comments that this step is crucial to realizing the benefits of PackML because it allows Nestlé to
clarify the whole task of interpreting and implementing the state model. A clear specification can then
be delivered to OEMs that is process-specific instead of hardware-specific. This allows OEMs to choose
best-fit hardware so long as the machine controls can integrate horizontally and vertically into the
Nestlé line. (Reynolds, 2011).

Modularize the machine code
The PackML State Model works best when implemented in a modular way. By that, it is meant that
PackML provides the supervisory commands and status for high-level overall machine sequencing that
can be passed down to functional code modules. The modules, in turn, send back completion status that
the state model uses to move to the next state. By performing the next step to separate the code into
logical modules that match the physical machine construction, the foundation is laid for code that is
more organized, more reliable, easier and faster to debug, and more easily reusable in other
applications. For PackML, such a modular code model is further defined in S88:Make2Pack.

WP.MTN.02, Copyright Yaskawa America, Inc. 11/30/2012, All Rights Reserved

The ISA88 physical hierarchy for code modules contains six levels that range from the entire global
company level down to each individual function. For this discussion, we will focus on the bottom three
that relate to an individual machine:

- Machine (also known as Unit, or UN): a collection of related modules (mechanical and electrical
assemblies) that carry out one or more processing activities

- Equipment Module (EM): a functional group of modules that carries out a finite number of
activities

- Control Module (CM): the lowest level of control where a single function is executed. (ISA,
2008)

High-level PackML commands originate at the Unit Machine level and flow down through all the
Equipment Modules to the Control Modules as shown in Figure 5. In turn, the completion status of each
module is reported and transmitted back up the chain.

Figure 2: Data Flow in a PackML application (OMAC, 2009)

For most applications, the code deals with only one single machine or unit. A machine is made up of one
or more Equipment Modules, each of which contains one or more Control Modules. The real decision is
how to define the EMs and CMs for logical and efficient operation. One could easily get carried away
and define a Control Module for every device on the machine. However, given that a machine of
medium complexity may have a hundred or so devices, this approach might be a bit impractical. Instead,
it is better to focus on slightly larger groups of functionality where the reporting of PackML State
completion is needed.

WP.MTN.02, Copyright Yaskawa America, Inc. 11/30/2012, All Rights Reserved

Try to avoid using a single CM in an EM. If that is the case, perhaps that piece of equipment performing
a single function should become a CM in a larger EM. Likewise, if a CM has no individual reporting
impact on the completion of a PackML State, then that CM functionality should be included elsewhere in
a different CM.

Sometimes, it may make sense to include multiple devices in a control module if they are linked in some
way. For instance, if one servo is a master to another servo in a camming relationship, these two devices
should perhaps be contained in a single CM since they are so closely tied and their combined status is
what is most important to the high-level control.

Example: An automated case packing machine for snack bags has 9 servo axes and 7 key functions.

- Case Feeding
o Sheet Lifter servo

- Case Erecting
o Case Opener servo
o Case Transfer servo

- Bag Sorting
o Sort 1 servo
o Sort 2 servo
o Sort 3 servo

- Bag Loading
o Bag Pusher servo

- Case Loading
o Case Elevator servo

- Case Closing
o Case Closer servo

- Case Ejecting

One could set up 7 Equipment Modules in the machine. However, if that were done, only two would
have more than one Control Module. Therefore it may be better to first divide the machine into larger
functional groups such as ‘Bag Handling’ and ‘Case Handling’. If this were done, the resulting
configuration might look like that in Figure 3.

WP.MTN.02, Copyright Yaskawa America, Inc. 11/30/2012, All Rights Reserved

Figure 3: Module Architecture

This configuration splits the machine into two logical equipment groups which align with the two main
inputs to the machine – bags and cases. All EMs contain more than one CM. Two of the CMs contain
multiple devices that have high degrees of combined interaction and the number of EMs and CMs is
reasonable for the project size.

Customize vendor-supplied templates
After making the three big design decisions just described it is time to write some code. This is an
exciting, yet unnerving part of the process for one may wonder where to begin! Fortunately, several
machine controller vendors have already created a starting point in the form of a PackML project
template. These templates lay the foundation for the project by providing the PackML State Model code,
a means to configure modes and states, a means for user definition of EMs and CMs, and example code
for getting started. Depending on the vendor, these templates may be written in either pure ladder-
based code or in the global standard IEC61131-3-based code.

