

Title: Communicating with the MPiec Controller using PLCi

Product(s): All MPiec Controllers except MP2300Siec Doc. No. AN.MPIEC.29

AN.MPIEC.29 December 9, 2019 Page 1 of 19

APPLICATION NOTE

Table of Contents

APPLICATION OVERVIEW ... 2

PRODUCTS USED ... 2

APPLICATION REQUIREMENTS .. 2

INSTALLING PLCI ... 3

GETTING HELP ... 3

OVERVIEW OF PLCI DLLS ... 3

PLCIDOTNET DLL ... 4

PLCIINTERFACE DLL .. 12

EXAMPLE – ADDING PLCIINTERFACE TO A C# PROJECT ... 14

DATATYPE NAMING CONVENTION BETWEEN MOTIONWORKS IEC AND VISUAL STUDIO 17

FREQUENTLY ASKED QUESTIONS .. 18

Title: Communicating with the MPiec Controller using PLCi

Product(s): All MPiec Controllers except MP2300Siec Doc. No. AN.MPIEC.29

AN.MPIEC.29 December 9, 2019 Page 2 of 19

APPLICATION NOTE

Application Overview
PLCi is a communication protocol that provides several services for a PC application:

1) Read and write variables in the MPiec controller. Elementary data types and user defined
structures and arrays can be accessed.

2) Start and stop the PLC application.
3) Read & write files on the controller.

Other communication protocols supported by the MPiec such as Modbus TCP and Ethernet/IP
require allocating variables at PLC hardware addresses (%I, %Q, %M), but with PLCi this is
not necessary. Please note the DLLs listed in the chart below. The first two listed are the
main DLLs which make reference to methods and functions in the others.

Products Used

Application Requirements
This application note assumes the user is familiar with programming in Visual Studio and does not go
into the details of creating a project.

PLCi is based on the .NET platform, therefore it is only compatible with the Windows operating system.
Typical applications are programmed using Microsoft Visual Studio.

Component

Controller

Software

Operating system

Optional:
PLCiInterface.DLL (Use this when passing user defined types (structures or arrays)

Required:
PLCiDotNet.DLL (Use for all other features listed in this document)
Plci.DLL
PlciBridge.DLL
MetaILP64_10.DLL
MetaILP32_10.DLL
NativeMetaAPI.DLL

Windows 7, Windows Embedded 7, Windows 10

Product and Model Number

All MPiec controllers except MP2300Siec. Must be eCLR type.

Title: Communicating with the MPiec Controller using PLCi

Product(s): All MPiec Controllers except MP2300Siec Doc. No. AN.MPIEC.29

AN.MPIEC.29 December 9, 2019 Page 3 of 19

APPLICATION NOTE

 Installing PLCi
The DLLs are included in an installer ZIP file available from www.yaskawa.com by searching
for document AN.MPIEC.29. They will be extracted to '[root]\Program Files
(x86)\Yaskawa\PLCi for MPiec Controllers'.

Getting Help
Help for PLCi can be found in the .chm file, also available from www.yaskawa.com by
searching for document AN.MPIEC.29. Often times after downloading this file and opening, it
will appear to be empty. This is because the content is being blocked by Windows. To view the
content, close the file, right click on it and select ‘Properties’. Under the ‘General’ tab, select
‘Unblock’.

Overview of PLCi DLLs
There are two main DLLs that can be used directly to interact with the MPiec controller:

 PLCiDotNet.dll
 PLCiInterface.dll

PLCiDotNet contains all the methods necessary to connect/disconnect to a controller,
read/write files and variables, control the PLC, and view device attributes.

PLCiInterface is a wrapper for PLCiDotNet that makes variable/structure access simpler.
PLCiInterface only contains methods to connect to the controller and read/write variables and
structures.

PLCiInterface is recommended for applications that must only read/write data structures. If file
reading/writing or PLC control (stopping/warm starting PLC, etc.) is required, then PLCiDotNet
is recommended.

Additionally, all functions contained in these DLLs are blocking, meaning that when the
function is called, processing is halted until the function returns.

