
# YASKAWA

Low Harmonic Regenerative Drive for Industrial Applications

# U1000 Industrial MATRIX Drive **Technical Manual**

Type: CIMR-UU

Models: 200 V Class: 7.5 to 75 kW (10 to 100 HP ND) 400 V Class: 5.5 to 580 kW (7.5 to 775 HP ND)



Receiving

**Mechanical Installation** 

**Electrical Installation** 

Start-Up Programming & Operation

**Parameter Details** 

Troubleshooting

Periodic Inspection & Maintenance

Peripheral Devices & Options

Specifications

**Parameter List** 

MEMOBUS/Modbus

Communications

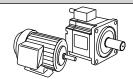
**Standards Compliance** 

This Page Intentionally Blank

#### Quick Reference

#### **Easily Set Parameters for Specific Applications**

Preset parameter defaults are available for setting up applications. *Refer to Application Selection on page 160*.




#### Run a Motor One Frame Larger

This drive can operate a motor one frame size larger when running variable torque loads such as fans and pumps. Refer to C6-01: Drive Duty Mode Selection on page 239.

#### **Drive a Synchronous PM Motor**

The drive can operate synchronous PM motors. Refer to Subchart A-3: Operation with Permanent Magnet Motors on page 157.



#### **Perform Auto-Tuning**

Automatic tuning sets motor parameters. Refer to Auto-Tuning on page 163

#### **Maintenance Check Using Drive Monitors**

Use drive monitors to check if fans, capacitors, or other components require maintenance. *Refer to Performance Life Monitors Maintenance Monitors on page 433*.

#### **Fault Display and Troubleshooting**

Refer to Drive Alarms, Faults, and Errors on page 372 and Refer to Troubleshooting without Fault Display on page 418.

#### **Standards Compliance**

Refer to European Standards on page 666 and Refer to UL and CSA Standards on page 678.





This Page Intentionally Blank

# **Table of Contents**

|    | QU  | ICK REFERENCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                       |
|----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| i. | PRI | EFACE & GENERAL SAFETY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17                                      |
|    | i.1 | Preface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18                                      |
|    |     | Applicable Documentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |
|    |     | Symbols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |
|    |     | Terms and Abbreviations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |
|    |     | Trademarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |
|    | i.2 | General Safety                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |
|    |     | Supplemental Safety Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|    |     | Safety MessagesGeneral Application Precautions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |
|    |     | Motor Application Precautions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |
|    |     | Drive Label Warning Example                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |
|    |     | Warranty Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29                                      |
| 1. | RE  | CEIVING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31                                      |
|    | 1.1 | Section Safety                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32                                      |
|    | 1.2 | General Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |
|    |     | U1000 Model Selection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |
|    |     | Control Mode Selection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |
|    | 1.3 | Model Number and Nameplate Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36                                      |
|    |     | Nameplate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 36                                      |
|    |     | Model Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 39                                      |
|    | 1.4 | Drive Models and Enclosure Types                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 41                                      |
|    |     | Drive Models 2□0028 to 2□0248 and 4□0011 to 4□0930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |
|    |     | Filter Modules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |
|    | 1.5 | Component Names                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|    |     | IP00/Open Type Enclosure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |
|    |     | IP20/UL Type 1 Enclosure Filter Modules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |
|    |     | Front Views                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • • • • • • • • • • • • • • • • • • • • |
| 2. | ME  | CHANICAL INSTALLATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 57                                      |
|    | 2.1 | Section Safety                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |
|    | 2.1 | Mechanical Installation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |
|    | ۷.۷ | Installation Environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |
|    |     | III Staliation Eliviorii i Eli | 00                                      |

|    |      | Installation Orientation and Spacing                                       |     |
|----|------|----------------------------------------------------------------------------|-----|
|    |      | Instructions on Installation Using the Eye Bolts and Hanging Brackets      |     |
|    |      | Digital Operator Remote Usage                                              |     |
|    |      | Exterior and Mounting Dimensions                                           |     |
| 3. | ELE  | ECTRICAL INSTALLATION                                                      | 77  |
|    | 3.1  | Section Safety                                                             | 78  |
|    | 3.2  | Standard Connection Diagram                                                | 81  |
|    | 3.3  | Main Circuit Connection Diagram                                            | 86  |
|    |      | Drive Models 2□0028 to 2□0248 and 4□0011 to 4□0590                         | 86  |
|    |      | Drive Models 4□0720 to 4□0930 and Filter Modules                           | 86  |
|    | 3.4  | Terminal Block Configuration                                               | 87  |
|    |      | Drive Models 2□0028 to 2□0248 and 4□0011 to 4□0930                         | 87  |
|    |      | Filter Module                                                              | 91  |
|    | 3.5  | Terminal Cover                                                             | 92  |
|    |      | Models 2□0028 to 2□0130 and 4□0011 to 4□0124                               | 92  |
|    |      | Models 2□0154 to 2□0248 and 4□0156 to 4□0930                               | 93  |
|    | 3.6  | Digital Operator and Front Cover                                           | 95  |
|    |      | Removing/Reattaching the Digital Operator                                  | 95  |
|    |      | Removing/Reattaching the Front Cover                                       | 95  |
|    | 3.7  | Top Protective Cover                                                       | 98  |
|    |      | Attaching the Top Protective Cover                                         |     |
|    |      | Removing the Top Protective Cover                                          |     |
|    | 3.8  | Main Circuit Wiring                                                        | 99  |
|    |      | Main Circuit Terminal Functions                                            |     |
|    |      | Protecting Main Circuit Terminals                                          |     |
|    |      | Main Circuit Wire Gauges and Tightening Torque                             |     |
|    |      | Precautions on Reactive Current When Waiting to Run                        |     |
|    | 3.9  | Control Circuit Wiring                                                     |     |
|    | 3.9  | •                                                                          |     |
|    |      | Control Circuit Connection DiagramControl Circuit Terminal Block Functions |     |
|    |      | Terminal Configuration                                                     |     |
|    |      | Wiring the Control Circuit Terminal                                        | 114 |
|    |      | Module Communications Connector                                            | 116 |
|    |      | Switches and Jumpers on the Terminal Board                                 | 118 |
|    | 3.10 | Control I/O Connections                                                    |     |
|    |      | Sinking/Sourcing Mode for Digital Inputs                                   |     |
|    |      | Sinking/Sourcing Mode Selection for Safe Disable Inputs                    |     |
|    |      | Using the Pulse Train Output                                               |     |
|    |      | Terminal A2 Input Signal Selection  Terminal A3 Analog/PTC Input Selection |     |
|    |      | Terminal AM/FM Signal Selection                                            |     |
|    |      | MEMOBUS/Modbus Termination                                                 |     |
|    |      | Terminal DM+ and DM- Output Signal Selection                               |     |
|    | 3.11 | Connect to a PC                                                            | 123 |
|    |      | EMC Filter                                                                 |     |
|    |      | Enable the Internal EMC Filter                                             |     |
|    | 3 13 | 24 V Control Power Supply Unit Wiring                                      |     |

|    |             | 24 V Control Power Supply Unit                                            | 129 |
|----|-------------|---------------------------------------------------------------------------|-----|
|    |             | 24 V Control Power Supply Unit Location                                   | 129 |
|    |             | Power Supply Terminal Block TB1 Wiring                                    |     |
|    |             | 24 V Control Power Supply Unit Specifications                             |     |
|    | 3.14        | External Interlock                                                        |     |
|    |             | Operation Ready                                                           |     |
|    | 3.15        | Wiring Checklist                                                          | 136 |
| 4. | STA         | ART-UP PROGRAMMING & OPERATION                                            | 139 |
|    | 4.1         | Section Safety                                                            | 140 |
|    | 4.2         | Using the Digital Operator                                                | 141 |
|    |             | Digital Operator Keys and Displays                                        |     |
|    |             | LCD Display                                                               | 142 |
|    |             | ALARM (ALM) LED Displays                                                  |     |
|    |             | LO/RE LED and RUN LED Indications                                         |     |
|    |             | Menu Structure for Digital Operator                                       |     |
|    | 4.3         | The Drive and Programming Modes                                           |     |
|    |             | Navigating the Drive and Programming Modes                                |     |
|    |             | Changing Parameter Settings or Values                                     |     |
|    |             | Verifying Parameter Changes: Verify Menu                                  |     |
|    |             | Simplified Setup Using the Setup Group Switching Between LOCAL and REMOTE |     |
|    | 11          | Start-Up Flowcharts                                                       |     |
|    | 4.4         | Flowchart A: Basic Start-Up and Motor Tuning                              |     |
|    |             | Subchart A-1: Simple Motor Setup Using V/f Control                        |     |
|    |             | Subchart A-2: High Performance Operation Using OLV or CLV                 |     |
|    |             | Subchart A-3: Operation with Permanent Magnet Motors                      |     |
|    | 4.5         | Powering Up the Drive                                                     |     |
|    |             | Powering Up the Drive and Operation Status Display                        | 159 |
|    | 4.6         | Application Selection                                                     | 160 |
|    |             | Setting 1: Water Supply Pump Application                                  | 160 |
|    |             | Setting 2: Conveyor Application                                           | 161 |
|    |             | Setting 3: Exhaust Fan Application                                        |     |
|    |             | Setting 4: HVAC Fan Application                                           |     |
|    |             | Setting 5: Air Compressor Application                                     |     |
|    | 4.7         | Auto-Tuning                                                               |     |
|    |             | Types of Auto-Tuning                                                      |     |
|    |             | Before Auto-Tuning the Drive                                              |     |
|    |             | Auto-Tuning Interruption and Fault Codes Auto-Tuning Operation Example    |     |
|    |             | T1: Parameter Settings during Induction Motor Auto-Tuning                 |     |
|    |             | Parameter Settings during PM Motor Auto-Tuning: T2                        |     |
|    |             | Parameter Settings during Inertia and Speed Control Loop Auto-Tuning: T3  |     |
|    | 4.8         | No-Load Operation Test Run                                                |     |
|    |             | No-Load Operation Test Run                                                | 177 |
|    | 4.9         | Test Run with Load Connected                                              |     |
|    |             | Test Run with the Load Connected                                          |     |
|    | <b>4</b> 10 | Verifying Parameter Settings and Backing Up Changes                       |     |
|    |             | Backing Up Parameter Values: o2-03                                        |     |
|    |             |                                                                           |     |

|    |             | Parameter Access Level: A1-01                       | 180 |
|----|-------------|-----------------------------------------------------|-----|
|    |             | Password Settings: A1-04, A1-05                     |     |
|    |             | Copy Function                                       |     |
|    | 4.11        | Test Run Checklist                                  | 182 |
| 5. | PAF         | RAMETER DETAILS                                     | 185 |
|    | 5.1         | A: Initialization                                   | 186 |
|    | •           | A1: Initialization                                  |     |
|    |             | A2: User Parameters                                 |     |
|    | 5.2         | b: Application                                      |     |
|    | V. <u> </u> | b1: Operation Mode Selection                        |     |
|    |             | b2: DC Injection Braking                            |     |
|    |             | b3: Speed Search                                    |     |
|    |             | b4: Timer Function                                  |     |
|    |             | b5: PID Control                                     |     |
|    |             | b6: Dwell Function                                  |     |
|    |             | b7: Droop Control (CLV, CLV/PM)                     |     |
|    |             | b8: Energy Saving                                   |     |
|    |             | b9: Zero Servo                                      |     |
|    | 5.3         | C: Tuning                                           |     |
|    |             | C1: Acceleration and Deceleration Times             |     |
|    |             | C2: S-Curve Characteristics                         |     |
|    |             | C3: Slip Compensation                               |     |
|    |             | C4: Torque Compensation                             |     |
|    |             | C6: Carrier Frequency                               |     |
|    |             | C7: Voltage Adjustment                              |     |
|    | 5.4         | d: Reference Settings                               |     |
|    |             | d1: Frequency Reference                             |     |
|    |             | d2: Frequency Upper/Lower Limits                    |     |
|    |             | d3: Jump Frequency                                  | 246 |
|    |             | d4: Frequency Reference Hold and Up/Down 2 Function |     |
|    |             | d5: Torque Control                                  |     |
|    |             | d6: Field Weakening and Field Forcing               |     |
|    |             | d7: Offset Frequency                                |     |
|    | 5.5         | E: Motor Parameters                                 |     |
|    |             | E1: V/f Pattern for Motor 1                         |     |
|    |             | E2: Motor 1 Parameters                              |     |
|    |             | E3: V/f Pattern for Motor 2 E4: Motor 2 Parameters  |     |
|    |             | E5: PM Motor Settings                               |     |
|    | 5.6         | F: Option Settings                                  |     |
|    | 5.0         | F1: PG Speed Control Card Settings                  |     |
|    |             | F2: Analog Input Card Settings                      |     |
|    |             | F3: Digital Input Card Settings                     |     |
|    |             | F4: Analog Monitor Card Settings                    |     |
|    |             | F5: Digital Output Card Settings                    |     |
|    |             | F6 and F7: Communication Option Card                |     |
|    |             | CC-Link Parameters                                  |     |
|    |             | MECHATROLINK Parameters                             | 279 |

| Section Safety                                                              | 364<br>366 |
|-----------------------------------------------------------------------------|------------|
| ROUBLESHOOTING                                                              |            |
| U9: Power Monitors                                                          |            |
| U8: DriveWorksEZ Monitors                                                   |            |
| U6: Operation Status Monitors                                               |            |
| U5: PID Monitors                                                            |            |
| U4: Maintenance Monitors                                                    |            |
| U3: Fault History                                                           |            |
| U2: Fault Trace                                                             |            |
| U1: Operation Status Monitors                                               |            |
| 1 U: Monitor Parameters                                                     |            |
| r: DriveWorksEZ Connection Parameters T: Motor Tuning                       |            |
| q: DriveWorksEZ Parameters                                                  |            |
| o4: Maintenance Monitor Settings                                            |            |
| o3: Copy Function                                                           |            |
| o2: Digital Operator Keypad Functions                                       |            |
| o1: Digital Operator Display Selection                                      |            |
| 0 o: Operator Related Settings                                              | 353        |
| n8: PM Motor Control Tuning                                                 |            |
| n6: Online Tuning                                                           |            |
| n5: Feed Forward Control                                                    |            |
| n2: Speed Feedback Detection Control (AFR) Tuningn3: Overexcitation Braking |            |
| n1: Hunting Prevention                                                      |            |
| n: Special Adjustments                                                      |            |
|                                                                             |            |
| L8: Drive ProtectionL9: Drive Protection 2                                  |            |
| L7: Torque Limit                                                            |            |
| L6: Torque Detection                                                        |            |
| L5: Fault Restart                                                           |            |
| L4: Speed Detection                                                         |            |
| L3: Stall Prevention                                                        |            |
| L2: Momentary Power Loss Ride-Thru                                          |            |
| L1: Motor Protection                                                        |            |
| H6: Pulse Train Input/Output                                                |            |
| H5: MEMOBUS/Modbus Serial Communication                                     |            |
| H4: Multi-Function Analog Outputs                                           |            |
| H3: Multi-Function Analog Inputs                                            |            |
| H2: Multi-Function Digital Outputs                                          |            |
| H1: Multi-Function Digital Inputs                                           |            |
| ' H: Terminal Functions                                                     | 284        |
| EtherNet/IP Parameters                                                      |            |
| PROFINET Parameters                                                         |            |
| DeviceNet Parameters  Modbus TCP/IP Parameters                              |            |
| CANopen Parameters                                                          |            |
| PROFIBUS-DP Parameters                                                      |            |
|                                                                             |            |

|      | Fine-Tuning V/f Control and V/f Control with PG                                                                                     | 366             |
|------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|      | Fine-Tuning Open Loop Vector Control                                                                                                | 367             |
|      | Fine-Tuning Closed Loop Vector Control                                                                                              |                 |
|      | Fine-Tuning Open Loop Vector Control for PM Motors                                                                                  |                 |
|      | Fine-Tuning Advanced Open Loop Vector Control for PM Motors                                                                         |                 |
|      | Fine-Tuning Closed Loop Vector Control for PM Motors                                                                                |                 |
|      | Parameters to Minimize Motor Hunting and Oscillation                                                                                |                 |
| 6.3  | Drive Alarms, Faults, and Errors                                                                                                    |                 |
|      | Types of Alarms, Faults, and Errors                                                                                                 |                 |
|      | Alarm and Error Displays                                                                                                            | 373             |
| 6.4  | Fault Detection                                                                                                                     | .377            |
|      | Fault Displays, Causes, and Possible Solutions                                                                                      | 377             |
| 6.5  | Alarm Detection                                                                                                                     | .394            |
|      | Alarm Codes, Causes, and Possible Solutions                                                                                         | 394             |
| 6.6  | Operator Programming Errors                                                                                                         | 403             |
|      | Operator Programming Error Codes, Causes, and Possible Solutions                                                                    |                 |
| 6.7  | Auto-Tuning Fault Detection                                                                                                         |                 |
| •    | Auto-Tuning Codes, Causes, and Possible Solutions                                                                                   |                 |
| 6.8  | Copy Function Related Displays                                                                                                      |                 |
| 0.0  | Tasks, Errors, and Troubleshooting                                                                                                  |                 |
| 6.0  |                                                                                                                                     |                 |
| 6.9  | Diagnosing and Resetting Faults                                                                                                     |                 |
|      | Fault Occurs Simultaneously with Power Loss                                                                                         |                 |
|      | Viewing Fault Trace Data After Fault                                                                                                |                 |
|      | Fault Reset Methods                                                                                                                 |                 |
| 6 10 | Troubleshooting without Fault Display                                                                                               |                 |
| 0.10 | Common Problems                                                                                                                     |                 |
|      | Cannot Change Parameter Settings                                                                                                    |                 |
|      | Motor Does Not Rotate Properly after Pressing RUN Button or after Entering External Run                                             | 710             |
|      | Command                                                                                                                             | 419             |
|      | Motor is Too Hot                                                                                                                    | 421             |
|      | Drive Does Not Allow Selection of the Desired Auto-Tuning Mode                                                                      | 421             |
|      | oPE02 Error Occurs When Lowering the Motor Rated Current Setting                                                                    |                 |
|      | Motor Stalls during Acceleration or Acceleration Time is Too Long                                                                   | 421             |
|      | Drive Frequency Reference Differs from the Controller Frequency Reference Command                                                   | 422             |
|      | Excessive Motor Oscillation and Erratic Rotation                                                                                    |                 |
|      | Noise From Drive or Motor Cables When the Drive is Powered On                                                                       |                 |
|      | Ground Fault Circuit Interrupter (GFCI) Trips During Run                                                                            |                 |
|      | Connected Machinery Vibrates When Motor Rotates                                                                                     |                 |
|      | PID Output Fault                                                                                                                    |                 |
|      | Insufficient Starting Torque                                                                                                        |                 |
|      | Motor Rotates after the Drive Output is Shut Off (Motor Rotates During DC Injection Braking)                                        |                 |
|      | Output Frequency is Not as High as Frequency Reference                                                                              |                 |
|      | Sound from Motor                                                                                                                    |                 |
|      | Unstable Motor Speed when Using PM                                                                                                  |                 |
|      | Motor Does Not Restart after Power Loss  The Safety Controller Does Not Recognize Safe Disable Monitor Output Signals (Terminals DM | <del>4</del> 23 |
|      | + and DM-)                                                                                                                          | 425             |
|      | -··· ··· <i>j</i> ·······························                                                                                   |                 |

|    |            | Troubleshooting if the PM Motor Speed is Unstable; when the Motor Starts after Momentary Po-<br>Loss Recovery; when Enabling External Speed Search Command 1 or 2; or when Speed Sea<br>Selection at Start is Enabled and Motor Starts | ırch |
|----|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 7. | PEF        | RIODIC INSPECTION & MAINTENANCE                                                                                                                                                                                                        | 427  |
|    | 7.1        | Section Safety                                                                                                                                                                                                                         | 428  |
|    | 7.2        | Inspection                                                                                                                                                                                                                             |      |
|    |            | Recommended Daily Inspection                                                                                                                                                                                                           | 430  |
|    |            | Recommended Periodic Inspection                                                                                                                                                                                                        |      |
|    |            | Storage Guidelines                                                                                                                                                                                                                     |      |
|    | 7.3        | Periodic Maintenance                                                                                                                                                                                                                   |      |
|    |            | Replacement Parts                                                                                                                                                                                                                      |      |
|    | 7.4        | Drive Cooling Fans                                                                                                                                                                                                                     |      |
|    |            | Number of Cooling Fans                                                                                                                                                                                                                 |      |
|    |            | Cooling Fan Component Names                                                                                                                                                                                                            |      |
|    |            | Drive Cooling Fan Replacement: Models 2□0154, 2□0192, 4□0156, and 4□0180                                                                                                                                                               |      |
|    |            | Drive Cooling Fan Replacement: Models 2□0248 and 4□0216 to 4□0414                                                                                                                                                                      | 445  |
|    |            | Installing the Cooling Fan                                                                                                                                                                                                             |      |
|    |            | Drive Cooling Fan Replacement: Models 4 0477 and 4 0590                                                                                                                                                                                |      |
|    |            | Drive Cooling Fan Replacement: Models 4□0720 to 4□0930                                                                                                                                                                                 |      |
|    | 7.5        | Drive Replacement                                                                                                                                                                                                                      |      |
|    | 7.0        | Serviceable Parts                                                                                                                                                                                                                      |      |
|    |            | Terminal Board                                                                                                                                                                                                                         |      |
|    |            | Replacing the Drive                                                                                                                                                                                                                    | 464  |
| 8. | PEF        | RIPHERAL DEVICES & OPTIONS                                                                                                                                                                                                             | 467  |
|    | 8.1        | Section Safety                                                                                                                                                                                                                         | 468  |
|    | 8.2        | Drive Options and Peripheral Devices                                                                                                                                                                                                   |      |
|    | 8.3        | Connecting Peripheral Devices                                                                                                                                                                                                          |      |
|    |            | Drive Models 2□0028 to 2□0248 and 4□0011 to 4□0590                                                                                                                                                                                     |      |
|    |            | Drive Models 4□0720 to 4□0930                                                                                                                                                                                                          |      |
|    | 8.4        | Option Installation                                                                                                                                                                                                                    | 474  |
|    |            | Prior to Installing the Option                                                                                                                                                                                                         |      |
|    |            | PG Option Installation Example                                                                                                                                                                                                         |      |
|    | 8.5        | Installing Peripheral Devices                                                                                                                                                                                                          |      |
|    |            | Installing a Molded Case Circuit Breaker (MCCB) or Ground Fault Circuit Interrupter (GFCI).                                                                                                                                            |      |
|    |            | Installing a Magnetic Contactor at the Power Supply Side  Connecting a Surge Absorber                                                                                                                                                  |      |
|    |            | Reducing Noise                                                                                                                                                                                                                         |      |
|    |            | Attachment for External Heatsink Mounting (IP00 Enclosure)                                                                                                                                                                             |      |
|    |            | Internal EMC Filter Model Installation                                                                                                                                                                                                 |      |
|    |            | Installing a Motor Thermal Overload (oL) Relay on the Drive Output                                                                                                                                                                     | 485  |
| Α. | SPE        | ECIFICATIONS                                                                                                                                                                                                                           | 487  |
|    | <b>A.1</b> | Heavy Duty and Normal Duty Ratings                                                                                                                                                                                                     | 488  |
|    |            | Power Ratings                                                                                                                                                                                                                          |      |
|    |            | Three-Phase 200 V Class Drive Models 200028 to 200081                                                                                                                                                                                  | 489  |

|    |            | Three-Phase 200 V Class Drive Models 2□0104 to 2□0248   | 490 |
|----|------------|---------------------------------------------------------|-----|
|    |            | Three-Phase 400 V Class Drive Models 4□0011 to 4□0077   | 491 |
|    |            | Three-Phase 400 V Class Drive Models 4□0096 to 4□0414   | 492 |
|    |            | Three-Phase 400 V Class Drive Models 4□0477 to 4□0930   | 493 |
|    | <b>A.3</b> | Drive Specifications                                    | 494 |
|    | <b>A.4</b> | Drive Watt Loss Data                                    | 496 |
|    |            | Drive Models 2□0028 to 2□0248                           |     |
|    |            | Drive Models 4□0011 to 4□0930                           |     |
|    |            | Filter Modules for Drive Models 4□0720 to 4□0930        |     |
|    | A.5        | Drive Derating Data                                     |     |
|    | 7 1.0      | Rated Current Depending on Carrier Frequency            |     |
|    |            | Carrier Frequency Derating                              |     |
|    |            | Temperature Derating                                    |     |
|    |            | Altitude Derating                                       |     |
| _  |            | <b>v</b>                                                |     |
| В. | PAH        | RAMETER LIST                                            | 501 |
|    | B.1        | Understanding Parameter Descriptions                    | 502 |
|    |            | Control Modes, Symbols, and Terms                       | 502 |
|    | <b>B.2</b> | Parameter Groups                                        | 503 |
|    | B.3        | A: Initialization Parameters                            | 504 |
|    |            | A1: Initialization                                      | 504 |
|    |            | A2: User Parameters                                     |     |
|    | <b>B.4</b> | b: Application                                          | 506 |
|    |            | b1: Operation Mode Selection                            |     |
|    |            | b2: DC Injection Braking                                |     |
|    |            | b3: Speed Search                                        |     |
|    |            | b4: Timer Function                                      |     |
|    |            | b5: PID Control                                         | 511 |
|    |            | b6: Dwell Function                                      |     |
|    |            | b7: Droop Control                                       |     |
|    |            | b8: Energy Saving                                       |     |
|    |            | b9: Zero Servo                                          |     |
|    | B.5        | C: Tuning                                               |     |
|    |            | C1: Acceleration and Deceleration Times                 |     |
|    |            | C2: S-Curve Characteristics                             |     |
|    |            | C3: Slip Compensation                                   |     |
|    |            | C4: Torque Compensation                                 |     |
|    |            | C5: Automatic Speed Regulator (ASR)                     |     |
|    |            | C6: Carrier Frequency                                   |     |
|    | D 6        | C7: Voltage Adjustment                                  |     |
|    | D.0        | d: Reference Settings                                   |     |
|    |            | d1: Frequency Referenced2: Frequency Upper/Lower Limits |     |
|    |            | d3: Jump Frequency                                      |     |
|    |            | d4: Frequency Reference Hold and Up/Down 2 Function     |     |
|    |            | d5: Torque Controld5:                                   |     |
|    |            | d6: Field Weakening and Field Forcing                   |     |
|    |            | d7: Offset Frequency                                    |     |
|    | B.7        | • •                                                     |     |
|    |            |                                                         |     |

|          | E1: V/f Pattern for Motor 1                                                               | 528 |
|----------|-------------------------------------------------------------------------------------------|-----|
|          | E2: Motor 1 Parameters                                                                    |     |
|          | E3: V/f Pattern for Motor 2                                                               |     |
|          | E4: Motor 2 Parameters                                                                    |     |
|          | E5: PM Motor Settings                                                                     |     |
| Вο       | F: Option Settings                                                                        |     |
| B.8      |                                                                                           |     |
|          | F1: PG Speed Control Card Settings (PG-B3, PG-X3, PG-RT3, PG-F3)                          |     |
|          | F2: Analog Input Card Settings (Al-A3)                                                    |     |
|          | F3: Digital Input Card Settings (DI-A3)                                                   |     |
|          | F4: Analog Monitor Card Settings (AO-A3)                                                  |     |
|          | F5: Digital Output Card Settings (DO-A3)                                                  |     |
|          | F6: Communication Option Card Settings (SI-C3, SI-ET3, SI-N3, SI-P3, SI-S3, SI-T3, SI-W3) |     |
|          | F7: Communication Option Card Settings (SI-EM3, SI-EN3, SI-EP3)                           |     |
| B.9      | H Parameters: Multi-Function Terminals                                                    |     |
|          | H1: Multi-Function Digital Inputs                                                         |     |
|          | H2: Multi-Function Digital Outputs                                                        |     |
|          | H3: Multi-Function Analog Inputs                                                          |     |
|          | H4: Analog Outputs                                                                        |     |
|          | H5: MEMOBUS/Modbus Serial Communication                                                   |     |
|          | H6: Pulse Train Input/Output                                                              |     |
| B.10     | L: Protection Function                                                                    | 562 |
|          | L1: Motor Protection                                                                      | 562 |
|          | L2: Momentary Power Loss Ride-Thru                                                        | 563 |
|          | L3: Stall Prevention                                                                      | 563 |
|          | L4: Speed Detection                                                                       | 565 |
|          | L5: Fault Restart                                                                         |     |
|          | L6: Torque Detection                                                                      |     |
|          | L7: Torque Limit                                                                          |     |
|          | L8: Drive Protection                                                                      |     |
|          | L9: Drive Protection 2                                                                    | 570 |
| B.11     | n: Special Adjustments                                                                    | 571 |
|          | n1: Hunting Prevention                                                                    | 571 |
|          | n2: Speed Feedback Detection Control (AFR) Tuning                                         | 571 |
|          | n3: Overexcitation Braking                                                                |     |
|          | n5: Feed Forward Control                                                                  | 572 |
|          | n6: Online Tuning                                                                         | 572 |
|          | n8: PM Motor Control Tuning                                                               | 573 |
| B.12     | 2 o: Operator-Related Settings                                                            | 577 |
|          | o1: Digital Operator Display Selection                                                    |     |
|          | o2: Digital Operator Keypad Functions                                                     |     |
|          | o3: Copy Function                                                                         |     |
|          | o4: Maintenance Monitor Settings                                                          |     |
| B 13     | B DriveWorksEZ Parameters                                                                 |     |
| <b>D</b> | q: DriveWorksEZ Parameters                                                                |     |
|          | r: DriveWorksEZ Connection Parameters                                                     |     |
| D 4 4    |                                                                                           |     |
| B.14     | T: Motor Tuning                                                                           |     |
|          | T1: Induction Motor Auto-Tuning                                                           |     |
|          | T2: PM Motor Auto-Tuning                                                                  |     |
|          | T3: ASR and Inertia Tuning                                                                |     |
| B.15     | 5 U: Monitors                                                                             | 586 |

|    |            | U1: Operation Status Monitors                              |     |
|----|------------|------------------------------------------------------------|-----|
|    |            | U2: Fault Trace                                            |     |
|    |            | U3: Fault HistoryU4: Maintenance Monitors                  |     |
|    |            | U5: PID Monitors                                           |     |
|    |            | U6: Operation Status Monitors                              |     |
|    |            | U8: DriveWorksEZ Monitors                                  |     |
|    |            | U9: Power Monitors                                         | 595 |
|    | B.16       | S Control Mode Dependent Parameter Default Values          |     |
|    |            | A1-02 (Motor 1 Control Mode) Dependent Parameters          |     |
|    | D 17       | E3-01 (Motor 2 Control Mode) Dependent Parameters          |     |
|    |            |                                                            |     |
|    |            | B Defaults by Drive Model and Duty Rating ND/HD            |     |
|    | B.19       | Parameters Changed by Motor Code Selection (for PM Motors) |     |
|    |            | Yaskawa SMRA Series SPM Motor                              |     |
|    |            | Yaskawa SSR1 Series IPM Motor (For Derated Torque)         |     |
| _  |            | ` '                                                        |     |
| C. |            | MOBUS/MODBUS COMMUNICATIONS                                |     |
|    |            | MEMOBUS/Modbus Configuration                               |     |
|    |            | Communication Specifications                               |     |
|    | C.3        | Connecting to a Network                                    | 630 |
|    |            | Network Cable Connection                                   |     |
|    |            | Wiring Diagram for Multiple Connections                    |     |
|    |            | Network Termination                                        |     |
|    | C.4        | MEMOBUS/Modbus Setup Parameters                            |     |
|    |            | MEMOBUS/Modbus Serial Communication                        |     |
|    | C.5        | Drive Operations by MEMOBUS/Modbus                         |     |
|    |            | Observing the Drive Operation                              |     |
|    |            | Controlling the Drive                                      |     |
|    | C.6        | Communications Timing                                      |     |
|    |            | Command Messages from Master to Drive                      |     |
|    |            | Response Messages from Drive to Master                     |     |
|    | C.7        | <b>G</b>                                                   |     |
|    |            | Message Content                                            |     |
|    |            | Slave Address Function Code                                |     |
|    |            | Data                                                       |     |
|    |            | Error Check                                                |     |
|    | <b>C.8</b> | Message Examples                                           | 641 |
|    |            | Reading Drive MEMOBUS/Modbus Register Contents             |     |
|    |            | Loopback Test                                              |     |
|    |            | Writing to Multiple Registers                              |     |
|    | C.9        | MEMOBUS/Modbus Data Table                                  |     |
|    |            | Command Data                                               |     |
|    |            | Monitor Data Broadcast Messages                            |     |
|    |            | Fault Trace Contents                                       |     |
|    |            | Alarm Register Contents                                    | 658 |

|    | C.10       | Enter Command                                                 |     |
|----|------------|---------------------------------------------------------------|-----|
|    |            | Enter Command Types                                           |     |
|    | C.11       | Communication Errors                                          |     |
|    |            | MEMOBUS/Modbus Error Codes                                    |     |
|    |            | Slave Not Responding                                          |     |
|    | C.12       | 2 Self-Diagnostics                                            | 661 |
| D. | STA        | ANDARDS COMPLIANCE                                            | 663 |
|    | D.1        | Section Safety                                                | 664 |
|    | <b>D.2</b> | European Standards                                            | 666 |
|    |            | EU declaration of Conformity                                  | 666 |
|    |            | CE Low Voltage Directive Compliance                           |     |
|    |            | EMC Guidelines Compliance for Models UDDEDDDD and UDDWDDDD    |     |
|    |            | Stand-Alone EMC Filter Installation                           |     |
|    | Б.         | Wiring Diagram                                                |     |
|    | D.3        | UL and CSA Standards                                          |     |
|    |            | UL Standards Compliance  Drive Motor Overload Protection      |     |
|    | D 4        |                                                               |     |
|    | D.4        | CSA Standards Compliance                                      |     |
|    |            | Conditions of Acceptability                                   |     |
|    |            | Main Circuit Terminal Wiring                                  |     |
|    |            | CSA for Industrial Control Equipment                          |     |
|    | D.5        | Safe Disable Input                                            |     |
|    |            | Safe Disable Input Function                                   |     |
|    |            | Precautions                                                   |     |
|    |            | Using the Safe Disable Function                               | 695 |
| E. | QUI        | ICK REFERENCE SHEET                                           | 699 |
|    | E.1        | Drive and Motor Specifications                                | 700 |
|    |            | Drive Specifications                                          | 700 |
|    |            | Motor Specifications                                          | 700 |
|    | E.2        | Basic Parameter Settings                                      | 702 |
|    |            | Basic Setup                                                   |     |
|    |            | V/f Pattern Setup                                             |     |
|    |            | Motor Setup                                                   |     |
|    |            | Multi-Function Digital Inputs Pulse Train Input/Analog Inputs |     |
|    |            | Multi-Function Digital Outputs                                |     |
|    |            | Monitor Outputs                                               |     |
|    | E.3        | User Setting Table                                            |     |
|    |            |                                                               | -40 |

**Table of Contents** 

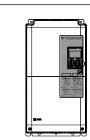
This Page Intentionally Blank

i

# **Preface & General Safety**

This section provides safety messages pertinent to this product that, if not heeded, may result in fatality, personal injury, or equipment damage. Yaskawa is not responsible for the consequences of ignoring these instructions.

| i.1 | PREFACE        | 18  |
|-----|----------------|-----|
| i.2 | GENERAL SAFETY | 200 |


## i.1 Preface

Yaskawa manufactures products used as components in a wide variety of industrial systems and equipment. The selection and application of Yaskawa products remain the responsibility of the equipment manufacturer or end user. Yaskawa accepts no responsibility for the way its products are incorporated into the final system design. In all cases, Yaskawa products should not be incorporated into a product or design as the exclusive or sole safety control function. Without exception, all controls should be designed to detect faults dynamically and fail safely under all circumstances. All systems or equipment designed to incorporate a product manufactured by Yaskawa must be supplied to the end user with appropriate warnings and instructions as to the safe use and operation of that part. Any warnings provided by Yaskawa must be promptly provided to the end user. Yaskawa offers an express warranty only as to the quality of its products in conforming to standards and specifications published in the Yaskawa manual. NO OTHER WARRANTY, EXPRESS OR IMPLIED, IS OFFERED. Yaskawa assumes no liability for any personal injury, property damage, losses, or claims arising from misapplication of its products.

This manual is designed to ensure correct and suitable application of U1000-Series Drives. Read this manual before attempting to install, operate, maintain, or inspect a drive and keep it in a safe, convenient location for future reference. Be sure you understand all precautions and safety information before attempting application.

## **◆** Applicable Documentation

The following manuals are available for U1000-series drives:



#### U1000 Industrial MATRIX Drive Quick Start Guide

Read this guide first. This guide is packaged together with the product and contains basic safety information, wiring information, and a list of models. Use this manual for basic settings and trial operation. The most recent version of this manual is available for download on our documentation website, www.yaskawa.com.

#### U1000 Industrial MATRIX Drive Technical Manual

This manual contains information required to install and wire the drive, and gives an overview of fault diagnostics, maintenance safety, and parameter settings. The most recent version of this manual is available for download on our documentation website, www.yaskawa.com. Contact Yaskawa or a Yaskawa representative to obtain a printed and bound version of the manual.

## Symbols

**Note:** Indicates a supplement or precaution that does not cause drive damage.

### Terms and Abbreviations

• Drive: Yaskawa U1000-Series Drive

• Filter Module: U1000 Standard Configuration Device Filter Module

• BCD: Binary Coded Decimal

• H: Hexadecimal Number Format

• **IGBT:** Insulated Gate Bipolar Transistor

• kbps: Kilobits per Second

MAC: Media Access Control

• Mbps: Megabits per Second

• PG: Pulse Generator

• r/min: Revolutions per Minute

• V/f: V/f Control

• V/f w/PG: V/f Control with PG

• OLV: Open Loop Vector Control

• CLV: Closed Loop Vector Control

• **OLV/PM:** Open Loop Vector Control for PM

• AOLV/PM: Advanced Open Loop Vector Control for PM

• CLV/PM: Closed Loop Vector Control for PM

• PM motor: Permanent Magnet Synchronous motor (an abbreviation for IPM motor or SPM motor)

• IPM motor: Interior Permanent Magnet Motor (e.g., Yaskawa SSR1 Series and SST4 Series motors)

• SPM motor: Surface mounted Permanent Magnet Motor (e.g., Yaskawa SMRA Series motors)

#### Trademarks

- BACnet is a trademark of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE).
- CANopen is a trademark of CAN in Automation (CiA).
- CC-Link is a trademark of CC-Link Partner Association (CLPA).
- DeviceNet is a trademark of Open DeviceNet Vendor Association, Inc. (ODVA).
- EtherCAT is a trademark of Beckhoff Automation GmbH, Germany.
- EtherNet/IP is a trademark of Open DeviceNet Vendor Association, Inc. (ODVA).
- LonWorks is a trademark of Echelon Corporation.
- MECHATROLINK-II and MECHATROLINK-III are trademarks of MECHATROLINK Members Association (MMA).
- Modbus is a trademark of Schneider Electric.
- PROFIBUS-DP is a trademark of PROFIBUS International (PI).
- PROFNET is a trademark of PROFIBUS International (PI).
- Other companies and product names mentioned in this manual are trademarks of those companies.

## i.2 General Safety

## Supplemental Safety Information

#### **General Precautions**

- The diagrams in this manual may be indicated without covers or safety shields to show details. Replace the covers or shields before operating the drive and run the drive according to the instructions described in this manual.
- Any illustrations, photographs, or examples used in this manual are provided as examples only and may not apply to all products to which this manual is applicable.
- The products and specifications described in this manual or the content and presentation of the manual may be changed without notice to improve the product and/or the manual.
- When ordering a new copy of the manual due to damage or loss, contact Yaskawa or a Yaskawa representative and provide the manual number shown on the front cover.
- If nameplate becomes worn or damaged, order a replacement from Yaskawa or a Yaskawa representative.

## **WARNING**

Read and understand this manual before installing, operating or servicing this drive. The drive must be installed according to this manual and local codes.

The following conventions are used to indicate safety messages in this manual. Failure to heed these messages could result in serious or fatal injury or damage to the products or to related equipment and systems.

## A DANGER

Indicates a hazardous situation, which, if not avoided, will result in death or serious injury.

### **WARNING**

Indicates a hazardous situation, which, if not avoided, could result in death or serious injury.

WARNING! may also be indicated by a bold key word embedded in the text followed by an italicized safety message.

## **A** CAUTION

Indicates a hazardous situation, which, if not avoided, could result in minor or moderate injury.

CAUTION! may also be indicated by a bold key word embedded in the text followed by an italicized safety message.

#### NOTICE

Indicates a property damage message.

NOTICE: may also be indicated by a bold key word embedded in the text followed by an italicized safety message.

## **♦** Safety Messages

## **A** DANGER

#### Heed the safety messages in this manual.

Failure to comply will result in death or serious injury.

The operating company is responsible for any injuries or equipment damage resulting from failure to heed the warnings in this manual.

#### **Electrical Shock Hazard**

#### Before servicing, disconnect all power to the equipment.

The output terminals remain charged even after the power supply is turned off. The charge indicator LED will extinguish when the control circuit DC voltage is below 50 Vdc. To prevent electric shock, wait for at least the time specified on the warning label, once all indicators are OFF, measure for unsafe voltages to confirm the drive is safe prior to servicing. Failure to comply will result in death or serious injury.

### **WARNING**

#### **Sudden Movement Hazard**

System may start unexpectedly upon application of power, resulting in death or serious injury.

Clear all personnel from the drive, motor and machine area before applying power. Secure covers, couplings, shaft keys and machine loads before applying power to the drive.

### **Arc Flash Hazard**

It is possible that there is more than one source of power for the equipment.

Obey the requirements for Electrical Safety in the Workplace and local codes for safe work procedures and applicable personal protective equipment (PPE).

Failure to obey can cause serious injury or death.

#### **Electrical Shock Hazard**

Do not attempt to modify or alter the drive in any way not explained in this manual.

Failure to comply could result in death or serious injury.

Yaskawa is not responsible for any modification of the product made by the user. This product must not be modified.

#### Do not allow unqualified personnel to use equipment.

Failure to comply could result in death or serious injury.

Installation, maintenance, inspection, and service must be performed only by authorized personnel familiar with installation, adjustment and maintenance of AC drives.

## **WARNING**

Do not remove covers or touch circuit boards while the power is on.

Failure to comply could result in death or serious injury.

#### Do not turn on the power for only the Filer Module and Stand-Alone EMC Filter.

Failure to comply could result in death or serious injury. The output terminals remain charged even after the power supply is turned off. Always connect the Filter Module and Stand-Alone EMC Filter as shown in the standard connection diagram and turn on the Filter Module and Stand-Alone EMC filter according to the diagram. *Refer to Drive Models 4* \$\overline{10}\)0720 to 4 \$\overline{10}\)930 and Filter Modules on page 86 for details on wiring the Filter Module. *Refer to EMC Guidelines Compliance for Models UDDE DDDD and UDDWDDDD on page 668* for details on wiring the Stand-Alone EMC Filter.

#### Make sure the protective earthing conductor complies with technical standards and local safety regulations.

Because the leakage current exceeds 3.5 mA in models 4 \$\sum 0302\$ and larger, IEC/EN 61800-5-1 states that either the power supply must be automatically disconnected in case of discontinuity of the protective earthing conductor or a protective earthing conductor with a cross-section of at least 10 mm<sup>2</sup> (Cu) or 16 mm<sup>2</sup> (Al) must be used. Failure to comply may result in death or serious injury.

#### Always use appropriate equipment for Ground Fault Circuit Interrupters (GFCIs).

The drive can cause a residual current with a DC component in the protective earthing conductor. Where a residual current operated protective or monitoring device is used for protection in case of direct or indirect contact, always use a type B GFCI according to IEC/EN 60755.

#### **Fire Hazard**

#### Do not use an improper voltage source.

Failure to comply could result in death or serious injury by fire. Verify that the rated voltage of the drive matches the voltage of the incoming power supply before applying power.

#### Do not use improper combustible materials.

Failure to comply could result in death or serious injury by fire. Attach the drive to metal or other noncombustible material. **Tighten all terminal screws to the specified tightening torque.** 

Loose electrical connections could result in death or serious injury by fire due to overheating of electrical connections.

Install adequate branch circuit protection according to applicable local codes and this manual. Failure to comply could result in fire and damage to the drive or injury to personnel.

The device is suitable for use on a circuit capable of delivering not more than 100,000 RMS symmetrical amperes, 240 Vac maximum (200 V class), 480 Vac maximum (400 V class:  $4E\Box\Box\Box\Box$  and  $4W\Box\Box\Box\Box$ ), and 500 Vac maximum (400 V class:  $4A\Box\Box\Box\Box$  and  $4P\Box\Box\Box\Box$ ) when protected by branch circuit protection devices specified in this document.

#### **Crush Hazard**

Do not use this drive in lifting applications without installing external safety circuitry to prevent accidental dropping of the load. The drive does not possess built-in load drop protection for lifting applications.

Failure to comply could result in death or serious injury from falling loads.

Install electrical and/or mechanical safety circuit mechanisms independent of drive circuitry.

## **A** CAUTION

#### **Crush Hazard**

#### Do not carry the drive by the front cover.

Failure to comply may result in minor or moderate injury from the main body of the drive falling.

#### NOTICE

Observe proper electrostatic discharge procedures (ESD) when handling the drive and circuit boards. Failure to comply may result in ESD damage to the drive circuitry.

Do not do a withstand voltage test or use a megohmmeter or megger insulation tester on the drive.

Failure to comply could result in damage to the sensitive devices within the drive.

#### Do not operate damaged equipment.

Failure to comply could result in further damage to the equipment. Do not connect or operate any equipment with visible damage or missing parts.

If a fuse is blown or a Ground Fault Circuit Interrupter (GFCI) is tripped, check the wiring and the selection of the peripheral devices.

Check for short circuits or ground faults on the secondary side of fuses and GFCIs and check the wiring and the selection of peripheral devices. Remove the cause of the problem and then turn the power supply off and on again. If the cause cannot be identified, do not turn on the power supply or attempt to operate the equipment.

Do not restart the drive immediately operate the peripheral devices if a fuse is blown or a GFCI is tripped.

Check the wiring and the selection of peripheral devices to identify the cause. Contact Yaskawa or a Yaskawa representative before restarting the drive or the peripheral devices if the cause cannot be identified.

#### Do not expose the drive to halogen group disinfectants.

Failure to comply may cause damage to the electrical components in the drive.

Do not pack the drive in wooden materials that have been fumigated or sterilized. Do not sterilize the entire package after the product is packed.

## General Application Precautions

#### Selection

#### **Drive Rated Output Current**

Make sure that the motor rated current is less than the rated output current for the drive.

#### When 2 Seconds is Required for Momentary Power Loss Ride-Thru Time

Use the units listed below when continuing drive operation after the power is restored even after a momentary loss of power of 2 seconds occurs:

- 200 V class Momentary Power Loss Ride-Thru unit: Model no. P0010
- 400 V class Momentary Power Loss Ride-Thru unit: Model no. P0020

#### **Drive Start-Up Time**

The drive requires 1.5 seconds to prepare for operation after the power is turned on. Be mindful of this delay when using an external reference input.

**Note:** 1.5 seconds is the required time when no optional devices are used with the drive. When using an optional communication device, the time required for the drive to be ready for operation will vary in accordance with the start up time of the communication card.

#### **Selection of Power Supply Capacity**

Use a power supply greater than the rated input capacity (kVA) of the drive. If the power supply is lower than the rated capacity of the drive, the device will be unable to run the application properly and will trigger a fault.

The rated input capacity of the drive,  $S_{CONV}$  (kVA), can be calculated by the following formula:

$$S_{CONV} = \sqrt{3} \times I_{in} \times V_{in} / 1000$$

 $(I_{in}$ : Rated input current [A],  $V_{in}$ : Applicable power supply voltage [V])

#### **Connection to Power Supply**

The total impedance of the power supply and wiring for the rated current of the drive is %Z = 10% or more. Power voltage distortion may occur when the impedance of the power supply is too large. When wiring over long distances, be sure to take preventative measures such as using thick cables or series wiring to lower the impedance of wiring. Also, tie the cables for three phases together at the power supply side (do not isolate the cable for each phase). If not, increased cable inductance will increase the voltage of the main circuit power supply input terminal. Contact Yaskawa or a Yaskawa representative for details.

#### **Grounding the Power Supply**

Yaskawa recommends using a dedicated ground for the power supply, as the drive is designed to run with a 1:1 ratio relative to the power supply. Ground other devices as directed in the specifications for those devices. Take particular care when connecting sensitive electronic devices. Separate ground lines and install a noise filter to prevent problems from noise.

#### When Using a Generator as a Power Supply

Select the generator capacity approximately twice as large as the drive input power supply capacity. Set the deceleration time or load so that the regenerative power from the motor will be 10% or less of the generator capacity. For further information, contact Yaskawa or a Yaskawa representative.

## When a Phase Advance Capacitor or Thyristor Controller is Provided for the Power Supply

Do not install a phase advancing capacitor to the drive.

For the phase advance capacitor that has already been installed on the same power supply system as the drive, switch to a phase-advanced capacitor with a series reactor to prevent oscillation with the drive.

Contact Yaskawa or a Yaskawa representative when a device generating voltage surge or voltage distortion such as DC motor drive thyristor controller or magnetic agitator is installed on the same power supply system.

#### **Prevention Against EMC or High Frequency Leakage Current**

Use units with built-in EMC filters that have the CE marking.

Use a stand-alone EMC filter for models  $4\square 0477$  to  $4\square 0930$ .

Use a zero-phase reactor as a noise filter when a device that will be affected by noise is near the drive.

#### **Effects of Power Supply Distortion**

Distortion of the power supply voltage increases the harmonics contents due to power supply harmonics entering the drive.

#### **Starting Torque**

The startup and acceleration characteristics of the motor are restricted to the drive overload current rating (HD: 150% 60 s, ND: 120% 60 s).

The overload rating for the drive determines the starting and accelerating characteristics of the motor. Expect lower torque than when running from line power. To achieve a higher starting torque, use a larger drive or a drive and motor with larger capacity.

#### **Emergency Stop**

During a drive fault condition, the output shuts off but the motor does not stop immediately. A mechanical brake may be required when it is necessary to stop the motor faster than the ability of the Fast Stop function of the drive.

#### Repetitive Starting/Stopping

Laundry machines, punching presses, and other applications with frequent starts and stops often approach 150% of their rated output current values. Heat stress generated from repetitive high current will shorten the life span of the IGBTs. The expected life span of the IGBTs is about 8 million start and stop cycles with a 4 kHz carrier frequency (3 kHz carrier frequency for models  $4\Box 0477$  to  $4\Box 0930$ ) and a 150% peak current.

Run only one motor from each drive when using vector control. It is not possible to run more than one motor from one drive with vector control.

#### Carrier Frequency Derating

Reduce the rated output current of the drive when increasing the carrier frequency above the factory default setting. *Refer to Rated Current Depending on Carrier Frequency on page 498* for details.

#### ■ Installation

#### **Enclosure Panels**

Keep the drive in a clean environment by installing the drive in an enclosure panel or selecting an installation area free of airborne dust, lint, and oil mist. Be sure to leave the required space between drives to provide for cooling, and take proper measures so the ambient temperature remains within allowable limits and keep flammable materials away from the drive. Yaskawa offers protective designs for drives that must be used in areas subjected to oil mist and excessive vibration. Contact Yaskawa or a Yaskawa representative for details.

#### **Installation Direction**

**NOTICE:** Install the drive upright as specified in the manual. Refer to the Mechanical Installation section for more information on installation. Failure to comply may damage the drive due to improper cooling.

#### Settings

#### **Motor Code**

When using a permanent magnet motor, set the proper motor code to parameter E5-01 before performing a trial run.

#### Upper Limits

**NOTICE:** The drive is capable of running the motor up to 400 Hz. Be sure to set the upper limit for the frequency of the drive to prevent the possible danger of accidentally operating equipment at higher than rated speed. The default setting for the maximum output frequency is 60 Hz.

#### DC Injection Braking

NOTICE: Excessive current during DC Injection Braking and excessive duration of DC Injection Braking can cause motor overheat.

#### **Acceleration/Deceleration Times**

Acceleration and deceleration times are affected by the amount of torque generated by the motor, the load torque, and the moment of inertia. Set a longer accel/decel time when Stall Prevention is enabled. The accel/decel times are lengthened for as long as the Stall Prevention function is in operation. Install one of the available braking options or increase the capacity of the drive for faster acceleration and deceleration.

### ■ General Handling

#### Wiring Check

**NOTICE:** Be sure to perform a final check of all sequence wiring and other connections before turning on the power and also check for short circuits on the control terminals, which may damage the drive.

#### Selecting a Circuit Breaker or Circuit Interrupter

Yaskawa recommends installing a Ground Fault Circuit Interrupter (GFCI) to the power supply side. The GFCI should be designed for use with AC drives (e.g., Type B according to IEC/EN 60755).

#### i.2 General Safety

Select a Molded Case Circuit Breaker (MCCB) or GFCI with a rated current 1.5 to 2 times higher than the drive rated current to avoid nuisance trips caused by harmonics in the drive input current. *Refer to Installing a Molded Case Circuit Breaker (MCCB) or Ground Fault Circuit Interrupter (GFCI) on page 484* for more information.

#### Magnetic Contactor Installation

**WARNING!** Fire Hazard. Shut off the drive with a magnetic contactor (MC) when a fault occurs in any external equipment such as braking resistors. **Refer to Installing a Magnetic Contactor at the Power Supply Side on page 484**. Failure to comply may cause resistor overheating, fire, and injury to personnel.

**NOTICE:** To get the full performance life out of the capacitor for the control power supply and circuit relays, refrain from switching the drive power supply off and on more than once every 30 minutes. Frequent use can damage the drive. Use the drive to stop and start the motor.

#### **Inspection and Maintenance**

**WARNING!** Electrical Shock Hazard. Capacitors in the drive do not immediately discharge after shutting off the power. Wait for at least the amount of time specified on the drive before touching any components after shutting off the power. Failure to comply may cause injury to personnel from electrical shock.

**WARNING!** Electrical Shock Hazard. When a drive is running a PM motor, voltage continues to be generated at the motor terminals after the drive is shut off while the motor coasts to stop. Take the precautions described below to prevent shock and injury:

- In applications where the machine can still rotate after the drive has fully stopped a load, install a switch to the drive output side to disconnect the motor and the drive.
- · Do not allow an external force to rotate the motor beyond the maximum allowable speed or to rotate the motor when the drive has been shut off.
- · Wait for at least the time specified on the warning label after opening the load switch on the output side before inspecting the drive or performing any maintenance.
- · Do not open and close the load switch while the motor is running.
- If the motor is coasting, make sure the power to the drive is turned on and the drive output has completely stopped before closing the load switch.

**WARNING!** Burn Hazard. Because the heatsink can get very hot during operation, take proper precautions to prevent burns. When replacing the cooling fan, shut off the power and wait at least 15 minutes to be sure that the heatsink has cooled down. Failure to comply may cause burn injury to personnel.

#### Wiring

All wire ends should use ring terminals for UL/cUL compliance. Use only the tools recommended by the terminal manufacturer for crimping.

#### **Transporting the Drive**

**NOTICE:** Never steam clean the drive. During transport, keep the drive from coming into contact with salts, fluorine, bromine, phthalate ester, and other such harmful chemicals.

## Motor Application Precautions

## ■ Life of Motor Bearings

In applications involving constant speed over long periods, such as fans, pumps, extruders, and textile machinery, the life of the motor bearing may be shortened. This is called bearing electrolytic corrosion. The installation of a zero-phase reactor between the drive and the motor, and the utilization of a motor with insulated bearings are effective countermeasures. Details can be found in the technical documentation. Contact Yaskawa or a Yaskawa representative for more information.

#### Standard Induction Motors

#### Low-Speed Range

The cooling fan of a standard motor should sufficiently cool the motor at the rated speed. As the self-cooling capability of such a motor decreases with the speed, applying full torque at low speed will possibly damage the motor. Reduce the load torque as the motor slows to prevent motor damage from overheat. *Figure i.1* shows the allowable load characteristics for a Yaskawa standard motor. Use a motor designed specifically for operation with a drive when 100% continuous torque is needed at low speeds.

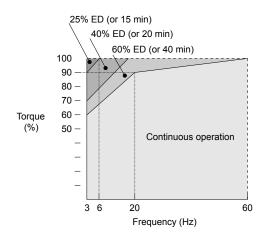



Figure i.1 Allowable Load Characteristics for a Yaskawa Motor

#### **Insulation Tolerance**

**NOTICE**: Consider motor voltage tolerance levels and motor insulation in applications with an input voltage of over 440 V or particularly long wiring distances.

#### **High-Speed Operation**

**NOTICE:** Problems may occur with the motor bearings and dynamic balance of the machine when operating a motor beyond its rated speed. Contact the motor or machine manufacturer.

#### **Torque Characteristics**

Torque characteristics differ compared to operating the motor directly from line power. The user should have a full understanding of the load torque characteristics for the application.

#### Vibration and Shock

The drive allows selection of high carrier PWM control. Selecting Closed Loop Vector control can help reduce motor oscillation.

- Take particular caution when adding a variable speed drive to an application running a motor from line power at a constant speed. If resonance occurs, install shock-absorbing rubber around the base of the motor and enable the Jump Frequency function to prevent continuous operation in the resonant frequency range.
- Mechanical resonance can occur with long motor shafts and in applications such as turbines, blowers, and fans with high inertia loads.

#### **Audible Noise**

The audible noise of the motor varies based on the carrier frequency setting. However, drive current derating may be required. When using a high carrier frequency, audible noise from the motor is comparable to the motor noise generated when running from line power.

#### **Synchronous Motors**

- Contact Yaskawa or a Yaskawa representative when planning to use a synchronous motor not endorsed by Yaskawa.
- Use a standard induction motor when running multiple synchronous motors simultaneously. A single drive does not have this capability.
- A synchronous motor may rotate slightly in the opposite direction of the Run command at start depending on parameter settings and rotor position.
- The amount of generated starting torque differs depending on the control mode and motor type. Set up the motor with the drive after verifying the starting torque, allowable load characteristics, impact load tolerance, and speed control range.
  - Contact Yaskawa or a Yaskawa representative when planning to use a motor that does not fall within these specifications:
- In Open Loop Vector Control for PM motors, the allowable load inertia is approximately 50 times higher than the motor inertia.
  - Contact Yaskawa or a Yaskawa representative for questions concerning applications with larger inertia.
- When using a holding brake in Open Loop Vector Control for PM motors, release the brake prior to starting the motor. Failure to set the proper timing can cause speed loss.
- Use the Speed Search function to restart a coasting motor rotating over 200 Hz while in V/f Control.

#### **Specialized Motors**

#### **Multi-Pole Motor**

The rated current of a multi-pole motor differs from that of a standard motor, so be sure to check the maximum current when selecting a drive. Always stop the motor before switching between the number of motor poles. The motor will coast to stop if a regenerative overvoltage (ov) fault occurs or if overcurrent (oC) protection is triggered.

#### **Submersible Motor**

The rated current of a submersible motor is greater than that of a standard motor, so select the drive accordingly. Use a motor cable large enough to avoid decreasing the maximum torque level from voltage drop caused by a long motor cable.

#### **Explosion-Proof Motor**

The motor and the drive must be tested together to be certified as explosion-proof. The drive is not designed for explosion-proof areas.

When attaching an encoder to an explosion-proof motor, make sure the encoder is also explosion-proof. Use an insulating signal converter to connect the encoder signal lines to the speed feedback option card.

#### **Geared Motor**

Make sure that the gear and the lubricant are rated for the desired speed range to avoid gear damage when operating at low speeds or very high speeds. Consult with the manufacturer for applications that require operation outside the rated speed range of the motor or gear box.

#### Single-Phase Motor

Variable speed drives are not designed to operate with single phase motors. Using capacitors to start the motor causes a high-frequency current to flow to the capacitors and can damage the capacitors. A split-phase start or a repulsion start can burn out the starter coils because the internal centrifugal switch is not activated. The drive is for use with three-phase motors only.

#### **Motor with Brake**

Take caution when using the drive to operate a motor with a built-in holding brake. If the brake is connected to the output side of the drive, it may not release at start due to low voltage levels, so be sure to install a separate power supply for the motor brake. Note that motors with built-in brakes tend to generate a fair amount of noise when running at low speeds.

#### **Notes on Power Transmission Machinery**

Installing an AC drive in machinery that was previously connected directly to the power supply will allow the machine to operate at variable speeds. Continuous operation outside of the rated speeds can wear out lubrication material in gear boxes and other power transmission parts. Make sure that lubrication is sufficient within the entire speed range to avoid machine damage. Note that operation above the rated speed can increase the noise generated by the machine.

## ◆ Drive Label Warning Example

Always heed the warning information listed in *Figure i.2*.

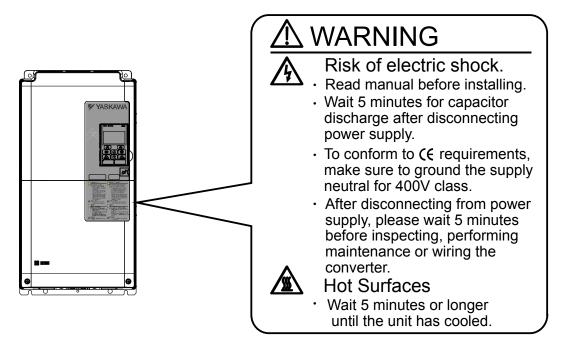



Figure i.2 Warning Information Example and Position

## Warranty Information

#### ■ Restrictions

The drive is not designed or manufactured for use in devices or systems that may directly affect or threaten human lives or health.

Customers who intend to use the product described in this manual for devices or systems relating to transportation, health care, space aviation, atomic power, electric power, or in underwater applications must first contact Yaskawa or a Yaskawa representative.

**WARNING!** Injury to Personnel. This product has been manufactured under strict quality-control guidelines. However, if this product is to be installed in any location where failure of this product could involve or result in a life-and-death situation or loss of human life or in a facility where failure may cause a serious accident or physical injury, safety devices must be installed to minimize the likelihood of any accident.

i.2 General Safety

This Page Intentionally Blank

# Receiving

This chapter explains how to inspect the drive upon receipt, and gives an overview of the different enclosure types and components.

| 33 |
|----|
| 36 |
| 41 |
| 43 |
|    |

## 1.1 Section Safety

## **A** CAUTION

Do not carry the drive by the front cover or the terminal cover.

Failure to comply may cause the main body of the drive to fall, resulting in minor or moderate injury.

#### **NOTICE**

Observe proper electrostatic discharge procedures (ESD) when handling the drive and circuit boards.

Failure to comply may result in ESD damage to the drive circuitry.

A motor connected to a U1000 may operate at a higher temperature than a utility-fed motor and the operating speed range may reduce motor cooling capacity.

Ensure that the motor is suitable for drive duty and/or the motor service factor is adequate to accommodate the additional heating with the intended operating conditions.

## 1.2 General Description

## ◆ U1000 Model Selection

Refer to *Table 1.1* for drive selection depending on Normal Duty (ND) or Heavy Duty (HD) rating.

**Note:** The models and capacities in shown here are based on standard settings and operation conditions. Higher carrier frequencies and higher ambient temperatures require derating.

Table 1.1 U1000 Models

|             | Three-Phase 200 V Cla       | ss                          | Three-Phase 400 V Class |                             |                             |  |  |  |
|-------------|-----------------------------|-----------------------------|-------------------------|-----------------------------|-----------------------------|--|--|--|
|             | Heavy Duty Rating           | Normal Duty Rating          |                         | Heavy Duty Rating           | Normal Duty Rating          |  |  |  |
| Drive Model | Rated Output<br>Current (A) | Rated Output<br>Current (A) | Drive Model             | Rated Output<br>Current (A) | Rated Output<br>Current (A) |  |  |  |
| 2□0028      | 22                          | 28                          | 4□0011                  | 9.6                         | 11                          |  |  |  |
| 2□0042      | 28                          | 42                          | 4□0014                  | 11                          | 14                          |  |  |  |
| 2□0054      | 42                          | 54                          | 4□0021                  | 14                          | 21                          |  |  |  |
| 2□0068      | 54                          | 68                          | 4□0027                  | 21                          | 27                          |  |  |  |
| 2□0081      | 68                          | 81                          | 4□0034                  | 27                          | 34                          |  |  |  |
| 2□0104      | 81                          | 104                         | 4□0040                  | 34                          | 40                          |  |  |  |
| 2□0130      | 104                         | 130                         | 4□0052                  | 40                          | 52                          |  |  |  |
| 2□0154      | 130                         | 154                         | 4□0065                  | 52                          | 65                          |  |  |  |
| 2□0192      | 154                         | 192                         | 4□0077                  | 65                          | 77                          |  |  |  |
| 2□0248      | 192                         | 248                         | 4□0096                  | 77                          | 96                          |  |  |  |
| _           | _                           | _                           | 4□0124                  | 96                          | 124                         |  |  |  |
| -           | _                           | _                           | 4□0156                  | 124                         | 156                         |  |  |  |
| -           | _                           | _                           | 4□0180                  | 156                         | 180                         |  |  |  |
| -           | _                           | _                           | 4□0216                  | 180                         | 216                         |  |  |  |
| -           | _                           | _                           | 4□0240                  | 216                         | 240                         |  |  |  |
| _           | _                           | _                           | 4□0302                  | 240                         | 302                         |  |  |  |
| _           | _                           | _                           | 4□0361                  | 302                         | 361                         |  |  |  |
| _           | _                           | _                           | 4□0414                  | 361                         | 414                         |  |  |  |
| -           | -                           | _                           | 4□0477                  | 414                         | 477                         |  |  |  |
| -           | -                           | _                           | 4□0590                  | 477                         | 590                         |  |  |  |
| -           | _                           | _                           | 4□0720                  | 590                         | 720                         |  |  |  |
| -           | _                           | -                           | 4□0900                  | 720                         | 900                         |  |  |  |
| _           | _                           | _                           | 4□0930                  | 900                         | 930                         |  |  |  |

#### Control Mode Selection

*Table 1.2* gives an overview of the U1000 control modes and their various features.

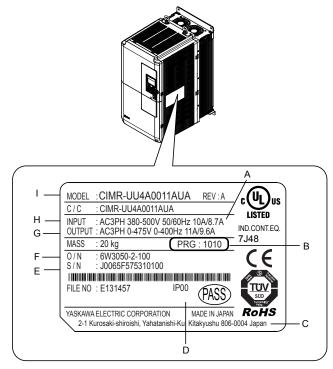
Table 1.2 Control Modes and Features

| Motor Type        | Induction Motors |                                              |                             |                               | Permanent Magnet Motors                      |                                               |           | Comments                                        |
|-------------------|------------------|----------------------------------------------|-----------------------------|-------------------------------|----------------------------------------------|-----------------------------------------------|-----------|-------------------------------------------------|
| Control Mode      | V/f              | V/f w/PG                                     | OLV                         | CLV                           | OLV/PM                                       | AOLV/PM                                       | CLV/PM    | -                                               |
| Parameter Setting | A1-02 = 0        | A1-02 = 1                                    | A1-02 = 2                   | A1-02 = 3                     | A1-02 = 5                                    | A1-02 = 6                                     | A1-02 = 7 | Default Setting is<br>OLV control<br>(A1-02 =2) |
| Basic Description | V/f control      | V/f control<br>using motor<br>speed feedback | Open Loop<br>Vector control | Closed Loop<br>Vector control | Open Loop<br>Vector control<br>for PM motors | Open Loop<br>Vector control<br>for IPM motors |           |                                                 |

## 1.2 General Description

| Motor Type                 |                             |                | Induction         | n Motors          |                    | Permanent Magnet Motors |                                        |                    | Comments                                                                                                                                                                                                                      |
|----------------------------|-----------------------------|----------------|-------------------|-------------------|--------------------|-------------------------|----------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Control Mode               |                             | V/f            | V/f w/PG          | OLV               | CLV                | OLV/PM                  | AOLV/PM                                | CLV/PM             | -                                                                                                                                                                                                                             |
|                            | Motor Type                  | IM             | IM                | IM                | IM                 | PM                      | IPM                                    | PM                 | _                                                                                                                                                                                                                             |
|                            | Multi Motor                 | YES            | -                 | _                 | -                  | -                       | _                                      | _                  | _                                                                                                                                                                                                                             |
|                            | Motor data<br>unknown       | YES            | -                 | -                 | -                  | -                       | -                                      | -                  | -                                                                                                                                                                                                                             |
|                            | High Speed<br>Accuracy      | -              | YES               | YES               | YES                | YES                     | YES                                    | YES                | -                                                                                                                                                                                                                             |
| Type of Applications       | High Speed<br>Response      | _              | _                 | YES               | YES                | _                       | YES                                    | YES                | -                                                                                                                                                                                                                             |
|                            | Zero Speed<br>Control       | _              | _                 | -                 | YES                | _                       | YES                                    | YES                | -                                                                                                                                                                                                                             |
|                            | Torque Control<br>Operation | _              | _                 | _                 | YES                | _                       | -                                      | YES                | -                                                                                                                                                                                                                             |
|                            | Torque Limit<br>Operation   | _              | -                 | YES               | YES                | -                       | _                                      | YES                | _                                                                                                                                                                                                                             |
| PG Opti                    | on Card                     | _              | PG-B3 or<br>PG-X3 | -                 | PG-B3 or<br>PG-X3  | -                       | _                                      | PG-X3              | -                                                                                                                                                                                                                             |
| Control<br>Characteristics | Speed Control<br>Range      | 1:40           | 1:40              | 1:200             | 1:1500             | 1:20                    | 1:20<br>1:100                          | 1:1500             | May fluctuate with<br>characteristics and<br>motor temperature.<br>May fluctuate with<br>characteristics and<br>motor temperature.<br>Enabled for 1:100<br>when n8-57, High<br>Frequency Injection,<br>is set to 1 (Enabled). |
|                            | Speed Accuracy              | ±2 to 3%       | ±0.03%            | ±0.2%             | ±0.02%             | ±0.2%                   | ±0.2%                                  | ±0.02%             | Speed deviation rate between speed reference value and motor speed (100% = rated speed, motor temperature 25 °C ±10 °C) when operating at normal status and when load is stable.                                              |
|                            | Speed Response              | 3 Hz (approx.) | 3 Hz (approx.)    | 10 Hz             | 100 Hz             | 10 Hz                   | 10 Hz                                  | 100 Hz             | Max. frequency of a speed reference signal that the drive can follow may fluctuate with characteristics and motor temperature.                                                                                                |
|                            | Starting Torque             | 150% at 3 Hz   | 150% at 3 Hz      | 200% at<br>0.3 Hz | 200% at<br>0 r/min | 100% at<br>5% speed     | 100% at 5%<br>speed<br>200% at 0 r/min | 200% at<br>0 r/min | Starting torque may fluctuate with characteristics and motor temperature. Performance may differ by capacity. 200% at 0 r/min enabled when n8-57, High Frequency Injection, is set to 1 (Enabled).                            |

| Motor Type               |                                            |                                                                                                                                                              | Inductio       | n Motors                                                                 |              | Perma  | Comments                                     |                             |                                                                                                                                                                                     |
|--------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------|--------------|--------|----------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Control Mode             |                                            | V/f                                                                                                                                                          | V/f w/PG       | OLV                                                                      | CLV          | OLV/PM | AOLV/PM                                      | CLV/PM                      | -                                                                                                                                                                                   |
| Application-<br>Specific |                                            | • PM Motor Parameter Settings • PM Stationary Auto-Tuning • PM Stationary Auto-Tuning • PM Stationary Auto-Tuning for Resistance • PM Rotational Auto-Tuning |                |                                                                          |              |        |                                              |                             |                                                                                                                                                                                     |
|                          | Auto-Tuning                                | Rotational A<br>V/f Control                                                                                                                                  | uto-Tuning for | <ul><li>Stationary A</li><li>Stationary A</li><li>Rotational A</li></ul> | uto-Tuning 3 | -      | High Frequency Injection<br>Parameter Tuning |                             | Automatically<br>adjusts parameter<br>settings that concern<br>electrical<br>characteristics of the                                                                                 |
|                          |                                            | -                                                                                                                                                            |                |                                                                          |              |        |                                              |                             | motor                                                                                                                                                                               |
|                          | Torque Limit                               | -                                                                                                                                                            | _              | YES                                                                      | YES          | -      | YES                                          | YES                         | Sets the maximum<br>torque for the motor<br>to protect the load<br>and connected<br>machinery.                                                                                      |
|                          | Torque Control                             | -                                                                                                                                                            | _              | _                                                                        | YES          | -      | -                                            | YES                         | Allows direct<br>control of motor<br>torque for tension<br>control and other<br>such applications.                                                                                  |
|                          | Droop Function                             | -                                                                                                                                                            | _              | _                                                                        | YES          | _      | _                                            | YES                         | Sets the slip for the load torque of the motor. Used for motor load distribution.                                                                                                   |
|                          | Zero Servo<br>Control                      | -                                                                                                                                                            | _              | -                                                                        | YES          | -      | -                                            | YES                         | Locks the rotor position.                                                                                                                                                           |
|                          | Speed Search                               | YES                                                                                                                                                          | YES            | YES                                                                      | -            | YES    | YES                                          | YES                         | Bi-directional speed<br>detection of a<br>coasting motor to<br>restart it without<br>stopping.                                                                                      |
|                          | Energy-Saving<br>Control                   | YES                                                                                                                                                          | YES            | YES                                                                      | YES          | -      | YES<br>(IPM motors<br>only)                  | YES<br>(IPM motors<br>only) | Saves energy by<br>always operating the<br>motor at its<br>maximum<br>efficiency.                                                                                                   |
| Application-<br>Specific | Feed Forward<br>Control                    | -                                                                                                                                                            | -              | -                                                                        | YES          | -      | -                                            | YES                         | Improves speed<br>accuracy when the<br>load changes by<br>compensating<br>effects of the system<br>inertia.                                                                         |
| Specific                 | Over-<br>excitation<br>Deceleration        | YES                                                                                                                                                          | YES            | YES                                                                      | YES          | -      | -                                            | -                           | Provides fast<br>deceleration without<br>using a braking<br>resistor.                                                                                                               |
|                          | Inertia Tuning,<br>ASR Tuning              | -                                                                                                                                                            | _              | _                                                                        | YES          | _      | -                                            | YES                         | Provides automatic<br>Speed Control and<br>Feed Forward<br>function tuning.                                                                                                         |
|                          | Commercial<br>Power Switching<br>Selection | YES                                                                                                                                                          | -              | -                                                                        | -            | _      | -                                            | -                           | When the output frequency matches the power supply frequency (60 Hz), the PWM switching operation stops and switches to operation with a direct commercial power supply connection. |
|                          | High Frequency<br>Injection                | -                                                                                                                                                            | -              | -                                                                        | _            | _      | YES<br>(IPM motor)                           | -                           | Greatly increases the speed control range of an IPM motor.                                                                                                                          |


## 1.3 Model Number and Nameplate Check

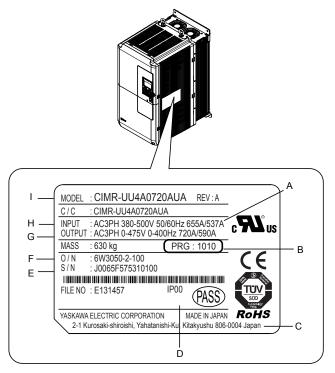
Please perform the following tasks after receiving the drive:

- Inspect the drive for damage.
  - If the drive appears damaged upon receipt, contact the shipper immediately.
- Verify receipt of the correct model by checking the information on the nameplate.
- If you have received the wrong model or the drive does not function properly, contact Yaskawa or a Yaskawa representative.

## Nameplate

#### ■ Drive Models 2□0028 to 2□0248 and 4□0011 to 4□0590




- A Normal Duty amps / Heavy Duty amps
- B Software version
- C Address <1>
- D Enclosure type
- E Serial number

- F Lot number
- G Output specifications
- H Input specifications
- I AC drive model
  - Refer to Figure 1.4 for details.

Figure 1.1 Drive Nameplate Information Example

<1> The address of the head office of Yaskawa Electric Corporation (responsible for product liability) is shown on the nameplate.

#### ■ Drive Models 4□0720 to 4□0930



- A Normal Duty amps / Heavy Duty amps
- B Software version
- C Address <1>
- D Enclosure type
- E Serial number

- F Lot number
- **G Output specifications**
- H Input specifications
- I AC drive model Refer to *Figure 1.4* for details.

Figure 1.2 Drive Nameplate Information Example

<1> The address of the head office of Yaskawa Electric Corporation (responsible for product liability) is shown on the nameplate.

#### ■ Filter Module

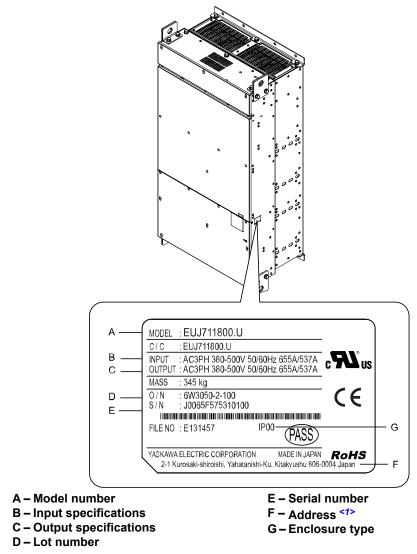



Figure 1.3 Filter Module Nameplate Information Example

<1> The address of the head office of Yaskawa Electric Corporation (responsible for product liability) is shown on the nameplate.

#### Model Number

#### ■ Drive Models 2□0028 to 2□0248 and 4□0011 to 4□0930

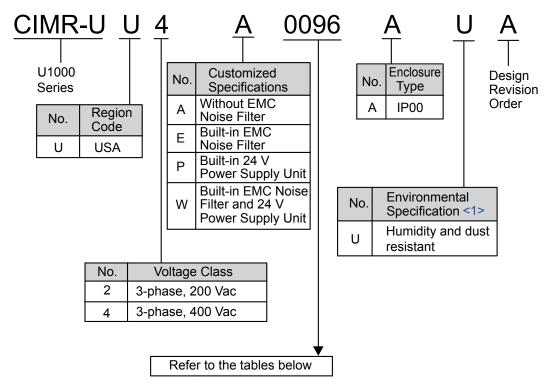



Figure 1.4 Drive Model Number Definition

<1> Drives with these specifications do not guarantee complete protection for the environmental conditions indicated.

#### ■ Three-Phase 200 V Class

Table 1.3 Model Number and Specifications (200 V Class)

| No          | rmal Duty (ND) C6-01                                    | = 1 | He          | eavy Duty (HD) C6-01 =              | = 0                       |
|-------------|---------------------------------------------------------|-----|-------------|-------------------------------------|---------------------------|
| Drive Model | Reference Motor Capacity kW (HP) Rated Output Current A |     | Drive Model | Reference Motor<br>Capacity kW (HP) | Rated Output<br>Current A |
| 2□0028      | 7.5 (10)                                                | 28  | 2□0028      | 5.5 (7.5)                           | 22                        |
| 2□0042      | 11 (15)                                                 | 42  | 2□0042      | 7.5 (10)                            | 28                        |
| 2□0054      | 15 (20)                                                 | 54  | 2□0054      | 11 (15)                             | 42                        |
| 2□0068      | 18.5 (25)                                               | 68  | 2□0068      | 15 (20)                             | 54                        |
| 2□0081      | 22 (30)                                                 | 81  | 2□0081      | 18.5 (25)                           | 68                        |
| 2□0104      | 30 (40)                                                 | 104 | 2□0104      | 22 (30)                             | 81                        |
| 2□0130      | 37 (50)                                                 | 130 | 2□0130      | 30 (40)                             | 104                       |
| 2□0154      | 45 (60)                                                 | 154 | 2□0154      | 37 (50)                             | 130                       |
| 2□0192      | 55 (75)                                                 | 192 | 2□0192      | 45 (60)                             | 154                       |
| 2□0248      | 75 (100)                                                | 248 | 2□0248      | 55 (75)                             | 192                       |

#### ■ Three-Phase 400 V Class

Table 1.4 Model Number and Specifications (400 V Class)

| No          | rmal Duty (ND) C6-01                | = 1                       | Heavy Duty (HD) C6-01 = 0 |                                     |                           |  |  |  |  |  |  |  |
|-------------|-------------------------------------|---------------------------|---------------------------|-------------------------------------|---------------------------|--|--|--|--|--|--|--|
| Drive Model | Reference Motor<br>Capacity kW (HP) | Rated Output<br>Current A | Drive Model               | Reference Motor<br>Capacity kW (HP) | Rated Output<br>Current A |  |  |  |  |  |  |  |
| 4□0011      | 5.5 (7.5)                           | 11                        | 4□0011                    | 3.7 (5)                             | 9.6                       |  |  |  |  |  |  |  |
| 4□0014      | 7.5 (10)                            | 14                        | 4□0014                    | 5.5 (7.5)                           | 11                        |  |  |  |  |  |  |  |
| 4□0021      | 11 (15)                             | 21                        | 4□0021                    | 7.5 (10)                            | 14                        |  |  |  |  |  |  |  |

## 1.3 Model Number and Nameplate Check

| N           | ormal Duty (ND) C6-01               | = 1                       | Heavy Duty (HD) C6-01 = 0 |                                     |                           |  |  |  |  |
|-------------|-------------------------------------|---------------------------|---------------------------|-------------------------------------|---------------------------|--|--|--|--|
| Drive Model | Reference Motor<br>Capacity kW (HP) | Rated Output<br>Current A | Drive Model               | Reference Motor<br>Capacity kW (HP) | Rated Output<br>Current A |  |  |  |  |
| 4□0027      | 15 (20)                             | 27                        | 4□0027                    | 11 (15)                             | 21                        |  |  |  |  |
| 4□0034      | 18.5 (25)                           | 34                        | 4□0034                    | 15 (20)                             | 27                        |  |  |  |  |
| 4□0040      | 22 (30)                             | 40                        | 4□0040                    | 18.5 (25)                           | 34                        |  |  |  |  |
| 4□0052      | 30 (40)                             | 52                        | 4□0052                    | 22 (30)                             | 40                        |  |  |  |  |
| 4□0065      | 37 (50)                             | 65                        | 4□0065                    | 30 (40)                             | 52                        |  |  |  |  |
| 4□0077      | 45 (60)                             | 77                        | 4□0077                    | 37 (50)                             | 65                        |  |  |  |  |
| 4□0096      | 55 (75)                             | 96                        | 4□0096                    | 45 (60)                             | 77                        |  |  |  |  |
| 4□0124      | 75 (100) 124                        |                           | 4□0124                    | 4 <b>□</b> 0124 55 (75)             |                           |  |  |  |  |
| 4□0156      | 90 (125)                            | 156                       | 4□0156                    | 4□0156 75 (100)                     |                           |  |  |  |  |
| 4□0180      | 110 (150)                           | 180                       | 4□0180                    | 90 (125)                            | 156                       |  |  |  |  |
| 4□0216      | 132 (175)                           | 216                       | 4□0216                    | 110 (150)                           | 180                       |  |  |  |  |
| 4□0240      | 150 (200)                           | 240                       | 4□0240                    | 132 (175)                           | 216                       |  |  |  |  |
| 4□0302      | 185 (250)                           | 302                       | 4□0302                    | 150 (200)                           | 240                       |  |  |  |  |
| 4□0361      | 220 (300)                           | 361                       | 4□0361                    | 185 (250)                           | 302                       |  |  |  |  |
| 4□0414      | 260 (350)                           | 414                       | 4□0414                    | 220 (300)                           | 361                       |  |  |  |  |
| 4□0477      | 300 (400)                           | 477                       | 4□0477                    | 260 (350)                           | 414                       |  |  |  |  |
| 4□0590      | 375 (500)                           | 590                       | 4□0590                    | 300 (400)                           | 477                       |  |  |  |  |
| 4□0720      | 450 (600)                           | 720                       | 4□0720                    | 375 (500)                           | 590                       |  |  |  |  |
| 4□0900      | 560 (750)                           | 900                       | 4□0900                    | 450 (600)                           | 720                       |  |  |  |  |
| 4□0930      | 580 (800)                           | 930                       | 4□0930                    | 560 (750)                           | 900                       |  |  |  |  |

## 1.4 Drive Models and Enclosure Types

Two types of enclosures are offered for U1000 drives:

- IP00/Open Type enclosure models are designed for installation in an enclosure panel that serves to protect personnel from injury caused by accidentally touching live parts.
- IP20/ UL Type 1 enclosure models mount to an indoor wall or in an enclosure panel.

#### ◆ Drive Models 2□0028 to 2□0248 and 4□0011 to 4□0930

Table 1.5 describes drive enclosures and models.

**Table 1.5 Drive Models and Enclosure Types** 

|                                                            | Enclosure Type                          |                                             |  |  |  |  |  |  |  |
|------------------------------------------------------------|-----------------------------------------|---------------------------------------------|--|--|--|--|--|--|--|
| /oltage Class                                              | IP00/Open Type Enclosure<br>Drive Model | IP20/UL Type 1 Enclosure <1><br>Drive Model |  |  |  |  |  |  |  |
|                                                            | 2□0028A                                 | 2□0028F                                     |  |  |  |  |  |  |  |
|                                                            | 2□0042A                                 | 2□0042F                                     |  |  |  |  |  |  |  |
|                                                            | 2□0054A                                 | 2□0054F                                     |  |  |  |  |  |  |  |
|                                                            | 2□0068A                                 | 2□0068F                                     |  |  |  |  |  |  |  |
| Three-Phase                                                | 2□0081A                                 | 2□0081F                                     |  |  |  |  |  |  |  |
| 200 V Class                                                | 2□0104A                                 | 2□0104F                                     |  |  |  |  |  |  |  |
|                                                            | 2□0130A                                 | 2□0130F                                     |  |  |  |  |  |  |  |
|                                                            | 2□0154A                                 | 2□0154F                                     |  |  |  |  |  |  |  |
| ree-Phase 0 V Class  2  2  2  2  2  2  2  2  2  2  2  4  4 | 2□0192A                                 | 2□0192F                                     |  |  |  |  |  |  |  |
|                                                            | 2□0248A                                 | 2□0248F                                     |  |  |  |  |  |  |  |
|                                                            | 4□0011A                                 | 4□0011F                                     |  |  |  |  |  |  |  |
|                                                            | 4□0014A                                 | 4□0014F                                     |  |  |  |  |  |  |  |
|                                                            | 4□0021A                                 | 4□0021F                                     |  |  |  |  |  |  |  |
|                                                            | 4□0027A                                 | 4□0027F                                     |  |  |  |  |  |  |  |
|                                                            | 4□0034A                                 | 4□0034F                                     |  |  |  |  |  |  |  |
|                                                            | 4□0040A                                 | 4□0040F                                     |  |  |  |  |  |  |  |
|                                                            | 4□0052A                                 | 4□0052F                                     |  |  |  |  |  |  |  |
|                                                            | 4□0065A                                 | 4□0065F                                     |  |  |  |  |  |  |  |
|                                                            | 4□0077A                                 | 4□0077F                                     |  |  |  |  |  |  |  |
|                                                            | 4□0096A                                 | 4□0096F                                     |  |  |  |  |  |  |  |
|                                                            | 4□0124A                                 | 4□0124F                                     |  |  |  |  |  |  |  |
| Three-Phase                                                | 4□0156A                                 | 4□0156F                                     |  |  |  |  |  |  |  |
| 400 V Class                                                | 4□0180A                                 | 4□0180F                                     |  |  |  |  |  |  |  |
|                                                            | 4□0216A                                 | 4□0216F                                     |  |  |  |  |  |  |  |
|                                                            | 4□0240A                                 | 4□0240F                                     |  |  |  |  |  |  |  |
|                                                            | 4□0302A                                 | 4□0302F                                     |  |  |  |  |  |  |  |
|                                                            | 4□0361A                                 | 4□0361F                                     |  |  |  |  |  |  |  |
|                                                            | 4□0414A                                 | 4□0414F                                     |  |  |  |  |  |  |  |
|                                                            | 4□0477A                                 | 4□0477F                                     |  |  |  |  |  |  |  |
|                                                            | 4□0590A                                 | 4□0590F                                     |  |  |  |  |  |  |  |
|                                                            | 4□0720A                                 | _                                           |  |  |  |  |  |  |  |
|                                                            | 4□0900A                                 | _                                           |  |  |  |  |  |  |  |
|                                                            | 4□0930A                                 | _                                           |  |  |  |  |  |  |  |

<sup>&</sup>lt;1> Remove the top protective cover when installing an IP20/UL Type 1 enclosure drive in a cabinet.

Removing the top protective cover from an IP20/UL Type 1 enclosure drive voids UL Type 1 protection while retaining IP20 conformity. Attaching a top protective cover and bottom cover to an IP00/Open Type enclosure drive will convert the drive to an IP20/UL Type 1 enclosure drive.

## ◆ Filter Modules

Table 1.6 Filter Module Models and Enclosure Types for Models 4□0720 to 4□0930

|                            | Enclosure Type                    | Applicable Drive |
|----------------------------|-----------------------------------|------------------|
| Voltage Class              | IP00/Open Type Enclosure<br>Model | CIMR-U□          |
|                            | EUJ71180□.□                       | 4□0720           |
| Three-Phase<br>400 V Class | EUJ71181□.□                       | 4□0900           |
| . Cluss                    | EUJ71182□.□                       | 4□0930           |

## 1.5 Component Names

This section gives an overview of the drive components and filter module components described in this manual.

Note:

- 1. Refer to Using the Digital Operator on page 141 for a description of the operator keypad.
- 2. The drive may have no cooling fans or up to two cooling fans depending on the model.

