Influence of PWM Inverters on Bearing Currents

Mahesh Swamy

Yaskawa Electric America

February 2009

Introduction

- •PWM Inverter Topology
- •Common Mode Voltage and Shaft Voltage
- •Factors Affecting Shaft Voltage and Bearing Current
- •Study of Bearing Insulation Characteristics When Subjected to Externally Injected Signal
- Techniques to Reduce Bearing Current Issues Caused by PWM Inverters

1. 2-Level PWM Inverter Topology

Table 1. Relation between switching states and output voltage

	Q _{u1}	Q _{u2}	V _u	
Switching State	ON	OFF	+E/2	
	OFF	ON	-E/2	
🜠 YASKAWA			Page. 3	

1. Common Mode Voltage in 2-Level Inverters

-E/6

-E/2

YASKAWA

 Table 1. Relation between switching states and output voltage

	Q _{u1}	Q _{u2}	Q _{v1}	Q _{v2}	Q _{w1}	Q_{w2}	V _{com}
Switching State	OFF	ON	OFF	ON	OFF	ON	-E/2
	ON	OFF	OFF	ON	OFF	ON	-E/6
	ON	OFF	ON	OFF	OFF	ON	+E/6
	ON	OFF	ON	OFF	ON	OFF	+E/2
	OFF	ON	ON	OFF	ON	OFF	+E/6
	OFF	ON	OFF	ON	ON	OFF	-E/6
	OFF	ON	OFF	ON	OFF	ON	-E/2
	E/2						
		T/12	T/4	T/2	3T/4	Т	

► time

Page. 4

2. Test Setup

- •Test motor driven by another motor
- •Waveforms applied from Function Generator to study bearing breakdown phenomenon

3. Parasitic Model for Bearing Test

Electrical representation of parasitic capacitances in a motor

Test 1. Time-Period (Frequency) vs. Shaft voltage (V_{SH}) (Symmetric Rectangular Waveforms of Different Frequencies)

- At higher frequency, breakdown occurs in shorter time for a given shaft voltage. Breakdown voltage is also higher at higher frequency
- •At low frequency (180Hz), bearing insulation breaks down at lower shaft voltage
- though it takes longer time to breakdown

Sample Waveforms for Test 1

Ý YASKAWA

Sample Waveforms for Test 1 – Contd.

Time period= 0.1ms Breakdown occurs at 3.5 Vp-p

Time period= 0.033ms No Breakdown occurs at 3.5 Vp-p

💅 YASKAWA

Test 2. Time-to-breakdown (t_{BR}) vs. Shaft voltage (V_{SH}) (180Hz, Asymmetric Rectangular Waveform)

• At low frequency, duration of T_1 does not significantly influence the shaft breakdown voltage.

• However, influence of Asymmetry is not pronounced.

Sample Waveforms for Test 2

180Hz, T₁=1.4mS t_{BR} = 1.24ms at V_{SH}=+/-2.75V

Sample Waveforms for Test 2 – Contd.

180Hz, T₁=1.4mS t_{BR} = 4.8μs at V_{SH}=+/-3.75V

180Hz, T_1 =0.25mS t_{BR} = 2.15 μ s at V_{SH}=+/- 4V

YASKAWA

Test 3. Bearing insulation break down versus dv/dt of shaft voltage

• Bearing film insulation breakdown phenomenon is observed to be independent of the dv/dt of the applied voltage.

- Low shaft voltage, even with high dv/dt, does not cause the bearing film insulation to breakdown.
- High shaft voltage, even with low dv/dt, causes the bearing film insulation to breakdown easily.

• When the dv/dt of the externally injected square voltage is changed from 4ns to 400ns or greater, the charging current into the bearing does not reduce by the same factor, as does the dv/dt. This shows that the charging bearing current is also a function of the dc component of the applied voltage.