Title: Communicating with the MPiec Controller using PLCi

Product(s): All MPiec Controllers except MP2300Siec Doc. No. AN.MPIEC.29

AN.MPIEC.29 December 9, 2019 Page 4 of 19

APPLICATION NOTE

PLCiDotNet DLL
An overview of the capabilities of PLCi.

Title: Communicating with the MPiec Controller using PLCi

Product(s): All MPiec Controllers except MP2300Siec Doc. No. AN.MPIEC.29

AN.MPIEC.29 December 9, 2019 Page 5 of 19

APPLICATION NOTE

PLCiDotNet: PLCi Class – PLC Connect/Disconnect and Get Service
This is the base class containing all of the services which are used for interacting with the
controller.

Methods Description
Connect Used to connect to the controller. Accepts an IP address, port,

and timeout value.
Disconnect Disconnects from the controller socket.
Dispose Destroys the PLCi object.
GetService Returns a service which contains a series of functions used for

interacting with the controller. Accepts a service name from the
following list:
IDeviceAttributeService
IDataAccessService
IPlcControlService
IFileService

To use the PLCiDotNet DLL, add the phrase “Using PhoenixContact.PLCiDotNet;” above the
namespace of the C# project.

Title: Communicating with the MPiec Controller using PLCi

Product(s): All MPiec Controllers except MP2300Siec Doc. No. AN.MPIEC.29

AN.MPIEC.29 December 9, 2019 Page 6 of 19

APPLICATION NOTE

PLCiDotNet: Services
Use the following services to interact with the controller after calling the GetService method in
the PLCi class using the respective service type from the options listed above.

PLCiDotNet: IFileService – File Read/Write
Manipulates files on the MPiec controller.

Method Description
Close Closes a file and deactivates it handle.
GetTransferPaketSize Returns a size which would be acceptable to use for reading

chunks of data from a file.
OpenRead Opens a file for reading. Returns a handle which can be used to

reference the file.
OpenWrite Opens a file for writing. Returns a handle which can be used to

reference the file.
Read Reads a chunk of data from the file specified by the file handle

into a target byte array. The chunk size is determined by the
value returned from GetTransferPaketSize(). Returns a Boolean
which reports whether there is more data to be read.

RemoveFile Removes a file based on the file name passed to it.
Write Writes data to a file which has been opened with OpenWrite().
Dispose Disposes of the service. Should be used after use of the service

has been completed. Disposing prevents memory leaks.

Title: Communicating with the MPiec Controller using PLCi

Product(s): All MPiec Controllers except MP2300Siec Doc. No. AN.MPIEC.29

AN.MPIEC.29 December 9, 2019 Page 7 of 19

APPLICATION NOTE

PLCiDotNet: IDataAccessService – Variable Read/Write
Reads and writes variables to / from the MPiec Controller.

Methods Description
CreateSubscription Subscribes to a list containing the reference names of variables

within the controller. Returns a subscription object. If a variable
will be read more than once, create a subscription rather than
reading the variable directly. The variable name must be
registered only once with the controller, allowing better
performance. It is possible to create several subscription objects
simultaneously.

DestroySubscription Disposes of a subscription object.
GetResponse Gets a list of variable values from all of the variables subscribed

to in a subscription object.
ReadVariables Reads the values of a list containing the reference names of

variables within the controller.
WriteVariables Writes a list of values to a list containing the reference names of

variables within the controller.
Dispose Disposes of the service. Should be used after use of the service

has been completed. Used to prevent memory leaks.