## ◆ IP00/Open Type Enclosure

■ Three-Phase AC 200 V Class Models 2□0028A to 2□0081A Three-Phase AC 400 V Class Models 4□0011A to 4□0077A

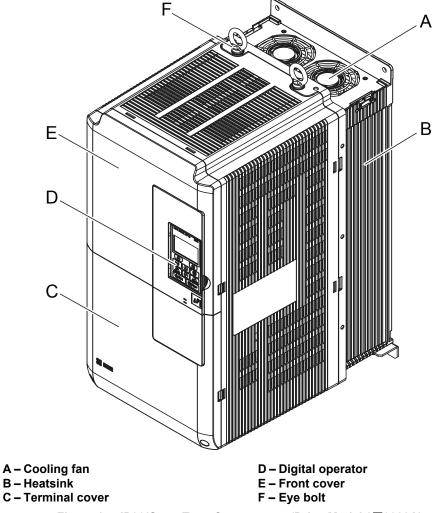



Figure 1.5 IP00/Open Type Components (Drive Model 2□0028A)

■ Three-Phase AC 200 V Class Models 2□0104A to 2□0130A Three-Phase AC 400 V Class Models 4□0096A to 4□0124A

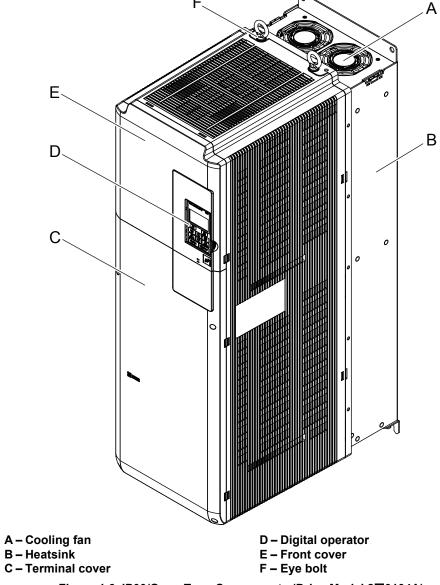



Figure 1.6 IP00/Open Type Components (Drive Model 2□0104A)

## ■ Three-Phase AC 200 V Class Models 2□0154A and 2□0192A Three-Phase AC 400 V Class Models 4□0156A and 4□0180A

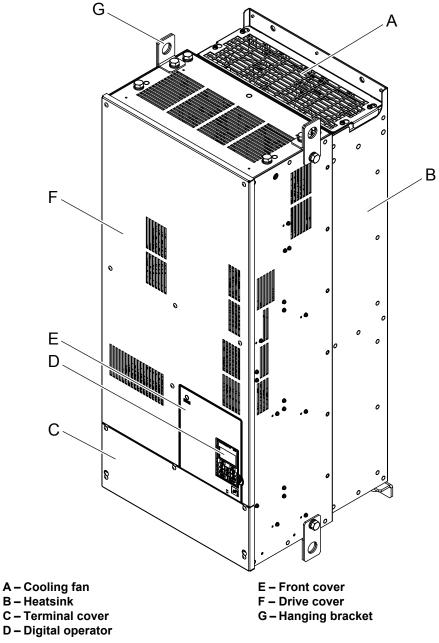



Figure 1.7 IP00/Open Type Components (Drive Model 2□0154A)

## ■ Three-Phase AC 200 V Class Model 2□0248A Three-Phase AC 400 V Class Models 4□0216A to 4□0414A

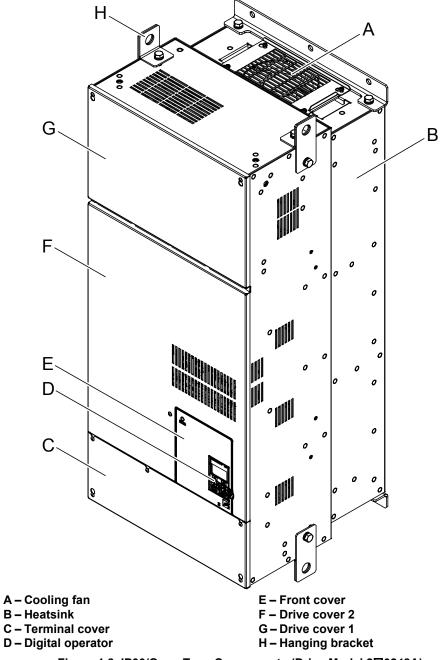



Figure 1.8 IP00/Open Type Components (Drive Model 2□0248A)

## ■ Three-Phase AC 400 V Class Models 4□0477A and 4□0590A

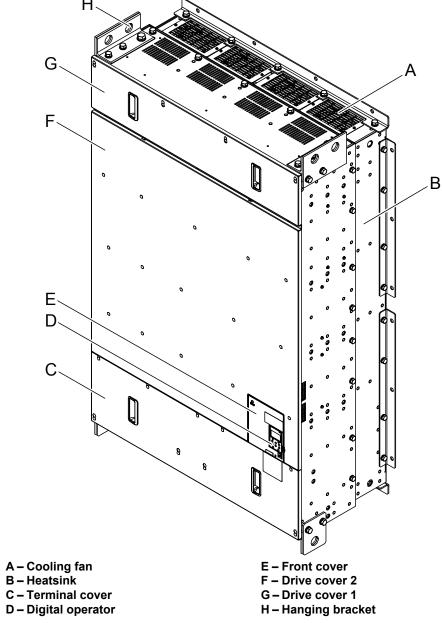



Figure 1.9 IP00/Open Type Components (Drive Model 4□0477A)

## ■ Three-Phase AC 400 V Class Models 4□0720A to 4□0930A

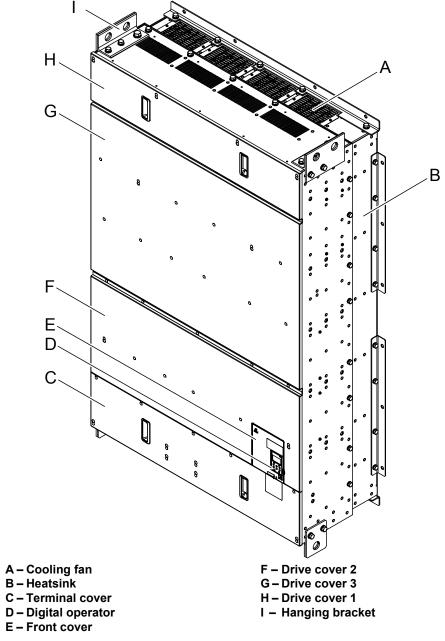



Figure 1.10 IP00/Open Type Components (Drive Model 4□0720A)

## ◆ IP20/UL Type 1 Enclosure

■ Three-Phase AC 200 V Class Models 2□0028F to 2□0081F Three-Phase AC 400 V Class Models 4□0011F to 4□0077F

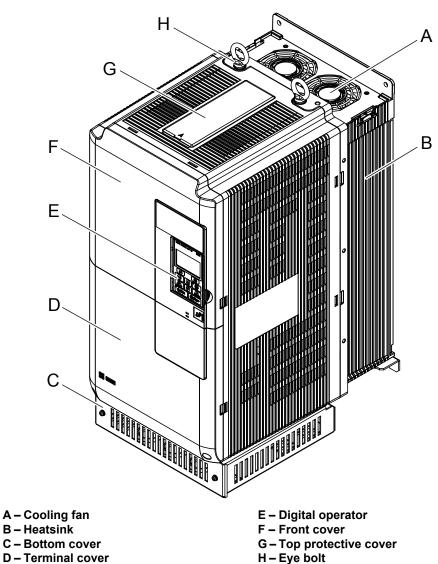



Figure 1.11 IP20/UL Type 1 Components (Drive Model 2□0028F)

■ Three-Phase AC 200 V Class Models 2□0104F and 2□0130F Three-Phase AC 400 V Class Models 4□0096F and 4□0124F

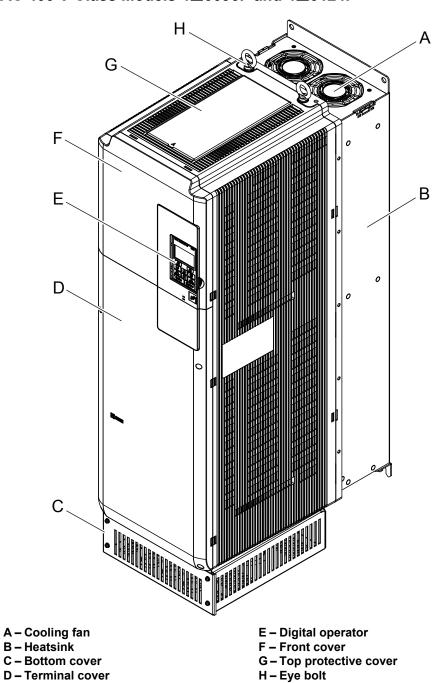
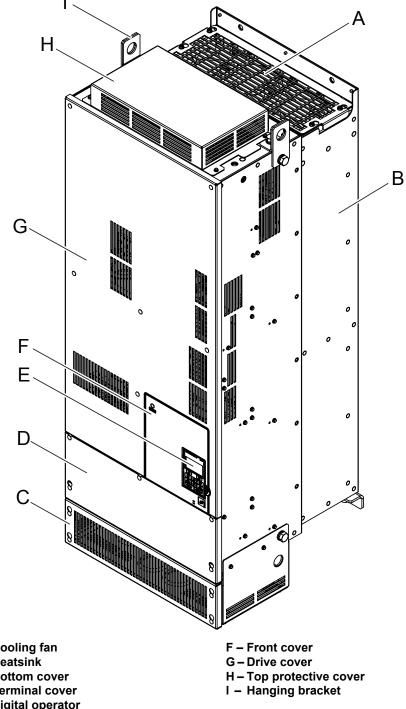



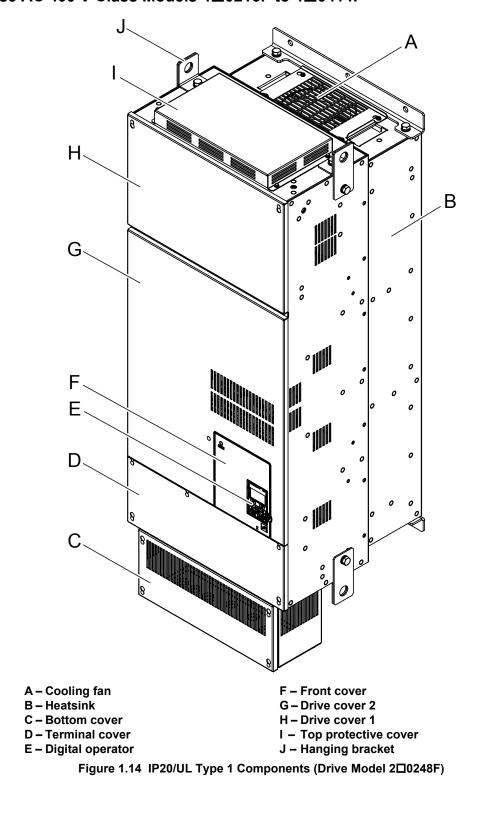

Figure 1.12 IP20/UL Type 1 Components (Drive Model 2□0104F)

# Three-Phase AC 200 V Class Models 2□0154F and 2□0192F Three-Phase AC 400 V Class Models 4□0156F and 4□0180F



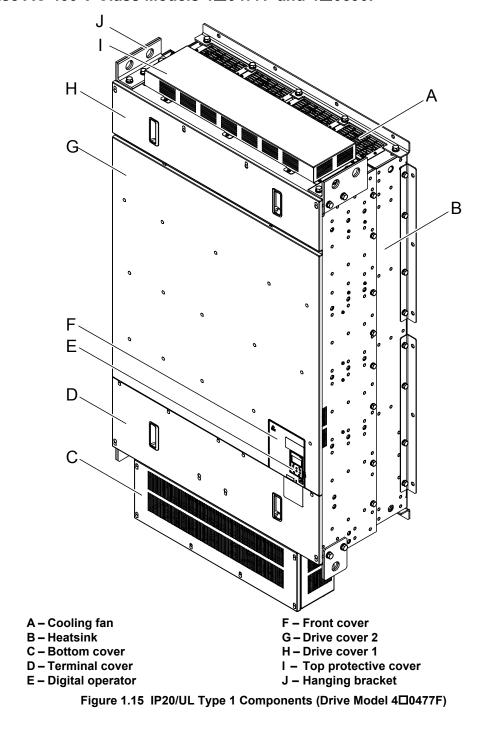
A – Cooling fan

B - Heatsink


C - Bottom cover

D - Terminal cover

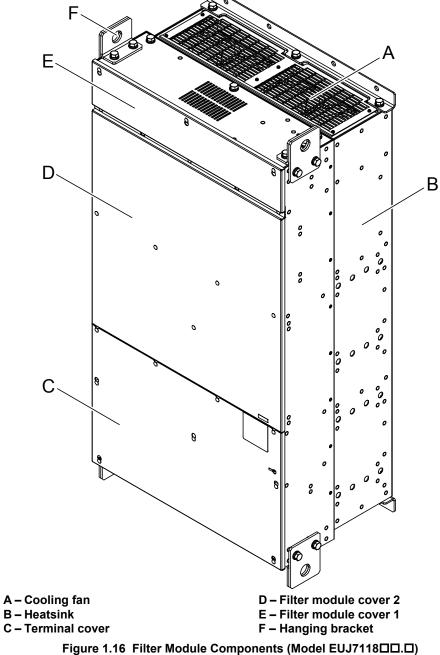
E - Digital operator


Figure 1.13 IP20/UL Type 1 Components (Drive Model 2□0154F)

## ■ Three-Phase AC 200 V Class Model 2□0248F Three-Phase AC 400 V Class Models 4□0216F to 4□0414F

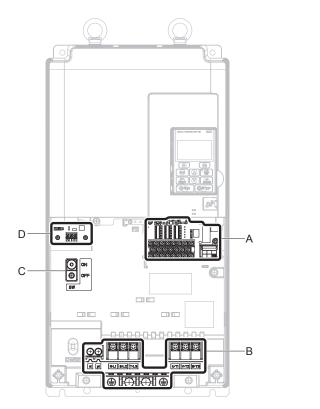


## ě

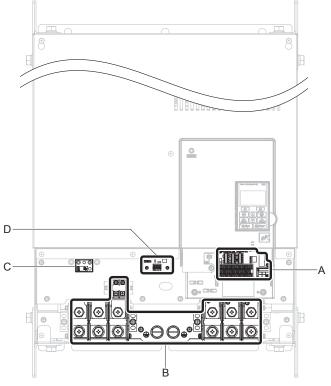

## ■ Three-Phase AC 400 V Class Models 4□0477F and 4□0590F



## **Filter Modules**


Drive models 4\(\sigma 0720\)F to 4\(\sigma 0930\)F require stand-alone installation of input fuses, damping resistors, and AC reactors. These components are stored in a unit called the filter module.

#### Three-Phase AC 400 V Class Models

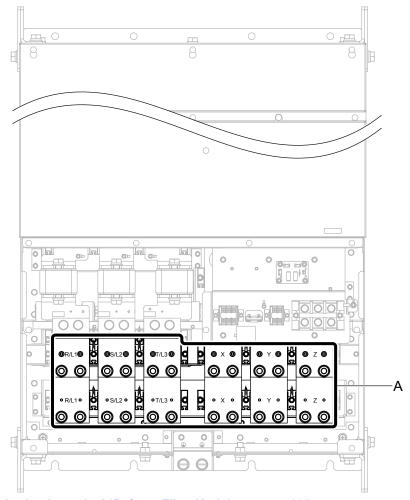



## Front Views

#### ■ Drive Models 2□0028 to 2□0248 and 4□0011 to 4□0930



- A Terminal board (Refer to Control Circuit Wiring on page 111)
- B Main circuit terminal (Refer to Wiring the Main Circuit Terminal on page 110)




- C EMC filter switch (Models
  UU□E□□□□ and UU□W□□□□)
  <1>
- D 24 V control power supply unit (Refer to 24 V Control Power Supply Unit Wiring on page 129)

Figure 1.17 Front Views of Drives

<1> Use a stand-alone EMC filter for drive models  $4\square0720$  to  $4\square0930$ .

### **■** Filter Module



A -Main circuit terminal (Refer to Filter Module on page 100)

Figure 1.18 Front View of Filter Module (Model EUJ7118□□.□)

# **Mechanical Installation**

This chapter explains how to properly mount and install the drive.

| 2.1 | SECTION SAFETY          | 5   |
|-----|-------------------------|-----|
| 2.2 | MECHANICAL INSTALLATION | -60 |

## 2.1 Section Safety

### **A** WARNING

#### Fire Hazard

Provide sufficient cooling when installing the drive inside an enclosed panel or cabinet.

Failure to comply could result in overheating and fire.

When multiple drives are placed inside the same enclosure panel, install proper cooling to ensure air entering the enclosure does not exceed 40 °C.

#### **Crush Hazard**

Use a dedicated lifter when transporting the drive by a lifter.

Failure to comply may result in serious injury or death from falling equipment.

Only use vertical suspension to temporarily lift the drive during installation to an enclosure panel. Do not use vertical suspension to transport the drive.

Failure to comply may result in serious injury or death from falling equipment.

Use screws to securely affix the drive front cover, terminal blocks, and other drive components prior to vertical suspension.

Failure to comply may result in serious injury or death from falling equipment.

Do not subject the drive to vibration or impact greater than 1.96 m/s<sup>2</sup> (0.2 G) while it is suspended by the cables.

Failure to comply may result in serious injury or death from falling equipment.

Do not attempt to flip the drive over or leave the drive unattended while it is suspended by the wires.

Failure to comply may result in serious injury or death from falling equipment.

### **A** CAUTION

#### **Crush Hazard**

Do not carry the drive by the front cover or the terminal cover.

Failure to comply may result in minor or moderate injury from the main body of the drive falling.

#### NOTICE

### **Equipment Hazard**

Prevent foreign matter such as metal shavings or wire clippings from falling into the drive during drive installation and project construction.

Failure to comply could result in damage to the drive. Place a temporary cover over the top during installation. Be sure to remove the temporary cover before start-up, as the cover will reduce ventilation and cause the unit to overheat.

Observe proper electrostatic discharge (ESD) procedures when handling the drive.

Failure to comply could result in ESD damage to the drive circuitry.

Operating the motor in the low-speed range diminishes the cooling effects, increases motor temperature, and may lead to motor damage by overheating.

Reduce the motor torque in the low-speed range whenever using a standard blower cooled motor. If 100% torque is required continuously at low speed, consider using a special drive or vector-control motor. Select a motor that is compatible with the required load torque and operating speed range.

The speed range for continuous operation differs according to the lubrication method and motor manufacturer.

If the motor is to be operated at a speed higher than the rated speed, consult with the manufacturer.

Continuously operating an oil-lubricated motor in the low-speed range may result in burning.

#### **NOTICE**

When the input voltage is 440 V or higher or the wiring distance is greater than 100 meters, pay special attention to the motor insulation voltage or use a drive-rated motor with reinforced insulation.

Failure to comply could lead to motor winding failure.

Motor vibration may increase when operating a machine in variable-speed mode, if that machine previously operated at a constant speed.

Install vibration-proof rubber on the motor base or use the frequency jump function to skip a frequency resonating the machine.

The motor may require more acceleration torque with drive operation than with a commercial power supply.

Set a proper V/f pattern by checking the load torque characteristics of the machine to be used with the motor.

The rated input current of submersible motors is higher than the rated input current of standard motors.

Select an appropriate drive according to its rated output current. When the distance between the motor and drive is long, use a cable thick enough to connect the motor to the drive to prevent motor torque reduction.

The current rating differs for a motor with variable pole pitches differs from a standard motor.

Check the maximum current of the motor before selecting the drive capacity. Only switch motor poles when the motor is stopped. Switching between motor during run will trigger overcurrent protection circuitry or result in overvoltage from regeneration, and the motor will simply coast to stop.

When using an explosion-proof motor, it must be subject to an explosion-proof test in conjunction with the drive.

This is also applicable when an existing explosion-proof motor is to be operated with the drive. Since the drive itself is not explosion-proof, always install it in a safe place.

Never lift the drive up while the cover is removed.

This can damage the terminal board and other components.

## 2.2 Mechanical Installation

This section outlines specifications, procedures, and the environment for proper mechanical installation of the drive and filter module.

#### Installation Environment

Install the drive and filter module in an environment matching the specifications in *Table 2.1* and *Table 2.2* to help prolong optimum performance life.

#### ■ Drive Models 2□0028 to 2□0248 and 4□0011 to 4□0930

**Table 2.1 Drive Installation Environment** 

| Environment         | Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Installation Area   | Indoors                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ambient Temperature | IP00/Open Type enclosure: -10 °C to +50 °C (14 °F to 122 °F) IP20/ UL Type 1 enclosure: -10 °C to +40 °C (14 °F to 104 °F) Drive reliability improves in environments without wide temperature fluctuations. When using the drive in an enclosure panel, install a cooling fan or air conditioner in the area to ensure that the air temperature inside the enclosure does not exceed the specified levels. Do not allow ice to develop on the drive. |
| Humidity            | 95% RH or less and free of condensation                                                                                                                                                                                                                                                                                                                                                                                                               |
| Storage Temperature | -20 °C to +60 °C (-4 °F to +104 °F)                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Surrounding Area    | Install the drive in an area free from:  oil mist and dust  metal shavings, oil, water, or other foreign materials  radioactive materials  combustible materials (e.g., wood)  harmful gases and liquids  excessive vibration  chlorides  direct sunlight.                                                                                                                                                                                            |
| Altitude            | 1000 m (3281 ft.) or lower, up to 3000 m (9843 ft.) with derating. <i>Refer to Drive Derating Data on page 498</i> for details.                                                                                                                                                                                                                                                                                                                       |
| Vibration           | 10 to 20 Hz: 9.8 m/s <sup>2</sup> (4\(\sigma 0477\) to 4\(\sigma 0930\): 5.9 m/s <sup>2</sup> ) 20 to 55 Hz: 5.9 m/s <sup>2</sup> (2\(\sigma 0104\) to 2\(\sigma 0248\), 4\(\sigma 0096\) to 4\(\sigma 0930\): 2.0 m/s <sup>2</sup> )                                                                                                                                                                                                                 |
| Orientation         | Install the drive vertically to maintain maximum cooling effects.                                                                                                                                                                                                                                                                                                                                                                                     |

**NOTICE:** Avoid placing peripheral devices, transformers, or other electronics near the drive, as the noise created can lead to erroneous operation. Take proper steps to shield the drive from noise if such devices must be used in close proximity.

**NOTICE:** Prevent foreign matter such as metal shavings and wire clippings from falling into the drive during installation. Failure to comply could result in damage to the drive. Place a temporary cover over the top of the drive during installation. Remove the temporary cover before start-up, as the cover will reduce ventilation and cause overheat.

#### ■ Filter Module

Table 2.2 Filter Module Installation Environment

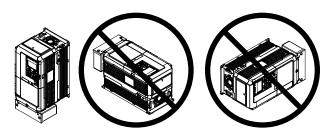
| Environment                                                                                                                                                                                                                                                                                                                                                                                    | Conditions                                                                                                                                                                                                                                                 |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Installation Area                                                                                                                                                                                                                                                                                                                                                                              | Indoors                                                                                                                                                                                                                                                    |  |  |  |  |
| IP00/Open Type enclosure: -10 °C to +50 °C (14 °F to 122 °F) Filter module reliability improves in environments without wide temperature fluctuations.  When using the filter module in an enclosure panel, install a cooling fan or air conditioner in the area air temperature inside the enclosure does not exceed the specified levels.  Do not allow ice to develop on the filter module. |                                                                                                                                                                                                                                                            |  |  |  |  |
| Humidity                                                                                                                                                                                                                                                                                                                                                                                       | 95% RH or less and free of condensation                                                                                                                                                                                                                    |  |  |  |  |
| Storage Temperature                                                                                                                                                                                                                                                                                                                                                                            | -20 °C to +60 °C (-4 °F to +104 °F)                                                                                                                                                                                                                        |  |  |  |  |
| Surrounding Area                                                                                                                                                                                                                                                                                                                                                                               | Install the drive in an area free from:  oil mist and dust  metal shavings, oil, water, or other foreign materials  radioactive materials  combustible materials (e.g., wood)  harmful gases and liquids  excessive vibration  chlorides  direct sunlight. |  |  |  |  |
| Altitude                                                                                                                                                                                                                                                                                                                                                                                       | 1000 m (3281 ft.) or lower, up to 3000 m (9843 ft.) with derating. <i>Refer to Altitude Derating on page 500</i> for details.                                                                                                                              |  |  |  |  |
| Vibration                                                                                                                                                                                                                                                                                                                                                                                      | 10 to 20 Hz: 5.9 m/s <sup>2</sup><br>20 to 55 Hz: 2.0 m/s <sup>2</sup>                                                                                                                                                                                     |  |  |  |  |
| Orientation                                                                                                                                                                                                                                                                                                                                                                                    | Install the filter module vertically to maintain maximum cooling effects.                                                                                                                                                                                  |  |  |  |  |

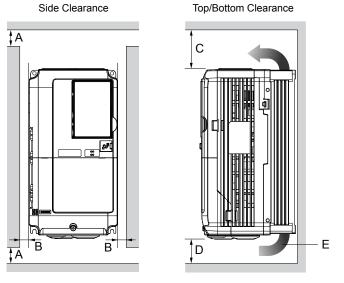
**NOTICE:** Avoid placing peripheral devices, transformers, or other electronics near the filter module, as the noise created can lead to erroneous operation. Take proper steps to shield the filter module from noise if such devices must be used in close proximity.

**NOTICE:** Prevent foreign matter such as metal shavings and wire clippings from falling into the filter module during installation. Failure to comply could result in damage to the filter module. Place a temporary cover over the top of the filter module during installation. Remove the temporary cover before start-up, as the cover will reduce ventilation and cause overheat.

## ◆ Installation Orientation and Spacing

NOTICE: Install the drive upright as illustrated in Figure 2.1. Failure to comply may damage the drive due to improper cooling.





Figure 2.1 Correct Installation Orientation

NOTICE: Install the drive upright as specified in the manual. Failure to comply may damage the drive due to improper cooling.

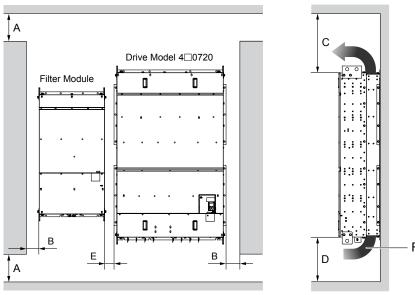
#### ■ Single Drive Installation

Figure 2.2 and Figure 2.3 show the installation distance required to maintain sufficient space for airflow and wiring.

#### Drive Models 2□0028 to 2□0248 and 4□0011 to 4□0590



- A 50 mm (1.97 in) minimum
- B 30 mm (1.18 in) minimum
- C 200 mm (7.87 in) minimum
- D 120 mm (4.72 in) minimum
- **E Airflow direction**


Figure 2.2 Correct Drive Installation Spacing

**Note:** IP20/UL Type 1 enclosure and IP00/Open Type enclosure models require the same amount of space above and below the drive for installation.

#### Drive Models 4□0720 to 4□0930 and Filter Module

Side Clearance

Top/Bottom Clearance



- A 50 mm (1.97 in) minimum
- B 30 mm (1.18 in) minimum
- C 200 mm (7.87 in) minimum
- D 120 mm (4.72 in) minimum
- E 60 mm (2.36 in) minimum
- F Airflow direction

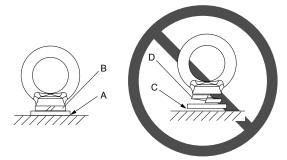
Figure 2.3 Correct Drive Model 4□0720 and Filter Module Installation Spacing

## Instructions on Installation Using the Eye Bolts and Hanging Brackets

Eye bolts and hanging brackets are used to install the drive or to temporarily lift the drive during drive replacement. Using the eye bolts and hanging brackets, the drive can be installed in an enclosure panel or on a wall. Do not leave the drive suspended by the wires in a horizontal or vertical position for long periods of time. Do not transport the drive over long distances. Read the following precautions and instructions before installing the drive.

**WARNING!** Crush Hazard. Observe the following instructions and precautions. Failure to comply could result in serious injury or death from falling equipment.

Only use vertical suspension to temporarily lift the drive during installation to an enclosure panel. Do not use vertical suspension to transport the drive.


Confirm that the spring washer is completely closed prior to lifting to prevent damage to the drive.

Use screws to securely affix the drive front cover, terminal blocks, and other drive components prior to vertical suspension.

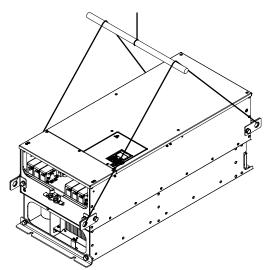
Do not subject the drive to vibration or impact greater than 1.96 m/s<sup>2</sup> (0.2 G) while it is suspended by the wires.

Do not leave the drive unattended while it is suspended by the wires.

Do not attempt to flip the drive over while it is suspended by the wires.



- A No space between drive and washer
- B Spring washer fully closed
- C Space between drive and washer
- D Spring washer open


Figure 2.4 Spring Washer

## ■ Horizontal Suspension of Drive Models 2□0154 to 2□0248, 4□0156 to 4□0930, and Filter Module

To make a wire hanger or frame for use when lifting the drive with a crane, lay the drive in a horizontal position and pass a wire through the hanging brackets.

**NOTICE**: Use the hanging brackets on the top and hanging holes of the bottom cover when lifting drive models 2□0154F, 2□0192F, 4□0156F, and 4□0180F.

 $2\Box 0154A$ ,  $2\Box 0192A$ ,  $2\Box 0248$ ,  $4\Box 0156A$ ,  $4\Box 0180A$ , and  $4\Box 0216$  to  $4\Box 0590$ ,  $4\Box 0720A$  to  $4\Box 0930A$ , and Filter Module



 $2\square 0154F$ ,  $2\square 0192F$ ,  $4\square 0156F$ , and  $4\square 0180F$ 

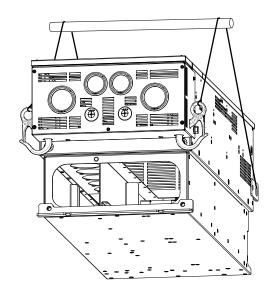



Figure 2.5 Horizontal Suspension of Drive Model 2□0154

#### ■ Vertical Suspension of the Drive and Filter Module

Follow the procedure described below when suspending the drive or filter module with eye bolts or hanging brackets.

#### Drive Models $2\square 0028$ to $2\square 0130$ and $4\square 0011$ to $4\square 0124$

**WARNING!** Crush Hazard. Use an adequate length of wire to ensure a 50° or wider suspension angle as illustrated in **Figure 2.6**. The maximum allowable load of the eye bolts cannot be guaranteed when the drive or filter module is suspended with the wires at angles less than 50°. Failure to comply may result in serious injury or death from falling equipment.

1. Pass wire through the holes of the two eye bolts.

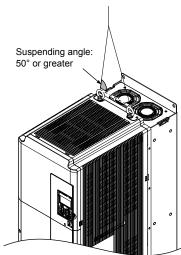



Figure 2.6 Suspension Using Wires and Eye Bolts

- 2. Gradually take up the slack in the wires and hoist the drive or filter module after the wires are stretched tight.
- 3. Lower the drive or filter module when ready to install in the enclosure panel. Stop lowering when near the floor, then slowly begin lowering the drive or filter module again until the drive or filter module is placed correctly.

#### *Drive Models 2 □0154 to 2 □0248 and 4 □0156 to 4 □0414*

**WARNING!** Crush Hazard. Use an adequate length of wire to ensure a 50° or wider suspension angle as illustrated in **Figure 2.7**. The maximum allowable load of the eye bolts cannot be guaranteed when the drive is suspended with the wires at angles less than 50°. Failure to comply may result in serious injury or death from falling equipment.

- 1. Remove the two hanging brackets from the drive lower side panels and bolt them on the top panel.
  - Note: 1. Tighten the hanging brackets with the specified tightening torque: M10: 18 to 23 N·m (159 to 204 in-lb), M12: 32 to 40 N·m (283 to 354 in-lb).
    - 2. Four hanging brackets are attached to the top of IP20/UL Type 1 drives 2\(\sigma 0154\)F, 2\(\sigma 0192\)F, 4\(\sigma 0156\)F, and 4\(\sigma 0180\)F.

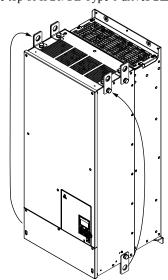



Figure 2.7 Location of Hanging Brackets (Drive Models 2□0154 to 2□0248 and 4□0156 to 4□0414)

2. Pass wire through the holes of all four hanging brackets.

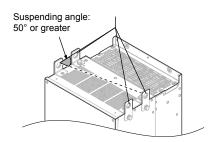



Figure 2.8 Drive Suspension Using Wires and Hanging Brackets (Drive Models 2□0154 to 2□0248 and 4□0156 to 4□0414)

- 3. Gradually take up the slack in the wires and hoist the drive after the wires are stretched tight.
- **4.** Lower the drive when ready to install in the enclosure panel. Stop lowering the drive when it is near the floor, then slowly begin lowering the drive again until the drive is placed correctly.

#### *Drive Models 4 □ 0477 to 4 □ 0930*

1. Pass wire through the holes of all four hanging brackets.

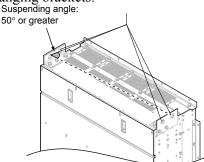



Figure 2.9 Drive Suspension Using Wires and Hanging Brackets (Models 4□0477 to 4□0930)

- 2. Gradually take up the slack in the wires and hoist the drive after the wires are stretched tight.
- 3. Lower the drive when ready to install in the enclosure panel. Stop lowering the drive when it is near the floor, then slowly begin lowering the drive again very slowly until the drive is placed correctly.

#### Filter Module

1. Pass wire through the holes of all four hanging brackets.

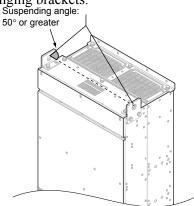



Figure 2.10 Filter Module Suspension Using Wires and Hanging Brackets (EUJ7118□□.□)

- 2. Gradually take up the slack in the wires and hoist the filter module after the wires are stretched tight.
- 3. Lower the filter module when ready to install in the enclosure panel. Stop lowering the filter module when it is near the floor, then slowly begin lowering the filter module again very slowly until the filter module is placed correctly.

## Digital Operator Remote Usage

#### Remote Operation

The digital operator mounted on the drive can be removed and connected to the drive using a remote control extension cable up to 3 m long to facilitate operation when the drive is installed in a location where it cannot be easily accessed.

The digital operator can also be permanently mounted remote locations such as panel doors using a remote control extension cable and an installation support set (depending on the installation type).

Note: Refer to Drive Options and Peripheral Devices on page 470 for information on remote control extension cables and installation support sets.

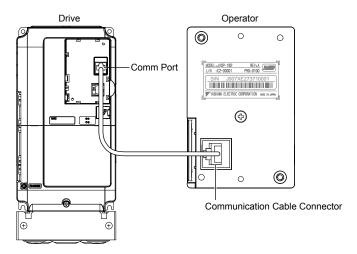



Figure 2.11 Communication Cable Connection

#### ■ Digital Operator Remote Installation

#### **Digital Operator Dimensions**

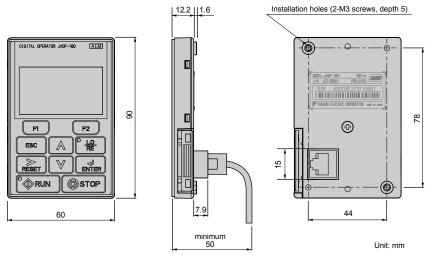



Figure 2.12 Digital Operator Dimensions

#### **Installation Types and Required Materials**

The digital operator mounts to an enclosure two different ways:

- External/face-mount installs the operator outside the enclosure panel
- Internal/flush-mount installs the operator inside the enclosure panel

Table 2.3 Digital Operator Installation Methods and Required Tools

| Installation<br>Method  | Description                                                                                                        | Installation<br>Support Sets                                                         | Model      | Required Tools                             |
|-------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------|--------------------------------------------|
| External/<br>Face-Mount | Simplified installation with<br>the digital operator is<br>mounted on the outside of<br>the panel with two screws. | _                                                                                    | -          | Phillips screwdriver (#1)                  |
| Flush-Mount             | Encloses the digital operator in the panel. The front of the digital operator                                      | Installation Support Set A (for mounting with screws through holes in the panel)     | EZZ020642A | Phillips screwdriver (#1, #2)              |
|                         | is flush with the outside of the panel.                                                                            | Installation Support Set B (for use with threaded studs that are fixed to the panel) | EZZ020642B | Phillips screwdriver (#1)<br>Wrench (7 mm) |

**NOTICE:** Prevent foreign matter such as metal shavings or wire clippings from falling into the drive during installation and project construction. Failure to comply could result in damage to the drive. Place a temporary cover over the top of the drive during installation. Remove the temporary cover before drive start-up, as the cover will reduce ventilation and cause the drive to overheat.

#### External/Face-Mount

- 1. Cut an opening in the enclosure panel for the digital operator as shown in *Figure 2.14*.
- 2. Position the digital operator so the display faces outwards, and mount it to the enclosure panel as shown in *Figure* 2.13.

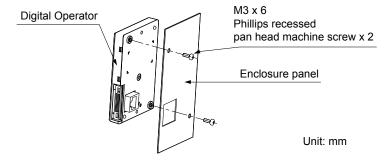



Figure 2.13 External/Face-Mount Installation

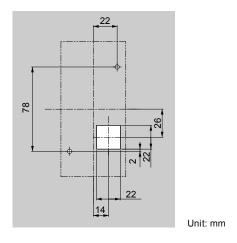



Figure 2.14 Panel Cut-Out Dimensions (External/Face-Mount Installation)

#### Internal/Flush-Mount

An internal flush-mount requires an installation support set that must be purchased separately. Contact Yaskawa or a Yaskawa representative to order an installation support set and mounting hardware. *Figure 2.15* illustrates how to attach the Installation Support Set A.

- 1. Cut an opening in the enclosure panel for the digital operator as shown in Figure 2.16.
- **2.** Mount the digital operator to the installation support.
- **3.** Mount the installation support set and digital operator to the enclosure panel.

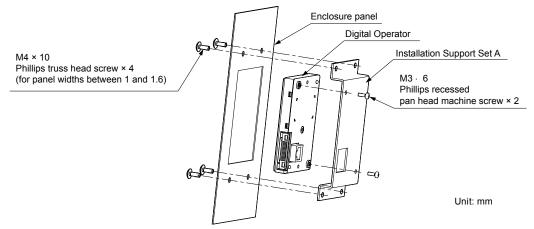



Figure 2.15 Internal/Flush Mount Installation

Note: Use a gasket between the enclosure panel and the digital operator in environments with a significant amount of dust or other airborne debris.

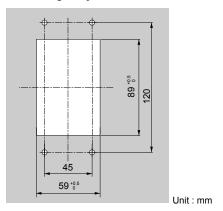



Figure 2.16 Panel Cut-Out Dimensions (Internal/Flush-Mount Installation)

## ◆ Exterior and Mounting Dimensions

## ■ Drive Models 2□0028□ to 2□0248□ and 4□0011□ to 4□0930□

**Table 2.4 Drive Models and Types** 

|                             | Drive                                                                                                      | ••                                                                                                                                                                                                 |      |
|-----------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Protective Design           | Three-Phase<br>200 V Class                                                                                 | Three-Phase<br>400 V Class                                                                                                                                                                         | Page |
| IP00 Enclosure              | 2□0028A<br>2□0042A<br>2□0054A<br>2□0068A<br>2□0081A<br>2□0104A<br>2□0130A<br>2□0154A<br>2□0192A<br>2□0248A | 4□0011A<br>4□0014A<br>4□0021A<br>4□0027A<br>4□0034A<br>4□0040A<br>4□0052A<br>4□0065A<br>4□0077A<br>4□0096A<br>4□0124A<br>4□0156A<br>4□0180A<br>4□0216A<br>4□0240A<br>4□0302A<br>4□0361A<br>4□0414A | 70   |
|                             | -                                                                                                          | 4□0477A<br>4□0590A<br>4□0720A<br>4□0900A<br>4□0930A                                                                                                                                                | 72   |
| IP20/UL Type 1<br>Enclosure | 2□0028F<br>2□0042F<br>2□0054F<br>2□0068F<br>2□0081F<br>2□0104F<br>2□0130F<br>2□0154F<br>2□0192F<br>2□0248F | 4□0011F<br>4□0014F<br>4□0021F<br>4□0027F<br>4□0034F<br>4□0040F<br>4□0052F<br>4□0065F<br>4□0077F<br>4□0096F<br>4□0124F<br>4□0156F<br>4□0180F<br>4□0216F<br>4□0240F<br>4□0302F<br>4□0361F<br>4□0414F | 73   |
|                             | -                                                                                                          | 4□0477F<br>4□0590F                                                                                                                                                                                 | 74   |

#### **IP00 Enclosure Drives**

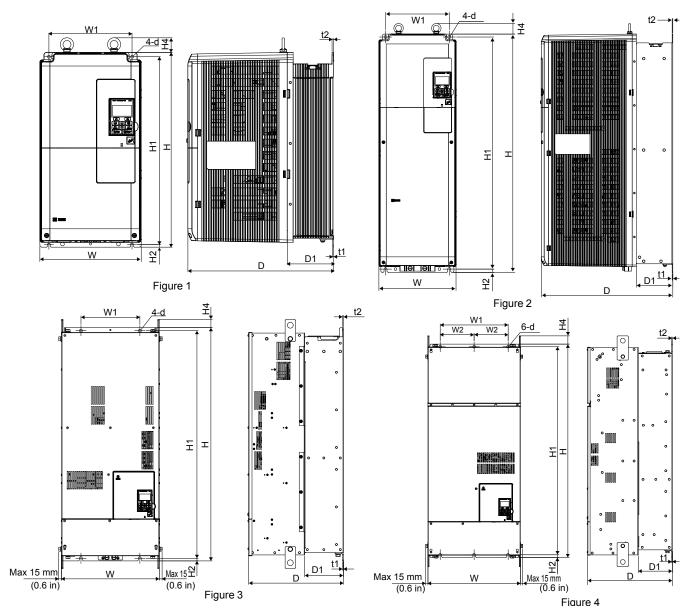



Table 2.5 Dimensions for IP00 Enclosure: 200 V Class

|                    |        |                |                 |                |                |               | Dimensior       | ns mm (in      | 1)           |                 |               |               |              | Wt. k                 | Wt. kg (lb)           |  |
|--------------------|--------|----------------|-----------------|----------------|----------------|---------------|-----------------|----------------|--------------|-----------------|---------------|---------------|--------------|-----------------------|-----------------------|--|
| Drive Model        | Figure | w              | н               | D              | W1             | W2            | H1              | H2             | H4           | D1              | t1            | t2            | d            | Models<br>2A□/<br>2P□ | Models<br>2E□/<br>2W□ |  |
| 2□0028A            |        | 250<br>(9.84)  | 480<br>(18.89)  | 360<br>(14.17) | 205<br>(8.07)  | ı             | 463<br>(18.22)  | 6.5<br>(0.25)  | 40<br>(1.58) | 100<br>(3.93)   | 2.3<br>(0.10) | 4<br>(0.16)   | 7<br>(0.28)  | 20<br>(44)            | 21<br>(46)            |  |
| 2□0042A<br>2□0054A | 1      | 264            | 650             | 420            | 218            |               | 629             | 11.5           | 40           | 115.5           | 2.3           | 4             | 10           | 32<br>(71)            | 33<br>(73)            |  |
| 2□0068A<br>2□0081A |        | (10.39)        | (25.60)         | (16.53)        | (8.58)         | _             | (24.73)         | (0.45)         | (1.58)       | (4.54)          | (0.10)        | (0.16)        | (0.40)       | 35<br>(77)            | 36<br>(79)            |  |
| 2□0104A<br>2□0130A | 2      | 264<br>(10.39) | 816<br>(32.12)  | 450<br>(17.71) | 218<br>(8.58)  | -             | 795<br>(31.29)  | 11.5<br>(0.45) | 40<br>(1.58) | 124.5<br>(4.90) | 2.3<br>(0.10) | 2.3<br>(0.10) | 10<br>(0.40) | 60<br>(132)           | 63<br>(139)           |  |
| 2□0154A<br>2□0192A | 3      | 415<br>(16.33) | 900<br>(38.97)  | 403<br>(15.86) | 250<br>(9.84)  | -             | 966<br>(38.03)  | 11<br>(0.43)   | 40<br>(1.58) | 165<br>(6.49)   | 4.5<br>(0.18) | 3.9<br>(0.15) | 12<br>(0.47) | 110<br>(245)          | 115<br>(254)          |  |
| 2□0248A            | 4      | 490<br>(19.29) | 1132<br>(44.56) | 450<br>(17.71) | 360<br>(14.17) | 180<br>(7.08) | 1104<br>(43.46) | 14.5<br>(0.57) | 49<br>(1.92) | 181<br>(7.12)   | 4.5<br>(0.18) | 4.5<br>(0.18) | 14<br>(0.55) | 176<br>(388)          | 181<br>(399)          |  |

Table 2.6 Dimensions for IP00 Enclosure: 400 V Class

|             |        |                |                 | 1 4 5 10 2     |                | 011010110      | IOI IFU         |                | Jui 01 10    | <b>0</b> 1 0.00 |               |               |              |                       |                       |
|-------------|--------|----------------|-----------------|----------------|----------------|----------------|-----------------|----------------|--------------|-----------------|---------------|---------------|--------------|-----------------------|-----------------------|
|             |        |                |                 |                |                | ا              | Dimensior       | ns mm (in      | )            |                 |               |               |              | Wt. k                 | g (lb)                |
| Drive Model | Figure | w              | н               | D              | W1             | W2             | H1              | H2             | H4           | D1              | t1            | t2            | d            | Models<br>4A□/<br>4P□ | Models<br>4E□/<br>4W□ |
| 4□0011A     |        |                |                 |                |                |                |                 |                |              |                 |               |               |              |                       |                       |
| 4□0014A     |        |                |                 |                |                |                |                 |                |              |                 |               |               |              |                       |                       |
| 4□0021A     |        | 250<br>(9.84)  | 480<br>(18.89)  | 360<br>(14.17) | 205<br>(8.07)  | -              | 463<br>(18.22)  | 6.5<br>(0.25)  | 40<br>(1.58) | 100<br>(3.93)   | 2.3 (0.10)    | 4<br>(0.16)   | 7 (0.28)     | 20<br>(44)            | 21<br>(46)            |
| 4□0027A     |        | (2.64)         | (10.07)         | (14.17)        | (8.07)         |                | (10.22)         | (0.23)         | (1.56)       | (3.73)          | (0.10)        | (0.10)        | (0.28)       | (44)                  | (40)                  |
| 4□0034A     | 1      |                |                 |                |                |                |                 |                |              |                 |               |               |              |                       |                       |
| 4□0040A     |        |                |                 |                |                |                |                 |                |              |                 |               |               |              | 32                    | 33                    |
| 4□0052A     |        | 264            | 650             | 420            | 218            |                | 629             | 11.5           | 40           | 115.5           | 2.3           | 4             | 10           | (71)                  | (73)                  |
| 4□0065A     |        | (10.39)        | (25.60)         | (16.53)        | (8.58)         | _              | (24.73)         | (0.45)         | (1.57)       | (4.54)          | (0.10)        | (0.16)        | (0.40)       | 35                    | 36                    |
| 4□0077A     |        |                |                 |                |                |                |                 |                |              |                 |               |               |              | (77)                  | (79)                  |
| 4□0096A     | 2      | 264            | 816             | 450            | 218            | 1              | 795             | 11.5           | 40           | 124.5           | 2.3           | 2.3           | 10           | 60                    | 63                    |
| 4□0124A     | 2      | (10.39)        | (32.12)         | (17.71)        | (8.58)         |                | (31.29)         | (0.45)         | (1.57)       | (4.90)          | (0.10)        | (0.10)        | (0.28)       | (132)                 | (139)                 |
| 4□0156A     | 3      | 415            | 990             | 403            | 250            |                | 966             | 11             | 40           | 165             | 4.5           | 3.9           | 12           | 110                   | 115                   |
| 4□0180A     | 3      | (16.33)        | (38.97)         | (15.86)        | (9.84)         | _              | (38.03)         | (0.43)         | (1.57)       | (6.49)          | (0.18)        | (0.15)        | (0.47)       | (245)                 | (254)                 |
| 4□0216A     |        | 490            | 1132            | 450            | 360            | 180            | 1104            | 14.5           | 49           | 181             | 4.5           | 4.5           | 14           | 176                   | 181                   |
| 4□0240A     |        | (19.29)        | (44.56)         | (17.71)        | (14.17)        | (7.08)         | (43.46)         | (0.57)         | (1.92)       | (7.12)          | (0.18)        | (0.18)        | (0.55)       | (388)                 | (399)                 |
| 4□0302A     | 4      |                |                 |                |                |                |                 |                |              |                 |               |               |              |                       |                       |
| 4□0361A     |        | 695<br>(27.36) | 1132<br>(44.56) | 450<br>(17.71) | 560<br>(22.04) | 280<br>(11.02) | 1102<br>(43.39) | 14.5<br>(0.57) | 65<br>(2.55) | 178<br>(7.00)   | 4.5<br>(0.18) | 4.5<br>(0.18) | 14<br>(0.55) | 259<br>(571)          | 267<br>(589)          |
| 4□0414A     |        | (=7.50)        | ( )             | (= =)          | (==)           | ()             | ()              | (****)         | (=/          | (,,,,,)         | (41-4)        | (****)        | (3.22)       | (= , = )              | (===)                 |

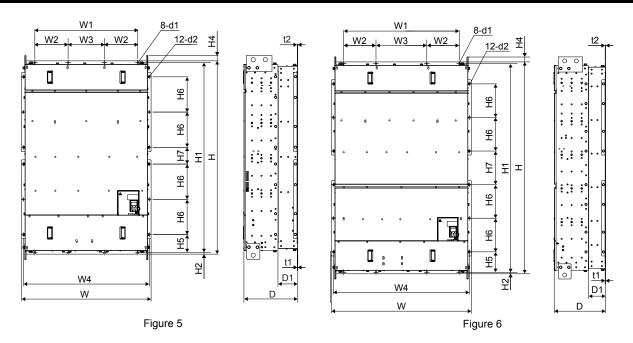



Table 2.7 Dimensions for IP00 Enclosure: 400 V Class

| Drive<br>Model | Figure |                 | Dimensions mm (in) |                |                 |                |         |                 |                 |              |              |                 |                |                |               |        |               | Wt. kg |        |               |
|----------------|--------|-----------------|--------------------|----------------|-----------------|----------------|---------|-----------------|-----------------|--------------|--------------|-----------------|----------------|----------------|---------------|--------|---------------|--------|--------|---------------|
|                |        | w               | Н                  | D              | W1              | W2             | W3      | W4              | H1              | H2           | H4           | H5              | Н6             | H7             | D1            | t1     | t2            | d1     | d2     | (lb)          |
| 4□0477A        | 5      | 1070            | 1595               | 445            | 850             | 275            | 300     | 1040            | 1568            | 13           | 50           | 148             | 291            | 138.5          | 163           | 4.5    | 4.5           | 14     | 15     | 560           |
| 4□0590A        |        | (42.13)         | (62.80)            | (17.52)        | (33.46)         | (10.83)        | (11.81) | (40.94)         | (61.73)         | (0.51)       | (1.97)       | (5.83)          | (11.46)        | (5.45)         | (6.42)        | (0.18) | (0.18)        | (0.55) | (0.59) | (1235)        |
| 4□0720A        | 6      |                 |                    |                |                 |                |         |                 |                 |              |              |                 |                |                |               |        |               |        |        |               |
| 4□0900A        |        | 1210<br>(47.64) |                    | 445<br>(17.52) | 1000<br>(39.37) | 280<br>(11.02) | (17.32) | 1180<br>(46.46) | 1808<br>(71.18) | 13<br>(0.51) | 50<br>(1.97) | 176.5<br>(6.95) | 291<br>(11.46) | 291<br>(11.46) | 150<br>(5.91) | (0.18) | 4.5<br>(0.18) | (0.55) | (0.59) | 630<br>(1389) |
| 4□0930A        |        |                 | (, 2, 2, 1)        | (17.52)        | (37.37)         | (11.02)        | (17.32) | (10.10)         | (, 1.10)        | (0.51)       | (1.77)       | (0.55)          | (11.10)        | (11.10)        | (5.71)        | (5.10) | (5.10)        | (0.55) | (0.07) | (1307)        |

### **IP20/UL Type 1 Enclosure Drives**

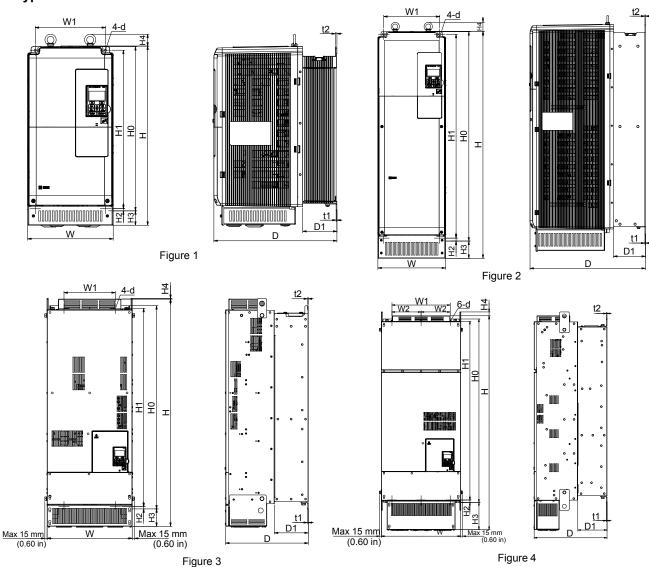



Table 2.8 Dimensions for IP20/UL Type 1 Enclosure: 200 V Class

|                |        |                |                 |                |                |               | 13 101 11       |                 | . , , , .      |               | Ju. 0        |               |               |               |              |                       |                       |      |      |
|----------------|--------|----------------|-----------------|----------------|----------------|---------------|-----------------|-----------------|----------------|---------------|--------------|---------------|---------------|---------------|--------------|-----------------------|-----------------------|------|------|
|                |        |                |                 |                |                |               | Di              | imensio         | ns mm (i       | n)            |              |               |               |               |              | Wt. k                 | g (lb)                |      |      |
| Drive<br>Model | Figure | w              | н               | D              | W1             | W2            | Н0              | H1              | H2             | Н3            | H4           | D1            | t1            | t2            | d            | Models<br>2A□/<br>2P□ | Models<br>2E□/<br>2W□ |      |      |
| 2□0028F        |        | 250<br>(9.84)  | 524<br>(20.62)  | 360<br>(14.17) | 205<br>(8.07)  | -             | 480<br>(1890)   | 463<br>(18.22)  | 6.5<br>(0.25)  | 42<br>(1.65)  | 40<br>(1.58) | 100<br>(3.93) | 2.3<br>(0.10) | 4<br>(0.16)   | 7<br>(0.28)  | 21.5<br>(47)          | 22.5<br>(50)          |      |      |
| 2□0042F        |        |                |                 |                |                |               |                 |                 |                |               |              |               |               |               |              | 34                    | 35                    |      |      |
| 2□0054F        | 1      | 264            | 705             | 420            | 218            | _             | 650             | 629             | 11.5           | 54            | 40           | 115.5         | 2.3           | 4             | 10           | (75)                  | (77)                  |      |      |
| 2□0068F        |        | (10.39)        | (27.75)         | (16.53)        | (8.58)         | _             | (25.59)         | (24.73)         | (0.45)         | (2.12)        | (1.58)       | (4.54)        | (0.10)        | (0.16)        | (0.40)       | 37                    | 38                    |      |      |
| 2□0081F        |        |                |                 |                |                |               |                 |                 |                |               |              |               |               |               |              |                       |                       | (82) | (84) |
| 2□0104F        | 2      | 264            | 885             | 450            | 218            | _             | 816             | 795             | 11.5           | 68            | 40           | 124.5         | 2.3           | 2.3           | 10           | 62                    | 65                    |      |      |
| 2□0130F        |        | (10.39)        | (34.84)         | (17.71)        | (8.58)         |               | (32.12)         | (31.29)         | (0.45)         | (2.67)        | (1.58)       | (4.90)        | (0.10)        | (0.10)        | (0.40)       | (137)                 | (143)                 |      |      |
| 2□0154F        | 3      | 415            | 1107            | 403            | 250            | _             | 990             | 966             | 11             | 85            | 8            | 165           | 4.5           | 3.9           | 12           | 113                   | 118                   |      |      |
| 2□0192F        | ,      | (16.33)        | (43.58)         | (15.86)        | (9.84)         |               | (38.97)         | (38.03)         | (0.43)         | (3.34)        | (0.31)       | (6.49)        | (0.18)        | (0.15)        | (0.47)       | (249)                 | (260)                 |      |      |
| 2□0248F        | 4      | 490<br>(19.29) | 1320<br>(51.96) | 450<br>(17.71) | 360<br>(14.17) | 180<br>(7.08) | 1132<br>(44.56) | 1104<br>(43.46) | 14.5<br>(0.57) | 169<br>(6.65) | 29<br>(1.14) | 181<br>(7.12) | 4.5<br>(0.18) | 4.5<br>(0.18) | 14<br>(0.55) | 180<br>(397)          | 185<br>(408)          |      |      |

Table 2.9 Dimensions for IP20/UL Type 1 Enclosure: 400 V Class

|             |        |                |                 |                |                |                | C               | Dimension       | ns mm (ir      | 1)             |              |               |               |               |              | Wt. k                 | g (lb)                |
|-------------|--------|----------------|-----------------|----------------|----------------|----------------|-----------------|-----------------|----------------|----------------|--------------|---------------|---------------|---------------|--------------|-----------------------|-----------------------|
| Drive Model | Figure | w              | н               | D              | <b>W</b> 1     | W2             | Н0              | H1              | H2             | Н3             | H4           | D1            | t1            | t2            | d            | Models<br>4A□/<br>4P□ | Models<br>4E□/<br>4W□ |
| 4□0011F     |        |                |                 |                |                |                |                 |                 |                |                |              |               |               |               |              |                       |                       |
| 4□0014F     |        |                |                 |                |                |                |                 |                 |                |                |              |               |               |               | _            |                       |                       |
| 4□0021F     |        | 250<br>(9.84)  | 524<br>(20.62)  | 360<br>(14.17) | 205<br>(8.07)  | =              | 480<br>(18.90)  | 463<br>(18.22)  | 6.5<br>(0.25)  | 42<br>(1.65)   | 40<br>(1.58) | 100<br>(3.93) | (0.10)        | (0.15)        | 7<br>(0.27)  | 21.5<br>(47)          | 22.5<br>(50)          |
| 4□0027F     |        | ( ,            | ( )             |                | (****)         |                | ()              | ( )             | (** *)         | ( )            | ()           | ()            | (** *)        | (,            | (** *)       | ( )                   |                       |
| 4□0034F     | 1      |                |                 |                |                |                |                 |                 |                |                |              |               |               |               |              |                       |                       |
| 4□0040F     |        |                |                 |                |                |                |                 |                 |                |                |              |               |               |               |              | 34                    | 35                    |
| 4□0052F     |        | 264            | 705             | 420            | 218            | _              | 650             | 629             | 11.5           | 54             | 40           | 115.5         | 2.3           | 4             | 10           | (75)                  | (77)                  |
| 4□0065F     |        | (10.39)        | (27.75)         | (16.53)        | (8.58)         | _              | (22.59)         | (24.73)         | (0.45)         | (2.12)         | (1.57)       | (4.55)        | (0.10)        | (0.15)        | (0.40)       | 37                    | 38                    |
| 4□0077F     |        |                |                 |                |                |                |                 |                 |                |                |              |               |               |               |              | (82)                  | (84)                  |
| 4□0096F     | 2      | 264            | 885             | 450            | 218            | _              | 816             | 795             | 11.5           | 68             | 40           | 124.5         | 2.3           | 2.3           | 10           | 62                    | 65                    |
| 4□0124F     |        | (10.39)        | (34.84)         | (17.71)        | (8.58)         |                | (32.12)         | (31.29)         | (0.45)         | (2.67)         | (1.57)       | (4.90)        | (0.10)        | (0.10)        | (0.40)       | (137)                 | (143)                 |
| 4□0156F     | 3      | 415            | 1107            | 403            | 250            | _              | 990             | 966             | 11             | 85             | 8            | 165           | 4.5           | 3.9           | 12           | 113                   | 118                   |
| 4□0180F     |        | (16.33)        | (43.58)         | (15.86)        | (9.84)         |                | (38.97)         | (38.03)         | (0.43)         | (3.34)         | (0.31)       | (6.49)        | (0.18)        | (0.15)        | (0.47)       | (249)                 | (260)                 |
| 4□0216F     |        | 490            | 1320            | 450            | 360            | 180            | 1132            | 1104            | 14.5           | 169            | 29           | 181           | 4.5           | 4.5           | 14           | 180                   | 185                   |
| 4□0240F     |        | (19.29)        | (51.96)         | (17.71)        | (14.17)        | (7.08)         | (44.56)         | (43.46)         | (0.57)         | (6.65)         | (1.14)       | (7.12)        | (0.18)        | (0.18)        | (0.55)       | (398)                 | (408)                 |
| 4□0302F     | 4      | 605            | 1460            | 450            | 5.00           | 200            | 1122            | 1102            | 14.5           | 200            | 20           | 170           | 4.5           | 4.5           | 1.4          | 270                   | 270                   |
| 4□0361F     |        | 695<br>(27.36) | 1460<br>(57.48) | 450<br>(17.71) | 560<br>(22.05) | 280<br>(11.02) | 1132<br>(44.56) | 1102<br>(43.39) | 14.5<br>(0.57) | 300<br>(11.81) | 29<br>(1.14) | 178<br>(7.00) | 4.5<br>(0.18) | 4.5<br>(0.18) | 14<br>(0.55) | 270<br>(595)          | 278<br>(613)          |
| 4□0414F     |        |                |                 |                |                |                |                 |                 |                |                |              |               |               | ` ′           | ` ′          |                       |                       |

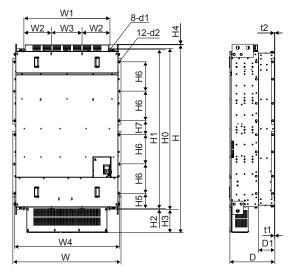



Figure 5

Table 2.10 Dimensions for IP20/UL Type 1 Enclosure: 400 V Class

| Drive Model | Figure |         | Dimensions mm (in) |         |         |         |         |         |         |         |        |  |  |
|-------------|--------|---------|--------------------|---------|---------|---------|---------|---------|---------|---------|--------|--|--|
| Drive Model |        | W       | Н                  | D       | W1      | W2      | W3      | W4      | H0      | H1      | H2     |  |  |
| 4□0477F     | -      | 1070    | 1853               | 445     | 850     | 275     | 300     | 1040    | 1595    | 1568    | 13     |  |  |
| 4□0590F     | 5      | (42.13) | (72.95)            | (17.52) | (33.46) | (10.83) | (11.81) | (40.94) | (62.80) | (61.73) | (0.51) |  |  |

Table 2.11 Dimensions for IP20/UL Type 1 Enclosure: 400 V Class (Continued)

| Drive Medel | Eiguro | Dimensions mm (in) |        |        |         |        |        |        |        |        | Wt. kg |        |
|-------------|--------|--------------------|--------|--------|---------|--------|--------|--------|--------|--------|--------|--------|
| Drive Model | Figure | Н3                 | H4     | H5     | H6      | H7     | D1     | t1     | t2     | d      | d2     | (lb)   |
| 4□0477F     | 5      | 221                | 14     | 148    | 291     | 138.5  | 163    | 4.5    | 4.5    | 14     | 15     | 570    |
| 4□0590F     | 5      | (8.70)             | (0.55) | (5.83) | (11.46) | (5.45) | (6.42) | (0.18) | (0.18) | (0.55) | (0.59) | (1257) |

### ■ Filter Module

Table 2.12 Filter Module Models and Types for Models 4 $\square$ 0720 to 4 $\square$ 0930

| Protective Design | Filter Module Model<br>Three-Phase 400 V Class |
|-------------------|------------------------------------------------|
| IP00 Enclosure    | EUJ71180□.□<br>EUJ71181□.□<br>EUJ71182□.□      |

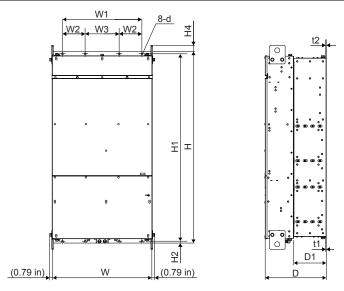



Table 2.13 Dimensions for IP00 Enclosure: Filter Module for Models 4□0720 to 4□0930

| Model       | Dimensions mm (in) |                 |                |                |               |        |                 | Wt. kg |           |        |               |               |        |              |
|-------------|--------------------|-----------------|----------------|----------------|---------------|--------|-----------------|--------|-----------|--------|---------------|---------------|--------|--------------|
| Model       | w                  | Н               | D              | W1             | W2            | W3     | H1              | H2     | H4        | D1     | t1            | t2            | d      | (lb)         |
| EUJ71180□.□ |                    |                 |                |                |               |        |                 |        |           |        |               |               |        |              |
| EUJ71181□.□ | 700 (27.56)        | 1350<br>(53.15) | 432<br>(17.01) | 560<br>(22.05) | 160<br>(6.30) | (9.45) | 1321<br>(52.01) | (0.51) | 50 (1.97) | (9.09) | 4.5<br>(0.18) | 4.5<br>(0.18) | (0.55) | 345<br>(761) |
| EUJ71182□.□ | (27.50)            | (55.15)         | (17.01)        | (22.00)        | (0.50)        | (5.15) | (02.01)         | (0.51) | (1.57)    | (3.03) | (0.10)        | (0.10)        | (0.55) | (,01)        |

2.2 Mechanical Installation

This Page Intentionally Blank

# **Electrical Installation**

This chapter explains proper procedures for wiring the control circuit terminals, motor, and power supply.

| 3.1  | SECTION SAFETY                        | 78  |
|------|---------------------------------------|-----|
| 3.2  | STANDARD CONNECTION DIAGRAM           | 81  |
| 3.3  | MAIN CIRCUIT CONNECTION DIAGRAM       | 86  |
| 3.4  | TERMINAL BLOCK CONFIGURATION          | 87  |
| 3.5  | TERMINAL COVER                        | 92  |
| 3.6  | DIGITAL OPERATOR AND FRONT COVER      | 95  |
| 3.7  | TOP PROTECTIVE COVER                  | 98  |
| 3.8  | MAIN CIRCUIT WIRING                   | 99  |
| 3.9  | CONTROL CIRCUIT WIRING                | 111 |
| 3.10 | CONTROL I/O CONNECTIONS               | 119 |
| 3.11 | CONNECT TO A PC                       | 123 |
| 3.12 | EMC FILTER                            | 124 |
| 3.13 | 24 V CONTROL POWER SUPPLY UNIT WIRING | 129 |
|      | EXTERNAL INTERLOCK                    |     |
| 3.15 | WIRING CHECKLIST                      | 136 |

## 3.1 Section Safety

### **⚠** DANGER

### **Electrical Shock Hazard**

### Before servicing, disconnect all power to the equipment.

The capacitor for the control power supply remains charged even after the power supply is turned off. The charge indicator LED will extinguish when the control power supply voltage is below 50 Vdc. To prevent electric shock, wait for at least the time specified on the warning label, once all indicators are OFF, measure for unsafe voltages to confirm the drive is safe prior to servicing.

Failure to comply will result in death or serious injury.

### **WARNING**

### **Arc Flash Hazard**

### It is possible that there is more than one source of power for the equipment.

Obey the requirements for Electrical Safety in the Workplace and local codes for safe work procedures and applicable personal protective equipment (PPE).

Failure to obey can cause serious injury or death.

#### **Electrical Shock Hazard**

#### Do not operate equipment with covers removed.

Failure to comply could result in death or serious injury.

The diagrams in this section may show drives without covers or safety shields to show details. Be sure to reinstall covers or shields before operating the drives and run the drives according to the instructions described in this manual.

### Always use appropriate equipment for Ground Fault Circuit Interrupters (GFCIs).

The drive can cause a residual current with a DC component in the protective earthing conductor. Where a residual current operated protective or monitoring device is used for protection in case of direct or indirect contact, always use a type B GFCI according to IEC/EN 60755.

#### Always ground the motor-side grounding terminal.

Improper equipment grounding could result in death or serious injury by contacting the motor case.

### Do not perform work on the drive while wearing loose clothing, jewelry or without eye protection.

Failure to comply could result in death or serious injury.

Remove all metal objects such as watches and rings, secure loose clothing, and wear eye protection before beginning work on the drive.

#### Do not remove covers or touch circuit boards while the power is on.

Failure to comply could result in death or serious injury.

### Do not allow unqualified personnel to perform work on the drive.

Failure to comply could result in death or serious injury.

Installation, maintenance, inspection, and service must be performed only by authorized personnel familiar installation, adjustment, and maintenance of drives.

### Do not touch any terminals before the capacitors have fully discharged.

Failure to comply could result in death or serious injury.

Before wiring terminals, disconnect all power to the equipment. The capacitor for the control power supply remains charged even after the power supply is turned off. After shutting off the power, wait for at least the amount of time specified on the drive before touching any components.

### **A** WARNING

### Fire Hazard

#### Tighten all terminal screws to the specified tightening torque.

Loose electrical connections could result in death or serious injury by fire due to overheating of electrical connections.

### Do not use improper combustible materials for the drive and filter module.

Failure to comply could result in death or serious injury by fire.

Attach the drive and filter module to metal or other noncombustible material.

### Do not use an improper voltage source.

Failure to comply could result in death or serious injury by fire.

Verify that the rated voltage of the drive matches the voltage of the incoming power supply before applying power.

### **A** CAUTION

### Do not carry the drive by the front cover or the terminal cover.

Failure to comply may cause the main body of the drive to fall, resulting in minor or moderate injury.

### **NOTICE**

### Perform a final check of all sequence wiring and other connections prior to applying power.

Failure to comply may cause erroneous operation or damage to the drive.

#### Ensure there are no short circuits on the control terminals.

Failure to comply may damage the drive.

### Observe proper electrostatic discharge procedures (ESD) when handling the drive and circuit boards.

Failure to comply may result in ESD damage to the drive circuitry.

#### Never connect or disconnect the motor from the drive while the drive is outputting voltage.

Improper equipment sequencing could result in damage to the drive.

### Do not use unshielded cable for control wiring.

Failure to comply may cause electrical interference resulting in poor system performance. Use shielded, twisted-pair wires and ground the shield to the ground terminal of the drive.

### Use ring terminals that comply with UL/cUL for all wire ends.

Failure to comply may damage the drive.

#### Use only the tools recommended by the terminal manufacturer for crimping.

Failure to comply may damage the drive.

### Do not allow unqualified personnel to use the product.

Failure to comply may damage the drive.

Carefully review instruction manual when connecting, wiring, or replacing the drive.

### Do not modify the drive circuitry.

Failure to comply may damage the drive and will void warranty.

Yaskawa is not responsible for any modification of the product made by the user. This product must not be modified.

### **NOTICE**

Check all the wiring to ensure that all connections are correct after installing the drive and connecting any other devices.

Failure to comply may damage the drive.

### Comply with proper wiring practices

The motor may run in reverse if the phase order is incorrect.

Connect motor input terminals U, V, and W to drive output terminals U/T1, V/T2, and W/T3. The phase order for the drive and motor should match.

### 3.2 Standard Connection Diagram

Connect the drive and peripheral devices as shown in *Figure 3.1* and *Figure 3.2*. It is possible to set and run the drive via the digital operator without connecting digital I/O wiring. This section does not discuss drive operation; *Refer to Start-Up Programming & Operation on page 139* for instructions on operating the drive.

Note: Drive models 4 \( \text{\$\text{\$0720}\$ to 4 \( \text{\$\text{\$0930}\$ require main circuit wiring and a connection to the module communications connector. Refer to Module Communications Connector on page 116 for details.

**WARNING!** Sudden Movement Hazard. Do not close the wiring for the control circuit unless the multifunction input terminal parameters are properly set. Improper sequencing of run/stop circuitry could result in death or serious injury from moving equipment.

**WARNING!** Sudden Movement Hazard. Ensure start/stop and safety circuits are wired properly and in the correct state before energizing the drive. Failure to comply could result in death or serious injury from moving equipment. When programmed for 3-Wire control, a momentary closure on terminal S1 may cause the drive to start.

**WARNING!** Sudden Movement Hazard. When using a 3-Wire sequence, set the drive to 3-Wire sequence prior to wiring the control terminals and set parameter b1-17 to 0 so the drive will not accept a Run command at power up (default). If the drive is wired for a 3-Wire sequence but set up for a 2-Wire sequence (default), and parameter b1-17 is set to 1 so the drive accepts a Run command at power up, the motor will rotate in reverse direction at drive power up and may cause injury.

**WARNING!** Sudden Movement Hazard. Confirm the drive I/O signals and external sequence before executing the application preset function. Executing the application preset function or setting A1-06 ≠ 0 will change the drive I/O terminal functions and may cause unexpected equipment operation. Failure to comply may cause death or serious injury.

**WARNING!** When using the automatic fault restart function with wiring designed to shut off the power supply upon drive fault, make sure the drive does not trigger a fault output during fault restart (L5-02 = 0, default). Failure to comply will prevent the automatic fault restart function from working properly.

NOTICE: Inadequate wiring could result in damage to the drive. Install adequate branch circuit protection per applicable codes. The drive is suitable for use on a circuit capable of delivering not more than 100,000 RMS symmetrical amperes, 240 Vac maximum (200 V class), 480 Vac maximum (400 V class: 4E□□□□□ and 4W□□□□□), and 500 Vac maximum (400 V class: 4A□□□□□ and 4P□□□□□) when protected by branch circuit protection devices specified in this document.

NOTICE: Do not connect AC control circuit ground to drive enclosure. Improper drive grounding can cause control circuit malfunction.

**NOTICE:** Route motor leads U/T1, V/T2, and W/T3 separate from all other leads to reduce possible interference related issues. Failure to comply may result in abnormal operation of drive and nearby equipment.

NOTICE: Correctly set Sink/Source jumper S3 for internal power supply. Failure to comply may result in damage to the drive.

**NOTICE:** Install the wire link between terminals SC-SP for Sink mode and SC-SN for Source mode. Leave it out for external power supply. Never short terminals SP and SN as doing so will damage the drive.

**Note:** The minimum load for the relay outputs M1-M2, M3-M4, M5-M6, and MA-MB-MC is 10 mA.

**NOTICE:** Create a sequence to shut off power on the power supply side by using a fault relay output as shown in the standard connection diagram, or create a sequence that prevents the motor shaft from being turned by an external force. If you continue to input power from a power supply with a large distortion or if an external force causes the motor shaft to continue turning even after an SoH (Snubber Discharge Resistor Overheat) occurs, the snubber resistor may break.

**NOTICE:** Do not connect more than one multi-function input to one terminal. Improper wiring may result in drive malfunction. Use an external power supply when sharing a terminal with more than one input. Do not use the built-in +24 V power supply.

**NOTICE:** When using an external power supply with the sequence inputs and not using the Safe Disable inputs, remove the wire jumpers connected to the HC terminal by default. The external power supply will be short-circuited if the wire jumpers are not removed. **Refer to Control I/O Connections on page 119** for details.

#### ■ Drive Models 2□0028 to 2□0248 and 4□0011 to 4□0590

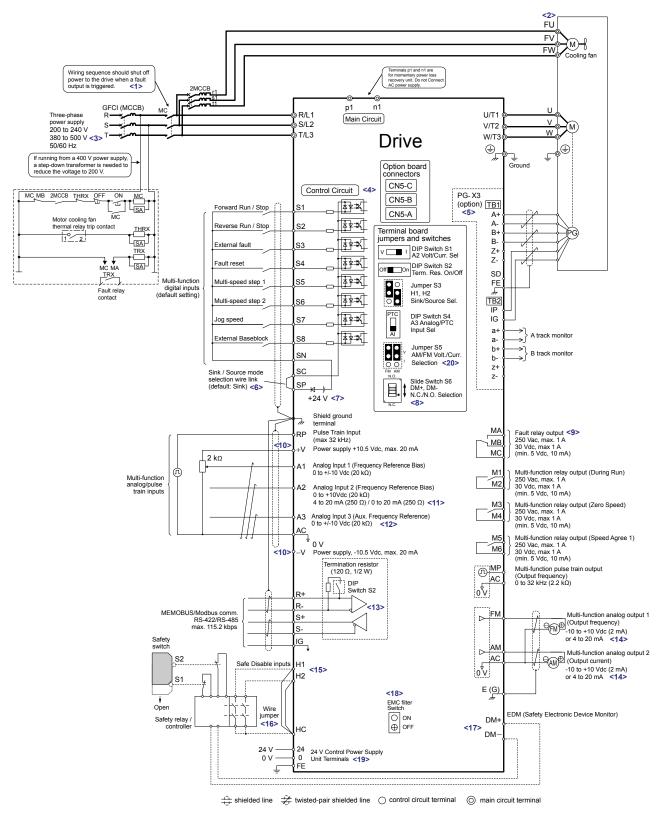
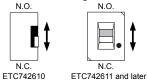




Figure 3.1 Drive Standard Connection Diagram (Example: Model 2□0028)

- <1> When setting L5-02 to 1 to trigger a fault output whenever the fault restart function is activated, a sequence to interrupt power when a fault occurs will turn off power to the drive as the drive attempts to restart. The default setting for L5-02 is 0 (Fault output not active during restart attempt).
- <2> Self-cooling motors do not require wiring that is necessary for motors using a cooling fan.
- <3> Use a three-phase power supply with a voltage of 380 to 480 V for drive models 4\(\sigma 0011\) to 4\(\sigma 0414\) (built-in EMC filter) and 4\(\sigma 0477\) to 4\(\sigma 0590\) (with stand-alone EMC filter).
- <4> Supplying power to the control circuit separately from the main circuit requires 24 V power supply (option).
- <5> PG option card wiring is not necessary for control modes that do not use a motor speed feedback signal.
- <6> This figure illustrates an example of a sequence input to S1 through S8 using a non-powered relay or an NPN transistor. Install the wire link between terminals SC-SP for Sink mode, between SC-SN for Source mode, or leave the link out for external power supply. Never short terminals SP and SN, as it will damage the drive. *Refer to Control I/O Connections on page 119* for details.
- <7> This voltage source supplies a maximum current of 150 mA when not using a digital input card DI-A3.
- <8> Slide switch S6 design differs based on PCB model number.



- <9> Wire the fault relay output separately from the main circuit power supply and other power lines.
- <10> The maximum output current capacity for the +V and -V terminals on the control circuit is 20 mA. Never short terminals +V, -V, and AC, as it can cause erroneous operation or damage the drive.
- <11> Set DIP switch S1 to select between a voltage or current input signal to terminal A2. The default setting is for current input.
- <12> Set DIP switch S4 to select between analog or PTC input for terminal A3.
- <13> Set DIP switch S2 to the ON position to enable the termination resistor in the last drive in a MEMOBUS/Modbus network.
- <14> Monitor outputs work with devices such as analog frequency meters, ammeters, voltmeters, and wattmeters. They are not intended for use as a feedback-type signal.
- <15> Use jumper S3 to select between Sink mode, Source mode, and external power supply for the Safe Disable inputs.
- <16> Disconnect the wire jumper between H1 HC and H2 HC when utilizing the Safe Disable input.
- <17> Slide switch S6 to select N.C. or N.O. as the state of the DM+ and DM- terminals for EDM output.
- <18> Models UU□E□□□□ and UU□W□□□□ have a built-in EMC filter switch. Use a stand-alone EMC filter for models 4□0477 to 4□0590, which do not have an EMC filter switch.
- <19> Models UU \(\text{UU}\) P \(\text{D}\) \(\text{D}\) and UU \(\text{D}\) \(\text{D}\) \(\text{D}\) \(\text{D}\) \(\text{D}\) have terminals 24, 0, and FE to provide board-level component voltages for the drive from an external customer-supplied 24 Vdc source. These terminals also maintain drive control power and network communications when the main three-phase input power is removed.
- <20> Use jumper S5 to select between voltage or current output signals at terminals AM and FM. Set parameters H4-07 and H4-08 accordingly.

#### ■ Drive Models 4□0720 to 4□0930

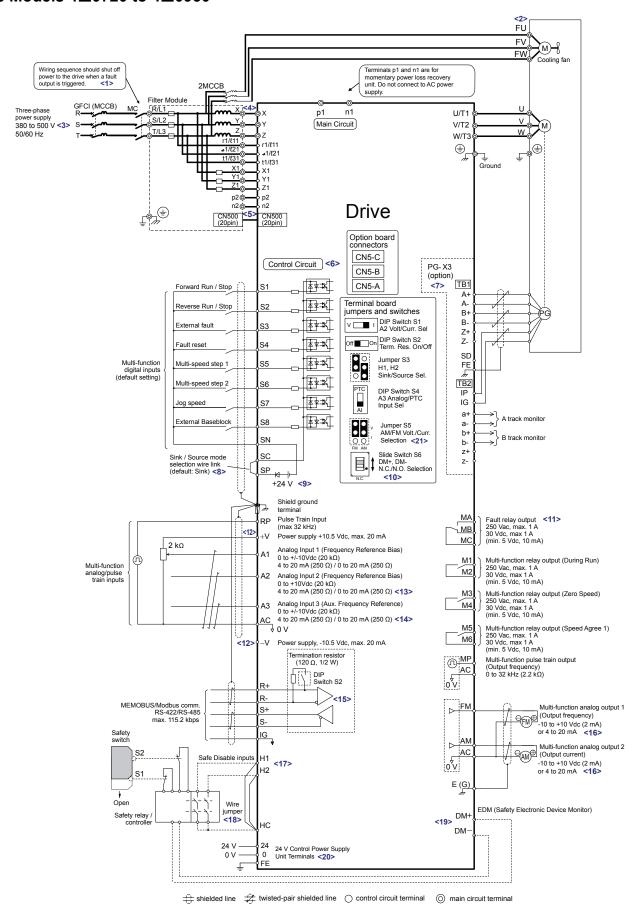
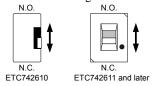




Figure 3.2 Drive Standard Connection Diagram (Example: Model 4□0720)

- <1> When setting L5-02 to 1 to trigger a fault output whenever the fault restart function is activated, a sequence to interrupt power when a fault occurs will turn off power to the drive as the drive attempts to restart. The default setting for L5-02 is 0 (Fault output not active during restart attempt).
- <2> Self-cooling motors do not require wiring that is necessary for motors using a cooling fan.
- <3> Use a three-phase power supply with a voltage of 380 to 480 V for drive models 4\(\sigma 0720\) to 4\(\sigma 0930\) (with stand-alone EMC filter).
- <4> The cable between models  $4\square 0720$  to  $4\square 0930$  and the filter module should not exceed 5 m (16.4 ft.).
- <5> Wire module connector CN500 to connect the standard configuration device (filter module) before turning on or operating models 4□0720 to 4□0930.
- <6> Supplying power to the control circuit separately from the main circuit requires 24 V power supply (option).
- <7> PG option card wiring is not necessary for control modes that do not use a motor speed feedback signal.
- <8> This figure illustrates an example of a sequence input to S1 through S8 using a non-powered relay or an NPN transistor. Install the wire link between terminals SC-SP for Sink mode, between SC-SN for Source mode, or leave the link out for external power supply. Never short terminals SP and SN, as it will damage the drive. *Refer to Control I/O Connections on page 119* for details.
- <9> This voltage source supplies a maximum current of 150 mA when not using a digital input card DI-A3.
- <10> Slide switch S6 design differs based on PCB model number.



- <11> Wire the fault relay output separately from the main circuit power supply and other power lines.
- <12> The maximum output current capacity for the +V and -V terminals on the control circuit is 20 mA. Never short terminals +V, -V, and AC, as it can cause erroneous operation or damage the drive.
- <13> Set DIP switch S1 to select between a voltage or current input signal to terminal A2. The default setting is for current input.
- <14> Set DIP switch S4 to select between analog or PTC input for terminal A3.
- <15> Set DIP switch S2 to the ON position to enable the termination resistor in the last drive in a MEMOBUS/Modbus network.
- <16> Monitor outputs work with devices such as analog frequency meters, ammeters, voltmeters, and wattmeters. They are not intended for use as a feedback-type signal.
- <17> Use jumper S3 to select between Sink mode, Source mode, and external power supply for the Safe Disable inputs.
- <18> Disconnect the wire jumper between H1 HC and H2 HC when utilizing the Safe Disable input.
- <19> Slide switch S6 to select N.C. or N.O. as the state of the DM+ and DM- terminals for EDM output.
- <20> Models UU \( \text{UU} \( \text{P} \) \( \text{D} \( \text{D} \) \( \text{D}
- <21> Use jumper S5 to select between voltage or current output signals at terminals AM and FM. Set parameters H4-07 and H4-08 accordingly.

**Note:** Use a stand-alone EMC filter for models  $4\square 0720$  to  $4\square 0930$ .

### 3.3 Main Circuit Connection Diagram

Refer to *Figure 3.3* or *Figure 3.4* when wiring the main circuit of the drive.

### **♦** Drive Models 2□0028 to 2□0248 and 4□0011 to 4□0590

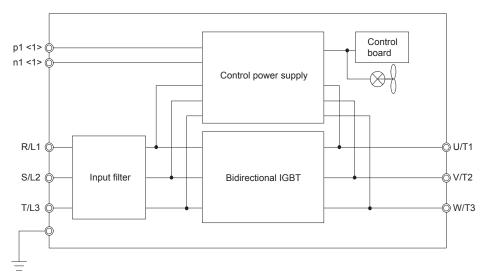
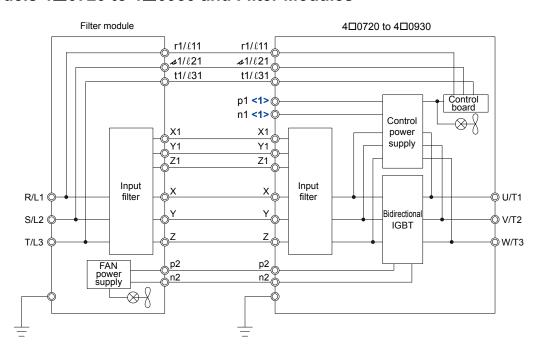




Figure 3.3 Connecting Main Circuit Terminals

<1> A Momentary Power Loss Recovery Unit can be connected as an option. Do not connect an AC power supply to these terminals.

### **♦** Drive Models 4□0720 to 4□0930 and Filter Modules



**Figure 3.4 Connecting Main Circuit Terminals** 

<1> A Momentary Power Loss Recovery Unit can be connected as an option. Do not connect an AC power supply to these terminals.

## 3.4 Terminal Block Configuration

### **♦** Drive Models 2□0028 to 2□0248 and 4□0011 to 4□0930

*Figure 3.5* to *Figure 3.12* show the different main circuit terminal arrangements for the drive capacities. Use *Table 3.1* to determine the correct figure based on drive model.

**Table 3.1 Terminal Block Configuration** 

| Voltage Class | Drive Model | Figure       |
|---------------|-------------|--------------|
|               | 2□0028      | Figure 3.5   |
|               | 2□0042      |              |
|               | 2□0054      | Elman 2.6    |
|               | 2□0068      | Figure 3.6   |
| 200 V Class   | 2□0081      |              |
| 200 V Class   | 2□0104      | Electric 2.7 |
|               | 2□0130      | Figure 3.7   |
|               | 2□0154      | Et 2.0       |
|               | 2□0192      | Figure 3.8   |
|               | 2□0248      | Figure 3.9   |
|               | 4□0011      |              |
|               | 4□0014      |              |
|               | 4□0021      | Figure 3.5   |
|               | 4□0027      |              |
|               | 4□0034      |              |
|               | 4□0040      |              |
|               | 4□0052      | Elman 2.6    |
|               | 4□0065      | Figure 3.6   |
|               | 4□0077      |              |
|               | 4□0096      | Elman 2.7    |
|               | 4□0124      | Figure 3.7   |
| 400 V Class   | 4□0156      | Elman 2.0    |
|               | 4□0180      | Figure 3.8   |
|               | 4□0216      | Elman 2.0    |
|               | 4□0240      | Figure 3.9   |
|               | 4□0302      |              |
|               | 4□0361      | Figure 3.10  |
|               | 4□0414      |              |
|               | 4□0477      | Eigen- 2 11  |
|               | 4□0590      | Figure 3.11  |
|               | 4□0720      |              |
|               | 4□0900      | Figure 3.12  |
|               | 4□0930      |              |

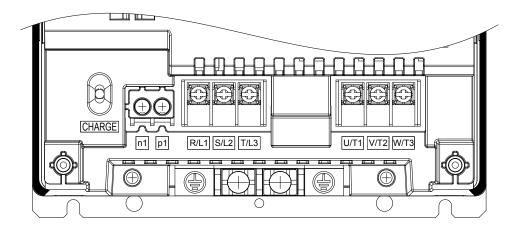



Figure 3.5 Main Circuit Terminal Configuration (Drive Models 2□0028 and 4□0011 to 4□0034)

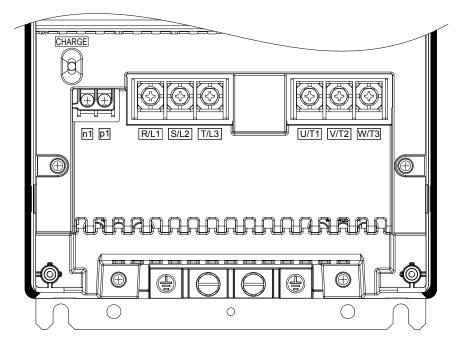



Figure 3.6 Main Circuit Terminal Configuration (Drive Models 2□0042 to 2□0081 and 4□0040 to 4□0077)

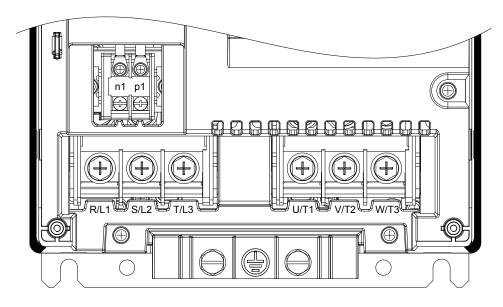



Figure 3.7 Main Circuit Terminal Configuration (Drive Models 2□0104, 2□0130, 4□0096, and 4□0124)

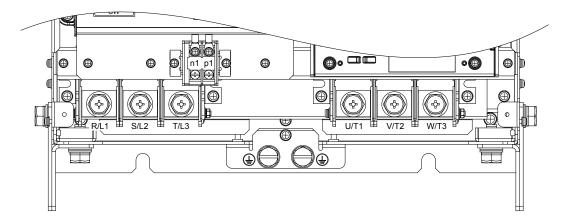



Figure 3.8 Main Circuit Terminal Configuration (Drive Models 2□0154, 2□0192, 4□0156, and 4□0180)

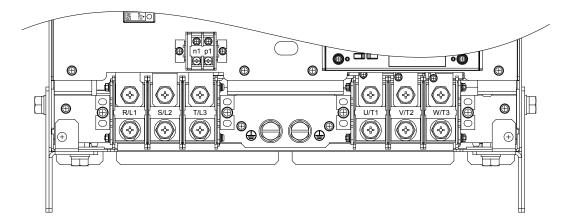



Figure 3.9 Main Circuit Terminal Configuration (Drive Models 2□0248, 4□0216, and 4□0240)




Figure 3.10 Main Circuit Terminal Configuration (Drive Models 4□0302 to 4□0414)

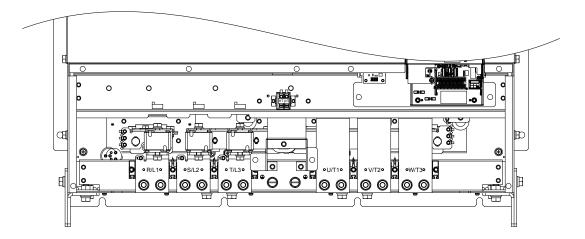



Figure 3.11 Main Circuit Terminal Configuration (Drive Models 4□0477 and 4□0590)

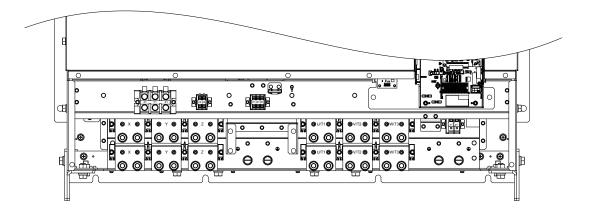



Figure 3.12 Main Circuit Terminal Configuration (Drive Models 4□0720 and 4□0930)

### ◆ Filter Module

Figure 3.13 shows the main circuit terminal arrangements for the filter module.

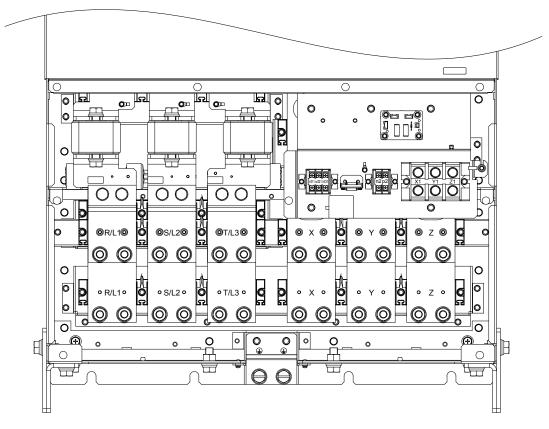



Figure 3.13 Main Circuit Terminal Configuration (Model EUJ7118□□.□)

### 3.5 Terminal Cover

Follow the procedure below to remove the terminal cover for wiring and to reattach the terminal cover after wiring is complete.

### ♠ Models 2□0028 to 2□0130 and 4□0011 to 4□0124

### ■ Removing the Terminal Cover

**1.** Loosen the terminal cover screw.

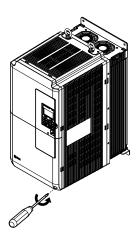



Figure 3.14 Removing the Terminal Cover

2. Push in on the tab located on the bottom of the terminal cover and gently pull forward to remove the terminal cover.



Figure 3.15 Removing the Terminal Cover

### ■ Reattaching the Terminal Cover

Power lines and signal wiring should pass through the opening provided. *Refer to Wiring the Main Circuit Terminal on page 110* and *Wiring the Control Circuit Terminal* on page 114 for details on wiring.

Reattach the terminal cover after completing the wiring to the drive and other devices.

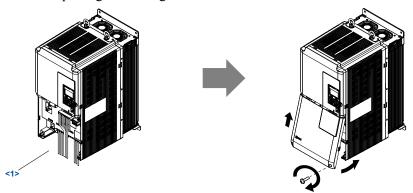



Figure 3.16 Reattaching the Terminal Cover

<1> Connect the ground wiring first, then the main circuit wiring, and finally the control circuit wiring.

### ♦ Models 2□0154 to 2□0248 and 4□0156 to 4□0930

### ■ Removing the Terminal Cover

1. Loosen the screws on the terminal cover, then pull down on the cover.

**CAUTION!** Do not completely remove the cover screws, just loosen them. If the cover screws are removed completely, the terminal cover may fall off causing an injury.

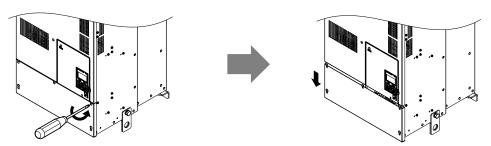



Figure 3.17 Removing the Terminal Cover

2. Pull forward on the terminal cover to free it from the drive.

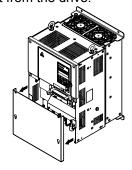



Figure 3.18 Removing the Terminal Cover

### ■ Reattaching the Terminal Cover

After wiring the terminal board and other devices, double-check connections and reattach the terminal cover. *Refer to Wiring the Main Circuit Terminal on page 110* and *Wiring the Control Circuit Terminal* on page 114 for details on wiring.

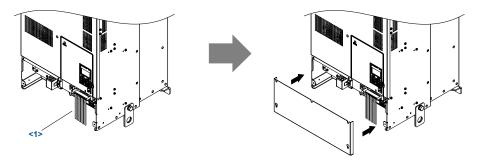



Figure 3.19 Reattaching the Terminal Cover

<1> Connect the ground wiring first, then the main circuit wiring, and finally the control circuit wiring.

### 3.6 Digital Operator and Front Cover

Detach the digital operator from the drive for remote operation or when opening the front cover to install an option card.

**NOTICE:** Be sure to remove the digital operator prior to opening or reattaching the front cover. Leaving the digital operator plugged into the drive when removing the front cover can result in erroneous operation caused by a poor connection. Firmly fasten the front cover back into place before reattaching the digital operator.

### Removing/Reattaching the Digital Operator

### ■ Removing the Digital Operator

While pressing on the tab located on the right side of the digital operator, pull the digital operator forward to remove it from the drive.

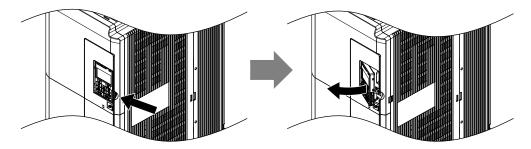



Figure 3.20 Removing the Digital Operator

### ■ Reattaching the Digital Operator

Insert the digital operator into the opening in the front cover while aligning it with the notches on the left side of the opening. Next, press gently on the right side of the operator until it clicks into place.

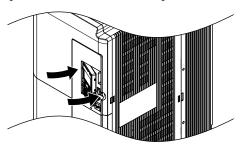



Figure 3.21 Reattaching the Digital Operator

### Removing/Reattaching the Front Cover

### ■ Removing the Front Cover

Drive Models  $2\square 0028$  to  $2\square 0130$  and  $4\square 0011$  to  $4\square 0124$ 

After removing the terminal cover and the digital operator, loosen the screw that affixes the front cover. Pinch in on the tabs found on each side of the front cover, then pull forward to remove it from the drive.

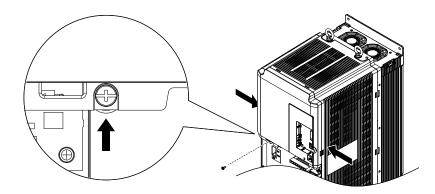



Figure 3.22 Remove the Front Cover (Drive Models 200028 to 20130 and 400011 to 40124)

#### *Drive Models 2 □0154 to 2 □0248 and 4 □0156 to 4 □0930*

- **1.** Remove the terminal cover and the digital operator.
- **2.** Loosen the installation screw on the front cover.
- **3.** Use a straight-edge screwdriver to loosen the hooks on each side of the cover that hold it in place.

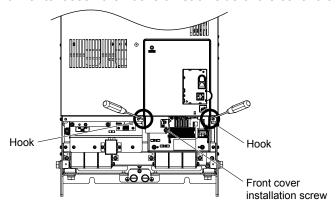



Figure 3.23 Remove the Front Cover (Drive Models 2□0154 to 2□0248 and 4□0156 to 4□0930)

**4.** Unhook the left side of the front cover then swing the left side towards you as shown in *Figure 3.24* until the cover comes off.

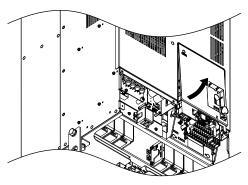



Figure 3.24 Remove the Front Cover (Drive Models 2□0154 to 2□0248 and 4□0156 to 4□0930)

### ■ Reattaching the Front Cover

### Drive Models 2□0028 to 2□0130 and 4□0011 to 4□0124

Reverse the instructions given in *Remove the Front Cover (Drive Models 2*  $\square 0028$  to 2 $\square 0130$  and 4 $\square 0011$  to 4 $\square 0124$ ) on page **96** to reattach the front cover. Pinch inwards on the hooks found on each side of the front cover while guiding it back into the drive. Make sure it clicks firmly into place.

### *Drive Models 2□0154 to 2□0248 and 4□0156 to 4□0930*

1. Slide the front cover so the hooks on the top connect to the drive.

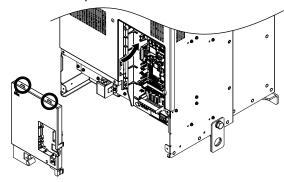



Figure 3.25 Reattach the Front Cover (Drive Models 2□0154 to 2□0248 and 4□0156 to 4□0930)

**2.** After connecting the hooks to the drive, press firmly on the cover to lock it into place.

### 3.7 Top Protective Cover

Drive models with IP00 specifications become IP20/UL Type 1 after correctly installing a top protective cover and bottom conduit bracket. Do not attach the top protective cover when installing the drive in a control panel.

### Attaching the Top Protective Cover

Insert the small protruding hooks on the sides of the top protective cover into the provided mounting holes on the top of the drive. Pinch the hooks inward so that the they connect with the mounting holes and fasten the top protective cover back into place.

Note: Attaching the top protective cover and the bottom conduit bracket to an IP00 drive changes protection to IP20/UL Type 1.

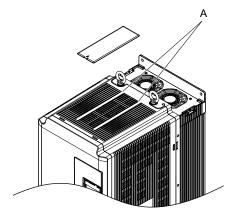



Figure 3.26 Reattaching the Protective Cover

### Removing the Top Protective Cover

Insert the tip of a straight-edge screwdriver into the small opening located on the front edge of the top protective cover. Gently apply pressure as shown in *Figure 3.27* to free the cover from the drive.

Note: Removing the top protective cover from an IP20/UL Type 1 enclosure drive voids UL Type 1 protection while retaining IP20 conformity.

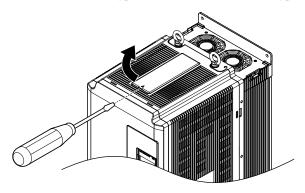



Figure 3.27 Removing the Top Protective Cover

## 3.8 Main Circuit Wiring

This section describes the functions, specifications, and procedures required to safely and properly wire the main circuit in the drive.

**NOTICE:** Do not solder the ends of wire connections to the drive. Soldered wiring connections can loosen over time. Improper wiring practices could result in drive malfunction due to loose terminal connections.

**NOTICE:** Do not switch the drive input to start or stop the motor. Frequently switching the drive on and off shortens the life of drive components, and can cause premature drive failures. For the full performance life, refrain from switching the drive on and off more than once every 30 minutes.

