

Surface Winders are used to roll up material such as wire, paper, film, metals and textiles. The surface winding method applies the driving power to a fixed diameter roll or rolls, on which the winding roll rests. Thus winding power applied to the surface of the spool or roll being wound. For a surface winder, the surface speed of the winding roll is constant for a given line speed. The rotational speed (RPM) of the roll decreases with roll build up. The wind tension and speed remains constant, and so the load characteristic of this application is constant torque.

Winders have different names in each industry.

Industry	Winder Name	Roll Name
Paper, Textile, Film	Winder	Roll
Textile	Beamer	Beam
Wire	Takeup, Reeler	Reel
Wire	Spooler	Spool
Metal	Coiler	Coil

Surface Winders Drives are divided into groups based on control function. Torque Regulator, Speed Follower (TRSF) 70 % of applications Tension Trim 10 % of applications Draw 15 % of applications Dancer Trim 5 % of applications

TRSF (*Torque Regulator, Speed follower*) provides indirect tension control for a sectional or surface winder drive by providing a trim adjustment to a precise speed follower control. Regulating motor current and voltage provides tension control. Under normal operating conditions drive torque (motor current) is controlled, however speed follower control without torque trim is also provided for setup operation or as a maximum speed limit in the event of a web break.

Draw control of the Surface winder is achieved by applying a percentage of speed offset to the speed reference that is sent from the master section. The line speed (Ft/Min) = Speed reference * (1 + Draw %).

Tension Trim in the Surface winder controls the tension of the material used, with tension feedback from a load cell upstream of the winder. Tension is measured and controlled by transducer (load cells) directly actuated by the web. The regulator will automatically adjust the motor speed to compensate for change in tension of the force transducers.

Dancer Trim indirectly provides tension control for a surface winder drive by providing a trim adjustment to a precise speed follower control. Position of a dancer roll is measured and controlled to maintain the dancer roll in a relatively fixed position; web tension is established by the weight of, or a force imposed on, the dancer mechanism. Under normal operating conditions, speed is adjusted to maintain the dancer at the midpoint of its allowable range, however, speed follower control without position trim is also provided for setup operation or as a maximum speed limit in the event of a web break

Sizing Example

In this example calculation, the horsepower rating of the surface winder is 17.45 HP plus the estimated 10 % friction loss of 1.74 HP. The web horsepower is the same as the winding horsepower in this type of configuration. This is due the constant diameter of the surface winder roll.

There are several different ways to calculate Web horsepower. It can be done be either using the torque calculations (Method 1) by inserting the RPM of the driven roll or tension (Method 2) using line speed.

Note: The acceleration and deceleration HP was not taken into consideration. Please call for assistance in the calculations.

Customer Data

Company Name	End user Distributor OEM			
Contact Name #1	Contact Name #1 e-mail			
Contact Name #2	Contact Name #2 e-mail			
Address	City			
State	Zip			
Phone	Fax			

Machine Data

Type of material (paper, Textile, Plastic Film, Metals and Foils)_

Machine Design speed	(Feet/ Minute ¹)
Machine Design Max roll Diameter	inches
Web Width Incl	hes
Machine Design Tension	PLI
Roll inertia	LB*FT ²

Machine Design Core Diameters ______ inches Machine Design Max roll width ______ inches Acceleration time ____ Sec deceleration time ___Sec Surface roll Diameter ______ inches

HP Sizing

\bigcirc	Roll RPM
2	Total tension
3	Total Torque
(4)	Web HP
(5)	Total HP

Winding HP

Roll RPM = $\frac{\text{Line Speed (Feet/Min)}}{\pi * \text{Diameter Surface roll}}$ Total tension = PLI * Web width Torque = Total tension * radius Web HP = $\frac{\text{Torque * RPM}}{\pi \pi 225}$

 $\frac{\text{Web HP} = \frac{5250}{5250}}{\text{Total HP} = \text{Web HP} + \text{Losses}} \qquad \text{Losses} = 10 \% *$

Drive Data

	Model #	
New Application	Retrofit	
230VAC	460VAC	□ 575VAC
AC drive	DC drive	Eddy Current
	 New Application 230VAC AC drive 	Model # New Application Retrofit 230VAC 460VAC AC drive DC drive

Motor Data

Existing motor Manufactur	e		Model #_			
New motor required	Yes	🗌 No				
Existing motor full load rat	ings:				_AMPS	
					_Volt	
					_RPM (850,	1150, 1750)
Conduit Box location (if me	otor is to be repl	laced)	F 1	F 2	F 3	or 🗌 NA
Existing Blower Motor.				_Voltage, _	Amps	s or 🗌 NA
Existing Encoder Manufact	ure		·			NA
Existing Encoder	Digital	Analog AC	Analog	DC		
Existing Encoder Manufact	urer		🗌 NA			
Resolution Existing Encode	er (PPR)		or Volts/RF	РМ		
Encoder Pickup	Optical	Magnetic pick	tup			
Existing Gear Box						
Gear Box Ratio						
Existing Gear Box Manufac	cture		Model #			
New Gear Box required	Yes	🗌 No				
Existing Gear Box ratings:					_Gear Box Ra	ıtio
					_Frame Size	
					_C Face	
Drive Enclosure in	formation					
Ambient Temperature in co	ontrol room	°F	or	°C		
Existing Drive Enclosure	NEMA 1	NEMA 12	NEMA	4X [] Air condition	ning
New Enclosure Spec	NEMA 1		NEMA	4X [] Air condition	ning

¹ Ft/minute Max RPM = π * Core Diameter (Ft)

Existing Power Dist	tribution (Required	if Yaskawa is p	rovi	iding a drive syste	m)
Isolation Transformer	r KVA Prima	ry Voltage	_ AC	Secondary volta	ge AC
Line Reactors Impeda	ance(%)	Load Reactors	s Imp	edance	(%)
Dynamic Braking Re	sistor: Duty Cycle i.e. 3%	, 5%	_%	Resistance	Ohms
Dynamic Resistor Por	wer rating	Watts			
Drive Communicat	ion Requirements				
Modbus Plus	Modbus Other	Device Net		Profibus	Arcnet LAN
Drive Input Req	uirements				
Start	Stop	Forward		Reverse	Run
🗌 Jog	Taper on	Preset Speed1		Preset Speed 2	
Other					
Drive Output Re	quirements				
Drive alarm fault	Drive severe fault	Run		Zero speed	At speed
	Encoder feedback p	ass through (PGX c	card)		
Other					
Analog Input					
Speed reference	0-10VDC	4-20ma		Other	
Analog Output					
Drive Speed (FPM)	Bus Voltage	Other			
Special Types of	Control				
Drive system start	Drive system stop	Regenerative t	to fas	t stop - full current lim	it or ramped
DC Bus Over Voltage	e Suppression (Used to pr	event overvoltage t	rippi	ng from an unbalanced	load)
In Window, or OK to	o feed product.	Counter for #	ŧ of p	arts produced	