Figure 4 shows a project tree from an IEC61131-3 based template that comes with two pre-defined
Equipment Modules, each containing three Control Modules. Users can rename, add or subtract
modules as necessary to fit the needs of the application. Key predefined code worksheets include
PackML_Initialize, UN_PackML_StateControl, UN_Control_Inputs, UN_ModuleControl,
EMxx_ModuleControl, and Ex_CMxx_Control_Outputs. (Yaskawa, 2012).

WP.MTN.02, Copyright Yaskawa America, Inc. 11/30/2012, All Rights Reserved

Figure 4: IEC61131-3 Project Tree for vendor-provided PackML template

IEC-based templates can take advantage of the multiple languages available in IEC61131-3 to create a
more understandable and readable version of code. The function block for UN_PackML_StateControl is
written in Sequential Function Chart (SFC), a direct graphical representation of the state-transition block
diagram. Control output worksheets used for rolling up state completion status are written in Ladder
Diagram (LD) since it is easiest to set and debug status coils in ladder-based code. Finally, configuration
and command management functions are written in Structured Text (ST) since it is easiest to perform
array manipulation and initialization using text commands.

In the template shown, the UN_PackML_StateControl worksheet contains the core code for the PackML
State Model. The function block shown in Figure 5 accepts the high-level PackML Commands as inputs
(the transitions), and sets the PackML States as outputs (the actual states). The block also monitors the
completion status of each transitional state and moves the model to the next state. The function does
not allow invalid transitions or invalid changes of mode.

WP.MTN.02, Copyright Yaskawa America, Inc. 11/30/2012, All Rights Reserved

Figure 5: PackML State Model function block

Users configure the system by editing the PackML_Initialize worksheet. Mode names can be customized
and defined starting around line 32, as in Figure 6.

Figure 6: Defining Modes in the PackML_Initialize worksheet

WP.MTN.02, Copyright Yaskawa America, Inc. 11/30/2012, All Rights Reserved

Likewise, users configure how many Equipment Modules and Control Modules are to be enabled
starting around line 91, as in Figure 7.

Figure 7: Defining the enabled EMs and CMs in the PackML_Initialize worksheet

Finally, users are able to programmatically determine when states are considered complete by editing
the code in Ex_CMxx_Control_Outputs. As displayed in Figure 8, each Control Module has an output
worksheet that sets a coil for each state complete bit that is fed back up to the main
UN_PackML_StateControl. Users need simply add contacts to the ladder if there are other machine
conditions that impact the process for each particular state.

Figure 8: Ex_CMxx_Control_Outputs State Complete bits

Using PackML to Drive the Machine Operation
PackML is best used in a full implementation. By full implementation, it is meant that PackML is not just
overlaid on top of an existing application for monitoring purposes only. Instead it is implemented from
the foundation so that the organizational benefits of the modular approach can be fully realized. For this
reason, inputs that bring the machine to an emergency stop condition should not just trigger actions
independently, those inputs should instead trigger the PackML Command ‘Abort’, which will be
automatically passed down to all active equipment modules. In the same manner, a Cycle Start input, if
in the correct mode, should trigger the automatic sequence via the PackML Command ‘Start’. All active
equipment modules can then be programmed to respond either to the local PackML command ‘Start’ or
the global PackML State ‘Starting’.

WP.MTN.02, Copyright Yaskawa America, Inc. 11/30/2012, All Rights Reserved

Hooks for setting PackML commands
Most templates will have provision for users to patch into the PackML controls. For the template
described, this is done in the UN_Control_Inputs worksheet. The rung shown in Figure 9 allows the
command ‘Start’ to be issued if the user conditions are right and the operator has pressed a button on
the HMI. The command ‘Start’ latches in until state ‘Execute’ is reached, or ‘Abort’ or ‘Stop’ is issued.

Figure 9: Start Command Logic

Extracting useful data for production statistics
PackML-based applications make it easy to extract production statistics since the PackML Mode and
State provide most of the necessary information. If the mode and state are ‘Automatic’ and ‘Execute’
respectively, then it directly follows that the machine is producing its intended output. If the state is
‘Aborted’, then the machine is faulted in some way. Many users construct their own statistical gathering
functions, but some templates already have certain functions built-in. Figure 10 shows an example
found in the IEC61131-3 template shown earlier, where a vendor-provided function block called
PackMLModeStateTimes continuously stores time information into the structured array of modes and
states.