### Main Circuit Terminal Functions

### ■ Drive Models 2□0028 to 2□0248 and 4□0011 to 4□0590

**Table 3.2 Main Circuit Terminal Functions** 

| Voltage Class    | Three-Phase 200 V<br>Class | Three-Phase 400 V<br>Class |                                                                           | _    |  |
|------------------|----------------------------|----------------------------|---------------------------------------------------------------------------|------|--|
| Drive Model      | 2□0028 to 2□0248           | 4□0011 to 4□0590           | Function                                                                  | Page |  |
| Terminal         | Ту                         | pe                         |                                                                           |      |  |
| R/L1, S/L2, T/L3 | Main circuit pov           | ver supply input           | Connects line power to the drive                                          |      |  |
| U/T1, V/T2, W/T3 | Drive                      | output                     | Connects to the motor                                                     | 82   |  |
| p1, n1           | Momentary power los        | ss recovery unit input     | DC voltage terminals that connect to a momentary power loss recovery unit |      |  |
|                  | $100 \Omega$ or less       | 10 Ω or less               | Grounding terminal                                                        | 110  |  |

### ■ Drive Models 4□0720 to 4□0930

**Table 3.3 Main Circuit Terminal Functions** 

| Voltage Class          | Three-Phase 400 V<br>Class               |                                                                                             | _    |  |  |  |  |
|------------------------|------------------------------------------|---------------------------------------------------------------------------------------------|------|--|--|--|--|
| Drive Model            | 4□0720 to 4□0930                         | Function                                                                                    | Page |  |  |  |  |
| Terminal               | Туре                                     |                                                                                             |      |  |  |  |  |
| X, Y, Z                | Main circuit power supply input 1        | Power supply input terminals that connect to the filter module.                             |      |  |  |  |  |
| X1, Y1, Z1             | Main circuit power supply input 2        | rower supply input terminals that connect to the filter module.                             |      |  |  |  |  |
| r1/ℓ11, ⊿1/ℓ21, t1/ℓ31 | Power supply voltage detection input     | Connects to the filter module to detects the power supply voltage order and voltage levels. | 84   |  |  |  |  |
| U/T1, V/T2, W/T3       | Drive output                             | output Connects to the motor                                                                |      |  |  |  |  |
| p1, n1                 | Momentary power loss recovery unit input | DC voltage terminals that connect to a momentary power loss recovery unit                   |      |  |  |  |  |
| p2, n2                 | DC voltage output                        | DC voltage terminals that connect to the filter module                                      |      |  |  |  |  |
|                        | $100~\Omega$ or less                     | Grounding terminal                                                                          | 110  |  |  |  |  |

#### ■ Filter Module

**Table 3.4 Filter Module Main Circuit Terminal Functions** 

| Terminal               | Туре                                 | Function                                                                                                                  | Page |  |
|------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------|--|
| R/L1, S/L2, T/L3       | Main circuit power supply input      | Connects line power to the filter module                                                                                  |      |  |
| r1/l11, &1/l21, t1/l31 | Power supply voltage detection input | Connects to drive models 4\(\sigma 0720\) to 4\(\sigma 0930\) to detect the power supply voltage order and voltage levels | 84   |  |
| X, Y, Z                | Filter module output 1               | Filter module output terminals that connect to drive models 4□0720                                                        |      |  |
| X1, Y1, Z1             | Filter module output 2               | to 4□0930.                                                                                                                |      |  |
| p2, n2                 | DC voltage output                    | DC voltage terminals that connect to the drive models 4□0720 to 4□0930                                                    |      |  |
|                        | $100 \Omega$ or less                 | Grounding terminal                                                                                                        | 110  |  |

### Protecting Main Circuit Terminals

### ■ Insulation Caps or Sleeves

Use insulation caps or sleeves when wiring the drive with crimp terminals. Take particular care to ensure that the wiring does not touch nearby terminals or the surrounding case.

### ■ Insulation Barrier

Insulation barriers are packaged with drive models  $4\square0477$  to  $4\square0930$  to provide added protection between terminals. Yaskawa recommends using the provided insulation barriers to ensure proper wiring. Refer to *Figure 3.28* for instructions on placement of the insulation barriers.

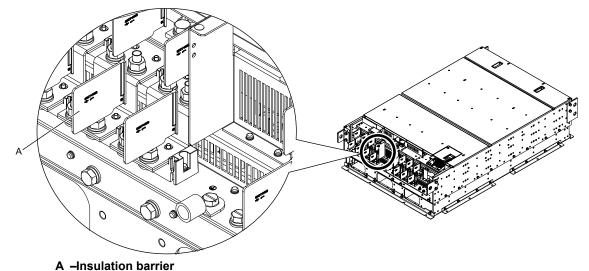



Figure 3.28 Installing Insulation Barriers

### ■ Main Circuit Protective Cover

Close the protective cover after wiring the main circuit terminals on drive models  $2\square 0028$  to  $2\square 0081$  and  $4\square 0011$  to  $4\square 0077$ .

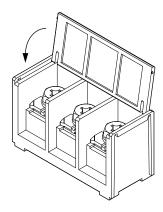



Figure 3.29 Main Circuit Protective Cover (Drive Models 2□0028 to 2□0081 and 4□0011 to 4□0077)

Attach the protective covers after wiring the main circuit terminals and p1, and n1 terminals on drive models  $2\square 0104$  to  $2\square 0248$  and  $4\square 0096$  to  $4\square 0590$ .

Attach the protective covers after wiring the main circuit terminals and the p1, n1, p2, n2, r1,  $\approx$ 1, and t1 terminals on drive models  $4\Box 0720$  to  $4\Box 0930$ .

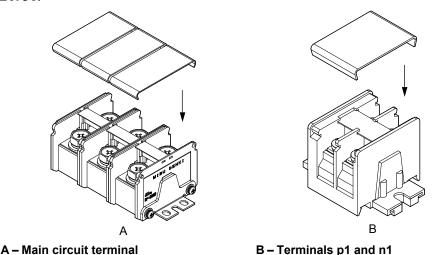



Figure 3.30 Protective Cover Example (Drive Model 2□0104)

### Main Circuit Wire Gauges and Tightening Torque

Use the tables in this section to select the appropriate wires and crimp terminals.

Gauges listed in the tables are for use in the United States.

The recommended wires for the main circuit are 600 V, Class 2 vinyl-insulated copper wires with a continuous maximum operating Note: temperature of 75 °C (167 °F). Assume these conditions:

- Ambient temperature: 40 °C (104 °F) maximum

- Wiring distance: 100 m (328 ft) maximum

- Normal Duty rated current value

Consider the amount of voltage drop when selecting wire gauges. Increase the wire gauge when the voltage drop is greater than 2% of motor rated voltage. Ensure the wire gauge is suitable for the terminal block. Use the following formula to calculate the amount of voltage drop:

Line drop voltage (V) =  $\sqrt{3}$  × wire resistance ( $\Omega/\text{km}$ ) × wire length (m) × current (A) × 10<sup>-3</sup>

Refer to UL Standards Compliance on page 678 for information on UL compliance.

The wire gauges listed in the following tables are Yaskawa recommendations. Refer to local codes for proper wire gauge selections.

### **■** Three-Phase 200 V Class Drives

Table 3.5 Drive Wire Gauge and Torque Specifications (Three-Phase 200 V Class)

|                 |                                                                   | For USA ar                           | nd Canada                                           | For South                            | America                                             |               | Tightoning                           |
|-----------------|-------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------|--------------------------------------|-----------------------------------------------------|---------------|--------------------------------------|
| Drive<br>Model  | Terminal                                                          | Recomm. Gauge<br>mm²<br>(AWG, kcmil) | Applicable<br>Gauge mm <sup>2</sup><br>(AWG, kcmil) | Recomm. Gauge<br>mm²<br>(AWG, kcmil) | Applicable<br>Gauge mm <sup>2</sup><br>(AWG, kcmil) | Screw<br>Size | Tightening<br>Torque<br>N·m (lb.in.) |
|                 | R/L1, S/L2, T/L3                                                  | 10<br>(8)                            | 6 to 10<br>(10 to 8)                                | 4<br>(12)                            | 2.5 to 10<br>(14 to 8)                              | M5            | 2.3 to 2.7                           |
| 2□0028          | U/T1, V/T2, W/T3                                                  | 10<br>(8)                            | 6 to 10<br>(10 to 8)                                | 4<br>(12)                            | 2.5 to 10 (14 to 8)                                 | M5            | (20.4 to 23.9)                       |
| 20028           |                                                                   | 10<br>(8)                            | 6 to 16<br>(10 to 6)                                | 6<br>(10)                            | 6 to 16<br>(10 to 5)                                | M6            | 3.9 to 4.9<br>(34.7 to 43.4)         |
|                 | p1, n1                                                            | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | M4            | 1 to 1.4<br>(8.9 to 12.4)            |
|                 | R/L1, S/L2, T/L3                                                  | 16<br>(6)                            | 10 to 25 (8 to 3)                                   | 10<br>(8)                            | 6 to 25<br>(10 to 3)                                | M6 4 to 6     | 4 to 6                               |
| 2□0042          | U/T1, V/T2, W/T3                                                  | 16<br>(6)                            | 10 to 25 (8 to 3)                                   | 10<br>(8)                            | 6 to 25<br>(10 to 3)                                | M6            | (35.4 to 53.1)                       |
| 20042           |                                                                   | 10<br>(8)                            | 6 to 25<br>(10 to 3)                                | 10<br>(8)                            | 6 to 25<br>(10 to 3)                                | M8            | 8.8 to 10.8<br>(78.1 to 95.5)        |
|                 | p1, n1                                                            | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | M4            | 1 to 1.4<br>(8.9 to 12.4)            |
|                 | R/L1, S/L2, T/L3                                                  | 25<br>(4)                            | 16 to 25 (6 to 3)                                   | 16<br>(5)                            | 10 to 25<br>(8 to 3)                                | M6            | 4 to 6                               |
| 20054           | U/T1, V/T2, W/T3                                                  | 25<br>(4)                            | 16 to 25 (6 to 3)                                   | 16<br>(5)                            | 10 to 25<br>(8 to 3)                                | M6            | (35.4 to 53.1)                       |
| 2□0054          | (a) 16 (b) (c)                                                    |                                      | 10 to 25 (8 to 3)                                   | 10<br>(8)                            | 10 to 25<br>(8 to 3)                                | M8            | 8.8 to 10.8<br>(78.1 to 95.5)        |
|                 | p1, n1                                                            | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | M4            | 1 to 1.4<br>(8.9 to 12.4)            |
|                 | R/L1, S/L2, T/L3                                                  | 25<br>(4)                            | 25<br>(4 to 3)                                      | 16<br>(5)                            | 16 to 25<br>(5 to 3)                                | M6            | 4 to 6                               |
| 20060           | U/T1, V/T2, W/T3                                                  | 25<br>(4)                            | 25<br>(4 to 3)                                      | 16<br>(5)                            | 16 to 25<br>(5 to 3)                                | M6            | (35.4 to 53.1)                       |
| 2□0068          | <b>\( \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\</b> | 16<br>(6)                            | 16 to 25 (6 to 3)                                   | 16<br>(5)                            | 16 to 25<br>(5 to 3)                                | M8            | 8.8 to 10.8<br>(78.1 to 95.5)        |
|                 | p1, n1                                                            | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | M4            | 1 to 1.4<br>(8.9 to 12.4)            |
|                 | R/L1, S/L2, T/L3                                                  | 16 × 2<br>(6 × 2P)                   | 16 to 25 × 2<br>(6 to 3 × 2P)                       | 25<br>(3)                            | 16 to 25<br>(5 to 3 × 2P)                           | M6            | 4 to 6                               |
| 2□0081          | U/T1, V/T2, W/T3                                                  | 16 × 2<br>(6 × 2P)                   | 16 to 25 × 2<br>(6 to 3 × 2P)                       | 25<br>(3)                            | 16 to 25<br>(5 to 3 × 2P)                           | M6            | (35.4 to 53.1)                       |
| 20081           |                                                                   | 16<br>(6)                            | 16 to 25 (6 to 3)                                   | 16<br>(5)                            | 16 to 25 (5 to 3)                                   | M8            | 8.8 to 10.8<br>(78.1 to 95.5)        |
|                 | p1, n1                                                            | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | M4            | 1 to 1.4<br>(8.9 to 12.4)            |
|                 | R/L1, S/L2, T/L3                                                  | 35<br>(1)                            | 16 to 50 × 2<br>(6 to 1/0 × 2P)                     | 35<br>(1)                            | $10 \text{ to } 50 \times 2P$<br>(8 to 1/0 × 2P)    | M8            | 8 to 10                              |
| 2□0104          | U/T1, V/T2, W/T3                                                  | 35<br>(1)                            | 16 to 50 × 2<br>(6 to 1/0 × 2P)                     | 35<br>(1)                            | $10 \text{ to } 50 \times 2P$<br>(8 to 1/0 × 2P)    | M8            | (70.8 to 88.5)                       |
| Z <b>L</b> 0104 |                                                                   | 25<br>(4)                            | 25 to 35<br>(4 to 1)                                | 25<br>(3)                            | 10 to 35<br>(8 to 1)                                | M8            | 8.8 to 10.8<br>(78.1 to 95.5)        |
|                 | p1, n1                                                            | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | M4            | 1.2 to 2.0<br>(10.4 to 17.4)         |

|                |                  | For USA ar                           | nd Canada                                               | For South                            | America                                                  |               | <b></b>                              |
|----------------|------------------|--------------------------------------|---------------------------------------------------------|--------------------------------------|----------------------------------------------------------|---------------|--------------------------------------|
| Drive<br>Model | Terminal         | Recomm. Gauge<br>mm²<br>(AWG, kcmil) | Applicable<br>Gauge mm <sup>2</sup><br>(AWG, kcmil)     | Recomm. Gauge<br>mm²<br>(AWG, kcmil) | Applicable<br>Gauge mm <sup>2</sup><br>(AWG, kcmil)      | Screw<br>Size | Tightening<br>Torque<br>N⋅m (lb.in.) |
|                | R/L1, S/L2, T/L3 | $25 \times 2$ $(4 \times 2P)$        | $16 \text{ to } 50 \times 2$<br>(6 to $1/0 \times 2P$ ) | 16 × 2P<br>(5 × 2P)                  | $10 \text{ to } 50 \times 2P$<br>(8 to $1/0 \times 2P$ ) | M8            | 8 to 10                              |
| 2□0130         | U/T1, V/T2, W/T3 | 25 × 2<br>(4 × 2P)                   | $16 \text{ to } 50 \times 2$<br>(6 to $1/0 \times 2P$ ) | 16 × 2P<br>(5 × 2P)                  | $10 \text{ to } 50 \times 2P$<br>(8 to $1/0 \times 2P$ ) | M8            | (70.8 to 88.5)                       |
| 20130          |                  | 25<br>(4)                            | 25 to 35<br>(4 to 1)                                    | 16<br>(5)                            | 16 to 35<br>(5 to 1)                                     | M8            | 8.8 to 10.8<br>(78.1 to 95.5)        |
|                | p1, n1           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                  | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                   | M4            | 1.2 to 2.0<br>(10.4 to 17.4)         |
|                | R/L1, S/L2, T/L3 | 25 × 2<br>(3 × 2P)                   | 25 to 95 × 2<br>(4 to 4/0 × 2P)                         | 25 × 2P<br>(3 × 2P)                  | $16 \text{ to } 95 \times 2P$<br>(5 to $4/0 \times 2P$ ) | M10           | 15 to 20                             |
| 2□0154         | U/T1, V/T2, W/T3 | 25 × 2<br>(3 × 2P)                   | 25 to 95 × 2<br>(4 to 4/0 × 2P)                         | 25 × 2P<br>(3 × 2P)                  | $16 \text{ to } 95 \times 2P$<br>(5 to $4/0 \times 2P$ ) | M10           | (130 to 173)                         |
| 20154          |                  | 25<br>(4)                            | 25 to 70<br>(4 to 2/0)                                  | 25<br>(3)                            | 25 to 70<br>(3 to 2/0)                                   | M10           | 17.7 to 22.6<br>(156 to 200)         |
|                | p1, n1           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                  | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                   | M4            | 1.2 to 2.0<br>(10.4 to 17.4)         |
|                | R/L1, S/L2, T/L3 | 35 × 2<br>(1 × 2P)                   | $25 \text{ to } 95 \times 2$<br>(3 to 4/0 × 2P)         | 35 × 2P<br>(1 × 2P)                  | $25 \text{ to } 95 \times 2P$<br>(3 to 4/0 × 2P)         | M10           | 15 to 20                             |
| 2□0192         | U/T1, V/T2, W/T3 | 35 × 2<br>(1 × 2P)                   | $25 \text{ to } 95 \times 2$<br>(3 to 4/0 × 2P)         | 35 × 2P<br>(1 × 2P)                  | $25 \text{ to } 95 \times 2P$<br>(3 to 4/0 × 2P)         | M10           | (130 to 173)                         |
| 20192          |                  | 25<br>(3)                            | 25 to 70<br>(4 to 2/0)                                  | 25<br>(3)                            | 25 to 70<br>(3 to 2/0)                                   | M10           | 17.7 to 22.6<br>(156 to 200)         |
|                | p1, n1           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                  | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                   | M4            | 1.2 to 2.0<br>(10.4 to 17.4)         |
|                | R/L1, S/L2, T/L3 | 70 × 2<br>(2/0 × 2P)                 | 35 to $95 \times 2$ (1 to $4/0 \times 2P$ )             | $50 \times 2P$ $(1/0 \times 2P)$     | 35 to $95 \times 2P$<br>(1 to $4/0 \times 2P$ )          | M10           | 15 to 20                             |
| 2□0248         | U/T1, V/T2, W/T3 | $70 \times 2$ $(2/0 \times 2P)$      | 35 to $95 \times 2$ (1 to $4/0 \times 2P$ )             | $50 \times 2P$ $(1/0 \times 2P)$     | $35 \text{ to } 95 \times 2P$<br>(1 to 4/0 × 2P)         | M10           | (130 to 173)                         |
|                |                  | 25<br>(3)                            | 25 to 95<br>(4 to 4/0)                                  | 35<br>(1)                            | 25 to 95<br>(3 to 4/0)                                   | M12           | 31.4 to 39.2<br>(278 to 347)         |
|                | p1, n1           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                  | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                   | M4            | 1.2 to 2.0<br>(10.4 to 17.4)         |

### ■ Three-Phase 400 V Class Drives

### Table 3.6 Drive Wire Gauge and Torque Specifications (Three-Phase 400 V Class)

|                 | Table            | 5.6 Drive wire Gaug                  | <u> </u>                                            |                                      |                                                     | 33)           |                              |
|-----------------|------------------|--------------------------------------|-----------------------------------------------------|--------------------------------------|-----------------------------------------------------|---------------|------------------------------|
|                 |                  | For USA and Canada                   |                                                     | For South                            | America                                             |               | Tightening                   |
| Drive<br>Model  | Terminal         | Recomm. Gauge<br>mm²<br>(AWG, kcmil) | Applicable<br>Gauge mm <sup>2</sup><br>(AWG, kcmil) | Recomm. Gauge<br>mm²<br>(AWG, kcmil) | Applicable<br>Gauge mm <sup>2</sup><br>(AWG, kcmil) | Screw<br>Size | Torque<br>N·m (lb.in.)       |
|                 | R/L1, S/L2, T/L3 | 2.5<br>(14)                          | 2.5 to 10 (14 to 8)                                 | 2.5<br>(14)                          | 2.5 to 10 (14 to 8)                                 | M5            | 2.3 to 2.7                   |
| 4 <b>□</b> 0011 | U/T1, V/T2, W/T3 | 2.5<br>(14)                          | 2.5 to 10 (14 to 8)                                 | 2.5<br>(14)                          | 2.5 to 10 (14 to 8)                                 | M5            | (20.4 to 23.9)               |
| 4□0011          |                  | 6 (10)                               | 4 to 16<br>(12 to 6)                                | 2.5<br>(14)                          | 2.5 to 16<br>(14 to 5)                              | M6            | 3.9 to 4.9<br>(34.7 to 43.4) |
|                 | p1, n1           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | M4            | 1 to 1.4<br>(8.9 to 12.4)    |
|                 | R/L1, S/L2, T/L3 | 4 (12)                               | 2.5 to 10 (14 to 8)                                 | 2.5<br>(14)                          | 2.5 to 10 (14 to 8)                                 | M5            | 2.3 to 2.7                   |
| 4□0014          | U/T1, V/T2, W/T3 | 4 (12)                               | 2.5 to 10 (14 to 8)                                 | 2.5<br>(14)                          | 2.5 to 10 (14 to 8)                                 | M5            | (20.4 to 23.9)               |
|                 |                  | 6 (10)                               | 4 to 16<br>(12 to 6)                                | 2.5<br>(14)                          | 2.5 to 16<br>(14 to 5)                              | M6            | 3.9 to 4.9<br>(34.7 to 43.4) |
|                 | p1, n1           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | M4            | 1 to 1.4<br>(8.9 to 12.4)    |

|                 |                                                                   | For USA ar                           | For USA and Canada                                  |                                      | America                                             |               | Tightening                    |
|-----------------|-------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------|--------------------------------------|-----------------------------------------------------|---------------|-------------------------------|
| Drive<br>Model  | Terminal                                                          | Recomm. Gauge<br>mm²<br>(AWG, kcmil) | Applicable<br>Gauge mm <sup>2</sup><br>(AWG, kcmil) | Recomm. Gauge<br>mm²<br>(AWG, kcmil) | Applicable<br>Gauge mm <sup>2</sup><br>(AWG, kcmil) | Screw<br>Size | Torque<br>N·m (lb.in.)        |
|                 | R/L1, S/L2, T/L3                                                  | 6<br>(10)                            | 4 to 10 (12 to 8)                                   | 2.5<br>(14)                          | 2.5 to 10 (14 to 8)                                 | M5            | 2.3 to 2.7                    |
| 4 <b>5</b> 0021 | U/T1, V/T2, W/T3                                                  | 6<br>(10)                            | 4 to 10<br>(12 to 8)                                | 2.5<br>(14)                          | 2.5 to 10<br>(14 to 8)                              | M5            | (20.4 to 23.9)                |
| 4□0021          | <b>(</b>                                                          | 6<br>(10)                            | 4 to 16<br>(12 to 6)                                | 2.5<br>(14)                          | 2.5 to 16<br>(14 to 5)                              | M6            | 3.9 to 4.9<br>(34.7 to 43.4)  |
|                 | p1, n1                                                            | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | M4            | 1 to 1.4<br>(8.9 to 12.4)     |
|                 | R/L1, S/L2, T/L3                                                  | 10 (8)                               | 6 to 10<br>(10 to 8)                                | 4<br>(12)                            | 2.5 to 10<br>(14 to 8)                              | M5            | 2.3 to 2.7                    |
| 4□0027          | U/T1, V/T2, W/T3                                                  | 10 (8)                               | 6 to 10<br>(10 to 8)                                | 4<br>(12)                            | 2.5 to 10<br>(14 to 8)                              | M5            | (20.4 to 23.9)                |
| 40027           |                                                                   | 10 (8)                               | 4 to 16<br>(12 to 6)                                | 4 (12)                               | 4 to 16<br>(12 to 5)                                | M6            | 3.9 to 4.9<br>(34.7 to 43.4)  |
|                 | p1, n1                                                            | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | M4            | 1 to 1.4<br>(8.9 to 12.4)     |
|                 | R/L1, S/L2, T/L3                                                  | 10<br>(8)                            | 10<br>(8)                                           | 6<br>(10)                            | 4 to 10 (12 to 8)                                   | M5            | 2.3 to 2.7                    |
| 4□0034          | U/T1, V/T2, W/T3                                                  | 10<br>(8)                            | 10<br>(8)                                           | 6<br>(10)                            | 4 to 10 (12 to 8)                                   | M5            | (20.4 to 23.9)                |
| 400034          |                                                                   | 10<br>(8)                            | 6 to 16<br>(10 to 6)                                | 6<br>(10)                            | 6 to 16<br>(10 to 5)                                | M6            | 3.9 to 4.9<br>(34.7 to 43.4)  |
|                 | p1, n1                                                            | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | M4            | 1 to 1.4<br>(8.9 to 12.4)     |
|                 | R/L1, S/L2, T/L3                                                  | 10<br>(8)                            | 10 to 25 (8 to 3)                                   | 10<br>(8)                            | 6 to 25<br>(10 to 3)                                | M6            | 4 to 6                        |
| 4□0040          | U/T1, V/T2, W/T3                                                  | 10<br>(8)                            | 10 to 25 (8 to 3)                                   | 10<br>(8)                            | 6 to 25<br>(10 to 3)                                | M6            | (35.4 to 53.1)                |
| 40040           | <b>\( \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\</b> | 10<br>(8)                            | 10 to 25 (10 to 3)                                  | 10<br>(8)                            | 6 to 25<br>(10 to 3)                                | M8            | 8.8 to 10.8<br>(78.1 to 95.5) |
|                 | p1, n1                                                            | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | M4            | 1 to 1.4<br>(8.9 to 12.4)     |
|                 | R/L1, S/L2, T/L3                                                  | 16<br>(6)                            | 10 to 25 (8 to 3)                                   | 10<br>(8)                            | 10 to 25 (8 to 3)                                   | M6            | 4 to 6                        |
| 4□0052          | U/T1, V/T2, W/T3                                                  | 16<br>(6)                            | 10 to 25 (8 to 3)                                   | 10<br>(8)                            | 10 to 25 (8 to 3)                                   | M6            | (35.4 to 53.1)                |
| 400032          | <b>\( \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\</b> | 16<br>(6)                            | 10 to 25 (8 to 3)                                   | 10<br>(8)                            | 10 to 25 (8 to 3)                                   | M8            | 8.8 to 10.8<br>(78.1 to 95.5) |
|                 | p1, n1                                                            | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | M4            | 1 to 1.4<br>(8.9 to 12.4)     |
|                 | R/L1, S/L2, T/L3                                                  | 25<br>(4)                            | 16 to 25 (6 to 3)                                   | 16<br>(5)                            | 10 to 25 (8 to 3)                                   | M6            | 4 to 6                        |
| 4□0065          | U/T1, V/T2, W/T3                                                  | 25<br>(4)                            | 16 to 25 (6 to 3)                                   | 16<br>(5)                            | 10 to 25 (8 to 3)                                   | M6            | (35.4 to 53.1)                |
| 400003          | <b>(4)</b>                                                        | 16<br>(6)                            | 16 to 25 (6 to 3)                                   | 16<br>(5)                            | 16 to 25 (5 to 3)                                   | M8            | 8.8 to 10.8<br>(78.1 to 95.5) |
|                 | p1, n1                                                            | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | M4            | 1 to 1.4<br>(8.9 to 12.4)     |
|                 | R/L1, S/L2, T/L3                                                  | 25<br>(3)                            | 25<br>(4 to 3)                                      | 25<br>(3)                            | 16 to 25 (5 to 3)                                   | M6            | 4 to 6                        |
| 4□0077          | U/T1, V/T2, W/T3                                                  | 25<br>(3)                            | 25<br>(4 to 3)                                      | 25<br>(3)                            | 16 to 25 (5 to 3)                                   | M6            | (35.4 to 53.1)                |
| 700//           | <b>\( \begin{array}{c} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ </b>  | 16<br>(6)                            | 16 to 25 (6 to 3)                                   | 16<br>(5)                            | 16 to 25 (5 to 3)                                   | M8            | 8.8 to 10.8<br>(78.1 to 95.5) |
|                 | p1, n1                                                            | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | M4            | 1 to 1.4<br>(8.9 to 12.4)     |

|                 |                  | For USA ar                           | nd Canada                                               | For South                            | America                                                  |               | Timbée e in e                        |
|-----------------|------------------|--------------------------------------|---------------------------------------------------------|--------------------------------------|----------------------------------------------------------|---------------|--------------------------------------|
| Drive<br>Model  | Terminal         | Recomm. Gauge<br>mm²<br>(AWG, kcmil) | Applicable<br>Gauge mm <sup>2</sup><br>(AWG, kcmil)     | Recomm. Gauge<br>mm²<br>(AWG, kcmil) | Applicable<br>Gauge mm <sup>2</sup><br>(AWG, kcmil)      | Screw<br>Size | Tightening<br>Torque<br>N·m (lb.in.) |
|                 | R/L1, S/L2, T/L3 | 35<br>(1)                            | 10 to 50<br>(8 to 1/0 × 2P)                             | 35<br>(1)                            | $10 \text{ to } 50 \times 2P$<br>(8 to $1/0 \times 2P$ ) | M8            | 8 to 10                              |
| 4 <b>□</b> 0006 | U/T1, V/T2, W/T3 | 35<br>(1)                            | 10 to 50<br>(8 to 1/0 × 2P)                             | 35<br>(1)                            | $10 \text{ to } 50 \times 2P$<br>(8 to $1/0 \times 2P$ ) | M8            | (70.8 to 88.5)                       |
| 4□0096          |                  | 25<br>(4)                            | 25 to 35<br>(4 to 1)                                    | 25<br>(3)                            | 10 to 35<br>(8 to 1)                                     | M8            | 8.8 to 10.8<br>(78.1 to 95.5)        |
|                 | p1, n1           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                  | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                   | M4            | 1.2 to 2.0<br>(10.4 to 17.4)         |
|                 | R/L1, S/L2, T/L3 | 25 × 2<br>(4 × 2P)                   | 16 to 50 × 2<br>(6 to 1/0 × 2P)                         | 16 × 2P<br>(5 × 2P)                  | $10 \text{ to } 50 \times 2P$<br>(8 to 1/0 × 2P)         | M8            | 8 to 10                              |
| 450124          | U/T1, V/T2, W/T3 | 25 × 2<br>(4 × 2P)                   | 16 to 50 × 2<br>(6 to 1/0 × 2P)                         | 16 × 2P<br>(5 × 2P)                  | $10 \text{ to } 50 \times 2P$<br>(8 to 1/0 × 2P)         | M8            | (70.8 to 88.5)                       |
| 4□0124          | <b>(</b>         | 25<br>(4)                            | 25 to 35<br>(4 to 1)                                    | 16<br>(5)                            | 16 to 35<br>(5 to 1)                                     | M8            | 8.8 to 10.8<br>(78.1 to 95.5)        |
|                 | p1, n1           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                  | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                   | M4            | 1.2 to 2.0<br>(10.4 to 17.4)         |
|                 | R/L1, S/L2, T/L3 | 25 × 2<br>(3 × 2P)                   | 25 to 95 × 2<br>(4 to 4/0 × 2P)                         | 25 × 2P<br>(3 × 2P)                  | 16 to 95 × 2P<br>(5 to 4/0 × 2P)                         | M10           | 15 to 20                             |
| 450156          | U/T1, V/T2, W/T3 | 25 × 2<br>(3 × 2P)                   | 25 to 95 × 2<br>(4 to 4/0 × 2P)                         | 25 × 2P<br>(3 × 2P)                  | 16 to 95 × 2P<br>(5 to 4/0 × 2P)                         | M10           | (130 to 173)                         |
| 4□0156          | <b>(</b>         | 25<br>(4)                            | 25 to 70<br>(4 to 2/0)                                  | 25<br>(3)                            | 25 to 70<br>(3 to 2/0)                                   | M10           | 17.7 to 22.6<br>(156 to 200)         |
|                 | p1, n1           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                  | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                   | M4            | 1.2 to 2.0<br>(10.4 to 17.4)         |
|                 | R/L1, S/L2, T/L3 | 35 × 2<br>(2 × 2P)                   | $25 \text{ to } 95 \times 2$<br>(3 to $4/0 \times 2P$ ) | 25 × 2P<br>(3 × 2P)                  | 25 to $95 \times 2P$<br>(3 to $4/0 \times 2P$ )          | M10           | 15 to 20                             |
| 4 <b>□</b> 0100 | U/T1, V/T2, W/T3 | 35 × 2<br>(2 × 2P)                   | $25 \text{ to } 95 \times 2$<br>(3 to $4/0 \times 2P$ ) | 25 × 2P<br>(3 × 2P)                  | $25 \text{ to } 95 \times 2P$<br>(3 to 4/0 × 2P)         | M10           | (130 to 173)                         |
| 4□0180          |                  | 25<br>(3)                            | 25 to 70<br>(4 to 2/0)                                  | 25<br>(3)                            | 25 to 70<br>(3 to 2/0)                                   | M10           | 17.7 to 22.6<br>(156 to 200)         |
|                 | p1, n1           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                  | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                   | M4            | 1.2 to 2.0<br>(10.4 to 17.4)         |
|                 | R/L1, S/L2, T/L3 | 50 × 2<br>(1/0 × 2P)                 | 35 to $95 \times 2$ (2 to $4/0 \times 2P$ )             | 35 × 2P<br>(1 × 2P)                  | $25 \text{ to } 95 \times 2P$<br>(3 to $4/0 \times 2P$ ) | M10           | 15 to 20                             |
| 4□0216          | U/T1, V/T2, W/T3 | $50 \times 2$ $(1/0 \times 2P)$      | 35 to $95 \times 2$ (2 to $4/0 \times 2P$ )             | $35 \times 2P$ $(1 \times 2P)$       | $25 \text{ to } 95 \times 2P$<br>(3 to $4/0 \times 2P$ ) | M10           | (130 to 173)                         |
| 40210           |                  | 25<br>(3)                            | 25 to 95 (4 to 4/0)                                     | 35<br>(1)                            | 25 to 95<br>(3 to 4/0)                                   | M12           | 31.4 to 39.2<br>(278 to 347)         |
|                 | p1, n1           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                  | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                   | M4            | 1.2 to 2.0<br>(10.4 to 17.4)         |
|                 | R/L1, S/L2, T/L3 | 50 × 2<br>(1/0 × 2P)                 | $50 \text{ to } 95 \times 2$<br>(1/0 to 4/0 × 2P)       | $50 \times 2P$ $(1/0 \times 2P)$     | $35 \text{ to } 95 \times 2P$<br>(1 to $4/0 \times 2P$ ) | M10           | 15 to 20                             |
| 4□0240          | U/T1, V/T2, W/T3 | $50 \times 2$ $(1/0 \times 2P)$      | $50 \text{ to } 95 \times 2$<br>(1/0 to 4/0 × 2P)       | $50 \times 2P$ $(1/0 \times 2P)$     | $35 \text{ to } 95 \times 2P$<br>(1 to $4/0 \times 2P$ ) | M10           | (130 to 173)                         |
| 400240          |                  | 35<br>(2)                            | 35 to 95 (2 to 4/0)                                     | 50<br>(1/0)                          | 35 to 95<br>(1 to 4/0)                                   | M12           | 31.4 to 39.2<br>(278 to 347)         |
|                 | p1, n1           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                  | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                   | M4            | 1.2 to 2.0<br>(10.4 to 17.4)         |
|                 | R/L1, S/L2, T/L3 | 70 × 2<br>(3/0 × 2P)                 | $50 \text{ to } 95 \times 2$<br>(1/0 to 4/0 × 2P)       | 70 × 2P<br>(3/0 × 2P)                | $50 \text{ to } 95 \times 2P$<br>(1/0 to 4/0 × 2P)       | M10           | 15 to 20                             |
| 4□0302          | U/T1, V/T2, W/T3 | 70 × 2<br>(3/0 × 2P)                 | $50 \text{ to } 95 \times 2$<br>(1/0 to 4/0 × 2P)       | $70 \times 2P$ $(3/0 \times 2P)$     | $50 \text{ to } 95 \times 2P$<br>(1/0 to 4/0 × 2P)       | M10           | (130 to 173)                         |
| <1>             |                  | 35<br>(1)                            | 35 to 150<br>(1 to 300)                                 | 70<br>(3/0)                          | 35 to 150<br>(1 to 300)                                  | M12           | 31.4 to 39.2<br>(278 to 347)         |
|                 | p1, n1           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                  | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                   | M4            | 1.2 to 2.0<br>(10.4 to 17.4)         |

|                |                  | For USA and Canada                   |                                                                                                            | For South America                                |                                                                                                        |               | Tightening                   |
|----------------|------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------|------------------------------|
| Drive<br>Model | Terminal         | Recomm. Gauge<br>mm²<br>(AWG, kcmil) | Applicable<br>Gauge mm <sup>2</sup><br>(AWG, kcmil)                                                        | Recomm. Gauge<br>mm <sup>2</sup><br>(AWG, kcmil) | Applicable<br>Gauge mm <sup>2</sup><br>(AWG, kcmil)                                                    | Screw<br>Size | Torque<br>N·m (lb.in.)       |
|                | R/L1, S/L2, T/L3 | $95 \times 2$ $(4/0 \times 2P)$      | 70 to $95 \times 2$ (3/0 to 4/0 × 2P)                                                                      | $95 \times 2P \\ (4/0 \times 2P)$                | $70 \text{ to } 95 \times 2P$<br>(3/0 to 4/0 × 2P)                                                     | M10           | 15 to 20                     |
| 4□0361         | U/T1, V/T2, W/T3 | $95 \times 2$ $(4/0 \times 2P)$      | 70 to $95 \times 2$ (3/0 to 4/0 × 2P)                                                                      | $95 \times 2P$ $(4/0 \times 2P)$                 | 70 to $95 \times 2P$<br>(3/0 to 4/0 × 2P)                                                              | M10           | (130 to 173)                 |
| <1>            |                  | 50<br>(1/0)                          | 50 to 150 (1/0 to 300)                                                                                     | 95<br>(4/0)                                      | 70 to 150 (3/0 to 300)                                                                                 | M12           | 31.4 to 39.2<br>(278 to 347) |
|                | p1, n1           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                                                                     | 2.5<br>(14)                                      | 2.5 to 4<br>(14 to 12)                                                                                 | M4            | 1.2 to 2.0<br>(10.4 to 17.4) |
|                | R/L1, S/L2, T/L3 | $150 \times 2$ $(300 \times 2P)$     | 95 to 150 × 2<br>(4/0 to 300 × 2P)                                                                         | $95 \times 2P$ $(4/0 \times 2P)$                 | 95 to 150 × 2P<br>(4/0 to 300 × 2P)                                                                    | M12           | 25 to 35                     |
| 4□0414         | U/T1, V/T2, W/T3 | 150 × 2<br>(300 × 2P)                | 95 to 150 × 2<br>(4/0 to 300 × 2P)                                                                         | $95 \times 2P$ $(4/0 \times 2P)$                 | 95 to 150 × 2P<br>(4/0 to 300 × 2P)                                                                    | M12           | (217 to 304)                 |
| <1>            |                  | 50<br>(1/0)                          | 50 to 240<br>(1/0 to 400)                                                                                  | 95<br>(4/0)                                      | 70 to 240<br>(3/0 to 400)                                                                              | M12           | 31.4 to 39.2<br>(278 to 347) |
|                | p1, n1           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                                                                     | 2.5<br>(14)                                      | 2.5 to 4<br>(14 to 12)                                                                                 | M4            | 1.2 to 2.0<br>(10.4 to 17.4) |
|                | R/L1, S/L2, T/L3 | 95 × 4P<br>(3/0 × 4P)                | $150 \times 2P$<br>$70 \text{ to } 150 \times 4P$<br>$(300 \times 2P$<br>$2/0 \text{ to } 300 \times 4P)$  | 120 × 2P<br>(250 × 2P)                           | 95 to 150 × 2P<br>(4/0 to 300 × 2P)                                                                    | M12           | 31.4 to 39.2<br>(278 to 347) |
| 4□0477<br><1>  | U/T1, V/T2, W/T3 | 95 × 4P<br>(3/0 × 4P)                | $150 \times 2P$<br>$70 \text{ to } 150 \times 4P$<br>$(300 \times 2P)$<br>$2/0 \text{ to } 300 \times 4P)$ | 120 × 2P<br>(250 × 2P)                           | 95 to 150 × 2P<br>(4/0 to 300 × 2P)                                                                    | M12           | 31.4 to 39.2<br>(278 to 347) |
|                |                  | 50<br>(1/0)                          | 50 to 150<br>(1/0 to 300)                                                                                  | 120<br>(250)                                     | 95 to 150<br>(4/0 to 300)                                                                              | M12           | 31.4 to 39.2<br>(278 to 347) |
|                | p1, n1           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                                                                     | 2.5<br>(14)                                      | 2.5 to 4<br>(14 to 12)                                                                                 | M4            | 1.2 to 2.0<br>(10.4 to 17.4) |
|                | R/L1, S/L2, T/L3 | 120 × 4P<br>(250 × 4P)               | 95 to 150 × 4P<br>(3/0 to 300 × 4P)                                                                        | 95 × 4P<br>(4/0 × 4P)                            | 120 to $150 \times 2P$<br>70 to $150 \times 4P$<br>(250 to $300 \times 2P$<br>2/0 to $300 \times 4P$ ) | M12           | 31.4 to 39.2<br>(278 to 347) |
| 4□0590<br>     | U/T1, V/T2, W/T3 | 120 × 4P<br>(250 × 4P)               | 95 to 150 × 4P<br>(3/0 to 300 × 4P)                                                                        | 95 × 4P<br>(4/0 × 4P)                            | 120 to 150 × 2P<br>70 to 150 × 4P<br>(250 to 300 × 2P<br>2/0 to 300 × 4P)                              | M12           | 31.4 to 39.2<br>(278 to 347) |
|                |                  | 70<br>(2/0)                          | 70 to 150<br>(2/0 to 300)                                                                                  | 95 × 2P<br>(4/0 × 2P)                            | 120 to 150<br>95 to 150 × 2P<br>(250 to 300<br>4/0 to 300 × 2P)                                        | M12           | 31.4 to 39.2<br>(278 to 347) |
|                | p1, n1           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                                                                     | 2.5<br>(14)                                      | 2.5 to 4<br>(14 to 12)                                                                                 | M4            | 1.2 to 2.0<br>(10.4 to 17.4) |
|                | X, Y, Z          | 150 × 4P<br>(300 × 4P)               | 120 to 150 × 4P<br>(250 to 300 × 4P)                                                                       | 120 × 4P<br>(250 × 4P)                           | 95 to 150 × 4P<br>(4/0 to 300 × 4P)                                                                    | M12           | 31.4 to 39.2<br>(278 to 347) |
|                | X1, Y1, Z1       | 50<br>(1/0)                          | 50 to 70<br>(1/0 to 2/0)                                                                                   | 35<br>(1)                                        | 35 to 50<br>(1 to 1/0)                                                                                 | M8            | 5.4 to 6.0<br>(47.8 to 53.0) |
|                | U/T1, V/T2, W/T3 | 150 × 4P<br>(300 × 4P)               | 120 to 150 × 4P<br>(250 to 300 × 4P)                                                                       | 120 × 4P<br>(250 × 4P)                           | 95 to 150 × 4P<br>(4/0 to 300 × 4P)                                                                    | M12           | 31.4 to 39.2<br>(278 to 347) |
| 4□0720<br>     |                  | 95<br>(3/0)                          | 95 to 150<br>(3/0 to 300)                                                                                  | 120 × 2P<br>(250 × 2P)                           | 95 to 150 × 2P<br>(4/0 to 300 × 2P)                                                                    | M12           | 31.4 to 39.2<br>(278 to 347) |
|                | r1, s1, t1       | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                                                                     | 2.5<br>(14)                                      | 2.5 to 4<br>(14 to 12)                                                                                 | M4            | 1.2 to 2.0<br>(10.4 to 17.4) |
|                | p1, n1           | 2.5<br>(14)                          | 2.5 to 16<br>(14 to 6)                                                                                     | 2.5<br>(14)                                      | 2.5 to 16<br>(14 to 6)                                                                                 | M5            | 2.0 to 2.5<br>(17.4 to 21.7) |
|                | p2, n2           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                                                                     | 2.5<br>(14)                                      | 2.5 to 4<br>(14 to 12)                                                                                 | M4            | 1.2 to 2.0<br>(10.4 to 17.4) |

|                |                  | For USA ar                           | nd Canada                                                                                                  | For South                            | America                                             | Screw<br>Size | Tightening<br>Torque<br>N·m (lb.in.) |
|----------------|------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------|---------------|--------------------------------------|
| Drive<br>Model | Terminal         | Recomm. Gauge<br>mm²<br>(AWG, kcmil) | Applicable<br>Gauge mm <sup>2</sup><br>(AWG, kcmil)                                                        | Recomm. Gauge<br>mm²<br>(AWG, kcmil) | Applicable<br>Gauge mm <sup>2</sup><br>(AWG, kcmil) |               |                                      |
|                | X, Y, Z          | 95 × 8P<br>(4/0 × 8P)                | $150 \times 4P$<br>$70 \text{ to } 150 \times 8P$<br>$(300 \times 4P)$<br>$2/0 \text{ to } 300 \times 8P)$ | 150 × 4P<br>(300 × 4P)               | 120 to 150 × 4P<br>(250 to 300 × 4P)                | M12           | 31.4 to 39.2<br>(278 to 347)         |
|                | X1, Y1, Z1       | 50<br>(1/0)                          | 50 to 70<br>(1/0 to 2/0)                                                                                   | 35<br>(1)                            | 35 to 50<br>(1 to 1/0)                              | M8            | 5.4 to 6.0<br>(47.8 to 53.0)         |
| 4□0900<br>     | U/T1, V/T2, W/T3 | 95 × 8P<br>(4/0 × 8P)                | $150 \times 4P$<br>$70 \text{ to } 150 \times 8P$<br>$(300 \times 4P)$<br>$2/0 \text{ to } 300 \times 8P)$ | 150 × 4P<br>(300 × 4P)               | 120 to 150 × 4P<br>(250 to 300 × 4P)                | M12           | 31.4 to 39.2<br>(278 to 347)         |
|                |                  | 95<br>(4/0)                          | 95 to 150<br>(4/0 to 300)                                                                                  | 150 × 2P<br>(300 × 2P)               | 120 to 150 × 2P<br>(250 to 300 × 2P)                | M12           | 31.4 to 39.2<br>(278 to 347)         |
|                | r1, s1, t1       | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                                                                     | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | M4            | 1.2 to 2.0<br>(10.4 to 17.4)         |
|                | p1, n1           | 2.5<br>(14)                          | 2.5 to 16 (14 to 6)                                                                                        | 2.5<br>(14)                          | 2.5 to 16<br>(14 to 6)                              | M5            | 2.0 to 2.5<br>(17.4 to 21.7)         |
|                | p2, n2           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                                                                     | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | M4            | 1.2 to 2.0<br>(10.4 to 17.4)         |
|                | X, Y, Z          | $95 \times 8P$ $(4/0 \times 8P)$     | 95 to 150 × 8P<br>(4/0 to 300 × 8P)                                                                        | $150 \times 4P$ $(300 \times 4P)$    | $150 \times 4P$ $(300 \times 4P)$                   | M12           | 31.4 to 39.2<br>(278 to 347)         |
|                | X1, Y1, Z1       | 50<br>(1/0)                          | 50 to 70 (1/0 to 2/0)                                                                                      | 35<br>(1)                            | 35 to 50<br>(1 to 1/0)                              | M8            | 5.4 to 6.0<br>(47.8 to 53.0)         |
|                | U/T1, V/T2, W/T3 | $95 \times 8P$ $(4/0 \times 8P)$     | 95 to 150 × 8P<br>(4/0 to 300 × 8P)                                                                        | $150 \times 4P$ $(300 \times 4P)$    | $150 \times 4P$ $(300 \times 4P)$                   | M12           | 31.4 to 39.2<br>(278 to 347)         |
| 4□0930<br><1>  |                  | 95<br>(4/0)                          | 95 to 150 (4/0 to 300)                                                                                     | 150 × 2P<br>(300 × 2P)               | $150 \times 2P$ $(300 \times 2P)$                   | M12           | 31.4 to 39.2<br>(278 to 347)         |
|                | r1, s1, t1       | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                                                                     | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | M4            | 1.2 to 2.0<br>(10.4 to 17.4)         |
|                | p1, n1           | 2.5<br>(14)                          | 2.5 to 16 (14 to 6)                                                                                        | 2.5<br>(14)                          | 2.5 to 16<br>(14 to 6)                              | M5            | 2.0 to 2.5<br>(17.4 to 21.7)         |
|                | p2, n2           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                                                                     | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | M4            | 1.2 to 2.0<br>(10.4 to 17.4)         |

<sup>&</sup>lt;1> Take additional measures in accordance with IEC/EN 61800-5-1 when wiring an EMC filter is installed. *Refer to Internal EMC Filter Installation on page 668* for details.

### ■ Filter Modules

Table 3.7 Filter Module Wire Gauge and Torque Specifications for Models 4□0720 to 4□0930

|             |                  | For USA and Canada                   |                                                     | For South                            | America                                             |               | Timbtoning                           |
|-------------|------------------|--------------------------------------|-----------------------------------------------------|--------------------------------------|-----------------------------------------------------|---------------|--------------------------------------|
| Model       | Terminal         | Recomm. Gauge<br>mm²<br>(AWG, kcmil) | Applicable<br>Gauge mm <sup>2</sup><br>(AWG, kcmil) | Recomm. Gauge<br>mm²<br>(AWG, kcmil) | Applicable<br>Gauge mm <sup>2</sup><br>(AWG, kcmil) | Screw<br>Size | Tightening<br>Torque<br>N⋅m (lb.in.) |
|             | R/L1, S/L2, T/L3 | $150 \times 4P$ $(300 \times 4P)$    | 120 to 150 × 4P<br>(250 to 300 × 4P)                | $120 \times 4P$ $(250 \times 4P)$    | 95 to 150 × 4P<br>(4/0 to 300 × 2P)                 | M12           | 31.4 to 39.2<br>(278 to 347)         |
|             | X, Y, Z          | 150 × 4P<br>(300 × 4P)               | 120 to 150 × 4P<br>(250 to 300 × 4P)                | 120 × 4P<br>(250 × 4P)               | 95 to 150 × 4P<br>(4/0 to 300 × 2P)                 | M12           | 31.4 to 39.2<br>(278 to 347)         |
| EUJ71180□.□ | X1, Y1, Z1       | 50<br>(1/0)                          | 50 to 70<br>(1/0 to 2/0)                            | 35<br>(1)                            | 35 to 50<br>(1 to 1/0)                              | M8            | 5.4 to 6.0<br>(47.8 to 53.0)         |
| <1>         |                  | 95<br>(3/0)                          | 95 to 150<br>(3/0 to 300)                           | 120 × 2P<br>(250 × 2P)               | 95 to 150 × 2P<br>(4/0 to 300)                      | M12           | 31.4 to 39.2<br>(278 to 347)         |
|             | r1, s1, t1       | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | M4            | 1.2 to 2.0<br>(10.4 to 17.4)         |
|             | p2, n2           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | M4            | 1.2 to 2.0<br>(10.4 to 17.4)         |

|             |                  | For USA a                            | nd Canada                                                                                   | For South                            | America                                             |               | Tightening<br>Torque<br>N·m (lb.in.) |
|-------------|------------------|--------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------|---------------|--------------------------------------|
| Model       | Terminal         | Recomm. Gauge<br>mm²<br>(AWG, kcmil) | Applicable<br>Gauge mm <sup>2</sup><br>(AWG, kcmil)                                         | Recomm. Gauge<br>mm²<br>(AWG, kcmil) | Applicable<br>Gauge mm <sup>2</sup><br>(AWG, kcmil) | Screw<br>Size |                                      |
|             | R/L1, S/L2, T/L3 | 95 × 8P<br>(4/0 × 8P)                | $150 \times 4P$<br>70 to $150 \times 8P$<br>$(300 \times 4P$<br>$2/0$ to $300 \times 8P)$   | $150 \times 4P$ $(300 \times 4P)$    | 120 to 150 × 4P<br>(250 to 300 × 4P)                | M12           | 31.4 to 39.2<br>(278 to 347)         |
| EUJ71181□.□ | X, Y, Z          | 95 × 8P<br>(4/0 × 8P)                | $150 \times 4P \ 70 \ to \ 150 \\ \times 8P \\ (300 \times 4P \\ 2/0 \ to \ 300 \times 8P)$ | 150 × 4P<br>(300 × 4P)               | 120 to 150 × 4P<br>(250 to 300 × 4P)                | M12           | 31.4 to 39.2<br>(278 to 347)         |
| <1>         | X1, Y1, Z1       | 50<br>(1/0)                          | 50 to 70<br>(1/0 to 2/0)                                                                    | 35<br>(1)                            | 35 to 50<br>(1 to 1/0)                              | M8            | 5.4 to 6.0<br>(47.8 to 53.0)         |
|             |                  | 95<br>(4/0)                          | 95 to 150 (4/0 to 300)                                                                      | 150 × 2P<br>(300 × 2P)               | 120 to 150 × 2P<br>(250 to 300 × 2P)                | M12           | 31.4 to 39.2<br>(278 to 347)         |
|             | r1, s1, t1       | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                                                      | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | M4            | 1.2 to 2.0<br>(10.4 to 17.4)         |
|             | p2, n2           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                                                      | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | M4            | 1.2 to 2.0<br>(10.4 to 17.4)         |
|             | R/L1, S/L2, T/L3 | 95 × 8P<br>(4/0 × 8P)                | 95 to 150 × 8P<br>(4/0 to 300 × 8P)                                                         | 150 × 4P<br>(300 × 4P)               | 150 × 4P<br>(300 × 4P)                              | M12           | 31.4 to 39.2<br>(278 to 347)         |
|             | X, Y, Z          | $95 \times 8P$ $(4/0 \times 8P)$     | 95 to 150 × 8P<br>(4/0 to 300 × 8P)                                                         | $150 \times 4P$ $(300 \times 4P)$    | $150 \times 4P$ $(300 \times 4P)$                   | M12           | 31.4 to 39.2<br>(278 to 347)         |
| EUJ71182□.□ | X1, Y1, Z1       | 50<br>(1/0)                          | 50 to 70<br>(1/0 to 2/0)                                                                    | 35<br>(1)                            | 35 to 50<br>(1 to 1/0)                              | M8            | 5.4 to 6.0<br>(47.8 to 53.0)         |
| <1>         |                  | 95<br>(4/0)                          | 95 to 150<br>(4/0 to 300)                                                                   | 150 × 2P<br>(300 × 2P)               | 150 × 2P<br>(300 × 2P)                              | M12           | 31.4 to 39.2<br>(278 to 347)         |
|             | r1, s1, t1       | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                                                      | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | M4            | 1.2 to 2.0<br>(10.4 to 17.4)         |
|             | p2, n2           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                                                      | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | M4            | 1.2 to 2.0<br>(10.4 to 17.4)         |

<sup>&</sup>lt;1> Take additional measures in accordance with IEC/EN 61800-5-1 when wiring an EMC filter is installed. *Refer to Internal EMC Filter Installation on page 668* for details.

### **♦** Precautions on Reactive Current When Waiting to Run

This product features a built-in harmonic filter and circulating current (reactive current) flows against the harmonic filter when waiting to run.

Select wiring, circuit breakers, and magnetic contactors that take into consideration the circulating current values given below in *Table 3.8* when temporarily turning ON the power supply, such as to set the parameters.

### ■ Circulating Current

The circulating current values shown in the following table are calculated with 240 V as 100% for 200 V class drives and 480 V as 100% for 400 V class drives. The circulating current values at other voltages vary as a proportion of the voltage.

For example, when the power supply voltage is 200 V, the circulating current value is 200 / 240 = 0.83-times.

3-Phase 400 V Class 3-Phase 200 V Class **Circulating Current [A] Circulating Current [A]** Model Model CIMR-U CIMR-U 50 Hz 60 Hz 50 Hz 60 Hz 2□0028 1.3 1.6 4□0011 0.9 1.0 2.2 2.6 4□0014 1.3 1.6  $2 \square 0042$ 2□0054 3.7 4□0021 1.7 3.1 2.1 2□0068 3.1 3.7 4□0027 2.2 2.6 2□0081 3.1 3.7 4□0034 2.6 3.1 2□0104 3.9 4.7 4□0040 4.4 5.2 2□0130 4.7 4□0052 3.9 6.1 7.3 2□0154 6.1 7.3 4□0065 6.1 7.3

**Table 3.8 Circulating Current Values** 

| 3-Phase 200 V Class |                         |       |         | 3-Phase 400 V Class     |       |  |
|---------------------|-------------------------|-------|---------|-------------------------|-------|--|
| Model               | Circulating Current [A] |       | Model   | Circulating Current [A] |       |  |
| CIMR-U              | 50 Hz                   | 60 Hz | CIMR-U□ | 50 Hz                   | 60 Hz |  |
| 2□0192              | 6.1                     | 7.3   | 4□0077  | 6.1                     | 7.3   |  |
| 2□0248              | 9.2                     | 11.0  | 4□0096  | 7.8                     | 9.4   |  |
| -                   | _                       | _     | 4□0124  | 7.8                     | 9.4   |  |
| -                   | _                       | _     | 4□0156  | 12.2                    | 14.7  |  |
| _                   | _                       | _     | 4□0180  | 12.2                    | 14.7  |  |
| -                   | _                       | _     | 4□0216  | 18.3                    | 22.0  |  |
| -                   | _                       | _     | 4□0240  | 18.3                    | 22.0  |  |
| -                   | _                       | _     | 4□0302  | 47.1                    | 56.6  |  |
| -                   | _                       | _     | 4□0361  | 47.1                    | 56.6  |  |
| -                   | _                       | -     | 4□0414  | 47.1                    | 56.6  |  |
| -                   | _                       | -     | 4□0477  | 70.8                    | 85.1  |  |
| -                   | _                       | _     | 4□0590  | 70.7                    | 85.0  |  |
| -                   | _                       | _     | 4□0720  | 115.4                   | 138.7 |  |
| -                   | _                       | _     | 4□0900  | 115.3                   | 138.6 |  |
| _                   | _                       | _     | 4□0930  | 115.3                   | 138.6 |  |

#### ■ Countermeasure for Reactive Current When Waiting to Run

When waiting to run, the power factor of power supply drops due to the circulating current. If it is necessary to prevent this drop in the power factor of the power supply when waiting to run, shut OFF the main circuit power supply when waiting as shown in *Figure 3.31*. In this case, select a model of 24 V Power Supply Unit Built-in (code: P) or a model of EMC Noise Filter and 24 V Power Supply Unit Built-in (code: W) as the customized specifications.

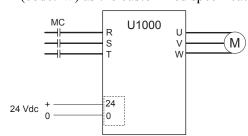



Figure 3.31 Recommended Circuit as Countermeasure for Circulating Current

# Main Circuit Terminal and Motor Wiring

This section outlines the various steps, precautions, and checkpoints for wiring the main circuit terminals and motor terminals.

**NOTICE:** When connecting the motor to the drive output terminals U/T1, V/T2, and W/T3, the phase order for the drive and motor should match. Failure to comply with proper wiring practices may cause the motor to run in reverse if the phase order is backward.

**NOTICE:** Route motor leads U/T1, V/T2, and W/T3 separate from all other leads to reduce possible interference related issues. Failure to comply may result in abnormal operation of drive and nearby equipment.

#### ■ Cable Length Between Drive and Motor

Voltage drop along the motor cable may cause reduced motor torque when the wiring between the drive and the motor is too long, especially at low frequency output. This can also be a problem when motors are connected in parallel with a fairly long motor cable. Drive output current will increase as the leakage current from the cable increases. An increase in leakage current may trigger an overcurrent situation and weaken the accuracy of the current detection.

Adjust the drive carrier frequency according to *Table 3.9*. If the motor wiring distance exceeds 100 m because of the system configuration, reduce the ground currents. *Refer to C6-02: Carrier Frequency Selection on page 240*.

Table 3.9 Cable Length Between Drive and Motor

| Cable Length      | 50 m or less   | Greater than 50 m |
|-------------------|----------------|-------------------|
| Carrier Frequency | 10 kHz or less | 4 kHz or less     |

Note:

- When setting carrier frequency for drives running multiple motors, calculate cable length as the total wiring distance to all connected motors.
- 3. The maximum cable length when using OLV/PM (A1-02 = 5) or AOLV/PM (A1-02 = 6) is 100 m.

#### Ground Wiring

Follow the precautions below when wiring the ground for one drive or a series of drives.

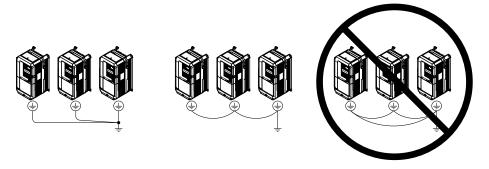
**WARNING!** Electrical Shock Hazard. Always use a ground wire that complies with technical standards on electrical equipment and minimize the length of the ground wire. Improper equipment grounding may cause dangerous electrical potentials on equipment chassis, which could result in death or serious injury.

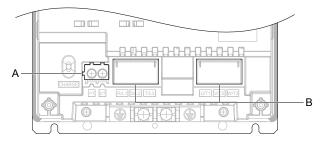
**WARNING!** Electrical Shock Hazard. Be sure to ground the drive ground terminal (200 V class: ground to 100  $\Omega$  or less; 400 V class: ground to 10  $\Omega$  or less). Improper equipment grounding could result in death or serious injury by contacting ungrounded electrical equipment.

**NOTICE:** Do not share the ground wire with other devices such as welding machines or large-current electrical equipment. Improper equipment grounding could result in drive or equipment malfunction due to electrical interference.

**NOTICE:** When using more than one drive, ground multiple drives according to instructions. Improper equipment grounding could result in abnormal operation of drive or equipment.

Refer to *Figure 3.32* when using multiple drives or when using multiple drive models  $4\square 0720$  to  $4\square 0930$  that are connected with filter module. Do not loop the ground wire.





Figure 3.32 Multiple Drive Wiring

# ■ Wiring the Main Circuit Terminal

**WARNING!** Electrical Shock Hazard. Shut off the power supply to the drive before wiring the main circuit terminals. Failure to comply may result in death or serious injury.

Wire the main circuit terminals after the terminal board has been properly grounded.

Drive Models  $2\square 0028$  to  $2\square 0081$  and  $4\square 0011$  to  $4\square 0077$  have a cover placed over terminals p1 and n1 prior to shipment to help prevent miswiring. Use wire cutters to cut away covers as needed for terminals.



A – Protective cover for terminals p1 and n1

B – Main circuit protective cover

Figure 3.33 Protective Cover

#### ■ Main Circuit Connection Diagram

Refer to Main Circuit Connection Diagram on page 86 when wiring terminals on the main power circuit of the drive.

# 3.9 Control Circuit Wiring

# **♦** Control Circuit Connection Diagram

Refer to *Figure 3.1* on page 82 when wiring terminals on the drive control circuit.

#### Control Circuit Terminal Block Functions

Drive parameters determine which functions apply to the multi-function digital inputs (S1 to S8), multi-function digital outputs (M1 to M6), multi-function analog inputs (A1 to A3), and multi-function analog monitor outputs (FM, AM). The default setting is listed next to each terminal in *Figure 3.1* on page 82.

**WARNING!** Sudden Movement Hazard. Always check the operation and wiring of control circuits after being wired. Operating a drive with untested control circuits could result in death or serious injury.

**WARNING!** Sudden Movement Hazard. Confirm the drive I/O signals and external sequence before starting test run. Setting parameter A1-06 may change the I/O terminal function automatically from the factory setting. **Refer to Application Selection on page 160**. Failure to comply may result in death or serious injury.

#### Input Terminals

*Table 3.10* lists the input terminals on the drive. Text in parenthesis indicates the default setting for each multi-function input.

**Table 3.10 Control Circuit Input Terminals** 

| Туре           | No. | Terminal Name (Function)                                    | Function (Signal Level) Default Setting                                                                                                                                                                    | Page |  |
|----------------|-----|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|
| . 7            | S1  | Multi-function input 1 (Closed: Forward run, Open: Stop)    | a modern (organia zeren) zeraian estanig                                                                                                                                                                   |      |  |
|                | S2  | Multi-function input 2<br>(Closed: Reverse run, Open: Stop) |                                                                                                                                                                                                            |      |  |
|                | S3  | Multi-function input 3<br>(External fault, N.O.)            |                                                                                                                                                                                                            |      |  |
|                | S4  | Multi-function input 4 (Fault reset)                        | Photocoupler     24 Vdc, 8 mA                                                                                                                                                                              |      |  |
|                | S5  | Multi-function input 5<br>(Multi-step speed reference 1)    | Refer to Sinking/Sourcing Mode for Digital Inputs on page 119.                                                                                                                                             | 284  |  |
| Digital Inputs | S6  | Multi-function input 6<br>(Multi-step speed reference 2)    |                                                                                                                                                                                                            |      |  |
|                | S7  | Multi-function input 7<br>(Jog reference)                   | -                                                                                                                                                                                                          |      |  |
|                | S8  | Multi-function input 8<br>(Baseblock command (N.O.))        |                                                                                                                                                                                                            |      |  |
|                | SC  | Multi-function input common                                 | Multi-function input common                                                                                                                                                                                |      |  |
|                | SP  | Digital input power supply +24 Vdc                          | 24 Vdc power supply for digital inputs, 150 mA max (only when not                                                                                                                                          | 119  |  |
| S              | SN  | Digital input power supply 0 V                              | using digital input option DI-A3) <b>NOTICE:</b> Do not jumper or short terminals SP and SN. Failure to comply will damage the drive.                                                                      | 119  |  |
|                | H1  | Safe Disable input 1                                        | • 24 Vdc, 8 mA                                                                                                                                                                                             |      |  |
|                |     |                                                             | One or both open: Output disabled                                                                                                                                                                          |      |  |
|                |     |                                                             | Both closed: Normal operation                                                                                                                                                                              |      |  |
| G C D: 11      |     |                                                             | • Internal impedance: 3.3 kΩ                                                                                                                                                                               |      |  |
| Safe Disable   | H2  | Safe Disable input 2                                        | Off time of at least 1 ms                                                                                                                                                                                  | 694  |  |
| Inputs         |     |                                                             | • Disconnect the wire jumpers shorting terminals H1, H2, and HC to use the Safe Disable inputs. Set the S3 jumper to select between sinking, sourcing mode, and the power supply as explained on page 119. |      |  |
|                | НС  | Safe Disable function common                                | Safe disable function common                                                                                                                                                                               |      |  |

| Туре                 | No.   | Terminal Name (Function)                                                   | Function (Signal Level) Default Setting                                                                                                                                                                         | Page       |
|----------------------|-------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|                      | RP    | Multi-function pulse train input (Frequency reference)                     | <ul> <li>Input frequency range: 0 to 32 kHz</li> <li>Signal Duty Cycle: 30 to 70%</li> <li>High level: 3.5 to 13.2 Vdc, low level: 0.0 to 0.8 Vdc</li> <li>Input impedance: 3 kΩ</li> </ul>                     | 194<br>313 |
|                      | +V    | Power supply for analog inputs                                             | 10.5 Vdc (max allowable current 20 mA)                                                                                                                                                                          | 193        |
|                      | -V    | Power supply for analog inputs                                             | -10.5 Vdc (max allowable current 20 mA)                                                                                                                                                                         | _          |
| Analog Inputs /      | A1    | Multi-function analog input 1<br>(Frequency reference bias)                | -10 to 10 Vdc, 0 to 10 Vdc (input impedance: $20 \text{ k}\Omega$ )                                                                                                                                             | 193<br>305 |
| Pulse Train<br>Input | A2    | Multi-function analog input 2 (Frequency reference bias)                   | <ul> <li>-10 to 10 Vdc, 0 to 10 Vdc (input impedance: 20 kΩ)</li> <li>4 to 20 mA, 0 to 20 mA (input impedance: 250 Ω)</li> <li>Voltage or current input must be selected by DIP switch S1 and H3-09.</li> </ul> | 193<br>307 |
|                      | A3    | Multi-function analog input 3<br>(Auxiliary frequency reference)/PTC Input | <ul> <li>-10 to 10 Vdc, 0 to 10 Vdc (input impedance: 20 kΩ)</li> <li>Use DIP switch S4 on the terminal board to select between analog and PTC input.</li> </ul>                                                | 193        |
|                      | AC    | Frequency reference common                                                 | 0 V                                                                                                                                                                                                             | 193        |
|                      | E (G) | Ground for shielded lines and option cards                                 | _                                                                                                                                                                                                               | _          |

## **■** Output Terminals

*Table 3.11* lists the output terminals on the drive. Text in parenthesis indicates the default setting for each multi-function output.

**Table 3.11 Control Circuit Output Terminals** 

| Туре                  | No. | Terminal Name (Function)                      | Function (Signal Level) Default Setting                                   | Page |  |
|-----------------------|-----|-----------------------------------------------|---------------------------------------------------------------------------|------|--|
|                       | MA  | N.O. output (Fault)                           |                                                                           |      |  |
| Fault Relay<br>Output | MB  | N.C. output (Fault)                           | 30 Vdc, 10 mA to 1 A; 250 Vac, 10 mA to 1 A<br>Minimum load: 5 Vdc, 10 mA | 294  |  |
| Output                | MC  | Fault output common                           | - William Ioad. 5 VdC, 10 IIIA                                            |      |  |
|                       | M1  | Multi-function divided autout (Duning mun)    |                                                                           |      |  |
|                       | M2  | Multi-function digital output (During run)    |                                                                           |      |  |
| Digital Output —      | M3  | Multi function divital autout (7ana anna)     | 30 Vdc, 10 mA to 1 A; 250 Vac, 10 mA to 1 A                               |      |  |
|                       | M4  | Multi-function digital output (Zero speed)    | Minimum load: 5 Vdc, 10 mA                                                | 294  |  |
|                       | M5  | Multi-function digital autmut (Speed Agree 1) |                                                                           |      |  |
|                       | M6  | Multi-function digital output (Speed Agree 1) |                                                                           |      |  |
|                       | MP  | Pulse train output (Output frequency)         | 32 kHz (max)                                                              | 313  |  |
| Monitor               | FM  | Analog monitor output 1 (Output frequency)    | -10 to +10 Vdc, 0 to +10 Vdc, or 4 to 20 mA. <i>Refer to Terminal</i>     | 311  |  |
| Output                | AM  | Analog monitor output 2 (Output current)      | AM/FM Signal Selection on page 122 for details.                           | 311  |  |
| A                     | AC  | Monitor common                                | 0 V                                                                       | _    |  |
| Safety Monitor        | DM+ | Safety monitor output                         | Outputs status of Safe Disable function. Closed when both Safe            | 696  |  |
| Output                | DM- | Safety monitor output                         | Disable channels are closed. Up to +48 Vdc 50 mA                          |      |  |

<sup>&</sup>lt;1> Refrain from assigning functions to digital relay outputs that involve frequent switching, as doing so may shorten relay performance life. Switching life is estimated at 200,000 times (assumes 1 A, resistive load).

#### Serial Communication Terminals

**Table 3.12 Control Circuit Terminals: Serial Communications** 

| Туре                                | No. | Signal Name               | Function (Signal Lev                        | el)                    |
|-------------------------------------|-----|---------------------------|---------------------------------------------|------------------------|
| MEMOBUS/Modbus<br>Communication <1> | R+  | Communications input (+)  |                                             | RS-422/RS-485          |
|                                     | R-  | Communications input (-)  |                                             |                        |
|                                     | S+  | Communications output (+) | RS-4/2 or RS-485 cable to connect the drive | communication protocol |
|                                     | S-  | Communications output (-) |                                             | 115.2 kbps (max.)      |
|                                     | IG  | Shield ground             | 0 V                                         |                        |

<sup>&</sup>lt;1> Enable the termination resistor in the last drive in a MEMOBUS/Modbus network by setting DIP switch S2 to the ON position. *Refer to Control I/O Connections on page 119* for more information.

# ◆ Terminal Configuration

The control circuit terminals should be arranged as shown in *Figure 3.34*.

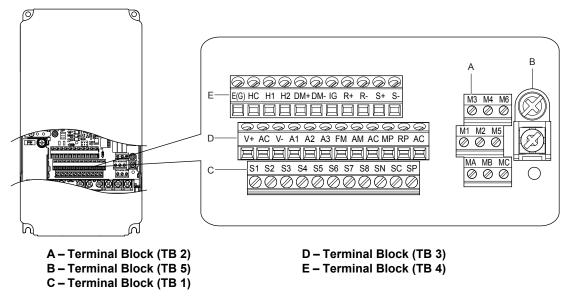



Figure 3.34 Control Circuit Terminal Arrangement

#### ■ Wire Size and Torque Specifications

Select appropriate wire type and gauges from *Table 3.13*. For simpler and more reliable wiring, use crimp ferrules on the wire ends.

Refer to *Table 3.14* for ferrule terminal types and sizes.

**Table 3.13 Wire Gauges and Torque Specifications** 

|                         | Sore                                                                                                                                                        |                      |                            | Coro                                      | Tightening                                                                            | Bare Wire                                 | Terminal                                     | Ferrule-Typ         | oe Terminal |  |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------|-------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------|---------------------|-------------|--|
| Terminal Block Terminal |                                                                                                                                                             | Scre W Norm (lb. in) |                            | Recomm.<br>Gauge<br>mm <sup>2</sup> (AWG) | Applicable<br>Gauge<br>mm <sup>2</sup> (AWG)                                          | Recomm.<br>Gauge<br>mm <sup>2</sup> (AWG) | Applicable<br>Gauge<br>mm <sup>2</sup> (AWG) | Wire Type           |             |  |
| TB1, TB2, TB3, TB4      | FM, AC, AM,<br>P1, P2, PC, SC,<br>A1, A2, A3, +V,<br>-V, S1-S8, MA,<br>MB, MC, M1,<br>M2, HC, H1,<br>H2, DM+, DM-,<br>IG, R+, R-, S+,<br>S-, RP, MP<br>E(G) | M3                   | 0.5 to 0.6<br>(4.4 to 5.3) | 0.75 (18)                                 | Stranded wire:<br>0.2 to 1.0<br>(24 to 17)<br>Solid wire:<br>0.2 to 1.5<br>(24 to 16) | 0.5 (20)                                  | 0.25 to 0.5<br>(24 to 20)                    | Shielded wire, etc. |             |  |
| TB5                     | E(G)                                                                                                                                                        | M3.5                 | 0.5 to 1.0<br>(4.4 to 8.9) | 1.25 (12)                                 | 0.5 to 2<br>(20 to 14)                                                                | _                                         | _                                            |                     |             |  |

# ■ Ferrule-Type Wire Terminals

Yaskawa recommends using CRIMPFOX 6, a crimping tool manufactured by PHOENIX CONTACT, to prepare wire ends with insulated sleeves before connecting to the drive. See *Table 3.14* for dimensions.

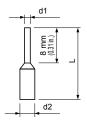



Figure 3.35 Ferrule Dimensions

**Table 3.14 Ferrule Terminal Types and Sizes** 

| Size mm <sup>2</sup> (AWG) | Type                     | L mm (in)   | d1 mm (in) | d2 mm (in) | Manufacturer     |
|----------------------------|--------------------------|-------------|------------|------------|------------------|
| 0.25 (24)                  | AI 0.25-8YE              | 12.5 (0.49) | 0.8 (0.03) | 2.0 (0.08) |                  |
| 0.34 (22)                  | AI 0.34-8TQ              | 12.5 (0.49) | 0.8 (0.03) | 2.0 (0.08) | PHOENIX CONTACT  |
| 0.5 (20)                   | AI 0.5-8WH<br>AI 0.5-8OG | 14.0 (0.55) | 1.1 (0.04) | 2.5 (0.10) | THOE ME CONTINCT |

# Wiring the Control Circuit Terminal

This section describes the proper procedures and preparations for wiring the control terminals.

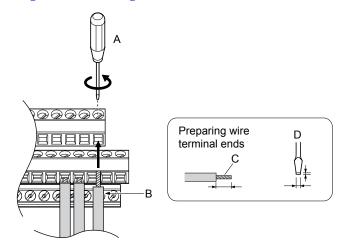
**WARNING!** Electrical Shock Hazard. Do not remove covers or touch the circuit boards while the power is on. Failure to comply could result in death or serious injury.

**NOTICE:** Separate control circuit wiring from main circuit wiring and other high-power lines. Improper wiring practices could result in drive malfunction due to electrical interference. Main circuit terminals vary by drive model. **Refer to Main Circuit Terminal Functions on page 99** for details.

**NOTICE:** Separate wiring for digital output terminals MA, MB, MC, and M1 to M6 from wiring to other` control circuit lines. Improper wiring practices could result in drive or equipment malfunction or nuisance trips.

**NOTICE:** Use a class 2 power supply when connecting to the control terminals. Improper application of peripheral devices could result in drive performance degradation due to improper power supply. Refer to NEC Article 725 Class 1, Class 2, and Class 3 Remote-Control, Signaling, and Power Limited Circuits for requirements concerning class 2 power supplies.

**NOTICE:** Insulate shields with tape or shrink tubing to prevent contact with other signal lines and equipment. Improper wiring practices could result in drive or equipment malfunction due to short circuit.


**NOTICE:** Connect the shield of shielded cable to the appropriate ground terminal. Improper equipment grounding could result in drive or equipment malfunction or nuisance trips.

**NOTICE:** Do not tighten screws beyond the specified tightening torque. Failure to comply may result in erroneous operation, damage to the terminal block, or cause a fire.

**NOTICE:** Use shielded twisted-pair cables as indicated to prevent operating faults. Improper wiring practices could result in drive or equipment malfunction due to electrical interference.

Wire the control circuit only after terminals have been properly grounded and main circuit wiring is complete. *Refer to Terminal Board Wiring Guide on page 114* for details. Prepare the ends of the control circuit wiring as shown in *Figure 3.38*. *Refer to Wire Gauges and Torque Specifications on page 113*.

Connect control wires as shown in *Figure 3.36* and *Figure 3.37*.



- A Loosen screw to insert wire.
- B Single wire or stranded wire
- C Avoid fraying wire strands when stripping insulation from wire. Strip length 5.5 mm.
- D Blade depth of 0.4 mm or less Blade width of 2.5 mm or less

Figure 3.36 Terminal Board Wiring Guide

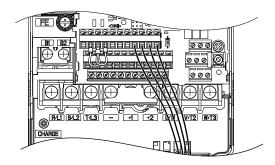
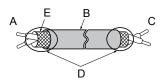




Figure 3.37 Terminal Board Location Inside the Drive

When setting the frequency by analog reference from an external potentiometer, use shielded twisted-pair wires (preparing wire ends as shown in *Figure 3.38*) and connect the shield to the ground terminal of the drive.



A - Drive side

D – Shield sheath (insulate with tape)
E – Shield

**B** - Insulation

C – Control device side

Figure 3.38 Preparing the Ends of Shielded Cables

**NOTICE:** The analog signal wiring between the drive and the operator station or peripheral equipment should not exceed 50 meters when using an analog signal from a remote source to supply the frequency reference. Failure to comply could result in poor system performance.

#### Module Communications Connector

The module communications connector port allows the transfer of information to enable turning on and operating drive models  $4\square 0720$  to  $4\square 0930$  and the filter module.

**Note:** Connect the drive and filter module before turning on or operating models 4□0720 to 4□0930.

Refer to Drive Standard Connection Diagram (Example: Model 4 □0720) on page 84 for more information on module communications connector functions.

#### Module Communications Connector Locations

Connect drive models  $4\square0720$  to  $4\square0930$  to the filter module using the module communications connector cable packaged with the filter module.

Connect one end of the cable to the module communications connector port CN500 of the drive and the other end of the cable to the module communications connector port CN500 of the filter module.

Insert both ends of the cable then gently pull the cable to ensure a secure connection.

#### **Drive Models 4**□0720 to 4□0930

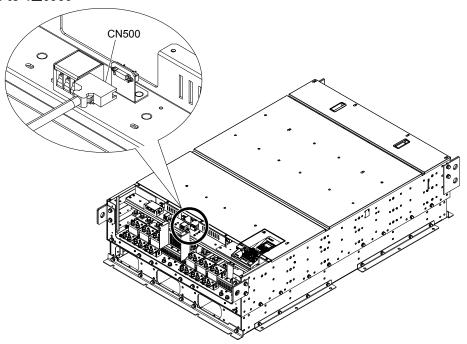



Figure 3.39 Module Communications Connector Port CN500 Location

#### **Filter Module**

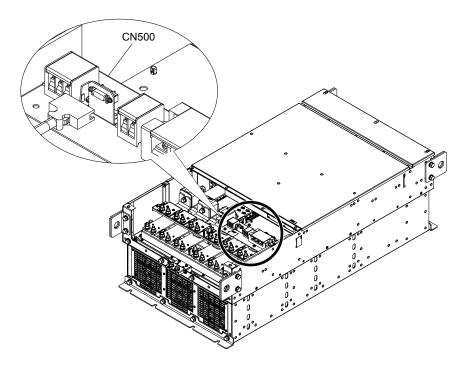



Figure 3.40 Module Communications Connector Port CN500 Location

# **■** Cable Specifications

**Table 3.15 Module Communications Connector Cable Specifications** 

| Cable Length                | Cable Connector Exterior                         | Cable Example |
|-----------------------------|--------------------------------------------------|---------------|
| Approximately 5 m (16.4 ft) | Half-pitch I/O connector<br>(1.27 mm [0.05 in.]) |               |

# Switches and Jumpers on the Terminal Board

The terminal board is equipped with several switches used to adapt the drive I/Os to the external control signals. *Figure 3.41* shows the location of these switches. *Refer to Control I/O Connections on page 119* for setting instructions.

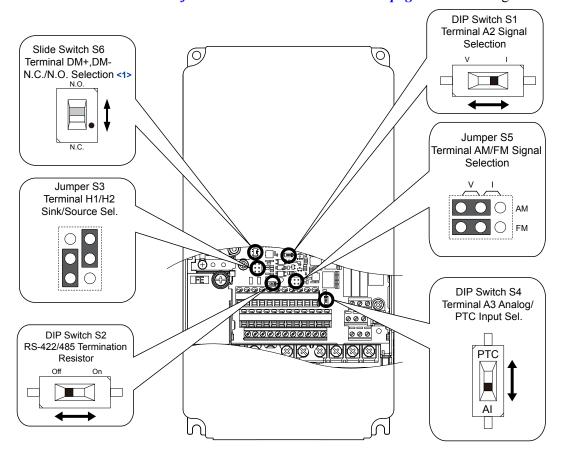
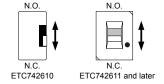
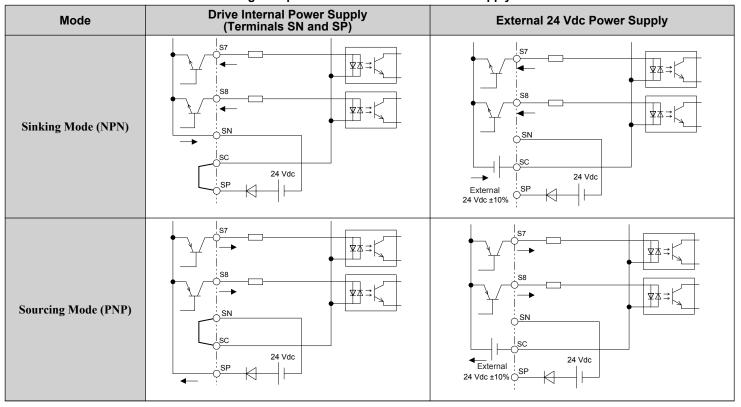




Figure 3.41 Locations of Jumpers and Switches on the Terminal Board

<1> Slide switch S6 design differs based on PCB model number.




# 3.10 Control I/O Connections

# Sinking/Sourcing Mode for Digital Inputs

Use the wire jumper between terminals SC and SP or SC and SN to select between Sink mode, Source mode or external power supply for the digital inputs S1 to S8 as shown in *Table 3.16* (Default: Sink mode, internal power supply).

NOTICE: Do not short terminals SP and SN. Failure to comply will damage the drive.

Table 3.16 Digital Input Sink/Source/External Power Supply Selection



## ◆ Sinking/Sourcing Mode Selection for Safe Disable Inputs

Use jumper S3 on the terminal board to select between Sink mode, Source mode or external power supply for the Safe Disable inputs H1 and H2 as shown in *Table 3.16* (Default: Source mode, internal power supply). *Refer to Switches and Jumpers on the Terminal Board on page 118* for locating jumper S3.

Remove the jumper wire connected to the HC terminals and connect terminals H1 and H2 as shown in *Table 3.17* to use an external power supply for a sequence input without using a safety input.

**WARNING!** Electrical Shock Hazard. Be sure to remove the jumper wire connected to the HC terminals if using en external power supply for a sequence input without using a safety input. Failure to comply will short circuit the external power supply.

Sinking Mode

Drive Internal Power Supply

External 24 Vdc Power Supply

Jumper S3

Table 3.17 Safe Disable Input Sink/Source/External Power Supply Selection

# Using the Pulse Train Output

The pulse train output terminal MP can supply power or be used with an external power supply.

**NOTICE:** Connect peripheral devices in accordance with the specifications. Failure to comply may cause unexpected drive operation, and can damage the drive or connected circuits.

## ■ Using Power from the Pulse Output Terminal (Source Mode)

The high voltage level of the pulse output terminal depends on the load impedance.

| Load Impedance R <sub>L</sub> (kΩ) | Output Voltage V <sub>MP</sub> (V) (insulated) |
|------------------------------------|------------------------------------------------|
| 1.5 kΩ                             | 5 V                                            |
| 4 kΩ                               | 8 V                                            |
| 10 kΩ                              | 10 V                                           |

**Note:** The load resistance needed in order to get a certain high level voltage  $V_{MP}$  can be calculated by:  $R_L = V_{MP} \cdot 2 / (12 - V_{MP})$ 

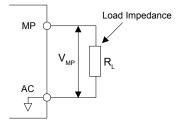



Figure 3.42 Pulse Output Connection Using Internal Voltage Supply

#### ■ Using External Power Supply (Sink Mode)

The high voltage level of the pulse output signal depends on the external voltage applied. The voltage must be between 12 and 15 Vdc. The load resistance must be adjusted so that the current is lower than 16 mA.

| External Power Supply (V) | Load Impedance (kΩ) |
|---------------------------|---------------------|
| 12 to 15 Vdc ±10%         | 1.0 kΩ or higher    |

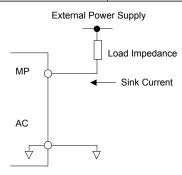



Figure 3.43 Pulse Output Connection Using External Voltage Supply

## Terminal A2 Input Signal Selection

Terminal A2 can be used to input either a voltage or a current signal. Select the signal type using switch S1 as explained in *Table 3.18*. Set parameter H3-09 accordingly as shown in *Table 3.19*. *Refer to Switches and Jumpers on the Terminal Board on page 118* for locating switch S1.

Note:

If terminals A1 and A2 are both set for frequency bias (H3-02=0 and H3-10=0), both input values will be combined to create the frequency reference.

#### Table 3.18 DIP Switch S1 Settings

| Setting            | Description                                               |
|--------------------|-----------------------------------------------------------|
| V (left position)  | Voltage input (-10 to +10 V or 0 to 10 V)                 |
| I (right position) | Current input (4 to 20 mA or 0 to 20 mA): default setting |

#### Table 3.19 Parameter H3-09 Details

| No.   | Parameter Name | Description                                                                                                       | Setting Range | Default Setting |
|-------|----------------|-------------------------------------------------------------------------------------------------------------------|---------------|-----------------|
| Н3-09 |                | Selects the signal level for terminal A2.<br>0: 0 to 10 Vdc<br>1: -10 to 10 Vdc<br>2: 4 to 20 mA<br>3: 0 to 20 mA | 0 to 3        | 2               |

# ◆ Terminal A3 Analog/PTC Input Selection

Terminal A3 can be configured either as multi-function analog input or as PTC input for motor thermal overload protection. Use switch S4 to select the input function as described in *Table 3.20*. *Refer to Switches and Jumpers on the Terminal Board on page 118* for locating switch S4.

#### Table 3.20 DIP Switch S4 Settings

| Setting                       | Description                                               |  |  |  |
|-------------------------------|-----------------------------------------------------------|--|--|--|
| AI (lower position) (default) | Analog input for the function selected in parameter H3-06 |  |  |  |
| PTC (upper position)          | PTC input. Parameter H3-06 must be set to E (PTC input)   |  |  |  |

# ◆ Terminal AM/FM Signal Selection

The signal type for terminals AM and FM can be set to either voltage or current output using jumper S5 on the terminal board as explained in *Table 3.21*. When changing the setting of jumper S5, parameters H4-07 and H4-08 must be set accordingly. The default selection is voltage output for both terminals. *Refer to Switches and Jumpers on the Terminal Board on page 118* for locating jumper S5.

Table 3.21 Jumper S5 Settings

| Terminal Voltage Output |               | Current Output                        |  |  |
|-------------------------|---------------|---------------------------------------|--|--|
| Terminal AM             |               | O O V                                 |  |  |
| Terminal FM             | O O O O FM AM | O O O O O O O O O O O O O O O O O O O |  |  |

Table 3.22 Parameter H4-07 and H4-08 Details

| No.   | Parameter Name                     | Description                       | Setting Range | Default Setting |
|-------|------------------------------------|-----------------------------------|---------------|-----------------|
| H4-07 | Terminal FM signal level selection | 0: 0 to 10 Vdc                    |               |                 |
| H4-08 | Terminal AM signal level selection | 1: -10 to 10 Vdc<br>2: 4 to 20 mA | 0 to 2        | 0               |

#### **◆ MEMOBUS/Modbus Termination**

This drive is equipped with a built-in termination resistor for the RS-422/RS-485 communication port. DIP switch S2 enables or disabled the termination resistor as shown in *Table 3.23*. The OFF position is the default. The termination resistor should be placed to the ON position when the drive is the last in a series of slave drives.

Refer to Switches and Jumpers on the Terminal Board on page 118 to locate switch S2.

Table 3.23 MEMOBUS/Modbus Switch Settings

| S2 Position | Description                                         |  |  |
|-------------|-----------------------------------------------------|--|--|
| ON          | Internal termination resistor ON                    |  |  |
| OFF         | Internal termination resistor OFF (default setting) |  |  |

Note: Refer to MEMOBUS/Modbus Communications on page 627 for details on MEMOBUS/Modbus.

# ◆ Terminal DM+ and DM- Output Signal Selection

Slide switch S6 selects N.C. or N.O. as the state of the DM+ and DM- terminals for EDM output.

**Table 3.24 EDM Switch Settings** 

| S2 Position | Description                       |
|-------------|-----------------------------------|
| N.O.        | Normally open                     |
| N.C.        | Normally closed (default setting) |

Note: Refer to Safe Disable Input Function on page 694 for details on EDM.

# 3.11 Connect to a PC

This drive is equipped with a USB port (type-B).

The drive can connect to a USB port on a PC using a USB 2.0, AB-type cable (sold separately). After connecting the drive to a PC, Yaskawa DriveWizard Industrial software can be used to monitor drive performance and manage parameter settings. Contact Yaskawa or a Yaskawa representative for more information on DriveWizard Industrial.

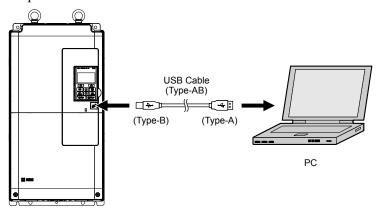



Figure 3.44 Connecting to a PC (USB)

# 3.12 EMC Filter

#### Enable the Internal EMC Filter

Drive models UU \( \subseteq \subseteq \subseteq \alpha\) and UU \( \subseteq \subseteq \subseteq \subseteq \alpha\) have a built-in EMC filter. Change the placement of the EMC filter screw when switching between enabled (ON) or disabled (OFF). *Refer to Drive Model Number Definition on page 39* for model number definition.

**DANGER!** Electrical Shock Hazard. Do not touch SW screw while power is applied to the drive. Failure to comply will result in death or serious injury.

WARNING! Electrical Shock Hazard. Connect the ground cable correctly. Failure to comply may result in death or serious injury.

**NOTICE:** When disabling the internal EMC filter, move the screws from ON to OFF and then tighten to the specified torque. Completely removing the screws or tightening the screws to an incorrect torque may cause drive failure.

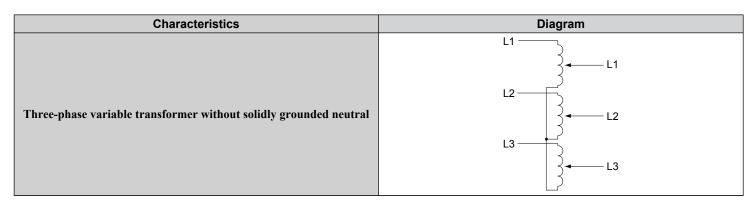
**NOTICE:** Prevent Drive Damage: Install the two EMC filter screws in the same position (ON and ON, or OFF and OFF). Failure to comply may result in serious damage to the drive.

**NOTICE:** Prevent Drive Damage: Install the EMC filter screw in the OFF position. Installing the EMC filter screw disables the internal EMC filter in the network is grounded as follows. Failure to comply may result in serious damage to the drive.

- Floating network
- High impedance grounded network
- Asymmetrically grounded network

Note

- Models CIMR-U□4□0477 to 4□0930 are not available. Be sure to use a stand-alone EMC filter for models CIMR-U□4□0477 to 4□0930.
- 2. Models CIMR-UD2E0248, 2W0248, 4E0216, 4E0240 have two EMC filter screws.
- 3. For floating, impedance grounded, or asymmetrically grounded networks, disconnect the internal EMC filter by moving the SW screw to the OFF position.


Use size M4 internal EMC filter screws with 1.0 to 1.3 N·m tightening torque.

#### Asymmetrical Grounded Network

*Table 3.25* shows asymmetrical grounded networks. Asymmetrical networks require first moving the SW screw to disconnect the internal ground connection. (Drives are shipped with the SW screw installed at the OFF position.)

**Table 3.25 Asymmetrical Grounded Network** 

| Characteristics                         | Diagram |  |
|-----------------------------------------|---------|--|
| Grounded at the corner of the delta     | L3L2    |  |
| Grounded at the middle of the side      | L3L1    |  |
| Single-phase, grounded at the end point | L1      |  |



## ■ Symmetrical Grounded Network

When EMC is a concern for drives with internal EMC filters and the network is grounded symmetrically, install the EMC filter screw to the ON position and enable the internal EMC filter.

Drives ship from the factory with EMC filter screws installed in the OFF position.

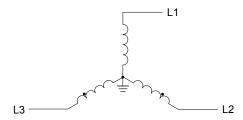



Figure 3.45 Symmetrical Grounded Network

#### ■ EMC Filter Switch Location

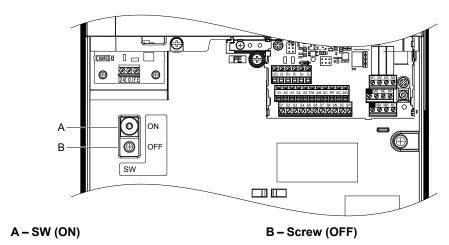



Figure 3.46 EMC Filter Switch Location (Drive Models 2E0028, 2W0028, 4E0011 to 4E0034, and 4W0011 to 4W0034)

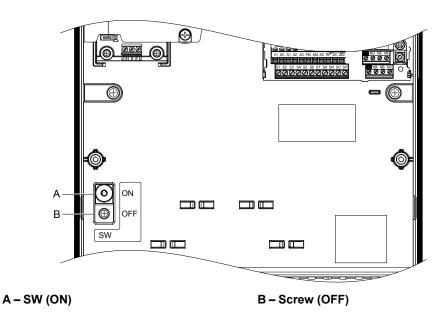



Figure 3.47 EMC Filter Switch Location (Drive Models 2E0042, 2W0042, 2E0054, 2W0054, 4E0040 to 4E0077, and 4W0040 to 4W0077)

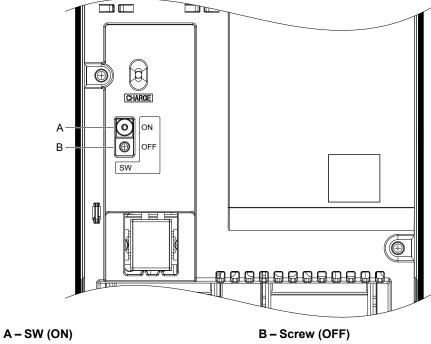



Figure 3.48 EMC Filter Switch Location (Drive Models 2E0104, 2W0104, 2E0130, 2W0130, 4E0096, 4W0096, 4E0124, and 4W0124)

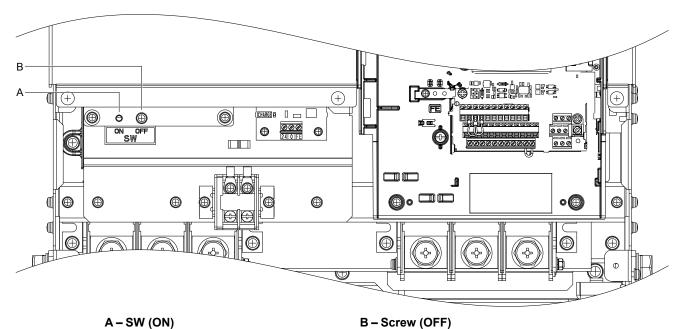



Figure 3.49 EMC Filter Switch Location (Drive Models 2E0154, 2W0154, 2E0192, 2W0192, 4E0156, 4W0156, 4E0180, and 4W0180)

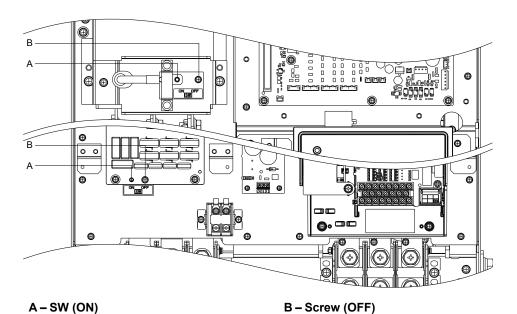



Figure 3.50 EMC Filter Switch Location (Drive Models 2E0248, 2W0248, 4EU0216, 4W0216, 4E0240, and 4W0240)

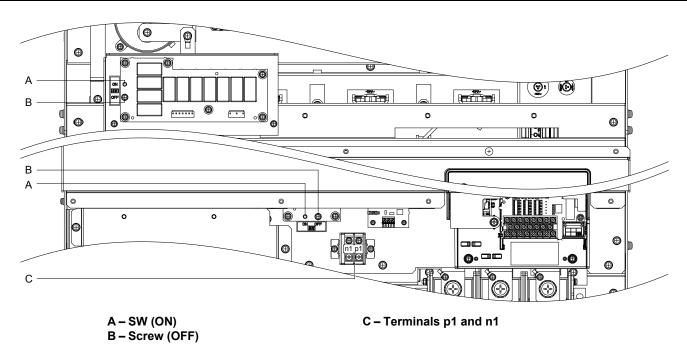
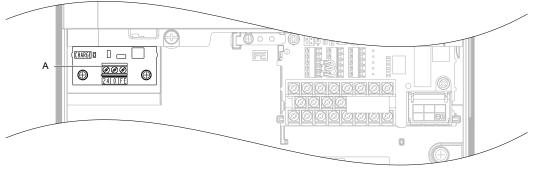


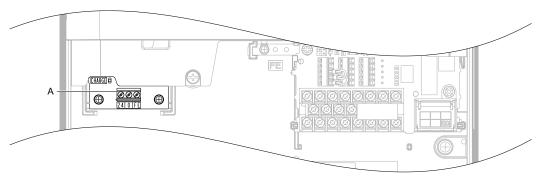

Figure 3.51 EMC Filter Switch Location (Drive Models 4E0302 to 4E0414 and 4W0302 to 4W0414)

# 3.13 24 V Control Power Supply Unit Wiring


# 24 V Control Power Supply Unit

The 24 V Control Power Supply Unit maintains drive control circuit power in the event of a main power outage. As long as the control circuit has power, network communications and I/O data remain operational. The unit provides external power to the control circuit only, and does not provide power to the main circuit of the drive.