Tests: Bearing insulation break down versus dv/dt of shaft voltage

YASKAWA

Tests: Bearing insulation break down versus dv/dt of shaft voltage

(e) Breakdown at 3V/4ns, Ibrg(max)= 212.5mA,

IS(max) = 56.25mA

(f) Breakdown at 3V/404ns, Ibrg(max)= 170mA, ISmax)= 58mA

Test 4. Time-to-breakdown (t_{BR}) vs. Shaft voltage (V_{SH}) (2kHz Rectangular Waveform Modulated with 180Hz Signal)

- •The modulated waveform emulates shaft voltage associated with 2-Phase modulation.
- •No orderly effect of modulation to breakdown time was observed.

Sample Waveforms for Test 4

Sample Waveforms for Test 4

YASKAWA

Effect of Temperature

J-Type Thermocouple used

External signal was injected at shaft

Motor was heated using DC injection

Breakdown voltage as a function of Temperature was studied

Sample Waveforms for Temperature Test

Temperature = 25.6 deg. C

Breakdown Voltage= 3V

Temperature = 61 deg. C Breakdown Voltage= 1.42V

Breakdown Voltage Versus Temperature

4. Key Observations

• At higher frequency, breakdown occurs in shorter time; At low frequency (180Hz) break down occurs at lower shaft voltage.

•Asymmetric Waveform with shorter negative period shows lower breakdown voltage.

However, influence of asymmetry is not pronounced.

•dv/dt of waveform does NOT directly influence the breakdown of bearing phenomenon – it may be responsible to increase the temperature of the bearing and hence accelerate the breakdown

•Modulated waveform showed no definite correlation with breakdown time.

•Higher temperature reduces shaft breakdown voltage significantly.

5. Mitigation Techniques

- Shaft Brush.
- •Faraday Shield.
- •Common Mode Filters
- •3-Level Inverters.

6. Shaft Brush

BRUSH-HOLDER KIT FOR GROUNDING OF ELECTRIC MOTORS BEARINGS

(APPLIED WITH FREQUENCY INVERTER)

•Simple and effective

•Needs maintenance, typically after 20,000hrs of operation

•Metallic dust in air is not suitable for clean room applications

7. Faraday Shield

- •Quite effective
- •Needs to be inserted during manufacturing of motor

•Expensive and causes low frequency power loss

8. Common Mode Voltage Cancellation Circuit

8a. Test Results

I(pk) Common mode current: 8A V(max) Common mode Voltage (wrt dc bus mid-point): 345V I(pk) Common mode current: 0.7A

V(max) Common mode Voltage (wrt dc bus mid-point): 75V

8b. Photo of Common Mode Filter

9. NPC Three-Level Inverter

- Common Issues of Voltage Source PWM Inverters:
 - Surge voltages at motor terminals.
 - Leakage current
 - Shaft voltage and bearing current (possible bearing failures)

Three-level topology addresses the above issues in a cost effective manner.

YASKAWA

9b. Switching States and Output Voltage

Qu1	Qu2	Qu3	Qu4	Vu
ON	ON	OFF	OFF	+E/2
OFF	OFF	ON	ON	-E/2
OFF	ON	ON	OFF	0

9c. Output Voltage Waveforms

YASKAWA

10. Test Results

(460V, 7.5 kW motor drive system)

Two-Level Inverter

Three-Level Inverter

10a. Measured Common-Mode Voltages

Two-Level Inverter

Three-Level Inverter

10c. Voltage Overshoot at Motor Terminals

Two-Level Inverter

Three-Level Inverter

10d. Measured Surge Voltage at Motor Terminals

(460V, 7.5 kW with 100m cable)

Two-Level Inverter Three-Level Inverter

💅 YASKAWA

10e. Leakage Current (460V, 7.5 kW with 100m cable)

Two-Level Inverter Three-Level Inverter

10f. Shaft Voltage and Bearing Current

Two-Level Inverter Three-Level Inverter

11. Bearing Life Test

Bearing life expectancy improves significantly

💅 YASKAWA

 Bearing insulation characteristics was studied – Level of shaft voltage influences bearing current significantly; Temperature is also very crucial

•Common Mode Filter is helpful when used with 2-level drives to reduce shaft voltage and bearing currents

•3-Level NPC Inverter is an important tool in mitigating bearing failure – Results in space savings and makes it adaptable to clean room applications; Reduces Surge Voltage as well.