Figure 10: PackML Time collector for modes and states.

By comparing the current times in each state of Automatic Mode to the total elapsed time, the
production manager can immediately view useful machine efficiency data.

Interfacing to upstream and downstream equipment
Although many machines can be considered ‘stand-alone’, a great many of them actually get installed
into a production line among other machines. This is particularly true for the packaging industry, but
often applies to other industries just the same. One of the promises of PackML is the ability to easily
communicate status upstream and downstream to other equipment, even if that equipment was made

WP.MTN.02, Copyright Yaskawa America, Inc. 11/30/2012, All Rights Reserved

by a different vendor and uses a different machine controller. A forthcoming specification from the
PackConnect subcommittee of OPW will outline such a communication protocol standard over an
industrial network. Until then, the basic PackML foundation provides for easy interfacing through digital
I/O triggered by the current PackML Mode and State.

Conclusion
Although the mission to establish a standard for machine control code architecture was at first entirely
based on the needs of the packaging industry, the PackML ISA-TR88.00.02 and ISA88:Make2Pack
standards contain methodology that extends well beyond packaging to all automated machinery. There
is a learning curve for proper PackML implementation. However, getting your first PackML project up
and running is made easier by focusing on three critical design decisions:

1) which modes are included and what they are named,
2) which machine functions happen in which state, and
3) how can Equipment Module and Control Modules be organized into a configuration that
logically matches the physical machine.

Beginning a project with pre-built vendor templates also reduces development time. By following the
model of the PackML Standard, your application can be more organized, easier to commission and
debug, more modular and transportable to other applications, and easier to add functions for data
collection and production statistics.

WP.MTN.02, Copyright Yaskawa America, Inc. 11/30/2012, All Rights Reserved

References

Campbell, Keith. (2012, April 3). OMAC Packaging – Is the Connect-And-Pack Message being heard?.

Packaging World. Retrieved September 16, 2012 from http://www.packworld.com/omac-
packaging-workgroup-connect-and-pack-message-being-heard

ISA. (2008). ISA-TR88.00.02 Machine and Unit States: An Implementation Example of ISA88. Retrieved
September 16, 2012 from
http://www.isa.org/Template.cfm?Section=Standards2&template=/Ecommerce/ProductDisplay.
cfm&ProductID=9999

OMAC. (2009). P&G PackML Implementation Guide. Retrieved September 16, 2012 from
http://www.omac.org/content/packml

Reynolds, Pat. (2011, April 9). Nestle makes packaging a strategic priority. Packaging World. Retrieved
September 16, 2012 from http://www.packworld.com/controls/strategy/nestl%C3%A9-makes-
packaging-strategic-priority

Yaskawa America, Inc. (2011). PackML Template. Retrieved September 16, 2012 from
http://www.yaskawa.com/site/dmcontrol.nsf/SearchV/86256EC30069B634862579B20057C4EA
?OpenDocument&Source=SearchResultPage

http://www.packworld.com/omac-packaging-workgroup-connect-and-pack-message-being-heard
http://www.packworld.com/omac-packaging-workgroup-connect-and-pack-message-being-heard
http://www.isa.org/Template.cfm?Section=Standards2&template=/Ecommerce/ProductDisplay.cfm&ProductID=9999
http://www.isa.org/Template.cfm?Section=Standards2&template=/Ecommerce/ProductDisplay.cfm&ProductID=9999
http://www.omac.org/content/packml
http://www.packworld.com/controls/strategy/nestl%C3%A9-makes-packaging-strategic-priority
http://www.packworld.com/controls/strategy/nestl%C3%A9-makes-packaging-strategic-priority
http://www.yaskawa.com/site/dmcontrol.nsf/SearchV/86256EC30069B634862579B20057C4EA?OpenDocument&Source=SearchResultPage
http://www.yaskawa.com/site/dmcontrol.nsf/SearchV/86256EC30069B634862579B20057C4EA?OpenDocument&Source=SearchResultPage

	PackML - not just for the Packaging Industry
	Your Implementation – Key Design Decisions
	Define the PackML Modes to be used
	Assign functionality to PackML Modes and States
	Modularize the machine code
	Customize vendor-supplied templates

	Using PackML to Drive the Machine Operation
	Hooks for setting PackML commands
	Extracting useful data for production statistics
	Interfacing to upstream and downstream equipment

	Conclusion
	References