It is possible to read fault and parameter data in the drive via the operator or network communications when the drive switches to the 24 V Control Power Supply Unit as a back-up power supply.


Note: Parameter settings cannot be changed without drive main circuit power regardless of whether the control circuit has enough power to operate.

# ▶ 24 V Control Power Supply Unit Location



A -Power Supply Terminal Block TB1

Figure 3.52 24 V Control Power Supply Unit Location (Drive Models 2P0028, 2W0028, 4P0011 to 4P0034, and 4W0011 to 4W0034)



A -Power Supply Terminal Block TB1

Figure 3.53 24 V Control Power Supply Unit Location (Drive Models 2P0042 to 2P0081, 2W0042 to 2W0081, 4P0040 to 4P0077, and 4W0040 to 4W0077)

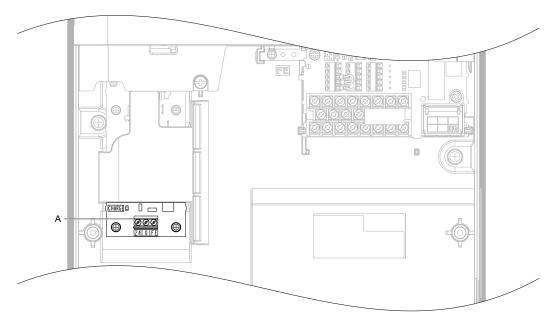
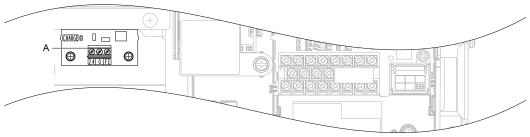
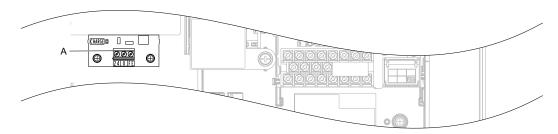





Figure 3.54 24 V Control Power Supply Unit Location (Drive Models 2P0104, 2W0104, 2P0130, 2W0130, 4P0096, 4W0096, 4P0124, and 4W0124)



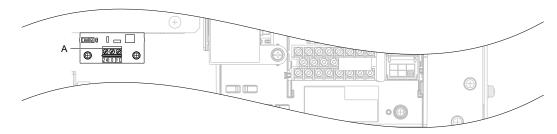

A -Power Supply Terminal Block TB1

Figure 3.55 24 V Control Power Supply Unit Location (Drive Models 2P0154, 2W0154, 2P0192, 2W0192, 4P0156, 4W0156, 4P0180, and 4W0180)



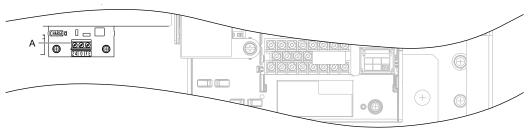

A -Power Supply Terminal Block TB1

Figure 3.56 24 V Control Power Supply Unit Location (Drive Models 2P0248, 2W0248, 4P0216, 4W0216, 4P0240, and 4W0240)



#### A -Power Supply Terminal Block TB1

Figure 3.57 24 V Control Power Supply Unit Location (Drive Models 4P0302 to 4P0414 and 4W0302 to 4W0414)



A -Power Supply Terminal Block TB1

Figure 3.58 24 V Control Power Supply Unit Location (Models 4P0477 to 4P0930 and 4W0477 to 4W0930)

## Power Supply Terminal Block TB1 Wiring

#### ■ Power Supply Terminal Block TB1 Wiring Procedure

**1.** Select an external power supply.

Two times the normal current will flow through the unit for approximately 0.5 seconds when the 24 V Control Power Supply Unit is first switched on. The unit requires at least 3 A to function properly.

**WARNING!** Electrical Shock Hazard. Use a battery or a double-reinforced UL Class 2 power supply to provide power to the 24 V Control Power Supply Unit. Using a different type of power supply may result in death or serious injury by electrical shock or fire.

NOTICE: Do not install multiple 24 V Control Power Supply Units. Failure could cause erroneous operation or damage the drive.

2. Use a flat-blade screwdriver to loosen the screws on the terminal block TB1, connect wiring to the 24, 0, and FE terminals as shown in *Figure 3.59*, then tighten the terminal screws to hold wiring in place. Refer to *Table 3.27* to confirm that the proper tightening torque is applied to each terminal. Take particular precaution to ensure that each wire is properly connected and wire insulation is not accidentally pinched into electrical terminals.

**NOTICE:** Properly connect an external 24 Vdc power source to terminal block TB1. Refer to **Table 3.27** for details. Improper wiring practices could damage the 24 V Control Power Supply Unit due to incorrect terminal connections.

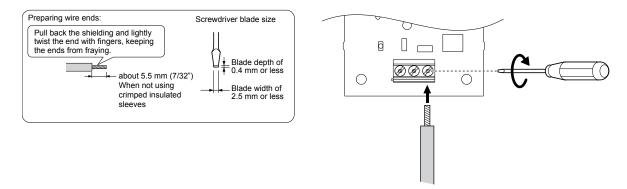



Figure 3.59 Wire the Option Plug

**WARNING!** Fire Hazard. Tighten terminal screws to the specified tightening torque. Loose electrical connections could result in death or serious injury by fire due to overheating. Tightening screws beyond the specified tightening torque may cause erroneous operation, damage the terminal block, or cause a fire.

**NOTICE:** Heat shrink tubing or electrical tape may be required to ensure that cable shielding does not contact other wiring. Insufficient insulation may cause a short circuit and damage the drive.

#### ■ Tools Required for Installation

A straight-edge screwdriver (blade depth: 0.4 mm, width: 2.5 mm) is required to install the unit and wire the option terminal block.

**Note:** Tools required to prepare option cables for wiring are not listed in this manual.

#### ■ Power Supply Terminal Block TB1 Functions

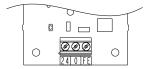



Figure 3.60 Power Supply Terminal Block TB1

**Table 3.26 Power Supply Terminal Block TB1 Functions** 

| Terminal | Function      |
|----------|---------------|
| 24       | +24 Vdc Input |
| 0        | 0 V           |
| FE       | Ground        |

#### ■ Wire Gauges and Tightening Torques

**Table 3.27 Wire Gauges and Tightening Torques** 

|                     | Tightoning |                                     | Bare Cable                                |                                                                                                 | Crimp Terminals               |                                               |                             |
|---------------------|------------|-------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------|-----------------------------|
| Terminal Screw Size |            | ze Tightening ze Torque N·m (in·lb) | Recomm.<br>Gauge mm <sup>2</sup><br>(AWG) | Applicable<br>Gauges mm <sup>2</sup><br>(AWG)                                                   | Recomm.<br>Gauge mm²<br>(AWG) | Applicable<br>Gauges mm <sup>2</sup><br>(AWG) | Wire Type                   |
| 24, 0, FE           | M2         | 0.22 to 0.25<br>(1.95 to 2.21)      | 0.75 (18 AWG)                             | Stranded wire:<br>0.25 to 1.0<br>(24 to 17 AWG)<br>Solid wire:<br>0.25 to 1.5<br>(24 to 16 AWG) | 0.5 (20 AWG)                  | 0.25 to 0.5<br>(24 to 20 AWG)                 | Shielded twisted pair, etc. |

# ■ Ferrule-Type Wire Terminals

Yaskawa recommends using CRIMPFOX 6, a crimping tool manufactured by PHOENIX CONTACT, to prepare wire ends with insulated sleeves. See *Table 3.28* for dimensions.

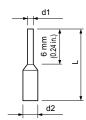



Figure 3.61 Ferrule Dimensions

Table 3.28 Ferrule Terminal Types and Sizes

| Size mm <sup>2</sup> (AWG) | Туре                       | L mm (in)   | d1 mm (in) | d2 mm (in) | Manufacturer    |
|----------------------------|----------------------------|-------------|------------|------------|-----------------|
| 0.25 (24)                  | AI 0.25-6YE<br>AI 0.25-6BU | 10.5 (0.41) | 0.8 (0.03) | 2.0 (0.08) |                 |
| 0.34 (22)                  | AI 0.34-6TQ                | 10.5 (0.41) | 0.8 (0.03) | 2.0 (0.08) | PHOENIX CONTACT |
| 0.5 (20)                   | AI 0.5-6WH                 | 12 (0.47)   | 1.1 (0.04) | 2.5 (0.10) |                 |

#### ■ Power Supply and the Control Circuit

*Table 3.29* outlines the various conditions under which the option provides power to the control circuit.

#### **Table 3.29 Power Supply and Control Circuit**

| Drive Main Circuit<br>Input Power Supply |     |           | Drive Operation |
|------------------------------------------|-----|-----------|-----------------|
| ON                                       | ON  |           | Possible        |
| ON                                       | OFF | Operating | Possible        |
| OFF                                      | ON  |           | Not possible    |
| OFF                                      | OFF | Stopping  | Not possible    |

# **■** UL and CE Compliance

#### **External Power Supply**

Use a Class 2 power supply as defined by UL standards for the customer-supplied power supply connection to the 24 V Control Power Supply Unit.

## ◆ 24 V Control Power Supply Unit Specifications

Table 3.30 24 V Control Power Supply Unit Specifications

| Item                    | Specifications                                                |  |
|-------------------------|---------------------------------------------------------------|--|
| Input Operating Voltage | $24 \text{ Vdc} \pm 20\% (19.2 \text{ V to } 28.8 \text{ V})$ |  |
| Input Current           | 1.9 A                                                         |  |
| Consumption Power       | 38 W                                                          |  |
| Compliance              | UL ⁴Þ>, CE                                                    |  |

<sup>&</sup>lt;1> Use a Class 2 power supply with a capacity of 24 V to comply with UL standards.

# 3.14 External Interlock

Systems that may be affected during drive fault conditions should be interlocked with the drive fault output and ready signal.

# Operation Ready

Under the following conditions, the Operation Ready signal switches off and remains off during a fault even if a Run command is entered:

- when the power supply is shut off
- · during a fault
- when there is problem with the control power supply
- when a parameter setting error renders the drive unable to run even when entering a Run command
- when a fault such as overvoltage or undervoltage is triggered as soon as the Run command is entered
- when the drive is in the Programming mode and will not accept a Run command.

#### Interlock Circuit Example

Two drives running a single application might interlock with the controller using the Operation ready and Fault output signals as shown below. *Figure 3.62* illustrates how the application would not be able to run if either drive experiences a fault or is unable to supply an Operation ready signal.

| Terminal   | Output Signal   | Parameter Setting |  |
|------------|-----------------|-------------------|--|
| MA, MB, MC | Fault           | _                 |  |
| M1-M2      | Operation Ready | H2-01 = 06        |  |

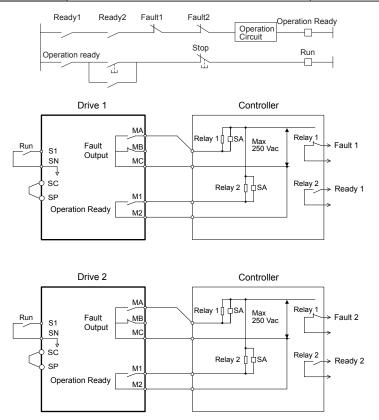



Figure 3.62 Interlock Circuit Example

# 3.15 Wiring Checklist

| 四                                | No. | Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page(s) |  |  |
|----------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|
|                                  |     | Drive, Peripherals, Option Cards                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |  |  |
|                                  | 1   | Check drive model number to ensure receipt of correct model.                                                                                                                                                                                                                                                                                                                                                                                                                        |         |  |  |
| Drive, Peripherals, Option Cards |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |  |  |
|                                  | 2   | Make sure you have the correct peripheral devices.                                                                                                                                                                                                                                                                                                                                                                                                                                  | 470     |  |  |
|                                  | 3   | Check the option card model number.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |  |  |
|                                  | !   | Installation Area and Physical Setup                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |  |  |
|                                  | 4   | Ensure that the area surrounding the drive complies with specifications.                                                                                                                                                                                                                                                                                                                                                                                                            | 60      |  |  |
|                                  |     | Power Supply Voltage, Output Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |  |  |
|                                  | 5   | The voltage from the power supply should be within the input voltage specification range of the drive.                                                                                                                                                                                                                                                                                                                                                                              | 489     |  |  |
|                                  | 6   | The voltage rating for the motor should match the drive output specifications.                                                                                                                                                                                                                                                                                                                                                                                                      | 27      |  |  |
|                                  | 7   | Verify that the drive is properly sized to run the motor.                                                                                                                                                                                                                                                                                                                                                                                                                           | 36      |  |  |
|                                  | 8   | Power supply voltage of models 4□0477 to 4□0930 should not exceed 480 V when connecting with recommended EMC filters.                                                                                                                                                                                                                                                                                                                                                               | 81      |  |  |
|                                  |     | Main Circuit Wiring                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |  |  |
|                                  | 9   | Confirm proper branch circuit protection as specified by national and local codes.                                                                                                                                                                                                                                                                                                                                                                                                  | 81      |  |  |
|                                  | 10  | Properly wire the power supply to drive terminals R/L1, S/L2, and T/L3.                                                                                                                                                                                                                                                                                                                                                                                                             | 86      |  |  |
|                                  | 11  | Properly wire the drive and motor together.  The motor lines and drive output terminals U/T1, V/T2, and W/T3 should match in order to produce the desired phase order. If the phase order is incorrect, the drive will rotate in the opposite direction.                                                                                                                                                                                                                            |         |  |  |
|                                  | 12  | Use 600 Vac vinyl-sheathed wire for the power supply and motor lines. Wire gauge recommendations based on using 75 °C (167 °F), 600 Vac vinyl-sheathed wire.                                                                                                                                                                                                                                                                                                                        | 101     |  |  |
|                                  | 13  | <ul> <li>Use the correct wire gauges for the main circuit.</li> <li>Consider the amount of voltage drop when selecting wire gauges. Increase the wire gauge when the voltage drop is greater than 2% of motor rated voltage. Ensure the wire gauge is suitable for the terminal block. Use the following formula to calculate the amount of voltage drop:         Line drop voltage (V) = √3 × wire resistance (Ω/km) × wire length (m) × current (A) × 10<sup>-3</sup> </li> </ul> |         |  |  |
|                                  | 14  | If the cable between the drive and motor exceeds 50 m, adjust the carrier frequency set to C6-02 accordingly.  Perpetty ground the drive.                                                                                                                                                                                                                                                                                                                                           |         |  |  |
|                                  |     | Properly ground the drive.                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |  |  |
|                                  | 15  | Set up overload protection circuits when running multiple motors from a single drive.  Power supply  Drive  OL1  (external fault)  N.O. input  Thermal  relay                                                                                                                                                                                                                                                                                                                       | -       |  |  |
|                                  |     | Note: Close MC1 – MCn before operating the drive. MC1 – MCn cannot be switched off during run.                                                                                                                                                                                                                                                                                                                                                                                      |         |  |  |
|                                  | 17  | Verify that ground wiring for models UU□E□□□□ and UU□W□□□□ is correct before turning on the EMC filter switch.                                                                                                                                                                                                                                                                                                                                                                      |         |  |  |
|                                  | 18  | Verify phase advancing capacitors, input noise filters, or GFCIs are NOT installed on the output side of the drive.                                                                                                                                                                                                                                                                                                                                                                 |         |  |  |
|                                  | 19  | Properly wire the power lines to terminals X, Y, and Z of drive models 4\(\pi\)0720 to 4\(\pi\)0930, and terminals X, Y, and Z of the filter module.                                                                                                                                                                                                                                                                                                                                |         |  |  |
|                                  | 20  | Properly wire the power lines to terminals X1, Y1, and Z1 of drive models 4\(\Delta\)0720 to 4\(\Delta\)0930, and terminals X1, Y1, and Z1 of the filter module.                                                                                                                                                                                                                                                                                                                    |         |  |  |
|                                  | 21  | Properly wire the power lines to terminals p2 and n2 of mdrive models 4\(\sigma 0720\) to 4\(\sigma 0930\), and terminals p2 and n2 of the filter module.                                                                                                                                                                                                                                                                                                                           |         |  |  |
|                                  | 22  | The cable between drive models 4□0720 to 4□0930 and filter module should not exceed 5 m (16.4 ft.).                                                                                                                                                                                                                                                                                                                                                                                 |         |  |  |
|                                  | 23  | The resistance value between the terminals R/L1, S/L2, and T/L3 of the filter module should exceed $1000 \Omega$ when connected to drive models $4\square 0720$ to $4\square 0930$ . If the resistance value does not exceed $1000 \Omega$ , check for main circuit wiring mistakes between the filter module and drive models $4\square 0720$ to $4\square 0930$ .                                                                                                                 |         |  |  |

| М                      | No. | Item                                                                                                                                                                                                              | Page(s) |  |  |  |
|------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|--|
| Control Circuit Wiring |     |                                                                                                                                                                                                                   |         |  |  |  |
|                        | 24  | Use twisted-pair line for all drive control circuit wiring.                                                                                                                                                       | 114     |  |  |  |
|                        | 25  | Ground the shields of shielded wiring to the GND  terminal.                                                                                                                                                       | 114     |  |  |  |
|                        | 26  | For 3-Wire sequence, set parameters for multi-function contact input terminals S1 – S8, and wire control circuits.                                                                                                | -       |  |  |  |
|                        | 27  | Properly wire any option cards.                                                                                                                                                                                   | 114     |  |  |  |
|                        | 28  | Check for any other wiring mistakes. Only use a multimeter to check wiring.                                                                                                                                       | -       |  |  |  |
|                        | 29  | Properly fasten drive control circuit terminal screws.                                                                                                                                                            | 101     |  |  |  |
|                        | 30  | Pick up all wire clippings.                                                                                                                                                                                       | -       |  |  |  |
|                        | 31  | Ensure that no frayed wires on the terminal block are touching other terminals or connections.                                                                                                                    | -       |  |  |  |
|                        | 32  | Properly separate control circuit wiring and main circuit wiring.                                                                                                                                                 | -       |  |  |  |
|                        | 33  | Analog signal line wiring should not exceed 50 m (164 ft.).                                                                                                                                                       | -       |  |  |  |
|                        | 34  | Safe Disable input wiring should not exceed 30 m (98.5 ft.).                                                                                                                                                      | 694     |  |  |  |
|                        | 35  | Verify the logic of Safety Monitor Output Signal (DM+, DM-).                                                                                                                                                      | -       |  |  |  |
|                        | 36  | Disconnect the internal EMC filter by moving the SW screw to the OFF position for floating, impedance grounded, or asymmetrically grounded networks.                                                              | 124     |  |  |  |
|                        | 37  | Properly wire the control signal lines to Module Communications Connector port CN500 of drive models 4 \$\square\$0720 to 4 \$\square\$0930, and Module Communications Connector port CN500 of the filter module. |         |  |  |  |
|                        | 38  | The cable between drive models 4□0720 to 4□0930 and filter module should not exceed 5 m (16.4 ft.).                                                                                                               | 116     |  |  |  |

3.15 Wiring Checklist

This Page Intentionally Blank

# **Start-Up Programming & Operation**

This chapter explains the functions of the digital operator and how to program the drive for initial operation.

| 4.1  | SECTION SAFETY                                      | 140 |
|------|-----------------------------------------------------|-----|
| 4.2  | USING THE DIGITAL OPERATOR                          | 141 |
| 4.3  | THE DRIVE AND PROGRAMMING MODES                     | 146 |
| 4.4  | START-UP FLOWCHARTS                                 | 152 |
| 4.5  | POWERING UP THE DRIVE                               | 159 |
| 4.6  | APPLICATION SELECTION                               | 160 |
| 4.7  | AUTO-TUNING                                         | 163 |
| 4.8  | NO-LOAD OPERATION TEST RUN                          | 177 |
| 4.9  | TEST RUN WITH LOAD CONNECTED                        | 179 |
| 4.10 | VERIFYING PARAMETER SETTINGS AND BACKING UP CHANGES | 180 |
| 4.11 | TEST RUN CHECKLIST                                  | 182 |

# 4.1 Section Safety

# **A** DANGER

#### **Electrical Shock Hazard**

Do not connect or disconnect wiring while the power is on.

Failure to comply will result in death or serious injury.

# **WARNING**

#### **Electrical Shock Hazard**

#### Do not operate equipment with covers removed.

Failure to comply could result in death or serious injury.

The diagrams in this section may include drives without covers or safety shields to illustrate details. Be sure to reinstall covers or shields before operating the drives and run the drives according to the instructions described in this manual.

#### Do not remove covers or touch circuit boards while the power is on.

Failure to comply could result in death or serious injury.

## Prepare a separate holding brake.

Wire the holding brake so when a fault occurs, it is activated by an external sequence and shuts the power off or triggers an emergency switch. Failure to comply could result in death or serious injury.

# 4.2 Using the Digital Operator

Use the digital operator to enter Run and Stop commands, edit parameters, and display data including fault and alarm information.

# ♦ Digital Operator Keys and Displays

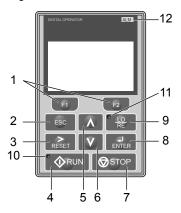



Figure 4.1 Keys and Displays on the Digital Operator

| No. | Display           | Name                    | Function                                                                                                                                                                                        |
|-----|-------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | F1 F2             | Function Key (F1, F2)   | The functions assigned to F1 and F2 vary depending on the currently displayed menu. The name of each function appears in the lower half of the display window.                                  |
| 2   | ESC               | ESC Key                 | <ul> <li>Returns to the previous display.</li> <li>Moves the cursor one space to the left.</li> <li>Pressing and holding this button will return to the Frequency Reference display.</li> </ul> |
| 3   | RESET             | RESET Key               | <ul><li> Moves the cursor to the right.</li><li> Resets the drive to clear a fault situation.</li></ul>                                                                                         |
| 4   | RUN               | RUN Key                 | Starts the drive in LOCAL mode.                                                                                                                                                                 |
| 5   | <b>1</b>          | Up Arrow Key            | Scrolls up to display the next item, selects parameter numbers, and increments setting values.                                                                                                  |
| 6   | V                 | Down Arrow Key          | Scrolls down to display the previous item, selects parameter numbers, and decrements setting values.                                                                                            |
| 7   | <b>⊘</b> STOP     | STOP Key <1>            | Stops drive operation.                                                                                                                                                                          |
| 8   | ENTER             | ENTER Key               | <ul><li>Enters parameter values and settings.</li><li>Selects a menu item to move between displays</li></ul>                                                                                    |
| 9   | • <u>LO</u><br>RE | LO/RE Selection Key <2> | Switches drive control and frequency setting between the operator (LOCAL) and an external source (REMOTE).                                                                                      |
| 10  | <b>♦</b> RUN      | RUN Light               | Lit while the drive is operating the motor.<br>Refer to page 143 for details.                                                                                                                   |
| 11  | • <u>LO</u><br>RE | LO/RE Light             | Lit while the operator is selected to run the drive (LOCAL mode). Refer to page <i>143</i> for details.                                                                                         |
| 12  | ALM               | ALM LED Light           | Lit when the drive detects an alarm or error.  *Refer to ALARM (ALM) LED Displays on page 143 for details.                                                                                      |

<sup>&</sup>lt;1> The STOP key has highest priority. Pressing the STOP key will always cause the drive to stop the motor, even if a Run command is active at any external Run command source. To disable the STOP key priority, set parameter o2-02 to 0.

<sup>&</sup>lt;2> The LO/RE key can only switch between LOCAL and REMOTE when the drive is stopped. To disable the LO/RE key to prohibit switching between LOCAL and REMOTE, set parameter o2-01 to 0.

# **♦** LCD Display

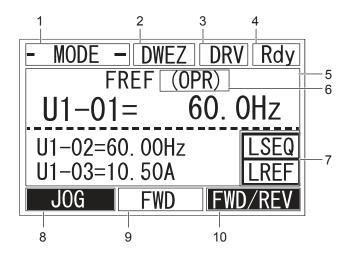



Figure 4.2 LCD Display

**Table 4.1 Display and Contents** 

| No. | Name                                     | Display  | Content                                                                                                     |
|-----|------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------|
|     |                                          | MODE     | Displayed when in Mode Selection.                                                                           |
|     |                                          | MONITR   | Displayed when in Monitor Mode.                                                                             |
|     | Operation Mode Menus                     | VERIFY   | Indicates the Verify Menu.                                                                                  |
| 1   | Operation Mode Menus                     | PRMSET   | Displayed when in Parameter Setting Mode.                                                                   |
|     |                                          | A.TUNE   | Displayed during Auto-Tuning.                                                                               |
|     |                                          | SETUP    | Displayed when in Setup Mode.                                                                               |
| 2   | DriveWorksEZ<br>Function Selection       | DWEZ     | Displayed when DriveWorksEZ is being used.                                                                  |
| 3   | Mode Display Area                        | DRV      | Displayed when in Drive Mode.                                                                               |
| 3   | Mode Display Alea                        | PRG      | Displayed when in Programming Mode.                                                                         |
| 4   | Ready                                    | Rdy      | Indicates the drive is ready to run.                                                                        |
| 5   | Data Display                             | _        | Displays specific data and operation data.                                                                  |
|     |                                          | OPR      | Displayed when the frequency reference is assigned to the LCD Operator.                                     |
|     | F                                        | AI       | Displayed when the frequency reference is assigned to the Analog Input of the drive.                        |
| 6   | Frequency<br>Reference<br>Assignment <1> | COM      | Displayed when the frequency reference is assigned to the MEMOBUS/Modbus Communication Inputs of the drive. |
|     |                                          | OP       | Displayed when the frequency reference is assigned to an Option Unit of the drive.                          |
|     |                                          | RP       | Displayed when the frequency reference is assigned to the Pulse Train Input of the drive.                   |
|     | LO/RE<br>Display <2>                     | RSEQ     | Displayed when the run command is supplied from a remote source.                                            |
| 7   |                                          | LSEQ     | Displayed when the run command is supplied from the operator keypad.                                        |
| '   |                                          | RREF     | Displayed when the frequency reference is supplied from a remote source.                                    |
|     |                                          | LREF     | Displayed when the frequency reference is supplied from the operator keypad.                                |
|     |                                          | JOG      | Pressing runs the motor at the Jog frequency.                                                               |
|     |                                          | HELP     | Pressing displays the Help menu.                                                                            |
| 8   | Function Key 1<br>(F1)                   | <b>←</b> | Pressing scrolls the cursor to the left.                                                                    |
|     |                                          | НОМЕ     | Pressing returns to the top menu (Frequency Reference).                                                     |
|     |                                          | ESC      | Pressing returns to the previous display.                                                                   |
| 9   | FWD/REV                                  | FWD      | Indicates forward motor operation.                                                                          |
|     |                                          | REV      | Indicates reverse motor operation.                                                                          |

| No. | Name           | Display       | Content                                         |  |
|-----|----------------|---------------|-------------------------------------------------|--|
| 10  |                | FWD/REV       | Pressing switches between forward and reverse.  |  |
|     | Function Key 2 | DATA          | Pressing scrolls to the next display.           |  |
|     | (F2)           | $\rightarrow$ | Pressing scrolls the cursor to the right.       |  |
|     |                | RESET         | Pressing resets the existing drive fault error. |  |

- 1> Displayed when in Frequency Reference Mode.
- <2> Displayed when in Frequency Reference Mode and Monitor Mode.

# ALARM (ALM) LED Displays

Table 4.2 ALARM (ALM) LED Status and Contents

| State       | Content                                                                                                                           | Display |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------|---------|
| Illuminated | When the drive detects an alarm or error.                                                                                         | [ALM]   |
| Flashing    | <ul><li>When an alarm occurs.</li><li>When an oPE is detected.</li><li>When a fault or error occurs during Auto-Tuning.</li></ul> | ALMI    |
| Off         | Normal operation (no fault or alarm).                                                                                             | [ALM]   |

## **♦ LO/RE LED and RUN LED Indications**

Table 4.3 LO/RE LED and RUN LED Indications

| LED               | Lit                                                                                            | Flashing <1>                                                                                | Flashing Quickly <1> <2>                                                                                                                                  | Off                                                                                                        |             |
|-------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------|
| • <u>LO</u><br>RE | When the operator is selected<br>for Run command and<br>frequency reference control<br>(LOCAL) |                                                                                             | _                                                                                                                                                         | When a device other than the operator is selected for Run command and frequency reference control (REMOTE) |             |
|                   | During run                                                                                     | During deceleration to stop     When a Run command is input and frequency reference is 0 Hz | <ul> <li>While the drive was set to LOCAL,<br/>a Run command was entered to the<br/>input terminals then the drive was<br/>switched to REMOTE.</li> </ul> |                                                                                                            |             |
|                   |                                                                                                |                                                                                             | <ul> <li>A Run command was entered via<br/>the input terminals while the drive<br/>was not in Drive Mode.</li> </ul>                                      |                                                                                                            |             |
| RUN               |                                                                                                |                                                                                             | • When a Run command is                                                                                                                                   | • During deceleration or stop when a Fast Stop command was entered.                                        | During stop |
|                   |                                                                                                |                                                                                             | • The drive output is shut off by the Safe Disable function.                                                                                              |                                                                                                            |             |
|                   |                                                                                                |                                                                                             | • The STOP key was pressed while drive was running in REMOTE.                                                                                             |                                                                                                            |             |
|                   |                                                                                                |                                                                                             | • The drive was powered up with b1-17 = 0 (default) while the Run command is active.                                                                      |                                                                                                            |             |
| Examples          | • RUN                                                                                          | <b> ♦</b> RUN                                                                               | <b>V</b> RUN                                                                                                                                              | <b>♦</b> RUN                                                                                               |             |

- <1> Refer to *Figure 4.3* for the difference between "flashing" and "flashing quickly".
- <2> The drive cannot start operation.

Figure 4.3 RUN LED Status and Meaning

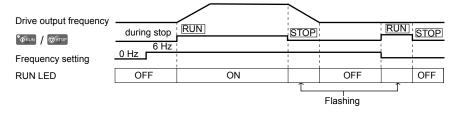



Figure 4.4 RUN LED and Drive Operation

## ♦ Menu Structure for Digital Operator

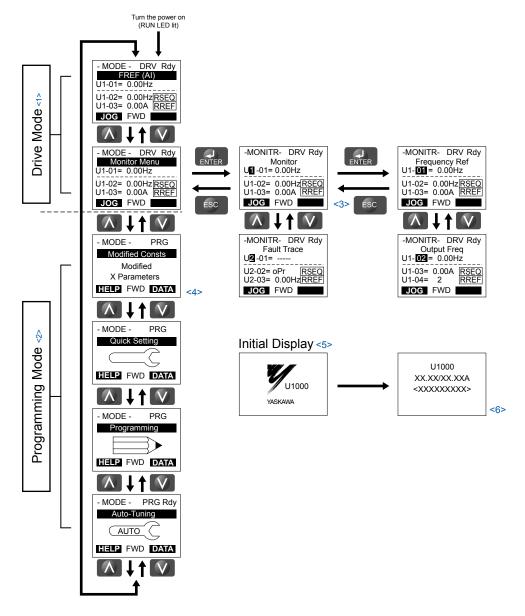



Figure 4.5 Digital Operator Menu and Screen Structure

- Pressing will start the motor.
- <2> Drive cannot operate motor.
- <3> Flashing characters are shown as 1.
- <4> "X" characters are used as examples in this manual. The LCD Operator will display the actual setting values.
- <5> The Frequency Reference appears after the initial display that shows the product name.
- <6> The information that appears on the display will vary depending on the drive.

# 4.3 The Drive and Programming Modes

The drive has a Drive Mode to operate the motor and a Programming Mode to edit parameter settings.

**Drive Mode:** In Drive Mode the user can operate the motor and observe U Monitor parameters. Parameter settings cannot be edited or changed when in Drive Mode.

**Programming Mode:** In Programming Mode the user can edit and verify parameter settings and perform Auto-Tuning. When the drive is in Programming Mode it will not accept a Run command unless b1-08 is set to 1.

Note:

- 1. If b1-08 is set to 0, the drive will only accept a Run command in Drive Mode. After editing parameters, the user must exit the Programming Mode and enter Drive Mode before operating the motor.
- 2. Set b1-08 to 1 to allow motor operation from the drive while in Programming Mode.

## Navigating the Drive and Programming Modes

The drive is set to operate in Drive Mode when it is first powered up. Switch between display screens by using the keys.

| Mode                | Contents                            | Operator Display                                                                                     | Description                                                                                                                                                                                                                                                                        |
|---------------------|-------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Power Up            | Frequency<br>Reference<br>(default) | - MODE - DRV Rdy<br>FREF (AI)<br>U1-01= 0.00Hz<br>U1-02= 0.00Hz RSEQ<br>U1-03= 0.00A RREF<br>JOG FWD | This display screen allows the user to monitor and change the frequency reference while the drive is running. <i>Refer to The Drive and Programming Modes on page 146</i> .  Note: The user can select the data displayed when the drive is first powered up with parameter o1-02. |
|                     |                                     |                                                                                                      |                                                                                                                                                                                                                                                                                    |
| Drive Mode          | Monitor Display                     | - MODE - DRV Rdy Monitor Menu U1-01= 0.00Hz U1-02= 0.00Hz RSEQ U1-03= 0.00A RREF JOG FWD             | Lists the monitor parameters (U□-□□ parameters) available in the drive. Press the Enter Key and then use the Up, Down, ESC, and Reset keys to navigate through the drive monitors.                                                                                                 |
|                     |                                     |                                                                                                      |                                                                                                                                                                                                                                                                                    |
|                     | Verify Menu                         | - MODE - PRG Modified Consts Modified X Parameters HELP FWD DATA                                     | Lists all parameters that have been edited or changed from default settings. → Refer to Verifying Parameter Changes: Verify Menu on page 149.                                                                                                                                      |
|                     |                                     |                                                                                                      |                                                                                                                                                                                                                                                                                    |
|                     | Setup Group                         | - MODE - PRG Quick Setting HELP FWD DATA                                                             | A select list of parameters necessary to get the drive operating quickly. → Refer to Using the Setup Group on page 150.  Note: Parameters listed in the Setup Group differ depending the Application Preset in parameter A1-06. Refer to Application Selection on page 160.        |
| Programming<br>Mode |                                     |                                                                                                      |                                                                                                                                                                                                                                                                                    |
|                     | Parameter<br>Setting Mode           | - MODE - PRG Programming HELP FWD DATA                                                               | Allows the user to access and edit all parameter settings. → Refer to Parameter List on page 501.                                                                                                                                                                                  |
|                     |                                     |                                                                                                      |                                                                                                                                                                                                                                                                                    |
|                     | Auto-Tuning<br>Mode                 | - MODE - PRG Rdy Auto-Tuning AUTO HELP FWD DATA                                                      | Motor parameters are calculated and set automatically. → Refer to Auto-Tuning on page 163.                                                                                                                                                                                         |
|                     |                                     |                                                                                                      |                                                                                                                                                                                                                                                                                    |

| Mode       | Contents               | Operator Display                                                                                     | Description                                        |
|------------|------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Drive Mode | Frequency<br>Reference | - MODE - DRV Rdy<br>FREF (AI)<br>U1-01= 0.00Hz<br>U1-02= 0.00Hz RSEQ<br>U1-03= 0.00A RREF<br>JOG FWD | Returns to the frequency reference display screen. |

#### **Drive Mode Details**

The following actions are possible in the Drive Mode:

- Run and stop the drive
- Monitor the operation status of the drive (frequency reference, output frequency, output current, output voltage, etc.)
- · View information on an alarm
- View a history of alarms that have occurred

Figure 4.6 illustrates how to change the frequency reference from F 0.00 (0 Hz) to F 6.00 (6 Hz) while in the Drive Mode. This example assumes the drive is set to LOCAL.

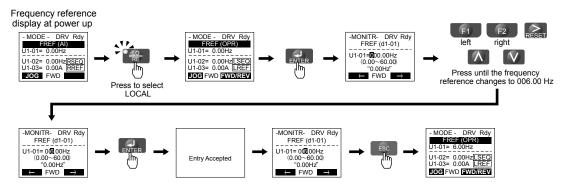



Figure 4.6 Setting the Frequency Reference while in the Drive Mode

Note:

The drive will not accept a change to the frequency reference until the ENTER key is pressed after the frequency reference is entered. This feature prevents accidental setting of the frequency reference. To have the drive accept changes to the frequency reference as soon as changes are made without requiring the ENTER key, set o2-05 to 1.

#### **Programming Mode Details**

The following actions are possible in the Programming Mode:

- Parameter Setting Mode: Access and edit all parameter settings.
- Verify Menu: View a list of parameters that have been changed from the default values.
- Setup Group: Access a list of commonly used parameters to simplify setup (Refer to Simplified Setup Using the Setup Group on page 150).
- Auto-Tuning Mode: Automatically calculate and set motor parameters to optimize drive performance.

## **Changing Parameter Settings or Values**

This example explains changing C1-02 (Deceleration Time 1) from 10.0 seconds to 20.0 seconds.

|    | Step                                                         | Display/Result |                                                                                                     |
|----|--------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------|
| 1. | Turn on the power to the drive. The initial display appears. | <b>→</b>       | - MODE - DRV Rdy<br>FREF (AI)<br>U1-01= 0.00Hz<br>U1-02= 0.00HzRSEO<br>U1-03= 0.00A RREF<br>JOG FWD |
| 2. | Press or until the Parameter Setting Mode screen appears.    | <b>→</b>       | - MODE - PRG Programming HELP FWD DATA                                                              |

## **4.3 The Drive and Programming Modes**

|     | Step                                                                      |          | Display/Result                                                                            |
|-----|---------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------|
| 3.  | Press to enter the parameter menu tree.                                   | <b>→</b> | -PRMSET- PRG Initialization  ■1-00= 0 Select Language  ← FWD →                            |
| 4.  | Press or to select the C parameter group.                                 | <b>→</b> | -PRMSET- PRG Basic Setup                                                                  |
| 5.  | Press two times.                                                          |          | -PRMSET- PRG                                                                              |
| 6.  | Press or to select parameter C1-02.                                       | <b>→</b> | -PRMSET- PRG Decel Time 1  C1-102= 10.05ec (0.0-6000.0)                                   |
| 7.  | Press to view the current setting value. The leftmost digit flashes.      | <b>→</b> | -PRMSET- PRG Decel Time 1  C1-02= 0010.0Sec (0.0-6000.0) "10.0 sec"                       |
| 8.  | Press F1, F2, or RESET until the desired number is selected. "1" flashes. | <b>→</b> | -PRMSET- PRG Decel Time 1  C1-02=00 <b>[</b> 0.0Sec (0.0-6000.0)                          |
| 9.  | Press to enter 0020.0.                                                    | <b>→</b> | -PRMSET- PRG                                                                              |
| 10. | Press to confirm the change.                                              | <b>→</b> | Entry Accepted                                                                            |
| 11. | The display automatically returns to the screen shown in Step 4.          | <b>→</b> | -PRMSET- PRG Decel Time 1  C1-102= 20.0Sec (0.0-6000.0)                                   |
| 12. | Press as many times as necessary to return to the initial display.        | <b>→</b> | - MODE - DRV Rdy FREF (AI) U1-01= 0.00Hz U1-02= 0.00Hz RSEQ  U1-03= 0.00A   RREF  JOG FWD |

## ♦ Verifying Parameter Changes: Verify Menu

The Verify Menu lists edited parameters from the Programming Mode or as a result of Auto-Tuning. The Verify Menu helps determine which settings have been changed, and is particularly useful when replacing a drive. If no settings have been changed, the Verify Menu will read "None". The Verify Menu also allows users to quickly access and re-edit any parameter settings that have been changed.

**Note:** The Verify Menu will not display parameters from the A1 group (except for A1-02) or E5-01 even if those parameters have been changed from their default settings.

The following example is a continuation of the steps above. Here, parameter C1-02 is accessed using the Verify Menu, and is changed again from 10.0 s to 20.0 s.

To check the list of edited parameters:

|    | Step                                                                                                                                                                                       |          | Display/Result                                                                                       |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------|
| 1. | Turn on the power to the drive. The initial display appears.                                                                                                                               | <b>→</b> | - MODE - DRV Rdy<br>FREF (AI)<br>U1-01= 0.00Hz<br>U1-02= 0.00Hz RSEO<br>U1-03= 0.00A RREF<br>JOG FWD |
| 2. | Press or until the display shows the top of the Verify Menu.                                                                                                                               | <b>→</b> | - MODE - PRG Modified Consts Modified X Parameters HELP FWD DATA                                     |
| 3. | Press to enter the list of parameters that have been edited from their original default settings.  If parameters other than C1-02 have been changed, use or to scroll until C1-02 appears. | <b>→</b> | - VERIFY - PRG Rdy                                                                                   |
| 4. | Press F1, F2, RESET, A or V to change the setting value.                                                                                                                                   | <b>→</b> | - VERIFY - PRG Rdy - Accel Time 1 - C1-01=0020.0sec (0.0~6000.0)                                     |
| 5. | Press to confirm the change.                                                                                                                                                               | <b>→</b> | Entry Accepted                                                                                       |

## Simplified Setup Using the Setup Group

The Setup Group lists the basic parameters necessary to set up the drive for an application. This group expedites the startup process for an application by showing only the most important parameters for the application.

### Using the Setup Group

*Figure 4.7* illustrates how to enter and how to change parameters in the Setup Group.

The first display shown when entering the Setup Group is the Application Selection menu. Skipping this display will keep the current Setup Group parameter selection. The default setting for the Setup Group is a group of parameters most commonly use in general-purpose applications. Pressing the ENTER key from the Application Selection menu and selecting an Application Preset will change the Setup Group to parameters optimal for the application selected. *Refer to Application Selection on page 160*.

In this example, the Setup Group is accessed to change b1-01 from 1 to 0. This changes the source of the frequency reference from the control circuit terminals to the digital operator.

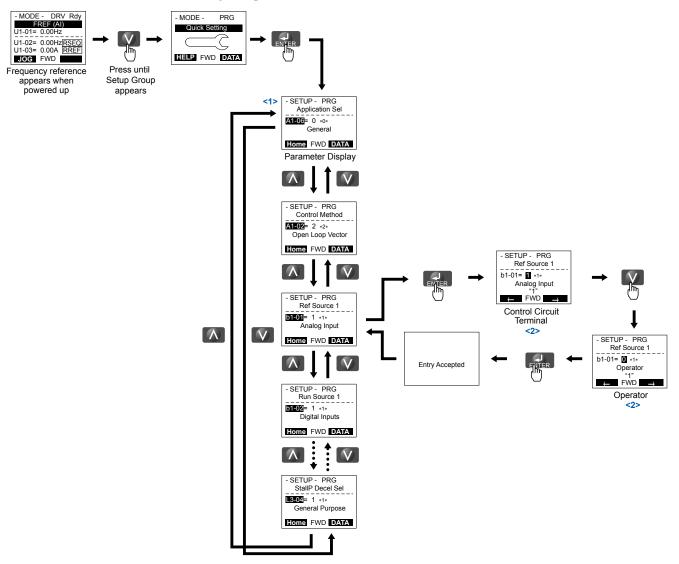



Figure 4.7 Setup Group Example

- <1> Use the up and down arrow keys to scroll through the Setup Group. Press the ENTER key to view or change parameter settings.
- <2> To return to the previous menu without saving changes, press the ESC key.

### ■ Setup Group Parameters

**Table 4.4** lists the parameters available by default in the Setup Group. Selecting an Application Preset in parameter A1-06 or from the Application Selection Menu of the Setup Group automatically changes the parameters selected for the Setup Group. **Refer to Application Selection on page 160** for more information.

Use the Programming Mode to access parameters not displayed in the Setup Group.

**Table 4.4 Setup Group Parameters** 

| Parameter | Name                            | Parameter | Name                                          |
|-----------|---------------------------------|-----------|-----------------------------------------------|
| A1-02     | Control Method Selection        | d1-17     | Jog Frequency Reference                       |
| b1-01     | Frequency Reference Selection 1 | E1-03     | V/f Pattern Selection                         |
| b1-02     | Run Command Selection 1         | E1-04     | Maximum Output Frequency                      |
| b1-03     | Stopping Method Selection       | E1-05     | Maximum Voltage                               |
| C1-01     | Acceleration Time 1             | E1-06     | Base Frequency                                |
| C1-02     | Deceleration Time 1             | E1-09     | Minimum Output Frequency                      |
| C6-01     | Drive Duty Mode                 | E1-13     | Base Voltage                                  |
| C6-02     | Carrier Frequency Selection     | E2-01     | Motor Rated Current                           |
| d1-01     | Frequency Reference 1           | E2-04     | Number of Motor Poles                         |
| d1-02     | Frequency Reference 2           | E2-11     | Motor Rated Power                             |
| d1-03     | Frequency Reference 3           | H4-02     | Multi-Function Analog Output Terminal FM Gain |
| d1-04     | Frequency Reference 4           | L1-01     | Motor Overload Protection Function Selection  |

Note:

- 1. Parameter availability depends on the control mode set in A1-02; some parameters listed in *Table 4.4* may not be accessible in all control modes
- 2. Parameters listed in *Table 4.4* are set in alphanumeric order as User Parameters in A2-01 to A2-32.

## Switching Between LOCAL and REMOTE

LOCAL mode is when the drive is set to accept the Run command from the digital operator RUN key. REMOTE mode is when the drive is set to accept the Run command from an external device (i.e., input terminals or serial communications).

**WARNING!** Sudden Movement Hazard. The drive may start unexpectedly if the Run command is already applied when switching from LOCAL mode to REMOTE mode when b1-07 = 1, resulting in death or serious injury. Be sure all personnel are clear of rotating machinery.

Switch the operation between LOCAL and REMOTE using the LO/RE key on the digital operator or via a digital input.

Note:

- 1. After selecting LOCAL, the LO/RE light will remain lit.
- 2. The drive will not allow the user to switch between LOCAL and REMOTE during run.

## ■ Using the LO/RE Key on the Digital Operator

|    | Step                                                                                                                         |          | Display/Result                                                                    |
|----|------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------|
| 1. | Turn on the power to the drive. The initial display appears.                                                                 | <b>→</b> | -MODE - DRV Rdy<br>FREF (AI)<br>U1-01= 0.00Hz<br>U1-02= 0.00Hz<br>RREF<br>JOG FWD |
| 2. | Press The LO/RE light will light up. The drive is now in LOCAL.  To set the drive for REMOTE operation, press the key again. | <b>→</b> | TO RE                                                                             |

## ■ Using Input Terminals S1 through S8 to Switch between LOCAL and REMOTE

It is possible to switch between LOCAL and REMOTE modes using one of the digital input terminals S1 through S8 (set the corresponding parameter H1-□□ to "1").

Setting H1- $\square\square$  to 1 disables the LO/RE key on the digital operator. *Refer to H1: Multi-Function Digital Inputs on page 284* for details.

# 4.4 Start-Up Flowcharts

These flowcharts summarize steps required to start the drive. Use the flowcharts to determine the most appropriate start-up method for a given application. The charts are quick references to help familiarize the user with start-up procedures.

| Flowchart                                                                                  | Subchart | Objective                                                                             |     |
|--------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------|-----|
| A                                                                                          | _        | Basic start-up procedure and motor tuning                                             |     |
|                                                                                            | A-1      | Simple motor setup using V/f mode                                                     | 154 |
| <ul> <li>A-2 High-performance operation using Open Loop Vector or Closed Loop V</li> </ul> |          | High-performance operation using Open Loop Vector or Closed Loop Vector motor control | 155 |
|                                                                                            | A-3      | Setting up the drive to run a permanent magnet (PM) motor                             | 157 |

## Flowchart A: Basic Start-Up and Motor Tuning

Flowchart A in *Figure 4.8* describes a basic start-up sequence that varies slightly depending on the application. Use the drive default parameter settings in simple applications that do not require high precision.

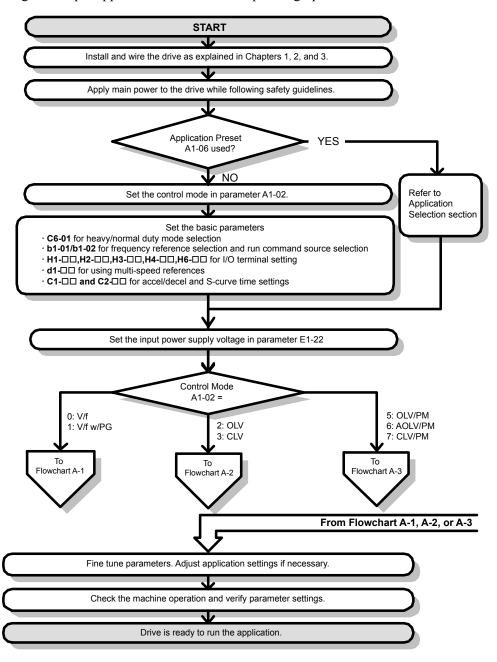



Figure 4.8 Basic Start-Up

Note:

- 1. Execute Stationary Auto-Tuning for Line-to-Line Resistance if the drive has been Auto-Tuned and then moved to a different location where the motor cable length exceeds 50 m.
- 2. Perform Auto-Tuning again after installing an AC reactor or other such components to the output side of the drive.

## Subchart A-1: Simple Motor Setup Using V/f Control

Flowchart A1 in *Figure 4.9* describes simple motor setup for V/f Control, with or without PG feedback. V/f Control is suited for more basic applications such as fans and pumps. This procedure illustrates Energy Savings and Speed Estimation Speed Search.

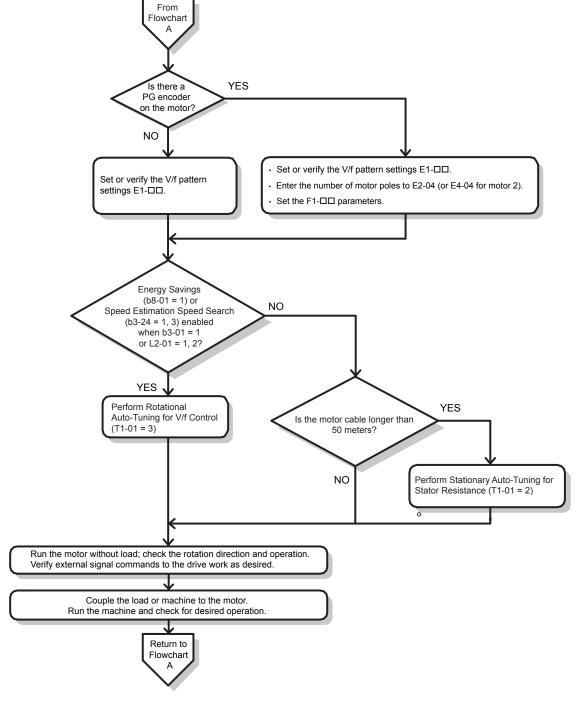



Figure 4.9 Simple Motor Setup with Energy Savings or Speed Search

## ◆ Subchart A-2: High Performance Operation Using OLV or CLV

Flowchart A2 in *Figure 4.10* describes the setup procedure for high-performance with Open Loop Vector Control or Closed Loop Vector Control, which is appropriate for applications requiring high starting torque and torque limits.

**Note:** Although the drive sets parameters for the PG encoder during Auto-Tuning, sometimes the direction of the motor and direction of the PG get reversed. Use parameter F1-05 to switch the direction of the PG so that it matches the motor direction.

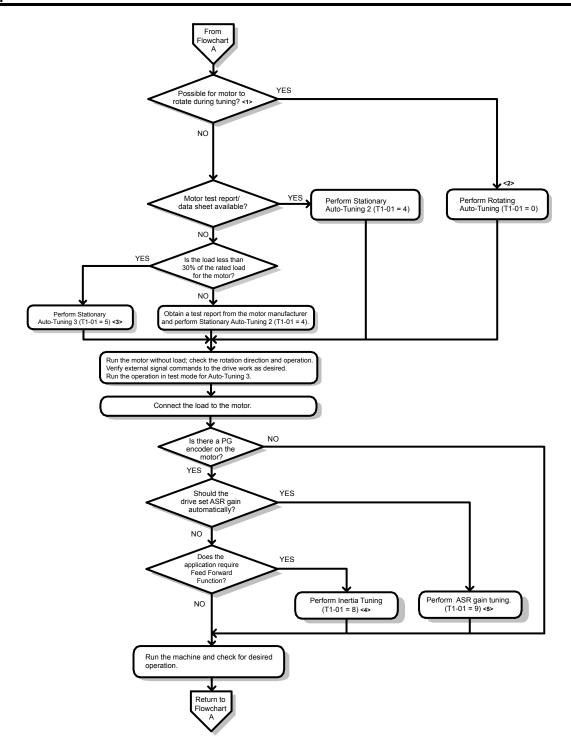



Figure 4.10 Flowchart A2: High Performance Operation Using OLV or CLV

- <1> Decouple the load from the motor to properly perform Rotational Auto-Tuning
- <2> Rotational Auto-Tuning can still be performed if the load is 30% or smaller, though Stationary Auto-Tuning may yield better control performance.
- <3> Run the operation in test mode for Auto-Tuning 3. The drive will set motor parameters automatically. Refer to Stationary Auto-Tuning 3 on page 167 for details.
- <4> Make sure the motor and load can run freely, i.e., if a brake is mounted, make sure it is released.
- <5> ASR Gain Tuning automatically performs Inertia Tuning and sets parameters related to the Feed Forward function.

## ◆ Subchart A-3: Operation with Permanent Magnet Motors

Flowchart A3 in *Figure 4.11* describes the setup procedure for running a PM motor in Open Loop Vector Control. PM motors can be used for more energy-efficient operation in reduced or variable torque applications.

Note:

- 1. Although the drive sets parameters for the PG encoder during Auto-Tuning, sometimes the direction of the motor and direction of the PG get reversed. Use parameter F1-05 to switch the direction of the PG so that it matches the motor direction.
- 2. Realign the Z Pulse if the PG encoder is replaced. Set T2-01 to 3 to recalibrate the drive for the new encoder.
- 3. When using High Frequency Injection, perform High Frequency Injection Parameter Tuning. Refer to T2–01: *Refer to Auto-Tuning for Permanent Magnet Motors on page 164* for details.

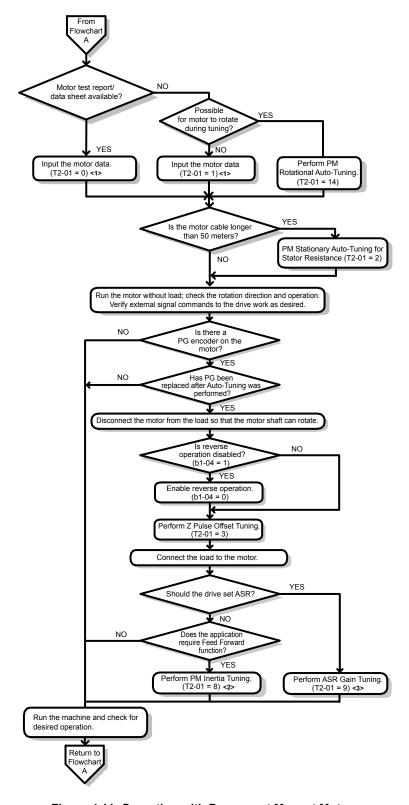



Figure 4.11 Operation with Permanent Magnet Motors

- <1> Enter the motor code to E5-01 when using a Yaskawa PM motor (SMRA Series, SSR1 Series, and SST4 Series). If using a motor from another manufacturer, enter "FFFF".
- <2> Make sure the motor and load can run freely (i.e., if a brake is mounted, make sure it is released).
- <3> ASR Gain Tuning automatically performs Inertia Tuning and sets parameters related to the Feed Forward function.

# 4.5 Powering Up the Drive

## **♦** Powering Up the Drive and Operation Status Display

## **■** Powering Up the Drive

Review the following checklist before turning the power on.

| Item to Check                              | Description                                                                                                                                                                                           |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                            | 200 V class: Three-phase 200 to 240 Vac 50/60 Hz 400 V class: Models 4A□□□□ and 4P□□□□: Three-phase 380 to 500 Vac 50/60 Hz 400 V class: Models 4E□□□□and 4W□□□□: Three-phase 380 to 480 Vac 50/60 Hz |
| Power supply voltage                       | Properly wire the power supply input terminals (R/L1, S/L2, T/L3).                                                                                                                                    |
|                                            | Check for proper grounding of drive and motor. Use a power supply with a capacity that is equal to or greater than drive capacity.                                                                    |
| Drive output terminals and motor terminals | Properly wire drive output terminals U/T1, V/T2, and W/T3 with motor terminals U, V, and W.                                                                                                           |
| Control circuit terminals                  | Check control circuit terminal connections.                                                                                                                                                           |
| <b>Drive control terminal status</b>       | Open all control circuit terminals (off).                                                                                                                                                             |
| Status of the load and connected machinery | Decouple the motor from the load.                                                                                                                                                                     |

## ■ Status Display

When the power supply to the drive is turned on, the digital operator lights will appear as follows:

| Status              | Name                                                                    | Description                                                                                                                                                      |
|---------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Normal<br>Operation | -MODE - DRV Rdy FREF(A) U1-07 - 0.0042 U1-02 - 0.004/ESED U1-03 - 0.00A | The data display area displays the frequency reference. "Rdy" is displayed.                                                                                      |
| Fault               | -MODE - DRV EF3 Ext Fault s3 External fault (example)                   | Data displayed varies by the type of fault. <i>Refer to Fault Displays, Causes, and Possible Solutions on page 377</i> for more information. "ALM" is displayed. |

## 4.6 Application Selection

Several Application Presets are available to facilitate drive setup for commonly used applications. Selecting one of these Application Presets automatically assigns functions to the input and output terminals and sets a predefined group of parameters to values appropriate for the selected application.

In addition, the parameters most likely to be changed are assigned to the group of User Parameters, A2-01 through A2-16. User Parameters are part of the Setup Group, which provides quicker access by eliminating the need to scroll through multiple menus

An Application Preset can either be selected from the Application Selection menu in the Setup Group (*Refer to Simplified Setup Using the Setup Group on page 150*) or in parameter A1-06. The following presets can be selected:

Note:

- 1. Application Presets can only be selected if all drive parameters are at their original default settings. It may be necessary to initialize the drive by setting A1-03 to "2220" or "3330" prior to selecting an Application Preset.
- 2. Do not set any value outside the allowable range for A1-06 (Application Presets). If an out-of-range value is set, "APPL" will be displayed flashing in the Setup group and the up and down arrow keys cannot be used. If this happens, press the ESC key to return to the Setup group. It will then be possible to switch to another mode using the up and down arrow keys. Setting values to A1-06 out of the setting range will not affect drive operation.

**WARNING!** Sudden Movement Hazard. Confirm the drive I/O signals and external sequence before performing a test run. Setting parameter A1-06 may automatically change the I/O terminal function from the default setting. Failure to comply may result in death or serious injury.

| No.   | Parameter Name     | Setting Range                                                                                    | Default |
|-------|--------------------|--------------------------------------------------------------------------------------------------|---------|
| A1-06 | Application Preset | 0: General-purpose 1: Water supply pump 2: Conveyor 3: Exhaust fan 4: HVAC fan 5: Air compressor | 0       |

## ◆ Setting 1: Water Supply Pump Application

**Table 4.5 Water Supply Pump: Parameter Settings** 

| No.   | Name                                     | Default Setting       |
|-------|------------------------------------------|-----------------------|
| A1-02 | Control Method Selection                 | 0: V/f Control        |
| b1-04 | Reverse Operation Selection              | 1: Reverse Prohibited |
| C1-01 | Acceleration Time 1                      | 1.0 s                 |
| C1-02 | Deceleration Time 1                      | 1.0 s                 |
| C6-01 | Drive Duty Mode Selection                | 1: Normal Duty (ND)   |
| E1-03 | V/f Pattern Selection                    | F: Custom V/f Pattern |
| E1-07 | Middle Output Frequency                  | 30.0 Hz               |
| E1-08 | Middle Output Frequency Voltage          | 50.0 V <1>            |
| L2-01 | Momentary Power Loss Operation Selection | 1: Enabled            |

<sup>&</sup>lt;1> Value shown is specific to 200 V class drives. Double value for 400 V class drives.

Table 4.6 Water Supply Pump: User Parameters (A2-01 to A2-16)

| No.   | Parameter Name                  |
|-------|---------------------------------|
| b1-01 | Frequency Reference Selection 1 |
| b1-02 | Run Command Selection 1         |
| b1-04 | Reverse Operation Selection     |
| C1-01 | Acceleration Time 1             |
| C1-02 | Deceleration Time 1             |
| E1-03 | V/f Pattern Selection           |
| E1-07 | Middle Output Frequency         |
| E1-08 | Middle Output Frequency Voltage |

| No.   | Parameter Name                                              |
|-------|-------------------------------------------------------------|
| E2-01 | Motor Rated Current                                         |
| H1-05 | Multi-Function Digital Input Terminal S5 Function Selection |
| H1-06 | Multi-Function Digital Input Terminal S6 Function Selection |
| H1-07 | Multi-Function Digital Input Terminal S7 Function Selection |
| L5-01 | Number of Auto Restart Attempts                             |
|       | E2-01<br>H1-05<br>H1-06<br>H1-07                            |

# ◆ Setting 2: Conveyor Application

**Table 4.7 Conveyor: Parameter Settings** 

| No.   | Parameter Name            | Default Setting    |
|-------|---------------------------|--------------------|
| A1-02 | Control Method Selection  | 0: V/f Control     |
| C1-01 | Acceleration Time 1       | 3.0 s              |
| C1-02 | Deceleration Time 1       | 3.0 s              |
| C6-01 | Drive Duty Mode Selection | 0: Heavy Duty (HD) |

### Table 4.8 Conveyor: User Parameters (A2-01 to A2-16)

| No.                                   | Parameter Name          | No.   | Parameter Name      |
|---------------------------------------|-------------------------|-------|---------------------|
| A1-02 Control Method Selection        |                         | C1-01 | Acceleration Time 1 |
| b1-01 Frequency Reference Selection 1 |                         | C1-02 | Deceleration Time 1 |
| b1-02                                 | Run Command Selection 1 | E2-01 | Motor Rated Current |

# ◆ Setting 3: Exhaust Fan Application

Table 4.9 Exhaust Fan: Parameter Settings

| No.   | Parameter Name                           | Default Setting       |
|-------|------------------------------------------|-----------------------|
| A1-02 | Control Method Selection                 | 0: V/f Control        |
| b1-04 | Reverse Operation Selection              | 1: Reverse Prohibited |
| C6-01 | Drive Duty Mode Selection                | 1: Normal Duty (ND)   |
| E1-03 | V/f Pattern Selection                    | F: Custom V/f Pattern |
| E1-07 | Middle Output Frequency                  | 30.0 Hz               |
| E1-08 | Middle Output Frequency Voltage          | 50.0 V !>             |
| L2-01 | Momentary Power Loss Operation Selection | 1: Enabled            |

<sup>&</sup>lt;1> Value shown is specific to 200 V class drives. Double value for 400 V class drives.

#### Table 4.10 Exhaust Fan: User Parameters (A2-01 to A2-16)

| No.   | Parameter Name                  |  |
|-------|---------------------------------|--|
| b1-01 | Frequency Reference Selection 1 |  |
| b1-02 | Run Command Selection 1         |  |
| b1-04 | Reverse Operation Selection     |  |
| b3-01 | Speed Search Selection at Start |  |
| C1-01 | Acceleration Time 1             |  |
| C1-02 | Deceleration Time 1             |  |
| E1-03 | V/f Pattern Selection           |  |
| E1-07 | Middle Output Frequency         |  |

| No.   | Parameter Name                                              |
|-------|-------------------------------------------------------------|
| E1-08 | Middle Output Frequency Voltage                             |
| E2-01 | Motor Rated Current                                         |
| H1-05 | Multi-Function Digital Input Terminal S5 Function Selection |
| H1-06 | Multi-Function Digital Input Terminal S6 Function Selection |
| H1-07 | Multi-Function Digital Input Terminal S7 Function Selection |
| L5-01 | Number of Auto Restart Attempts                             |

## ◆ Setting 4: HVAC Fan Application

Table 4.11 HVAC Fan: Parameter Settings

| No.   | Parameter Name                                                             | Default Setting                                                                                    |
|-------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| A1-02 | Control Method Selection                                                   | 0: V/f Control                                                                                     |
| b1-04 | Reverse Operation Selection                                                | 1: Reverse Prohibited                                                                              |
| b1-17 | b1-17 Run Command at Power Up 1: Run command issued, motor operation start |                                                                                                    |
| C6-01 | C6-01 Drive Duty Mode Selection 1: Normal Duty (ND)                        |                                                                                                    |
| C6-02 | C6-02 Carrier Frequency Selection 3: 4.0 kHz                               |                                                                                                    |
| H2-03 | H2-03 Terminal P2-PC Function Selection 39: Watt Hour Pulse Output         |                                                                                                    |
| L2-01 | Momentary Power Loss Operation Selection                                   | 2: CPU Power Active - Drive will restart if power returns prior to control power supply shut down. |
| L8-03 | Overheat Pre-Alarm Operation Selection                                     | 4: Operation at lower speed                                                                        |
| L8-38 | Carrier Frequency Reduction Selection                                      | 2: Enabled across entire frequency range.                                                          |

#### Table 4.12 HVAC Fan: User Parameters (A2-01 to A2-16)

| No.   | Parameter Name                  |  |
|-------|---------------------------------|--|
| b1-01 | Frequency Reference Selection 1 |  |
| b1-02 | 2 Run Command Selection 1       |  |
| b1-03 | Stopping Method Selection       |  |
| b1-04 | Reverse Operation Selection     |  |
| C1-01 | Acceleration Time 1             |  |
| C1-02 | Deceleration Time 1             |  |
| C6-02 | Carrier Frequency Selection     |  |
| d2-01 | Frequency Reference Upper Limit |  |

| No.   | Parameter Name                           |  |
|-------|------------------------------------------|--|
| d2-02 | Frequency Reference Lower Limit          |  |
| E1-03 | V/f Pattern Selection                    |  |
| E1-04 | Maximum Output Frequency                 |  |
| E2-01 | Motor Rated Current                      |  |
| H3-11 | Terminal A2 Gain Setting                 |  |
| H3-12 | Terminal A2 Setting Bias                 |  |
| L2-01 | Momentary Power Loss Operation Selection |  |
| 04-12 | kWh Monitor Initialization               |  |

## ◆ Setting 5: Air Compressor Application

Table 4.13 Air Compressor: Parameter Settings

| No.   | Parameter Name                           | Default Setting       |
|-------|------------------------------------------|-----------------------|
| A1-02 | Control Method Selection                 | 0: V/f Control        |
| b1-04 | Reverse Operation Selection              | 1: Reverse Prohibited |
| C1-01 | Acceleration Time 1                      | 5.0 s                 |
| C1-02 | Deceleration Time 1                      | 5.0 s                 |
| C6-01 | Drive Duty Mode Selection                | 0: Heavy Duty (HD)    |
| E1-03 | V/f Pattern Selection                    | F: Custom V/f Pattern |
| L2-01 | Momentary Power Loss Operation Selection | 1: Enabled            |

Table 4.14 Air Compressor: User Parameters (A2-01 to A2-16):

| No.   | Parameter Name                  |  |
|-------|---------------------------------|--|
| b1-01 | Frequency Reference Selection 1 |  |
| b1-02 | Run Command Selection 1         |  |
| b1-04 | Reverse Operation Selection     |  |
| C1-01 | Acceleration Time 1             |  |
| C1-02 | Deceleration Time 1             |  |

| No.                                   | Parameter Name                |  |  |  |  |  |  |
|---------------------------------------|-------------------------------|--|--|--|--|--|--|
| E1-03                                 | V/f Pattern Selection         |  |  |  |  |  |  |
| E1-07                                 | E1-07 Middle Output Frequency |  |  |  |  |  |  |
| E1-08 Middle Output Frequency Voltage |                               |  |  |  |  |  |  |
| E2-01 Motor Rated Current             |                               |  |  |  |  |  |  |

## 4.7 Auto-Tuning

## Types of Auto-Tuning

The drive offers different types of Auto-Tuning for induction motors and permanent magnet motors. The type of Auto-Tuning used differs further based on the control mode and other operating conditions. Refer to the tables below to select the type of Auto-Tuning that bests suits the application. *Refer to Start-Up Flowcharts on page 152* for directions on executing Auto-Tuning.

Note:

The drive will only show Auto-Tuning parameters that are valid for the control mode that has been set in A1-02. If the control mode is for an induction motor, the Auto-Tuning parameters for PM motors will not be available. If the control mode is for a PM motor, the Auto-Tuning parameters for induction motors will not be available. Inertia Tuning and ASR Gain Tuning parameters and setting options will be visible only when the drive is set for operation with CLV or CLV/PM.

### Auto-Tuning for Induction Motors

This feature automatically sets the V/f pattern and motor parameters  $E1-\Box\Box$  and  $E2-\Box\Box$  ( $E3-\Box\Box$ ,  $E4-\Box\Box$  for motor 2) for an induction motor. Additionally, the feature also sets some  $F1-\Box\Box$  parameters for speed feedback detection in Closed Loop Vector.

Table 4.15 Types of Auto-Tuning for Induction Motors

| T                                                        | 0-44      | Application Conditions and Bonefite                                                                                                                                                                                                                                                                                                                                                                                  | Control Mode |          |     |     |  |  |
|----------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|-----|-----|--|--|
| Туре                                                     | Setting   | Application Conditions and Benefits                                                                                                                                                                                                                                                                                                                                                                                  | V/f          | V/f w/PG | OLV | CLV |  |  |
| Rotational Auto-Tuning                                   | T1-01 = 0 | <ul> <li>Motor can be decoupled from the load and rotate freely while Auto-Tuning is performed.</li> <li>Motor and load cannot be decoupled but the motor load is below 30%.</li> <li>Rotational Auto-Tuning gives the most accurate results, and is recommended if possible.</li> </ul>                                                                                                                             | -            | -        | YES | YES |  |  |
| Stationary<br>Auto-Tuning 2                              | T1-01 = 4 | <ul> <li>Motor and load cannot be decoupled and the load is higher than 30%.</li> <li>A motor test report is available. After entering the no-load current and the rated slip, the drive calculates and sets all other motor-related parameters.</li> </ul>                                                                                                                                                          | -            | -        | YES | YES |  |  |
| Stationary Auto-Tuning<br>for Line-to-Line<br>Resistance | T1-01 = 2 | <ul> <li>The drive is used in V/f Control and other Auto-Tuning selections are not possible.</li> <li>Drive and motor capacities differ.</li> <li>Tunes the drive after the cable between the drive and motor has been replaced with a cable over 50 m long. Assumes Auto-Tuning has already been performed.</li> <li>Should not be used for any vector control modes unless the motor cable has changed.</li> </ul> | YES          | YES      | YES | YES |  |  |
| Rotational Auto-Tuning<br>for V/f Control                | T1-01 = 3 | Recommended for applications using Speed Estimation Speed Search or using the Energy Saving function in V/f Control.  Assumes motor can rotate while Auto-Tuning is executed. Increases accuracy for certain functions like torque compensation, slip compensation, Energy Saving, and Speed Search.                                                                                                                 |              | YES      | -   | -   |  |  |
| Stationary<br>Auto-Tuning 3                              | T1-01 = 5 | A motor test report listing motor data is not available.     Motor can be driven with a normal duty mode after Auto-Tuning. A trial run is performed after Auto-Tuning to automatically calculate motor parameters needed for vector control.                                                                                                                                                                        | -            | -        | YES | YES |  |  |

Table 4.16 lists the data that must be entered for Auto-Tuning. Make sure this data is available before starting Auto-Tuning. The necessary information is usually listed on the motor nameplate or in the motor test report provided by the motor manufacturer. Refer to Subchart A-1: Simple Motor Setup Using V/f Control on page 154 and Refer to Subchart A-2: High Performance Operation Using OLV or CLV on page 155 for details on Auto-Tuning processes and selections.

**Table 4.16 Auto-Tuning Input Data** 

|                                       |                    |       | Tuning Type (T1-01) |                                 |                                    |                   |                   |  |  |  |
|---------------------------------------|--------------------|-------|---------------------|---------------------------------|------------------------------------|-------------------|-------------------|--|--|--|
| Input Value                           | Input<br>Parameter | Unit  | 0<br>Standard       | 2<br>Line-to-Line<br>Resistance | 3<br>Rotational for<br>V/f Control | 4<br>Stationary 2 | 5<br>Stationary 3 |  |  |  |
| Control Mode                          | A1-02              | -     | 2, 3                | 0, 1, 2, 3                      | 0, 1                               | 2, 3              | 2, 3              |  |  |  |
| <b>Motor Rated Power</b>              | T1-02              | kW    | YES                 | YES                             | YES                                | YES               | YES               |  |  |  |
| Motor Rated Voltage                   | T1-03              | Vac   | YES                 | _                               | YES                                | YES               | YES               |  |  |  |
| <b>Motor Rated Current</b>            | T1-04              | A     | YES                 | YES Y                           |                                    | YES               | YES               |  |  |  |
| <b>Motor Rated Frequency</b>          | T1-05              | Hz    | YES                 | _                               | YES                                | YES               | YES               |  |  |  |
| <b>Number of Motor Poles</b>          | T1-06              | -     | YES                 | _                               | YES                                | YES               | YES               |  |  |  |
| <b>Motor Rated Speed</b>              | T1-07              | r/min | YES                 | _                               | YES                                | YES               | YES               |  |  |  |
| PG Number of Pulses per<br>Revolution | T1-08              | -     | YES <1>             | _                               | _                                  | YES <1>           | YES <1>           |  |  |  |
| Motor No-Load Current                 | T1-09              | A     | ı                   | _                               | _                                  | YES               | YES               |  |  |  |
| Motor Rated Slip                      | T1-10              | Hz    | ı                   | _                               | _                                  | YES               | YES               |  |  |  |
| Motor Iron Loss                       | T1-11              | W     | _                   | _                               | YES                                | _                 | YES               |  |  |  |

<sup>&</sup>lt;1> Input data is needed for CLV/PM only.

## ■ Auto-Tuning for Permanent Magnet Motors

Automatically sets the V/f pattern and motor parameters E1- $\square$  and E5- $\square$  when a PM motor is used. Additionally, the feature also sets some F1- $\square$  parameters for speed feedback detection in Closed Loop Vector.

Table 4.17 Types of Auto-Tuning for Permanent Magnet Motors

| Turno                                                  | Cotting    | Application Conditions and Dansite                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Control Mode |         |        |  |
|--------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------|--------|--|
| Туре                                                   | Setting    | Application Conditions and Benefits                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OLV/PM       | AOLV/PM | CLV/PM |  |
| PM Motor Parameter<br>Settings                         | T2-01 = 0  | <ul> <li>Motor does not rotate during Auto-Tuning.</li> <li>Motor data similar to <i>Table 4.18</i> are available from test report or motor nameplate.</li> </ul>                                                                                                                                                                                                                                                                                                                                  | YES          | YES     | YES    |  |
| PM Stationary Auto-<br>Tuning                          | T2-01 = 1  | <ul><li>A motor test report listing motor data is not available.</li><li>Drive automatically calculates and sets motor parameters.</li></ul>                                                                                                                                                                                                                                                                                                                                                       | YES          | YES     | YES    |  |
| PM Stationary Auto-<br>Tuning for Stator<br>Resistance | T2-01 = 2  | <ul> <li>Useful to tune the drive when the motor data were set up manually or by motor code and the cable is longer than 50 m.</li> <li>Should also be performed if the cable length has changed after prior tuning.</li> </ul>                                                                                                                                                                                                                                                                    | YES          | YES     | YES    |  |
| Z Pulse Offset Tuning                                  | T2-01 = 3  | <ul> <li>PG encoder has been replaced. Calculates the Z Pulse offset.</li> <li>Requires the motor to rotate with no load or very low load.</li> </ul>                                                                                                                                                                                                                                                                                                                                              | -            | _       | YES    |  |
| Back EMF Constant<br>Tuning                            | T2-01 = 11 | <ul> <li>Use when a motor test is not available.</li> <li>Tunes the motor induction voltage only.</li> <li>Should be performed after motor data are set and the encoder offset is adjusted.</li> <li>The motor must be uncoupled from the mechanical system (remove loads).</li> </ul>                                                                                                                                                                                                             | -            | -       | YES    |  |
| High Frequency<br>Injection Parameter<br>Tuning        | T2-01 = 13 | <ul> <li>Perform High Frequency Injection Parameter Tuning after setting motor parameters. <i>Refer to Auto-Tuning for Permanent Magnet Motors on page 164</i> for details.</li> <li>The motor rotated in reverse or STo fault (Motor Step-Out) occurred at startup in OLV/PM.</li> <li>Low speed and insufficient or no torque after activating the high frequency injection control (n8-57 = 1) in AOLV/PM.</li> <li>Note: High Frequency Injection cannot be used with an SPM motor.</li> </ul> | -            | YES     | YES    |  |

| Type Cotting                  |            | Application Conditions and Panelita                                                                                                                                                                                                                                                                                                | Control Mode |         |        |  |
|-------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------|--------|--|
| Туре                          | Setting    | Application Conditions and Benefits                                                                                                                                                                                                                                                                                                | OLV/PM       | AOLV/PM | CLV/PM |  |
| PM Rotational Auto-<br>Tuning | T2-01 = 14 | <ul> <li>A motor test report listing motor data is not available.</li> <li>Motor can be decoupled from the load and rotate freely while Auto-Tuning is performed. Drive automatically calculates and sets motor parameters.</li> <li>PM Rotational Auto-Tuning gives more accurate results than Stationary Auto-Tuning.</li> </ul> | YES          | YES     | YES    |  |

*Table 4.18* lists the data that must be entered for Auto-Tuning. Make sure the data is available before starting Auto-Tuning. The necessary information is usually listed on the motor nameplate or in the motor test report provided by the motor manufacturer. *Refer to Subchart A-3: Operation with Permanent Magnet Motors on page 157* for details on the Auto-Tuning process and selection.

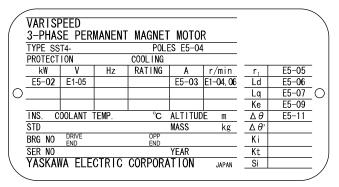



Figure 4.12 Motor Nameplate Example

Table 4.18 Auto-Tuning Input Data

|                                               |                 |                    |         |                           |      |              |      | Tun                              | ing Type (T2-0         | 1)                       |                               |     |               |     |
|-----------------------------------------------|-----------------|--------------------|---------|---------------------------|------|--------------|------|----------------------------------|------------------------|--------------------------|-------------------------------|-----|---------------|-----|
| Input Value                                   | Input<br>Param. | Unit               |         | 0<br>r Parame<br>settings | ter  | 1<br>Station | ary  | 2<br>Stationary<br>Stator Resis. | 3<br>Z-Pulse<br>Offset | 11<br>Back EMF<br>Const. | 13<br>High Freq.<br>Injection | R   | 14<br>otation | al  |
| Control Mode                                  | A1-02           | -                  | 5, 6, 7 | 5                         | 6, 7 | 5            | 6, 7 | 5, 6, 7                          | 7                      | 7                        | 6, 7                          | 5   | 6             | 7   |
| Motor Code<br>(Hex.)                          | T2-02           | -                  | <1>     | <1>                       | <1>  | ı            | -    | -                                | -                      | ı                        | -                             | -   | -             | -   |
| Motor Type                                    | T2-03           | -                  | 1       | ı                         | -    | YES          | YES  | -                                | П                      | ı                        | _                             | YES | YES           | YES |
| <b>Motor Rated Power</b>                      | T2-04           | kW                 | 1       | YES                       | YES  | YES          | YES  | -                                | П                      | ı                        | _                             | YES | YES           | YES |
| Motor Rated<br>Voltage                        | T2-05           | Vac                | -       | YES                       | YES  | YES          | YES  | _                                | _                      | -                        | _                             | YES | YES           | YES |
| Motor Rated<br>Current                        | T2-06           | A                  | -       | YES                       | YES  | YES          | YES  | YES                              | -                      | -                        | -                             | YES | YES           | YES |
| Motor Rated<br>Frequency                      | T2-07           | Hz                 | -       | YES                       | -    | YES          | -    | -                                | -                      | -                        | _                             | YES | _             | -   |
| Number of Motor<br>Poles                      | T2-08           | -                  | -       | YES                       | YES  | YES          | YES  | -                                | _                      | -                        | _                             | YES | YES           | YES |
| <b>Motor Rated Speed</b>                      | T2-09           | r/min              | -       | -                         | YES  | -            | YES  | -                                | -                      | -                        | _                             | -   | YES           | YES |
| Stator Single-phase<br>Resistance             | T2-10           | Ω                  | YES     | YES                       | YES  | -            | -    | _                                | -                      | -                        | _                             | -   | -             | -   |
| d-Axis Inductance                             | T2-11           | mH                 | YES     | YES                       | YES  | -            | -    | -                                | -                      | -                        | -                             | -   | -             | -   |
| q-Axis Inductance                             | T2-12           | mH                 | YES     | YES                       | YES  | -            | _    | -                                | -                      | -                        | _                             | -   | -             |     |
| Induced Voltage<br>Constant Unit<br>Selection | T2-13           | mVs/rad<br>(elec.) | YES     | YES                       | YES  | П            | _    | _                                | -                      | -                        | _                             | -   | -             | -   |
| Voltage Constant                              | T2-14           | mVmin<br>(mech.)   | YES     | YES                       | YES  | -            | -    | _                                | -                      | -                        | _                             | -   | -             | -   |
| Tuning Pull-in<br>Current                     | T2-15           | %                  | -       | -                         | -    | YES          | YES  | _                                | -                      | -                        | -                             | YES | YES           | YES |

|                                          |                 |                | Tuning Type (T2-01)              |     |                 |   |                                  |                        |                          |                               |      |               |     |     |
|------------------------------------------|-----------------|----------------|----------------------------------|-----|-----------------|---|----------------------------------|------------------------|--------------------------|-------------------------------|------|---------------|-----|-----|
| Input Value                              | Input<br>Param. | Unit           | 0<br>Motor Parameter<br>Settings |     | 1<br>Stationary |   | 2<br>Stationary<br>Stator Resis. | 3<br>Z-Pulse<br>Offset | 11<br>Back EMF<br>Const. | 13<br>High Freq.<br>Injection | R    | 14<br>otation | ıal |     |
| Control Mode                             | A1-02           | -              | 5, 6, 7                          | 5   | 6, 7            | 5 | 6, 7                             | 5, 6, 7                | 7                        | 7                             | 6, 7 | 5             | 6   | 7   |
| Motor Code<br>(Hex.)                     | T2-02           | -              | <1>                              | <1> | <1>             | - | -                                | -                      | -                        | -                             | -    | -             | -   | -   |
| PG Number of<br>Pulses Per<br>Revolution | T2-16           | ppr            | YES <2>                          | ı   | YES <2>         | ı | YES <2>                          | ı                      | ı                        | _                             | I    | -             | _   | YES |
| Z Pulse Offset                           | T2-17           | deg<br>(mech.) | YES <2>                          | ı   | YES <2>         | - | YES<br><2>                       | _                      | -                        | _                             | -    | -             | -   | _   |

<sup>&</sup>lt;1> Input the motor code when using a Yaskawa motor. Select "FFFF" when using a motor from another manufacturer.

### ■ Inertia Tuning and Speed Control Loop Auto-Tuning

Inertia Tuning can be performed when the drive is using CLV control for either IM or PM motors. Inertia Tuning automatically calculates load and motor inertia, and optimizes settings related to Feed Forward control.

ASR Gain Auto-Tuning performs the same operation as Inertia Tuning, while also optimizing speed control loop settings.

Table 4.19 Inertia and Speed Control Loop Tuning

| Type           | S           | etting    | Control Mode | Application Conditions and Benefits                                                                                   |  |  |
|----------------|-------------|-----------|--------------|-----------------------------------------------------------------------------------------------------------------------|--|--|
| Inertia Tuning | IM<br>Motor | T1-01 = 8 | CLV          | Allows the motor to rotate at a certain speed and applies a test signal. The response                                 |  |  |
|                | PM<br>Motor | T2-01 = 8 | CLV/PM       | to the test signal is analyzed and the necessary adjustments are made to parar controlling the Feed Forward function. |  |  |
| ASR Gain Auto- |             |           | CLV          | Performs the same operation as Inertia Tuning, while also adjusting the ASR gain                                      |  |  |
| Tuning         | PM<br>Motor | T2-01 = 9 | CLV/PM       | according to the test signal response.                                                                                |  |  |

Note: Inertia Tuning and ASR Gain Auto-Tuning may not be available when gears are between the machine and the motor shaft.

**Table 4.20** explains the data that must be entered to perform the Inertia Tuning and ASR Gain Auto-Tuning. **Refer to Auto-Tuning for Permanent Magnet Motors on page 164** for details.

Table 4.20 Auto-Tuning Input Data

|                           |                      |                  | Tuning Type (T1-01 or T2-01) |                      |  |  |
|---------------------------|----------------------|------------------|------------------------------|----------------------|--|--|
| Input Value               | Input Parameter Unit |                  | 8<br>Inertia Tuning          | 9<br>ASR Gain Tuning |  |  |
| Control Mode              | A1-02                | -                | 3, 7                         | 3, 7                 |  |  |
| Test signal frequency     | T3-01                | Hz               | YES                          | YES                  |  |  |
| Test signal amplitude     | T3-02                | rad              | YES                          | YES                  |  |  |
| Motor inertia             | T3-03                | kgm <sup>2</sup> | YES                          | YES                  |  |  |
| System response frequency | T3-04                | Hz               | _                            | YES                  |  |  |

## **♦** Before Auto-Tuning the Drive

Check the items below before Auto-Tuning the drive.

#### ■ Basic Auto-Tuning Preparations

- Auto-Tuning requires the user to input data from the motor nameplate or motor test report. Make sure this data is available before Auto-Tuning the drive.
- For best performance, the drive input supply voltage must be at least equal to or greater than the motor rated voltage.

Note: Better performance is possible when using a motor with a base voltage that is lower than the input supply voltage (20 V for 200 V class models and 40 V for 400 V class models). This is particularly important when operating the motor above 90% of base speed, where high torque precision is required.

• To cancel Auto-Tuning, press the STOP key on the digital operator.

<sup>&</sup>lt;2> Input data is needed for CLV/PM only.

<sup>&</sup>lt;3> Dependent upon T2-13 setting.

- When using a motor contactor, make sure it is closed throughout the Auto-Tuning process.
- When using Auto-Tuning for motor 2, make sure motor 2 is connected to the drive output when performing the tuning. *Table 4.21* describes digital input and output terminal operation while Auto-Tuning is executed.

**Table 4.21 Auto-Tuning Input Data** 

| <b>Motor Type</b> | Auto-Tuning Type                                   | Digital Input                                     | Digital Output                                    |  |  |
|-------------------|----------------------------------------------------|---------------------------------------------------|---------------------------------------------------|--|--|
|                   | Rotational Auto-Tuning                             | Functions the same as during normal operation.    |                                                   |  |  |
|                   | Stationary Auto-Tuning 2                           |                                                   |                                                   |  |  |
| IM Motor          | Stationary Auto-Tuning for Line-to-Line Resistance |                                                   |                                                   |  |  |
|                   | Rotational Auto-Tuning for V/f Control             |                                                   | Functions the same as during normal operation.    |  |  |
|                   | Stationary Auto-Tuning 3                           | Maintains the status at the start of Auto-Tuning. |                                                   |  |  |
|                   | PM Motor Parameter Settings                        |                                                   | Digital output functions are disabled.            |  |  |
|                   | PM Stationary Auto-Tuning                          | Digital input functions                           |                                                   |  |  |
|                   | PM Stationary Auto-Tuning for Stator Resistance    | are disabled.                                     | Maintains the status at the start of Auto-Tuning. |  |  |
| PM Motor          | Z Pulse Offset Tuning                              |                                                   |                                                   |  |  |
|                   | Back EMF Constant Tuning                           |                                                   | Functions the same as during normal operation.    |  |  |
|                   | High Frequency Injection Parameter Tuning          |                                                   | Digital output functions are disabled.            |  |  |
|                   | PM Rotational Auto-Tuning                          |                                                   | Functions the same as during normal operation.    |  |  |
| IM and PM         | Inertia Tuning                                     |                                                   | Functions the same as during normal energion      |  |  |
| 3.5               | ASR Gain Auto-Tuning                               |                                                   | Functions the same as during normal operation.    |  |  |

**WARNING!** Sudden Movement Hazard. Ensure that the motor and the load are not connected when performing Auto-Tuning. Failure to comply may cause damage to equipment or injury to personnel.

**WARNING!** Electrical Shock Hazard. When executing Auto-Tuning, voltage is applied to the motor before the motor rotates. Do not touch the motor until Auto-Tuning is completed. Failure to comply may result in injury or death from electrical shock. If Rotational Auto-Tuning is performed, the motor will remain stopped for approximately one minute with power applied and then the motor will rotate for one minute.

### ■ Notes on Rotational Auto-Tuning

- Decouple the load from the motor to achieve optimal performance from Rotational Auto-Tuning. Rotational Auto-Tuning is best suited for applications requiring high performance over a wide speed range.
- If it is not possible to decouple the motor and load, reduce the load so it is less than 30% of the rated load. Performing Rotational Auto-Tuning with a higher load will set motor parameters incorrectly, and can cause irregular motor rotation.
- Ensure the motor-mounted brake is fully released, if installed.
- Connected machinery should be allowed to rotate the motor.

### ■ Notes on Stationary Auto-Tuning

Stationary Auto-Tuning modes analyze motor characteristics by injecting current into the motor for approximately one minute.

**WARNING!** Electrical Shock Hazard. When executing stationary Auto-Tuning, voltage is applied to the motor before the motor rotates. Do not touch the motor until Auto-Tuning is completed. Failure to comply may result in injury or death from electrical shock.

**WARNING!** Sudden Movement Hazard. If installed, do not release the mechanical brake during Stationary Auto-Tuning. Inadvertent brake release may cause damage to equipment or injury to personnel. Ensure that the mechanical brake release circuit is not controlled by the drive multi-function digital outputs.

#### Stationary Auto-Tuning 2

- Perform when using a vector control mode and Rotational Auto-Tuning cannot be performed.
- Check the area around the motor to ensure that nothing will accidentally cause the motor to rotate during the Auto-Tuning process.
- Use Stationary Auto-Tuning 3 when the motor test report is not available. Use Stationary Auto-Tuning 2 when the motor test report is available.

#### **Stationary Auto-Tuning 3**

**WARNING!** Electrical Shock Hazard. When executing Stationary Auto-Tuning 3, voltage is applied to the motor before the motor rotates. Do not touch the motor until Auto-Tuning is completed. Failure to comply may result in injury from electrical shock.

**WARNING!** Sudden Movement Hazard. If installed, do not release the mechanical brake during Stationary Auto-Tuning 3. Inadvertent brake release may cause damage to equipment or injury to personnel. Ensure that the mechanical brake release circuit is not controlled by the drive multi-function digital outputs.

Stationary Auto-Tuning 3 can be used in either OLV or CLV control by setting T1-01 to 5 and entering the input data from the motor nameplate. Pressing the RUN key stops the motor for approximately one minute to automatically calculate the necessary motor parameters. Motor parameters E2-02 and E2-03 are set automatically when using the motor for the first time in Drive Mode after Auto-Tuning has been performed.

After performing Stationary Auto-Tuning 3, make sure the following conditions are met and use the following procedures to perform the operation in test mode:

- 1. Check the E2-02 and E2-03 values in Verify Mode or Parameter Setting Mode.
- 2. Operate the motor in Drive Mode with the following conditions:

Do not disconnect the wiring between the motor and drive.

Do not lock the motor shaft with a mechanical brake or other device.

The maximum motor load should be 30% of the rated load.

Maintain a constant speed of 30% of E1-06 (base frequency, default value = maximum frequency) or higher for one second or longer.

- 3. After the motor is stopped, recheck the E2-02 and E2-03 values in Verify Mode or Parameter Setting Mode.
- **4.** Confirm that the input data is correct.

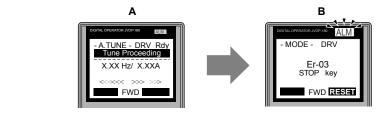
Note:

- 1. If the aforementioned conditions are not met before using the motor for the first time, there will be large discrepancies between the values set for the motor rated slip (E2-02), motor no-load current (E2-03), the motor test report, and the default values based on o2-04, Drive Model Selection and C6-01, Drive Duty Rating.
- 2. If midway initialization is performed, restart the entire tuning procedure from the beginning.
- 3. Use the following guidelines for a general-purpose motor: Motor rated slip (E2-02): 0.5 Hz to 3 Hz; Motor no-load current (E2-03): 30% to 65% of the rated current. Generally speaking, for larger motor capacities, the rated slip is smaller and the no-load current as a percentage of the rated current is smaller. *Refer to Defaults by Drive Model and Duty Rating ND/HD on page 603* for details.

#### Stationary Auto-Tuning for Line-to-Line Resistance and PM Motor Stator Resistance

- Perform when entering motor data manually while using motor cables longer than 50 m.
- If the motor cables have been replaced with cables more than 50 m long after Auto-Tuning has already been performed, use Stationary Auto-Tuning for line-to-line resistance.

**WARNING!** Electrical Shock Hazard. When executing Stationary Auto-Tuning for Line-to-line resistance, voltage is applied to the motor even before it rotates. Do not touch the motor until Auto-Tuning is completed. Failure to comply may result in injury or death from electrical shock.


## Notes on Inertia Tuning and ASR Gain Auto-Tuning

**WARNING!** Electrical Shock Hazard. When executing Inertia Tuning or ASR Gain Auto-Tuning, voltage is applied to the motor even before it rotates. Do not touch the motor until Auto-Tuning is completed. Failure to comply may result in injury or death from electrical shock.

- Perform both tuning methods with the machine connected to the motor, but without the load applied.
- The motor will rotate during the Auto-Tuning process. Make sure the areas around the motor and connected machinery are clear.
- The drive will let the system rotate at a certain speed while superimposing a sine wave test signal. Make sure this tuning process does not cause any problem or malfunction in the machine before using it.
- Ensure the motor-mounted brake is fully released if installed.
- Connected machinery should be allowed to rotate the motor.

## Auto-Tuning Interruption and Fault Codes

If tuning results are abnormal or the STOP key is pressed before completion, Auto-Tuning will be interrupted and a fault code will appear on the digital operator.



A - During Auto-Tuning

**B - Auto-Tuning Aborted** 

Figure 4.13 Auto-Tuning Aborted Display

## **♦** Auto-Tuning Operation Example

The following example demonstrates Rotational Auto-Tuning when using OLV (A1-02 = 2) and CLV (A1-02 = 3).