Title: Communicating with the MPiec Controller using PLCi

Product(s): All MPiec Controllers except MP2300Siec Doc. No. AN.MPIEC.29

AN.MPIEC.29 December 9, 2019 Page 8 of 19

APPLICATION NOTE

Both global and local variables can be referenced using the following syntax:

Global Variables
"@GlobalVariables.MyGlobalVariableName"
"@GlobalVariables.MyGlobalIntArray[10]"
"@GlobalVariables.MyGlobalStructArray[10].ComponentA"

Local variables:
"@InstanceVariables.MyResource.MyTask.MyProgram.MyProgramVariable"
"@InstanceVariables.MyResource.MyTask.MyProgram.MyFunctionBlock.MyFBVariable"
"@InstanceVariables.MyResource.MyTask.MyProgram.MyFunctionBlock.MyFBArray[10].Com
ponentB"

Title: Communicating with the MPiec Controller using PLCi

Product(s): All MPiec Controllers except MP2300Siec Doc. No. AN.MPIEC.29

AN.MPIEC.29 December 9, 2019 Page 9 of 19

APPLICATION NOTE

PLCiDotNet: IPlcControlService – Change PLC State

Method Description
ActivateBootProject Activates the project which was downloaded as the boot project

by copying it from Flash to Ram. Usually called before StartPlc().
DeleteBootProject Deletes the boot project that is currently on the PLC.
Reset Resets the PLC.
StartPlc Starts the PLC Application using one of the following modes:

StartMode.ColdStart
StartMode.WarmStart (normal)
StartMode.HotStart

StopPlc Stops the PLC application currently running on the MPiec. Other
services on the controller continue to operate, such as I/O
drivers, Mechatrolink network. Motion will be halted.

Dispose Disposes of the service. Disposing prevents memory leaks.

Title: Communicating with the MPiec Controller using PLCi

Product(s): All MPiec Controllers except MP2300Siec Doc. No. AN.MPIEC.29

AN.MPIEC.29 December 9, 2019 Page 10 of 19

APPLICATION NOTE

PLCiDotNet: IDeviceAttributeService – View Controller Attributes
Provides access to general attributes of the controller including manufacturer information and
PLC state.
GetAttribute Returns the value of a given attribute

Some of the most important attributes are listed below. A
complete list can be found within the help .chm under
Namespaces>Namespace
List>PLCi>PLCI::StandardDeviceAttributes

StandardDeviceAttribute.Manufacturer
StandardDeviceAttribute.ProductName
StandardDeviceAttribute.ECLrBootProjName
StandardDeviceAttribute.FirmwareVersion
StandardDeviceAttribute.HardwareVersion
StandardDeviceAttribute.ImageOnPLC
StandardDeviceAttribute.SourceOnPLC
StandardDeviceAttribute.PlcState

GetAttributes Same as GetAttribute but works on a list of attributes.
SetAttribute Allows setting an attribute value.
SetAttributes Same as SetAttribute but applies to a list of attributes.
Dispose Disposes of the service. Should be used after use of the service

has been completed. Disposing prevents memory leaks.

Title: Communicating with the MPiec Controller using PLCi

Product(s): All MPiec Controllers except MP2300Siec Doc. No. AN.MPIEC.29

AN.MPIEC.29 December 9, 2019 Page 11 of 19

APPLICATION NOTE

Attribute Description
BaseIndexAttribute Indicates the base value of the array in MotionWorks IEC (0

based, 1 based, 2 based, etc.) Place above the array definition in
the struct as follows:
[BaseIndexAttribute(1)]
Public double[] myArray = new double[6];

Title: Communicating with the MPiec Controller using PLCi

Product(s): All MPiec Controllers except MP2300Siec Doc. No. AN.MPIEC.29

AN.MPIEC.29 December 9, 2019 Page 12 of 19

APPLICATION NOTE

PLCiInterface DLL
To use PLCiInterface, add the phrase “using Yaskawa.PLCiInterface;” above the namespace of the C#
project.

PLCInterface: PLCIHandler Class
This is the base class for PLCiInterface used to connect/disconnect from the controller and read/write
variables.

Methods Description
Connect Connect to an MPiec Controller having the IP address passed.
DisconnectDispose Disconnects from the MPiec controller and destroys the PLCi

object.
ReadVariableValue Reads a variable value from the MPiec controller based on the

variable name passed.
ReadVariableValues Same as ReadVariableValue except it supports multiple

variables. Pass either the name of a subscription or an IList of
variable names.