## ■ Selecting the Type of Auto-Tuning

|    | Step                                                                                 |          | Display/Result                                                                             |
|----|--------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------|
| 1. | Turn on the power to the drive. The initial display appears.                         | <b>→</b> | - MODE - DRV Rdy FREF (AI) U1-01= 0.00Hz U1-02= 0.00Hz RSEQ  U1-03= 0.00A   RREF  JOG  FWD |
| 2. | Press or until the Auto-Tuning display appears.                                      | <b>→</b> | - MODE - PRG Auto-Tuning AUTO HELP FWD DATA                                                |
| 3. | Press to display T1-01 and the current setting 0 (Rotational Auto-Tuning).           | <b>→</b> | -A.TUNE - PRG Rdy Tuning Mode Sel T1-0]= 0 -0* StandardTuning ESC FWD DATA                 |
| 4. | Press ENTER. The T1-01 setting flashes and can now be changed. <1>                   | <b>→</b> | - A.TUNE - PRG Rdy Tuning Mode Sel  T1-01= 0 -0* StandardTuning "0"  FWD ->                |
| 5. | The setting is already 0 (Rotational Auto-Tuning). Do not change the setting.  Press | <b>→</b> | Entry Accepted                                                                             |
| 6. | The display automatically returns to the display shown in Step 3.                    | <b>→</b> | - A.TUNE - PRG Rdy Tuning Mode Sel T1-10]= 0 -0* StandardTuning ESC FWD DATA               |

<sup>&</sup>lt;1> T1-00 will appear on the display when one of the multi-function inputs has been set to switch between motor 1 and motor 2 (H1- $\square\square$  = 16).

## ■ Enter Data from the Motor Nameplate

After selecting the type of Auto-Tuning, enter the data required from the motor nameplate.

**Note:** These instructions continue from Step 6 in "Selecting the Type of Auto-Tuning".

|    | Step                                                                                                                                  |          | Display/Result                                                                          |
|----|---------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------|
| 1. | Press to access the motor output power parameter T1-02. The value set for E2-11 prior to turning on the power is displayed for T1-02. | <b>→</b> | -A.TUNE - PRG Rdy Mtr Rated Power  T1-92= 0.75kW (0.00 ~ 650.00) '0.75kW'  ESC FWD DATA |
| 2. | The setting value of T1-02 flashes when The setting can be changed.                                                                   | <b>→</b> | -A.TUNE - PRG Rdy Mtr Rated Power  T1-02= 000.75kW (0.00 ~ 650.00) '0.75kW'  ← FWD →    |
| 3. | Press left , right , RESET , A , and V to enter the motor power nameplate data in kW.                                                 | <b>→</b> | -A.TUNE - PRG Rdy Mtr Rated Power  T1-02= 000.40kW (0.00 ~ 650.00) "0.75kW"  ←■ FWD →   |
| 4. | Press to save the setting.                                                                                                            | <b>→</b> | Entry Accepted                                                                          |

|    | Step                                                                                                                                                                                                                                                                                                                                           |          | Display/Result                                                                                                                                                            |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5. | The display automatically returns to the display in Step 1.                                                                                                                                                                                                                                                                                    | <b>→</b> | -A.TUNE - PRG Rdy Mtr Rated Power  T1-02= 0.40kW  (0.00 ~ 650.00) "0.75kW"  ESG FWD DATA                                                                                  |
| 6. | Repeat Steps 1 through 5 to set the following parameters:  • T1-03, Motor Rated Voltage  • T1-04, Motor Rated Current  • T1-05, Motor Base Frequency  • T1-06, Number of Motor Poles  • T1-07, Motor Base Frequency  • T1-09, Motor No-Load Current (Stationary Auto-Tuning 2 only)  • T1-10, Motor Rated Slip (Stationary Auto-Tuning 2 only) | <b>→</b> | -A.TUNE - PRG Rated Voltage  T1-05= 200.0VAC (0.0 ~ 255.0) "200.0VAC"  ESC FWD DATA  -A.TUNE - PRG Mtr Rated Slip  T1-105 = X.XX Hz (0.00 ~ 20.00) "X.XX Hz" ESC FWD DATA |

Note:

- 1. For details on each setting, Refer to T1: Parameter Settings during Induction Motor Auto-Tuning on page 170.
- 2. To execute Stationary Auto-Tuning for line-to-line resistance only, set parameters T1-02 and T1-04.

### Starting Auto-Tuning

**WARNING!** Sudden Movement Hazard. The drive and motor may start unexpectedly during Auto-Tuning, which could result in death or serious injury. Ensure the area surrounding the drive motor and load are clear before proceeding with Auto-Tuning.

**WARNING!** Electrical Shock Hazard. High voltage will be supplied to the motor when Stationary Auto-Tuning is performed even with the motor stopped, which could result in death or serious injury. Do not touch the motor until Auto-Tuning has been completed.

**NOTICE:** Rotational Auto-Tuning will not function properly if a holding brake is engaged on the load. Failure to comply could result in improper operation of the drive. Ensure the motor can freely spin before beginning Auto-Tuning.

Enter the required information from the motor nameplate. Press to proceed to the Auto-Tuning start display.

**Note:** These instructions continue from Step 6 in "Enter Data from the Motor Nameplate".

|    | Step                                                                                                                                                   |          | Display/Result                                                                      |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------|--|
| 1. | After entering the data listed on the motor nameplate, press  to confirm.                                                                              | <b>→</b> | - A.TUNE - DRV Rdy Auto-Tuning  0.00 Hz/ 0.00A Tuning Ready ? Press RUN key ESC FWD |  |
| 2. | Press to activate Auto-Tuning. DRV flashes. The drive begins by injecting current into the motor for about 1 min, and then starts to rotate the motor. | <b>→</b> | - A.TUNE - DRV Rdy Tune Proceeding  X.XX Hz/ X.XXA   FWD                            |  |
| 3. | Auto-Tuning finishes in approximately one to two minutes.                                                                                              | <b>→</b> | - MODE - DRV  End Tune Successful  FWD RESE                                         |  |

## ◆ T1: Parameter Settings during Induction Motor Auto-Tuning

The T1-□□ parameters set the Auto-Tuning input data for induction motor tuning.

**Note:** For motors operating in the field weakening range, first perform the Auto-Tuning with the base data. After Auto-Tuning is complete, change E1-04, Maximum Output Frequency, to the desired value.

#### ■ T1-00: Motor 1/Motor 2 Selection

Selects the motor to be tuned when motor 1/2 switching is enabled (i.e., a digital input is set for function H1- $\square\square$  = 16). This parameter is not displayed if motor 1/2 switching is disabled.

| No.   | Name                      | Setting Range | Default |
|-------|---------------------------|---------------|---------|
| T1-00 | Motor 1/Motor 2 Selection | 1, 2          | 1       |

#### Setting 1: Motor 1

Auto-Tuning automatically sets parameters  $E1-\Box\Box$  and  $E2-\Box\Box$  for motor 1.

#### Setting 2: Motor 2

Auto-Tuning automatically sets parameters  $E3-\Box\Box$  and  $E4-\Box\Box$  for motor 2. Make sure that motor 2 is connected to the drive for Auto-Tuning.

### **■** T1-01: Auto-Tuning Mode Selection

Sets the type of Auto-Tuning to be used. *Refer to Auto-Tuning for Induction Motors on page 163* for details on the different types of Auto-Tuning.

| No.   | Name                       | Setting Range                                                           | Default                         |
|-------|----------------------------|-------------------------------------------------------------------------|---------------------------------|
| T1-01 | Auto-Tuning Mode Selection | V/f: 2, 3<br>V/f w/PG: 2, 3<br>OLV: 0, 2, 4, 5<br>CLV: 0, 2, 4, 5, 8, 9 | V/f, V/f w/PG: 2<br>OLV, CLV: 0 |

**Setting 0: Rotational Auto-Tuning** 

Setting 2: Stationary Auto-Tuning for Line-to-Line Resistance

Setting 3: Rotational Auto-Tuning for V/f Control

Setting 4: Stationary Auto-Tuning 2 Setting 5: Stationary Auto-Tuning 3

**Setting 8: Inertia Tuning** 

Setting 9: ASR Gain Auto-Tuning

Note: Inertia Tuning and ASR Gain Auto-Tuning may not be available when gears are between the machine and the motor shaft.

#### ■ T1-02: Motor Rated Power

Sets the motor rated power according to the motor nameplate value.

| No.   | Name              | Setting Range     | Default                       |
|-------|-------------------|-------------------|-------------------------------|
| T1-02 | Motor Rated Power | 0.00 to 650.00 kW | Determined by o2-04 and C6-01 |

### ■ T1-03: Motor Rated Voltage

Sets the motor rated voltage according to the motor nameplate value. Enter the voltage base speed here if the motor is operating above base speed.

Enter the voltage needed to operate the motor under no-load conditions at rated speed to T1-03 for better control precision around rated speed when using a vector control mode. The no-load voltage can usually be found in the motor test report available from the manufacturer. If the motor test report is not available, enter approximately 85% of the rated voltage printed on the motor nameplate. This may increase the output current and reduce the overload margin.

| No.   | Name                | Setting Range      | Default     |
|-------|---------------------|--------------------|-------------|
| T1-03 | Motor Rated Voltage | 0.0 to 255.5 V <1> | 200.0 V <1> |

<sup>&</sup>lt;1> Values are specific to 200 V class drives. Double values for 400 V class drives.

#### ■ T1-04: Motor Rated Current

Sets the motor rated current according to the motor nameplate value. Set the motor rated current between 50% and 100% of the drive rated current for optimal performance in OLV or CLV. Enter the current at the motor base speed.

| No.   | Name                | Setting Range                     | Default |
|-------|---------------------|-----------------------------------|---------|
| T1-04 | Motor Rated Current | 10 to 150% of drive rated current | 02-04   |

### ■ T1-05: Motor Base Frequency

Sets the motor rated frequency according to the motor nameplate value. If a motor with an extended speed range is used or the motor is used in the field weakening area, enter the maximum frequency to E1-04 (E3-04 for motor 2) after Auto-Tuning is complete.

| No.   | Name                 | Setting Range   | Default |
|-------|----------------------|-----------------|---------|
| T1-05 | Motor Base Frequency | 0.0 to 400.0 Hz | 60.0 Hz |

#### **■ T1-06: Number of Motor Poles**

Sets the number of motor poles according to the motor nameplate value.

| No.   | Name                  | Setting Range | Default |
|-------|-----------------------|---------------|---------|
| T1-06 | Number of Motor Poles | 2 to 48       | 4       |

### **■** T1-07: Motor Base Speed

Sets the motor rated speed according to the motor nameplate value. Enter the speed at base frequency when using a motor with an extended speed range or if using the motor in the field weakening area.

| No.   | Name             | Setting Range    | Default    |
|-------|------------------|------------------|------------|
| T1-07 | Motor Base Speed | 0 to 24000 r/min | 1750 r/min |

#### ■ T1-08: PG Number of Pulses Per Revolution

Sets the number of pulses from the PG encoder. Set the actual number of pulses for one full motor rotation.

| No.   | Name                               | Setting Range  | Default  |
|-------|------------------------------------|----------------|----------|
| T1-08 | PG Number of Pulses Per Revolution | 1 to 60000 ppr | 1024 ppr |

**Note:** T1-08 will only be displayed in CLV.

#### ■ T1-09: Motor No-Load Current

Sets the no-load current for the motor. The default setting displayed is no-load current automatically calculated from the rated power set in T1-02 and the motor rated current set to T1-04. Enter the data listed on the motor test report. Leave this data at the default setting if the motor test report is not available.

| No.   | Name                  | Setting Range                            | Default |
|-------|-----------------------|------------------------------------------|---------|
| T1-09 | Motor No-Load Current | 0 A to [T1-04]<br>(Max: 0 to 2999.9) <1> | 1       |

<sup>&</sup>lt;1> Display is in the following units:

 $2\square 0028$  and  $4\square 0011$  to  $4\square 0034$ : 0.01 A units.

 $2\square 0042$  to  $2\square 0248$  and  $4\square 0040$  to  $4\square 0930$ : 0.1 A units.

### ■ T1-10: Motor Rated Slip

Sets the rated slip for the motor. The default setting displayed is the rated slip for a Yaskawa motor calculated from the rated power set in T1-02. Enter the data listed on the motor test report.

| No.   | Name             | Setting Range    | Default |
|-------|------------------|------------------|---------|
| T1-10 | Motor Rated Slip | 0.00 to 20.00 Hz | _       |

#### ■ T1-11: Motor Iron Loss

Provides iron loss information to determine the Energy Saving coefficient. T1-11 will first display the value for the motor iron loss that was automatically calculated when motor capacity was entered to T1-02. Enter the motor iron loss value listed to T1-11 if the motor test report is available.

| No.   | Name            | Setting Range | Default          |
|-------|-----------------|---------------|------------------|
| T1-11 | Motor Iron Loss | 0 to 65535 W  | E2-11<br>(E4-11) |

## Parameter Settings during PM Motor Auto-Tuning: T2

The T2-□□ parameters are used to set the Auto-Tuning input data for PM motor tuning.

## ■ T2-01: PM Motor Auto-Tuning Mode Selection

Selects the type of Auto-Tuning to be performed. *Refer to Auto-Tuning for Permanent Magnet Motors on page 164* for details on different types of Auto-Tuning.

| No.   | Name                                | Setting Range                                                                              | Default |
|-------|-------------------------------------|--------------------------------------------------------------------------------------------|---------|
| T2-01 | PM Motor Auto-Tuning Mode Selection | OLV/PM: 0, 1, 2, 14<br>AOLV/PM: 0, 1, 2, 13, 14<br>CLV/PM: 0, 1, 2, 3, 8, 9,<br>11, 13, 14 | 0       |

**Setting 0: PM Motor Parameter Settings** 

**Setting 1: PM Stationary Auto-Tuning** 

Setting 2: PM Stationary Auto-Tuning for Stator Resistance

**Setting 3: Z-Pulse Offset Tuning** 

**Setting 8: Inertia Tuning** 

**Note:** Inertia Tuning may not be available when gears are between the machine and the motor shaft.

#### Setting 9: ASR Gain Auto-Tuning

**Note:** ASR Gain Auto-Tuning may not be available when gears are between the machine and the motor shaft.

#### **Setting 11: Back EMF Constant Tuning**

Note:

- 1. Back EMF Constant Tuning may not be available when gears are between the machine and the motor shaft.
- 2. For special-purpose motors, Yaskawa recommends performing Back EMF Constant Tuning after performing Stationary Auto-Tuning. Back EMF Constant Tuning rotates the motor to measure the actual induction voltage constants, which allows for more accurate control than Stationary Auto-Tuning alone.

#### **Setting 13: High Frequency Injection Parameter Tuning**

#### Setting 14: PM Rotational Auto-Tuning

Note:

- 1. Inertia Tuning and ASR Gain Auto-Tuning might not be available if gears are between the machine and the motor shaft.
- For special-purpose motors, Yaskawa recommends Back EMF Constant Tuning after Stationary Auto-Tuning has been performed. Back EMF Constant Tuning rotates the motor to measure the actual induction voltage constants, and therefore allows for more accurate control than Stationary Auto-Tuning alone.
- 3. For special-purpose motors, Yaskawa recommends Back EMF Constant Tuning after Stationary Auto-Tuning has been performed. Back EMF Constant Tuning rotates the motor to measure the actual induction voltage constants, and therefore allows for more accurate control than Stationary Auto-Tuning alone.
- **4.** When using High Frequency Injection, perform High Frequency Injection Parameter Tuning after setting motor parameters. High Frequency Injection cannot be used with an SPM motor. When performing High Frequency Injection Parameter Tuning (T2-01 = 13), n8-36, n8-37, and n8-39 will be set automatically. Before performing High Frequency Injection Parameter Turning, perform PM Stationary/Rotational Auto-Tuning or set the nameplate value of the motor.

#### **■ T2-02: PM Motor Code Selection**

If the drive is operating a Yaskawa PM motor from the SMRA, SSR1, or SST4 series, enter the motor code in T2-02 to automatically set parameters T2-03 through T2-09. Use the motor nameplate or motor test report values to set parameters T2-10 to T2-14. If the drive is operating a specialized motor or a motor designed by a manufacturer other than Yaskawa, set T2-02 to FFFF and enter the data from the motor nameplate or the motor test report as prompted.

Only the designated PM motor codes may be entered. The PM motor codes accepted by the drive will differ depending on the selected control mode. *Refer to E5: PM Motor Settings on page 268* for motor codes.

| No.   | Name                    | Setting Range | Default             |
|-------|-------------------------|---------------|---------------------|
| T2-02 | PM Motor Code Selection | 0000 to FFFF  | Determined by o2-04 |

### ■ T2-03: PM Motor Type

Selects the type of PM motor the drive will operate.

| No.   | Name          | Setting Range | Default |
|-------|---------------|---------------|---------|
| T2-03 | PM Motor Type | 0, 1          | 1       |

Setting 0: IPM motor

Setting 1: SPM motor

#### ■ T2-05: PM Motor Rated Voltage

Sets the motor rated voltage.

| No.   | Name                   | Setting Range      | Default     |
|-------|------------------------|--------------------|-------------|
| T2-05 | PM Motor Rated Voltage | 0.0 to 255.0 V <1> | 200.0 V <1> |

<sup>&</sup>lt;1> Value shown is specific to 200 V class drives. Double value for 400 V class drives.

#### **■ T2-06: PM Motor Rated Current**

Enter the motor rated current in amps.

| No.       | Name                   | Setting Range                           | Default             |
|-----------|------------------------|-----------------------------------------|---------------------|
| T2-06 <1> | PM Motor Rated Current | 10% to 150% of the drive rated current. | Determined by o2-04 |

<sup>&</sup>lt;1> Display is in the following units:

CIMR-U2\(\to\)20028, 2\(\to\)0042, and 4\(\to\)0011 to 4\(\to\)0027: 0.01 A units CIMR-U\(\to\)2\(\to\)0054 to 2\(\to\)248, and 4\(\to\)0034 to 4\(\to\)930: 0.01 A units

### **■** T2-07: PM Motor Base Frequency

Enter the motor base frequency in Hz.

**Note:** T2-07 will be displayed when in OLV/PM.

| No.   | Name                    | Setting Range   | Default |
|-------|-------------------------|-----------------|---------|
| T2-07 | PM Motor Base Frequency | 0.0 to 400.0 Hz | 87.5 Hz |

#### **■ T2-08: Number of PM Motor Poles**

Enter the number of motor poles.

| No.   | Name                     | Setting Range | Default |
|-------|--------------------------|---------------|---------|
| T2-08 | Number of PM Motor Poles | 2 to 48       | 6       |

### **■ T2-09: PM Motor Base Speed**

Enter the motor rated speed in r/min.

**Note:** T2-09 will be displayed when in AOLV/PM and CLV/PM.

| No.   | Name                | Setting Range    | Default    |
|-------|---------------------|------------------|------------|
| T2-09 | PM Motor Base Speed | 0 to 24000 r/min | 1750 r/min |

### **■ T2-10: PM Motor Stator Resistance**

Enter the motor stator resistance per motor phase.

| No.   | Name                       | Setting Range              | Default             |
|-------|----------------------------|----------------------------|---------------------|
| T2-10 | PM Motor Stator Resistance | $0.000$ to $65.000~\Omega$ | Determined by T2-02 |

#### ■ T2-11: PM Motor d-Axis Inductance

Enter the d-Axis inductance per motor phase.

| No.   | Name                       | Setting Range     | Default             |
|-------|----------------------------|-------------------|---------------------|
| T2-11 | PM Motor d-Axis Inductance | 0.00 to 600.00 mH | Determined by T2-02 |

#### ■ T2-12: PM Motor q-Axis Inductance

Enter the q-Axis inductance per motor phase.

| No.   | Name                       | Setting Range     | Default             |
|-------|----------------------------|-------------------|---------------------|
| T2-12 | PM Motor q-Axis Inductance | 0.00 to 600.00 mH | Determined by T2-02 |

### ■ T2-13: Induced Voltage Constant Unit Selection

Selects the units used for setting the induced voltage coefficient.

| No.   | Name                                    | Setting Range | Default |
|-------|-----------------------------------------|---------------|---------|
| T2-13 | Induced Voltage Constant Unit Selection | 0, 1          | 1       |

Setting 0: mV (r/min)

Setting 1: mV (rad/sec)

Note: If T2-13 is set to 0, then the drive will use E5-24 (Motor Induction Voltage Constant 2), and will automatically set E5-09 (Motor Induction Voltage Constant 1 (Ke)) to 0.0. If T2-13 is set to 1, then the drive will use E5-09 and will automatically set E5-25 to 0.0.

### ■ T2-14: PM Motor Induced Voltage Constant (Ke)

Enter the motor induced voltage constant (Ke).

| No.   | No. Name                               |               | Default             |
|-------|----------------------------------------|---------------|---------------------|
| T2-14 | PM Motor Induced Voltage Constant (Ke) | 0.0 to 2000.0 | Determined by T2-02 |

### ■ T2-15: Pull-In Current Level for PM Motor Tuning

Sets the amount of pull-in current used to tune the d-Axis and q-Axis inductance. Set as a percentage of the motor rated current.

| No.   | Name                                      | Setting Range | Default |
|-------|-------------------------------------------|---------------|---------|
| T2-15 | Pull-In Current Level for PM Motor Tuning | 0 to 120%     | 30%     |

#### ■ T2-16: PG Number of Pulses Per Revolution for PM Motor Tuning

Enter the number of pulses from the PG encoder per motor rotation. Set the actual number of pulses for one full motor rotation.

| No.   | No. Name                                               |                | Default  |  |
|-------|--------------------------------------------------------|----------------|----------|--|
| T2-16 | PG Number of Pulses Per Revolution for PM Motor Tuning | 1 to 15000 ppr | 1024 ppr |  |

### **■** T2-17: Encoder Z Pulse Offset (ΔΘ)

Sets the amount of compensation or offset in 0.1 degree units to fine-tune the home position. Perform Z Pulse tuning when the amount of offset needed for the Z Pulse is unknown or if the PG encoder is replaced.

| No.   | Name                                      | Setting Range       | Default |
|-------|-------------------------------------------|---------------------|---------|
| T2-17 | Encoder Z Pulse Offset ( $\Delta\Theta$ ) | -180.0 to 180.0 deg | 0.0 deg |

## Parameter Settings during Inertia and Speed Control Loop Auto-Tuning: T3

These tuning methods apply a sine wave test signal to the system. The drive estimates the system inertia by the measuring the response and automatically sets the parameters listed in *Table 4.22*.

Table 4.22 Parameters Adjusted by Inertia and Speed Loop Auto-Tuning

|               |                                 | T1-0                | l or T2-01                              |
|---------------|---------------------------------|---------------------|-----------------------------------------|
| Parameter     | Description                     | 8<br>Inertia Tuning | 9<br>Speed Control Loop (ASR)<br>Tuning |
| C5-01         | ASR Proportional Gain 1         | -                   | YES                                     |
| C5-17 (C5-37) | Motor Inertia                   | YES                 | YES                                     |
| C5-18 (C5-38) | Motor Inertia Ratio             | YES                 | YES                                     |
| n5-02         | Motor Acceleration Time         | YES                 | YES                                     |
| n5-03         | Feed Forward Control Ratio Gain | YES                 | YES                                     |

## ■ T3-01: Inertia Tuning Frequency Reference

Sets the frequency of the test signal applied to the motor during Inertia Tuning. Although this setting rarely needs to be changed, increasing the value may be beneficial when working with high inertia loads.

| No.   | Name                               | Setting Range  | Default |  |
|-------|------------------------------------|----------------|---------|--|
| T3-01 | Inertia Tuning Frequency Reference | 0.1 to 20.0 Hz | 3.0 Hz  |  |

### **■ T3-02: Inertia Tuning Reference Amplitude**

Enter the amplitude of the test signal applied to the motor during Inertia Tuning. Although this setting rarely needs to be changed, decrease the setting if a large load inertia causes problems during Inertia Tuning. Adjust T3-02 if a fault occurs when T3-01 is set to a low value.

| No.   | Name                               | Setting Range   | Default |
|-------|------------------------------------|-----------------|---------|
| T3-02 | Inertia Tuning Reference Amplitude | 0.1 to 10.0 rad | 0.5 rad |

#### ■ T3-03: Motor Inertia

Enter the inertia of the motor. This value is used to determine the load inertia using the test signal response. The default setting is for a Yaskawa standard motor as listed in the motor inertia table.

| No.   | Name          | Setting Range                     | Default                              |
|-------|---------------|-----------------------------------|--------------------------------------|
| T3-03 | Motor Inertia | 0.0001 to 600.00 kgm <sup>2</sup> | Determined by o2-04,<br>C6-01, E5-01 |

**Note:** Display is in the following units:

Models  $4\Box 0011$  and  $4\Box 0014$ : 0.0001 kgm<sup>2</sup> units

Models  $2\Box 0028$  to  $2\Box 0192$  and  $4\Box 0021$  to  $4\Box 0124$ : 0.001 kgm<sup>2</sup> units

Models  $2\Box 0248$  and  $4\Box 0156$  to  $4\Box 0930$ : 0.01 kgm<sup>2</sup> units

### **■** T3-04: ASR Response Frequency

Sets the response frequency (reciprocal of the step response time constant) of the system or the connected machine. The drive uses this value and the load inertia to fine-tune the speed control loop gain (C5-01, ASR Gain 1). Oscillation may result if the value input here is higher than the actual response frequency of the system.

| No.   | Name                   | Setting Range  | Default |  |
|-------|------------------------|----------------|---------|--|
| T3-04 | ASR Response Frequency | 0.1 to 50.0 Hz | 10.0 Hz |  |

# 4.8 No-Load Operation Test Run

## ♦ No-Load Operation Test Run

This section explains how to operate the drive with the motor decoupled from the load during a test run.

### ■ Before Starting the Motor

Check the following items before operation:

- Ensure the area around the motor is safe.
- Ensure external emergency stop circuitry is working properly and other safety precautions have been taken.

### ■ During Operation

Check the following items during operation:

- The motor should rotate smoothly (i.e., no abnormal noise or oscillation).
- The motor should accelerate and decelerate smoothly.

### ■ No-Load Operation Instructions

The following example illustrates a test run procedure using the digital operator.

|    | Step                                                                                                                                                                                                                                                                                                                                                                               |          | Display/Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. | Turn on the power to the drive. The initial display appears.                                                                                                                                                                                                                                                                                                                       | <b>→</b> | - MODE - DRV Rdy<br>FREF (AI)<br>U1-01= 0.00Hz<br>U1-02= 0.00Hz RSEQ<br>U1-03= 0.00A RREF<br>JOG FWD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2. | Press to select LOCAL. The LO/RE light will turn on.                                                                                                                                                                                                                                                                                                                               | <b>→</b> | MODE SOLVE ROUTE OF THE PROPERTY OF THE PROPER |
|    | Set the frequency reference to 6 Hz. Defen to Setting the Engagement Defended while in                                                                                                                                                                                                                                                                                             |          | Off On                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3. | Set the frequency reference to 6 Hz. <i>Refer to Setting the Frequency Reference while in the Drive Mode on page 147</i> for the setting procedure.                                                                                                                                                                                                                                | _        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4. | Press to give the drive a Run command. RUN will light and the motor will rotate at 6 Hz.                                                                                                                                                                                                                                                                                           | <b>→</b> | MCDE - DRV Roy Under Grand - DRV Roy Roy Under Grand - DRV Roy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    |                                                                                                                                                                                                                                                                                                                                                                                    |          | Off On  Motor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5. | Ensure the motor is rotating in the correct direction and that no faults or alarms occur.                                                                                                                                                                                                                                                                                          | <b>→</b> | Forward                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6. | If there is no error in step 4, increase the frequency reference. <i>Refer to Setting the Frequency Reference while in the Drive Mode on page 147</i> . Increase the frequency in increments of 10 Hz, verifying smooth operation at all speeds. For each frequency, check the drive output current using monitor U1-03. The current should be well below the motor rated current. | _        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

## 4.8 No-Load Operation Test Run

| Step |                                                                                                                                               |          | Display/Result |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|--|
| 7.   | The drive should operate normally. Press to stop the motor. RUN flashes during deceleration to stop until the motor comes to a complete stop. | <b>†</b> | RUN Off On     |  |

## 4.9 Test Run with Load Connected

### Test Run with the Load Connected

After performing a no-load test run, connect the motor and proceed to run the motor and load together.

### ■ Precautions for Connected Machinery

**WARNING!** Sudden Movement Hazard. Clear all personnel from the drive, motor, and machine area before applying power. System may start unexpectedly upon application of power, causing death or serious injury.

**WARNING!** Sudden Movement Hazard. Always check the operation of any fast stop circuits after they are wired. Fast stop circuits are required to provide safe and quick shutdown of the drive. Prepare to initiate an emergency stop during the test run. Operating a drive with untested emergency circuits could result in death or serious injury.

- The motor should come to a complete stop without problems.
- Connect the load and machinery to the motor.
- Fasten all installation screws properly and check that the motor and connected machinery are held in place.

### ■ Checklist Before Operation

- The motor should rotate in the proper direction.
- The motor should accelerate and decelerate smoothly.

### Operating the Motor under Loaded Conditions

Test run the application similarly to the no-load test procedure when connecting the machinery to the motor.

- Monitor U1-03 for overcurrent during operation.
- If the application permits running the load in the reverse direction, change the motor direction and the frequency reference while watching for abnormal motor oscillation or vibration.
- Correct any problems that occur with hunting, oscillation, and other control-related issues. *Refer to Motor Performance Fine-Tuning on page 366* for details.

## 4.10 Verifying Parameter Settings and Backing Up Changes

Use the Verify Menu to check all changes to parameter settings. *Refer to Verifying Parameter Changes: Verify Menu on page 149*.

It is convenient to check all changes to parameters then save the verified parameters as User parameters.

Change the access level or set a password to the drive to prevent accidental modification of parameter settings.

## **♦** Backing Up Parameter Values: o2-03

Setting o2-03 to 1 saves all parameter settings before resetting o2-03 to 0. The drive can now recall all the saved parameters by performing a User Initialization (A1-03 = 1110).

| No.   | Parameter<br>Name        | Description                                                                                                                                                                                                                                                                                                                                                                                          | Setting Range | Default Setting |
|-------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------|
| 02-03 | User Defaults            | Lets the user create a set of default settings for a User Initialization.  0: Saved/Not Set  1: Set Defaults - Saves current parameter settings as the default values for a User Initialization.  2: Clear All - Clears the currently saved user settings. After saving the user parameter set value, the items of 1110 (User Initialization) are displayed in A1-03 (User Parameter Default Value). | 0 to 2        | 0               |
| A1-03 | Initialize<br>Parameters | lucing narameter 07-031                                                                                                                                                                                                                                                                                                                                                                              |               | 0               |

### ◆ Parameter Access Level: A1-01

Setting the Access Level for "Operation only" (A1-01 = 0) allows the user to access parameters A1- $\Box\Box$  and U $\Box$ - $\Box\Box$  only. Other parameters are not displayed.

Setting the Access Level for "User Parameters" (A1-01 = 1) allows the user to access only the parameters that have been previously saved as User Parameters. This is helpful when displaying only the relevant parameters for a specific application.

| No.                  | Parameter<br>Name                 | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Setting Range | Default |
|----------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------|
| A1-01                | Access<br>Level<br>Selection      | Selects which parameters are accessible via the digital operator.  0: Operation only. A1-01, A1-04, and A1-06 can be set and monitored, and U□-□□parameters can also be viewed.  1: User Parameters. Only parameters A1-00, A1-01, and A1-04, and A2-01 to A2-32 in Setup Mode can be set and monitored.  2: Advanced Access Level. All parameters can be set and monitored.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 to 2        | 2       |
| A2-01<br>to<br>A2-32 | User<br>Parameters 1<br>to 32 <1> | Darameters 1 o 32 <1> o 32 <1 > o 32 <1 <1 > o 32 <1 < o 32 <1 > o 32 <1 < o 32 <1 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 <0 |               | -       |
| A2-33                | Parameter<br>Automatic            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | 1       |

<sup>&</sup>lt;1> When User Parameters are set to parameters A2-17 and higher, all parameters after the last listed parameter will be listed. Example: When User Parameters are listed from A2-01 to A2-20, the next parameter A2-21 and higher will be listed.

### ◆ Password Settings: A1-04, A1-05

The user can set a password in parameter A1-05 to restrict access to the drive. The password must be entered to A1-04 to unlock parameter access (i.e., parameter setting A1-04 must match the value programmed into A1-05). The following parameters cannot be viewed or edited until the value entered to A1-04 correctly matches the value set to A1-05: A1-01, A1-03, A1-06, and A2-01 through A2-32.

**Note:** Parameter

Parameter A1-05 is hidden from view. To display A1-05, access parameter A1-04 and press and A simultaneously.

### Copy Function

Parameter settings can be copied to another drive to simplify parameter restoration or multiple drive setup. The drive supports the following copy options:

### LCD Operator (standard in all models)

The LCD operator used to operate the drive supports copying, importing, and verifying parameter settings. *Refer to o3: Copy Function on page 356* for details.

### LED Operator

The optional LED operator also supports copying, importing, and verifying parameter settings. Refer to the manual supplied with the LED operator for instructions.

### USB Copy Unit and CopyUnitManager

The copy unit is an external option connected to the drive to copy parameter settings from one drive and save those settings to another drive. Refer to the manual supplied with the USB Copy Unit for instructions.

CopyUnitManager is a PC software tool that allows the user to load parameter settings from the Copy Unit onto a PC, or from the PC onto a Copy Unit. This is useful when managing parameters for various drives or applications. Refer to the manual supplied with CopyUnitManager for instructions.

#### • DriveWizard Industrial

DriveWizard Industrial is a PC software tool for parameter management, monitoring, and diagnosis. DriveWizard Industrial can load, store, and copy drive parameter settings. For details, refer to Help in the DriveWizard Industrial software.

## 4.11 Test Run Checklist

Review the checklist before performing a test run. Check each item that applies.

| 区 | No. | Checklist                                                |     |
|---|-----|----------------------------------------------------------|-----|
|   | 1   | Thoroughly read the manual before performing a test run. | _   |
|   | 2   | Turn the power on.                                       | 159 |

Check the items that correspond to the control mode being used.

**WARNING!** Sudden Movement Hazard. Ensure start/stop and safety circuits are wired properly and in the correct state before energizing the drive. Failure to comply could result in death or serious injury from moving equipment. When programmed for 3-Wire control, a momentary closure on terminal S1 may cause the drive to start.

| 凶           | No.       | Checklist                                                                                                        | Page |  |
|-------------|-----------|------------------------------------------------------------------------------------------------------------------|------|--|
| V/f Contro  | ol (A1-0  | 2 = 0) and V/f Control with PG (A1-02 = 1)                                                                       |      |  |
|             | 3         | Select the best V/f pattern according to the application and motor characteristics.                              | _    |  |
|             | 4         | Perform Rotational Auto-Tuning for V/f Control if using Energy Saving functions.                                 | 163  |  |
| V/f Contro  | ol with P | G(A1-02=1)                                                                                                       |      |  |
|             | 5         | Set up the PG feedback parameters correctly and make sure the encoder pulse counting direction is correct.       | 271  |  |
|             | 6         | Set the proportional gain for ASR speed control to C5-01 and the integral time to C5-02.                         | 236  |  |
| Open Loo    | p Vector  | Control (A1-02 = 2) or Closed Loop Vector Control (A1-02 = 3)                                                    |      |  |
|             | 7         | Decouple motor shafts and machines when performing Rotational Auto-Tuning.                                       | 170  |  |
|             | 8         | Set the Auto-Tuning mode to T1-01 (0 for Rotational Auto-Tuning).                                                | 170  |  |
|             |           | Enter the following data according to the information listed on the motor nameplate:                             |      |  |
|             |           | Motor rated power to T1-02 (kW)                                                                                  |      |  |
| _           |           | Motor rated voltage to T1-03 (V)                                                                                 |      |  |
|             | 9         | Motor rated current to T1-04 (A)                                                                                 | 169  |  |
|             |           | Motor base frequency to T1-05 (Hz)  Note: T1-05 (Hz)  T1-05 (Hz)                                                 |      |  |
|             |           | Number of motor poles to T1-06     Meter bees greed to T1-07 (r/min)                                             |      |  |
| Classed I a | on Voot   | Motor base speed to T1-07 (r/min) or Control (A1-02 = 3)                                                         |      |  |
|             | <u> </u>  |                                                                                                                  |      |  |
|             | 10        | Set F1-01 and F1-05.                                                                                             | _    |  |
|             | 11        | Set ASR proportional gain to C5-01 and ASR integral time to C5-02. Perform ASR Tuning if possible.               | 236  |  |
|             | Î         | Control for PM $(A1-02=5)$                                                                                       |      |  |
|             | 12        | Perform Auto-Tuning as described.                                                                                | 172  |  |
| Advanced    | Open L    | oop Vector Control for PM (A1-02 = 6)                                                                            |      |  |
|             | 13        | Perform Auto-Tuning as described.                                                                                | 172  |  |
|             | 14        | Set the proportional gain for ASR speed control to C5-01 and the integral time to C5-02.                         | 236  |  |
| Closed Lo   | op Vect   | or Control for PM $(A1-02=7)$                                                                                    |      |  |
|             | 15        | Set PM motor data using E5-□□ parameters.                                                                        | 172  |  |
|             | 16        | Set ASR proportional gain to C5-01 and ASR integral time to C5-02. Perform ASR Tuning if possible.               | 236  |  |
|             | 17        | Set F1-01 and F1-05.                                                                                             | _    |  |
|             | 18        | Set the offset between the rotor magnetic axis and the Z-pulse of the connected encoder to E5-11.                | 172  |  |
|             | 19        | The DRV should be displayed on the LCD operator after giving a Run command.                                      | _    |  |
|             | 20        | To give Run command and frequency reference from the digital operator, press "LO/RE" key to set to LOCAL.        | 151  |  |
|             | 21        | If the motor rotates in the opposite direction during test run, switch two of U/T1, V/T2, W/T3, or change b1-14. | 159  |  |
|             |           |                                                                                                                  |      |  |
|             |           |                                                                                                                  |      |  |
|             | 24        | Set the drive for REMOTE when control circuit terminals provide the Run command and frequency reference.         | 151  |  |

| 囡 | No. | Checklist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |  |
|---|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|
|   | 25  | If the control circuit terminals should supply the frequency reference, select the correct voltage input signal level (0 to 10 V or -10 to +10 V) or the correct current input signal level (4 to 20 mA or 0 to 20 mA).                                                                                                                                                                                                                                                                                                                                                                               | 193 |  |
|   | 26  | Apply the proper signal level to terminals A1 and A3 (0 to 10 V or -10 to +10 V).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _   |  |
|   | 27  | Apply the proper signal level (-10 to +10 V, 4 to 20 mA or 0 to 20 mA) to terminal A2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -   |  |
|   | 28  | When current input is used, switch the built-in DIP switch S1 from the V-side to I-side. Set the level for current signal used to H3-09 (set "2" for 4 to 20 mA, or "3" for 0 to 20 mA).                                                                                                                                                                                                                                                                                                                                                                                                              |     |  |
|   | 29  | Set DIP Switch S1 on the drive to "I" when using terminal A2 as current input. Set DIP Switch S1 on the drive to "V" when using terminal A2 as voltage input.                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |  |
|   | 30  | If an analog input supplies the frequency reference, make sure it produces the desired frequency reference. Make the following adjustments if the drive does not operate as expected:  Gain adjustment: Set the maximum voltage/current signal and adjust the analog input gain (H3-03 for A1, H3-11 for A2, H3-07 for A3) until the frequency reference value reaches the desired value.  Bias adjustment: Set the minimum voltage/current signal and adjust the analog input bias (H3-04 for A1, H3-12 for A2, H3-08 for A3) until the frequency reference value reaches the desired minimum value. | -   |  |

4.11 Test Run Checklist

This Page Intentionally Blank

# **Parameter Details**

| 5.1  | A: INITIALIZATION            | 186 |
|------|------------------------------|-----|
| 5.2  | B: APPLICATION               | 193 |
| 5.3  | C: TUNING                    | 228 |
| 5.4  | D: REFERENCE SETTINGS        | 243 |
| 5.5  | E: MOTOR PARAMETERS          | 258 |
| 5.6  | F: OPTION SETTINGS           | 271 |
| 5.7  | H: TERMINAL FUNCTIONS        | 284 |
| 5.8  | L: PROTECTION FUNCTIONS      | 316 |
| 5.9  | N: SPECIAL ADJUSTMENTS       | 342 |
| 5.10 | O: OPERATOR RELATED SETTINGS | 353 |
| 5.11 | U: MONITOR PARAMETERS        | 360 |

### 5.1 A: Initialization

The initialization group contains parameters associated with initial drive setup, including parameters involving the display language, access levels, initialization, and password.

### ◆ A1: Initialization

### ■ A1-00: Language Selection

Selects the display language for the digital operator.

**Note:** This parameter is not reset when the drive is initialized using parameter A1-03.

| No.   | Parameter Name     | Setting Range | Default |
|-------|--------------------|---------------|---------|
| A1-00 | Language Selection | 0 to 7        | 0       |

Setting 0: English

**Setting 1: Japanese** 

Setting 2: German

**Setting 3: French** 

Setting 4: Italian

Setting 5: Spanish

**Setting 6: Portuguese** 

**Setting 7: Chinese** 

#### ■ A1-01: Access Level Selection

Allows or restricts access to drive parameters.

| No.   | Parameter Name         | Setting Range |   |  |
|-------|------------------------|---------------|---|--|
| A1-01 | Access Level Selection | 0 to 2        | 2 |  |

### **Setting 0: Operation only**

A1-01, A1-04, and Drive Mode can be accessed and set. All U monitor parameters can be accessed. Verify Mode, Setup Mode, and Auto-Tuning Mode cannot be accessed.

### **Setting 1: User Parameters**

A1-00, A1-01, A1-04, and Drive Mode can be accessed and set. All U monitor parameters can be accessed. Parameters that are set in A2-01 through A2-32 can be accessed in Setup Mode. Verify Mode and Auto-Tuning Mode cannot be accessed.

#### Setting 2: Advanced Access Level (A) and Setup Access Level (S)

All parameters can be viewed and edited.

#### **Notes on Parameter Access**

- If the drive parameters are password protected by A1-04 and A1-05, parameters A1-01 through A1-03, A1-06, A1-07, and A2-01 through A2-32 cannot be modified.
- If a digital input terminal programmed for "Program lockout" (H1- $\Box\Box$  = 1B) is enabled, parameter values cannot be modified, even if A1-01 is set to 1 or 2.
- If parameters are changed via serial communication, it will not be possible to edit or change parameter settings with the digital operator until an Enter command is issued to the drive from the serial communication.

#### ■ A1-02: Control Method Selection

Selects the Control Method (also referred to as the control mode) that the drive uses to operate the motor. Parameter A1-02 determines the control mode for motor 1 when the drive is set up to run two motors.

**Note:** When changing control modes, all parameter settings depending upon the setting of A1-02 will be reset to the default.

| No.   | No. Parameter Name Set   |                     | Default |
|-------|--------------------------|---------------------|---------|
| A1-02 | Control Method Selection | 0, 1, 2, 3, 5, 6, 7 | 0       |

### Control Modes for Induction Motors (IM)

#### Setting 0: V/f Control for Induction Motors

Use this mode for simple speed control and for multiple motor applications with low demands to dynamic response or speed accuracy. This control mode is also used when the motor parameters are unknown and Auto-Tuning cannot be performed. The speed control range is 1:40.

#### Setting 1: V/f Control with PG Speed Feedback

Use this mode for general-purpose applications that require high speed accuracy but do not require high dynamic response. This control mode is also used when the motor parameters are unknown and Auto-Tuning cannot be performed. The speed control range is 1:40.

### **Setting 2: Open Loop Vector Control**

Use this mode for general, variable-speed applications with a speed control range of 1:200 that require precise speed control, quick torque response, and high torque at low speed without using a speed feedback signal from the motor.

#### **Setting 3: Closed Loop Vector Control**

Use this mode for general, variable-speed applications that require precise speed control down to zero speed, quick torque response or precise torque control, and a speed feedback signal from the motor. The speed control range is up to 1:1500.

### Control Modes for Permanent Magnet Motors (SPM or IPM)

### **Setting 5: Open Loop Vector Control for PM**

Use this mode for general, variable-speed applications with low demands on dynamic response or speed accuracy. The drive can control an SPM or IPM motor with a speed range of 1:20 in this control mode.

### **Setting 6: Advanced Open Loop Vector Control for PM**

Use this mode for general, variable speed applications that require precise speed control and torque limit. Set High Frequency Injection parameter n8-57 to 1 to achieve a speed control range as high as 1:100. In this case, perform High Frequency Injection Parameter Tuning after setting the motor parameters. High Frequency Injection cannot be used with an SPM motor. *Refer to T2-02: PM Motor Code Selection on page 173* and *Refer to Control Mode Selection on page 33* for details.

#### **Setting 7: Closed Loop Vector Control for PM**

Use this mode for high-precision control of a PM motor in constant torque or variable torque applications. The speed control range reaches 1:1500. A speed feedback signal is required.

### ■ A1-03: Initialize Parameters

Resets parameters to default values. After initialization, the setting for A1-03 automatically returns to 0.

| No.   | Parameter Name        | meter Name Setting Range  |   |
|-------|-----------------------|---------------------------|---|
| A1-03 | Initialize Parameters | 0, 1110, 2220, 3330, 5550 | 0 |

#### Setting 0: No Initialize

#### Setting 1110: User Initialize

Resets parameters to the values selected by the user as User Settings. User Settings are stored when parameter o2-03 is set to "1: Set defaults".

**Note:** User Initialization resets all parameters to a user-defined set of default values previously saved to the drive. Set parameter o2-03 to 2 to clear the user-defined default values.

### Setting 2220: 2-Wire Initialization

Resets parameters except parameters listed in *Table 5.1* to default settings with digital inputs S1 and S2 configured as Forward run and Reverse run, respectively. *Refer to Setting 40, 41: Forward Run, Reverse Run Command for 2-Wire Sequence on page 291* for more information on digital input functions.

#### Setting 3330: 3-Wire Initialization

Resets parameters except parameters listed in *Table 5.1* to default settings with digital inputs S1, S2, and S5 configured as Run, Stop, and Forward/Reverse respectively. *Refer to Setting 0: 3-Wire Sequence on page 285* for more information on digital input functions.

#### Setting 5550: oPE04 Reset

An oPE04 error appears on the digital operator when a terminal block with settings saved to its built-in memory is installed in a drive that has edited parameters. Set A1-03 to 5550 to use the parameter settings saved to the terminal block memory.

#### **Notes on Parameter Initialization**

The parameters shown in *Table 5.1* will not be reset when the drive is initialized by setting A1-03 = 2220 or 3330. Although the control mode in A1-02 is not reset when A1-03 is set to 2220 or 3330, it may change when an application preset is selected.

 Table 5.1 Parameters Not Changed by Drive Initialization

| No.         | Parameter Name                                          |  |
|-------------|---------------------------------------------------------|--|
| A1-00       | Language Selection                                      |  |
| A1-02       | Control Method Selection                                |  |
| E1-03       | V/f Pattern Selection                                   |  |
| E5-01       | Motor Code Selection (for PM Motors)                    |  |
| E5-02       | Motor Rated Power (for PM Motors)                       |  |
| E5-03       | Motor Rated Current (for PM Motors)                     |  |
| E5-04       | Number of Motor Poles (for PM Motors)                   |  |
| E5-05       | Motor Stator Resistance (r1) (for PM Motors)            |  |
| E5-06       | Motor d-Axis Inductance (Ld) (for PM Motors)            |  |
| E5-07       | Motor d-Axis Inductance (Lq) (for PM Motors)            |  |
| E5-09       | Motor Induction Voltage Constant 1 (Ke) (for PM Motors) |  |
| E5-24       | Motor Induction Voltage Constant 2 (Ke) (for PM Motors) |  |
| F6-□□/F7-□□ | Communication Parameters (Initialized when F6-08 = 1)   |  |
| L8-35       | Installation Method Selection                           |  |
| 02-04       | Drive Model Selection                                   |  |

### ■ A1-04, A1-05: Password and Password Setting

Parameter A1-04 enters the password when the drive is locked; parameter A1-05 is a hidden parameter that sets the password.

| No.   | Parameter Name   | Setting Range | Default |
|-------|------------------|---------------|---------|
| A1-04 | Password         | 0000 to 9999  | 0000    |
| A1-05 | Password Setting | 0000 10 9999  | 0000    |

#### How to Use the Password

The user can set a password in parameter A1-05 to restrict access to the drive. The password must be entered to A1-04 to unlock parameter access (i.e., parameter setting A1-04 must match the value programmed into A1-05). The following parameters cannot be viewed or edited until the value entered to A1-04 correctly matches the value set to A1-05: A1-01, A1-02, A1-03, A1-06, A1-07, and A2-01 through A2-32.

The instructions below demonstrate how to set password "1234". An explanation follows on how to enter that password to unlock the parameters.

Table 5.2 Setting the Password for Parameter Lock

|    | Step                                                         |          | Display/Result                                                                        |
|----|--------------------------------------------------------------|----------|---------------------------------------------------------------------------------------|
| 1. | Turn on the power to the drive. The initial display appears. | <b>→</b> | - MODE - DRV Rdy Freq Ref (AI) U1-01= 0.00Hz U1-02= 0.00HzRSEQ U1-03= 0.00 A RREF FWD |
| 2. | Press until the Parameter Setting Mode screen appears.       | <b>→</b> | - MODE - PRG Programming  HELP FWD DATA                                               |

|     | Step                                                                                                                        |          | Display/Result                                                        |
|-----|-----------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------|
| 3.  | Press to enter the parameter menu tree.                                                                                     | <b>→</b> | -PRMSET- PRG Initialization  M1-00= 0 Select Language  ← FWD →        |
| 4.  | Select the flashing digits by pressing RESET.                                                                               | <b>→</b> | -PRMSET- PRG Select Language A1-00= 0 *0* English                     |
| 5.  | Select A1-04 by pressing .                                                                                                  | <b>→</b> | -PRMSET- PRG Enter Password A1- 02 = 0 (0~9999) "0" ← FWD →           |
| 6.  | Press while holding down at the same time. A1-05 will appear.  Note:  A1-05 is hidden and will not display by pressing only | <b>→</b> | -PRMSET- PRG Select Password A1-03 = 0 (0~9999) "0" ← FWD →           |
| 7.  | Press ENTER.                                                                                                                | <b>→</b> | -PRMSET- PRG Select Password A1-05 = <b>3</b> 000 (0~9999) "0"  ← FWD |
| 8.  | Use F1, F2, RESET, V and A to enter the password.                                                                           | <b>→</b> | -PRMSET- PRG Select Password A1- 05 = 123₫ (0~9999) "0" ← FWD →       |
| 9.  | Press to save what was entered.                                                                                             | <b>→</b> | Entry Accepted                                                        |
| 10. | The display automatically returns to the display shown in step 6.                                                           | <b>→</b> | -PRMSET- PRG Select Password  A1-05 = 0 (0~9999) "0"  ← FWD →         |

Table 5.3 Check if A1-02 is Locked (continuing from step 10 above)

|    | Step                                                           |          | Display/Result                                                |
|----|----------------------------------------------------------------|----------|---------------------------------------------------------------|
| 1. | Press to display A1-02.                                        | <b>→</b> | -PRMSET- PRG Control Method A1-02= 2 *2* Open Loop Vector FWD |
| 2. | Press , making sure that the setting values cannot be changed. | _        | -                                                             |
| 3. | Press to return to the first display.                          | <b>→</b> | - MODE - PRG Programming HELP FWD DATA                        |

Table 5.4 Enter the Password to Unlock Parameters (continuing from step 3 above)

|     | Step                                                                                                                 | •        | Display/Result                                                  |
|-----|----------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------|
| 1.  | Press to enter the parameter setup display.                                                                          | <b>→</b> | -PRMSET- PRG Initialization  Δ1-00= 0 Select Language  ← FWD →  |
| 2.  | Press to select the flashing digits as shown.                                                                        | <b>→</b> | -PRMSET- PRG Select Language A1:00= 0 •0• English  ← FWD →      |
| 3.  | Press to scroll to A1-04.                                                                                            | <b>→</b> | -PRMSET- PRG Enter Password  A1- <b>2</b> = 0 (0~9999) "0" FWD  |
| 4.  | Press ENTER key. Use F1, F2, RESET, V, and \(\Delta\) to enter the password.                                         | <b>→</b> | -PRMSET- PRG Enter Password A1-04= 123₫ V/f Control FWD →       |
| 5.  | Press to save the new password.                                                                                      | <b>→</b> | Entry Accepted                                                  |
| 6.  | Drive returns to the parameter display.                                                                              | <b>→</b> | -PRMSET- PRG Enter Password A1- 2 = 0 (0-9999) "2" FWD          |
| 7.  | Press and scroll to A1-02.                                                                                           | <b>→</b> | -PRMSET- PRG Control Method A1-02= 2 *2* Open Loop Vector FWD   |
| 8.  | Press to display the value set to A1-02.                                                                             | <b>→</b> | -PRMSET- PRG Control Method A1-02= 2 *2* Open Loop Vector FWD - |
| 9.  | Use RESET and to change the value if desired (though changing the control mode at this point is not typically done). | <b>→</b> | -PRMSET- PRG Control Method A1-02= 0 -2* V/F Control -2* FWD -> |
| 10. | Press to save the setting, or press to return to the previous display without saving changes.                        | <b>→</b> | Entry Accepted                                                  |
| 11. | The display automatically returns to the parameter display.                                                          | <b>→</b> | -PRMSET- PRG Control Method  A1-102= 0 •0• V/F Control          |

Note:

Parameter settings can be edited after entering the correct password. Performing a 2-wire or 3-wire initialization resets the password to "0000". Reset the password to use it again. To change a password that has already been set, rewrite the setting value of A1-05. The rewritten value is set as the new password. Enter a setting other than the password (e.g., 0000) in A1-04 to use the set password to release the lock and restore the lock with the same password after changing parameter settings.

### ■ A1-06: Application Preset

Several Application Presets are available to facilitate drive setup for commonly used applications. Selecting one of these Application Presets automatically assigns functions to the input and output terminals and sets a predefined group of parameters to values appropriate for the selected application.

**Refer to Application Selection on page 160** for details on parameter A1-06.

### ■ A1-07: DriveWorksEZ Function Selection

Enables and disables the DriveWorksEZ program inside the drive.

DriveWorksEZ is a software package for customizing drive functionality or adding PLC functionality by the interconnection and configuration of basic software function blocks. The drive performs user-created programs in 1 ms cycles.

Note

- 1. If DriveWorksEZ has assigned functions to any of the multi-function output terminals, those functions will remain set to those terminals even after disabling DriveWorksEZ.
- 2. For more information on DriveWorksEZ, contact Yaskawa or a Yaskawa representative.

| No.   | Parameter Name                  | Setting Range | Default |
|-------|---------------------------------|---------------|---------|
| A1-07 | DriveWorksEZ Function Selection | 0 to 2        | 0       |

Setting 0: DWEZ disabled

Setting 1: DWEZ enabled

**Setting 2: Digital input** 

If a digital input is programmed for DWEZ enable/disable (H1- $\Box\Box$  = 9F), DWEZ will be enabled when the input is opened.

### **◆** A2: User Parameters

### ■ A2-01 to A2-32: User Parameters 1 to 32

The user can select up to 32 parameters and assign them to parameters A2-01 through A2-32 to provide quicker access by eliminating the need to scroll through multiple menus. The User Parameter list can also save the most recently edited parameters.

| No.            | Parameter Name          | Setting Range  | Default                     |
|----------------|-------------------------|----------------|-----------------------------|
| A2-01 to A2-32 | User Parameters 1 to 32 | b1-01 to o4-19 | Determined by A1-06 <1> <2> |

<sup>&</sup>lt;1> This is the default setting of the Setup Mode parameters. *Table 4.4* for details.

#### **Saving User Parameters**

To save specific parameters to A2-01 through A2-32, set parameter A1-01 to 2 to allow access to all parameters, then enter the parameter number to one of the A2- $\square\square$  parameters to assign it to the list of User Parameters. Finally, set A1-01 to 1 and change to Setup Mode to restrict access so users can only set and refer to the parameters saved as User Parameters.

### ■ A2-33: User Parameter Automatic Selection

Determines whether recently edited parameters are saved to the second half of the User Parameters (A2-17 to A2-32) for quicker access.

| No.   | Parameter Name                     | Setting Range | Default             |
|-------|------------------------------------|---------------|---------------------|
| A2-33 | User Parameter Automatic Selection | 0, 1          | Determined by A1-06 |

### Setting 0: Do not save list of recently edited parameters

Set A2-33 to 0 to manually select the parameters listed in the User Parameter group.

### Setting 1: Save list of recently edited parameters

Set A2-33 to 1 to automatically save recently edited parameters to A2-17 through A2-32. A total of 16 parameters are saved with the most recently edited parameter set to A2-17, the second most recently to A2-18, and so on. Access the User Parameters using the Setup Mode of the digital operator.

**Note:** User parameters are listed from A2-27 to A2-32. Parameters A2-01 to A2-26 are already listed as defined by default when in Setup Mode.

<sup>&</sup>lt;2> A1-06 determines how the setting of user parameters A2-01 through A2-32 are changed. Refer to Application Selection on page 160 for details.

## 5.2 b: Application

### ♦ b1: Operation Mode Selection

### **■** b1-01: Frequency Reference Selection 1

Selects the frequency reference source 1 for the REMOTE mode.

Note:

- 1. If a Run command is input to the drive but the frequency reference entered is 0 or below the minimum frequency, the RUN indicator LED on the digital operator will light and the STOP indicator will flash. However, the RUN indicator LED will light in zero speed control when A1-02 is set to 3, 4, or 6.
- 2. Press the LO/RE key to set the drive to LOCAL and use the operator keypad to enter the frequency reference.

| No.   | Parameter Name                  | Setting Range | Default |
|-------|---------------------------------|---------------|---------|
| b1-01 | Frequency Reference Selection 1 | 0 to 4        | 1       |

#### Setting 0: Operator keypad

Using this setting, the frequency reference can be input by using the operator keypad.

### Setting 1: Terminals (analog input terminals)

Using this setting, an analog frequency reference can be entered as a voltage or current signal from terminals A1, A2, or A3.

### Voltage Input

Voltage input can be used at any of the three analog input terminals. Make the settings as described in *Table 5.5* for the input used.

Table 5.5 Analog Input Settings for Frequency Reference Using Voltage Signals

| Terminal | Signal Level   | Signal Level<br>Selection | Function Selection                      | Gain   | Bias  | Notes                                    |  |
|----------|----------------|---------------------------|-----------------------------------------|--------|-------|------------------------------------------|--|
| A1       | 0 to 10 Vdc    | H3-01 = 0                 | H3-02 = 0                               | H3-03  | H3-04 |                                          |  |
| Al       | -10 to +10 Vdc | H3-01 = 1                 | (Frequency Reference Bias)              | П3-03  | П3-04 | _                                        |  |
| A2       | 0 to 10 Vdc    | H3-09 = 0                 | H3-10 = 0<br>(Frequency Reference Bias) |        |       | Set DIP switch S1 on the                 |  |
|          | -10 to +10 Vdc | H3-09 = 1                 |                                         | H3-11  | H3-12 | terminal board to "V" for voltage input. |  |
| A3       | 0 to 10 Vdc    | H3-05 = 0                 | H3-06 = 0                               | 112.07 | H3-08 | Set DIP switch S4 on the                 |  |
|          | -10 to +10 Vdc | H3-05 = 1                 | (Frequency Reference Bias)              | H3-07  | п3-08 | terminal board to "AI".                  |  |

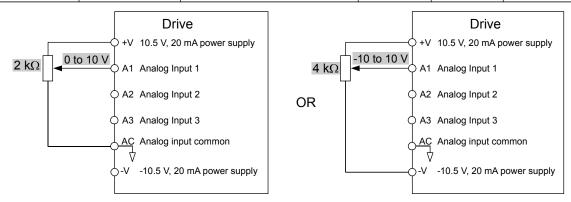



Figure 5.1 Setting the Frequency Reference as a Voltage Signal at Terminal A1

Use the wiring example shown in the figure above for any other analog input terminals. When using input A2 make sure DIP switch S1 is set for voltage input.

### **Current Input**

Input terminal A2 can accept a current input signal. Refer to *Table 5.6* to set terminal A2 for current input.

Table 5.6 Analog Input Settings for Frequency Reference Using a Current Signal

|          | Cianal                                | Parameter Settings        |                       |                                              | Parameter Settings |                                   |
|----------|---------------------------------------|---------------------------|-----------------------|----------------------------------------------|--------------------|-----------------------------------|
| Terminal | Signal<br>Level                       | Signal Level<br>Selection | Function<br>Selection | Gain                                         | Bias               | Notes                             |
|          | 4 to 20 mA                            | H3-09 = 2                 | H3-10=0               | ****                                         | ***                | Make sure to set DIP switch S1 on |
| A2       | 0 to 20 mA H3-09 = 3 (Frequency Bias) | H3-11                     | H3-12                 | the terminal board to "I" for current input. |                    |                                   |

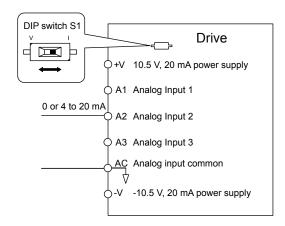



Figure 5.2 Setting the Frequency Reference as a Current Signal to Terminal A2

#### Switching between Main/Auxiliary Frequency References

The frequency reference input can be switched between the analog terminals A1, A2, and A3 using multi-speed inputs. *Refer to Multi-Step Speed Selection on page 244* for details on using this function.

### **Setting 2: MEMOBUS/Modbus Communications**

This setting requires entering the frequency reference via the RS-485/RS-422 serial communications port (control terminals R+, R-, S+, S-). *Refer to MEMOBUS/Modbus Configuration on page 628* for instructions.

### **Setting 3: Option card**

This setting requires entering the frequency reference via an option board plugged into connector CN5-A on the drive control board. Consult the option board manual for instructions on integrating the drive with the communication system.

**Note:** If the frequency reference source is set for Option PCB (b1-01 = 3), but an option board is not installed, an oPE05 operation error will be displayed on the digital operator and the drive will not run.

#### **Setting 4: Pulse Train Input**

This setting requires a pulse train signal to terminal RP to provide the frequency reference. Follow the directions below to verify that the pulse signal is working properly.

#### Verifying the Pulse Train is Working Properly

- Set b1-01 to 4 and set H6-01 to 0.
- Set the H6-02 to the pulse train frequency value that equals 100% of the frequency reference.
- Enter a pulse train signal to terminal RP and check for the correct frequency reference on the display.

### ■ b1-02: Run Command Selection 1

Determines the Run command source 1 in the REMOTE mode.

| No.   | Parameter Name          | Setting Range | Default |
|-------|-------------------------|---------------|---------|
| b1-02 | Run Command Selection 1 | 0 to 3        | 1       |

#### **Setting 0: Operator**

This setting will illuminate the LO/RE light to indicate that the Run command source is assigned to the digital operator. Use the digital operator RUN and STOP keys to start and stop operation.

#### **Setting 1: Control Circuit Terminal**

This setting requires entering the Run command via the digital input terminals using one of following sequences:

• 2-Wire sequence 1:

Setting A1-03 to 2220 initializes the drive and presets terminals S1 and S2 to FWD/Stop and REV/Stop. These are the default settings of the drive. *Refer to Setting 40, 41: Forward Run, Reverse Run Command for 2-Wire Sequence on page 291*.

• 2-Wire sequence 2:

Two inputs (Start/Stop-FWD/REV). Refer to Setting 42, 43: Run and Direction Command for 2-Wire Sequence 2 on page 292.

• 3-Wire sequence:

Setting A1-03 to 3330 initializes the drive and presets terminals S1, S2, and S5 to Start, Stop, and FWD/REV. *Refer to Setting 0: 3-Wire Sequence on page 285*.

### **Setting 2: MEMOBUS/Modbus Communications**

This setting requires entering the Run command via serial communications by connecting the RS-485/RS-422 serial communication cable to control terminals R+, R-, S+, and S- on the removable terminal block. *Refer to MEMOBUS/Modbus Configuration on page 628* for instructions.

### **Setting 3: Option Card**

This setting requires entering the Run command via the communication option board by plugging a communication option board into the CN5-A port on the control PCB. Refer to the option board manual for instructions on integrating the drive into the communication system.

**Note:** If b1-02 is set to 3, but an option board is not installed in CN5-A, an oPE05 operation error will be displayed on the digital operator and the drive will not run.

### ■ b1-03: Stopping Method Selection

Selects how the drive stops the motor when the Run command is removed or when a Stop command is entered.

| No.   | Parameter Name            | Setting Range | Default |
|-------|---------------------------|---------------|---------|
| b1-03 | Stopping Method Selection | 0 to 3 <1>    | 0       |

<sup>&</sup>lt;1> The setting range is 0, 1, or 3 in CLV, OLV/PM, AOLV/PM, and CLV/PM.

### Setting 0: Ramp to Stop

When the Run command is removed, the drive will decelerate the motor to stop. The deceleration rate is determined by the active deceleration time. The default deceleration time is set to parameter C1-02.

When the output frequency falls below the level set in parameter b2-01, the drive will start DC injection or Zero Speed Control, depending on the selected control mode. *Refer to b2-01: DC Injection Braking Start Frequency on page 202* for details.

#### V/f, V/f w/PG and OLV (A1-02 = 0, 1, 2)

For these control modes, parameter b2-01 sets the starting frequency for DC Injection Braking at Stop. When the output frequency falls below the setting of b2-01, DC Injection Braking is enabled for the time set in parameter b2-04.

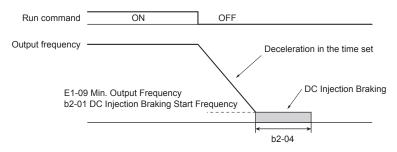



Figure 5.3 DC Injection Braking at Stop for V/f, V/f w/PG, and OLV

**Note:** If b2-01 is set to a smaller value than E1-09 (Minimum Output Frequency), then DC Injection Braking will begin when the frequency falls to the E1-09 value.

#### OLV/PM and AOLV/PM (A1-02 = 5, 6)

When the output frequency falls below the setting of b2-01, drive output is shut down, and DC Injection Braking is performed for the time set in b2-04.

Note:

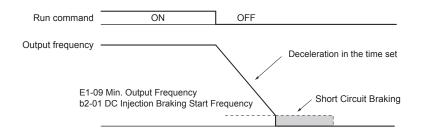



Figure 5.4 Coast to Stop (OLV/PM and AOLV/PM)

If b2-01 is set to a smaller value than E1-09 (Minimum Output Frequency), then DC Injection Braking will begin when the frequency falls

to the E1-09 value.

The drive will not perform short-circuit braking when b2-01 = E1-09 = 0 Hz.

#### CLV and CLV/PM (A1-02 = 3, 7)

For these control modes, parameter b2-01 sets the starting frequency for Zero Speed Control (not position lock) at Stop. When the output frequency falls below the setting of b2-01, Zero Speed Control is enabled for the time set in parameter b2-04.

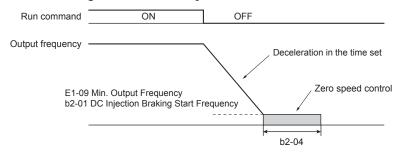
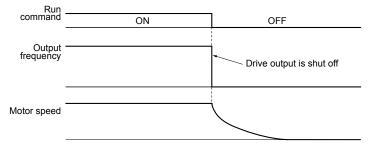


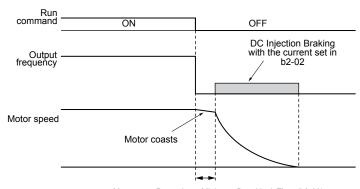

Figure 5.5 Zero Speed Control at Stop in CLV and CLV/PM

**Note:** If b2-01 is set to lower than E1-09 (Minimum Output Frequency), then Zero Speed Control begins at the frequency set to E1-09.

### **Setting 1: Coast to Stop**

When the Run command is removed, the drive will shut off its output and the motor will coast (uncontrolled deceleration) to stop. The stopping time is determined by the inertia and the friction in the driven system.





Figure 5.6 Coast to Stop

Note: After a stop is initiated, any subsequent Run command entered will be ignored until the minimum baseblock time (L2-03) has expired. Do not enter Run command until it has come to a complete stop. Use DC Injection at Start (*Refer to b2-03: DC Injection Braking Time at Start on page 203*) or Speed Search (*Refer to b3: Speed Search on page 204*) to restart the motor before it has completely stopped.

#### Setting 2: DC Injection Braking to Stop

When the Run command is removed, the drive will enter baseblock (turn off its output) for the momentary power loss minimum baseblock time (L2-03). When the minimum baseblock time has expired, the drive will inject the amount DC Injection Braking is set in parameter b2-02 into the motor windings to brake the motor. The stopping time in DC Injection Braking to Stop is significantly faster compared to Coast to Stop.

**Note:** This function is not available in CLV (A1-02=3) or in control modes for PM motors (A1-02=5, 6, 7).



Momentary Power Loss Minimum Baseblock Time (L2-03)

Figure 5.7 DC Injection Braking to Stop

DC Injection Braking time is determined by the value set to b2-04 and the output frequency at the time the Run command is removed. It can be calculated by:

DC Injection brake time =  $\frac{\text{(b2-04)} \times 10 \times \text{Output frequency}}{\text{Maximum output frequency (E1-04)}}$ 

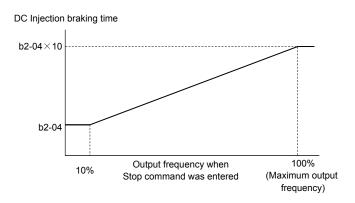



Figure 5.8 DC Injection Braking Time Depending on Output Frequency

**Note:** If an overcurrent (oC) fault occurs during DC Injection Braking to Stop, lengthen the momentary power loss minimum baseblock time (L2-03) until the fault no longer occurs.

### **Setting 3: Coast to Stop with Timer**

When the Run command is removed, the drive will turn off its output and the motor will coast to stop. The drive will not start if a Run command is input before the time t (C1-02) has expired. Cycle the Run command that was activated during time t after t has expired to start the drive.

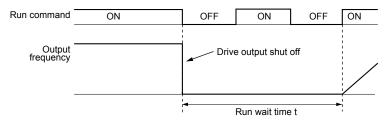



Figure 5.9 Coast to Stop with Timer

The wait time t is determined by the output frequency when the Run command is removed and by the active deceleration time.

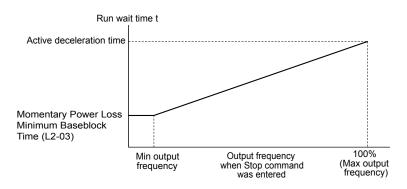



Figure 5.10 Run Wait Time Depending on Output Frequency

### **■** b1-04: Reverse Operation Selection

Enables and disables Reverse operation. For some applications, reverse motor rotation is not appropriate and may cause problems (e.g., air handling units, pumps, etc.).

| No.   | Parameter Name              | Setting Range | Default |
|-------|-----------------------------|---------------|---------|
| b1-04 | Reverse Operation Selection | 0, 1          | 0       |

#### Setting 0: Reverse operation enabled

Possible to operate the motor in both forward and reverse directions.

#### Setting 1: Reverse operation disabled

Drive disregards a Reverse run command or a negative frequency reference.

### **■** b1-05: Action Selection below Minimum Output Frequency (CLV and CLV/PM)

Sets the operation when the frequency reference is lower than the minimum output frequency set in parameter E1-09.

| No.   | Parameter Name                                  | Setting Range | Default |
|-------|-------------------------------------------------|---------------|---------|
| b1-05 | Action Selection below Minimum Output Frequency | 0 to 3        | 0       |

#### Setting 0: Follow the Frequency Reference

The drive adjusts the motor speed following the speed reference, even if the frequency reference is below the setting of parameter E1-09. When the Run command is removed and the motor speed is smaller than the setting of b2-01, Zero Speed Control (not position lock) is performed for the time set in parameter b2-04 before the drive output shuts off.

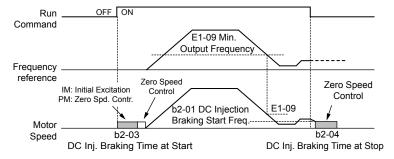



Figure 5.11 Run at the Frequency Reference

### **Setting 1: Coast to Stop**

The motor starts when the frequency reference meets or exceeds the E1-09 setting. When the motor is running and the frequency reference falls below E1-09, the drive output shuts off and the motor coasts. When the motor speed falls below the zero speed level set in b2-01, Zero Speed Control is activated for the time set in b2-04.

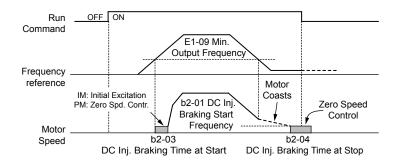



Figure 5.12 Coast to Stop

#### Setting 2: Run at the Minimum Frequency

When a Run command is active and the frequency reference is smaller than the parameter E1-09 setting, the drive runs the motor at the speed set in E1-09. When the Run command is removed, the drive decelerates the motor. As soon as the motor speed reaches the zero speed level set in b2-01, Zero Speed Control is activated for the time set in b2-04.

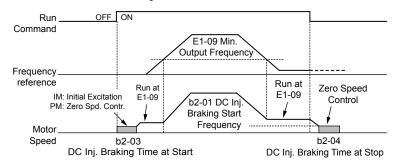



Figure 5.13 Run at the Minimum Frequency

#### **Setting 3: Zero Speed Control**

The drive applies Zero Speed Control when the frequency reference setting falls below the value of E1-09. Removing the Run command when the drive is operating at or above the frequency set to E1-09 will activate Zero Speed Control for the time set in b2-04, regardless of whether Zero Speed Control was already active.

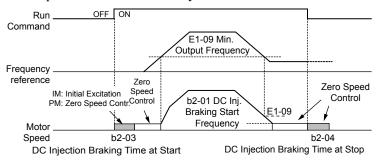



Figure 5.14 Zero Speed Control

### ■ b1-06: Digital Input Reading

Defines how the digital inputs are read. The inputs are acted upon every 1 ms or 2 ms depending upon the setting.

| No.   | Name                  | Setting Range | Default |
|-------|-----------------------|---------------|---------|
| b1-06 | Digital Input Reading | 0, 1          | 1       |

### Setting 0: Read once (1 ms scan)

The state of a digital input is read once. If the state has changed, the input command is immediately processed. With this setting the drive responds more quickly to digital inputs, but a noisy signal could cause erroneous operation.

#### Setting 1: Read twice (2 ms scan)

The state of a digital input is read twice. The input command is processed only if the state does not change during the double reading. This reading process is slower than the "Read once" process, but it is more resistant to noisy signals.

### ■ b1-07: LOCAL/REMOTE Run Selection

The drive has three separate control sources that can be switched using digital inputs (H1-\(\pi\) = 1 (LOCAL/REMOTE Selection) or 2 (External reference 1/2)) or the LO/RE key on the digital operator. **Refer to Setting 1: LOCAL/REMOTE Selection on page 285, Refer to Setting 2: External Reference 1/2 Selection on page 286** and **Refer to 02-01: LO/RE (LOCAL/REMOTE) Key Function Selection on page 354** for details.

- LOCAL: Digital operator. The digital operator sets the frequency reference and Run command.
- REMOTE: External reference 1. The frequency reference and Run command source are set by b1-01 and b1-02.
- REMOTE: External reference 2. The frequency reference and Run command source are set by b1-15 and b1-16.

When switching from LOCAL to REMOTE, or between External reference 1 and External reference 2, the Run command may already be present at the location at which the source is being switched. In this case, use parameter b1-07 to determine how the Run command is treated.

| No.   | Parameter Name             | Setting Range | Default |
|-------|----------------------------|---------------|---------|
| b1-07 | LOCAL/REMOTE Run Selection | 0, 1          | 0       |

### Setting 0: Run command must be cycled

When the Run command source differs between the old source and the new source (e.g., the old source was the terminals and the new source is serial communication), and the Run command is active at the new source as the switchover occurs, the drive will not start or the drive will stop operation if it was previously running. The Run command must be cycled at the new source to restart the drive.

### Setting 1: Accept Run command at the new source

When the Run command is active at the new source, the drive starts or continues operation if it was previously running.

**WARNING!** Sudden Movement Hazard. The drive may start unexpectedly if switching control sources when b1-07 = 1. Clear all personnel from rotating machinery and electrical connections prior to switching control sources. Failure to comply may cause death or serious injury.

### ■ b1-08: Run Command Selection while in Programming Mode

As a safety precaution, the drive will not normally respond to a Run command input when the digital operator is being used to adjust parameters in Programming Mode (Verify Menu, Setup Mode, Parameter Settings Mode, and Auto-Tuning Mode). If required by the application, set b1-08 to allow the drive to run while in Programming Mode.

| No.   | Parameter Name                                  | Setting Range | Default |
|-------|-------------------------------------------------|---------------|---------|
| b1-08 | Run Command Selection while in Programming Mode | 0 to 2        | 0       |

### Setting 0: Disabled

A Run command is not accepted while the digital operator is in Programming Mode.

#### Setting 1: Enabled

A Run command is accepted in any digital operator mode.

#### Setting 2: Prohibit programming during run

It is not possible to enter the Programming Mode as long as the drive output is active. The Programming Mode cannot be displayed during Run.

### **■** b1-14: Phase Order Selection

Sets the phase order for drive output terminals U/T1, V/T2, and W/T3.

Switching motor phases will reverse the direction of the motor.

| No.   | Parameter Name        | Setting Range | Default |
|-------|-----------------------|---------------|---------|
| b1-14 | Phase Order Selection | 0, 1          | 0       |

#### Setting 0: Standard Phase Order

Setting 1: Switched Phase Order (A1-02 = 0, 1, 2, 3, 5, 6)

### ■ b1-15: Frequency Reference Selection 2

Enabled when H1- $\Box\Box$  = 2 and the terminal is closed. *Refer to Setting 2: External Reference 1/2 Selection on page 286* and *Refer to b1-02: Run Command Selection 1 on page 194* for details.

| No.   | Parameter Name                  | Setting Range | Default |
|-------|---------------------------------|---------------|---------|
| b1-15 | Frequency Reference Selection 2 | 0 to 4        | 0       |

#### ■ b1-16: Run Command Selection 2

Enabled when H1- $\Box\Box$  = 2 and the terminal is closed. *Refer to Setting 2: External Reference 1/2 Selection on page 286* and *Refer to b1-01: Frequency Reference Selection 1 on page 193* for details.

| No.   | Parameter Name          | Setting Range | Default |
|-------|-------------------------|---------------|---------|
| b1-16 | Run Command Selection 2 | 0 to 3        | 0       |

### **■** b1-17: Run Command at Power Up

Determines whether an external Run command that is active during power up will start the drive.

| No.   | Parameter Name          | Setting Range | Default |
|-------|-------------------------|---------------|---------|
| b1-17 | Run Command at Power Up | 0, 1          | 0       |

### Setting 0: Run Command at Power Up Is Not Issued

Cycle the Run command to start the drive.

**Note:** For safety reasons, the drive is initially programmed not to accept a Run command at power up (b1-17 = 0). If a Run command is issued at power up, the AUTO LED will flash quickly.

#### Setting 1: Run Command at Power Up Is Issued

If an external Run command is active when the drive is powered up, the drive will begin operating the motor after the internal start up process is complete.

**WARNING!** Sudden Movement Hazard. If b1-17 is set to 1 and an external Run command is active during power up, the motor will begin rotating as soon as the power is switched on. Proper precautions must be taken to ensure that the area around the motor is safe prior to powering up the drive. Failure to comply may cause serious injury.

### ■ b1-21: Start Condition Selection at Closed Loop Vector Control

Selects a condition to start Closed Loop Vector Control. There is normally no need to change this parameter from the default value.

| No.   | Parameter Name                                          | Setting Range | Default |
|-------|---------------------------------------------------------|---------------|---------|
| b1-21 | Start Condition Selection at Closed Loop Vector Control | 0 or 1        | 0       |

#### Setting 0: Run command is not accepted when b2-01 ≤ motor speed < E1-09

Setting 1: Run command is accepted when b2-01 ≤ motor speed < E1-09

### ■ b1-24: Commercial Power Operation Switching Selection

When the output frequency matches the power supply frequency (60 Hz), the PWM switching operation stops and switches to operation with a direct commercial power supply connection.

Note:

- 1. Switching can be enabled when an induction motor is being driven in V/f control mode.
- 2. Current value may change when a switch is made.
- 3. Verify that the induction motor can be driven with the commercial power supply (e.g., the rated voltage and rated speed) prior to enabling the commercial power switching selection.

| No.   | Parameter Name                       | Setting Range | Default |
|-------|--------------------------------------|---------------|---------|
| b1-24 | Commercial Power Switching Selection | 0, 1          | 0       |

#### Setting 0: Disabled

A voltage will be output with PWM switching operation regardless of the output frequency.

### Setting 1: Enabled

When the deviation between the output frequency and the power supply frequency is less than or equal to the commercial power switching output frequency coincidence level (b1-26), the PWM switching operation stops and switches to operation with a direct commercial power supply connection.

Operation with a direct commercial power supply continues until the deviation between the output frequency and the power supply frequency is greater than or equal to the commercial power switching output frequency coincidence/non-coincidence level (b1-25 + b1-26).

### ■ b1-25/b1-26: Commercial Power Supply Operation Cancellation Level/Switching Level

These parameters set the value in 0.1 Hz increments at which commercial power supply switching selection is enabled and disabled.

#### **Entering Eco Mode**

When the deviation between the output frequency and the power supply frequency becomes equal to or less than the setting values of b1-26, an output frequency coincidence condition exists. The drive will operate in commercial power switching mode. If the drive will not switch to commercial power supply switching mode, set b1-26.

### **Exiting Eco Mode**

When the deviation between the output frequency and the power supply frequency becomes equal to or greater than the setting value of b1-25 + b1-26, the drive will operate in PWM switching mode. If commercial power switching mode and PWM switching mode are repeated frequently, increase the setting value of b1-25.

Note: The drive will not switch to commercial power switching mode when L3-06, Stall Prevention Level during Run, is exceeded and L3-05, Stall Prevention Selection during Run, is enabled.

| No.   | Parameter Name                                       | Setting Range | Default |
|-------|------------------------------------------------------|---------------|---------|
| b1-25 | Commercial Power Supply Operation Cancellation Level | 0.4 to 6.0 Hz | 1.0 Hz  |
| b1-26 | Commercial Power Supply Operation Switching Level    | 0.0 to 3.0 Hz | 0.2 Hz  |

### **■** b1-36 Auto-Tuning Error Detection

Sets whether Er-04 (Line-to-Line Resistance Error) and Er-13 (Leakage Inductance Error) are detected during Auto-Tuning of the induction motor. If Er-04 and Er-13 are detected during Auto-Tuning, set b1-36 = 1. Make sure to set the motor test report value manually to E2-05 (Motor Line-to-Line Resistance) and E2-06 (Motor Leakage Inductance), and then perform Auto-Tuning again. Even if detection conditions are established for Er-04 and Er-13 when setting b1-36 = 1, Auto-Tuning continues to be performed with the set values for E2-05 (Motor Line-to-Line Resistance) and E2-06 (Motor Leakage Inductance).

**Note:** This parameter is only displayed in models CIMR-U $\square$ 4 $\square$ 0477 to 4 $\square$ 0930.

| No.   | Parameter Name              | Setting Range | Default |
|-------|-----------------------------|---------------|---------|
| b1-36 | Auto-Tuning Error Detection | 0, 1          | 0       |

#### Setting 0: Er-04 and Er-13 are detected

When setting b1-36 = 0, Er-04 and Er-14 are detected when Auto-Tuning is performed for the induction motor.

#### Setting 1: Er-04 and Er-13 are not detected

When setting b1-36 = 1, Er-04 and Er-13 are not detected when Auto-Tuning is performed for the induction motor.

### ♦ b2: DC Injection Braking

b2 parameters determine operation of the DC Injection Braking and Zero Speed Control features.

### ■ b2-01: DC Injection Braking Start Frequency

Active when "Ramp to Stop" is selected as the stopping method (b1-03 = 0).

| No.   | Name                                 | Setting Range  | Default             |
|-------|--------------------------------------|----------------|---------------------|
| b2-01 | DC Injection Braking Start Frequency | 0.0 to 10.0 Hz | Determined by A1-02 |

The function triggered by parameter b2-01 depends on the control mode that has been selected.

### OLV/PM, AOLV/PM, V/f, V/f w/PG and OLV (A1-02 = 0, 1, 2, 5, 6)

For these control modes, parameter b2-01 sets the starting frequency for DC Injection Braking at Stop. When the output frequency falls below the setting of b2-01, DC Injection Braking is enabled for the time set in parameter b2-04.

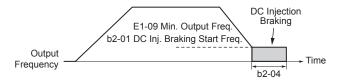



Figure 5.15 DC Injection Braking at Stop for V/f, V/f w/PG, and OLV

**Note:** If b2-01 is set to a smaller value than E1-09 (Minimum Output Frequency), then DC Injection Braking will begin when the frequency falls to the E1-09 value.

### CLV and CLV/PM (A1-02 = 3, 7)

For these control modes, parameter b2-01 sets the starting frequency for Zero Speed Control (not position lock) at Stop. When the output frequency falls below the setting of b2-01, Zero Speed Control is enabled for the time set in parameter b2-04.

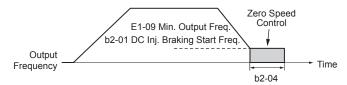



Figure 5.16 Zero Speed Control at Stop in CLV and CLV/PM

Note: If b2-01 is set to a smaller value than E1-09 (Minimum Output Frequency), then Zero Speed Control begins at the frequency set to E1-09.

### **■** b2-02: DC Injection Braking Current

Sets the DC Injection Braking current as a percentage of the drive rated current. The carrier frequency is automatically reduced to 4 kHz when this parameter is set to more than 50%.

| No.   | Name                         | Setting Range | Default |
|-------|------------------------------|---------------|---------|
| b2-02 | DC Injection Braking Current | 0 to 100%     | 50%     |

The level of DC Injection Braking current affects the strength of the magnetic field attempting to lock the motor shaft. Increasing the current level will increase the amount of heat generated by the motor windings. Do not set this parameter higher than the level necessary to hold the motor shaft.

### **■** b2-03: DC Injection Braking Time at Start

Sets the time of DC Injection Braking (Zero Speed Control in CLV and CLV/PM) at start. Used to stop a coasting motor before restarting it or to apply braking torque at start. Disabled when set to 0.00 s.

| No.   | Name                               | Setting Range   | Default |
|-------|------------------------------------|-----------------|---------|
| b2-03 | DC Injection Braking Time at Start | 0.00 to 10.00 s | 0.00 s  |

Note:

Before starting an uncontrolled rotating motor (e.g., a fan motor driven by windmill effect), use DC Injection or Speed Search to stop the motor or detect motor speed before starting it. Otherwise, motor stalling and other faults can occur.

### ■ b2-04: DC Injection Braking Time at Stop

Sets the time of DC Injection Braking (Zero Speed Control in CLV and CLV/PM) at stop. Used to completely stop a motor with high inertia load after ramp down. Increase the value if the motor still coasts by inertia after it should have stopped. Disabled when set to 0.00 s.

| No.   | Name                              | Setting Range   | Default             |
|-------|-----------------------------------|-----------------|---------------------|
| b2-04 | DC Injection Braking Time at Stop | 0.00 to 10.00 s | Determined by A1-02 |

### ■ b2-08: Magnetic Flux Compensation Value

Sets the magnetic flux compensation at start as a percentage of the no-load current value (E2-03). This function allows for the development of more flux to facilitate starting machines that require high starting torque or motors with a large rotor time constant.

| No.   | Name                             | Setting Range | Default |
|-------|----------------------------------|---------------|---------|
| b2-08 | Magnetic Flux Compensation Value | 0 to 1000%    | 0%      |

When a Run command is issued, the DC current level injected into the motor changes linearly from the level set to b2-08 to the level set to E2-03 within the time set to b2-03.

When  $b2-08 \neq 0\%$ , the current will flow for the time set in b2-03 (DC Injection Braking Time at Start) when DC Injection Braking starts. The current will change linearly from the setting of b2-08 to the setting of E2-03.

The level of the DC current injected to the motor is limited to 80% of the drive rated current or to the motor rated current, whichever value is smaller.

Note:

- 1. If b2-08 is set below 100%, it can take a relatively long time for flux to develop.
- 2. If b2-08 is set to 0%, the DC current level will be the DC Injection current set to b2-02.

3. As DC Injection can generate a fair amount of noise, b2-08 may need to be adjusted to keep noise levels acceptable.

### b3: Speed Search

The Speed Search function allows the drive to detect the speed of a rotating motor shaft that is driven by external forces and start the motor operation directly from the detected speed without first stopping the machine.

Example: When a momentary loss of power occurs, the drive output shuts off and the motor coasts. When power returns, the drive can find the speed of the coasting motor and restart it directly.

Enabling Speed Search for PM motors only requires setting parameter b3-01 to 1. The drive offers current detection and speed estimation Speed Search for induction motors. Parameter b3-24 selects the speed search method for induction motors. Both methods and relevant parameters are explained below.

Speed Search start timing differs depending on whether operation is after a momentary power loss (L2-01 = 1 or 2) or after the Speed Search at start (b3-01 = 1). The operation timing of the Speed Search after a momentary power loss is shown in *Figure 5.17*. The operation timing after the Speed Search at start is shown in *Figure 5.18*.

After restoring power, the Speed Search operation remains in baseblock status for at least the time set in b3-05. However, Speed Search will not start if the time set in L2-03, Minimum Baseblock Time, does not pass after the power stops. When induced voltage remains in the motor, the Speed Search operation starts after the time set in b3-05 without waiting for the time set in L2-03.

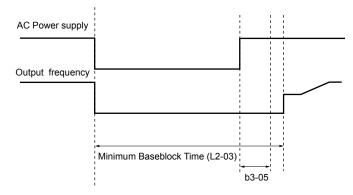



Figure 5.17 Timing Chart for Speed Search after Recovery from Momentary Power Loss

When performing a speed search operation at start, the speed search operation will start after waiting for the longer of the times set in b3-05 and L2-03 after the Run command input is received. When induced voltage remains in the motor, the Speed Search operation starts after the time set in b3-05 without waiting for the time set in L2-03.

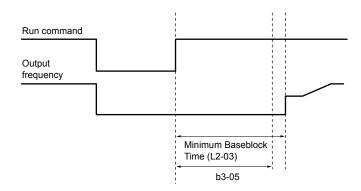



Figure 5.18 Timing Chart for Speed Search at Start

For induction motors, the drive offers two types of Speed Search that can be selected by parameter b3-24 (Speed Estimation and Current Detection). Both methods are explained below, then followed by a description of all relevant parameters.

### ■ Current Detection Speed Search

### **Current Detection Speed Search 2 (b3-24 = 2)**

Current Detection Speed Search 2 is for use with IM motors.

The current set in b3-31 is applied and the speed is detected based on the current flow to the motor. After Speed Search is completed, the speed is accelerated or decelerated to the frequency reference.

If the output current during the Speed Search operation is larger than the setting value of b3-32, reduce the frequency for the deceleration time set in b3-03. After motor speed estimation is completed, the speed is accelerated or decelerated to the frequency reference.

#### **Current Detection Speed Search 3 (b3-24 = 4)**

The current set in b3-31 is applied and the speed is detected based on the current flow to the motor. After Speed Search is completed, the speed is accelerated or decelerated to the frequency reference.

If the output current during the Speed Search operation is larger than the setting value of b3-32, reduce the frequency for the deceleration time set in b3-03. After motor speed estimation is completed, the speed is accelerated or decelerated to the frequency reference.

Parameter b3-14 sets how the drive determines the motor rotation direction when performing the Speed Search as follows:

- The drive uses the frequency reference to determine the direction of motor rotation in order to restart the motor.
- The drive detects the motor rotation direction in order to restart the motor.

### **Notes on Using Current Detection Type Speed Search**

- Shorten the Speed Search deceleration time set to b3-03 if an oL1 fault occurs while performing Current Detection Speed Search.
- Current Detection Speed Search is not available when using Open Loop Vector Control for PM motors.
- Increase the minimum baseblock time set to L2-03 if an overcurrent or overvoltage fault occurs when performing Speed Search after power is restored following a momentary power loss.

### ■ Speed Estimation Speed Search

#### **Speed Estimation Speed Search (b3-24 = 1)**

Speed Estimation Speed Search estimates the motor speed while the motor is coasting and then restarts operation. After the Speed Search is completed, the speed is accelerated or decelerated to the frequency reference.

This method can be used for a single induction motor connected to a drive. Do not use this method if the motor is one or more frame size smaller than the drive, at motor speeds above 200 Hz, or when using a single drive to operate more than one motor.

### Speed Estimation Speed Search 2 (b3-24 = 3)

Speed Estimation Speed Search 2 is used in V/f w/PG control mode.

The Speed Search estimates the motor rotation direction while the motor is coasting and then restarts operation. The drive controls motor speed by using PG feedback. After the Speed Search is completed, the speed is accelerated or decelerated to the frequency reference.

Parameter b3-14 sets how the drive determines the motor rotation direction when performing the Speed Search as follows:

- The drive uses the frequency reference to determine the direction of motor rotation in order to restart the motor.
- The drive detects the motor rotation direction in order to restart the motor.

#### Notes on Using Speed Estimation Speed Search

- Perform Rotational Auto-Tuning for V/f Control (T1-01 = 3) prior to using Speed Estimation in V/f Control and perform Stationary Auto-Tuning for Line-to-Line Resistance (T1-01 = 2) again if the there is a change in the cable length between the drive and motor.
- Use Current Detection Speed Search 2 to search for speeds beyond 200 Hz if the application is running multiple motors from the same drive or if the motor is considerably smaller than the capacity of the drive.
- Speed Estimation may have trouble finding the actual speed if the motor cable is very long. Use Current Detection Speed Search 2 in these instances.
- Use Current Detection Speed Search 2 instead of Speed Estimation when operating motors smaller than 1.5 kW because Speed Estimation might not be able to detect the speed or rotation of these smaller motors, in which case Speed Estimation would stop the motor.

### ■ Speed Search Activation

Speed Search can be activated using any of the methods 1 through 5 described below. Select the Speed Search type in parameter b3-24 independent of the activation method.

**Method 1.** Automatically activate Speed Search with every Run command. Set b3-01, Speed Search Selection at Start, to 1 (Enabled). External Speed Search commands are ignored.

**Method 2.** Activate Speed Search using the digital input terminals.

Use the input functions for H1- $\square$  in *Table 5.7*.

Table 5.7 Speed Search Activation by Digital Inputs

| Setting | Description                  | b3-24 = 1, 3                              | b3-24 = 2, 4                                                                               |
|---------|------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------|
| h l     | External Search<br>Command 1 | Activate Speed Estimation<br>Speed Search | Closed: Activate Current Detection Speed Search from the maximum output frequency (E1-04). |
| 62      |                              |                                           | Closed: Activate Current Detection Speed Search from the frequency reference.              |

To activate Speed Search by a digital input, the input must be set together with the Run command or the Run command must be entered after giving the Speed Search command.

Method 3. After automatic fault restart.

When the number of maximum fault restarts in parameter L5-01 is set higher than 0, the drive will automatically perform Speed Search as specified by b3-24 following a fault.

**Method 4.** After momentary power loss.

This mode requires that the Power Loss Ride-Thru function is enabled during CPU operation (L2-01 = 1 or 2). *Refer to L2-01: Momentary Power Loss Operation Selection on page 321*.

**Method 5.** After external baseblock is released.

The drive will resume the operation starting with Speed Search if the Run command is present and the output frequency is above the minimum frequency when the Baseblock command (H1- $\Box\Box$  = 8 or 9) is released.

### ■ Rotation Direction Detection Conditions for Backspin

Backspin occurs when the motor rotates in the opposite direction from the rotation direction command. Specify the speed search direction when power is recovered after a momentary power loss in applications in which backspin can occur, such as for an oil pump when backspin may occur due to the weight of the oil after a momentary power loss. The search starts from the rotation direction specified in the direction command when the momentary power loss time is short. The search starts from the opposite direction of the direction specified in the direction command when the momentary power loss time is long. The rotation for the Speed Search is determined as follows:

[t] is the time from the momentary power loss to recovery.

- $0 \le t < b3-50$ : The search is started in the direction specified by the direction command.
- b3-50 > t < b3-51: The motor is not restarted and the baseblock continues.

The search starts from the opposite direction of the direction command when the momentary power loss time exceeds the setting value of b3-51.

•  $b3-51 \le t$ : The search is started in the direction opposite to the direction command.

Refer to b3-50/b3-51: Backspin Search Direction Judgment Time 1/2 on page 210 for details on the backspin direction judgment time.

Note:

- 1. Set b3-50 to the required time to enable rotation direction detection for backspin.
- 2. When setting b3-50, be sure to also set the following parameters to the values specified. Setting these parameters to any other values will trigger an oPE08 fault.

 $b3-50 \le b3-51$ 

b3-14=0

b3-24 = 2

3. Backspin detection is not necessary with a PM motor or in Closed Loop Vector control mode.

### ■ b3-01: Speed Search Selection at Start

Determines if Speed Search is automatically performed when a Run command is issued.

| No.   | Parameter Name                  | Setting Range | Default             |
|-------|---------------------------------|---------------|---------------------|
| b3-01 | Speed Search Selection at Start | 0, 1          | Determined by A1-02 |

### Setting 0: Disabled

This setting starts operating the drive at the minimum output frequency when the Run command is entered. If external Speed Search 1 or 2 is already enabled by a digital input, the drive will start operating with Speed Search.

#### Setting 1: Enabled

This setting performs Speed Search when the Run command is entered. The drive begins running the motor after Speed Search is complete.

### **■** b3-03: Speed Search Deceleration Time

Sets the output frequency reduction ramp. The time entered into b3-03 will be the time to decelerate from maximum frequency (E1-04) to minimum frequency (E1-09).

In Current Detection Type 2 Speed Search, the time set in this parameter is used as the acceleration or deceleration time for the output frequency while searching.

| No.   | Name                           | Setting Range | Default |
|-------|--------------------------------|---------------|---------|
| b3-03 | Speed Search Deceleration Time | 0.1 to 10.0 s | 2.0 s   |

### ■ b3-04: V/f Gain during Speed Search (Speed Estimation Type)

During Speed Search, the output voltage calculated from the V/f pattern is multiplied with this value. Changing this value can help reduce the output current during Speed Search.

| No.   | Name                         | Setting Range | Default                       |
|-------|------------------------------|---------------|-------------------------------|
| b3-04 | V/f Gain during Speed Search | 10 to 100%    | Determined by C6-01 and o2-04 |

### ■ b3-05: Speed Search Delay Time

In cases where an output contactor is used between the drive and the motor, the contactor must be closed before Speed Search can be performed. This parameter can be used to delay the Speed Search operation, giving the contactor enough time to close completely.

| No.   | Name                    | Setting Range  | Default |
|-------|-------------------------|----------------|---------|
| b3-05 | Speed Search Delay Time | 0.0 to 100.0 s | 0.2 s   |

### ■ b3-06: Output Current 1 during Speed Search (Speed Estimation Type)

Sets the current injected to the motor at the beginning of Speed Estimation Speed Search as a factor of the motor rated current set in E2-01 (E4-01 for motor 2). If the motor speed is relatively slow when the drive starts to perform Speed Search after a long period of baseblock, it may be helpful to increase the setting value. The output current during Speed Search is automatically limited by the drive rated current.

| No.   | Name                                 | Setting Range | Default             |
|-------|--------------------------------------|---------------|---------------------|
| b3-06 | Output Current 1 during Speed Search | 0.0 to 2.0    | Determined by o2-04 |

**Note:** Use Current Detection Speed Search 2 if Speed Estimation is not working correctly even after adjusting b3-06.

### b3-08: Current Control Gain during Speed Search (Speed Estimation Type)

Sets the proportional gain for the current controller to adjust the responsiveness during Speed Estimation Speed Search. There is normally no need to change this parameter from the default value.

| No.   | Name                                                             | Setting Range | Default                                                         |
|-------|------------------------------------------------------------------|---------------|-----------------------------------------------------------------|
| b3-08 | Current Control Gain during Speed Search (Speed Estimation Type) | 0.00 to 6.00  | A1-02 = 0 to 3:<br>Determined by<br>o2-04<br>A1-02 = 5, 6: 0.30 |

### ■ b3-09: Current Control Integral Time during Speed Search (Speed Estimation Type)

Usually it is not necessary to change this setting. Sets the integral time for the current regulator during Speed Estimation Speed Search. Adjusts the responsiveness during the Speed Search.

| No.   | Name                                                               | Setting Range     | Default           |
|-------|--------------------------------------------------------------------|-------------------|-------------------|
| b3-09 | Current Control Integral Time Speed Search (Speed Estimation Type) | 0.00 to 1000.0 ms | Determined by A1– |

### **■** b3-10: Speed Search Detection Compensation Gain (Speed Estimation Type)

Sets the gain for the detected motor speed of the Speed Estimation Speed Search. Increase the setting only if an overvoltage fault occurs when the drive restarts the motor.

| No.   | Name                                     | Setting Range | Default |
|-------|------------------------------------------|---------------|---------|
| b3-10 | Speed Search Detection Compensation Gain | 1.00 to 1.20  | 1.05    |

# ■ b3-14: Bi-Directional Speed Search Selection (Speed Estimation Type, Speed Estimation 2 Type, Current Detection 3 Type)

Sets how the drive determines the motor rotation direction when performing Speed Estimation Speed Search.

Disable this parameter when b3-50, Backspin Search Direction Judgment Time 1, is set to 0.1 or longer.

| No.   | Name                                  | Setting Range | Default             |
|-------|---------------------------------------|---------------|---------------------|
| b3-14 | Bi-Directional Speed Search Selection | 0, 1          | Determined by A1-02 |

#### Setting 0: Disabled

The drive uses the frequency reference to determine the direction of motor rotation to restart the motor.

### Setting 1: Enabled

The drive detects the motor rotation direction to restart the motor.

### ■ b3-17: Speed Search Restart Current Level (Speed Estimation Type)

Sets the current level at which Speed Estimation is restarted as a percentage of drive rated current to avoid overcurrent and overvoltage problems since a large current can flow into the drive if the difference between the estimated frequency and the actual motor speed is too big when performing Speed Estimation.

| No.   | Name                               | Setting Range | Default |
|-------|------------------------------------|---------------|---------|
| b3-17 | Speed Search Restart Current Level | 0 to 200%     | 150%    |

### ■ b3-18: Speed Search Restart Detection Time (Speed Estimation Type)

Sets the time for which the current must be above the level set in b3-17 before restarting Speed Search.

| No.   | Name                                | Setting Range  | Default |
|-------|-------------------------------------|----------------|---------|
| b3-18 | Speed Search Restart Detection Time | 0.00 to 1.00 s | 0.10 s  |

### ■ b3-19: Number of Speed Search Restarts (Speed Estimation Type)

Sets the number of times the drive should attempt to find the speed and restart the motor. If the number of restart attempts exceeds the value set to b3-19, the SEr fault will occur and the drive will stop.

| No.   | Name                            | Setting Range | Default |
|-------|---------------------------------|---------------|---------|
| b3-19 | Number of Speed Search Restarts | 0 to 10       | 3       |

### ■ b3-24: Speed Search Method Selection

Sets the Speed Search method.

In V/f, V/f w/PG, or OLV control modes, set this parameter to 2 (Current Detection Type Speed Search 2) when b3-50 is 0.1 or longer.

| No.   | Name                          | Setting Range | Default                       |
|-------|-------------------------------|---------------|-------------------------------|
| b3-24 | Speed Search Method Selection | 1 to 4 <1>    | Determined by A1-02 and o2-04 |

<sup>&</sup>lt;1> Setting range is dependent on the control mode (A1-02) and the drive model (o2-04).

- **Setting 1: Speed Estimation**
- **Setting 2: Current Detection 2**
- Setting 3: Speed Estimation 2
- **Setting 4: Current Detection 3**

Note:

- 1. Enable or disable Speed Search at start with b3-01 and Speed Search after momentary power loss with L2-01.
- 2. Refer to Current Detection Speed Search on page 204 for details on the Speed Search direction.
- 3. Settings 3 and 4 are available in drive software versions PRG: 1017 and later.
- **4.** Setting range is determined by the drive model (o2-04). 2□0028 to 2□0248 (o2-04 = 6A to 75), 4□0011 to 4□0414 (o2-04 = 95 to AA): 1 4□0477 to 4□0930 (o2-04 = AC to B0): 2 to 4

### **■** b3-25: Speed Search Wait Time (Speed Estimation Type)

Sets the wait time between Speed Search restarts. Increase the wait time if problems occur with overcurrent or if an SEr fault occurs.

| No.   | Name                   | Setting Range | Default |
|-------|------------------------|---------------|---------|
| b3-25 | Speed Search Wait Time | 0.0 to 30.0 s | 0.5 s   |

### **■** b3-27: Start Speed Search Select

Selects a condition to activate Speed Search Selection at Start (b3-01). Set this parameter to 1 when using a sequence in which operation starts when the frequency reference exceeds the minimum output frequency while the Run command is active.

| No.   | Name                      | Setting Range | Default |
|-------|---------------------------|---------------|---------|
| b3-27 | Start Speed Search Select | 0, 1          | 0       |

Setting 0: Triggered when a Run Command Is Issued (Normal)

Setting 1: Triggered when an External Baseblock Is Released

### ■ b3-29: Speed Search Induced Voltage Level

Lower this value in small increments if changes are necessary. Setting this value too low will prevent the drive from performing Speed Search. There is normally no need to change this parameter from the default value.

| No.   | Name                               | Setting Range | Default |
|-------|------------------------------------|---------------|---------|
| b3-29 | Speed Search Induced Voltage Level | 0 to 10%      | 10%     |

### **■** b3-31: Speed Search Operation Current Level 1 (Current Detection Type 2)

Sets the current level used to limit the output current during Current Detection Type Speed Search 2 as a ratio to E2-03, Motor No-Load Current.

The current level is determined for a no-load current that is 30% of the rated motor current when the setting value of E2-03 is less than or equal to 30% of the rated motor current.

**Note:** If the setting value is too large, a stopped inductive motor may accelerate too quickly. In such cases, set this parameter to a value that is smaller than the rated motor current.

| No.   | Name                                                              | Setting Range | Default |
|-------|-------------------------------------------------------------------|---------------|---------|
| b3-31 | Speed Search Operation Current Level 1 (Current Detection Type 2) | 1.50 to 3.50  | 1.50    |

### ■ b3-32: Speed Search Operation Current Level 2 (Current Detection 2)

Sets the current level at which to end the Speed Search for Current Detection Type Speed Search 2 as a ratio to E2-03, Motor No-Load Current.

The current level is determined for a no-load current that is 30% of the rated motor current when the setting value of E2-03 is less than or equal to 30% of the rated motor current.

| No.   | Name                                                         | Setting Range | Default |
|-------|--------------------------------------------------------------|---------------|---------|
| b3-32 | Speed Search Operation Current Level 2 (Current Detection 2) | 0.00 to 1.49  | 1.20    |

### **■** b3-33: Speed Search Selection when Run Command Is Given during Uv

Activates and deactivates Speed Search at start in accordance with whether a Run command was issued during an undervoltage (Uv) condition. Function is active when a momentary power loss (L2-01 = 1 or 2), Speed Search at start (b3-01 = 1), and coasting to a stop (b1-03 = 1) are enabled.

Note

- 1. Use a sequence that will hold the Run command even during momentary power losses when the Momentary Power Loss Operation Selection is enabled (L2-01 = 1 or 2).
- 2. Disable this parameter for a machine in which the motor will stop during a momentary power loss.

| No.   | Name                                                       | Setting Range | Default |
|-------|------------------------------------------------------------|---------------|---------|
| b3-33 | Speed Search Selection when Run Command is Given during Uv | 0, 1          | 0       |

Setting 0: Disabled Setting 1: Enabled

### ■ b3-50/b3-51: Backspin Search Direction Judgment Time 1/2

The direction of the Speed Search is adjusted to allow for backspin.

When momentary power loss time t is shorter than the time set in b3-50, the search operates according to the direction command. When momentary power loss time t is equal to or longer than the time set in b3-51, the search operates from the opposite direction of the direction command. When momentary power loss time t is equal to or longer than the time set in b3-50 and shorter than b3-15, baseblock continues until momentary power loss time t exceeds the time set in b3-51. The search then operates from the opposite direction of the direction command.

Note:

- 1. Use these parameters only in applications in which backspin can occur
- **2.** Be sure to set b3-50 < b3-51.
- 3. Backspin detection is not necessary with a PM motor.

| No.   | Name                                      | Setting Range | Default             |
|-------|-------------------------------------------|---------------|---------------------|
| b3-50 | Backspin Search Direction Judgment Time 1 | 0.0 to 10.0   | Determined by A1-02 |
| b3-51 | Backspin Search Direction Judgment Time 2 | 0.0 to 10.0   | 0.0                 |

#### Speed Search from the Direction Command (0.0 ≤ Momentary Power Loss Time t < b3-50)

When time t from the momentary power loss to recovery is shorter than the setting value of b3-50, Speed Search is performed in the direction specified by the direction command. The deceleration time set in b3-52 is used for the search frequency and the setting value of the frequency reference is used as the starting search frequency.

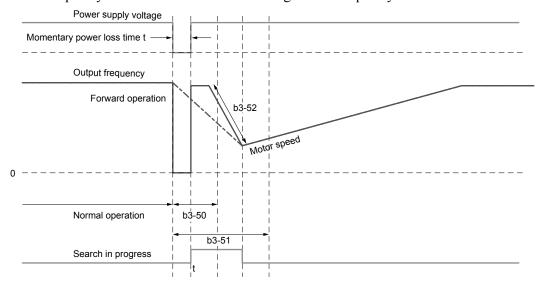



Figure 5.19 Speed Search from Forward Run Command (0 ≤ t < b3-50)

### Continuous Baseblock (b3-50 ≤ t < b3-51)

When time t from the momentary power loss to recovery is between the times set for b3-50 and b3-51, operation will not be restarted and the baseblock will continue. The drive will stay in baseblock for the time set in b3-51 even after restoring power. After the time set in b3-51 passes, Speed Search starts in the opposite direction of the direction command. The deceleration time in b3-53 is used for the search frequency and the setting value of the frequency reference is used as the starting search frequency.

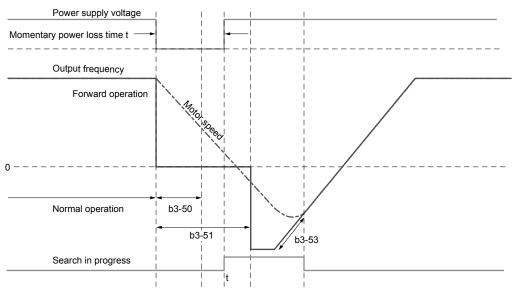



Figure 5.20 Continuous Baseblock (b3-50 ≤ t < b3-51)

### Speed Search in Direction Opposite to Direction Command (b3-51 ≤ t)

When time t from the momentary power loss to recovery exceeds the setting value of b3-51, Speed Search is performed in the opposite direction of the direction command. The deceleration time in b3-53 is used for the search frequency and the setting value of the frequency reference is used as the starting search frequency.

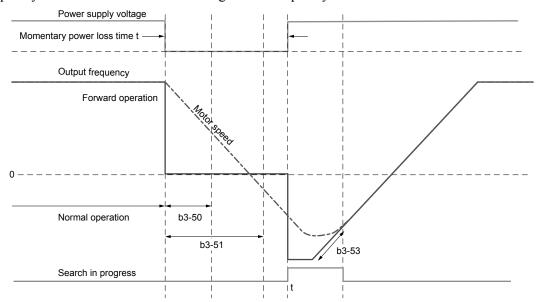



Figure 5.21 Speed Search in Direction Opposite to Direction Command (b3-51 ≤ t)

### **■** b3-52: Backspin Search Deceleration Time 1

Sets the search frequency deceleration rate when searching from the direction command when momentary power loss time t is shorter than the time set in b3-50.

Set the value lower than the motor deceleration rate during coasting.

| No.   | Name                                | Setting Range | Default |
|-------|-------------------------------------|---------------|---------|
| b3-52 | Backspin Search Deceleration Time 1 | 0.1 to 10.0 s | 2.0 s   |

### ■ b3-53: Backspin Search Deceleration Time 2

Sets the search frequency deceleration rate for a Speed Search from the opposite direction of the direction command when momentary power loss time t is equal to or longer than the time set in b3-51.

| No.   | Name                                | Setting Range | Default |
|-------|-------------------------------------|---------------|---------|
| b3-53 | Backspin Search Deceleration Time 2 | 0.1 to 10.0 s | 2.0 s   |

### ■ b3-59: PM Speed Search DC Injection Braking Time at Low Speed

Sets the DC Injection Braking time at low speed PM motor Speed Search. It is the time in which DC Injection Braking is performed to initiate stopping the motor fully when the PM motor is coasting at approximately 5% speed or less. If the moment of inertia of the machine is large and the motor will not stop, increase the setting value.

The DC Injection Braking current at low speed PM motor Speed Search will be b3-02 (Speed Search Deactivation Current).

| No.   | Name                                                   | Setting Range  | Default |
|-------|--------------------------------------------------------|----------------|---------|
| b3-59 | PM Speed Search DC Injection Braking Time at Low Speed | 0.50 to 10.0 s | 1.0 s   |

### ◆ b4: Timer Function

The timer function is independent of drive operation and can delay the switching of a digital output triggered by a digital input signal and help eliminate chattering switch noise from sensors. An on-delay and off-delay can be set separately.

To enable the timer function, set a multi-function input to "Timer Function Input" (H1- $\Box\Box$  = 18) and set a multi-function output to "Timer output" (H2- $\Box\Box$  = 12). Only one timer can be used.

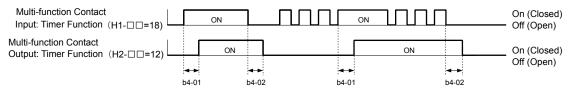
### **■** b4-01, b4-02: Timer Function On-Delay, Off-Delay Time

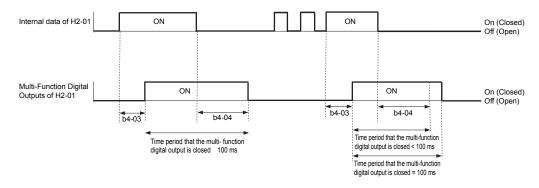
b4-01 sets the on-delay time for switching the timer output. b4-02 sets the off-delay time for switching the timer output.

| No.   | Name                          | Setting Range   | Default |
|-------|-------------------------------|-----------------|---------|
| b4-01 | Timer Function On-Delay Time  | 0.0 to 3000.0 s | 0.0 s   |
| b4-02 | Timer Function Off-Delay Time | 0.0 to 3000.0 s | 0.0 s   |

### ■ Timer Function Operation

The timer function switches on when the timer function input closes for longer than the value set to b4-01. The timer function switches off when the timer function input is open for longer than the value set to b4-02. *Figure 5.22* illustrates the timer function operation:





Figure 5.22 Timer Operation

### **■** b4-03 to b4-08: H2-□□ ON-Delay and OFF-Delay Time

Sets the length of the delay time for contact outputs to open or close for the related functions set in H2- $\Box\Box$ .

| No.   | Name                 | Setting Range | Default |
|-------|----------------------|---------------|---------|
| b4-03 | H2-01 ON Delay Time  | 0 to 65000 ms | 0 ms    |
| b4-04 | H2-01 OFF Delay Time | 0 to 65000 ms | 0 ms    |
| b4-05 | H2-02 ON Delay Time  | 0 to 65000 ms | 0 ms    |
| b4-06 | H2-02 OFF Delay Time | 0 to 65000 ms | 0 ms    |
| b4-07 | H2-03 ON Delay Time  | 0 to 65000 ms | 0 ms    |

| No.   | Name                 | Setting Range | Default |
|-------|----------------------|---------------|---------|
| b4-08 | H2-03 OFF Delay Time | 0 to 65000 ms | 0 ms    |



**Note:** The multi-function digital output closes for at least 100 ms even when the length of the off-delay time and on-delay time for multi-function digital output are each shorter than 100 ms,

### b5: PID Control

The drive has a built-in Proportional + Integral + Derivative (PID) controller that uses the difference between the target value and the feedback value to adjust the drive output frequency to minimize deviation and provide accurate closed loop control of system variables such as pressure or temperature.

#### P Control

The output of P control is the product of the deviation and the P gain so that it follows the deviation directly and linearly. With P control, only an offset between the target and feedback remains.

#### ■ I Control

The output of I control is the integral of the deviation. It minimizes the offset between target and feedback value that typically remains when pure P control is used. The integral time (I time) constant determines how fast the offset is eliminated.

#### D Control

D control predicts the deviation signal by multiplying its derivative (slope of the deviation) with a time constant, then adds this value to the PID input. This way the D portion of a PID controller provides a braking action to the controller response and can reduce the tendency to oscillate and overshoot.

D control tends to amplify noise on the deviation signal, which can result in control instability. Only use D control when absolutely necessary.

### PID Operation

To better demonstrate PID functionality, *Figure 5.23* illustrates the PID output when the PID input (deviation) is at a constant level.

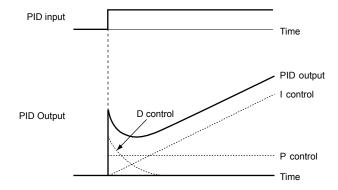



Figure 5.23 PID Operation

### **■** Using PID Control

Applications for PID control are listed in *Table 5.8*.

Table 5.8 Using PID Control

| Application                                                                                   | Description                                                                                                                                                                 | Sensors Used                 |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Speed Control                                                                                 | Speed Control Machinery speed is fed back and adjusted to meet the target value. Synchronous control is performed using speed data from other machinery as the target value |                              |
| Pressure                                                                                      | Pressure Maintains constant pressure using pressure feedback.                                                                                                               |                              |
| Fluid Control                                                                                 | Fluid Control Keeps flow at a constant level by feeding back flow data.                                                                                                     |                              |
| Temperature Control  Maintains a constant temperature by controlling a fan with a thermostat. |                                                                                                                                                                             | Thermocoupler,<br>Thermistor |

### ■ PID Setpoint Input Methods

The PID setpoint input can be input from one of the sources listed in *Table 5.9*.

If none of the sources listed in *Table 5.9* are used, the frequency reference source in b1-01 (or b1-15) or one of the inputs listed in *Table 5.9* becomes the PID setpoint.

**Table 5.9 PID Setpoint Sources** 

| PID Setpoint Source            | Settings                                                                    |
|--------------------------------|-----------------------------------------------------------------------------|
| Analog Input A1                | Set $H3-02 = C$                                                             |
| Analog Input A2                | Set H3-10 = C                                                               |
| Analog Input A3                | Set H3-06 = C                                                               |
| MEMOBUS/Modbus Register 0006 H | Set bit 1 in register 000F H to 1 and input the setpoint to register 0006 H |
| Pulse Input RP                 | Set H6-01 = 2                                                               |
| Parameter b5-19                | Set parameter b5-18 = 1 and input the PID setpoint to b5-19                 |

Note: A duplicate allocation of the PID setpoint input will cause an oPE07 (Multi-Function Analog Input Selection Error) alarm.

### PID Feedback Input Methods

Input one feedback signal for normal PID control or input two feedback signals can for controlling a differential process value.

#### **Normal PID Feedback**

Input the PID feedback signal from one of the sources listed in *Table 5.10*:

Table 5.10 PID Feedback Sources

| PID Feedback Source | Settings      |  |
|---------------------|---------------|--|
| Analog Input A1     | Set H3-02 = B |  |
| Analog Input A2     | Set H3-10 = B |  |
| Analog Input A3     | Set H3-06 = B |  |
| Pulse Input RP      | Set H6-01 = 1 |  |

Note: A duplicate allocation of the PID feedback input will cause an oPE07 (Multi-Function Analog Input Selection Error) alarm.

### **Differential Feedback**

The second PID feedback signal for differential feedback can come from the sources listed in *Table 5.11*. The differential feedback function is automatically enabled when a differential feedback input is assigned.

Table 5.11 PID Differential Feedback Sources

| PID Differential Feedback Source | Settings                                   |
|----------------------------------|--------------------------------------------|
| Analog Input A1                  | Set H3-02 = 16 (Differential PID Feedback) |
| Analog Input A2                  | Set H3-10 = 16 (Differential PID Feedback) |
| Analog Input A3                  | Set H3-06 = 16 (Differential PID Feedback) |

Note: A duplicate allocation of the PID differential feedback input will cause an oPE07 (Multi-Function Analog Input Selection Error) alarm.

### ■ PID Block Diagram

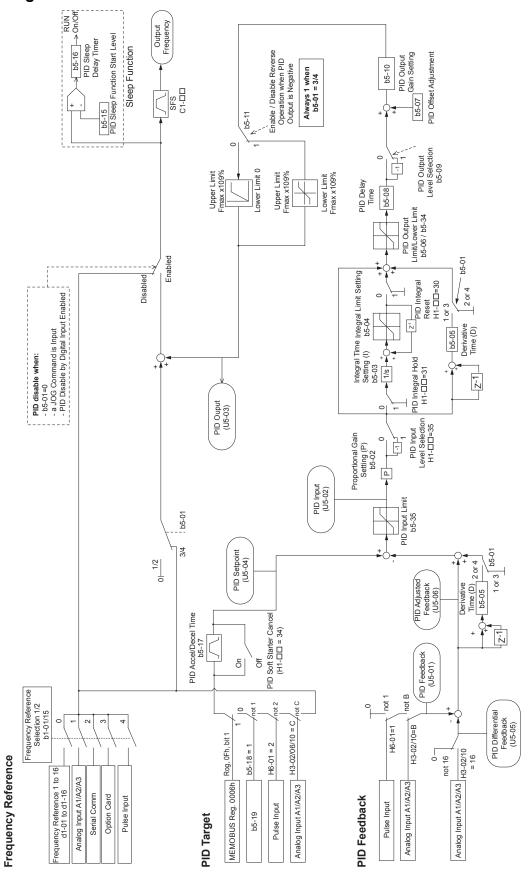



Figure 5.24 PID Block Diagram

### ■ b5-01: PID Function Setting

Enables or disables the PID operation and selects the PID operation mode.

| No.   | Parameter Name       | Setting Range | Default |
|-------|----------------------|---------------|---------|
| b5-01 | PID Function Setting | 0 to 8        | 0       |

### Setting 0: PID disabled

#### Setting 1: Output frequency = PID output 1

The PID controller is enabled and the PID output builds the frequency reference. The PID input is D controlled.

#### Setting 2: Output frequency = PID output 2

The PID controller is enabled and the PID output builds the frequency reference. The PID feedback is D controlled.

#### Setting 3: Output frequency = frequency reference + PID output 1

The PID controller is enabled and the PID output is added to the frequency reference. The PID input is D controlled.

### Setting 4: Output frequency = frequency reference + PID output 2

The PID controller is enabled and the PID output is added to the frequency reference. The PID feedback is D controlled.

**Note:** Set values 5 to 8 when upgrading from a previous Yaskawa drive model (e.g., Varispeed F7).

Setting 5: Mode compatible with setting 1 of similar products from a previous product line

Setting 6: Mode compatible with setting 2 of similar products from a previous product line

Setting 7: Mode compatible with setting 3 of similar products from a previous product line

Setting 8: Mode compatible with setting 4 of similar products from a previous product line

### **■** b5-02: Proportional Gain Setting (P)

Sets the P gain applied to the PID input. Larger values will tend to reduce the error but may cause oscillations if set too high, while lower values may allow too much offset between the setpoint and feedback.

| No.   | Name                          | Setting Range | Default |
|-------|-------------------------------|---------------|---------|
| b5-02 | Proportional Gain Setting (P) | 0.00 to 25.00 | 2.00    |

### **■** b5-03: Integral Time Setting (I)

Sets the time constant used to calculate the integral of the PID input. The shorter the integral time set to b5-03, the faster the offset will be eliminated. If the integral time is set too short, however, overshoot or oscillation may occur. To turn off the integral time, set b5-03 to 0.00.

| No.   | Name                      | Setting Range  | Default |
|-------|---------------------------|----------------|---------|
| b5-03 | Integral Time Setting (I) | 0.0 to 360.0 s | 1.0 s   |

### **■** b5-04: Integral Limit Setting

Sets the maximum output possible from the integral block as a percentage of the maximum frequency (E1-04).

| No.   | Name                   | Setting Range | Default |
|-------|------------------------|---------------|---------|
| b5-04 | Integral Limit Setting | 0.0 to 100.0% | 100.0%  |

**Note:** On some applications, especially those with rapidly varying loads, the output of the PID function may show a fair amount of oscillation. Program b5-04 to apply a limit to the integral output and suppress this oscillation.

### ■ b5-05: Derivative Time (D)

Sets the time the drive predicts the PID input/PID feedback signal based on the derivative of the PID input/PID feedback. Longer time settings improve the response but can cause instability, while shorter time settings reduce the overshoot but reduce controller responsiveness. D control is disabled by setting b5-05 to zero seconds.

| No.   | Name                | Setting Range   | Default |
|-------|---------------------|-----------------|---------|
| b5-05 | Derivative Time (D) | 0.00 to 10.00 s | 0.00 s  |

### **■** b5-06: PID Output Limit

Sets the maximum output possible from the entire PID controller as a percentage of the maximum frequency (E1-04).

| No.   | Name             | Setting Range | Default |
|-------|------------------|---------------|---------|
| b5-06 | PID Output Limit | 0.0 to 100.0% | 100.0%  |

## ■ b5-07: PID Offset Adjustment

Sets the offset added to the PID controller output as a percentage of the maximum frequency (E1-04).

| No.   | Name                  | Setting Range    | Default |
|-------|-----------------------|------------------|---------|
| b5-07 | PID Offset Adjustment | -100.0 to 100.0% | 0.0%    |

## **■** b5-08: PID Primary Delay Time Constant

Sets the time constant for the filter applied to the output of the PID controller. Normally, change is not required.

| No.   | Name                            | Setting Range   | Default |
|-------|---------------------------------|-----------------|---------|
| b5-08 | PID Primary Delay Time Constant | 0.00 to 10.00 s | 0.00 s  |

Note:

Useful when there is a fair amount of oscillation or when rigidity is low. Set to a value larger than the cycle of the resonant frequency. Increasing this time constant may reduce the responsiveness of the drive.

## ■ b5-09: PID Output Level Selection

Reverses the sign of the PID controller output signal. Normally a positive PID input (feedback smaller than setpoint) leads to positive PID output.

| No.   | Parameter Name             | Setting Range | Default |
|-------|----------------------------|---------------|---------|
| b5-09 | PID Output Level Selection | 0, 1          | 0       |

### **Setting 0: Normal Output**

A positive PID input causes an increase in the PID output (direct acting).

### **Setting 1: Reverse Output**

A positive PID input causes a decrease in the PID output (reverse acting).

## **■** b5-10: PID Output Gain Setting

Applies a gain to the PID output and can be helpful when the PID function is used to trim the frequency reference (b5-01 = 3 or 4).

| No.   | Name                    | Setting Range | Default |
|-------|-------------------------|---------------|---------|
| b5-10 | PID Output Gain Setting | 0.00 to 25.00 | 1.00    |

## **■** b5-11: PID Output Reverse Selection

Determines whether a negative PID output reverses the direction of drive operation. This parameter has no effect when the PID function trims the frequency reference (65-01=3 or 4) and the PID output will not be limited (same as 65-11=1).

| No.   | Parameter Name               | Setting Range | Default |
|-------|------------------------------|---------------|---------|
| b5-11 | PID Output Reverse Selection | 0. 1          | 0       |

### Setting 0: Reverse Disabled

Negative PID output will be limited to 0 and the drive output will be stopped.

#### Setting 1: Reverse Enabled

Negative PID output will cause the drive to run in the opposite direction.

### PID Feedback Loss Detection

The PID feedback loss detection function detects broken sensors or broken sensor wiring. It should be used when PID control is enabled to prevent critical machine conditions (e.g., acceleration to max. frequency) caused by a feedback loss.

Feedback loss can be detected in two ways:

## • Feedback Low Detection

Detected when the feedback falls below a certain level for longer than the specified time. This function is set up using parameters b5-12 to b5-14.

Feedback High Detection

Detected when the feedback rises above a certain level for longer than the specified time. This function is set up using parameters b5-12, b5-36, and b5-37.

The following figure illustrates the working principle of feedback loss detection when the feedback signal is too low. Feedback high detection works in the same way.

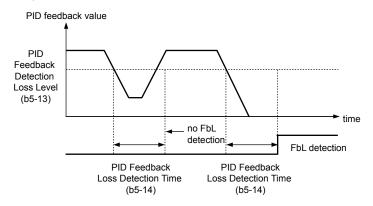



Figure 5.25 PID Feedback Loss Detection

#### **■** b5-12: PID Feedback Loss Detection Selection

Enables or disables the feedback loss detection and sets the operation when a feedback loss is detected.

| No.   | Parameter Name                        | Setting Range | Default |
|-------|---------------------------------------|---------------|---------|
| b5-12 | PID Feedback Loss Detection Selection | 0 to 5        | 0       |

### **Setting 0: Multi-Function Digital Outputs Only**

Multi-function digital outputs set for "PID feedback low" ( $H2-\Box\Box=3E$ ) will be triggered if the PID feedback value is below the detection level set to b5-13 for the time set to b5-14 or longer. Multi-function digital outputs set for "PID feedback high" ( $H2-\Box\Box=3F$ ) will be triggered if the PID feedback value is beyond the detection level set to b5-36 for longer than the time set to b5-37. Neither a fault nor an alarm is displayed on the digital operator and the drive will continue operation. The multi-function digital outputs reset when the feedback value leaves the loss detection range.

### Setting 1: Feedback Loss Alarm

If the PID feedback value falls below the level set to b5-13 for longer than the time set to b5-14, a "FBL - Feedback Low" alarm will be displayed and a digital output set for "PID feedback low" ( $H2-\Box\Box=3E$ ) will be triggered. If the PID feedback value exceeds the level set to b5-36 for longer than the time set to b5-37, a "FBH - Feedback High" alarm will be displayed and a digital output set for "PID feedback high" ( $H2-\Box\Box=3F$ ) will be triggered. Both events trigger an alarm output ( $H2-\Box\Box=10$ ). The drive will continue operation. The alarm and multi-function digital outputs reset when the feedback value leaves the loss detection range.

### Setting 2: Feedback Loss Fault

If the PID feedback value falls below the level set to b5-13 for longer than the time set to b5-14, a "FbL - Feedback Low" fault will be displayed. If the PID feedback value exceeds the level set to b5-36 for longer than the time set to b5-37, a "FbH - Feedback High" fault will be displayed. Both events trigger a fault output ( $H2-\Box\Box=E$ ) and cause the drive to stop the motor.

### Setting 3: Digital Output Only, even if PID Is Disabled by Digital Input

Same as b5-12 = 0. Detection remains active when PID is disabled by a digital input (H1- $\Box\Box$  = 19).

### Setting 4: Feedback Loss Alarm, even if PID Is Disabled by Digital Input

Same as b5-12 = 1. Detection remains active when PID is disabled by a digital input (H1- $\Box\Box$  = 19).

#### Setting 5: Feedback Loss fault, even if PID Is Disabled by Digital Input

Same as b5-12 = 2. Detection remains active when PID is disabled by a digital input (H1- $\Box\Box$  = 19).

#### ■ b5-13: PID Feedback Low Detection Level

Sets the PID feedback detection low level as a percentage of E1-04 (Maximum Output Frequency). The PID feedback must fall below this level for longer than the time set to b5-14 before feedback loss is detected.

| No.   | Name                             | Setting Range | Default |
|-------|----------------------------------|---------------|---------|
| b5-13 | PID Feedback Low Detection Level | 0 to 100%     | 0%      |

## **■** b5-14: PID Feedback Low Detection Time

Sets the time that the PID feedback has to fall below b5-13 before feedback loss is detected.

| No.   | Name                            | Setting Range | Default |
|-------|---------------------------------|---------------|---------|
| b5-14 | PID Feedback Low Detection Time | 0.0 to 25.5 s | 1.0 s   |

## **■** b5-36: PID Feedback High Detection Level

Sets the excessive PID feedback detection high level as a percentage of E1-04 (Maximum Output Frequency). The PID feedback must exceed this level for longer than the time set to b5-37 before feedback loss is detected.

| No.   | Name                              | Setting Range | Default |
|-------|-----------------------------------|---------------|---------|
| b5-36 | PID Feedback High Detection Level | 0 to 100%     | 100%    |

## ■ b5-37: PID Feedback High Detection Time

Sets the time that the PID feedback must exceed the value set to b5-36 before feedback loss is detected.

| No.   | Name                             | Setting Range | Default |
|-------|----------------------------------|---------------|---------|
| b5-37 | PID Feedback High Detection Time | 0.0 to 25.5 s | 1.0 s   |

## PID Sleep

The PID Sleep function stops the drive when the PID output or the frequency reference falls below the PID Sleep operation level for a certain time. The drive will resume operating when the PID output or frequency reference rise above the PID Sleep operation level for the specified time. An example of PID Sleep operation appears in the figure below.

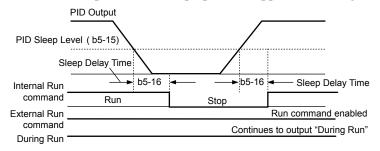



Figure 5.26 PID Sleep Operation

### Notes on using the PID Sleep function

- The PID Sleep function is active even when PID control is disabled.
- The PID Sleep function stops the motor according to the stopping method set to b1-03.

The parameters necessary to control the PID Sleep function are explained below.

# ■ b5-15: PID Sleep Function Start Level

Sets the level that triggers PID Sleep.

The drive goes into Sleep mode if the PID output or frequency reference is smaller than b5-15 for longer than the time set to b5-16. The drive resumes operation when the PID output or frequency reference is above b5-15 for longer than the time set to b5-16.

| No.   | Name                           | Setting Range       | Default |
|-------|--------------------------------|---------------------|---------|
| b5-15 | PID Sleep Function Start Level | 0.0 to 400.0 Hz <1> | 0.0 Hz  |

<sup>&</sup>lt;1> In AOLV/PM and CLV/PM control modes, the setting units and range are expressed as a percentage (0.0 to 100.0%).

## **■** b5-16: PID Sleep Delay Time

Sets the delay time to activate or deactivate the PID Sleep function.

| No.   | Name                 | Setting Range | Default |
|-------|----------------------|---------------|---------|
| b5-16 | PID Sleep Delay Time | 0.0 to 25.5 s | 0.0 s   |

## ■ b5-17: PID Accel/Decel Time

The PID acceleration/deceleration time is applied on the PID setpoint value.

When the setpoint changes quickly, the normal C1- $\square\square$  acceleration times reduce the responsiveness of the system as they are applied after the PID output. The PID accel/decel time helps avoid the hunting and overshoot and undershoot that can result from the reduced responsiveness.

The PID acceleration/deceleration time can be canceled using a digital input programmed for "PID SFS cancel" (H1- $\square\square$  = 34).

| No.   | Name                 | Setting Range   | Default |
|-------|----------------------|-----------------|---------|
| b5-17 | PID Accel/Decel Time | 0.0 to 6000.0 s | 0.0 s   |

## **■** b5-18: PID Setpoint Selection

Enables or disables parameter b5-19 for PID setpoint.

| No.   | Parameter Name         | Setting Range | Default |
|-------|------------------------|---------------|---------|
| b5-18 | PID Setpoint Selection | 0, 1          | 0       |

### Setting 0: Disabled

Parameter b5-19 is not used as the PID setpoint.

### Setting 1: Enabled

Parameter b5-19 is used as PID setpoint.

## ■ b5-19: PID Setpoint Value

Used as the PID setpoint if parameter b5-18 = 1.

| No.   | Name               | Setting Range   | Default |
|-------|--------------------|-----------------|---------|
| b5-19 | PID Setpoint Value | 0.00 to 100.00% | 0.00%   |

# **■** b5-20: PID Setpoint Scaling

Determines the units for the PID Setpoint Value (b5-19) and monitors U5-01 and U5-04. The units for setting and display can be changed with b5-20.

| No.   | Parameter Name       | Setting Range | Default |
|-------|----------------------|---------------|---------|
| b5-20 | PID Setpoint Scaling | 0 to 3        | 1       |

### Setting 0: 0.01 Hz

The setpoint and PID monitors are displayed in Hz with a resolution of 0.01 Hz.

### Setting 1: 0.01% (100.00%: Maximum PID Feedback)

The setpoint and PID monitors are displayed as a percentage with a resolution of 0.01%.

### Setting 2: r/min (Set the Motor Poles)

The setpoint and PID monitors are displayed in r/min with a resolution of 1 r/min.

### Setting 3: User Defined (Determined by b5-38 and b5-39)

Parameters b5-38 and b5-39 determine the units and resolution used to display the values the setpoint in b5-19, and PID monitors U1-01 and U1-04.

## **■** b5-34: PID Output Lower Limit

Sets the minimum possible PID controller output as a percentage of the maximum output frequency (E1-04). The lower limit is disabled when set to 0.00%

| No.   | Name                   | Setting Range    | Default |
|-------|------------------------|------------------|---------|
| b5-34 | PID Output Lower Limit | -100.0 to 100.0% | 0.00%   |

## **■** b5-35: PID Input Limit

Sets the maximum allowed PID input as a percentage of the maximum output frequency (E1-04). Parameter b5-35 acts as a bipolar limit.

| No.   | Name            | Setting Range  | Default |
|-------|-----------------|----------------|---------|
| b5-35 | PID Input Limit | 0.0 to 1000.0% | 1000.0% |

## **■** b5-38, b5-39: PID Setpoint User Display, PID Setpoint Display Digits

When parameter b5-20 is set to 3, parameters b5-38 and b5-39 set a user-defined display for the PID setpoint (b5-19) and PID feedback monitors (U5-01, U5-04).

Parameter b5-38 determines the display value when the maximum frequency is output and parameter b5-39 determines the number of digits. The setting value is equal to the number of decimal places.

| No.   | Name                        | Setting Range | Default             |
|-------|-----------------------------|---------------|---------------------|
| b5-38 | PID Setpoint User Display   | 1 to 60000    | Determined by b5-20 |
| b5-39 | PID Setpoint Display Digits | 0 to 3        | Determined by b5-20 |

**Setting 0: No Decimal Places** 

Setting 1: One Decimal Place Setting 2: Two Decimal Places Setting 3: Three Decimal Places

## ■ b5-40: Frequency Reference Monitor Content During PID

Sets the content of the frequency reference monitor display (U1-01) when PID control is active.

| No.   | Name                                           | Setting Range | Default |
|-------|------------------------------------------------|---------------|---------|
| b5-40 | Frequency Reference Monitor Content During PID | 0, 1          | 0       |

### Setting 0: Frequency Reference after PID

Monitor U1-01 displays the frequency reference increased or reduced for the PID output.

### **Setting 1: Frequency Reference**

Monitor U1-01 displays the frequency reference value.

### ■ b5-47: PID Output Reverse Selection 2

Determines whether a negative PID output reverses the direction of drive operation. When the PID function is used to trim the frequency reference (b5-01 = 3 or 4), this parameter has no effect and the PID output will not be limited (same as b5-11 = 1).

| No.   | Name                           | Setting Range | Default |
|-------|--------------------------------|---------------|---------|
| b5-47 | PID Output Reverse Selection 2 | 0, 1          | 1       |

#### Setting 0: Reverse Disabled

Negative PID output will be limited to 0 and the drive output will be stopped.

### Setting 1: Reverse Enabled

Negative PID output will cause the drive to run in the opposite direction.

# **■** Fine-Tuning PID

Follow the directions below to fine tune PID control parameters:

Table 5.12 PID Fine Tuning

| Goal                                                                     | Tuning Procedure                                                                                                                                                                                                                                                                              | Result                                              |
|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Suppress overshoot                                                       | <ul> <li>Reduce the derivative time (b5-05)</li> <li>Increase the integral time (b5-03)</li> </ul>                                                                                                                                                                                            | Response Before adjustment  After adjustment  Time  |
| Achieve stability quickly while allowing some overshoot                  | <ul> <li>Decrease the integral time (b5-03)</li> <li>Increase the derivative time (b5-05)</li> </ul>                                                                                                                                                                                          | Response After adjustment  Before adjustment  Time  |
| Suppress long cycle oscillations (longer than the integral time setting) | Increase the integral time (b5-03)                                                                                                                                                                                                                                                            | Response  After adjustment  Time                    |
| Suppress short cycle oscillations                                        | <ul> <li>If oscillation cycle time is close to the derivative time, reduce the derivative time (b5-05).</li> <li>If the derivative time is set to 0.00 s and oscillations are still a problem, reduce the proportional gain (b5-02) or increase the PID primary delay time (b5-08)</li> </ul> | Response  Before adjustment  After adjustment  Time |

## ◆ b6: Dwell Function

The Dwell function temporarily holds the frequency reference at a predefined value for a set time then continues accelerating or decelerating.

The Dwell function helps prevent speed loss when starting and stopping a heavy load with induction motors. When running a PM motor in V/f control, the pause in acceleration allows the PM motor rotor to align with the stator field of the motor and reduce the starting current.

*Figure 5.27* illustrates how the Dwell function works.

**Note:** Set the stopping method to "Ramp to Stop" (b1-03 = 0) to use the Dwell function.

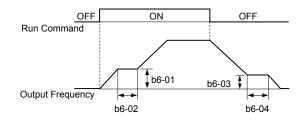


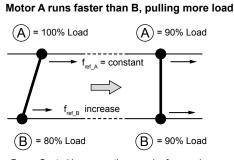

Figure 5.27 Dwell Function at Start and Stop

## ■ b6-01, b6-02: Dwell Reference, Dwell Time at Start

Parameter b6-01 determines the frequency that is held for the time set in b6-02 during acceleration.

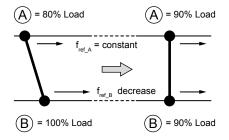
| No.   | Name                     | Setting Range   | Default |
|-------|--------------------------|-----------------|---------|
| b6-01 | Dwell Reference at Start | 0.0 to 400.0 Hz | 0.0 Hz  |
| b6-02 | Dwell Time at Start      | 0.0 to 10.0 s   | 0.0 s   |

## **■** b6-03, b6-04: Dwell Reference, Dwell Time at Stop


Parameter b6-03 determines the frequency that is held for the time set in b6-04 during deceleration.

| No.   | Name                    | Setting Range   | Default |
|-------|-------------------------|-----------------|---------|
| b6-03 | Dwell Reference at Stop | 0.0 to 400.0 Hz | 0.0 Hz  |
| b6-04 | Dwell Time at Stop      | 0.0 to 10.0 s   | 0.0 s   |

# ◆ b7: Droop Control (CLV, CLV/PM)


Droop control automatically balances the load level between two motors driving the same load. Droop control must be activated in one of the drives controlling these motors. The drive in which Droop control is activated shifts the load from one motor to another by automatically reducing the speed when the torque reference rises, and automatically increasing the speed when the torque reference falls.

**Note:** Disable Feed Forward (n5-01 = 0) whenever using Droop control.



Droop Control increases the speed reference in drive B accomplishing load balance

### Motor B runs faster than A, pulling more load



Droop Control decreases the speed reference in drive B accomplishing load balance

Figure 5.28 Droop Control Application

### b7-01: Droop Control Gain

Sets the amount of speed reduction when the torque reference is 100%. The gain is set as a percentage of the maximum output frequency. A setting of 0.0% disables the Droop control function.

| No.   | Parameter Name     | Setting Range | Default |
|-------|--------------------|---------------|---------|
| b7-01 | Droop Control Gain | 0.0 to 100.0% | 0.0%    |

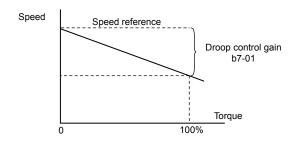



Figure 5.29 Droop Control Gain

## ■ b7-02: Droop Control Delay Time

Adjusts the responsiveness of Droop control. Reduce the setting if the reaction time is too long, and increase the setting if hunting occurs.

| No.   | Parameter Name           | Setting Range  | Default |
|-------|--------------------------|----------------|---------|
| b7-02 | Droop Control Delay Time | 0.03 to 2.00 s | 0.05 s  |

## **■** b7-03: Droop Control Limit Selection

Enables or disables the droop control limit.

| No.   | Parameter Name                | Setting Range | Default |
|-------|-------------------------------|---------------|---------|
| b7-03 | Droop Control Limit Selection | 0, 1          | 1       |

Setting 0: Disabled

Setting 1: Enabled

# b8: Energy Saving

The Energy Saving feature improves overall system operating efficiency by operating the motor at its most efficient level.

Note:

- 1. Energy Saving is not designed for applications that experience instantaneous heavy loads or applications that rarely operate with light load conditions.
- 2. The performance of the Energy Saving function depends on the accuracy of the motor data. Always perform Auto-Tuning and correctly enter the motor data before using this function.

# **■** b8-01: Energy Saving Control Selection

Enables or disables the Energy Saving function.

**Note:** Enabling the Energy Saving function when using a PM motor may adversely affect motor efficiency depending on the type of PM motor. Disable the Energy Saving function in such cases.

| No.   | Parameter Name                  | Setting Range | Default             |
|-------|---------------------------------|---------------|---------------------|
| b8-01 | Energy Saving Control Selection | 0, 1          | Determined by A1-02 |

Setting 0: Disabled Setting 1: Enabled

## ■ b8-02: Energy Saving Gain (OLV, CLV)

Sets the gain level for Energy Saving. A higher value results in lower magnetization of the motor and less energy consumption. If the value is set too high the motor may stall.

| No.   | Name               | Setting Range | Default             |
|-------|--------------------|---------------|---------------------|
| b8-02 | Energy Saving Gain | 0.0 to 10.0   | Determined by A1-02 |

## ■ b8-03: Energy Saving Control Filter Time Constant (OLV, CLV)

Sets the response time for Energy Saving. A lower value allows for a quicker response; however a value that is too low may cause instability.

| No.   | Name                                       | Setting Range   | Default                       |
|-------|--------------------------------------------|-----------------|-------------------------------|
| b8-03 | Energy Saving Control Filter Time Constant | 0.00 to 10.00 s | Determined by A1-02 and o2-04 |

## **■** b8-04: Energy Saving Coefficient Value (V/f, V/f w/PG)

Fine tunes Energy Saving control.

The default setting is for a standard Yaskawa motor. When using a different motor, adjust this parameter in 5% increments until output power monitor U1-08 is at the minimum value, while running the drive with a light load.

A low setting results in less output voltage and less energy consumption. If the value is set too low the motor may stall. The default setting depends on the capacity of the drive.

| No.   | Name                            | Setting Range  | Default                               |
|-------|---------------------------------|----------------|---------------------------------------|
| b8-04 | Energy Saving Coefficient Value | 0.00 to 655.00 | Determined by C6-01, E2-11, and o2-04 |

Note:

The default value changes if the motor rated capacity set to E2-11 is changed. The Energy Saving coefficient is set automatically when Auto-Tuning for Energy Saving is performed (*Refer to Auto-Tuning on page 163*).

## ■ b8-05: Power Detection Filter Time (V/f, V/f w/PG)

Determines how often in milliseconds the output power is measured. The Energy Saving function continuously searches out the lowest output voltage to achieve minimum output power.

Reducing this setting increases the response time. If the filter time is too short, the motor may become unstable with a lighter load.

| No.   | Name                        | Setting Range | Default |
|-------|-----------------------------|---------------|---------|
| b8-05 | Power Detection Filter Time | 0 to 2000 ms  | 20 ms   |

# **■** b8-06: Search Operation Voltage Limit (V/f, V/f w/PG)

Sets the voltage limit for the Speed Search optimal output voltage detection as a percentage of the maximum output voltage. The drive will keep the output voltage above this level during the search operation to prevent motor stalling.

**Note:** If set too low, the motor may stall when the load is suddenly increased. Disabled when set to 0. Setting this value to 0 does not disable Energy Saving.

| No.   | Name                           | Setting Range | Default |
|-------|--------------------------------|---------------|---------|
| b8-06 | Search Operation Voltage Limit | 0 to 100%     | 0%      |

# b8-16: Energy Saving Parameter (Ki) for PM Motors

There is normally no need to change this parameter from the default value. Coefficient to adjust torque linearity.

Set to the Ki value specified on the motor nameplate.

Setting E5-01, Motor Code Selection (for PM Motors), to  $1 \square \square \square \square$  or  $2 \square \square \square$  automatically sets the calculated value. This set value cannot be changed. If oscillation occurs when Energy Saving is enabled (b8-01 = 1), check the value displayed in monitor U5-21. If the value displayed differs from the Ki value written on the motor nameplate, set b8-16 accordingly.

| No.   | Name                                       | Setting Range | Default |
|-------|--------------------------------------------|---------------|---------|
| b8-16 | Energy Saving Parameter (Ki) for PM Motors | 0.00 to 3.00  | 1.00    |

## ■ b8-17: Energy Saving Parameter (Kt) for PM Motors

There is normally no need to change this parameter from the default value. Coefficient to adjust torque linearity.

Set to the Kt value specified on the motor nameplate.

Setting E5-01, Motor Code Selection (for PM Motors), to  $1 \square \square \square$  or  $2 \square \square \square$  automatically sets the calculated value. This set value cannot be changed. If oscillation occurs when Energy Saving is enabled (b8-01 = 1), check the value displayed in monitor U5-22. If the value displayed differs from the Kt value written on the motor nameplate, set b8-17 accordingly.

| No.   | Name                                       | Setting Range | Default |
|-------|--------------------------------------------|---------------|---------|
| b8-17 | Energy Saving Parameter (Kt) for PM Motors | 0.00 to 3.00  | 1.00    |

## **■** b8-27: q-Axis Current Compensation Method when Output Voltage Is Limited

Sets a compensation method for the q-axis current when output voltage is limited.

There is normally no need to change this parameter from the default value.

| No.   | Name                                                                 | Setting Range | Default |
|-------|----------------------------------------------------------------------|---------------|---------|
| b8-27 | q-Axis Current Compensation Method when Output Voltage Is<br>Limited | 0, 1          | 0       |

Setting 0: Output Voltage Limit Priority Setting 1: q-Axis Current Priority

## ◆ b9: Zero Servo

The Zero Servo function is a position loop that can be used to lock the motor at a certain position against external power to the motor.

The drive will enter Zero Servo mode and maintain the current position when the following three conditions are true:

- The drive has an active Run command.
- A digital input programmed for Zero Servo (H1- $\Box\Box$  = 72) is closed.
- The motor speed falls below b2-01 setting.

The drive accelerates when the input assigned to trigger the Zero Servo function is released and the Run command is still present according to the speed reference.

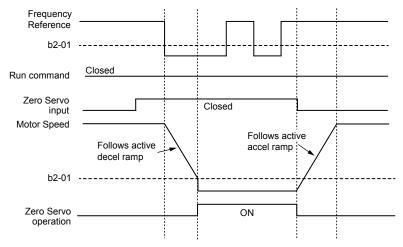



Figure 5.30 Zero Servo Operation

When Zero Servo mode is active, the deviation between the rotor position and the zero position is displayed in monitor U6-22 (monitor value must be divided by 4 to get the deviation in actual encoder pulses).

A digital output programmed for "Zero Servo complete" ( $H2-\Box\Box=33$ ) is turned on when the rotor position is within the zero position, plus or minus the Zero Servo completion width set to parameter b9-02.

Note:

- 1. The Run command must remain on when using the Zero Servo function. Zero Servo will not hold the load in place if the Run command is switched off.
- 2. When the Zero Servo command has shut off, the Zero Servo Completion digital output also shuts off.
- 3. Avoid using Zero Servo to lock 100% load for long periods, as this can trigger a fault. If such loads need to be held in place for long periods, either make sure the current is less than 50% of the drive rated current during Zero Servo, or use a larger capacity drive.
- **4.** If the load rotates the motor when using CLV/PM, a dv4 fault may occur. To prevent this, either increase the Zero Servo gain (b9-01) or increase the number of pulses set to F1-19 that are required to trigger dv4.

### ■ b9-01: Zero Servo Gain

Adjusts the responsiveness of the Zero Servo position loop. Increase the value if the response is too slow and the deviation from the zero position rises too high when load is applied. Decrease the value if vibrations occur during Zero Servo operation.

**Note:** Before adjusting the Zero Servo gain, make sure the ASR parameters (C5-□□) are set up properly and vibration or hunting does not occur when running with a zero speed reference.

| No.   | Name            | Setting Range | Default |
|-------|-----------------|---------------|---------|
| b9-01 | Zero Servo Gain | 0 to 100      | 5       |

# **■** b9-02: Zero Servo Completion Width

Sets the output range of the Zero Servo completion signal. Enter the amount of deviation allowable from the desired position to trigger Zero Servo. An output terminal set for Zero Servo (H2- $\square\square$  = 33) will be triggered when the motor reaches the position Zero Servo plus or minus b9-02.

| No.   | Name                        | Setting Range | Default |
|-------|-----------------------------|---------------|---------|
| b9-02 | Zero Servo Completion Width | 0 to 16383    | 10      |

# 5.3 C: Tuning

C parameters set the characteristics for acceleration, deceleration, and S-curves. Other parameters in the C group cover settings for slip compensation, torque compensation, and carrier frequency.

## ◆ C1: Acceleration and Deceleration Times

## ■ C1-01 to C1-08: Accel, Decel Times 1 to 4

Four different sets of acceleration and deceleration times can be set in the drive by digital inputs, motor selection, or switched automatically.

Acceleration time parameters always set the time to accelerate from 0 Hz to the maximum output frequency (E1-04). Deceleration time parameters always set the time to decelerate from maximum output frequency to 0 Hz. C1-01 and C1-02 are the default active accel/decel settings.

| No.   | Parameter Name                             | Setting Range       | Default |
|-------|--------------------------------------------|---------------------|---------|
| C1-01 | Acceleration Time 1                        |                     |         |
| C1-02 | Deceleration Time 1                        |                     |         |
| C1-03 | Acceleration Time 2                        |                     |         |
| C1-04 | Deceleration Time 2                        | 0.04= (000.0 = <1>  | 10.0 s  |
| C1-05 | Acceleration Time 3 (Motor 2 Accel Time 1) | 0.0 to 6000.0 s <1> | 10.0 \$ |
| C1-06 | Deceleration Time 3 (Motor 2 Decel Time 1) |                     |         |
| C1-07 | Acceleration Time 4 (Motor 2 Accel Time 2) |                     |         |
| C1-08 | Deceleration Time 4 (Motor 2 Decel Time 2) |                     |         |

<sup>&</sup>lt;1> The setting range for the acceleration and deceleration times is determined by the accel/decel time setting units in C1-10. For example, if the time is set in units of 0.01 s (C1-10 = 0), the setting range becomes 0.00 to 600.00 s.

## **Switching Acceleration Times by Digital Input**

Accel/decel times 1 are active by default if no input is set. Activate accel/decel times 2, 3, and 4 by digital inputs  $(H1-\Box\Box=7 \text{ and } 1A)$  as explained in *Table 5.13*.

**Active Times** Accel/Decel Time Sel. 1 Accel/Decel Time Sel. 2 H1-00 = 7 H1-DD = 1A **Acceleration Deceleration** 0 0 C1-01 C1-02 0 C1-04 1 C1-03 1 C1-05 C1-06 0 C1-07 C1-08

Table 5.13 Accel/Decel Time Selection by Digital Input

*Figure 5.31* shows an operation example for changing accel/decel times. The example below requires that the stopping method be set for "Ramp to stop" (b1-03=0).

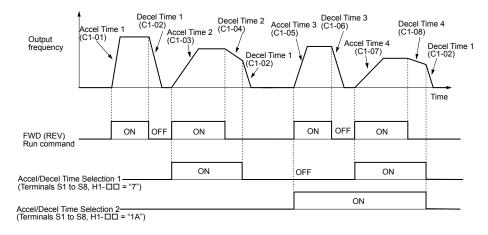



Figure 5.31 Timing Diagram of Accel/Decel Time Change

### **Switching Acceleration and Deceleration Times by Motor Selection**

When switching between motor 1 and 2 using a digital input (H1- $\square\square$  = 16), parameters C1-01 to C1-04 become accel/decel times 1 and 2 for motor 1, while C1-05 to C1-08 become accel/decel times 1 and 2 for motor 2. Accel/decel times 1 and 2 can be switched for each motor using a digital inputs set to H1- $\square\square$  = 7 like shown in *Table 5.14*.

Note:

- 1. The motor 2 selection function cannot be used with PM motors.
- 2. Attempting to use the digital input setting "Accel/Decel time 2 selection" (H1-□□ = 1A) together with motor 1/2 switching triggers an oPE03 error, indicating contradictory multifunction input settings.

Table 5.14 Motor Switching and Accel/Decel Time Combinations

| Accel/Decel Time 1 (H1-□□ = 7) |       | Selected<br>H1-□□ = 16 OFF) | Motor 2<br>(Terminal set to | Selected<br>H1-□□ = 16 ON)  Decel  C1-06 |  |
|--------------------------------|-------|-----------------------------|-----------------------------|------------------------------------------|--|
| , , ,                          | Accel | Decel                       | Accel                       | Decel                                    |  |
| Open                           | C1-01 | C1-02                       | C1-05                       | C1-06                                    |  |
| Closed                         | C1-03 | C1-04                       | C1-07                       | C1-08                                    |  |

### Switching Accel/Decel Times by a Frequency Level

The drive can switch between different acceleration and deceleration times automatically. The drive will switch from accel/decel time 4 in C1-07 and C1-08 to the default accel/decel time in C1-01 and C1-02 (C1-05 and C1-06 for motor 2) when the output frequency exceeds the frequency level set to parameter C1-11. When the frequency falls below this level, the accel/decel times are switched back. *Figure 5.32* shows an operation example.

Note:

Acceleration and deceleration times selected by digital inputs have priority over the automatic switching by the frequency level set to C1-11. For example, if accel/decel time 2 is selected, the drive will use only accel/decel time 2; it will not switch from accel/decel time 4 to the selected one.

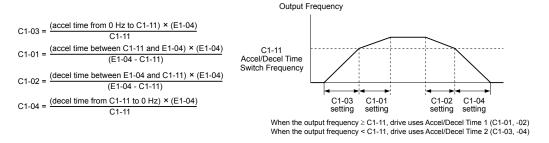



Figure 5.32 Accel/Decel Time Switching Frequency

### ■ C1-09: Fast Stop Time

Sets a special deceleration used when a select group of faults occur (e.g., L8-03 Overheat Pre-Alarm Operation Selection) or when closing a digital input configured as  $H1-\Box\Box=15$  (N.O. input) or 17 (N.C. input). A momentary closure of the digital input will trigger the Fast Stop operation; it does not have to be closed continuously.

The drive cannot be restarted after initiating a Fast Stop operation until after completing deceleration, clearing the Fast Stop input, and cycling the Run command.

A digital output programmed for "During Fast Stop" (H2- $\Box\Box$  = 4C) will be closed as long as Fast Stop is active.

| No.   | Parameter Name | Setting Range       | Default |
|-------|----------------|---------------------|---------|
| C1-09 | Fast Stop Time | 0.0 to 6000.0 s <1> | 10.0 s  |

<sup>&</sup>lt;1> The setting range for the acceleration and deceleration times is determined by the accel/decel time setting units in C1-10. For example, if the time is set in units of 0.01 s (C1-10 = 0), the setting range becomes 0.00 to 600.00 s

## ■ C1-10: Accel/Decel Time Setting Units

Determines the units for the acceleration and deceleration times set to C1-01 through C1-09 using parameter C1-10.

| No.   | Parameter Name                 | Setting Range | Default |
|-------|--------------------------------|---------------|---------|
| C1-10 | Accel/Decel Time Setting Units | 0, 1          | 1       |

### Setting 0: 0.01 s units

The accel/decel times are set in 0.01 s units. The setting range is 0.00 to 600.00 s. C1-10 cannot be set to 0 if any of the parameters C1-01 to C1-09 is set to 600.1 s or longer.

### Setting 1: 0.1 s units

The accel/decel times are set in 0.1 s units. The setting range is 0.0 to 6000.0 s.

## ■ C1-11: Accel/Decel Time Switching Frequency

Sets the frequency at which the drive switches between accel/decel time settings. *Refer to Switching Accel/Decel Times by a Frequency Level on page 229* for details.

| No.   | Parameter Name                       | Setting Range      | Default                 |
|-------|--------------------------------------|--------------------|-------------------------|
| C1-11 | Accel/Decel Time Switching Frequency | 0.0 to 400.0 Hz !> | Determined by A1-02 <1> |

<sup>&</sup>lt;1> In AOLV/PM and CLV/PM control modes, the setting units and range are expressed as a percentage (0.0 to 100.0%) instead of in Hz.

**Note:** Setting C1-11 to 0.0 disables this function.

## C2: S-Curve Characteristics

Use S-curve characteristics to smooth acceleration and deceleration and minimize abrupt shock to the load. Set S-curve characteristic time during acceleration/deceleration at start and acceleration/deceleration at stop. Increase the value set to C2-01 if the STo fault (Step Out Detection) occurs when starting a PM motor.

### ■ C2-01 to C2-04: S-Curve Characteristics

C2-01 through C2-04 set separate S-curves for each section of the acceleration or deceleration.

| No.   | Parameter Name                        | Setting Range   | Default             |
|-------|---------------------------------------|-----------------|---------------------|
| C2-01 | S-Curve Characteristic at Accel Start | 0.00 to 10.00 s | Determined by A1-02 |
| C2-02 | S-Curve Characteristic at Accel End   |                 | 0.20 s              |
| C2-03 | S-Curve Characteristic at Decel Start |                 | 0.20 s              |
| C2-04 | S-Curve Characteristic at Decel End   |                 | 0.00 s              |

Figure 5.33 illustrates S-curve application.

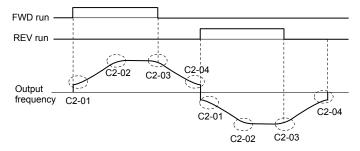



Figure 5.33 S-Curve Timing Diagram - FWD/REV Operation

Setting the S-curve will increase the acceleration and deceleration times.

- Actual accel time = accel time setting + (C2-01 + C2-02) / 2
- Actual decel time = decel time setting + (C2-03 + C2-04) / 2

# ◆ C3: Slip Compensation

The Slip Compensation function improves the speed accuracy of an induction motor. By adjusting the output frequency in accordance with the motor load, it compensates the slip and makes the motor speed equal to the frequency reference.

**Note:** Perform Auto-Tuning and make sure that the motor rated current (E2-01), the motor rated slip (E2-02), and the no-load current (E2-03) have all been set properly before making any adjustments to slip compensation parameters.

## ■ C3-01: Slip Compensation Gain

Sets the gain for the motor slip compensation function. Although this parameter rarely needs to be changed, adjustments may be necessary under the following circumstances:

- Increase the setting if the motor at constant speed is slower than the frequency reference.
- Decrease the setting if the motor at constant speed is faster than the frequency reference.

| No.   | Parameter Name         | Setting Range | Default             |
|-------|------------------------|---------------|---------------------|
| C3-01 | Slip Compensation Gain | 0.0 to 2.5    | Determined by A1-02 |

Note: Default setting is 0.0 in V/f Control (A1-02 = 0), and 1.0 in Open Loop Vector Control (A1-02 = 2). In Closed Loop Vector Control, slip compensation corrects inaccuracies that can result from temperature fluctuation in the rotor.

## ■ C3-02: Slip Compensation Primary Delay Time

Adjusts the filter on the output side of the slip compensation function. Although this parameter rarely needs to be changed, adjustments may be necessary in the following situations:

- Decrease the setting when the slip compensation response is too slow.
- Increase this setting when speed is unstable.

| No.   |   | Parameter Name                       | Setting Range | Default             |
|-------|---|--------------------------------------|---------------|---------------------|
| C3-02 | 2 | Slip Compensation Primary Delay Time | 0 to 10000 ms | Determined by A1-02 |

Note: Default for V/f Control (A1-02 = 0) is 2000 ms. Default for Open Loop Vector Control (A1-02 = 2) is 200 ms.

## ■ C3-03: Slip Compensation Limit

Sets the upper limit for the slip compensation function as a percentage of the motor rated slip (E2-02).

| No.   | Parameter Name          | Setting Range | Default |
|-------|-------------------------|---------------|---------|
| C3-03 | Slip Compensation Limit | 0 to 250%     | 200%    |

The slip compensation limit is constant throughout the constant torque range (frequency reference  $\leq$  E1-06). In the constant power range (frequency reference  $\geq$  E1-06), it is increased based on C3-03 and the output frequency as shown in the following diagram.

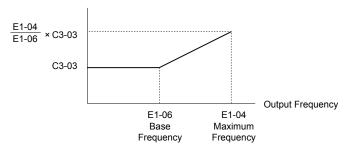



Figure 5.34 Slip Compensation Limit

# ■ C3-04: Slip Compensation Selection during Regeneration

Enables or disables slip compensation during regenerative operation.

This function does not operate when the output frequency is too low, regardless of whether it has been enabled.

| No.   | Parameter Name                                  | Setting Range | Default |
|-------|-------------------------------------------------|---------------|---------|
| C3-04 | Slip Compensation Selection during Regeneration | 0 to 2        | 0       |

#### Setting 0: Disabled

Slip compensation is not provided. Depending on the load and mode of operation, the actual motor speed will be lower or higher than the frequency reference.

### **Setting 1: Enabled (6 Hz and above)**

Slip compensation is enabled during regenerative operation. It will not be active at output frequencies below 6 Hz.

## Setting 2: Enabled (compensation provided wherever possible)

Slip compensation is enabled during regenerative operation and at frequencies as low as 2 Hz. The drive uses the motor rated slip set to E2-02 to automatically calculate the frequency range where compensation will be disabled.

## ■ C3-05: Output Voltage Limit Operation Selection

Determines if the motor flux reference is automatically reduced when output voltage reaches the saturation range.

If the input power supply voltage is low or the motor has a high voltage rating, this function improves the speed precision when moving heavy loads at high speeds. When selecting the drive, remember that the reduction in flux causes a slightly higher current at high speed when this function is enabled.

| No.   | Parameter Name                           | Setting Range | Default |
|-------|------------------------------------------|---------------|---------|
| C3-05 | Output Voltage Limit Operation Selection | 0, 1          | 0       |

Setting 0: Disabled Setting 1: Enabled

## C3-21: Motor 2 Slip Compensation Gain

Improves the speed accuracy for motor 2 and functions in the same way that C3-01 functions for motor 1. Adjust this parameter only after setting the motor rated current (E4-01), motor rated slip (E4-02), and the motor no-load current (E4-03).

**Refer to C3-01: Slip Compensation Gain on page 230** for details on adjusting this parameter.

| No.   | Parameter Name                 | Setting Range | Default             |
|-------|--------------------------------|---------------|---------------------|
| C3-21 | Motor 2 Slip Compensation Gain | 0.0 to 2.5    | Determined by E3-01 |

Note:

Default setting is 0.0 in V/f Control (E3-01 = 0). Default setting is 1.0 in Open Loop Vector Control (E3-01 = 2) and Closed Loop Vector Control (E3-01 = 3). In Closed Loop Vector Control, slip compensation gain acts as an adaptable gain.

## ■ C3-22: Motor 2 Slip Compensation Primary Delay Time

Functions for motor 2 the same way that C3-02 functions for motor 1.

**Refer to C3-02: Slip Compensation Primary Delay Time on page 231** for details on adjusting this parameter.

| No.   | Parameter Name                               | Setting Range | Default             |
|-------|----------------------------------------------|---------------|---------------------|
| C3-22 | Motor 2 Slip Compensation Primary Delay Time | 0 to 10000 ms | Determined by A1-02 |

**Note:** The default for V/f Control (E3-01 = 0) is 2000 ms. The default for Open Loop Vector Control (E3-01 = 2) is 200 ms.

## C3-23: Motor 2 Slip Compensation Limit

Sets the upper limit for the slip compensation function as a percentage of the motor rated slip (E4-02).

| No.   | Parameter Name                  | Setting Range | Default |
|-------|---------------------------------|---------------|---------|
| C3-23 | Motor 2 Slip Compensation Limit | 0 to 250%     | 200%    |

The slip compensation limit is constant throughout the constant torque range (frequency reference  $\leq$  E3-06). In the constant power range (frequency reference  $\geq$  E3-06), it is increased based on C3-23 and the output frequency as illustrated in *Figure* 5.35.

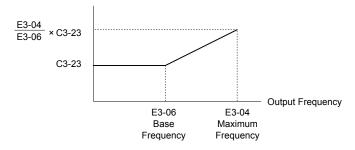



Figure 5.35 Slip Compensation Limit

## ■ C3-24: Motor 2 Slip Compensation Selection during Regeneration

Functions for motor 2 the same way that C3-04 functions for motor 1.

Refer to C3-04: Slip Compensation Selection during Regeneration on page 231 for details on adjusting this parameter.

| No.   | Parameter Name                                          | Setting Range | Default |
|-------|---------------------------------------------------------|---------------|---------|
| C3-24 | Motor 2 Slip Compensation Selection during Regeneration | 0 to 2        | 0       |

Setting 0: Disabled

### Setting 1: Enabled (6 Hz and above)

### Setting 2: Enabled (compensation provided wherever possible)

# ◆ C4: Torque Compensation

The torque compensation function compensates for insufficient torque production at start-up or when a load is applied.

**Note:** Set the motor parameters and V/f pattern properly before setting torque compensation parameters.

## ■ C4-01: Torque Compensation Gain

Sets the gain for the torque compensation function.

| No.   | Parameter Name           | Setting Range | Default             |
|-------|--------------------------|---------------|---------------------|
| C4-01 | Torque Compensation Gain | 0.00 to 2.50  | Determined by A1-02 |

### Torque Compensation in V/f, V/f w/PG, and OLV/PM:

The drive calculates the motor primary voltage loss using the output current and the termination resistor value (E2-05 for IM motors, E5-05 for PM motors) and adjusts the output voltage to compensate for insufficient torque at start or when load is applied. The effects of this voltage compensation can be increased or decreased using parameter C4-01.

### **Torque Compensation in OLV:**

The drive controls the motor excitation current (d-Axis current) and torque producing current (q-Axis current) separately. Torque compensation affects the torque producing current only. C4-01 works as a factor of the torque reference value that builds the torque producing current reference.

### **Adjustment**

Although this parameter rarely needs to be changed, it may be necessary to adjust the torque compensation gain in small steps of 0.05 in the following situations:

- Increase this setting when using a long motor cable.
- Decrease this setting when motor oscillation occurs.

Adjust C4-01 so the output current does not exceed the drive rated current.

Note

- 1. Refrain from adjusting torque compensation in Open Loop Vector Control, as it can have a negative effect on torque accuracy.
- 2. Refrain from adjusting this parameter in OLV/PM. Setting this value too high can cause overcompensation and motor oscillation.

## ■ C4-02: Torque Compensation Primary Delay Time

Sets the delay time used for applying torque compensation.

| No.   | Parameter Name                         | Setting Range | Default             |
|-------|----------------------------------------|---------------|---------------------|
| C4-02 | Torque Compensation Primary Delay Time | 0 to 60000 ms | Determined by A1-02 |

### **Adjustment**

Although C4-02 rarely needs to be changed, adjustments may be necessary in the following situations:

- Increase this setting if the motor vibrates.
- Decrease this setting if the motor responds too slowly to changes in the load.

## ■ C4-03: Torque Compensation at Forward Start (OLV)

Sets the amount of torque at start in the forward direction to improve motor performance during start with a heavy load. Compensation is applied using the time constant set in parameter C4-05. Enable this function when the load pulls the motor in reverse when starting with a Forward run command. Setting 0.0% disables this feature.

| No.   | Parameter Name                       | Setting Range | Default |
|-------|--------------------------------------|---------------|---------|
| C4-03 | Torque Compensation at Forward Start | 0.0 to 200.0% | 0.0%    |

# ■ C4-04: Torque Compensation at Reverse Start (OLV)

Sets the amount of torque reference at start in the reverse direction to improve motor performance during start with heavy load. Compensation is applied using the Torque Compensation Time set in parameter C4-05. Enable this function if the load pulls the motor in the forward direction when starting with a Reverse run command. Setting 0.0% disables this feature.

| No.   | Parameter Name                       | Setting Range  | Default |
|-------|--------------------------------------|----------------|---------|
| C4-04 | Torque Compensation at Reverse Start | -200.0 to 0.0% | 0.0%    |

## ■ C4-05: Torque Compensation Time Constant (OLV)

Sets the time constant for applying the torque compensation at start that is set to C4-03 and C4-04.

| No.   | Parameter Name                    | Setting Range | Default |
|-------|-----------------------------------|---------------|---------|
| C4-05 | Torque Compensation Time Constant | 0 to 200 ms   | 10 ms   |

## ■ C4-07: Motor 2 Torque Compensation Gain

Functions for motor 2 the same way that C4-01 functions for motor 1.

Refer to C3-01: Slip Compensation Gain on page 230 for details on adjusting this parameter.

| No.   | Parameter Name                   | Setting Range | Default |
|-------|----------------------------------|---------------|---------|
| C4-07 | Motor 2 Torque Compensation Gain | 0.00 to 2.50  | 1.00    |

# ◆ C5: Automatic Speed Regulator (ASR)

The ASR controls the motor speed in V/f w/PG, CLV, AOLV/PM, and CLV/PM control modes and adjusts the output frequency (V/f w/PG) or torque reference (CLV, AOLV/PM, CLV/PM) to minimize the difference between frequency reference and actual motor speed.

*Figure 5.36* and *Figure 5.37* illustrate ASR functionality:

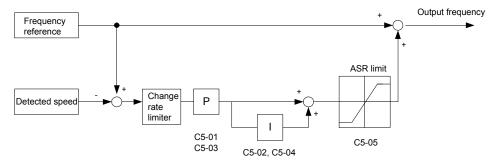



Figure 5.36 Speed Control Block Diagram for V/f Control with PG

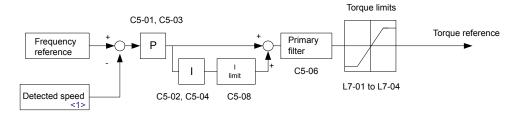



Figure 5.37 Speed Control Block Diagram for CLV, AOLV/PM and CLV/PM

<1> AOLV/PM estimates the speed using the motor model and does not require an encoder feedback signal.

# Adjusting the ASR Parameters

Perform Auto-Tuning and set up all motor data correctly prior to adjusting ASR parameters.

Use analog output signals to monitor the frequency reference after softstarter (U1-16) and the motor speed (U1-05) when adjusting the ASR. *Refer to H4: Multi-Function Analog Outputs on page 311* for details on setting up analog output functions.

Generally when tuning the ASR, optimize the ASR gain before adjusting the integral time settings. Always make adjustments with the load connected to the motor.

#### Adjusting the ASR Parameters in V/f Control with PG

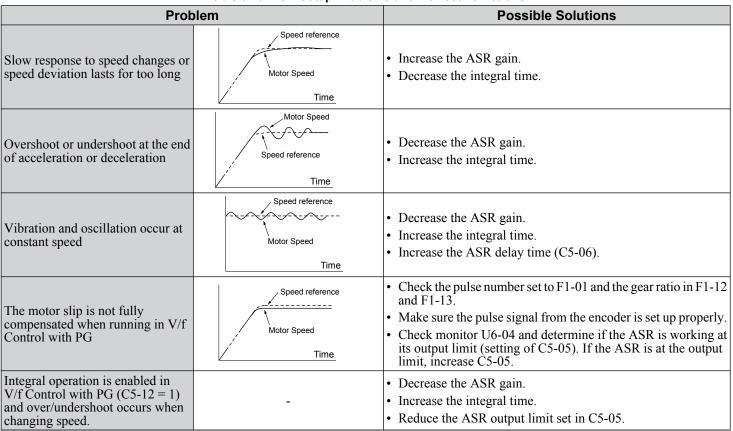
In V/f Control with PG, the ASR settings change between two sets of parameters depending on the motor speed as described in C5-01, C5-03/C5-02, C5-04: ASR Proportional Gain 1, 2/ASR Integral Time 1, 2 on page 236.

Perform the following steps for adjusting ASR parameters:

- 1. Run the motor at minimum speed and increase ASR gain 2 (C5-03) as much as possible without oscillation.
- 2. Run the motor at minimum speed and decrease ASR integral time 2 (C5-04) as much as possible without oscillation.
- **3.** Check the output current monitor to make sure that the output current is less than 50% of the drive rated current. If the value is higher than 50%, decrease C5-03 and increase C5-04.
- **4.** Run the motor at maximum speed and increase ASR gain 1 (C5-01) as much as possible without oscillations.
- **5.** Run the motor at maximum speed and decrease ASR integral time 1 (C5-02) as much as possible without oscillations.
- **6.** If higher speed precision and faster response during acceleration or deceleration are required, enable integral control during accel/decel by setting parameter C5-12 to 1. Change the speed and make sure no over/undershoot occurs.

### Adjusting the ASR Parameters in CLV, AOLV/PM, and CLV/PM

The drive is preset to use ASR settings C5-01/02 over the entire speed range in CLV, AOLV/PM, and CLV/PM. If required by the application, a second set of ASR parameters (C5-03/04) can be automatically activated depending on the motor speed or by using a digital input. *Refer to C5-01, C5-03/C5-02, C5-04: ASR Proportional Gain 1, 2/ASR Integral Time 1, 2 on page 236* for details.


Perform the following steps for adjusting ASR parameters:

- 1. Run the motor at zero speed and increase the ASR gain (C5-01) as much as possible without oscillation.
- 2. Run the motor at zero speed and decrease the ASR integral time (C5-02) as much as possible without oscillation.
- 3. Run at the normal operating speed. Check for over/undershoot when changing speed and for any oscillation.
- **4.** If problems occur in step 3, increase the integral time and reduce the gain. Alternatively, use different ASR settings for high and low speed. Set the values from step 1 and 2 to parameters C5-03 and C5-04, then set an ASR switching frequency in parameter C5-07. Run the motor at a speed higher than C5-07 and repeat step 3 while adjusting C5-01 and C5-02.

### **Solving Problems During ASR Setup**

Use *Table 5.15* when making adjustments to ASR. Though the parameters listed below are for motor 1, the same changes can be made to the corresponding motor 2 parameters when running a second motor.

**Table 5.15 ASR Setup Problems and Corrective Actions** 



| Problem                                                                         |  | Possible Solutions                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Oscillation at low speed and response is too slow at high speed (or vice versa) |  | <ul> <li>V/f control: Use C5-01/02 and C5-03/04 to set up different ASR settings at minimum and maximum speed.</li> <li>CLV, AOLV/PM, CLV/PM: Use C5-01, C5-02 and C5-03, C5-04 to define optimal ASR settings for high and low speed. Use C5-07 to define a switching frequency.</li> </ul> |

# **■** C5-01, C5-03/C5-02, C5-04: ASR Proportional Gain 1, 2/ASR Integral Time 1, 2

These parameters adjust the responsiveness of the ASR.

**Note:** C5-01 is automatically set when ASR Tuning is performed (T1-01 = 9 or T2-01 = 9).

| No.   | Parameter Name          | Setting Range     | Default             |
|-------|-------------------------|-------------------|---------------------|
| C5-01 | ASR Proportional Gain 1 | 0.00 to 300.00    | Determined by A1-02 |
| C5-02 | ASR Integral Time 1     | 0.000 to 10.000 s | Determined by A1-02 |
| C5-03 | ASR Proportional Gain 2 | 0.00 to 300.00    | Determined by A1-02 |
| C5-04 | ASR Integral Time 2     | 0.000 to 10.000 s | Determined by A1-02 |

These parameter settings will function differently depending on the control mode.

#### V/f Control with PG

Parameters C5-01 and C5-02 determine the ASR characteristics at maximum speed. Parameters C5-03 and C5-04 determine the characteristics at minimum speed.

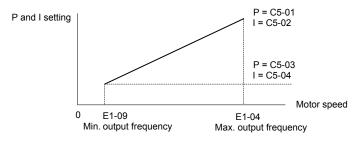



Figure 5.38 ASR Gain and Integral Time in V/f w/PG

## CLV, AOLV/PM, and CLV/PM

In these control modes, parameters C5-03 and C5-04 define the ASR gain an integral time at zero speed. The settings in C5-01 and C5-02 are used at speeds above the setting in C5-07. C5-07 is set to 0 as the default so that C5-01 and C5-02 are used over the entire speed range. *Refer to C5-07: ASR Gain Switching Frequency on page 237*.

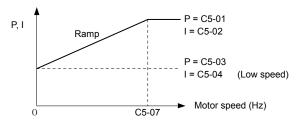



Figure 5.39 Low-speed and High-speed Gain Settings

The gain set in C5-03 can also be activated with a digital input programmed to "ASR gain switch" (H1- $\square\square$  = 77). When the terminal is open, the drive uses the ASR gain level set by the pattern in the figure above. When the terminal closes, C5-03 is used. The integral time set to C5-02 is used to change linearly between these settings. The ASR gain switch command from a multi-function input terminal overrides the switching frequency set to C5-07.

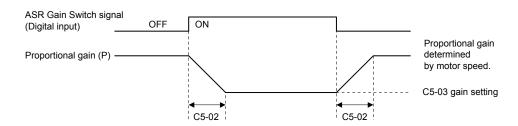



Figure 5.40 ASR Proportional Gain Switch

### ASR Gain Tuning (C5-01, C5-03)

The higher this setting, the faster the speed response, although a setting that is too high can lead to oscillation. Increase this setting with larger loads to minimize the speed deviation.

## ASR Integral Time Tuning (C5-02, C5-04)

Determines how fast a continuous speed deviation problem is eliminated. A setting that is too long reduces the responsiveness of the speed control. A setting that is too short can cause oscillation.

### ■ C5-05: ASR Limit

Sets the ASR output limit as a percentage of the maximum output frequency (E1-04). If the motor rated slip is high, the setting might need to be increased to provide proper motor speed control. Use the ASR output monitor U6-04 to determine if ASR is working at the limit set in C5-05. If ASR is working at the limit, make sure the PG pulses (F1-01), PG gear teeth (F1-12, F1-13), and the PG signal are set correctly before making further changes to C5-05.

| No.   | Parameter Name | Setting Range | Default |
|-------|----------------|---------------|---------|
| C5-05 | ASR Limit      | 0.0 to 20.0%  | 5.0%    |

## ■ C5-06: ASR Primary Delay Time Constant

Sets the filter time constant for the time from the speed loop to the torque command output. Increase this setting gradually in increments of 0.01 for loads with low rigidity or when oscillation is a problem. This parameter rarely needs to be changed.

| No.   | Parameter Name                  | Setting Range    | Default             |
|-------|---------------------------------|------------------|---------------------|
| C5-06 | ASR Primary Delay Time Constant | 0.000 to 0.500 s | Determined by A1-02 |

## ■ C5-07: ASR Gain Switching Frequency

Sets the frequency where the drive should switch between ASR proportional gain 1 and 2 (C5-01, C5-03) as well as between integral time 1 and 2 (C5-02, C5-04).

| No.   | Parameter Name               | Setting Range       | Default                 |
|-------|------------------------------|---------------------|-------------------------|
| C5-07 | ASR Gain Switching Frequency | 0.0 to 400.0 Hz <1> | Determined by A1-02 <1> |

<sup>&</sup>lt;1> In AOLV/PM and CLV/PM control modes the setting units and range are expressed as a percent (0.0 to 100.0%) instead of in Hz.

te: A multi-function input set for the ASR gain switch (H1- $\Box\Box$  = 77) takes priority over the ASR gain switching frequency.

Switching the proportional gain and integral time in the low or high speed range can help stabilize operation and avoid resonance problems. A good switching point is 80% of the frequency where oscillation occurs or at 80% of the target speed. *Refer to C5-01, C5-03/C5-02, C5-04: ASR Proportional Gain 1, 2/ASR Integral Time 1, 2 on page 236.* 

### C5-08: ASR Integral Limit

Sets the upper limit for ASR as a percentage of the rated load.

| No.   | Parameter Name     | Setting Range | Default |
|-------|--------------------|---------------|---------|
| C5-08 | ASR Integral Limit | 0 to 400%     | 400%    |

# ■ C5-12: Integral Operation during Accel/Decel (V/f w/PG)

Enables integral operation during acceleration and deceleration. Use integral operation when driving a heavy load or a high inertia load (default). Set C5-12 to 1 to use integral operation for low inertia/high performance loads. Enabling integral operation may cause problems with overshoot at the end of acceleration and deceleration. *Refer to ASR Setup Problems and Corrective Actions on page 235* to solve such problems.

| No.   | Parameter Name                        | Setting Range | Default |
|-------|---------------------------------------|---------------|---------|
| C5-12 | Integral Operation during Accel/Decel | 0, 1          | 0       |

#### Setting 0: Disabled

Integral operation occurs only during constant speed and not during acceleration or deceleration.

### Setting 1: Enabled

Integral operation is always enabled.

## ■ C5-17, C5-18: Motor Inertia, Load Inertia Ratio

C5-17 and C5-18 determine the ratio of the machine inertia to the inertia of the motor being used.

Example: Setting C5-18 to 2.0 reflects a load inertia that is twice the motor inertia.

These parameters are set automatically when Inertia Tuning and ASR Tuning are performed in CLV and CLV/PM control modes. *Refer to Auto-Tuning on page 163* for details on Auto-Tuning or enter the data manually.

| No.   | Parameter Name     | Setting Range                     | Default                                 |
|-------|--------------------|-----------------------------------|-----------------------------------------|
| C5-17 | Motor Inertia      | 0.0001 to 600.00 kgm <sup>2</sup> | Determined by C6-01,<br>E5-01 and o2-04 |
| C5-18 | Load Inertia Ratio | 0.0 to 6000.0                     | 1.0                                     |

Note:

C5-17 is displayed in the following units:

- CIMR-U $\Box$ 4 $\Box$ 0011 to 4 $\Box$ 0014: 0.0001 kgm<sup>2</sup> units
- •CIMR-U□2□0028 to 2□0192, 4□0021 to 4□0124: 0.001 kgm² units
- •CIMR-U□2□0248, 4□0156 to 4□0930: 0.01 kgm<sup>2</sup> units

## ■ C5-21, C5-23 / C5-22, C5-24: Motor 2 ASR Proportional Gain 1, 2 / Integral Time 1, 2

These parameters function for motor 2 the same way that C5-01 through C5-04 function for motor 1. **Refer to C5-01, C5-03/C5-02, C5-04: ASR Proportional Gain 1, 2/ASR Integral Time 1, 2 on page 236** for details.

| No.   | Parameter Name                  | Setting Range     | Default             |
|-------|---------------------------------|-------------------|---------------------|
| C5-21 | Motor 2 ASR Proportional Gain 1 | 0.00 to 300.00    | Determined by E3-01 |
| C5-22 | Motor 2 ASR Integral Time 1     | 0.000 to 10.000 s | Determined by E3-01 |
| C5-23 | Motor 2 ASR Proportional Gain 2 | 0.00 to 300.00    | Determined by E3-01 |
| C5-24 | Motor 2 ASR Integral Time 2     | 0.000 to 10.000 s | Determined by E3-01 |

#### ■ C5-25: Motor 2 ASR Limit

Functions for motor 2 the same way that C5-05 functions for motor 1. Sets the ASR output limit for motor 2 as a percentage of the maximum output frequency (E4-04). *Refer to C5-05: ASR Limit on page 237* for details.

| No.   | Parameter Name    | Setting Range | Default |
|-------|-------------------|---------------|---------|
| C5-25 | Motor 2 ASR Limit | 0.0 to 20.0%  | 5.0%    |

## ■ C5-26: Motor 2 ASR Primary Delay Time Constant

Functions for motor 2 the same way that C5-06 functions for motor 1.Sets the filter time constant for the time from the speed loop to the torque command output. *Refer to C5-06: ASR Primary Delay Time Constant on page 237* for details. This parameter rarely needs to be changed.

| No.   | Parameter Name                          | Setting Range    | Default |
|-------|-----------------------------------------|------------------|---------|
| C5-26 | Motor 2 ASR Primary Delay Time Constant | 0.000 to 0.500 s | 0.004 s |

# ■ C5-27: Motor 2 ASR Gain Switching Frequency

Functions for motor 2 the same way that C5-07 functions for motor 1. Sets the frequency for motor 2 to change ASR proportional gain 1 and 2 (C5-21, C5-23) as well as the integral time 1 and 2 (C5-22, C5-24). *Refer to C5-01, C5-03/C5-02, C5-04: ASR Proportional Gain 1, 2/ASR Integral Time 1, 2 on page 236* for details.

| No.   | Parameter Name                       | Setting Range   | Default |
|-------|--------------------------------------|-----------------|---------|
| C5-27 | Motor 2 ASR Gain Switching Frequency | 0.0 to 400.0 Hz | 0.0 Hz  |

**Note:** A multi-function input set for the ASR gain switch (H1- $\square\square$  = 77) takes priority over the ASR gain switching frequency.

## **■** C5-28: Motor 2 ASR Integral Limit

Functions for motor 2 the same way that C5-08 functions for motor 1. Sets the upper limit for ASR as a percentage of the rated load. *Refer to C5-08: ASR Integral Limit on page 237* for details.

| No.   | Parameter Name             | Setting Range | Default |
|-------|----------------------------|---------------|---------|
| C5-28 | Motor 2 ASR Integral Limit | 0 to 400%     | 400%    |

## ■ C5-32: Integral Operation during Accel/Decel for Motor 2

Functions for motor 2 the same way that C5-12 functions for motor 1. Enables integral operation during acceleration and deceleration. *Refer to C5-12: Integral Operation during Accel/Decel (V/f w/PG) on page 237* for details.

| No.   | Parameter Name                                    | Setting Range | Default |
|-------|---------------------------------------------------|---------------|---------|
| C5-32 | Integral Operation during Accel/Decel for Motor 2 | 0, 1          | 0       |

## Setting 0: Disabled

Integral operation occurs only during constant speed and not during acceleration or deceleration.

### Setting 1: Enabled

Integral operation is always enabled.

## ■ C5-37, C5-38: Motor 2 Inertia, Motor 2 Load Inertia Ratio

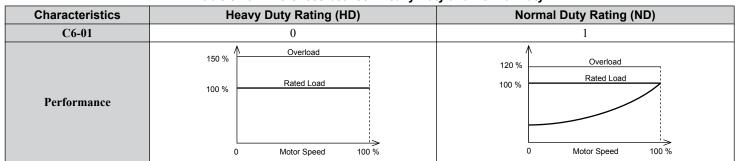
These parameters function for motor 2 the same way that C5-17 and C5-18 function for motor 1. These parameters are set automatically when Inertia Tuning and ASR Tuning are performed for motor 2 in CLV and CLV/PM control modes. *Refer to Auto-Tuning on page 163* for details on Auto-Tuning or enter the data manually.

| No.   | Parameter Name             | Setting Range                     | Default                       |
|-------|----------------------------|-----------------------------------|-------------------------------|
| C5-37 | Motor 2 Inertia            | 0.0001 to 600.00 kgm <sup>2</sup> | Determined by C6-01 and o2-04 |
| C5-38 | Motor 2 Load Inertia Ratio | 0.0 to 6000.0                     | 1.0                           |

Note:

C5-37 is displayed in the following units:

- CIMR-U $\square$ 4 $\square$ 0011 to 4 $\square$ 0014: 0.0001 kgm<sup>2</sup> units
- CIMR-U $\square$ 2 $\square$ 0028 to 2 $\square$ 0192, 4 $\square$ 0021 to 4 $\square$ 0124: 0.001 kgm<sup>2</sup> units
- CIMR-U□2□0248, 4□0156 to 4□0930: 0.01 kgm<sup>2</sup> units


# **◆** C6: Carrier Frequency

# ■ C6-01: Drive Duty Mode Selection

The drive has two different duty modes from which to select based on the load characteristics. The drive rated current, overload capacity, and maximum output frequency will change depending upon the duty mode selection. Use parameter C6-01 to select Heavy Duty (HD) or Normal Duty (ND) for the application. *Refer to Heavy Duty and Normal Duty Ratings on page 488* for details about the rated current.

| No.   | Parameter Name      | Setting Range | Default |
|-------|---------------------|---------------|---------|
| C6-01 | Duty Mode Selection | 0, 1          | 1 (ND)  |

Table 5.16 Differences between Heavy Duty and Normal Duty



| Characteristics                                 | Heavy Duty Rating (HD)                                                                                                                 | Normal Duty Rating (ND)                                                                                                                                                     |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Application                                     | Use Heavy Duty Rating for applications requiring a high overload tolerance with constant load torque, such as extruders and conveyors. | Use Normal Duty Rating for applications in which the torque requirements drop along with the speed, such as fans and pumps where a high overload tolerance is not required. |
| Overload capability (oL2)                       | 150% of drive rated Heavy Duty current for 60 s                                                                                        | 120% of drive rated Normal Duty current for 60 s                                                                                                                            |
| Stall Prevention during<br>Acceleration (L3-02) | 150%                                                                                                                                   | 120%                                                                                                                                                                        |
| Stall Prevention during<br>Run (L3-06)          | 150%                                                                                                                                   | 120%                                                                                                                                                                        |
| <b>Default Carrier Frequency</b>                | 4 kHz !>                                                                                                                               | 4 kHz <1>                                                                                                                                                                   |

<sup>&</sup>lt;1> Carrier frequency is 3 kHz for models 4\(\sigma\)0477 to 4\(\sigma\)0930.

Note: Changing the Duty Mode selection automatically sets the E2-□□ parameters to appropriate values (E4-□□ for motor 2), and recalculates parameter settings determined by motor capacity (e.g., b8-04, L2-03, n5-02, C5-17, and C5-37).

## ■ C6-02: Carrier Frequency Selection

Sets the switching frequency of the drive output transistors. Changes to the switching frequency lower audible noise and reduce leakage current.