Subscribe Subscribes a list of variables to an arbitrary subscription name
for future reference.

Title: Communicating with the MPiec Controller using PLCi

Product(s): All MPiec Controllers except MP2300Siec Doc. No. AN.MPIEC.29

AN.MPIEC.29 December 9, 2019 Page 13 of 19

APPLICATION NOTE

UnSubscribe Removes subscription.
WriteVariableValue Writes to a pre-existing variable on the controller based on the

variable name and value passed to it.
WriteVariableValues Same as WriteVariableValue except it works for multiple

variables. Must be passed an IList of variable names and a
second IList containing corresponding variable values.

PLCiInterface : StructureConverter Class
The StructureConverter class is designed for use when more complex datatypes are required.

This class handles custom structures so that the data can be used by PLCi methods.

Methods Description
GenerateVariables Pass the structure to be broken down into a “list<string>”

containing all variable names.
Parent is supplied as ‘@GlobalVariables.MyMPiecStruct’
It is necessary to execute this only once per variable group.

GenerateVariableValues Sets the values of an entire structure. Makes a list of values that
correspond with the list of variable names created by
GenerateVariables. This doesn’t write data to the controller, it
just generates the list which can then be given to the PLCi
handler.

Title: Communicating with the MPiec Controller using PLCi

Product(s): All MPiec Controllers except MP2300Siec Doc. No. AN.MPIEC.29

AN.MPIEC.29 December 9, 2019 Page 14 of 19

APPLICATION NOTE

PopulateStructValues Copies a list of values into a structure.

Example – Adding PLCiInterface to a C# Project

1) Locate the PLCiInterface DLL and add it to the project. Add PLCiDotNet.DLL if using File

or PLC control services.

Title: Communicating with the MPiec Controller using PLCi

Product(s): All MPiec Controllers except MP2300Siec Doc. No. AN.MPIEC.29

AN.MPIEC.29 December 9, 2019 Page 15 of 19

APPLICATION NOTE

2) Add the Reference(s) above the namespace.
using Yaskawa.PLCiInterface;
using PhoenixContact.PLCiDotNet; (if using File or PLC control services)

3) Add the class variables inside the class.
The example below shows demonstrates a connection to an MPiec for the variables listed in
varList_ and “MachineStruct,” a user defined datatype. The MachineStruct type must be defined
elsewhere in the C# project. Important: The C# definition must have the same variable names
(case sensitive). For information on the datatype naming differences between Visual Studio and
MotionWorks IEC, see “DataType Naming Convention” on page 17.

private PLCiHandler handler_ = new PLCiHandler();
private List<string> varList_ = new List<string>(); // holds names of connected vars
private string subscriptionName_ = "MyPLCVariables"; // arbitrary subscription label

private const string machineSub_ = "@GlobalVariables.MyMachine";
private MachineStruct machineData_ = new MachineStruct();

private List<string> machineVarList_ = new List<string>();

4) Add a method to connect to the MPiec Controller and prepare to read and write data.
private void ConnectVariables()
{

// clear out any previous connections
handler_.DisconnectDispose();

handler_.Connect(IPAddress);

varList_.Add("@GlobalVariables.PLC_SYS_TICK_CNT");
varList_.Add("@GlobalVariables.PLC_TICKS_PER_SEC");
varList_.Add("@GlobalVariables.BoolToRead");
varList_.Add("@GlobalVariables.ValueToRead");

 // connect variables in varList_ with matching controller variables

handler_.Subscribe(subscriptionName_, varList_);

// connect variables in MachineStruct to matching controller variables
machineVarList_ =
(MachineStruct)StructureConverter.GenerateVariables(machineData_, machineSub_);

handler_.Subscribe(machineSub_, machineVarList_);

}

Title: Communicating with the MPiec Controller using PLCi

Product(s): All MPiec Controllers except MP2300Siec Doc. No. AN.MPIEC.29

AN.MPIEC.29 December 9, 2019 Page 16 of 19

APPLICATION NOTE

5) Reading a variable.
IList<object> variables = handler_.ReadVariableValues(subscriptionName_);