Note:

- The upper limit of the carrier frequency depends on the capacity. Refer to Rated Current Depending on Carrier Frequency on page 498
- Increasing the carrier frequency above the default value automatically lowers the drive current rating. Refer to Rated Current Depending on Carrier Frequency on page 498.

| No.   | Parameter Name              | Setting Range  | Default                                                        |
|-------|-----------------------------|----------------|----------------------------------------------------------------|
| C6-02 | Carrier Frequency Selection | 0 to 4, F  <2> | Determined by A1-02 and o2-04.<br>Reset when C6-01 is changed. |

<sup>&</sup>lt;1> Setting F is not available when A1–02, Control Method Selection is set to 6 (AOLV/PM).

<2> Setting range is determined by the drive model.

 $2\square 0028$  to  $2\square 0248$ ,  $4\square 0011$  to  $4\square 0077$ : 1 to 4, F

2□0104 to 2□0130, 4□0096 to 4□0124: 1 to 3, F

 $2\square 0154$  to  $2\square 0192$ ,  $4\square 0156$  to  $4\square 0180$ : 1, 2, F

 $2\square 0248$ ,  $4\square 0216$  to  $4\square 0414$ : 1, F

 $4\square 0477$  to  $4\square 0930$ : 0, F

Setting 0: 3.0 kHz Setting 1: 4.0 kHz Setting 2: 6.0 kHz Setting 3: 8.0 kHz Setting 4: 10.0 kHz

Setting F: User defined (C6-03 to C6-05)

**Guidelines for Carrier Frequency Parameter Setup** 

| Symptom                                         | Remedy                                           |
|-------------------------------------------------|--------------------------------------------------|
| Speed and torque are unstable at low speeds     |                                                  |
| Noise from the drive affects peripheral devices | I a series Communication Communication           |
| Excessive leakage current from the drive        | Lower the carrier frequency.                     |
| Wiring between the drive and motor is too long  |                                                  |
| Audible motor noise is too loud                 | Increase the carrier frequency or use Swing PWM. |

<sup>&</sup>lt;1> The carrier frequency may need to be lowered if the motor cable is too long. Refer to *Table 5.17*.

#### Table 5.17 Wiring Distance and Carrier Frequency

| Wiring Distance                     | Up to 50 m            | Greater than 50 m |
|-------------------------------------|-----------------------|-------------------|
| Recommended setting value for C6-02 | 1 to 4 (up to 10 kHz) | 1 (up to 4 kHz)   |

**Note:** 1. The maximum cable length is 100 m when using OLV/PM (A1-02 = 5) or AOLV/PM (A1-02 = 6).

2. Set C6-02 to 0 (3.0 kHz) for models  $4\square 0477$  to  $4\square 0930$  regardless of wiring distance.

## ■ C6-03, C6-04, C6-05: Carrier Frequency Upper Limit, Lower Limit, Proportional Gain

These parameters set a user-defined or a variable carrier frequency. Set C6-02 to F to set the upper and lower limits and the carrier frequency proportional gain.

| No.   | Parameter Name                                         | Setting Range           | Default                       |
|-------|--------------------------------------------------------|-------------------------|-------------------------------|
| C6-03 | Carrier Frequency Upper Limit                          | 3.0 to 10.0 kHz <1> <2> |                               |
| C6-04 | Carrier Frequency Lower Limit (V/f Control only)       | 3.0 to 10.0 kHz <1> <2> | Determined by C6-02 and o2-04 |
| C6-05 | Carrier Frequency Proportional Gain (V/f Control only) | 0 to 99 <1> <2>         | 00 02 and 02 0 1              |

<sup>&</sup>lt;1> Available only when C6-02 is set to F.

### **Setting a Fixed User Defined Carrier Frequency**

A carrier frequency between the fixed selectable values can be entered in parameter C6-03 when C6-02 is set to F. In V/f Control, adjust parameter C6-04 to the same value as C6-03.

### Setting a Variable Carrier Frequency (V/f Control)

In V/f Control, the carrier frequency can be set up to change linearly with the output frequency by setting the upper and lower limits for the carrier frequency and the carrier frequency proportional gain (C6-03, C6-04, C6-05).

## ■ C6-09: Carrier Frequency during Rotational Auto-Tuning

Determines the carrier frequency while performing Rotational Auto-Tuning. Although this parameter rarely needs to be changed, when overcurrent problems occur when Auto-Tuning a high frequency motor or low impedance motor, it may be helpful to set C6-03 to a high value before setting C6-09 to 1.

| No.   | Parameter Name                                  | Setting Range | Default |
|-------|-------------------------------------------------|---------------|---------|
| C6-09 | Carrier Frequency during Rotational Auto-Tuning | 0, 1          | 0       |

### Setting 0: Carrier frequency = 4 kHz

**Note:** The carrier frequency is 3 kHz for models  $4\square 0477$  to  $4\square 0930$ .

### Setting 1: Same value set to C6-03

# C7: Voltage Adjustment

## ■ C7-43: Input Voltage Offset Adjustment

**Note:** Adjustment is completed at the factory. Do not change the setting of this parameter.

Enables adjustment of the offset for the input voltage circuit when the control board is replaced.

Changing the value of o2-04 will trigger an oPE30 error. The input voltage offset must be adjusted when the error occurs. If the combination of the control board and drive does not change, set this parameter to 0002 (offset adjustment not required).

Contact Yaskawa or a Yaskawa representative if it becomes necessary to replace the control board.

| No.   | Parameter Name                  | Setting Range | Default |
|-------|---------------------------------|---------------|---------|
| C7-43 | Input Voltage Offset Adjustment | 0000 to 9999  | 0000    |

Setting 0000: Standard

### Setting 0002: Offset Adjustment Not Required

### C7-56: Power Factor Control Selection

Power factor control improves the input power supply power factor according to the operating conditions.

This parameter rarely requires adjustment, but may be enabled to improve the power factor in the low output region. Power factor control is not suitable for applications with frequent load fluctuations.

This function is disabled in High Output Voltage Mode (C7-60 = 1).

| No.   | Parameter Name                 | Setting Range | Default |
|-------|--------------------------------|---------------|---------|
| C7-56 | Power Factor Control Selection | 0, 1          | 0       |

# Setting 0: Power Factor Control Disabled

**Setting 1: Power Factor Control Enabled** 

## ■ C7-60: Output Voltage Limit Mode Selection

Sets the mode to limit the output voltage.

Set this parameter to 0 (Harmonic suppression priority mode) to give priority to harmonic suppression. The maximum output voltage is automatically limited to suppress harmonics.

Setting range is 4.0 to 10.0 kHz for models  $2\square 0028$  to  $2\square 0248$  and  $4\square 0011$  to  $4\square 0414$ . Setting value is 3 kHz for models  $4\square 0477$  to  $4\square 0930$ .

## 5.3 C: Tuning

Set this parameter to 1 (High output voltage mode) to give priority to the output voltage over harmonic suppression. The effectiveness of harmonic suppression will be reduced because the maximum output voltage will be used.

**Note:** For drives with software versions PRG: 1021 or later, the default setting is 0 (Harmonic Suppression Priority Mode) when in Advanced Open Loop Vector Control for PM (A1-02 = 6).

| No.   | Parameter Name                      | Setting Range | Default             |
|-------|-------------------------------------|---------------|---------------------|
| C7-60 | Output Voltage Limit Mode Selection | 0, 1          | Determined by A1–02 |

**Setting 0: Harmonic Suppression Priority Mode** 

**Setting 1: High Output Voltage Mode** 

# 5.4 d: Reference Settings

The figure below gives an overview of the reference input, selections, and priorities.

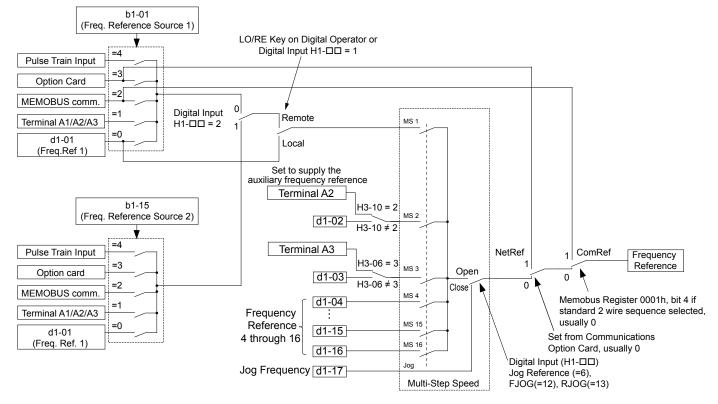



Figure 5.41 Frequency Reference Setting Hierarchy

# d1: Frequency Reference

# ■ d1-01 to d1-17: Frequency Reference 1 to 16 and Jog Frequency Reference

The drive lets the user switch between up to 17 preset frequency references during run (including the Jog reference) through the digital input terminals. The drive uses the acceleration and deceleration times that have been selected when switching between each frequency reference.

The Jog frequency overrides all other frequency references and must be selected by a separate digital input.

The multi-speed references 1, 2, and 3 can be provided by analog inputs.

| No.            | Parameter Name              | Setting Range             | Default     |
|----------------|-----------------------------|---------------------------|-------------|
| d1-01 to d1-16 | Frequency Reference 1 to 16 | 0.00 to 400.00 Hz <1> <2> | 0.00 Hz <2> |
| d1-17          | Jog Frequency Reference     | 0.00 to 400.00 Hz <1> <2> | 6.00 Hz <2> |

<sup>&</sup>lt;1> The upper limit is determined by the maximum output frequency (E1-04) and upper limit for the frequency reference (d2-01).

<sup>&</sup>lt;2> Setting units are determined by parameter o1-03. The default is "Hz" (o1-03 = 0) in V/f, V/f w/PG, OLV, CLV, and OLV/PM control modes. The default for AOLV/PM and CLV/PM control modes expresses the frequency reference as a percentage (o1-03 = 1).

### **Multi-Step Speed Selection**

To use several speed references for a multi-step speed sequence, set the H1- $\square\square$  parameters to 3, 4, 5, and 32. To assign the Jog reference to a digital input, set H1- $\square\square$  to 6.

Notes on using analog inputs as Multi-Speed 1, 2, and 3:

### Multi-Step Speed 1

Set b1-01 to 1 to set terminal A1 analog input to Multi-Step Speed 1.

Set b1-01 to 0 when setting d1-01, Frequency Reference 1, to Multi-Step Speed 1.

### Multi-Step Speed 2

Set H3-06, Terminal A3 Function Selection, to 2 (Auxiliary Frequency Reference 1) when setting terminal A3 analog input to Multi-Step Speed 2.

Set H3-06 to F (Through mode) when setting d1-02, Frequency Reference 2, to Multi-Step Speed 2.

### Multi-Step Speed 3

Set H3-10, Terminal A2 Function Selection, to 3 (Auxiliary Frequency Reference 2) when setting terminal A2 analog input to Multi-Step Speed 3.

Set H3-10 to F (Through mode) when setting d1-03, Frequency Reference 3, to Multi-Step Speed 3.

Set H3-09 to 0 and set DIP switch S1 on the control circuit terminal board to V (voltage) when inputting 0 to 10 V to terminal A2 analog input.

Select the different speed references as shown in *Table 5.18*. *Figure 5.42* illustrates the multi-step speed selection.

Multi-Step Multi-Step Multi-Step Multi-Step Jog Reference Speed Speed Speed Speed Reference Selection Reference 2 Reference 3 Reference 4 Reference H1-□□ = 6  $H1-\Box\Box=3$ H1-🗆 🗆 = 4 H1-□□ = 5  $H1-\Box\Box=32$ OFF Frequency Reference 1 (set in b1-01) OFF **OFF OFF OFF** Frequency Reference 2 **OFF OFF** OFF OFF ON (d1-02 or input terminal A1, A2, A3) Frequency Reference 3 **OFF OFF** ON OFF **OFF** (d1-03 or input terminal A1, A2, A3) Frequency Reference 4 (d1-04) ON ON **OFF** OFF **OFF** Frequency Reference 5 (d1-05) **OFF** ON OFF OFF **OFF** ON OFF Frequency Reference 6 (d1-06) ON **OFF OFF** Frequency Reference 7 (d1-07) OFF ON ON OFF **OFF** Frequency Reference 8 (d1-08) ON ON OFF ON OFF Frequency Reference 9 (d1-09) OFF **OFF OFF** ON **OFF OFF OFF** ON Frequency Reference 10 (d1-10) ON **OFF** Frequency Reference 11 (d1-11) **OFF** ON OFF ON **OFF** Frequency Reference 12 (d1-12) ON ON **OFF** ON **OFF** Frequency Reference 13 (d1-13) OFF **OFF** ON ON **OFF** Frequency Reference 14 (d1-14) **OFF** ON ON ON **OFF** Frequency Reference 15 (d1-15) OFF ON ON ON **OFF** Frequency Reference 16 (d1-16) ON ON ON ON **OFF** Jog Frequency Reference (d1-17) <1> ON

Table 5.18 Multi-Step Speed Reference and Terminal Switch Combinations

<sup>&</sup>lt;1> The Jog frequency overrides all other frequency references.

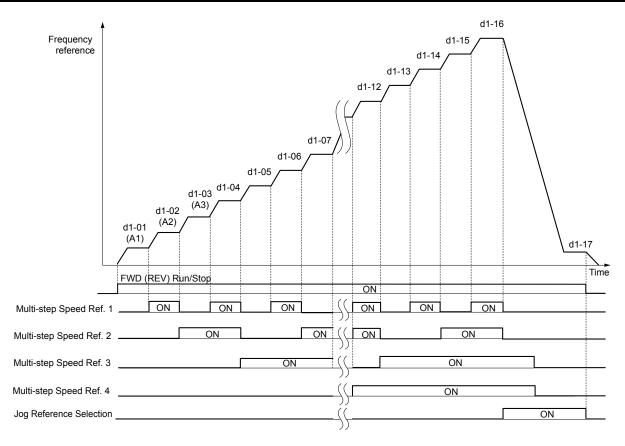



Figure 5.42 Preset Reference Timing Diagram

# d2: Frequency Upper/Lower Limits

Upper and lower frequency limits prevent motor speed from going above or below levels that may cause resonance or equipment damage.

## ■ d2-01: Frequency Reference Upper Limit

Sets the maximum frequency reference as a percentage of the maximum output frequency. This limit applies to all frequency references.

Even if the frequency reference is set to a higher value, the drive internal frequency reference will not exceed this value.

| No.   | Parameter Name                  | Setting Range | Default |
|-------|---------------------------------|---------------|---------|
| d2-01 | Frequency Reference Upper Limit | 0.0 to 110.0% | 100.0%  |

## ■ d2-02: Frequency Reference Lower Limit

Sets the minimum frequency reference as a percentage of the maximum output frequency. This limit applies to all frequency references.

If a lower reference than this value is entered, the drive will run at the limit set to d2-02. If the drive is started with a lower reference than d2-02, it will accelerate up to d2-02.

| No.   | Parameter Name                  | Setting Range | Default |
|-------|---------------------------------|---------------|---------|
| d2-02 | Frequency Reference Lower Limit | 0.0 to 110.0% | 0.0%    |

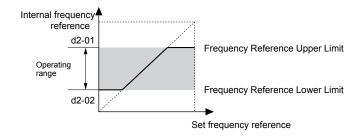



Figure 5.43 Frequency Reference: Upper and Lower Limits

## ■ d2-03: Master Speed Reference Lower Limit

Sets a lower limit as a percentage of the maximum output frequency that will only affect a frequency reference entered from the analog input terminals (A1, A2, or A3) as the master speed reference. This is unlike parameter d2-02, which affects all frequency references regardless of their source.

Note: When lower limits are set to both parameters d2-02 and d2-03, the drive uses the greater of those two values as the lower limit.

| No.   | Parameter Name                     | Setting Range | Default |
|-------|------------------------------------|---------------|---------|
| d2-03 | Master Speed Reference Lower Limit | 0.0 to 110.0% | 0.0%    |

# ◆ d3: Jump Frequency

# ■ d3-01 to d3-04: Jump Frequencies 1, 2, 3 and Jump Frequency Width

The Jump frequencies are frequency ranges at which the drive will not operate. The drive can be programmed with three separate Jump frequencies to avoid operating at speeds that cause resonance in driven machinery. If the speed reference falls within a Jump Frequency dead band, the drive will clamp the frequency reference just below the dead band and only accelerate past it when the frequency reference rises above the upper end of the dead band.

Setting parameters d3-01 through d3-03 to 0.0 Hz disables the Jump Frequency function.

| No.   | Parameter Name       | Setting Range       | Default    |
|-------|----------------------|---------------------|------------|
| d3-01 | Jump Frequency 1     | 0.0 to 400.0 Hz <1> | 0.0 Hz <1> |
| d3-02 | Jump Frequency 2     | 0.0 to 400.0 Hz <1> | 0.0 Hz !>  |
| d3-03 | Jump Frequency 3     | 0.0 to 400.0 Hz <1> | 0.0 Hz !>  |
| d3-04 | Jump Frequency Width | 0.0 to 20.0 Hz <2>  | 1.0 Hz <2> |

<sup>&</sup>lt;1> In AOLV/PM and CLV/PM control modes, the setting units and range are expressed as a percentage instead of in Hz.

*Figure 5.44* shows the relationship between the Jump Frequency and the frequency reference.

<sup>&</sup>lt;2> In AOLV/PM and CLV/PM control modes, the setting units and range are expressed as a percent instead of in Hz. The setting range is 0.0 to 40.0% and the default is 1.0%.

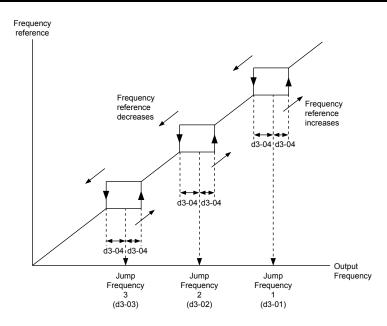



Figure 5.44 Jump Frequency Operation

Note:

- The drive will use the active accel/decel time to pass through the specified dead band range, but will not allow continuous operation in that range.
- 2. When setting more than one Jump Frequency, make sure that the parameters do not overlap.

# ◆ d4: Frequency Reference Hold and Up/Down 2 Function

# ■ d4-01: Frequency Reference Hold Function Selection

Determines whether the frequency reference or the frequency bias (Up/Down 2) value is saved when the Stop command is entered or the power supply is shut down. This parameter is effective when either of the digital input functions listed below are used:

- Accel/decel ramp hold function (H1- $\square\square$  = A)
- Up/Down function (H1- $\square\square$  = 10 and 11)
- Up/Down 2 function (H1- $\square\square$  = 75 and 76)

| No.   | Parameter Name                              | Setting Range | Default |
|-------|---------------------------------------------|---------------|---------|
| d4-01 | Frequency Reference Hold Function Selection | 0, 1          | 0       |

The operation depends on the function used with parameter d4-01.

## Setting 0: Disabled

Acceleration hold

The hold value will be reset to 0 Hz when the Stop command is entered or the drive power is switched off. The active frequency reference will be the value the drive uses when it restarts.

• Up/Down

The frequency reference value will be reset to 0 Hz when the Stop command is entered or the drive power is switched off. The drive will start from 0 Hz when it is restarted.

• Up/Down 2

The frequency bias is not saved when the Stop command is entered, or 5 s after the Up/Down 2 command has been released. The Up/Down 2 function will start with a bias of 0% when the drive is restarted.

#### Setting 1: Enabled

· Acceleration hold

The last hold value will be saved when the Run command or the drive power is switched off and the drive will use the saved value as the frequency reference when it restarts. Make sure to continuously enable the multi-function input terminal set for "Accel/decel ramp hold" (H1- $\square\square$  = A) or the hold value will be cleared when the power is switched on.

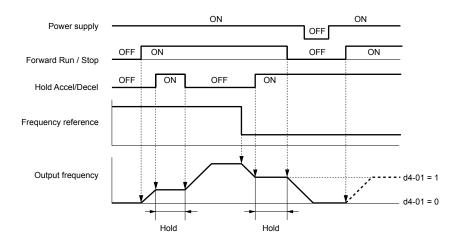



Figure 5.45 Frequency Reference Hold with Accel/Decel Hold Function

• Up/Down

The frequency reference value will be saved when the Run command or the drive power is switched off. The drive will use the frequency reference that was saved when it restarts.

• Up/Down 2 with frequency reference from digital operator

When a Run command is active and the Up/Down 2 command is released for longer than 5 s, the Up/Down 2 bias value is added to the frequency reference and then reset to 0. This new frequency reference is saved and will also be used to restart the drive after the power is cycled.

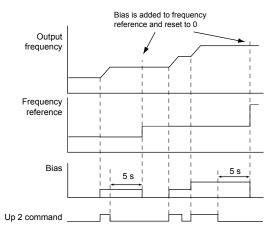



Figure 5.46 Up/Down 2 Example with Reference from Digital Operator and d4-01 = 1

• Up/Down 2 with frequency reference from input sources other than the digital operator

When a Run command is active and the Up/Down 2 command is released for longer than 5 s, the bias value will be saved in parameter d4-06. When restarting after the power is switched off, the drive will add the value saved in d4-06 as a bias to the frequency reference.




Figure 5.47 Up/Down 2 Example with Other Reference than Digital Operator and d4-01 = 1

Note: Set the limits for Up/Down 2 properly when using d4-01 = 1 in combination with the Up/Down 2 function. Refer to d4-08: Frequency Reference Bias Upper Limit (Up/Down 2) on page 251 and Refer to d4-09: Frequency Reference Bias Lower Limit (Up/Down 2) on page 251 for details on the limit settings.

## Clearing the Saved Value

Depending on which function is used, it is possible to clear the saved frequency reference value by:

- Releasing the input programmed for Acceleration hold.
- Setting an Up or Down command while no Run command is active.
- Resetting parameter d4-06 to zero. *Refer to d4-06: Frequency Reference Bias (Up/Down 2) on page 250* for details.

## ■ d4-03: Frequency Reference Bias Step (Up/Down 2)

Sets the bias added to or subtracted from the frequency reference by the Up/Down 2 function.

| No.   | Parameter Name                            | Setting Range    | Default |
|-------|-------------------------------------------|------------------|---------|
| d4-03 | Frequency Reference Bias Step (Up/Down 2) | 0.00 to 99.99 Hz | 0.00 Hz |

The operation depends on the set value:

### Setting d4-03 = 0.00 Hz

While the Up 2 or Down 2 command is enabled, the bias value is increased or decreased using the accel/decel times determined by parameter d4-04.

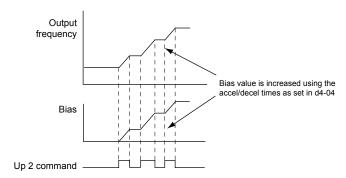



Figure 5.48 Up/Down 2 Bias when d4-03 = 0.00 Hz

### Setting d4-03 ≠ 0.00 Hz

When an Up 2 or Down 2 command is enabled, the bias is increased or decreased in steps for the value set in d4-03. The frequency reference changes with the accel/decel times determined by parameter d4-04.

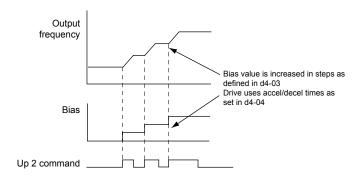



Figure 5.49 Up/Down 2 Bias when d4-03 # 0.00 Hz

## ■ d4-04: Frequency Reference Bias Accel/Decel (Up/Down 2)

Determines the accel/decel times used to increase or decrease the frequency reference or bias when using the Up/Down 2 function.

| No.   | Parameter Name                                   | Setting Range | Default |
|-------|--------------------------------------------------|---------------|---------|
| d4-04 | Frequency Reference Bias Accel/Decel (Up/Down 2) | 0, 1          | 0       |

## **Setting 0: Current Accel/Decel Time**

The drive uses the currently active accel/decel time.

### Setting 1: Accel/Decel Time 4

The drive uses accel/decel time 4 set to parameters C1-07 and C1-08.

## ■ d4-05: Frequency Reference Bias Operation Mode Selection (Up/Down 2)

Determines if the bias value is held when the Up/Down 2 inputs are both released or both enabled. The parameter is effective only when parameter d4-03 is set to 0.00.

| No.   | Parameter Name                                                | Setting Range | Default |
|-------|---------------------------------------------------------------|---------------|---------|
| d4-05 | Frequency Reference Bias Operation Mode Selection (Up/Down 2) | 0, 1          | 0       |

#### Setting 0: Hold Bias Value

The bias value will be held if no input Up 2 or Down 2 is active.

#### **Setting 1: Reset Bias Value**

The bias is reset to 0% when inputs Up 2 and Down 2 are both on or both off. The drive will use the accel/decel time as selected in d4-04 to accelerate or decelerate to the frequency reference value.

# ■ d4-06: Frequency Reference Bias (Up/Down 2)

Saves the frequency reference bias value set by the Up/Down 2 function as a percentage of the maximum output frequency. The function of this parameter depends on the Up/Down 2 function configuration. This parameter is not normally used when the digital operator sets the frequency reference.

- The value set to d4-06 will be applied during run, however the value is reset when the frequency reference changes (including multi-step references) and is disabled when d4-01 = 0 and the Run command is removed.
- When d4-01 = 0 and the frequency reference is set by a source other than the digital operator, the value set in d4-06 is added to or subtracted from the frequency reference.
- When d4-01 = 1 and the frequency reference is set by a source other than the digital operator, the bias value adjusted with the Up/Down 2 inputs is stored in d4-06 when 5 s have passed after releasing the Up 2 or Down 2 command. The frequency reference will return to the value without the Up/Down 2 command.

| No.   | Parameter Name                       | Setting Range   | Default |
|-------|--------------------------------------|-----------------|---------|
| d4-06 | Frequency Reference Bias (Up/Down 2) | -99.9 to 100.0% | 0.0%    |

### Conditions that Reset or Disable d4-06

- The Up/Down 2 function has not been assigned to the multi-function terminals.
- The frequency reference source has been changed (including LOCAL/REMOTE or External reference 1/2 switch over by digital inputs).

- d4-03 = 0.00 Hz, d4-05 = 1, and the Up/Down 2 commands are both open or both closed.
- Any changes to the maximum frequency set to E1-04.

## ■ d4-07: Analog Frequency Reference Fluctuation Limit (Up/Down 2)

Handles frequency reference changes while the Up 2 or Down 2 terminal is enabled. If the frequency reference changes for more than the level set to d4-07, then the bias value will be held, and the drive will accelerate or decelerate following the frequency reference. When the frequency reference is reached, the bias hold is released and the bias follows the Up/Down 2 input commands.

This parameter is applicable only if the frequency reference is set by an analog or pulse input.

| No.   | Parameter Name                                           | Setting Range | Default |
|-------|----------------------------------------------------------|---------------|---------|
| d4-07 | Analog Frequency Reference Fluctuation Limit (Up/Down 2) | 0.1 to 100.0% | 1.0%    |

## ■ d4-08: Frequency Reference Bias Upper Limit (Up/Down 2)

Sets the upper limit of the Up/Down 2 bias (monitor U6-20) and the value that can be saved in parameter d4-06. Set this parameter to an appropriate value before using the Up/Down 2 function.

Note:

When the frequency reference is set by the digital operator (b1-01=0) and d4-01=1, the bias value will be added to the frequency reference if no Up/Down 2 command is received for 5 s, and will be reset to 0 afterwards. From that point, the bias can be increased up to the limit set in d4-08 again.

| No.   | Parameter Name                                   | Setting Range | Default |
|-------|--------------------------------------------------|---------------|---------|
| d4-08 | Frequency Reference Bias Upper Limit (Up/Down 2) | 0.0 to 100.0% | 100.0%  |

## ■ d4-09: Frequency Reference Bias Lower Limit (Up/Down 2)

Sets the lower limit of the Up/Down 2 bias (monitor U6-20) and the value that can be saved in parameter d4-06. Set this parameter to an appropriate value before using the Up/Down 2 function.

Note:

When the frequency reference is set by the digital operator (b1-01 = 0) and d4-01 = 1, the bias value will be added to the frequency reference if no Up/Down 2 command is received for 5 s, and will be reset to 0 afterwards. If the bias is increased using the Up 2 command, it cannot be reduced with a Down 2 command when the limit set in d4-09 is 0. Set a negative lower limit in d4-09 to allow speed reduction in this situation.

| No.   | Parameter Name                                   | Setting Range | Default |
|-------|--------------------------------------------------|---------------|---------|
| d4-09 | Frequency Reference Bias Lower Limit (Up/Down 2) | -99.9 to 0.0% | 0.0%    |

# ■ d4-10: Up/Down Frequency Reference Limit Selection

Selects how the lower frequency limit is set when using the Up/Down function. *Refer to Setting 10, 11: Up/Down Function on page 287* for details on the Up/Down function in combination with frequency reference limits.

| No.   | No. Parameter Name                          |      | Default |
|-------|---------------------------------------------|------|---------|
| d4-10 | Up/Down Frequency Reference Limit Selection | 0, 1 | 0       |

### Setting 0: Lower Limit is Determined by d2-02 or Analog Input

The higher value between d2-02 and an analog input programmed for Frequency bias (A1, A2, A3) determines the lower frequency reference limit.

Note:

When using the External Reference 1/2 (H1- $\square$  = 2) to switch between the Up/Down function and an analog input as the reference source, the analog value becomes the lower reference limit when the Up/Down command is active. Set d4-10 to 1 to make the Up/Down function independent of the analog input value.

### Setting 1: Lower Limit is Determined by d2-02

Only parameter d2-02 sets the lower frequency reference limit.

# d5: Torque Control

Torque Control defines a setpoint for the motor torque and is available for CLV and CLV/PM (A1-02 = 3, 7).

## **■** Torque Control Operation

Torque control can be enabled either by setting parameter d5-01 to 1 or by setting digital input (H1- $\square\square$  = 71). *Figure 5.50* illustrates the working principle.

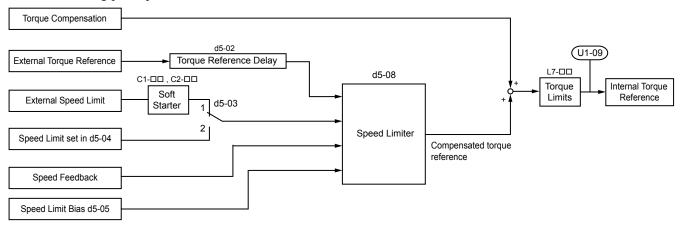



Figure 5.50 Torque Control Block Diagram

The externally input torque reference is the target value for the motor output torque. If the motor torque reference and the load torque are not in balance when in Torque Control, the motor accelerates or decelerates. To prevent operation beyond the speed limit, compensate the external torque reference value if the motor speed reaches the limit. The compensation value is calculated using the speed limit, speed feedback, and the speed limit bias.

If an external torque compensation value is input, it is added to the speed limit compensated torque reference value. The value calculated is limited by the L7- $\square\square$  settings, and is then used as the internal torque reference, which can be monitored in U1-09. The L7- $\square\square$  settings have highest priority. The motor cannot be operated with a higher torque than the L7- $\square\square$  settings even if the external torque reference value is increased.

## ■ Setting the Torque Reference, Speed Limit, and Torque Compensation Values

## **Torque Control Reference Sources**

Set input values for Torque Control as explained in *Table 5.19*.

**Table 5.19 Torque Control Input Value Selection** 

| Input Value      | Signal Source              | Settings                                                                                                                                           | Remarks                                                                                                                                                                                                                                                                   |
|------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | Analog inputs A1/A2/<br>A3 | H3-02, H3-10, or H3-06 = 13 < <i>I</i> >                                                                                                           | Match the input terminal signal level settings to the signal being used. <i>Refer to H3: Multi-Function Analog Inputs on page 305</i> for details on adjusting analog input signals.                                                                                      |
| Torque Reference | Analog Option              | • F2-01 = 0<br>• H3-02, H3-10, or H3-06 = 13 <1>                                                                                                   | The F3-\(\subseteq\) settings become effective for the option board input terminals. Match the input terminal signal level settings to the signal being used. <i>Refer to H3: Multi-Function Analog Inputs on page 305</i> for details on adjusting analog input signals. |
| roique Reference | MEMOBUS Register<br>0004H  | <ul> <li>b1-01 = 2</li> <li>Set Register 000FH, Bit 2 = 1 to enable Torque reference from register 0004H.</li> </ul>                               | _                                                                                                                                                                                                                                                                         |
|                  | Communications Option      | <ul> <li>b1-01 = 3</li> <li>F6-06 = 1</li> <li>Refer to the option card manual for details about setting the torque compensation value.</li> </ul> | _                                                                                                                                                                                                                                                                         |

| Input Value  | Signal Source                                 | Settings                                                                                                                          | Remarks                                                                                                                                                                              |
|--------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Speed Limit  | Signal selected as frequency reference source | d5-03 = 1<br>The speed limit is taken from the input selected as frequency reference source in parameter b1-01 or b1-15. <1>      | The settings in C1-□□ for accel/decel times and in C2-□□ for S-curves are applied to the speed limit value.                                                                          |
|              | Parameter d5-04                               | d5-03 = 2                                                                                                                         | _                                                                                                                                                                                    |
|              | Analog inputs A1/A2/A3                        | H3-02, H3-10, or H3-06 = 14 < 1>                                                                                                  | Match the input terminal signal level settings to the signal being used. <i>Refer to H3: Multi-Function Analog Inputs on page 305</i> for details on adjusting analog input signals. |
| Torque       | Analog Option                                 | • F2-01 = 0<br>• H3-02, H3-10, or H3-06 = 14 <1>                                                                                  | The H3-□□ settings become effective for the option board input terminals. Match the input terminal signal level settings to the signal being used.                                   |
| Compensation | MEMOBUS Register<br>0005H                     | <ul> <li>b1-01 = 2</li> <li>Set Register 000FH, bit 3 = 1 to enable the torque compensation setting by register 0005H.</li> </ul> | _                                                                                                                                                                                    |
|              | Communications Option                         | b1-01 = 3<br>Refer to the option card manual for details about setting the torque compensation value.                             | _                                                                                                                                                                                    |

<sup>&</sup>lt;1> Sets analog input terminals A1, A2, and A3 to supply the speed limit, torque reference, or torque compensation. Setting two analog inputs for the same function will trigger an oPE07 error (Multi-Function Analog Input Selection Error).

#### Input Value Polarity

The direction of the input values described above depends on the polarity of the Run command and the input value.

 Run Command Direction
 Input Value Polarity
 Input Value Direction

 Forward
 + (positive)
 Forward direction

 - (negative)
 Reverse direction

 Reverse
 + (positive)
 Reverse direction

 - (negative)
 Forward direction

**Table 5.20 Torque Control Signal Polarity** 

## Example:

- With a Forward Run command and a positive torque reference signal the internal torque reference will be positive, i.e., in the forward direction. However, if a Reverse Run command is input, the torque command will be for reverse rotation.
- With a Forward Run command and a negative torque reference signal the internal torque reference will be negative, i.e., in the reverse direction. However, if a Reverse Run command is input, the torque command will be for forward rotation.

When using analog inputs, negative input values can be generated by:

- applying negative voltage input signals.
- using positive analog input signals while setting the analog input bias to negative values so the input value can be negative.
- applying positive voltage input signals and using a digital input that is programmed for H1-  $\Box\Box$  = 78.

When using MEMOBUS/Modbus communication or a communication option card, only positive input values can be set.

Independent of its input source, the polarity of the torque reference signal can be inverted using a digital input that is programmed for H1- $\square\square$  = 78. Use this function to input negative torque reference values when using MEMOBUS/Modbus or a communication option card.

# ■ Speed Limitation and Speed Limit Bias

The speed limit setting is read from the input selected in parameter d5-03. A bias can be added to this speed limit using parameter d5-05 while parameter d5-08 determines how the speed limit bias is applied. *Table 5.21* explains the relation between these settings.

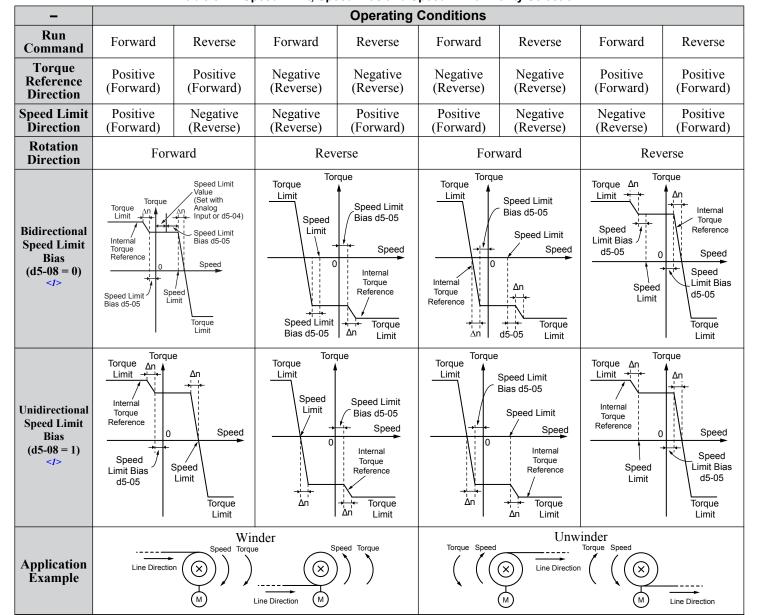



Table 5.21 Speed Limit, Speed Bias and Speed Limit Priority Selection

## Indicating Operation at the Speed Limit

Program a digital output to close when the drive operates at or beyond the speed limit (H2- $\Box\Box$  = 32). Use this output to notify a control device such as a PLC of abnormal operating conditions.

# Switching Between Torque and Speed Control

Use a digital input to switch Torque Control and Speed Control (H1- $\Box\Box$  = 71). When switching from Speed Control to Torque Control, the torque limit becomes the torque reference and the speed reference becomes the speed limit. This change is reversed when switching back to Speed Control.

If required by the application, set up a delay time using parameter d5-06. The reference values (torque reference/speed limit in Torque Control or speed reference/torque limit in Speed Control) are held during this switch delay time. Change the reference values from the controller within this delay time.

Note:

- 1. The switching delay time d5-06 is not applied when the Stop command is entered. Here the operation switches immediately to speed control and the drive decelerates to stop at the torque limit.
- 2. Set d5-01 to 0 when switching between Torque Control and Speed Control. An oPE15 (Torque Control Setting Error) alarm will be triggered if parameter d5-01 is set to 1 while H1-□□ is set to 71 at the same time.

<sup>&</sup>lt;1> The value of delta n in the drawings depends on the ASR setting in parameters C5-\$\square\$ \square\$.

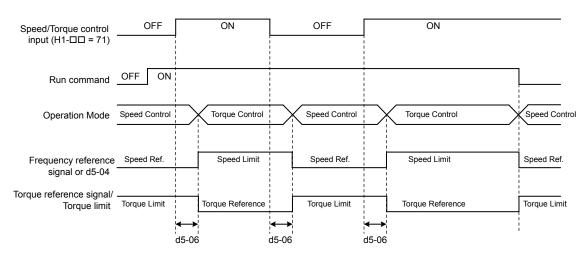



Figure 5.51 Speed/Torque Control Switching Time

## ■ d5-01: Torque Control Selection

| No.   | Parameter Name           | Setting Range | Default |
|-------|--------------------------|---------------|---------|
| d5-01 | Torque Control Selection | 0, 1          | 0       |

#### Setting 0: Disabled

Speed Control will be active. Also use this setting when H1- $\Box\Box$  = 71 (Speed/Torque Control Switch).

#### Setting 1: Enabled

Torque Control is always enabled.

## ■ d5-02: Torque Reference Delay Time

Apply a filter with the time constant set to parameter d5-02 to the torque reference signal to eliminate oscillation resulting from an unstable torque reference signal. A higher filter time stabilizes control while reducing the responsiveness.

| No.   | Parameter Name              | Setting Range | Default |
|-------|-----------------------------|---------------|---------|
| d5-02 | Torque Reference Delay Time | 0 to 1000 ms  | 0 ms    |

## d5-03: Speed Limit Selection

Determines how the speed limit is set.

| No.   | Parameter Name        | Setting Range | Default |
|-------|-----------------------|---------------|---------|
| d5-03 | Speed Limit Selection | 1 or 2        | 1       |

## **Setting 1: Frequency Reference Input**

The frequency reference value at the active reference source (digital operator, External reference 1 or External reference 2) will be used as speed limit. Note that in this case all settings for accel/decel times (C1-01 to C1-08) and S-curves (C2-01 to C2-04) will apply for the speed limit.

#### Setting 2: d5-04

The speed limit is set by parameter d5-04.

## ■ d5-04: Speed Limit

Sets the speed limit during torque control if parameter d5-03 is set to 2. *Refer to Speed Limitation and Speed Limit Bias on page 253*.

| No.   | Parameter Name | Setting Range | Default |
|-------|----------------|---------------|---------|
| d5-04 | Speed Limit    | -120 to 120%  | 0%      |

### d5-05: Speed Limit Bias

Applies a bias set as a percentage of the maximum output frequency to the speed limit value. *Refer to Speed Limitation and Speed Limit Bias on page 253*.

## 5.4 d: Reference Settings

| No.   | Parameter Name   | Setting Range | Default |
|-------|------------------|---------------|---------|
| d5-05 | Speed Limit Bias | 0 to 120%     | 10%     |

## ■ d5-06: Speed/Torque Control Switchover Time

Sets the delay time for switching between Speed Control and Torque Control.

| No.   | Parameter Name                       | Setting Range | Default |
|-------|--------------------------------------|---------------|---------|
| d5-06 | Speed/Torque Control Switchover Time | 0 to 1000 ms  | 0 ms    |

## ■ d5-08: Unidirectional Speed Limit Bias

Selects how the speed limit bias is applied.

| No.   | Parameter Name                  | Setting Range | Default |
|-------|---------------------------------|---------------|---------|
| d5-08 | Unidirectional Speed Limit Bias | 0, 1          | 1       |

#### Setting 0: Disabled

The speed limit bias is applied in the speed limit direction and the opposite direction.

#### Setting 1: Enabled

The speed limit bias is applied in the opposite direction of the speed limit only.

# d6: Field Weakening and Field Forcing

## Field Weakening

The Field Weakening function reduces the output voltage to a predefined level to reduce the energy consumption of the motor. To activate the Field Weakening function, use a digital input programmed for  $H1-\Box\Box=63$ . Only use Field Weakening with a known and unchanging light load condition. Use the Energy Saving function (b8- $\Box\Box$  parameters) when Energy Saving for various different load conditions is required.

## **Field Forcing**

The Field Forcing function compensates the delaying influence of the motor time constant when changing the excitation current reference and improves motor responsiveness. Field Forcing is ineffective during DC Injection Braking.

### ■ d6-01: Field Weakening Level

Sets the level to which the output voltage is reduced when Field Weakening is activated. Set as percentage of the maximum output voltage.

| No.   | Parameter Name        | Setting Range | Default |
|-------|-----------------------|---------------|---------|
| d6-01 | Field Weakening Level | 0 to 100%     | 80%     |

# ■ d6-02: Field Weakening Frequency Limit

Sets the minimum output frequency at which field weakening can be activated. Field Weakening cannot be activated for frequencies below d6-02.

| No.   | Parameter Name                  | Setting Range | Default |
|-------|---------------------------------|---------------|---------|
| d6-02 | Field Weakening Frequency Limit | 0 to 400.0 Hz | 0.0 Hz  |

# ■ d6-03: Field Forcing Selection

Enables or disables the Field Forcing function.

| No.   | Parameter Name          | Setting Range | Default |
|-------|-------------------------|---------------|---------|
| d6-03 | Field Forcing Selection | 0, 1          | 0       |

## Setting 0: Disabled

#### Setting 1: Enabled

## ■ d6-06: Field Forcing Limit

Sets the maximum level at which the Field Forcing function can boost the excitation current reference. The value is set as a percentage of the motor no load current. This parameter does not normally need to be changed.

| No.   | Parameter Name      | Setting Range | Default |
|-------|---------------------|---------------|---------|
| d6-06 | Field Forcing Limit | 100 to 400%   | 400%    |

# d7: Offset Frequency

# ■ d7-01 to d7-03: Offset Frequency 1 to 3

Three different offset values can be added to the frequency reference. They can be selected using digital inputs programmed for Offset frequency 1, 2, and 3 (H1- $\square\square$  = 44, 45, 46). The selected offset values are added together if multiple inputs are closed simultaneously. The value is set as a percentage of the Maximum Output Frequency.

**Note:** This function can replace the "Trim Control" function (H1- $\Box\Box$  = 1C, 1D) of older Yaskawa drives.

| No.   | Parameter Name     | Setting Range    | Default |
|-------|--------------------|------------------|---------|
| d7-01 | Offset Frequency 1 | -100.0 to 100.0% | 0%      |
| d7-02 | Offset Frequency 2 | -100.0 to 100.0% | 0%      |
| d7-03 | Offset Frequency 3 | -100.0 to 100.0% | 0%      |

Figure 5.52 illustrates the Offset frequency function.

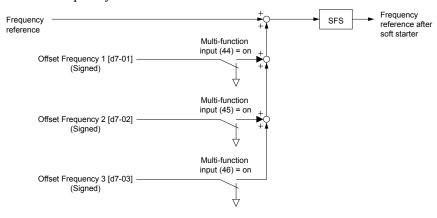



Figure 5.52 Offset Frequency Operation

# 5.5 E: Motor Parameters

E parameters cover V/f pattern and motor data settings.

## E1: V/f Pattern for Motor 1

## ■ V/f Pattern Settings (E1-03)

The drive uses a V/f pattern to adjust the output voltage relative to the frequency reference. There are 15 different predefined V/f patterns (setting 0 to E) from which to select, each with varying voltage profiles, saturation levels (frequency at which maximum voltage is reached), and maximum frequencies. Additionally, one custom V/f pattern is available (setting F) that requires the user to create the pattern using parameters E1-04 through E1-10.

### **■** E1-03: V/f Pattern Selection

Selects the V/f pattern for the drive and motor from 15 predefined patterns or creates a custom V/f pattern.

| No.   | Parameter Name        | Setting Range | Default |
|-------|-----------------------|---------------|---------|
| E1-03 | V/f Pattern Selection | 0 to F        | F <1>   |

<sup>&</sup>lt;1> Parameter is not reset to the default value when the drive is initialized using A1-03.

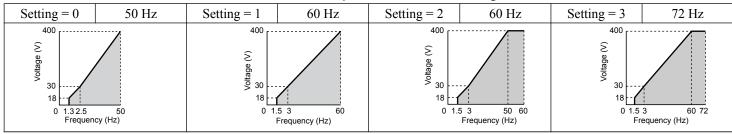
## Setting a Predefined V/f Pattern (Setting 0 to E)

Choose the V/f pattern that best meets the application demands from *Table 5.22*. These settings are available only in V/f Control modes. Set the correct value to E1-03. Parameters E1-04 to E1-13 can only be monitored, not changed.

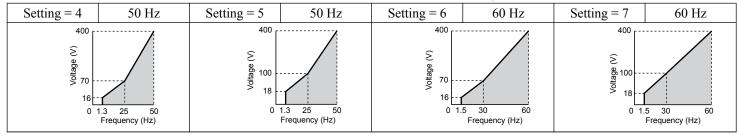
ote: 1. Setting an improper V/f pattern may result in low motor torque or increased current due to overexcitation.

2. Drive initialization does not reset parameter E1-03.

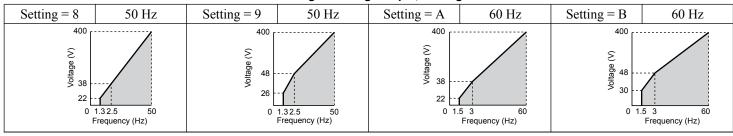
Table 5.22 Predefined V/f Patterns


| Setting  | Specification               | Characteristic       | Application                                                                                          |
|----------|-----------------------------|----------------------|------------------------------------------------------------------------------------------------------|
| 0        | 50 Hz                       |                      |                                                                                                      |
| 1        | 60 Hz                       | Constant targue      | For general purpose applications. Torque remains constant                                            |
| 2        | 60 Hz (with 50 Hz base)     | Constant torque      | regardless of changes to speed.                                                                      |
| 3        | 72 Hz (with 60 Hz base)     |                      |                                                                                                      |
| 4        | 50 Hz, Variable torque 1    |                      |                                                                                                      |
| 5        | 50 Hz, Variable torque 2    | Veriable terms       | For fans, pumps, and other applications where the required                                           |
| 6        | 60 Hz, Variable torque 1    | Variable torque      | torque changes as a function of the speed.                                                           |
| 7        | 60 Hz, Variable torque 2    |                      |                                                                                                      |
| 8        | 50 Hz, mid starting torque  |                      |                                                                                                      |
| 9        | 50 Hz, high starting torque | Uigh starting torque | Select high starting torque when:                                                                    |
| A        | 60 Hz, mid starting torque  | High starting torque | Wiring between the drive and motor exceeds 150 m.     A large amount of starting torque is required. |
| В        | 60 Hz, high starting torque |                      | 74 large amount of starting torque is required.                                                      |
| C        | 90 Hz (with 60 Hz base)     |                      |                                                                                                      |
| D        | 120 Hz (with 60 Hz base)    | Constant output      | Output voltage is constant when operating at greater than 60 Hz.                                     |
| Е        | 180 Hz (with 60 Hz base)    |                      |                                                                                                      |
| F<br><1> | 60 Hz                       | Constant torque      | For general purpose applications. Torque remains constant regardless of changes to speed.            |

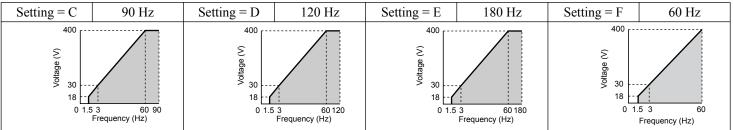
<sup>&</sup>lt;1> Setting F enables a custom V/f pattern by changing parameters E1-04 to E1-13. When the drive is shipped, the default values for parameters E1-04 to E1-13 are the same as those of setting 1.


The following tables show details on predefined V/f patterns.

#### Predefined V/f Patterns for Models 4□0011 and 4□0014


### Table 5.23 Constant Torque Characteristics, Settings 0 to 3

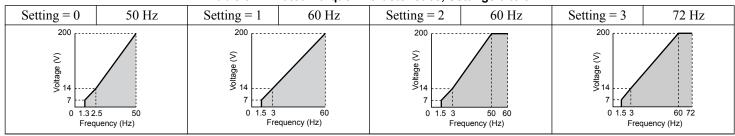



### Table 5.24 Derated Torque Characteristics, Settings 4 to 7

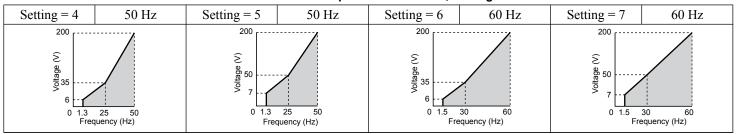


#### Table 5.25 High Starting Torque, Settings 8 to B

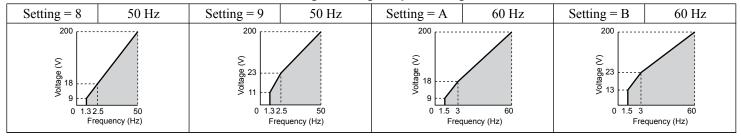



## Table 5.26 Rated Output Operation, Settings C to F

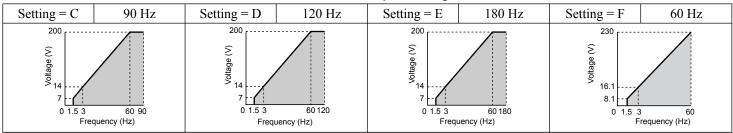



### Predefined V/f Patterns for Models 2□0028 to 2□0192 and 4□0021 to 4□0124

The values in the following graphs are specific to 200 V class drives. Double the values for 400 V class drives.


## Table 5.27 Rated Torque Characteristics, Settings 0 to 3

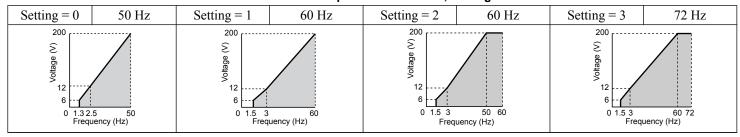



#### Table 5.28 Derated Torque Characteristics, Settings 4 to 7



## Table 5.29 High Starting Torque, Settings 8 to B




## Table 5.30 Constant Output, Settings C to F



### Predefined V/f Patterns for Models 2□0248 and 4□0156 to 4□0930

The values in the following graphs are specific to 200 V class drives. Double the values for 400 V class drives.

### Table 5.31 Rated Torque Characteristics, Settings 0 to 3



## Table 5.32 Derated Torque Characteristics, Settings 4 to 7

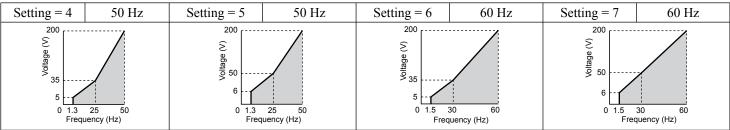



Table 5.33 High Starting Torque, Settings 8 to B

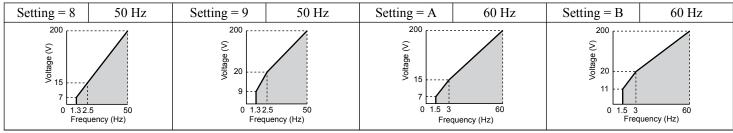
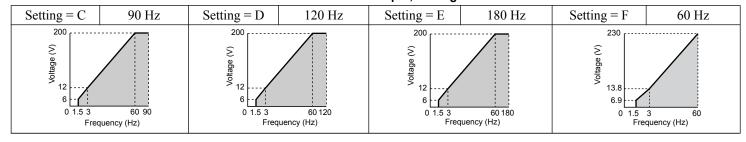




Table 5.34 Constant Output, Settings C to F



## Setting a Custom V/f Pattern (Setting F: Default)

Setting parameter E1-03 to F allows the user to set up a custom V/f pattern by changing parameters E1-04 to E1-13.

## ■ V/f Pattern Settings E1-04 to E1-13

If E1-03 is set to a preset V/f pattern (i.e., a value other than F), the user can monitor the V/f pattern in parameters E1-04 through E1-13. To create a new V/f pattern, set E1-03 to F. *Refer to V/f Pattern on page 262* for an example custom V/f pattern.

Note: Certain E1-□□ parameters might not be visible depending on the control mode. *Refer to Parameter List on page 501* for details.

| No.   | Parameter Name                    | Setting Range        | Default       |
|-------|-----------------------------------|----------------------|---------------|
| E1-04 | Maximum Output Frequency          | 40.0 to 400.0 Hz <1> | <2> <3>       |
| E1-05 | Maximum Voltage                   | 0.0 to 255.0 V <4>   | <2>           |
| E1-06 | Base Frequency                    | 0.0 to [E1-04]       | <2> <3>       |
| E1-07 | Middle Output Frequency           | 0.0 to [E1-04]       | <2>           |
| E1-08 | Middle Output Frequency Voltage   | 0.0 to 255.0 V <4>   | <2>           |
| E1-09 | Minimum Output Frequency          | 0.0 to [E1-04] <1>   | <2> <3>       |
| E1-10 | Minimum Output Frequency Voltage  | 0.0 to 255.0 V <4>   | <2>           |
| E1-11 | Middle Output Frequency 2         | 0.0 to [E1-04]       | 0.0 Hz <6>    |
| E1-12 | Middle Output Frequency Voltage 2 | 0.0 to 255.0 V <4>   | 0.0 V <5> <6> |
| E1-13 | Base Voltage                      | 0.0 to 255.0 V <4>   | 0.0 V <5> <7> |

- <1> Default setting is determined by E5-01 in OLV/PM. When E5-01 is set to FFFFH, the setting range for E1-04 and E1-06 is 10.0 to 40.0 Hz and the setting range for E1-09 is 0.0 to 400.0 Hz.
- <2> Default setting is determined by the control mode.
- <3> When using PM motors, the default setting is determined by the motor code set to E5-01.
- <4> Values shown are specific to 200 V class drives. Double the value for 400 V class drives.
- <5> The drive changes these settings when Auto-Tuning is performed (Rotational Auto-Tuning, Stationary Auto-Tuning 1, 2).
- <6> Parameter ignored when E1-11 and E1-12 are set to 0.0.
- <7> E1-13 and E1-05 are set to the same value when Auto-Tuning is performed.

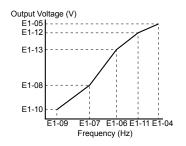



Figure 5.53 V/f Pattern

Note:

- 1. The following condition must be true when setting up the V/f pattern:  $E1-09 \le E1-07 \le E1-06 \le E1-11 \le E1-04$
- 2. To make the V/f pattern a straight line below E1-06, set E1-09 equal to E1-07. In this case the E1-08 setting is disregarded.
- 3. E1-03 is unaffected when the drive is initialized, but E1-04 through E1-13 return to their default values.
- 4. Only use E1-11, E1-12, and E1-13 to fine-tune the V/f pattern in the constant output range. These parameters rarely need to be changed.

## **■** E1-22: Input Voltage Setting

Correctly set Input Voltage Setting (E1-22) to the input power supply voltage according to the voltage of the power supply that is input to the drive. This setting value serves as the baseline for the protective functions (Uv detection level). The input power supply voltage value can be checked in Drive Input Power Voltage Effective Value (U1-54).

**NOTICE**: *Make sure that you set E1-22 to the voltage of the power supply input to this product so that the protective functions work correctly.* The detection levels of Control Circuit Undervoltage Fault (Uv1 and Uv) change according to the setting value of the input voltage as shown in the following table:

| Product     | E1-22 Setting            | Uv1 Detection Level and Uv Detection Level |
|-------------|--------------------------|--------------------------------------------|
| 200 V Class | Setting value ≤ 220 Vrms | 190 V                                      |
| 200 V Class | Setting value > 220 Vrms | 225 V                                      |
| 400 V Class | Setting value ≤ 440 Vrms | 380 V                                      |
| 400 V Class | Setting value > 440 Vrms | 450 V                                      |

## **♦** E2: Motor 1 Parameters

These parameters contain the motor data needed for motor 1. Performing Auto-Tuning (including Rotational Auto-Tuning and Stationary Auto-Tuning 2 and 3, and Rotational Auto-Tuning for V/f Control) automatically sets these parameters. *Refer to Auto-Tuning Fault Detection on page 408* for details if Auto-Tuning cannot be performed.

**Note:** The function for switching between two motors cannot be used with a PM motor. E2- $\square\square$  parameters are hidden when a PM motor control mode is selected (A1-02 = 5, 6, or 7).

#### **■** E2-01: Motor Rated Current

Provides motor control, protects the motor, and calculates torque limits. Set E2-01 to the full load amps (FLA) stamped on the motor nameplate. If Auto-Tuning completes successfully, the value entered to T1-04 will automatically be saved to E2-01.

| No.   | Parameter Name      | Setting Range                              | Default                       |
|-------|---------------------|--------------------------------------------|-------------------------------|
| E2-01 | Motor Rated Current | 10% to 150% of the drive rated current <1> | Determined by C6-01 and o2-04 |

<1> Display is in the following units:

2□0028, 2□0042, and 4□0011 to 4□0027: 0.01 A units

 $2\square 0054$  to  $2\square 0248$  and  $4\square 0034$  to  $4\square 0930$ : 0.1 A units

**Note:** Setting E2-01  $\leq$  E2-03 will trigger an oPE02 error. Set E2-03 correctly to prevent this error.

## ■ E2-02: Motor Rated Slip

Sets the motor rated slip in Hz to provide motor control, protect the motor, and calculate torque limits. This value is automatically set during Auto-Tuning (Rotational Auto-Tuning, Stationary Auto-Tuning 2, 3).

| No.   | Parameter Name   | Setting Range    | Default                       |
|-------|------------------|------------------|-------------------------------|
| E2-02 | Motor Rated Slip | 0.00 to 20.00 Hz | Determined by C6-01 and o2-04 |

If Auto-Tuning cannot be performed, calculate the motor rated slip using the information written on the motor nameplate and the formula below:

 $E2-02 = f - (n \times p)/120$ 

(f: rated frequency (Hz), n: rated motor speed (r/min), p: number of motor poles)

#### ■ E2-03: Motor No-Load Current

Set the no-load current for the motor in amperes when operating at the rated frequency and the no-load voltage. The drive sets E2-03 during the Auto-Tuning process (Rotational Auto-Tuning and Stationary Auto-Tuning 2, 3). The motor no-load current listed in the motor test report can also be entered to E2-03 manually. Contact the motor manufacturer to receive a copy of the motor test report.

| No.   | Parameter Name        | Setting Range         | Default                       |
|-------|-----------------------|-----------------------|-------------------------------|
| E2-03 | Motor No-Load Current | 0.00 A to [E2-01] <1> | Determined by C6-01 and o2-04 |

<sup>&</sup>lt;1> Display is in the following units:

 $2\square 0028, 2\square 0042,$  and  $4\square 0011$  to  $4\square 0027;$  0.01 A units

2□0054 to 2□0248 and 4□0034 to 4□0930: 0.1 A units

#### **■ E2-04: Number of Motor Poles**

Set the number of motor poles to E2-04. If Auto-Tuning completes successfully, the value entered to T1-06 will automatically be saved to E2-04.

| No.   | Parameter Name        | Setting Range | Default |
|-------|-----------------------|---------------|---------|
| E2-04 | Number of Motor Poles | 2 to 48       | 4       |

### **■ E2-05: Motor Line-to-Line Resistance**

Sets the line-to-line resistance of the motor stator winding. If Auto-Tuning completes successfully, this value is automatically calculated. Enter this value as line-to-line and not for each motor phase.

If Auto-Tuning is not possible, contact the motor manufacturer to find out the line-to-line resistance or measure it manually. When using the manufacturer motor test report, calculate E2-05 by one of the formulas below:

- E-type insulation: Multiply 0.822 times the resistance value (Ω) listed on the test report at 75 °C (167 °F).
- B-type insulation: Multiply 0.822 times the resistance value (Ω) listed on the test report at 75 °C (167 °F).
- F-type insulation: Multiply 0.728 times the resistance value (Ω) listed on the test report at 115 °C (239 °F).

| No.   | Parameter Name                | Setting Range            | Default                       |
|-------|-------------------------------|--------------------------|-------------------------------|
| E2-05 | Motor Line-to-Line Resistance | 0.000 to 65000 Ω <i></i> | Determined by C6-01 and o2-04 |

<sup>&</sup>lt;1> Units are expressed in m $\Omega$  for models  $4\square 0900$  and  $4\square 0930$ .

## **■ E2-06: Motor Leakage Inductance**

Sets the voltage drop due to motor leakage inductance as a percentage of motor rated voltage. This value is automatically set during Auto-Tuning (Rotational Auto-Tuning, Stationary Auto-Tuning 2, 3).

| No.   | Parameter Name           | Setting Range | Default                       |
|-------|--------------------------|---------------|-------------------------------|
| E2-06 | Motor Leakage Inductance | 0.0 to 40.0%  | Determined by C6-01 and o2-04 |

## **■ E2-07: Motor Iron-Core Saturation Coefficient 1**

Sets the motor iron saturation coefficient at 50% of the magnetic flux. If Rotational Auto-Tuning completes successfully, then this value is automatically calculated and set to E2-07. This coefficient is used when operating with constant output.

| No.   | Parameter Name                           | Setting Range | Default |
|-------|------------------------------------------|---------------|---------|
| E2-07 | Motor Iron-Core Saturation Coefficient 1 | 0.00 to 0.50  | 0.50    |

## **■ E2-08: Motor Iron-Core Saturation Coefficient 2**

Sets the motor iron saturation coefficient at 75% of the magnetic flux. If Rotational Auto-Tuning completes successfully, then this value is automatically calculated and set to E2-08. This coefficient is used when operating with constant output.

| No.   | Parameter Name                           | Setting Range | Default |
|-------|------------------------------------------|---------------|---------|
| E2-08 | Motor Iron-Core Saturation Coefficient 2 | E2-07 to 0.75 | 0.75    |

#### **■ E2-09: Motor Mechanical Loss**

Sets the motor mechanical loss as a percentage of motor rated power (kW) capacity.

Adjust this setting in the following circumstances:

- When there is a large amount of torque loss due to motor bearing friction.
- When there is a large amount of torque loss in a fan or pump application.

The setting for the mechanical loss is added to the torque.

| No.   | Parameter Name        | Setting Range | Default |
|-------|-----------------------|---------------|---------|
| E2-09 | Motor Mechanical Loss | 0.0 to 10.0%  | 0.0%    |

## **■ E2-10: Motor Iron Loss for Torque Compensation**

Sets the motor iron loss in watts.

| No.   | Parameter Name                          | Setting Range | Default                       |
|-------|-----------------------------------------|---------------|-------------------------------|
| E2-10 | Motor Iron Loss for Torque Compensation | 0 to 65535 W  | Determined by C6-01 and o2-04 |

### **■** E2-11: Motor Rated Power

Sets the motor rated power in kW. If Auto-Tuning completes successfully, the value entered to T1-02 will automatically be saved to E2-11.

| No.   | Parameter Name    | Setting Range     | Default                       |
|-------|-------------------|-------------------|-------------------------------|
| E2-11 | Motor Rated Power | 0.00 to 650.00 kW | Determined by C6-01 and o2-04 |

## ■ Setting Motor Parameters Manually

Follow the instructions below when setting motor-related parameters manually instead of Auto-Tuning. Refer to the motor test report included with the motor to ensure the correct data is entered into the drive.

#### **Set the Motor Rated Current**

Enter the motor rated current listed on the nameplate of the motor to E2-01.

### Set the Motor Rated Slip

Calculate the motor rated slip using the base speed listed on the motor nameplate. Refer to the formula below, then enter that value to E2-02.

Motor rated slip = rated frequency [Hz] – base speed  $[r/min] \times (no. of motor poles) / 120$ 

#### Set the No-Load Current

Enter the no-load current at rated frequency and rated voltage to E2-03. This information is not usually listed on the nameplate. Contact the motor manufacturer if the data cannot be found.

The default setting of the no-load current is for performance with a 4-pole Yaskawa motor.

## **Set the Number of Motor Poles**

Only required when A1-02 is set to 0, 1, 2, 3 (Control Modes for Induction Motors). Enter the number of motor poles as indicated on motor nameplate.

## Set the Line-to-Line Resistance

E2-05 is normally set during Auto-Tuning. If Auto-Tuning cannot be performed, contact the motor manufacturer to determine the correct resistance between motor lines. The motor test report can also be used to calculate this value using the formulas below:

• E-type insulation: Multiply 0.822 times the resistance value ( $\Omega$ ) listed on the test report at 75 °C (167 °F).

- B-type insulation: Multiply 0.822 times the resistance value ( $\Omega$ ) listed on the test report at 75 °C (167 °F).
- F-type insulation: Multiply 0.728 times the resistance value ( $\Omega$ ) listed on the test report at 115 °C (239 °F).

#### Set the Motor Leakage Inductance

The motor leakage inductance set to E2-06 determines the amount of voltage drop relative to the motor rated voltage. Enter this value for motors with a low degree of inductance, such as high-speed motors. This information is usually not listed on the motor nameplate. Contact the motor manufacturer if the data cannot be found.

#### Set the Motor Iron-Core Saturation Coefficient 1, 2

E2-07 and E2-08 are set when Auto-Tuning is performed.

#### **Set the Motor Mechanical Loss**

Only required in Closed Loop Vector Control. The drive compensates for the degree of mechanical loss with torque compensation. Although E2-09 rarely needs to be changed, adjustment may be necessary in the following circumstances:

- When there is a large amount of torque loss due to motor bearing friction.
- When there is a large amount of torque loss in a fan or pump application.

#### **Set the Motor Iron Loss for Torque Compensation**

Only required when using V/f Control. Enter this value in watts to E2-10. The drive uses this setting to improve the precision of torque compensation.

## E3: V/f Pattern for Motor 2

These parameters set the V/f pattern used for motor 2. *Refer to Setting 16: Motor 2 Selection on page 289* for details on switching motors.

**Note:** The function for switching between two motors cannot be used with a PM motor. E3- $\square\square$  parameters are hidden when a PM motor control mode is selected (A1-02 = 5, 6, or 7).

#### ■ E3-01: Motor 2 Control Mode Selection

Selects the control mode for motor 2. A control mode for PM motors cannot be selected for motor 2.

| No.   | Parameter Name                 | Setting Range | Default |
|-------|--------------------------------|---------------|---------|
| E3-01 | Motor 2 Control Mode Selection | 0 to 3        | 0       |

**Note:** L1-01 determines protection from motor overload (oL1) in motor 2 and motor 1.

Setting 0: V/f Control

Setting 1: V/f Control with PG

**Setting 2: Open Loop Vector Control** 

**Setting 3: Closed Loop Vector Control** 

#### E3-04 to E3-13

Parameters E3-04 through E3-13 set up the V/f pattern used for motor 2 as shown in *Figure 5.54*.

Note: Certain E3-□□ parameters might not be visible depending on the control mode. *Refer to Parameter List on page 501* for details.

| No.   | Parameter Name                           | Setting Range          | Default       |
|-------|------------------------------------------|------------------------|---------------|
| E3-04 | Motor 2 Max Output Frequency             | 40.0 to 400.0 Hz       | <2>           |
| E3-05 | Motor 2 Max Voltage                      | 0.0 to 255.0 V <i></i> | <1> <2>       |
| E3-06 | Motor 2 Base Frequency                   | 0.0 to [E3-04]         | <2>           |
| E3-07 | Motor 2 Mid Output Frequency             | 0.0 to [E3-04]         | <2>           |
| E3-08 | Motor 2 Mid Output Frequency Voltage     | 0.0 to 255.0 V <1>     | <1> <2>       |
| E3-09 | Motor 2 Minimum Output Frequency         | 0.0 to [E3-04]         | <2>           |
| E3-10 | Motor 2 Minimum Output Frequency Voltage | 0.0 to 255.0 V <i></i> | <1> <2>       |
| E3-11 | Motor 2 Mid Output Frequency 2           | 0.0 to [E3-04]         | 0.0 Hz <4>    |
| E3-12 | Motor 2 Mid Output Frequency Voltage 2   | 0.0 to 255.0 V <i></i> | 0.0 V <3> <4> |
| E3-13 | Motor 2 Base Voltage                     | 0.0 to 255.0 V <1>     | 0.0 V <3>     |

- <1> Values shown here are specific to 200 V class drives. Double the value for 400 V class drives.
- <2> Default setting is determined by the control mode selected for motor 2 (E3-01).
- <3> The drive sets this value when Auto-Tuning is performed (Rotational Auto-Tuning and Stationary Auto-Tuning 2).
- <4> Parameter ignored when E3-11 and E3-12 are set to 0.0.

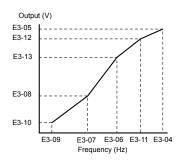



Figure 5.54 V/f Pattern for Motor 2

Note:

Note:

- 1. The following conditions must be true when setting up the V/f pattern: E3-09  $\leq$  E3-07  $\leq$  E3-06  $\leq$  E3-11  $\leq$  E3-04
- 2. To make the V/f pattern a straight line at a frequency lower than E3-06, set E3-09 equal to E3-07. In this case, E3-08 is disregarded.
- 3. Parameters E3-04 through E3-13 are reset to their default values when the drive is initialized.
- 4. Only use E3-11, E3-12, and E3-13 to fine-tune the V/f pattern in the constant output range. These parameters rarely need to be changed.

The function for switching between two motors cannot be used with a PM motor. E4- \(\sigma\) parameters are hidden when a PM motor control

## E4: Motor 2 Parameters

E4 parameters contain the motor data for motor 2. These parameters are usually set automatically during the Auto-Tuning process for vector control modes (Rotational Auto-Tuning, Stationary Auto-Tuning 2, 3). *Refer to Auto-Tuning Fault Detection on page 408* for details if Auto-Tuning cannot be performed.

mode is selected (A1-02  $\stackrel{?}{=}$  5, 6, or 7).

#### ■ E4-01: Motor 2 Rated Current

Protects the motor and calculates torque limits. Set E4-01 to the full load amps (FLA) stamped on the nameplate of motor 2. If Auto-Tuning completes successfully, the value entered to T1-04 will automatically be saved to E4-01.

| No.   | Parameter Name        | Setting Range                              | Default                       |
|-------|-----------------------|--------------------------------------------|-------------------------------|
| E4-01 | Motor 2 Rated Current | 10 to 150% of the drive rated current. <1> | Determined by C6-01 and o2-04 |

<1> Display is in the following units:

 $2\square 0028$ ,  $2\square 0042$ , and  $4\square 0011$  to  $4\square 0027$ : 0.01 A units

2□0054 to 2□0248 and 4□0034 to 4□0930: 0.1 A units

**Note:** An oPE02 error will occur if the motor rated current in E4-01 is set lower than the motor no-load current in E4-03. Set E4-03 correctly to prevent this error.

#### ■ E4-02: Motor 2 Rated Slip

Sets the motor 2 rated slip frequency and is the basis for slip compensation value. The drive calculates this value automatically during Auto-Tuning (Rotational Auto-Tuning and Stationary Auto-Tuning 2, 3).

Refer to E2-02: Motor Rated Slip on page 262 for information on calculating the motor rated slip.

| No.   | Parameter Name     | Setting Range    | Default                       |
|-------|--------------------|------------------|-------------------------------|
| E4-02 | Motor 2 Rated Slip | 0.00 to 20.00 Hz | Determined by C6-01 and o2-04 |

## ■ E4-03: Motor 2 Rated No-Load Current

Sets the no-load current for motor 2 in amperes when operating at the rated frequency and the no-load voltage. The drive sets E2-03 during the Auto-Tuning process (Rotational Auto-Tuning and Stationary Auto-Tuning 2, 3). The motor no-load current listed in the motor test report can also be entered to E2-03 manually. Contact the motor manufacturer for a copy of the motor test report.

| No.   | Parameter Name                | Setting Range | Default                       |
|-------|-------------------------------|---------------|-------------------------------|
| E4-03 | Motor 2 Rated No-Load Current | 0 to [E4-01]  | Determined by C6-01 and o2-04 |

<1> Display is in the following units: 2□0028, 2□0042, and 4□0011 to 4□0027: 0.01 A units 2□0054 to 2□0248 and 4□0034 to 4□0930: 0.1 A units

### ■ E4-04: Motor 2 Motor Poles

Sets the number of poles for motor 2. If Auto-Tuning completes successfully, the value entered to T1-06 will be automatically saved to E4-04.

| No.   | Parameter Name      | Setting Range | Default |
|-------|---------------------|---------------|---------|
| E4-04 | Motor 2 Motor Poles | 2 to 48       | 4       |

### **■ E4-05: Motor 2 Line-to-Line Resistance**

Sets the line-to-line resistance for the motor 2 stator winding. If Auto-Tuning completes successfully, this value is automatically calculated. Enter this value as line-to-line and not for each motor phase. *Refer to E2-05: Motor Line-to-Line Resistance on page 263* to manually enter this parameter setting.

| No.   | Parameter Name                  | Setting Range    | Default                       |
|-------|---------------------------------|------------------|-------------------------------|
| E4-05 | Motor 2 Line-to-Line Resistance | 0.000 to 65000 Ω | Determined by C6-01 and o2-04 |

<sup>&</sup>lt;1> Units are expressed in m $\Omega$  for models  $4\square 0900$  and  $4\square 0930$ .

## ■ E4-06: Motor 2 Leakage Inductance

Sets the voltage drop due to motor leakage inductance as a percentage of rated voltage of motor 2. This value is automatically set during Auto-Tuning (Rotational Auto-Tuning and Stationary Auto-Tuning 2, 3).

| No.   | Parameter Name             | Setting Range | Default                       |
|-------|----------------------------|---------------|-------------------------------|
| E4-06 | Motor 2 Leakage Inductance | 0.0 to 40.0%  | Determined by C6-01 and o2-04 |

#### **■ E4-07: Motor 2 Motor Iron-Core Saturation Coefficient 1**

Sets the motor 2 iron saturation coefficient at 50% of magnetic flux. This value is automatically set during Rotational Auto-Tuning. Adjust this parameter when operating in the constant output range.

| No.   | Parameter Name                                   | Setting Range | Default |
|-------|--------------------------------------------------|---------------|---------|
| E4-07 | Motor 2 Motor Iron-Core Saturation Coefficient 1 | 0.00 to 0.50  | 0.50    |

#### **■ E4-08: Motor 2 Motor Iron-Core Saturation Coefficient 2**

Sets the motor iron saturation coefficient at 75% of magnetic flux. This value is automatically set during Rotational Auto-Tuning. Adjust this parameter when operating in the constant output range.

| No.   | Parameter Name                                   | Setting Range   | Default |
|-------|--------------------------------------------------|-----------------|---------|
| E4-08 | Motor 2 Motor Iron-Core Saturation Coefficient 2 | [E4-07] to 0.75 | 0.75    |

## ■ E4-09: Motor 2 Mechanical Loss

Sets the motor mechanical loss as a percentage of motor rated power (kW).

Although E4-09 rarely needs to be changed, adjustment may be necessary in the following circumstances:

- When there is a large amount of torque loss due to motor bearing friction.
- When there is a large amount of torque loss in a fan or pump application.

The setting for the mechanical loss is added to the torque.

| No.   | Parameter Name          | Setting Range | Default |
|-------|-------------------------|---------------|---------|
| E4-09 | Motor 2 Mechanical Loss | 0.0 to 10.0%  | 0.0%    |

#### ■ E4-10: Motor 2 Iron Loss

Sets the motor 2 iron loss in watts.

| No.   | Parameter Name    | Setting Range | Default                       |
|-------|-------------------|---------------|-------------------------------|
| E4-10 | Motor 2 Iron Loss | 0 to 65535 W  | Determined by C6-01 and o2-04 |

#### ■ E4-11: Motor 2 Rated Power

Sets the motor 2 rated power. If Auto-Tuning completes successfully, the value entered to T1-02 will automatically be saved to E4-11.

| No.   | Parameter Name      | Setting Range     | Default             |
|-------|---------------------|-------------------|---------------------|
| E4-11 | Motor 2 Rated Power | 0.00 to 650.00 kW | Determined by o2-04 |

# ◆ E5: PM Motor Settings

These parameters set the motor data of a PM motor.

When using Yaskawa motors, set up the E5- $\square\square$  parameters by entering the motor code written on the motor nameplate.

Perform Auto-Tuning for all other PM motors. The motor data can also be entered manually, if known.

Note:

- 1. E5- $\Box\Box$  parameters are visible only when a PM motor control mode is selected (A1-02 = 5, 6, or 7).
- 2. E5- $\Box\Box$  parameters are not reset when the drive is initialized using parameter A1-03.

When using a Yaskawa motor without a motor code or when using a PM motor from another company, set the parameters according to the motor nameplate values and test report values.

# **■** E5-01: Motor Code Selection (for PM Motors)

When using a Yaskawa motor with a motor code, set the motor code for the PM motor being used. The drive automatically sets several parameters to appropriate values depending on the motor code.

When using a Yaskawa motor without a motor code or a non-Yaskawa PM motor, set the parameters according to the motor nameplate and test report values.

Setting parameter E5-01 to FFFF allows the motor data to be manually set using the E5-□□ parameters.

| No.   | Parameter Name                       | Setting Range | Default                                    |
|-------|--------------------------------------|---------------|--------------------------------------------|
| E5-01 | Motor Code Selection (for PM Motors) | 0000 to FFFF  | Determined by<br>A1-02, C6-01 and<br>o2-04 |

Note:

- 1. E5- $\Box\Box$  parameters are not reset when the drive is initialized using parameter A1-03.
- 2. When E5-01 is set to a value other than FFFF, the drive will not initialize using parameter A1-03.
- 3. Changing E5-01 to FFFF from value other than FFFF will not change the values of parameters E5-02 through E5-24.
- 4. Set E5-01 to FFFF when using a motor other than a Yaskawa SMRA, SSR1, or SST4 series.
- 5. Default settings are:
  - OLV/PM, AOLV/PM: Yaskawa SSR1 Series (1750 r/min)
  - CLV/PM: Yaskawa SST4 Series (1750 r/min)
- **6.** Selection may vary depending on the motor code entered to E5-01.
- 7. If an alarm or hunting occurs despite using a motor code, enter the value indicated on the nameplate. *Refer to Auto-Tuning for Permanent Magnet Motors on page 164* for details.

Figure 5.55 explains the motor code setting.



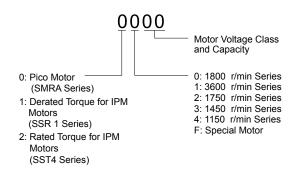



Figure 5.55 PM Motor Code

## E5-02: Motor Rated Power (for PM Motors)

Sets the rated power of the motor. Determined by the value set to T2-04 during Stationary Auto-Tuning for PM motors or by entering the motor code to E5-01.

| No.   | Parameter Name                    | Setting Range     | Default             |
|-------|-----------------------------------|-------------------|---------------------|
| E5-02 | Motor Rated Power (for PM Motors) | 0.10 to 650.00 kW | Determined by E5-01 |

## E5-03: Motor Rated Current (for PM Motors)

Sets the motor rated current in amps. Automatically set when the value is entered to T2-06 during Auto-Tuning.

| No.   | Parameter Name                      | Setting Range                         | Default             |
|-------|-------------------------------------|---------------------------------------|---------------------|
| E5-03 | Motor Rated Current (for PM Motors) | 10 to 150% of drive rated current <1> | Determined by E5-01 |

<1> Display is in the following units:

 $2\square 0028$ ,  $2\square 0042$ , and  $4\square 0011$  to  $4\square 0027$ : 0.01 A units

 $2\square 0054$  to  $2\square 0248$  and  $4\square 0034$  to  $4\square 0930$ ; 0.1 A units

### **■** E5-04: Number of Motor Poles (for PM Motors)

Sets the number of motor poles. Automatically set when the value is entered to T2-08 during Auto-Tuning.

| No.   | Parameter Name                        | Setting Range | Default             |
|-------|---------------------------------------|---------------|---------------------|
| E5-04 | Number of Motor Poles (for PM Motors) | 2 to 48       | Determined by E5-01 |

## **■** E5-05: Motor Stator Resistance (r1) (for PM Motors)

Set the resistance for one motor phase. Do not enter the line-to-line resistance into E5-05 when measuring the resistance manually.

| No.   | Parameter Name                          | Setting Range              | Default             |
|-------|-----------------------------------------|----------------------------|---------------------|
| E5-05 | Motor Stator Resistance (for PM Motors) | $0.000$ to $65.000~\Omega$ | Determined by E5-01 |

## E5-06: Motor d-Axis Inductance (Ld) (for PM Motors)

Sets the d-Axis inductance in 0.01 mH units. This parameter is set during the Auto-Tuning process.

| No.   | Parameter Name                          | Setting Range     | Default             |
|-------|-----------------------------------------|-------------------|---------------------|
| E5-06 | Motor d-Axis Inductance (for PM Motors) | 0.00 to 300.00 mH | Determined by E5-01 |

## **■** E5-07: Motor q-Axis Inductance (Lq) (for PM Motors)

Sets the q-Axis inductance in 0.01 mH units. This parameter is set during the Auto-Tuning process.

| No.   | Parameter Name                          | Setting Range     | Default             |
|-------|-----------------------------------------|-------------------|---------------------|
| E5-07 | Motor q-Axis Inductance (for PM Motors) | 0.00 to 600.00 mH | Determined by E5-01 |

## **■** E5-09: Motor Induction Voltage Constant 1 (Ke) (for PM Motors)

Sets the induced peak voltage per phase in units of 0.1 mV/(rad/s) [electrical angle]. Set this parameter when using an IPM motor with derated torque (SSR1 series or equivalent) or an IPM motor with constant torque (SST4 series or equivalent).

Set the voltage constant with E5-09 or E5-24 when E5-01 is set to FFFF. This parameter is set during Auto-Tuning for PM motors.

| No.   | Parameter Name                                     | Setting Range            | Default             |
|-------|----------------------------------------------------|--------------------------|---------------------|
| E5-09 | Motor Induction Voltage Constant 1 (for PM Motors) | 0.0 to 2000.0 mV/(rad/s) | Determined by E5-01 |

Note:

Set E5-24 to 0 when setting E5-09. However, setting both E5-09 and E5-24 to 0 will trigger an alarm. An alarm will also be triggered if neither E5-09 nor E5-24 are set to 0. When E5-01 is set to FFFF, then E5-09 = 0.0.

## E5-11: Encoder Z Pulse Offset (ΔΘ) (for PM Motors)

Sets the offset between the rotor magnetic axis and the Z Pulse of the connected encoder. This parameter is set during Auto-Tuning for PM motors and during Z Pulse Tuning.

| No.   | Parameter Name                         | Setting Range       | Default |
|-------|----------------------------------------|---------------------|---------|
| E5-11 | Encoder Z Pulse Offset (for PM Motors) | -180.0 to 180.0 deg | 0.0 deg |

## ■ E5-24: Motor Induction Voltage Constant 2 (Ke) (for PM Motors)

Set the induced phase-to-phase rms voltage in units of 0.1 mV/(r/min) [mechanical angle]. Set this parameter when using an SPM Motor (SMRA Series or equivalent).

When E5-01 is set to FFFF, use either E5-09 or E5-24 for setting the voltage constant. This parameter is set during Parameter Auto-Tuning for PM motors.

| No.   | Parameter Name                                     | Setting Range            | Default             |
|-------|----------------------------------------------------|--------------------------|---------------------|
| E5-24 | Motor Induction Voltage Constant 2 (for PM Motors) | 0.0 to 6500.0 mV/(r/min) | Determined by E5-01 |

Note:

Set E5-24 to 0.0 when setting E5-09. However, setting both E5-09 and E5-24 to 0.0 will trigger an alarm. An alarm will also be triggered if neither E5-09 nor E5-24 are set to 0.0. When E5-01 is set to FFFF, then E5-09 should be set to 0.0.

# **■** E5-25: Polarity Switch for Initial Polarity Estimation Timeout (for PM Motors)

Switches polarity for initial polarity estimation. There is normally no need to change this parameter from the default value. If "Sd = 1" is listed on the nameplate or in a test report for a Yaskawa motor, this parameter should be set to 1.

| No.   | Parameter Name                                                          | Setting Range | Default |
|-------|-------------------------------------------------------------------------|---------------|---------|
| E5-25 | Polarity Switch for Initial Polarity Estimation Timeout (for PM Motors) | 0, 1          | 0       |

Setting 0: "Sd = 1" is not listed

Setting 1: "Sd = 1" is listed

# 5.6 F: Option Settings

# ◆ F1: PG Speed Control Card Settings

Yaskawa offers PG-X3, PG-B3, PG-RT3, and PG-F3 motor encoder PG option cards. Use the CN5-C port when using only one PG option card and use the CN5-C and CN5-B ports when using two PG option cards. When programming one of the multi-function input terminals to act as a switch between two motors (H1- $\square\square$  = 16), use the card connected to port CN5-C for motor 1 and use the card connected to CN5-B for motor 2.

*Table 5.35* lists the parameters that must be set for each option card port.

**Table 5.35 Option Card Ports and Corresponding Parameters** 

| Port                     | Parameters                                        |
|--------------------------|---------------------------------------------------|
| CN5-C and CN5-B (common) | F1-02 to F1-04, F1-08 to F1-11, F1-14             |
| CN5-C only               | F1-01, F1-05, F1-06, F1-12, F1-13, F1-18 to F1-21 |
| CN5-B only               | F1-31 to F1-37                                    |

## ■ F1-01, F1-31: PG 1 and PG 2 Pulses Per Revolution

Sets the number encoder number of pulses per revolution.

| No.   | Parameter Name             | Option Port | Setting Range      | Default  |
|-------|----------------------------|-------------|--------------------|----------|
| F1-01 | PG 1 Pulses Per Revolution | CN5-C       | 1 to 60000 ppr <1> | 1024 ppr |
| F1-31 | PG 2 Pulses Per Revolution | CN5-B       | 1 to 60000 ppr     | 1024 ppr |

<sup>&</sup>lt;1> Setting range is 0 to 15000 in PM motor control modes.

## **■** F1-02, F1-14: PG Open (PGo) Circuit Operation Selection, Detection Time

A PGo fault is triggered if the drive receives no pulse signal for longer than the time set in F1-14. Set the stopping method for a PGo fault in parameter F1-02.

**Note:** An oC error may occur depending on motor speed and load conditions.

| No.   | Parameter Name                               | Option Port  | Setting Range | Default |
|-------|----------------------------------------------|--------------|---------------|---------|
| F1-02 | Operation Selection at PG Open Circuit (PGo) | CN5-B, CN5-C | 0 to 4        | 1       |
| F1-14 | PG Open-Circuit Detection Time               | CN5-B, CN5-C | 0.0 to 10.0 s | 2.0 s   |

#### **Parameter F1-02 Settings:**

Setting 0: Ramp to stop (uses the deceleration time set to C1-02)

Setting 1: Coast to stop

Setting 2: Fast Stop (uses the Fast Stop time set to C1-09)

Setting 3: Alarm only

**Note:** Due to potential damage to motor and machinery, refrain from using the "Alarm only" or "No alarm display" settings except under special circumstances.

Setting 4: No alarm display

**Note:** Due to potential damage to motor and machinery, refrain from using the "Alarm only" or "No alarm display" settings except under special circumstances.

## ■ F1-03, F1-08, F1-09: Overspeed (oS) Operation Selection, Detection Level, Delay Time

An oS fault is triggered when the speed feedback exceeds the value set in F1-08 for longer than the time set in F1-09. Set the stopping method for an oS fault in parameter F1-03.

**Note:** In AOLV/PM, the motor will coast to a stop (F1-03 = 1). The setting for F1-03 cannot be changed to 0, 2, or 3.

| No.   | Parameter Name                        | Option Port  | Setting Range | Default             |
|-------|---------------------------------------|--------------|---------------|---------------------|
| F1-03 | Operation Selection at Overspeed (oS) | CN5-B, CN5-C | 0 to 3        | 1                   |
| F1-08 | Overspeed Detection Level             | CN5-B, CN5-C | 0 to 120%     | 115%                |
| F1-09 | Overspeed Detection Delay Time        | CN5-B, CN5-C | 0.0 to 2.0 s  | Determined by A1-02 |

#### Parameter F1-03 Settings:

Setting 0: Ramp to stop (uses the deceleration time set to C1-02)

**Setting 1: Coast to stop** 

Setting 2: Fast Stop (uses the Fast Stop time set to C1-09)

**Setting 3: Alarm only** 

**Note:** Due to potential damage to motor and machinery, refrain from using the "Alarm only" setting except under special circumstances.

## ■ F1-04, F1-10, F1-11: Operation at Speed Deviation (dEv), Detection Level, Delay Time

A speed deviation error (dEv) is triggered when the difference between the frequency reference and the speed feedback exceeds the value set in F1-10 for longer than the time set in F1-1. The stopping method when a speed deviation fault occurs can be selected in parameter F1-04.

| No.   | Parameter Name                                 | Option Port  | Setting Range | Default |
|-------|------------------------------------------------|--------------|---------------|---------|
| F1-04 | Operation Selection at Deviation (dEv)         | CN5-B, CN5-C | 0 to 3        | 3       |
| F1-10 | Excessive Speed Deviation Detection Level      | CN5-B, CN5-C | 0 to 50%      | 10%     |
| F1-11 | Excessive Speed Deviation Detection Delay Time | CN5-B, CN5-C | 0.0 to 10.0 s | 0.5 s   |

**Settings for Parameter F1-04:** 

Setting 0: Ramp to stop (uses the deceleration time set to C1-02)

**Setting 1: Coast to stop** 

Setting 2: Fast Stop (uses the Fast Stop time set to C1-09)

Setting 3: Alarm only (drive continues operating while "dEv" flashes on the screen)

## **■** F1-05, F1-32: PG 1, PG 2 Rotation Selection

Determines the direction indicated by the pulses from the PG feedback encoder for motor 1 and motor 2.

See PG option card instruction manual for details on setting the direction for the PG encoder and the motor.

| No.   | Parameter Name          | Option Port | Setting Range | Default                 |
|-------|-------------------------|-------------|---------------|-------------------------|
| F1-05 | PG 1 Rotation Selection | CN5-C       | 0, 1          | Determined by A1-02 <1> |
| F1-32 | PG 2 Rotation Selection | CN5-B       | 0, 1          | 0                       |

<sup>&</sup>lt;1> Default is 0 when A1-02 = 1 or 3. Default is 1 when A1-02 = 7.

Setting 0: A pulse leads with Forward run command

Setting 1: B pulse leads with Forward run command

## ■ F1-06, F1-35: PG 1, PG 2 Division Rate for PG Pulse Monitor

Sets the ratio between the pulse input and the pulse output of a PG option card as a three-digit number, where the first digit (n) sets the numerator and the second and third digit (m) set the denominator as shown below:

$$f_{\text{Pulse Input}} = f_{\text{Pulse Output}} \cdot \frac{(1+n)}{m}$$

Example: Set F1-06 to 032 for a ratio of 1/32 between the PG card pulse input and output.

| No.   | Parameter Name                          | Option Port | Setting Range                                    | Default |
|-------|-----------------------------------------|-------------|--------------------------------------------------|---------|
| F1-06 | PG 1 Division Rate for PG Pulse Monitor | CN5-C       | 001 to 032,<br>102 to 132 (1 to $\frac{1}{32}$ ) | 001     |
| F1-35 | PG 2 Division Rate for PG Pulse Monitor | CN5-B       | 1 to 132 (1 to $\frac{1}{32}$ )                  | 001     |

# **■** F1-12, F1-13, F1-33, F1-34: PG 1, PG 2 Gear Teeth 1, 2 (V/f w/PG only)

Sets the gear ratio between the motor shaft and the PG encoder. F1-12 and F1-33 set the number of gear teeth on the motor side, while F1-13 and F-34 set the number of gear teeth on the load side. The drive uses the formula below to calculate the motor speed:

 $\text{r/min} = \frac{\text{Input pulse frequency from PG} \times 60}{\text{Pulses per Rev (F1-01/31)}} \cdot \frac{\text{Load-side PG gear teeth (F1-12/33)}}{\text{Motor-side PG gear teeth (F1-13/34)}}$ 

| No.   | Parameter Name    | Option Port | Setting Range | Default |
|-------|-------------------|-------------|---------------|---------|
| F1-12 | PG 1 Gear Teeth 1 | CN5-C       | 0 to 1000     | 0       |
| F1-13 | PG 1 Gear Teeth 2 | CN5-C       | 0 to 1000     | 0       |
| F1-33 | PG 2 Gear Teeth 1 | CN5-B       | 0 to 1000     | 0       |
| F1-34 | PG 2 Gear Teeth 2 | CN5-B       | 0 to 1000     | 0       |

**Note:** A gear ratio of 1 will be used if any of these parameters are set to 0.

## ■ F1-18: dv3 Detection Selection (CLV/PM)

Sets the number of times the drive will detect a dv3 situation before triggering a dv3 fault. The drive detects a dv3 condition when the torque reference and speed reference are in opposite directions while the difference between the actual motor speed and the speed reference is greater than 30%. Setting F1-18 to 0 disables dv3 detection.

| No.   | Parameter Name          | Option Port  | Setting Range | Default |
|-------|-------------------------|--------------|---------------|---------|
| F1-18 | dv3 Detection Selection | CN5-B, CN5-C | 0 to 10       | 10      |

**Note:** A common cause for a dv3 fault is the incorrect setting of E5-11. Make sure to enter the correct Z Pulse offset to E5-11.

## ■ F1-19: dv4 Detection Selection (CLV/PM)

Sets the number of pulses necessary to trigger a dv4 fault when there is a motor speed deviation opposite to the frequency reference. Setting F1-19 to 0 disables dv4 detection.

| No.   | Parameter Name          | Option Port  | Setting Range | Default |
|-------|-------------------------|--------------|---------------|---------|
| F1-19 | dv4 Detection Selection | CN5-B, CN5-C | 0 to 5000     | 128     |

**Note:** 1. A common cause for a dv4 fault is the incorrect setting of E5-11. Make sure to enter the correct Z-pulse offset to E5-11.