6) Reading a User Defined Type.
IList<object> structValues = handler_.ReadVariableValues(machineSub_);

machineData_ = (MachineStruct)StructureConverter.PopulateStructValues(machineData_,
machineSub_, machineVarList_, structValues);

7) Writing a variable.
handler_.WriteVariableValue("@GlobalVariables.BoolToWrite", false);
handler_.WriteVariableValue("@GlobalVariables.ValueToWrite", (double)54.1);

8) Writing a User Defined Type.
IList<object> structValues = StructureConverter.GenerateVariableValues(machineData_);
handler_.WriteVariableValues(machineVarList_, structValues);

Title: Communicating with the MPiec Controller using PLCi

Product(s): All MPiec Controllers except MP2300Siec Doc. No. AN.MPIEC.29

AN.MPIEC.29 December 9, 2019 Page 17 of 19

APPLICATION NOTE

DataType Naming Convention between MotionWorks IEC and Visual Studio
The naming of data types in MotionWorks IEC varies slightly from the corresponding types in
Visual Studio. For convenience, this table shows elementary datatypes in MotionWorks IEC
and their corresponding datatypes in Visual Studio.

MotionWorks IEC Visual Studio
BOOL bool
BYTE byte
USINT byte
LREAL double
REAL float
DINT int
SINT sbyte
INT short
DWORD uint
TIME uint
UDINT uint
UINT ushort
WORD ushort

Title: Communicating with the MPiec Controller using PLCi

Product(s): All MPiec Controllers except MP2300Siec Doc. No. AN.MPIEC.29

AN.MPIEC.29 December 9, 2019 Page 18 of 19

APPLICATION NOTE

Frequently Asked Questions

Q1) Is there a license required?
A1) The DLLs are free software, however there is a license agreement which must be
accepted as part of the installation process.

Q2) Can you import or export variables?
A2) Not at this time. Variables must be added manually to Visual Studio. See the
VariableListRO() in the example project.

Q3) Why does the connection timeout?
A3) If the connection is inactive for more than two minutes, the connection will time out and the
PLCi object must be reconnected. To avoid this, poll the controller at an interval of two
minutes or less. This can be accomplished by using a timer thread and then interacting with
the Mpiec through PLCi when the timer finishes (e.g. read current variables from PLC, check
current PLC state, etc.). After communicating with the PLC, restart the timer so that the MPiec
will be polled at a consistent interval

Q4) Does PLCi require Modbus communication?
A4) No, PLCi is a proprietary protocol native to the MPiec Controller and communicates
directly with the controllers operating system.

Q5) Does PLCi require any special function blocks or programming on the MPiec
Controller, such as the ones described in the YDeviceComm firmware library?
A5) No.

Q6) Is it possible to write all the files necessary to commission an MPiec controller?
A6) Yes, the configuration XML files and the PLC Image can be written, provided that the
folder structure is already established. This will be an issue for creating the XML files in the
‘Startup’ folder, which does not exist at factory default conditions. There is another way to
transfer the ‘Archive.ZIP’ file to the controller, which will self extract and setup a proper image.
PLCi file manipulation is better suited for configuration changes, requiring modification to
existing files.

Title: Communicating with the MPiec Controller using PLCi

Product(s): All MPiec Controllers except MP2300Siec Doc. No. AN.MPIEC.29

AN.MPIEC.29 December 9, 2019 Page 19 of 19

APPLICATION NOTE

Q7) When passing structure data (UDT) via PLCi, is it required that the structure
definitions match exactly?

A7) No. Each sub element of a User Defined Type must exist on the MPiec, and the C#
definition must match the case, but if additional elements are added to the User Defined Type
in the MPiec project, that will not cause a problem for communication.

Q8) Can PLCi be used when developing plug-ins for Yaskawa Compass?
A8) Compass uses PLCi, and provides an additional layer of connectivity functions available to
plug-ins developed for use with it. See document AN.MPiec.06 – Compass Configuration &
Customization Guide.