2. Set F1-19 to 0 for applications where the direction of the load is the opposite of the speed reference.

# ■ F1-20, F1-36: PG Option Card Disconnect Detection

Sets whether the drive detects a PG hardware fault (PGoH).

| No.   | Parameter Name                           | Option Port | Setting Range | Default |
|-------|------------------------------------------|-------------|---------------|---------|
| F1-20 | PG Option Card Disconnection Detection 1 | CN5-C       | 0, 1          | 1       |
| F1-36 | PG Option Card Disconnection Detection 2 | CN5-B       | 0, 1          | 1       |

Setting 0: Disabled

Setting 1: Enabled

## ■ F1-21, F1-37: PG 1, PG 2 Signal Selection (V/f w/PG only)

Determines whether the signal to the PG option card is single-channel or two-channel.

| No.   | Parameter Name        | Option Port | Setting Range | Default |
|-------|-----------------------|-------------|---------------|---------|
| F1-21 | PG 1 Signal Selection | CN5-C       | 0, 1          | 0       |
| F1-37 | PG 2 Signal Selection | CN5-B       | 0, 1          | 0       |

Setting 0: Single-channel (A channel only)

Setting 1: Two-channel (channels A and B)

## **■** F1-30: PG Option Card Port for Motor 2 Selection

Specifies the drive port for the PG option card used for motor 2. Set this parameter when switching between motor 1 and motor 2, where both motors supply a speed feedback signal to the drive. Set F1-30 to 0 when using the same PG card for feedback signals from both motors. Set F1-30 to 1 when each motor has its own PG card connected to the drive.

**Note:** The motor 2 selection function cannot be used with PM motors.

## 5.6 F: Option Settings

| No.   | Parameter Name                            | Setting Range | Default |
|-------|-------------------------------------------|---------------|---------|
| F1-30 | PG Option Card Port for Motor 2 Selection | 0, 1          | 1       |

Setting 0: CN5-C

Setting 1: CN5-B

### **■** F1-50: Encoder Selection

Sets up the type of encoder connected to a PG-F3 option card.

| No.   | Parameter Name    | Setting Range | Default |
|-------|-------------------|---------------|---------|
| F1-50 | Encoder Selection | 0 to 2        | 0       |

Setting 0: EnDat 2.1/01, 2.2/01 Serial Communications operation + Sin/Cos

#### Setting 1: EnDat 2.2/22 Serial Communications operation

The use of EnDat2.2/22 encoders requires a PG-F3 option with software version 0102 or later.

**Setting 2: Hiperface** 

### ■ F1-51: PGoH Detection Level

Sets the level for detecting PG Hardware Fault (PGoH). Available when F1-20 = 1.

Usually the relation between the sin and cos track is  $\sqrt{\sin^2\theta + \cos^2\theta} = 1$ .

A speed feedback hardware fault is triggered when the value of the square root falls below the level set in F1-51.

| No.   | Parameter Name       | Setting Range | Default |
|-------|----------------------|---------------|---------|
| F1-51 | PGoH Detection Level | 1 to 100%     | 80%     |

## **■** F1-52: Communication Speed of Serial Encoder Selection

Selects the speed for serial communication between a PG-F3 option card and serial encoder.

| No.   | Parameter Name                                  | Setting Range | Default |
|-------|-------------------------------------------------|---------------|---------|
| F1-52 | Communication Speed of Serial Encoder Selection | 0 to 3        | 0       |

Setting 0: 1M bps / 9600 bps (EnDat 2.2/22 / Hiperface)

Setting 1: 500k bps / 19200 bps (EnDat 2.2/22 / Hiperface)

Setting 2: 1M bps / 38400 bps (EnDat 2.2/22 / Hiperface)

Setting 3: 1M bps / 38400 bps (EnDat 2.2/22 / Hiperface)

# **♦ F2: Analog Input Card Settings**

These parameters set the drive for operation with the analog input option card AI-A3. If no AI-A3 card is connected, drive terminals A1 to A3 are enabled regardless of the F2-01 setting. This section describes parameters that govern operation with an input option card. Refer to the option card instruction manual for specific details on installation, wiring, input signal level selection, and parameter setup.

# ■ F2-01: Analog Input Option Card Operation Selection

Determines how the input terminals on the AI-A3 option card are used.

| No.   | Parameter Name                               | Setting Range | Default |
|-------|----------------------------------------------|---------------|---------|
| F2-01 | Analog Input Option Card Operation Selection | 0, 1          | 0       |

### Setting 0: Separate functions for each terminal (V1, V2, V3 replace terminals A1, A2, A3)

Use the H3- $\Box\Box$  parameters described in *H3-03*, *H3-04*: *Terminal A1 Gain and Bias Settings* on page *306* to set the functions and gain and bias levels for an analog reference supplied by AI-A3.

**Note:** Setting option card terminals for separate input functions (F2-01 = 0) while b1-01 = 3 will trigger an oPE05 error.

#### Setting 1: Combine input terminal values to create frequency reference (V1, V2, V3 are combined)

This setting adds all three input signals on the AI-A3 option card to create the frequency reference. Set b1-01 to 3 when the option card is the source of the frequency reference for the drive. Set the gain and bias settings for the frequency reference supplied from AI-A3 with F2-02 and F2-03.

## **■** F2-02, F2-03: Analog Input Option Card Gain, Bias

Parameter F2-02 sets the gain and parameter F2-03 sets the bias for the AI-A3 input signal when the card is used in the combined input signals mode (F2-01 = 1). Both gain and bias are set as a percentage of the maximum output frequency.

| No.   | Parameter Name                | Setting Range    | Default |
|-------|-------------------------------|------------------|---------|
| F2-02 | Analog Input Option Card Gain | -999.9 to 999.9% | 100.0%  |
| F2-03 | Analog Input Option Card Bias | -999.9 to 999.9% | 0.0%    |

**Note:** Enabled only when F2-01 = 1.

# F3: Digital Input Card Settings

These parameters set the drive for operation with the option card DI-A3. Refer to the instruction manual packaged with the option card for specific details on installation, wiring, input signal level selection, and parameter setup.

## **■ F3-01: Digital Input Option Card Input Selection**

Determines the type of input for digital option card DI-A3 when o1-03 is set to 0 or 1.

| No.   | Parameter Name                            | Setting Range | Default |
|-------|-------------------------------------------|---------------|---------|
| F3-01 | Digital Input Option Card Input Selection | 0 to 7        | 0       |

**Note:** BCD input when o1-03 = 2 or 3. Units are determined by o1-03.

Setting 0: BCD, 1% units

Setting 1: BCD, 0.1% units

Setting 2: BCD, 0.01% units

Setting 3: BCD, 1 Hz units

Setting 4: BCD, 0.1 Hz units

Setting 5: BCD, 0.01 Hz units

Setting 6: BCD, special setting (5 digit input), 0.02 Hz units

### **Setting 7: Binary**

The unit and the setting range are determined by F3-03.

F3-03 = 0: 255/100% (-255 to +255)

F3-03 = 1:4095/100% (-4095 to +4095)

F3-03 = 2: 30000/100% (-33000 to +33000)

**Note:** BCD input when o1-03 = 2 or 3. Units are determined by o1-03.

## **■** F3-03: Digital Input Option DI-A3 Data Length Selection

Determines the number of bits for the option card input that sets the frequency reference.

| No.   | Parameter Name                                   | Setting Range | Default |
|-------|--------------------------------------------------|---------------|---------|
| F3-03 | Digital Input Option DI-A3 Data Length Selection | 0 to 2        | 2       |

Setting 0: 8 bit

Setting 1: 12 bit

Setting 2: 16 bit

# ◆ F4: Analog Monitor Card Settings

These parameters set the drive for operation with the analog output option card AO-A3. Refer to the instruction manual packaged with the option card for specific details on installation, wiring, input signal level selection, and parameter setup.

## **■** F4-01, F4-03: Terminal V1, V2 Monitor Selection

Selects the data to output from analog terminal V1. Enter the final three digits of  $U\Box -\Box\Box$  to determine which monitor data is output from the option card. Some monitors are only available in certain control modes.

| No.   | Parameter Name                | Setting Range | Default |
|-------|-------------------------------|---------------|---------|
| F4-01 | Terminal V1 Monitor Selection | 000 to 999    | 102     |
| F4-03 | Terminal V2 Monitor Selection | 000 to 999    | 103     |

Note:

Set "000" or "031" when using the terminal in through mode. This setting can adjust the V1 and V2 terminal output from PLC via MEMOBUS/Modbus communications or a communications option.

## **■** F4-02, F4-04, F4-05, F4-06: Terminal V1, V2 Monitor Gain and Bias

Parameters F4-02 and F4-04 determine the gain, while parameters F4-05 and F4-06 set the bias. These parameters are set as a percentage of the output signal from V1 and V2 where 100% equals 10 V output. The terminal output voltage is limited to 10 V

| No.   | Parameter Name           | Setting Range    | Default |
|-------|--------------------------|------------------|---------|
| F4-02 | Terminal V1 Monitor Gain | -999.9 to 999.9% | 100.0%  |
| F4-04 | Terminal V2 Monitor Gain | -999.9 to 999.9% | 50.0%   |
| F4-05 | Terminal V1 Monitor Bias | -999.9 to 999.9% | 0.0%    |
| F4-06 | Terminal V2 Monitor Bias | -999.9 to 999.9% | 0.0%    |

## Using Gain and Bias to Adjust Output Signal Level

The output signal is adjustable while the drive is stopped.

#### **Terminal V1**

- **1.** View the value set to F4-02 (Terminal V1 Monitor Gain) on the digital operator. A voltage equal to 100% of the parameter being set in F4-01 will be output from terminal V1.
- **2.** Adjust F4-02 viewing the monitor connected to the terminal V1.
- **3.** View the value set to F4-05 on the digital operator, terminal V1 will output a voltage equal to 0% of the parameter being set in F4-01.
- **4.** Adjust F4-05 viewing the output signal on the terminal V1.

### **Terminal V2**

- 1. View the value set to F4-02 (Terminal V2 Monitor Gain) on the digital operator. A voltage equal to 100% of the parameter being viewed in F4-03 will be output from terminal V2.
- **2.** Adjust F4-04 viewing the monitor connected to the terminal V2.
- **3.** View the value set to F4-06 on the digital operator, terminal V2 will output a voltage equal to 0% of the parameter being set in F4-03.
- **4.** Adjust F4-06 viewing the output signal on the terminal V2.

## ■ F4-07, F4-08: Terminal V1, V2 Signal Level

Sets the output signal level for terminals V1 and V2.

| No.   | Parameter Name           | Setting Range | Default |
|-------|--------------------------|---------------|---------|
| F4-07 | Terminal V1 Signal Level | 0, 1          | 0       |
| F4-08 | Terminal V2 Signal Level | 0, 1          | 0       |

Setting 0: 0 to 10 V

Setting 1: -10 to 10 V

# ◆ F5: Digital Output Card Settings

These parameters set the drive for operation with the digital output option card DO-A3. Refer to the instruction manual packaged with the option card for specific details on installation, wiring, input signal level selection, and parameter setup.

## **■** F5-01 through F5-08: Digital Output Option Card Terminal Function Selection

When F5-09 = 2, the parameters listed in the table below assign functions to the output terminals on the option card.

| No.   | Name                            | Setting Range | Default                     |
|-------|---------------------------------|---------------|-----------------------------|
| F5-01 | Terminal P1-PC Output Selection | 0 to 1A7      | 0: During run               |
| F5-02 | Terminal P2-PC Output Selection | 0 to 1A7      | 1: Zero speed               |
| F5-03 | Terminal P3-PC Output Selection | 0 to 1A7      | 2: Speed agree              |
| F5-04 | Terminal P4-PC Output Selection | 0 to 1A7      | 4: Frequency detection 1    |
| F5-05 | Terminal P5-PC Output Selection | 0 to 1A7      | 6: Drive ready              |
| F5-06 | Terminal P6-PC Output Selection | 0 to 1A7      | 37: During frequency output |
| F5-07 | Terminal M1-M2 Output Selection | 0 to 1A7      | F: Not used                 |
| F5-08 | Terminal M3-M4 Output Selection | 0 to 1A7      | F: Not used                 |

## **■** F5-09: DO-A3 Output Mode Selection

Determines how the DO-A3 option card works with the drive.

| No.   | Parameter Name              | Setting Range | Default |
|-------|-----------------------------|---------------|---------|
| F5-09 | DO-A3 Output Mode Selection | 0 to 2        | 0       |

Note: Refer to TOBP C730600 41 Yaskawa AC Drive-Option DO-A3 Installation Manual for more details on F5-09 settings.

Setting 0: Separate Output Functions for Each of 8 Terminals

**Setting 1: Binary Output** 

Setting 2: Output Functions Assigned by F5-01 through F5-08

# ◆ F6 and F7: Communication Option Card

These parameters configure communication option cards and communication fault detection methods.

Some parameters apply to all communication option cards and some parameters apply to certain network options only. The option cards are applicable to the parameter rows marked with an "O".

| 0                     |                   | Parameter Range |                   |                   |                 |       |                   |                   |                 |                   |                   |       |                   |
|-----------------------|-------------------|-----------------|-------------------|-------------------|-----------------|-------|-------------------|-------------------|-----------------|-------------------|-------------------|-------|-------------------|
| Comm.<br>Protocol     | F6-01 to<br>F6-03 | F6-04           | F6-06 to<br>F6-08 | F6-10 to<br>F6-14 | F6-20,<br>F6-21 | F6-22 | F6-23 to<br>F6-26 | F6-30 to<br>F6-32 | F6-35,<br>F6-36 | F6-50 to<br>F6-63 | F7-01 to<br>F7-15 | F7-16 | F7-17 to<br>F7-42 |
| CC-Link               | О                 | О               | О                 | О                 | -               | -     |                   | -                 | -               |                   | -                 | -     | -                 |
| MECHA-<br>TROLINK-II  | О                 | -               | О                 | -                 | О               | 0     | О                 | -                 | -               | -                 | -                 | -     | -                 |
| MECHA-<br>TROLINK-III | О                 | -               | О                 | -                 | О               | -     | О                 | -                 | -               | -                 | -                 | -     | -                 |
| PROFIBUS-<br>DP       | О                 | -               | О                 | -                 | -               | -     | -                 | О                 | -               | -                 | -                 | -     | -                 |
| CANopen               | О                 | -               | О                 | -                 | -               | _     | -                 | -                 | О               | -                 | -                 | -     | _                 |
| DeviceNet             | О                 | -               | О                 | -                 | -               | _     | -                 | -                 | -               | О                 | -                 | -     | -                 |
| LonWorks              | О                 | -               | 0                 | -                 | -               | -     | -                 | _                 | -               | -                 | -                 | -     | _                 |
| Modbus<br>TCP/IP      | О                 | -               | О                 | -                 | -               | _     | -                 | -                 | -               | -                 | О                 | О     | -                 |
| PROFINET              | О                 | -               | О                 | -                 | -               | -     | -                 | -                 | -               | -                 | 0                 | -     | О                 |
| EtherNet/IP           | О                 | ı               | О                 | -                 | ı               | -     | -                 | -                 | -               | -                 | О                 | -     | О                 |

# **■** F6-01: Communications Error Operation Selection

Determines drive operation when a communication error occurs.

## 5.6 F: Option Settings

| No.   | Parameter Name                           | Setting Range | Default |
|-------|------------------------------------------|---------------|---------|
| F6-01 | Communications Error Operation Selection | 0 to 3        | 1       |

Setting 0: Ramp to Stop (Use the Deceleration Time Set to C1-02)

**Setting 1: Coast to Stop** 

Setting 2: Fast Stop (Use the Fast Stop Time Set to C1-09)

**Setting 3: Alarm Only (Continue Operation)** 

## **■** F6-02: External Fault from Comm. Option Detection Selection

Determines the detection method of an external fault initiated by a communication option (EF0).

| No.   | Parameter Name                                       | Setting Range | Default |
|-------|------------------------------------------------------|---------------|---------|
| F6-02 | External Fault from Comm. Option Detection Selection | 0, 1          | 0       |

**Setting 0: Always Detected** 

**Setting 1: Detection during Run Only** 

## **■** F6-03: External Fault from Comm. Option Operation Selection

Determines drive operation when an external fault is initiated by a communication option (EF0).

| No.   | Parameter Name                                       | Setting Range | Default |
|-------|------------------------------------------------------|---------------|---------|
| F6-03 | External Fault from Comm. Option Operation Selection | 0 to 3        | 1       |

Setting 0: Ramp to Stop

**Setting 1: Coast to Stop** 

**Setting 2: Fast Stop** 

**Setting 3: Alarm Only (Continue Operation)** 

### **■** F6-06: Torque Reference/Torque Limit Selection from Comm. Option

Selects whether torque reference and torque limit values are assigned to the drive from the network.

| No.   | Parameter Name                                            | Setting Range | Default |
|-------|-----------------------------------------------------------|---------------|---------|
| F6-06 | Torque Reference/Torque Limit Selection from Comm. Option | 0, 1          | 0       |

Setting 0: Disabled

Setting 1: Enabled

## **■** F6-07: NetRef/ComRef Function Selection

Selects the treatment of multi-step speed inputs when the NetRef command is set.

| No.   | Parameter Name                   | Setting Range | Default |
|-------|----------------------------------|---------------|---------|
| F6-07 | NetRef/ComRef Function Selection | 0, 1          | 0       |

#### **Setting 0: Multi-step Speed Operation Disabled**

Multi-step speed input frequency references are disabled when the NetRef command is selected.

#### **Setting 1: Multi-step Speed Operation Enabled**

Multi-step speed inputs are still active and can override the frequency reference from the communications option even when the NetRef command is selected.

### **■** F6-08: Reset Communication Parameters

Determines whether F6- $\Box\Box$ /F7- $\Box\Box$  communication-related parameters are reset after initialization.

| No.   | Parameter Name                 | Setting Range | Default |
|-------|--------------------------------|---------------|---------|
| F6-08 | Reset Communication Parameters | 0, 1          | 0       |

## Setting 0: Do Not Reset F6-□□/F7-□□ Parameters after Initialization Using A1-03

## Setting 1: Reset F6-□□/F7-□□ Parameters after Initialization Using A1-03

**Note:** F6-08 is not reset when the drive is initialized.

# **◆** CC-Link Parameters

Parameters F6-04, F6-10, F6-11, and F6-14 set the drive to operate on a CC-Link network.

#### **■** F6-04: bUS Error Detection Time

Sets the delay time for bUS error detection.

| No.   | Parameter Name           | Setting Range | Default |
|-------|--------------------------|---------------|---------|
| F6-04 | bUS Error Detection Time | 0.0 to 5.0 s  | 2.0 s   |

## ■ F6-10: CC-Link Node Address

Sets the node address of a CC-Link option board.

| No.   | Parameter Name       | Setting Range | Default |
|-------|----------------------|---------------|---------|
| F6-10 | CC-Link Node Address | 0 to 64       | 0       |

## ■ F6-11: CC-Link Communication Speed

Sets the communication speed for a CC-Link option card.

| No.   | Parameter Name              | Setting Range | Default |
|-------|-----------------------------|---------------|---------|
| F6-11 | CC-Link Communication Speed | 0 to 4        | 0       |

Setting 0: 156 kbps Setting 1: 625 kbps Setting 2: 2.5 Mbps Setting 3: 5 Mbps Setting 4: 10 Mbps

#### ■ F6-14: bUS Error Auto Reset

Selects whether a bUS error can be automatically reset if automatic fault retry is enabled.

| No.   | Parameter Name       | Setting Range | Default |
|-------|----------------------|---------------|---------|
| F6-14 | bUS Error Auto Reset | 0, 1          | 0       |

#### Setting 0: Disabled, Auto Reset Not Possible

Setting 1: Enabled, Auto Reset Possible

### MECHATROLINK Parameters

### ■ F6-20: MECHATROLINK Station Address

Sets the station address when the MECHATROLINK option is installed.

**Note:** All station addresses must be unique. Setting this parameter to 20 or 3F will trigger a Station Address Error (AEr) and turn on the "ERR" light.

| No.   | Parameter Name               | Setting Range | Default |
|-------|------------------------------|---------------|---------|
| F6-20 | MECHATROLINK Station Address | 20 to 3F <1>  | 21      |

<sup>&</sup>lt;1> Range shown is for the MECHATROLINK-II option (SI-T3). Range for MECHATROLINK-III option (SI-ET3) is: 03 to EF.

## **■ F6-21: MECHATROLINK Frame Size**

Sets the frame size.

## 5.6 F: Option Settings

| No.   | Parameter Name          | Setting Range | Default |
|-------|-------------------------|---------------|---------|
| F6-21 | MECHATROLINK Frame Size | 0, 1          | 0       |

Setting 0: 32-byte (MECHATROLINK-II option setting)

Value for MECHATROLINK-III option is: 64-byte

Setting 1: 17-byte (MECHATROLINK-II option setting)

Value for MECHATROLINK-III option is: 32-byte

## **■ F6-22: MECHATROLINK Link Speed**

Sets the communication speed for a MECHATROLINK-II option card.

**Note:** This parameter is only available with a MECHATROLINK-II option card.

| No.   | Parameter Name          | Setting Range | Default |
|-------|-------------------------|---------------|---------|
| F6-22 | MECHATROLINK Link Speed | 0, 1          | 0       |

Setting 0: 10 Mbps

Setting 1: 4 Mbps

## **■** F6-23: MECHATROLINK Monitor Selection (Code 0EH)

Sets MEMOBUS/Modbus register to monitor SEL MON of INV CTL and INV CTL.

Setting byte 10 of INV CTL to "0EH" enables the register set by F6-23.

Bytes 11 and 12 of the response data enable the register content set by F6-23.

| No.   | Parameter Name                            | Setting Range | Default |
|-------|-------------------------------------------|---------------|---------|
| F6-23 | MECHATROLINK Monitor Selection (Code 0EH) | 0 to FFFFH    | 0Н      |

## **■** F6-24: MECHATROLINK Monitor Selection (Code 0FH)

Sets MEMOBUS/Modbus register to monitor SEL MON of INV CTL and INV CTL.

Setting byte 10 of INV\_CTL to 0FH enables the register set by F6-24.

Bytes 11 and 12 of the response data enable the register content set by F6-24.

| No.   | Parameter Name                            | Setting Range | Default |
|-------|-------------------------------------------|---------------|---------|
| F6-24 | MECHATROLINK Monitor Selection (Code 0FH) | 0 to FFFFH    | 0Н      |

## **■** F6-25: Operation Selection at Watchdog Error (E5)

| No.   | Parameter Name                             | Setting Range | Default |
|-------|--------------------------------------------|---------------|---------|
| F6-25 | Operation Selection at Watchdog Error (E5) | 0 to 3        | 1       |

Setting 0: Ramp to stop. Decelerate to stop using the deceleration time in C1-02.

Setting 1: Coast to stop

Setting 2: Fast Stop. Decelerate to stop using the deceleration time in C1-09.

**Setting 3: Alarm only** 

### ■ F6-26: MECHATROLINK bUS Errors Detected

| No.   | Parameter Name                   | Setting Range | Default |
|-------|----------------------------------|---------------|---------|
| F6-26 | MECHATROLINK bUS Errors Detected | 2 to 10       | 2       |

## **◆ PROFIBUS-DP Parameters**

Parameters F6-30 through F6-32 set the drive to run on a PROFIBUS-DP network.

### **■** F6-30: PROFIBUS-DP Node Address

Sets the node address of a PROFIBUS-DP option card.

| No.   | Parameter Name           | Setting Range | Default |
|-------|--------------------------|---------------|---------|
| F6-30 | PROFIBUS-DP Node Address | 0 to 125      | 0       |

### **■ F6-31: PROFIBUS-DP Clear Mode Selection**

Determines the operation when a Clear Mode command is received.

| No.   | Parameter Name                   | Setting Range | Default |
|-------|----------------------------------|---------------|---------|
| F6-31 | PROFIBUS-DP Clear Mode Selection | 0, 1          | 0       |

### Setting 0: Reset

Resets the drive operation (frequency reference, inputs, outputs etc.).

#### **Setting 1: Maintain the Previous State**

Returns the drive status to the state prior to receiving the command.

## **■** F6-32: PROFIBUS-DP Data Format Selection

Selects the data format used for PROFIBUS-DP communication.

| No.   | Parameter Name                    | Setting Range | Default |
|-------|-----------------------------------|---------------|---------|
| F6-32 | PROFIBUS-DP Data Format Selection | 0, 1          | 0       |

### **Setting 0: PPO-type Data Format**

## **Setting 1: Conventional Data Format**

# CANopen Parameters

Parameters F6-35 and F6-36 set the drive to operate on a CANopen network.

## **■ F6-35: CANopen Node ID Selection**

Selects the node ID of a CANopen option board.

| No.   | Parameter Name            | Setting Range | Default |
|-------|---------------------------|---------------|---------|
| F6-35 | CANopen Node ID Selection | 0 to 126      | 0       |

# **■** F6-36: CANopen Communication Speed

Sets the communication speed for a CANopen option card.

| No.   | Parameter Name              | Setting Range | Default |
|-------|-----------------------------|---------------|---------|
| F6-36 | CANopen Communication Speed | 0 to 8        | 6       |

**Setting 0: Auto detection** 

Setting 1: 10 kbps

Setting 2: 20 kbps

Setting 3: 50 kbps

Setting 4: 125 kbps

Setting 5: 250 kbps

Setting 6: 500 kbps

Setting 7: 800 kbps

Setting 8: 1 Mbps

## DeviceNet Parameters

Parameters F6-50 through F6-63 set the drive to operate on a DeviceNet network.

## ■ F6-50: DeviceNet MAC Address

Sets the MAC address for a DeviceNet option card.

## 5.6 F: Option Settings

| No.   | Parameter Name        | Setting Range | Default |
|-------|-----------------------|---------------|---------|
| F6-50 | DeviceNet MAC Address | 0 to 64       | 64      |

## **■ F6-51: DeviceNet Communication Speed**

Sets the communication speed for a DeviceNet option card.

To assign the baud rate for the drive from the upper controller, set F6-51 = 3.

To make the drive detect the network speed, set F6-51 = 4. The drive will automatically adjust itself after detecting the network speed.

| No.   | Parameter Name                | Setting Range | Default |
|-------|-------------------------------|---------------|---------|
| F6-51 | DeviceNet Communication Speed | 0 to 4        | 4       |

Setting 0: 125 kbps Setting 1: 250 kbps Setting 2: 500 kbps

Setting 3: Adjustable from network

**Setting 4: Auto detection** 

## **■** F6-52: DeviceNet PCA Setting

Defines the format for data the drive receives from the DeviceNet master.

| No.   | Parameter Name        | Setting Range | Default |
|-------|-----------------------|---------------|---------|
| F6-52 | DeviceNet PCA Setting | 0 to 255      | 21      |

## ■ F6-53: DeviceNet PPA Setting

Defines the format for data sent from the drive to the DeviceNet master.

| No.   | Parameter Name        | Setting Range | Default |
|-------|-----------------------|---------------|---------|
| F6-53 | DeviceNet PPA Setting | 0 to 255      | 71      |

### ■ F6-54: DeviceNet Idle Mode Fault Detection

Determines whether the drive triggers an EF0 fault when no data is received from the master (e.g., when the master is idling).

| No.   | Parameter Name                      | Setting Range | Default |
|-------|-------------------------------------|---------------|---------|
| F6-54 | DeviceNet Idle Mode Fault Detection | 0, 1          | 0       |

Setting 0: Enabled

Setting 1: Disabled, No Fault Detection

#### ■ F6-55: DeviceNet Baud Rate Monitor

Displays the baud rate currently being used for network communications. F6-55 is used only as a monitor.

| No.   | Parameter Name              | Setting Range      | Default |
|-------|-----------------------------|--------------------|---------|
| F6-55 | DeviceNet Baud Rate Monitor | 0 to 2 (read only) | 0       |

Setting 0: 125 kbps Setting 1: 250 kbps Setting 2: 500 kbps

## **■** F6-56 to F6-61: DeviceNet Scaling Factors

These parameters define scaling factors for drive monitors in the DeviceNet Class ID 2AH - AC/DC Drive Object.

| No.   | Parameter Name            | Setting Range | Default |
|-------|---------------------------|---------------|---------|
| F6-56 | DeviceNet Speed Scaling   | -15 to 15     | 0       |
| F6-57 | DeviceNet Current Scaling | -15 to 15     | 0       |
| F6-58 | DeviceNet Torque Scaling  | -15 to 15     | 0       |

| No.   | Parameter Name            | Setting Range | Default |
|-------|---------------------------|---------------|---------|
| F6-59 | DeviceNet Power Scaling   | -15 to 15     | 0       |
| F6-60 | DeviceNet Voltage Scaling | -15 to 15     | 0       |
| F6-61 | DeviceNet Time Scaling    | -15 to 15     | 0       |

#### Setting

The monitor value in the AC/DC Drive Object 2AH is calculated by:

AC/DC Drive Object 2AH Monitor = Drive Value × 2<sup>Scaling</sup>

Example:

If the drive output frequency monitor (U1-02) is 5.00 and the scaling is set to F6-56 = 6, then the value in the AC/DC Drive Object 2AH, Instance 1, Attribute 7 would be  $500 \times 2^6 = 32000$ .

## ■ F6-62: DeviceNet Heartbeat Interval

Sets the heartbeat interval for DeviceNet communications. A setting of 0 disables the heartbeat function.

| No.   | Parameter Name               | Setting Range | Default |
|-------|------------------------------|---------------|---------|
| F6-62 | DeviceNet Heartbeat Interval | 0 to 10       | 0       |

## ■ F6-63: DeviceNet Network MAC ID

Displays the MAC ID assigned to the drive. F6-63 is used only as a monitor.

| No.   | Parameter Name           | Setting Range       | Default |
|-------|--------------------------|---------------------|---------|
| F6-63 | DeviceNet Network MAC ID | 0 to 63 (read only) | 63      |

# **■** F6-64 to F6-71: Dynamic Assembly Parameters (Reserved)

### ■ F7-01 to F7-04: IP Address 1 to 4

Sets the significant octet of network static IP address.

## ■ F7-05 to F7-08: Subnet Mask 1 to 4

Sets the significant octet of network static Subnet Mask.

## ■ F7-09 to F7-12: Gateway Address 1 to 4

Sets the significant octet of network Gateway address.

## Modbus TCP/IP Parameters

Parameters F7-01 through F7-16, U6-80 through U6-93, U6-98, and U6-99 set up the drive to operate on a Modbus TCP/IP network.

For details on parameter settings, refer to the YASKAWA AC Drive 1000-Series Option Modbus TCP/IP Installation Manual and Technical Manual.

## PROFINET Parameters

Parameters F7-01 through F7-15, F7-17 through F7-42, U6-80 through U6-93, U6-98, and U6-99 set up the drive to operate on a PROFINET network.

For details on parameter settings, refer to the YASKAWA AC Drive 1000-Series Option PROFINET Installation Manual and Technical Manual.

## EtherNet/IP Parameters

Parameters F7-01 through F7-15, F7-17 through F7-42, U6-80 through U6-93, U6-98, and U6-99 set up the drive to operate on an EtherNet/IP network.

For details on parameter settings, refer to the YASKAWA AC Drive 1000-Series Option EtherNet/IP Installation Manual and Technical Manual.

# 5.7 H: Terminal Functions

H parameters assign functions to the external terminals.

# H1: Multi-Function Digital Inputs

## ■ H1-01 to H1-08: Functions for Terminals S1 to S8

These parameters assign functions to the multi-function digital inputs. The various functions and settings are listed in *Table* 5.36.

| No.   | Parameter Name                                              | Setting<br>Range | Default                                                   |
|-------|-------------------------------------------------------------|------------------|-----------------------------------------------------------|
| H1-01 | Multi-Function Digital Input Terminal S1 Function Selection | 1 to 9F          | 40 (F) <1>: Forward Run Command (2-Wire sequence)         |
| H1-02 | Multi-Function Digital Input Terminal S2 Function Selection | 1 to 9F          | 41 (F) <1>: Reverse Run Command (2-Wire sequence)         |
| H1-03 | Multi-Function Digital Input Terminal S3 Function Selection | 0 to 9F          | 24: External Fault (N.O., always detected, coast to stop) |
| H1-04 | Multi-Function Digital Input Terminal S4 Function Selection | 0 to 9F          | 14: Fault Reset                                           |
| H1-05 | Multi-Function Digital Input Terminal S5 Function Selection | 0 to 9F          | 3 (0) <1>: Multi-Step Speed Reference 1                   |
| H1-06 | Multi-Function Digital Input Terminal S6 Function Selection | 0 to 9F          | 4 (3) <1>: Multi-Step Speed Reference 2                   |
| H1-07 | Multi-Function Digital Input Terminal S7 Function Selection | 0 to 9F          | 6 (4) <1>: Jog Reference Selection                        |
| H1-08 | Multi-Function Digital Input Terminal S8 Function Selection | 0 to 9F          | 8: External Baseblock Command                             |

<sup>&</sup>lt;1> Number appearing in parenthesis is the default value after performing a 3-Wire initialization (A1-03 = 3330).

**Table 5.36 Multi-Function Digital Input Terminal Settings** 

| Setting | Function                         | Page          | Setting  | Function                                     | Page |
|---------|----------------------------------|---------------|----------|----------------------------------------------|------|
| 0       | 3-Wire Sequence                  | 285           | 20 to 2F | External Fault                               | 290  |
| 1       | LOCAL/REMOTE Selection           | 285           | 30       | PID Integral Reset                           | 291  |
| 2       | External Reference 1/2 Selection | 286           | 31       | PID Integral Hold                            | 291  |
| 3       | Multi-Step Speed Reference 1     |               | 32       | Multi-Step Speed Reference 4                 | 291  |
| 4       | Multi-Step Speed Reference 2     | 286           | 34       | PID Soft Starter Cancel                      | 291  |
| 5       | Multi-Step Speed Reference 3     |               | 35       | PID Input Level Selection                    | 291  |
| 6       | Jog reference Selection          | 286           | 40       | Forward Run Command (2-Wire sequence)        | 201  |
| 7       | Accel/Decel Time Selection 1     | 286           | 41       | Reverse Run Command (2-Wire sequence)        | 291  |
| 8       | Baseblock Command (N.O.)         | 207           | 42       | Run Command (2-Wire sequence 2)              | 202  |
| 9       | Baseblock Command (N.C.)         | 286           | 43       | FWD/REV Command (2-Wire sequence 2)          | 292  |
| A       | Accel/Decel Ramp Hold            | 286           | 44       | Offset Frequency 1                           |      |
| В       | Drive Overheat Alarm (oH2)       | 287           | 45       | Offset Frequency 2                           | 292  |
| С       | Analog Terminal Input Selection  | 287           | 46       | Offset Frequency 3                           |      |
| D       | PG Encoder Disable               | 287           | 47       | Node Setup                                   | 292  |
| Е       | ASR integral reset               | 287           | 60       | DC Injection Braking Command                 | 292  |
| F       | Through Mode                     | 287           | 61       | External Speed Search Command 1              | 292  |
| 10      | Up Command                       | 287           | 62       | External Speed Search Command 2              | 292  |
| 11      | Down Command                     | 20/           | 63       | Field Weakening                              | 292  |
| 12      | Forward Jog                      | 288           | 67       | Communications Test Mode                     | 293  |
| 13      | Reverse Jog                      | 200           | 6A       | Drive Enabled                                | 293  |
| 14      | Fault Reset                      | 288           | 71       | Speed/Torque Control Switch                  | 293  |
| 15      | Fast Stop (N.O.)                 | 288           | 72       | Zero Servo                                   | 293  |
| 16      | Motor 2 Selection                | 289           | 75       | Up 2 Command                                 | 293  |
| 17      | Fast Stop (N.C.)                 | 288           | 76       | Down 2 Command                               | 293  |
| 18      | Timer Function Input             | 290           | 77       | ASR Gain Switch                              | 294  |
| 19      | PID Disable                      | 290           | 78       | External Torque Reference Polarity Inversion | 294  |
| 1A      | Accel/Decel Time Selection 2     | <b>290</b> 7E | 7E       | Forward/Reverse Detection (V/f control with  | 294  |
| 1B      | Program Lockout                  | 290           |          | simple PG)                                   |      |
| 1E      | Reference Sample Hold            | 290           | 7F       | PID Bi-directional Enable (Reserved)         | 294  |

| Setting  | Function                          | Page | Setting | Function              | Page |
|----------|-----------------------------------|------|---------|-----------------------|------|
| 90 to 97 | DriveWorksEZ Digital Input 1 to 8 | 294  | 9F      | DriveWorksEZ Disabled | 294  |

#### Setting 0: 3-Wire Sequence

The digital input programmed for 3-Wire control becomes the forward/reverse directional input, S1 becomes the Run command input, and S2 becomes the Stop command input.

The drive starts the motor when the input S1 set for the Run command closes for longer than 2 ms. The drive stops the operation when the Stop input S2 is released. When the digital input programmed for a forward/reverse operation is open, the drive is set for forward operation. When the digital input is closed, the drive is set for reverse operation.

**Note:** Input the Run and Stop commands via S1 and S2 when selecting a 3-Wire sequence.

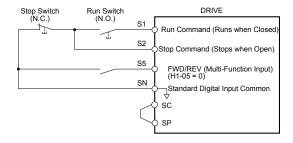



Figure 5.56 3-Wire Sequence Wiring Diagram

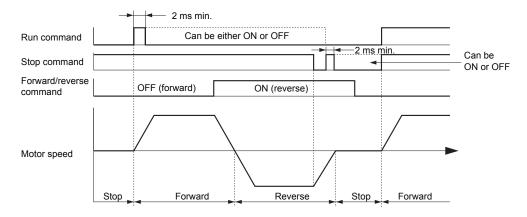



Figure 5.57 3-Wire Sequence

Note:

- 1. The Run command must be closed for more than 2 ms.
- 2. If the Run command is active at power up and b1-17 = 0 (Run command at power up not accepted), the Run LED will flash to indicate that protective functions are operating. If required by the application, set b1-17 to 1 to automatically issue the Run command upon drive power up.

**WARNING!** Sudden Movement Hazard. Ensure start/stop and safety circuits are wired properly and in the correct state before applying power to the drive. Failure to comply could result in death or serious injury from moving equipment.

**WARNING!** Sudden Movement Hazard. The drive may start unexpectedly in reverse direction after power up if it is wired for 3-Wire sequence but set up for 2-Wire sequence (default). Make sure b1-17 is set to "0" (drive does not accept a Run command active at power up). When initializing the drive use 3-Wire initialization. Failure to comply could result in death or serious injury from moving equipment.

#### **Setting 1: LOCAL/REMOTE Selection**

This setting allows the input terminal to determine if the drive will run in LOCAL mode or REMOTE mode.

| Status | Description                                                                                                                                                             |  |  |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Closed | LOCAL: Frequency reference and Run command are input from the digital operator.                                                                                         |  |  |
| Open   | REMOTE: Frequency reference and Run command are input from an external reference that has been selected in accordance with settings b1-01 and b1-02 to b1-15 and b1-16. |  |  |

Note:

- 1. The LO/RE key on the digital operator is disabled when one of the multi-function input terminals is set to for LOCAL/REMOTE.
- 2. When the drive is set to LOCAL, the LO/RE LED will light.
- The default setting of the drive does not allow switching between LOCAL and REMOTE during run. To allow the drive to switch
  between LOCAL and REMOTE during run, Refer to b1-07: LOCAL/REMOTE Run Selection on page 200.

#### Setting 2: External Reference 1/2 Selection

This function switches the Run command and frequency reference source between External reference 1 and 2 if the drive is in the REMOTE mode.

| Status | Description                                                           |  |  |
|--------|-----------------------------------------------------------------------|--|--|
| Open   | External reference 1 is used (defined by parameters b1-01 and b1-02). |  |  |
| Closed | External reference 2 is used (defined by parameters b1-15 and b1-16). |  |  |

Note:

Default drive settings do not allow switching between External reference 1 and 2 during run. *Refer to b1-07: LOCAL/REMOTE Run Selection on page 200* if this feature is required by the application.

#### Setting 3 to 5: Multi-Step Speed Reference 1 to 3

Switches multi-step speed frequency references d1-01 to d1-08 by digital inputs. *Refer to d1: Frequency Reference on page 243* for details.

#### **Setting 6: Jog Reference Selection**

The Jog frequency set in parameter d1-17 becomes the frequency reference when the input terminal closes. *Refer to d1: Frequency Reference on page 243* for details.

#### Setting 7: Accel/Decel Time Selection 1

Switches between accel/decel times 1 (C1-01 and C1-02) and 2 (C1-03 and C1-04). *Refer to C1-01 to C1-08: Accel, Decel Times 1 to 4 on page 228* for details.

## Setting 8, 9: Baseblock Command (N.O., N.C.)

When the drive receives a baseblock command, the output transistors stop switching, the motor coasts to stop, and a bb alarm flashes on the digital operator to indicate baseblock. When baseblock ends while a Run command is active, the drive performs Speed Search to restart the motor.

| Digital Input Eurotion | Drive Operation              |                              |  |  |  |
|------------------------|------------------------------|------------------------------|--|--|--|
| Digital Input Function | Input Open                   | Input Closed                 |  |  |  |
| Setting 8 (N.O.)       | Normal operation             | Baseblock (Interrupt output) |  |  |  |
| Setting 9 (N.C.)       | Baseblock (Interrupt output) | Normal operation             |  |  |  |

**WARNING!** Sudden Movement Hazard. When using a mechanical holding brake with the drive in a lifting application, close the brake when the drive output is cut off by a baseblock command triggered by one of the input terminals. Failure to comply will result in a slipping load from the motor suddenly coasting when the baseblock command is entered and may cause serious injury or death.

**WARNING!** Incorrect Operation. Yaskawa recommends that you use  $H1-\Box\Box=9$  (Baseblock Command (N.C.)). If a circuit error occurs in the MFDI, the drive cannot stop the output when the terminal set to  $H1-\Box\Box=8$  (Baseblock Command (N.C.)) turns ON.

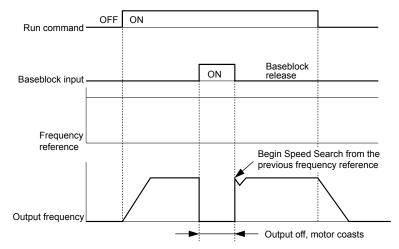



Figure 5.58 Baseblock Operation During Run

#### Setting A: Accel/Decel Ramp Hold

When the digital input programmed for the Accel/decel ramp hold function closes, the drive locks (holds) the output frequency. Acceleration or deceleration resumes when the input is reopened.

Ę

If the Accel/decel ramp hold function is enabled (d4-01 = 1), the drive saves the output frequency to memory when the Ramp Hold input is closed. When the drive is restarted after stop or after power supply interruption, the saved output frequency becomes the frequency reference (provided that the Accel/decel ramp hold input is still closed). *Refer to d4-01: Frequency Reference Hold Function Selection on page 247* for details.

### Setting B: Drive Overheat Alarm (oH2)

Closed: An external device has triggered an oH2 alarm. Sets Drive Overheat Pre-alarm Multi-Function Digital Output (H2- $\Box\Box$  = 20). Triggers an oH2 alarm when the contact closes. Drive operation is not affected because this is an alarm.

### Setting C: Analog Terminal Input Selection (Terminal A1, A2, A3)

When closed, the terminals specified in H3-14 are enabled. When open, the drive disregards the input signal to the analog terminals.

## Setting D: PG Encoder Disable

When closed, the drive disregards PG feedback from the motor when using V/f Control with PG. When the terminal is reopened, the drive resumes using PG feedback to control motor speed.

## Setting E: ASR Integral Reset

Switches between PI control and P control by resetting the integral value. Integral operation is disabled when the terminal is closed and the drive uses P control. PI control resumes when the terminal opens.

#### Setting F: Through Mode

Select this setting when the terminal is not used or when using the terminal in pass-through mode.

When set to F, an input does not trigger any function in the drive. Setting F, however, still allows the input status to be read out by a PLC via a communication option or MEMOBUS/Modbus communications.

## Setting 10, 11: Up/Down Function

The Up/Down function allows the frequency reference to be set by two push buttons when one digital input is programmed as the Up input (H1- $\square\square$  = 10) to increase the frequency reference and the other digital input is programmed as the Down input (H1- $\square\square$  = 11) to decrease the frequency reference.

The Up/Down function takes priority over the frequency references from the digital operator, the analog inputs, and the pulse input (b1-01 = 0, 1, 4). When using the Up/Down function, references provided by these sources will be disregarded.

The inputs operate as shown in *Table 5.37*:

**Status Drive Operation** Up (10) Down (11) Open Open Hold current frequency reference Closed Increase frequency reference Open Open Closed Decrease frequency reference Closed Closed Hold current frequency reference

Table 5.37 Up, Down Command

Note:

- 1. An oPE03 alarm occurs when only one of the Up/Down functions is programmed to a digital input.
  - An oPE03 alarm occurs when the Up/Down function is assigned to the terminals and a different digital input is programmed for the Accel/decel ramp hold function. For more information on alarms, *Refer to Drive Alarms, Faults, and Errors on page 372*.
- 3. The Up/Down function can only be used for External reference 1 for parameter b1-01. Consider this when using Up/Down and the external reference parameter b1-15 switching command (H1-□□ = 2).

### Using the Up/Down Function with Frequency Reference Hold (d4-01)

- If the frequency reference hold function is disabled (d4-01 = 0), the Up/Down frequency reference will be reset to 0 when the Run command is cleared or the power is cycled.
- When d4-01 = 1, the drive will save the frequency reference set by the Up/Down function. When the Run command or the power is cycled, the drive will restart with the saved reference value. Close the Up or Down input without an active Run command to reset the saved value. *Refer to d4-01: Frequency Reference Hold Function Selection on page 247*.

#### Using the Up/Down Function with Frequency Reference Limits

Parameter d2-01 determines the upper frequency reference limit.

The value for the lower frequency reference limit depends on the parameter d4-10 setting. This value can be set by an analog input or parameter d2-02. *Refer to d4-10: Up/Down Frequency Reference Limit Selection on page 251* for details. When a Run command is applied, the lower limits function as follows:

• If the lower limit is set by d2-02 only, the drive accelerates to this limit as soon as a Run command is entered.

- If the lower limit is determined by an analog input only (d2-02 = 0), the drive accelerates when both the Run command and an Up command are active and decelerates to the limit when a Down command is active. The drive will not start running if only the Run command is active.
- If the lower limit is set by both an analog input and d2-02, the drive accelerates to the d2-02 value when a Run command is input even if an Up or Down command is not entered. (The drive will not run with the default setting: d2-02 = 0). The drive accelerates if an Up command is active, and decelerates to the higher limit of the analog input and d2-02 if a Down command is active.

**Figure 5.59** shows an Up/Down function example with a lower frequency reference limit set by d2-02, and the frequency reference hold function both enabled (d4-01 = 1) and disabled (d4-01 = 0).

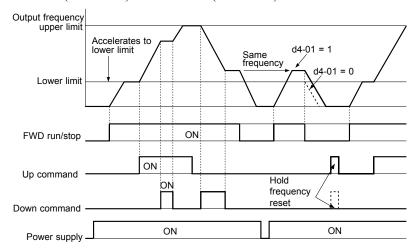



Figure 5.59 Up/Down Command Operation

### Setting 12, 13: Forward Jog, Reverse Jog

Digital inputs programmed as Forward Jog (H1- $\square\square$  = 12) and Reverse Jog (H1- $\square\square$  = 13) will be Jog inputs that do not require a Run command. Closing the terminal set for Forward Jog input will cause the drive to ramp to the Jog frequency reference (d1-17) in the forward direction. The Reverse Jog will cause the same action in the reverse direction. The Forward Jog and Reverse Jog command can be set independently.

Note:

The Forward Jog and Reverse Jog commands override all other frequency references. However, if the drive is set to prohibit reverse rotation (b1-04 = 1), activating Reverse Jog will have no effect. Inputting both the Forward Jog and Reverse Jog are simultaneously for 500 ms or longer will trigger an alarm will and the drive will ramp to stop.

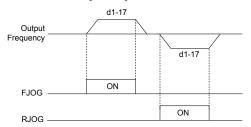



Figure 5.60 FJOG/RJOG Operation

#### **Setting 14: Fault Reset**

When the drive detects a fault condition, the fault output contact closes, the drive output shuts off, and the motor coasts to stop (specific stopping methods can be selected for some faults such as L1-04 for motor overheat). After removing the Run command, clear the fault either by pressing the RESET key on the digital operator or closing a digital input configured as a Fault Reset (H1- $\square\square$  = 14).

Note: Remove the Run command prior to resetting a fault. Fault Reset commands are ignored while the Run command is present.

#### **Setting 15, 17: Fast Stop (N.O., N.C.)**

The Fast Stop function operates similar to an emergency stop input to the drive. If a Fast Stop command is input while the drive is running, the drive decelerates to a stop in the deceleration time set to C1-09 (*Refer to C1-09: Fast Stop Time on page 229*). The drive can only be restarted after bringing the drive to a complete stop, turning off the Fast Stop input, and switching off the Run command.

• To trigger the Fast Stop function with an N.O. switch, set  $H1-\square\square=15$ .

• To trigger the Fast Stop function with an N.C. switch, set  $H1-\Box\Box=17$ .

*Figure 5.61* shows an operation example of Fast Stop.

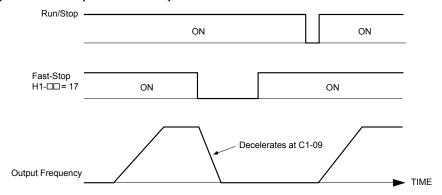



Figure 5.61 Fast Stop Sequence

**NOTICE:** Rapid deceleration can trigger an overvoltage fault. When faulted, the drive output shuts off, and the motor coasts. To avoid this uncontrolled motor state and to ensure that the motor stops quickly and safely, set an appropriate Fast Stop time to C1-09.

**WARNING!** Incorrect Operation. Yaskawa recommends that you use  $H1-\Box\Box=17$  (Fast Stop (N.C.)). If a circuit error occurs in the MFDI, the drive cannot stop the output when the terminal set to  $H1-\Box\Box=15$  (Fast Stop (N.O.)) turns ON.

#### **Setting 16: Motor 2 Selection**

The drive has the capability to control two induction motors independently. A second motor may be selected using a multifunction digital input as shown in *Figure 5.62*.

**Note:** The motor 2 selection function cannot be used with PM motors.

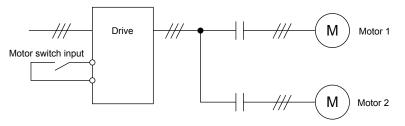



Figure 5.62 Motor Selection

When switching between motor 1 and motor 2, the parameters used to control those motors also change. Below, *Table 5.38* lists the parameters that correspond to each motor:

Table 5.38 Parameters for Switching Between Two Motors

| No.                                                         | Setting 16 Open (Motor 1)           | ⇒ | Setting 16 Closed (Motor 2)                           |
|-------------------------------------------------------------|-------------------------------------|---|-------------------------------------------------------|
| C1-□□: Acceleration/Deceleration Time                       | C1-01 to C1-04                      | ⇒ | C1-05 to C1-08                                        |
| C3-□□: Motor Slip Compensation                              | C3-01 to C3-04                      | ⇒ | C3-21 to C3-24                                        |
| C4-□□: Motor Torque Compensation                            | C4-01                               | ⇒ | C4-07                                                 |
| C5-□□: Speed Control (ASR)                                  | C5-01 to C5-08, C5-12, C5-17, C5-18 | ⇒ | C5-21 to C5-28, C5-32, C5-37, C5-38                   |
| E1-□□, E3-□□: V/f Pattern<br>E2-□□, E4-□□: Motor Parameters | E1-□□, E2-□□                        | ⇒ | E3-□□ to E4-□□                                        |
| F1-□□ (PG Constant)                                         | F1-01 to F1-21                      | ⇒ | F1-02 to F1-04, F1-08 to F1-11, F1-14, F1-31 to F1-37 |

Note:

- 1. When using 2 motors, the motor overload protection selection (oL1) set to L1-01 applies to both motor 1 and motor 2.
- 2. Attempting to switch between motor 1 and motor 2 during run will trigger the rUn alarm.
- 3. There is a 500 ms delay when switching between motors equipped with a PG encoder for feedback.
- **4.** The motor 2 selection function cannot be used with PM motors.

If a digital output is programmed for "Motor 2 selection" (H2-01, H2-02, or H2-03 = 1C), the output is closed when motor 2 is selected.

#### Setting 18: Timer Function Input

This setting configures a digital input terminal as the input for the timer function. Use this setting combination with the timer function output (H2- $\Box\Box$  = 12). *Refer to b4: Timer Function on page 212* for details.

#### **Setting 19: PID Disable**

Close a digital input to indefinitely disable the PID function. When the input is released, the drive resumes PID operation. *Refer to PID Block Diagram on page 215*.

#### Setting 1A: Accel/Decel Time Selection 2

Selects accel/decel times 1 to 4 in combination with the Accel/decel time selection 1 command. *Refer to C1-01 to C1-08: Accel, Decel Times 1 to 4 on page 228* for details.

#### **Setting 1B: Program Lockout**

Parameter values cannot be changed when an input is programmed for Program Lockout and the input is open. It is still possible, however, to view and monitor parameter settings.

#### Setting 1E: Reference Sample Hold

This function allows the user to sample an analog frequency reference signal being input to terminal A1, A2, or A3 and hold the frequency reference at the sampled level. When the Analog Frequency Reference Sample/Hold function is held for at least 100 ms, the drive reads the analog input and changes the frequency reference to the newly sampled speed as illustrated in *Figure 5.63*.

When the power is shut off and the sampled analog frequency reference is cleared, the frequency reference is reset to 0.

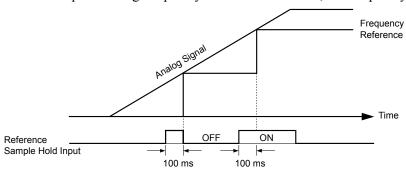



Figure 5.63 Analog Frequency Reference Sample/Hold

An oPE03 error will occur when one of the following functions is used simultaneously with the Analog frequency reference sample/hold command:

- Hold accel/decel stop (setting: A)
- Up command, Down command (setting: 10, 11)
- Offset frequency (setting: 44 to 46)
- Up or Down functions (setting: 75, 76)

#### Setting 20 to 2F: External Fault

The External fault command stops the drive when problems occur with external devices.

To use the External fault command, set one of the multi-function digital inputs to a value between 20 and 2F. The digital operator will display  $EF\square$  where  $\square$  is the number of the terminal to which the external fault signal is assigned.

**WARNING!** Incorrect Operation. Yaskawa recommends that you use  $H1-\Box\Box=21$ , 23, 25, 27, 29, 2B, 2D, 2F (External Fault (N.C.)). If a circuit error occurs in the MFDI, the drive cannot stop the output when the terminal set to  $H1-\Box\Box=20$ , 22, 24, 26, 28, 2A, 2C, 2E (External Fault (N.O.)) turns ON.

For example, if an external fault signal is input to terminal S3, "EF3" will be displayed.

Select the value to be set in H1- $\square$  from a combination of any of the following three conditions:

- Signal input level from peripheral devices (N.O., N.C.)
- · External fault detection method
- Operation after external fault detection

*Table 5.39* shows the relationship between the conditions and the value set to H1- $\square$ :

Terminal statuses, detection conditions, and stopping methods marked with an "O" are applicable to the corresponding settings.

Table 5.39 Stopping Method for External Fault

|         | Terminal | Status <1> | Detection C        | onditions <2>                  |                         | Stopping                 | Method               |                                     |
|---------|----------|------------|--------------------|--------------------------------|-------------------------|--------------------------|----------------------|-------------------------------------|
| Setting | N.O.     | N.C.       | Always<br>Detected | Detected<br>during Run<br>only | Ramp to Stop<br>(fault) | Coast to Stop<br>(fault) | Fast Stop<br>(fault) | Alarm Only<br>(continue<br>running) |
| 20      | O        |            | О                  |                                | О                       |                          |                      |                                     |
| 21      |          | 0          | О                  |                                | О                       |                          |                      |                                     |
| 22      | O        |            |                    | О                              | О                       |                          |                      |                                     |
| 23      |          | 0          |                    | О                              | О                       |                          |                      |                                     |
| 24      | O        |            | О                  |                                |                         | O                        |                      |                                     |
| 25      |          | 0          | О                  |                                |                         | O                        |                      |                                     |
| 26      | O        |            |                    | О                              |                         | O                        |                      |                                     |
| 27      |          | 0          |                    | О                              |                         | O                        |                      |                                     |
| 28      | O        |            | О                  |                                |                         |                          | О                    |                                     |
| 29      |          | 0          | О                  |                                |                         |                          | О                    |                                     |
| 2A      | O        |            |                    | О                              |                         |                          | О                    |                                     |
| 2B      |          | 0          |                    | О                              |                         |                          | О                    |                                     |
| 2C      | О        |            | О                  |                                |                         |                          |                      | О                                   |
| 2D      |          | О          | О                  |                                |                         |                          |                      | О                                   |
| 2E      | О        |            |                    | О                              |                         |                          |                      | О                                   |
| 2F      |          | О          |                    | О                              |                         |                          | _                    | О                                   |

<sup>&</sup>lt;1> Determine the terminal status for each fault, i.e., whether the terminal is normally open or normally closed.

#### Setting 30: PID Integral Reset

Configuring one of the digital inputs for PID integral reset (H1- $\Box\Box$  = 30) resets the value of the integral component in PID control to 0 when the terminal is closed. *Refer to PID Block Diagram on page 215* for more details.

#### Setting 31: PID Integral Hold

Configuring a digital input for Integral Hold (H1- $0\square = 31$ ) locks the value of the integral component of the PID control as long as the input is active. The PID controller resumes integral operation from the hold value as soon as the integral hold input is released. *Refer to PID Block Diagram on page 215* for more information on this function.

#### Setting 32: Multi-Step Speed Reference 4

Selects the multi-step speeds d1-09 to d1-16 in combination with the input terminal set for Multi-Step Speed 1, 2 and 3. Refer to d1-01 to d1-17: Frequency Reference 1 to 16 and Jog Frequency Reference on page 243.

#### **Setting 34: PID Soft Starter Cancel**

A digital input configured as a PID soft starter cancel input (H1-0 $\square$  = 34) enables or disables the PID soft starter and cancels the PID accel/decel time (b5-17). *Refer to PID Block Diagram on page 215*.

#### Setting 35: PID Input Level Selection

Allows an input terminal to switch the sign of the PID input. Refer to PID Block Diagram on page 215 for details.

#### Setting 40, 41: Forward Run, Reverse Run Command for 2-Wire Sequence

Configures the drive for a 2-Wire sequence.

When an input terminal set to 40 closes, the drive operates in the forward direction. When an input set for 41 closes, the drive operates in reverse. Closing both inputs simultaneously will result in an external fault.

Note:

- 1. This function cannot be used simultaneously with settings 42 and 43.
- 2. The same functions are assigned to terminals S1 and S2 when the drive is initialized for 2-Wire sequence.

<sup>&</sup>lt;2> Determine whether detection for each fault should be enabled only during run or always detected.

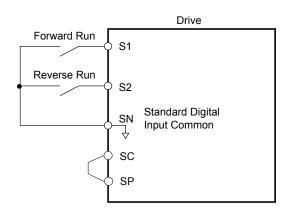



Figure 5.64 Example Wiring Diagram for 2-Wire Sequence (When Using Internal Power Supply)

#### Setting 42, 43: Run and Direction Command for 2-Wire Sequence 2

Sets the drive for 2-Wire sequence 2.

When an input terminal programmed for 42 closes, the drive will operate in the selected direction. The drive will stop when the input opens.

The input programmed for 43 selects the direction. If the input is open, forward direction is selected. If the input is closed, reverse direction is selected.

**Note:** This function cannot be used simultaneously with settings 40 and 41.

#### Setting 44, 45, 46: Offset Frequency 1, 2, 3

These inputs add offset frequencies d7-01, d7-02, and d7-03 to the frequency reference. *Refer to d7-01 to d7-03: Offset Frequency 1 to 3 on page 257* for details.

#### Setting 47: Node Setup

If the SI-S3 option card is connected, closing this terminal sets a node address for operation on a CANopen network.

#### **Setting 60: DC Injection Braking Command**

DC Injection Braking is activated when a DC Injection Braking command is input while the drive is stopped. DC Injection Braking is released when a Run command or a Jog command is input. *Refer to b2: DC Injection Braking on page 202* for details on setting up the DC Injection Braking function.

The diagram below illustrates DC Injection Braking:

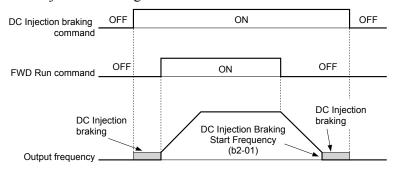



Figure 5.65 DC Injection Braking Input Timing Diagram

#### Setting 61, 62: External Speed Search Command 1, 2

These input functions enable Speed Search even if parameter b3-01 = 0 (no Speed Search at start). *Refer to Speed Search Activation on page 205* for details on how to use the input signals. *Refer to b3: Speed Search on page 204* for more about Speed Search.

**Note:** Simultaneously assigning Speed Search 1 and Speed Search 2 to the input terminals will trigger an oPE03 error.

#### **Setting 63: Field Weakening**

Enabled in V/f Control. When this input is closed, Field Weakening is performed. For details, see *d6: Field Weakening and Field Forcing*.

#### **Setting 67: Communication Test Mode**

The drive has a built-in function to self-diagnose serial communications operation. The test involves wiring the send and receive terminals of the RS-485/422 port together. The drive transmits data and then confirms that the communications are received normally. *Refer to Self-Diagnostics on page 661* for details on how to use this function.

#### **Setting 6A: Drive Enable**

A digital input configured as a "Drive enable" (H1- $\square\square$  = 6A) will prevent the drive from executing a Run command until the input is closed. When the input is open, the digital operator will display "dnE" to indicate that the drive is disabled.

If a Run command is enabled before the terminal set for "Drive enable" closes, then the drive will not run until the Run command is cycled (i.e., a new Run command is required). If the input is opened while the drive is running, the drive will stop according to the stop method set to b1-03 (*Refer to b1-03: Stopping Method Selection on page 195*).

#### **Setting 71: Speed/Torque Control Switch**

Switches the drive between Torque Control and Speed Control. Torque Control is enabled when the terminal is closed, and Speed Control is enabled when the terminal is open. Set parameter d5-01 to 0 when using this function. *Refer to d5: Torque Control on page 252* and *Switching Between Torque and Speed Control* on page 254.

#### Setting 72: Zero Servo

Activates the Zero Servo function to lock the rotor at a certain position. *Refer to b9: Zero Servo on page 226* for details.

#### Setting 75, 76: Up 2/Down 2 Function

The Up/Down 2 function adds a bias to the frequency reference. The input programmed for 75 will increase the bias and the input programmed for 76 will decrease the bias. *Table 5.40* explains how the Up/Down 2 function works depending on the frequency reference source and parameters d4-01, d4-03, and d4-05. *Refer to d4: Frequency Reference Hold and Up/Down 2 Function on page 247* for detailed explanations of these and other Up/Down 2 related parameters.

Note:

- 1. The Up/Down 2 functions must be set as a pair.
- 2. When using the Up/Down 2 function, set appropriate bias limit values to parameters d4-08 and d4-09.

#### Table 5.40 Up/Down 2 Operations

| Condition | Freq. Ref.<br>Source          | d4-03                    | d4-05 | d4-01 | Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Frequency Saved                                                                                                                                                                                                   |           |
|-----------|-------------------------------|--------------------------|-------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 1         |                               |                          |       | 0     | Accelerates (increases the bias) while the Up 2 terminal is closed.                                                                                                                                                                                                                                                                                                                                                                                                  | Not saved                                                                                                                                                                                                         |           |
| 2         | Multi-Step Speed<br>Reference |                          | 0     | 1     | <ul> <li>Decelerates (decreases the bias) while Down 2 is closed.</li> <li>Holds output frequency (holds the bias) when no Up 2 or Down 2 input or both active.</li> <li>Resets the bias when the reference changes.</li> <li>Operates with the frequency reference in all other situations.</li> </ul>                                                                                                                                                              | If the bias and frequency reference are constant for 5 s, the bias is added to the active frequency reference and reset afterwards.                                                                               |           |
| 3         |                               |                          |       | 1     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>Accelerates (increases the bias) while the Up 2 terminal is closed.</li> <li>Decelerates (decreases the bias) while Down 2 is closed.</li> <li>Otherwise operates at the frequency reference.</li> </ul> | Not saved |
| 4         |                               |                          |       |       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • When the Up 2 is enabled, the drive accelerates to                                                                                                                                                              | Not saved |
| 5         | Multi-Step Speed<br>Reference | Value<br>other<br>than 0 | 1     | 1     | <ul> <li>the frequency reference plus d4-03 (bias is increased for d4-03).</li> <li>When Down 2 is enabled, the drive decelerates to the frequency reference minus d4-03 (bias is decreased for d4-03).</li> <li>Holds output frequency (holds the bias) when neither Up/Down 2 inputs are active or both inputs are active.</li> <li>Resets the bias when the reference changes.</li> <li>Operates with the frequency reference in all other situations.</li> </ul> | If the bias and frequency reference are constant for 5 s, the bias is added to the active frequency reference and reset afterwards.                                                                               |           |

| Condition | Freq. Ref.<br>Source       | d4-03                    | d4-05 | d4-01 | Operation                                                                                                                                                     | Frequency Saved                                                                                                                     |                                                                                                                                                                                      |        |  |
|-----------|----------------------------|--------------------------|-------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|
| 6         |                            |                          |       | 0     | Accelerates (increases the bias) while the Up 2 terminal is closed.                                                                                           | Not saved                                                                                                                           |                                                                                                                                                                                      |        |  |
|           |                            |                          |       |       | Decelerates (decreases the bias) while Down 2 is closed.                                                                                                      |                                                                                                                                     |                                                                                                                                                                                      |        |  |
| 7         | Other (analog comm., etc.) |                          | 0     | 1     | Holds output frequency (holds the bias) when<br>neither Up/Down 2 inputs are active or both inputs<br>are active.                                             | If the bias is constant for 5 s, it is saved to parameter d4-06. The frequency reference cannot be overwritten, so only the bias is |                                                                                                                                                                                      |        |  |
|           |                            |                          |       |       |                                                                                                                                                               |                                                                                                                                     | If the frequency reference changes for more than<br>the time set to d4-07 during accel/decel, bias value<br>is held until the output frequency meets the<br>reference (speed agree). | saved. |  |
|           |                            |                          |       |       | Accelerates (increases the bias) while the Up 2 terminal is closed.                                                                                           |                                                                                                                                     |                                                                                                                                                                                      |        |  |
| 8         |                            |                          | 0     | 1     |                                                                                                                                                               | • Decelerates (decreases the bias) while Down 2 is closed.                                                                          | Not saved                                                                                                                                                                            |        |  |
|           |                            |                          |       |       |                                                                                                                                                               |                                                                                                                                     |                                                                                                                                                                                      |        |  |
| 9         | Other (analog              |                          |       | 0     | • When Up 2 is enabled, drive accelerates to the                                                                                                              | Not saved                                                                                                                           |                                                                                                                                                                                      |        |  |
|           | othe                       |                          |       |       | frequency reference plus d4-03 (increases the bias for d4-03).                                                                                                |                                                                                                                                     |                                                                                                                                                                                      |        |  |
| 10        |                            | Value<br>other<br>than 0 |       | 1     | • When Down 2 is enabled, drive decelerates to the frequency reference minus d4-03 (decreases the bias for d4-03).                                            | If the bias is constant for 5 s, it is saved to parameter d4-06. The frequency reference cannot be                                  |                                                                                                                                                                                      |        |  |
|           |                            |                          |       |       | • If the frequency reference changes for more than d4-07 during accel/decel, bias value is held until the output frequency meets the reference (speed agree). | overwritten, so only the bias is saved.                                                                                             |                                                                                                                                                                                      |        |  |

#### Setting 77: ASR Gain Switch

Switches the ASR gain between the values set to C5-01 and C5-03. The gain set to C5-03 is enabled when the terminal is closed, and C5-01 is enabled when the terminal reopens. *Refer to C5-01, C5-03/C5-02, C5-04: ASR Proportional Gain 1, 2/ASR Integral Time 1, 2 on page 236* for a more detailed description.

### Setting 78: External Torque Reference Polarity Inversion

Reverses the direction of the torque reference when the terminal closes. *Refer to d5: Torque Control on page 252* and *Setting the Torque Reference, Speed Limit, and Torque Compensation Values* on page 252 for details.

#### Setting 7E: Forward/Reverse Detection (for V/f Control with Simple PG Feedback)

Determines the motor rotation direction for V/f Control with Simple PG feedback (A1-02 = 0 and H6-01 = 3). If the input is open, the speed feedback signal is considered to be forward. If the input is closed, it is considered to be reverse. **Refer to H6: Pulse Train Input/Output on page 313**.

#### Setting 7F: PID Bi-directional Enable

Setting 7F is reserved.

# Setting 90 to 97: DriveWorksEZ Digital Input 1 to 8

These settings are for digital input functions used in DriveWorksEZ. Changing these settings is not typically required.

#### Setting 9F: DriveWorksEZ Disable

This function is used to enable or disable a DriveWorksEZ program in the drive. An input programmed for this function is effective only if A1-07 = 2.

| Status | Description           |
|--------|-----------------------|
| Open   | DriveWorksEZ enabled  |
| Closed | DriveWorksEZ disabled |

# ♦ H2: Multi-Function Digital Outputs

#### ■ H2-01 to H2-03: Terminal M1-M2, M3-M4, and M5-M6 Function Selection

The drive has three multi-function output terminals. *Table 5.41* lists the functions available for theses terminals using H2-01, H2-02, and H2-03.

| No.   | Parameter Name                            | Setting Range | Default          |
|-------|-------------------------------------------|---------------|------------------|
| H2-01 | Terminal M1-M2 Function Selection (relay) | 0 to 192      | 0: During run    |
| H2-02 | Terminal M3-M4 Function Selection (relay) | 0 to 192      | 1: Zero Speed    |
| H2-03 | Terminal M5-M6 Function Selection (relay) | 0 to 192      | 2: Speed agree 1 |

Table 5.41 Multi-Function Digital Output Terminal Settings

| Setting | Function                          | Page |
|---------|-----------------------------------|------|
| 0       | During Run                        | 295  |
| 1       | Zero Speed                        | 296  |
| 2       | Speed Agree 1                     | 296  |
| 3       | User-Set Speed Agree 1            | 297  |
| 4       | Frequency Detection 1             | 297  |
| 5       | Frequency Detection 2             | 297  |
| 6       | Drive Ready                       | 298  |
| 7       | During Power Supply Voltage Fault | 298  |
| 8       | During Baseblock (N.O.)           | 298  |
| 9       | Frequency Reference Source        | 298  |
| A       | Run Command Source                | 298  |
| В       | Torque Detection 1 (N.O.)         | 299  |
| С       | Frequency Reference Loss          | 299  |
| Е       | Fault                             | 299  |
| F       | Through Mode                      | 299  |
| 10      | Minor Fault                       | 299  |
| 11      | Fault Reset Command Active        | 299  |
| 12      | Timer Output                      | 299  |
| 13      | Speed Agree 2                     | 299  |
| 14      | User-Set Speed Agree 2            | 300  |
| 15      | Frequency Detection 3             | 300  |
| 16      | Frequency Detection 4             | 301  |
| 17      | Torque Detection 1 (N.C.)         | 200  |
| 18      | Torque Detection 2 (N.O.)         | 299  |
| 19      | Torque Detection 2 (N.C.)         | 299  |
| 1A      | During Reverse                    | 301  |
| 1B      | During Baseblock (N.C.)           | 302  |
| 1C      | Motor 2 Selection                 | 302  |
| 1D      | During regeneration               | 302  |
| 1E      | Restart Enabled                   | 302  |

| Setting    | Function                                           | Page |
|------------|----------------------------------------------------|------|
| 1F         | Motor Overload Alarm (oL1)                         | 302  |
| 20         | Drive Overheat Pre-Alarm (oH)                      | 302  |
| 22         | Mechanical Weakening Detection                     | 302  |
| 2F         | Maintenance Period                                 | 302  |
| 30         | During Torque Limit                                | 302  |
| 31         | During Speed Limit                                 | 303  |
| 32         | During Speed Limit in Torque Control               | 303  |
| 33         | Zero Servo Complete                                | 303  |
| 37         | During Frequency Output                            | 303  |
| 38         | Drive Enabled                                      | 303  |
| 39         | Power Consumption Pulse Output                     | 303  |
| 3A         | Regenerated Power Pulse Output                     | 303  |
| 3C         | LOCAL/REMOTE Status                                | 303  |
| 3D         | During Speed Search                                | 304  |
| 3E         | PID Feedback Low                                   | 304  |
| 3F         | PID Feedback High                                  | 304  |
| 4C         | During Fast Stop                                   | 304  |
| 4D         | oH Pre-Alarm Time Limit                            | 304  |
| 60         | Internal Cooling Fan Alarm                         | 304  |
| 61         | Rotor Position Detection Completed                 | 304  |
| 62         | MEMOBUS Register 1 (Selected with H2-07 and H2-08) | 304  |
| 63         | MEMOBUS Register 2 (Selected with H2-09 and H2-10) | 304  |
| 64         | During Commercial Power Operation                  | 304  |
| 90         | DriveWorksEZ Digital Output 1                      |      |
| 91         | DriveWorksEZ Digital Output 2                      | 304  |
| 92         | DriveWorksEZ Digital Output 3                      |      |
| 100 to 192 | Functions 0 to 92 with Inverse Output              | 304  |

# Setting 0: During Run

Output terminal closes when the drive is outputting a voltage.

| Status | Description                                                             |
|--------|-------------------------------------------------------------------------|
| Open   | Drive is stopped.                                                       |
| Closed | A Run command is input or the drive is in deceleration or DC injection. |

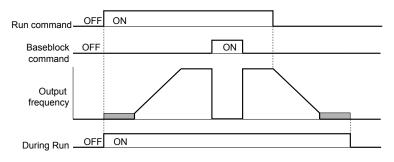



Figure 5.66 During Run Time Chart

#### **Setting 1: Zero Speed**

Output terminal closes when the output frequency or motor speed (CLV, CLV/PM) becomes less than or equal to the minimum output frequency set to E1-09 or b2-01.

| Status | Description                                                                                   |  |  |
|--------|-----------------------------------------------------------------------------------------------|--|--|
| Open   | Output frequency is more than or equal to the minimum output frequency set to E1-09 or b2-01. |  |  |
| Closed | Output frequency becomes less than the minimum output frequency set to E1-09 or b2-01.        |  |  |

Note:

When using CLV or CLV/PM control modes, the output terminal closes when the motor speed becomes less than or equal to the zero speed level set for b2-01. In all other control modes, the output terminal closes when the output frequency becomes less than or equal to the minimum output frequency set for E1-09.

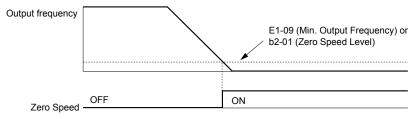



Figure 5.67 Zero-Speed Time Chart

#### Setting 2: Speed Agree 1 (fref/fout Agree 1)

Output terminal closes when the actual output frequency or motor speed (CLV, CLV/PM) is within the Speed Agree Width (L4-02) of the current frequency reference regardless of the direction.

| Status | Description                                                                         |  |  |  |  |
|--------|-------------------------------------------------------------------------------------|--|--|--|--|
| Open   | Output frequency or motor speed is outside the range of frequency reference ±L4-04. |  |  |  |  |
| Closed | Output frequency or motor speed is within the range of frequency reference ±L4-02.  |  |  |  |  |

**Note:** Detection works in forward and reverse

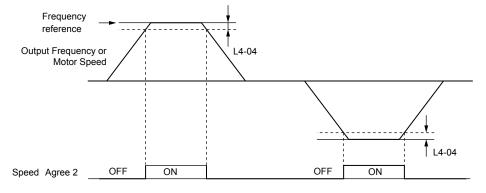



Figure 5.68 Speed Agree 1 Time Chart

Refer to L4-01, L4-02: Speed Agree Detection Level and Detection Width on page 328 for more details.

#### Setting 3: User-Set Speed Agree 1 (f<sub>ref</sub>/f<sub>set</sub> Agree 1)

Output terminal closes when the actual output frequency or motor speed (CLV, CLV/PM) and the frequency reference are within the speed agree width (L4-02) of the programmed speed agree level (L4-01).

| Status | Description                                                                                            |  |  |  |
|--------|--------------------------------------------------------------------------------------------------------|--|--|--|
| Open   | Output frequency or motor speed and frequency reference are not both within the range of L4-01 ±L4-02. |  |  |  |
| Closed | Output frequency or motor speed and the frequency reference are both within the range of L4-01 ±L4-02. |  |  |  |

**Note:** Frequency detection works in forward and reverse. The value of L4-01 is used as the detection level for both directions.

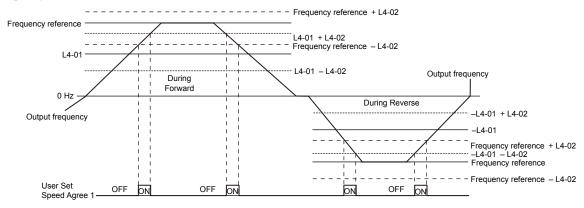



Figure 5.69 User Set Speed Agree 1 Time Chart

Refer to L4-01, L4-02: Speed Agree Detection Level and Detection Width on page 328 for more instructions.

# **Setting 4: Frequency Detection 1**

Output terminal opens when the output frequency or motor speed (CLV, CLV/PM) rises above the detection level set in L4-01 plus the detection width set in L4-02. The terminal remains open until the output frequency or motor speed fall below the level set in L4-01.

| Status | Description                                                                       |  |
|--------|-----------------------------------------------------------------------------------|--|
| Open   | Output frequency or motor speed exceeded L4-01 + L4-02.                           |  |
| Closed | Output frequency or motor speed is below L4-01 or has not exceeded L4-01 + L4-02. |  |

**Note:** Frequency detection works in forward and reverse. The value of L4-01 is used as the detection level for both directions.

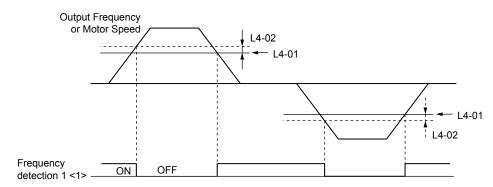



Figure 5.70 Frequency Detection 1 Time Chart

<1> This is the time chart when L4-07 (Speed Agree Detection Selection) is set to 1 (detection always enabled). The default setting for L4-07 is 0 (no detection during baseblock). When L4-07 is set to 0, the terminal opens during baseblock.

Refer to L4-01, L4-02: Speed Agree Detection Level and Detection Width on page 328 for more details.

#### **Setting 5: Frequency Detection 2**

Output terminal closes when the output frequency or motor speed (CLV, CLV/PM) is above the detection level set in L4-01. The terminal remains closed until the output frequency or motor speed fall below L4-01 minus the setting of L4-02.

| Status | Description                                                                           |
|--------|---------------------------------------------------------------------------------------|
| Open   | Output frequency or motor speed is below L4-01 minus L4-02 or has not exceeded L4-01. |
| Closed | Output frequency or motor speed exceeded L4-01.                                       |

**Note:** Frequency detection works in forward and reverse. The value of L4-01 is used as the detection level for both directions.

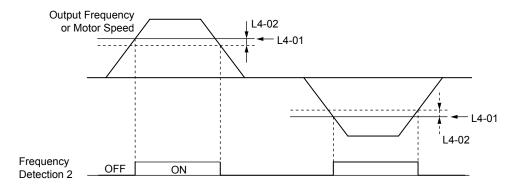



Figure 5.71 Frequency Detection 2 Time Chart

Refer to L4-01, L4-02: Speed Agree Detection Level and Detection Width on page 328 for more details.

#### **Setting 6: Drive Ready**

Output terminal closes when the drive is ready to operate the motor. The terminal will not close under the conditions listed below, and any Run commands will be disregarded.

- When the power is shut off
- · During a fault
- When the internal power supply of the drive has malfunctioned
- When a parameter setting error makes it impossible to run
- Although stopped, an undervoltage situation occurs
- While editing a parameter in the Programming Mode (when b1-08 = 0)

#### **Setting 7: During Power Supply Voltage Fault**

Output terminal closes when the power supply voltage or the control circuit voltage falls below the drive operating voltage or when the power supply frequency is incorrect.

| Status | Description                                                                                                                  |  |
|--------|------------------------------------------------------------------------------------------------------------------------------|--|
| Open   | Normal                                                                                                                       |  |
| Closed | One of the following faults will occur: AUv (Power Supply Undervoltage) Uv (Undervoltage) Fdv (Power Supply Frequency Fault) |  |

#### Setting 8: During Baseblock (N.O.)

Output terminal closes to indicate that the drive is in a baseblock state. While in baseblock, output transistors do not switch and no main circuit voltage is output.

| Status | Description                        |
|--------|------------------------------------|
| Open   | Drive is not in a baseblock state. |
| Closed | Baseblock is being executed.       |

#### **Setting 9: Frequency Reference Source**

Displays the currently selected frequency reference source.

| Status | Description                                                                                        |
|--------|----------------------------------------------------------------------------------------------------|
| Open   | Frequency reference is provided from External reference 1 (b1-01) or External reference 2 (b1-15). |
| Closed | Frequency reference is being sourced from the digital operator.                                    |

#### **Setting A: Run Command Source**

Displays the currently selected Run command source.

| Status | Description                                                             |
|--------|-------------------------------------------------------------------------|
| Open   | Run command is provided from External reference 1 (b1-02) or 2 (b1-16). |
| Closed | Run command is being sourced from the digital operator.                 |

#### Setting B, 17, 18, 19: Torque Detection 1 (N.O., N.C.), Torque Detection 2 (N.O., N.C.)

These digital output functions signal an overtorque or undertorque situation to an external device.

Set up the torque detection levels and select the output function from the table below. *Refer to L6: Torque Detection on page 331* for details.

| Setting | Status | Description                                                                                                                                                                                                        |
|---------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| В       | Closed | Torque detection 1 (N.O.): Output current/torque exceeds (overtorque detection) or is below (undertorque detection) the torque value set in parameter L6-02 for longer than the time specified in parameter L6-03. |
| 17      | Open   | Torque detection 1 (N.C.): Output current/torque exceeds (overtorque detection) or is below (undertorque detection) the torque value set in parameter L6-02 for longer than the time specified in parameter L6-03. |
| 18      | Closed | Torque detection 2 (N.O.): Output current/torque exceeds (overtorque detection) or is below (undertorque detection) the torque value set in parameter L6-05 for longer than the time specified in parameter L6-06. |
| 19      | Open   | Torque detection 2 (N.C.): Output current/torque exceeds (overtorque detection) or is below (undertorque detection) the torque value set in parameter L6-05 for longer than the time specified in parameter L6-06. |

#### **Setting C: Frequency Reference Loss**

Output terminal set for this function closes when frequency reference loss is detected. *Refer to L4-05: Frequency Reference Loss Detection Selection on page 328* for details.

#### Setting E: Fault

Output terminal closes when the drive faults (excluding CPF00 and CPF01 faults).

#### **Setting F: Through Mode**

Select this setting when using the terminal in a pass-through mode. When set to F, an output does not trigger any function in the drive. Setting F, however, still allows the output status to be read by a PLC via a communication option or MEMOBUS/ Modbus communications.

#### **Setting 10: Minor Fault**

Output terminal closes when a minor fault condition is present.

#### **Setting 11: Fault Reset Command Active**

Output terminal closes when there is an attempt to reset a fault situation from the control circuit terminals, via serial communications, or using a communications option card.

#### **Setting 12: Timer Output**

This setting configures a digital output terminal as the output for the timer function. *Refer to b4: Timer Function on page 212* for details.

#### Setting 13: Speed Agree 2 (f<sub>ref</sub> /f<sub>out</sub> Agree 2)

Output terminal closes when the actual output frequency or motor speed (CLV, CLV/PM) is within the speed agree width (L4-04) of the current frequency reference, regardless of the direction.

| Status | Description                                                                         |
|--------|-------------------------------------------------------------------------------------|
| Open   | Output frequency or motor speed is outside the range of frequency reference ±L4-04. |
| Closed | Output frequency or motor speed is within the range of frequency reference ±L4-04.  |

**Note:** Detection works in forward and reverse.

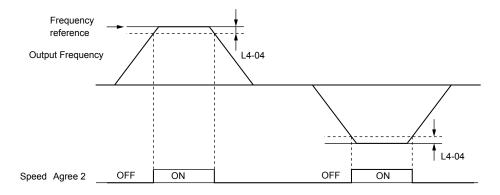



Figure 5.72 Speed Agree 2 Time Chart

Refer to L4-03, L4-04: Speed Agree Detection Level and Detection Width (+/-) on page 328 for more details.

#### Setting 14: User-Set Speed Agree 2 (f<sub>ref</sub> /f<sub>set</sub> Agree 2)

Output terminal closes when the actual output frequency or motor speed (CLV, CLV/PM) and the frequency reference are within the speed agree width (L4-04) of the programmed speed agree level (L4-03).

| Status | Description                                                                                            |
|--------|--------------------------------------------------------------------------------------------------------|
| Open   | Output frequency or motor speed and frequency reference are both outside the range of L4-03 ±L4-04.    |
| Closed | Output frequency or motor speed and the frequency reference are both within the range of L4-03 ±L4-04. |

**Note:** The detection level L4-03 is a signed value; detection works in the specified direction only.

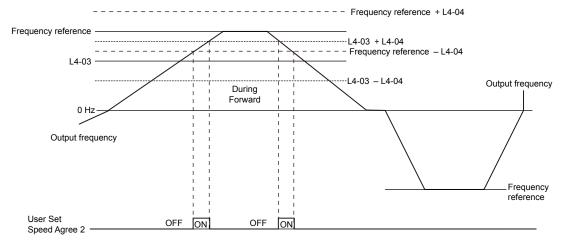



Figure 5.73 User-Set Speed Agree 2 Example with a Positive L3-04 Value

Refer to L4-03, L4-04: Speed Agree Detection Level and Detection Width (+/-) on page 328 for more details.

#### **Setting 15: Frequency Detection 3**

Output terminal opens when the output frequency or motor speed (CLV, CLV/PM) rises above the detection level set in L4-03 plus the detection with set in L4-04. The terminal remains open until the output frequency or motor speed falls below the level set in L4-03. The detection level L4-03 is a signed value; detection works in the specified direction only.

| Status | Description                                                                          |
|--------|--------------------------------------------------------------------------------------|
| Open   | Output frequency or motor speed exceeded L4-03 plus L4-04.                           |
| Closed | Output frequency or motor speed is below L4-03 or has not exceeded L4-03 plus L4-04. |

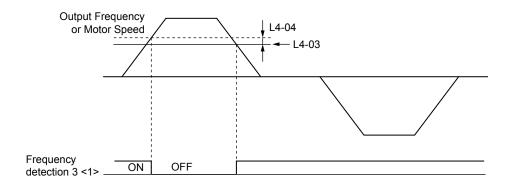



Figure 5.74 Frequency Detection 3 Example with a Positive L3-04 Value

<1> This is the time chart when L4-07 (Speed Agree Detection Selection) is set to 1 (detection always enabled). The default setting for L4-07 is 0 (no detection during baseblock). When L4-07 is set to 0, the terminal opens during baseblock.

Refer to L4-03, L4-04: Speed Agree Detection Level and Detection Width (+/-) on page 328 for more details.

#### **Setting 16: Frequency Detection 4**

Output terminal closes when the output frequency or motor speed (CLV, CLV/PM) is above the detection level set in L4-03. The terminal remains closed until the output frequency or motor speed falls below L4-03 minus the setting of L4-04.

| Status | Description                                                                           |
|--------|---------------------------------------------------------------------------------------|
| Open   | Output frequency or motor speed is below L4-03 minus L4-04 or has not exceeded L4-03. |
| Closed | Output frequency or motor speed exceeded L4-03.                                       |

**Note:** The detection level L4-03 is a signed value; detection works in the specified direction only.

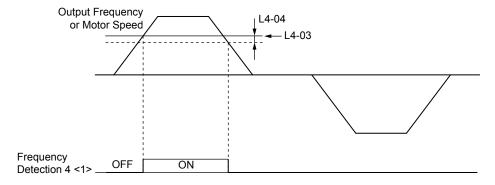



Figure 5.75 Frequency Detection 4 Example with Positive L3-04 Value

<1> This is the time chart when L4-07 (Speed Agree Detection Selection) is set to 1 (detection always enabled). The default setting for L4-07 is 0 (no detection during baseblock). When L4-07 is set to 0, the terminal opens during baseblock.

Refer to L4-03, L4-04: Speed Agree Detection Level and Detection Width (+/-) on page 328 for more details.

#### **Setting 1A: During Reverse**

A digital output set for "During reverse" closes when the drive is running the motor in the reverse direction.

| Status | Description                                                |
|--------|------------------------------------------------------------|
| Open   | Motor is being driven in the forward direction or stopped. |
| Closed | Motor is being driven in reverse.                          |

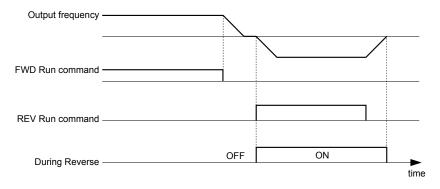



Figure 5.76 Reverse Direction Output Example Time Chart

#### Setting 1B: During Baseblock (N.C.)

Output terminal opens to indicate that the drive is in a baseblock state. While Baseblock is executed, output transistors do not switch and no main circuit voltage is output.

| Status | Description                        |
|--------|------------------------------------|
| Open   | Baseblock is being executed.       |
| Closed | Drive is not in a baseblock state. |

#### **Setting 1C: Motor 2 Selection**

Indicates which motor is selected when another output terminal is set to switch drive operation between two motors (H1- $\Box\Box$  = 16). *Refer to Setting 16: Motor 2 Selection on page 289* for details on switching motors.

| Statu |                      | Description |
|-------|----------------------|-------------|
| Open  | Motor 1 is selected. |             |
| Close | Motor 2 is selected. |             |

#### **Setting 1D: During Regeneration**

Output terminal closes when the motor is driven in the regenerative mode.

#### Setting 1E: Restart Enabled

Output terminal set for "Restart enabled" closes when the drive attempts to restart after a fault has occurred.

The fault restart function allows the drive to automatically clear a fault. The terminal set to 1E will close after the fault is cleared and the drive has attempted to restart. If the drive cannot successfully restart within the number of attempts permitted by L5-01, a fault will be triggered and the terminal set to 1E will open. *Refer to L5: Fault Restart on page 329* for details on automatic restart.

#### Setting 1F: Motor Overload Alarm (oL1)

Output terminal closes when the motor overload level estimated by the oL1 fault detection exceeds 90% of the oL1 detection level. *Refer to L1-01: Motor Overload Protection Selection on page 316*.

#### Setting 20: Drive Overheat Pre-Alarm (oH)

Output terminal closes when the heatsink temperature exceeds the L8-02 level (while L8-03 = 3, 4) or an external device has triggered an oH2 alarm via multi-function input H1- $\square\square$  = Bh. *Refer to L8-02: Overheat Alarm Level on page 335* for details on drive overheat detection.

#### **Setting 22: Mechanical Weakening Detection**

Output terminal closes when a mechanical weakening situation is detected. *Refer to Mechanical Weakening Detection on page 332* for details.

#### **Setting 2F: Maintenance Period**

Output terminal closes when the cooling fan, DC bus capacitors, or DC bus pre-charge relay may require maintenance as determined by the estimated performance life span of those components. *Refer to Periodic Maintenance on page 433* for details.

#### **Setting 30: During Torque Limit**

Output terminal closes when the motor is operating at the torque limit specified by the L7-\(\sigma\) parameters or an analog input. This setting can only be used in OLV, CLV, AOLV/PM and CLV/PM control modes. *Refer to L7-01 to L7-04: Torque Limits on page 334* for details.

#### **Setting 31: During Speed Limit**

Output terminal closes when the speed limit has been reached. This function can be used in CLV and CLV/PM control modes.

| Status | Description                                                                                                                                                                                                                                                                                                   |  |  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Open   | The conditions described below are not present.                                                                                                                                                                                                                                                               |  |  |
| Closed | <ol> <li>The frequency reference has reached the upper limit set in d2-01.</li> <li>The frequency reference has fallen to the lower limit set in d2-02 or d2-03.</li> <li>Parameter b1-05 is set to 1, 2, or 3, and the frequency reference has fallen below the minimum output frequency (E1-09).</li> </ol> |  |  |

#### **Setting 32: During Speed Limit in Torque Control**

The motor torque and load torque are not in balance, causing the motor to accelerate. Output terminal closes when the motor reaches the speed limit. *Refer to d5: Torque Control on page 252* and *Indicating Operation at the Speed Limit* on page 254 for details.

#### **Setting 33: Zero Servo Complete**

Output terminal closes when Zero Servo is enabled and the load is locked into position within the allowable deviation (b9-02). *Refer to b9: Zero Servo on page 226* for information on Zero Servo operation.

#### **Setting 37: During Frequency Output**

Output terminal closes when the drive is outputting a frequency.

| Status | Description                                                                                                                                                                                                         |  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Open   | The drive is not outputting a frequency (one of the following functions is being performed: stop, baseblock, DC Injection Braking (during initial excitation), short circuit braking, or rotor position detection). |  |
| Closed | Drive is outputting frequency.                                                                                                                                                                                      |  |




Figure 5.77 During Frequency Output Time Chart

#### Setting 38: Drive Enable

Reflects the status of a digital input configured as a "Drive enable" input (H1- $\Box\Box$  = 6A). If that digital input closes, then the digital output set for "Drive enable" will also close.

#### **Setting 39: Power Consumption Pulse Output**

Outputs a pulse to indicate the power consumption. *Refer to H2-06: Power Consumption Output Unit Selection on page 305* for details.

#### **Setting 3A: Regenerated Power Pulse Output**

Outputs a pulse to indicate the regenerated power. *Refer to H2-06: Power Consumption Output Unit Selection on page 305* for details.

#### Setting 3C: LOCAL/REMOTE Status

Output terminal closes while the drive is set for LOCAL and opens when in REMOTE.

| Status | Description                                                                                                                                              |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Open   | REMOTE: The external reference that has been selected (either b1-01 and b1-02 or b1-15 and b1-16) is used as frequency reference and Run command source. |
| Closed | LOCAL: The digital operator is used as frequency reference and Run command source.                                                                       |

#### Setting 3D: During Speed Search

Output terminal closes while Speed Search is being performed. **Refer to b3: Speed Search on page 204** for details.

#### Setting 3E: PID Feedback Low

Output terminal closes when a PID feedback loss (FbL) is detected. The feedback is considered to be lost if it falls below the level set to b5-13 for longer than the time set to b5-14. *Refer to PID Feedback Loss Detection on page 217* for details.

#### Setting 3F: PID Feedback High

Output terminal closes when a PID feedback loss (FbH) is detected. The feedback is considered to be lost if it rises beyond the level set to b5-36 for longer than the time set to b5-37. *Refer to PID Feedback Loss Detection on page 217* for details.

#### **Setting 4C: During Fast Stop**

Output terminal closes when a Fast Stop is being executed. Refer to Setting 15, 17: Fast Stop (N.O., N.C.) on page 288.

#### Setting 4D: oH Pre-Alarm Time Limit

Output terminal closes when the drive is reducing the speed due to a drive overheat alarm (L8-03 = 4) and the overheat alarm has not disappeared after 10 frequency reduction operation cycles. *Refer to L8-03: Overheat Pre-Alarm Operation Selection on page 335* for a more detailed description.

#### Setting 60: Internal Cooling Fan Alarm

Output terminal closes when the drive internal cooling fan has failed.

#### **Setting 61: Rotor Position Detection Complete**

After the Run command is given, the output terminal signals that the drive has detected the rotor position (PM motors).

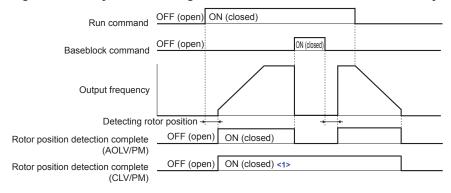



Figure 5.78 Rotor Position Detection Complete Operation

<1> When you set A1-02 = 7 [Control Method Selection = CLV/PM], initial detection operates once only after the drive is energized.

#### Setting 62: MEMOBUS Register 1 (Selected with H2-07 and H2-08)

The contact output is closed when any of the bits specified by H2-08 for the MEMOBUS/Modbus register address set in H2-07 turn on.

#### Setting 63: MEMOBUS Register 2 (Selected with H2-09 and H2-10)

The contact output is closed when any of the bits specified by H2-10 for the MEMOBUS/Modbus register address set in H2-09 turn on.

#### **Setting 64: During Commercial Power Operation**

Output terminal closes when operating on commercial power when commercial power switching is selected (b1-24=1).

#### Setting 90 to 92: DriveWorksEZ Digital Output 1 to 3

These settings are for output functions used in DriveWorksEZ. Normally there is no need to change these settings.

#### Setting 100 to 192: Functions 0 to 92 with Inverse Output

These settings have the same function as settings 0 to 92 but with inverse output. Set as  $1\square\square$ , where the "1" indicates inverse output and the last two digits specify the setting number of the function.

Example: Set "108" for inverse output of "8: During baseblock".

# ■ H2-06: Power Consumption Output Unit Selection

When one of the multi-function terminals is set to power consumption pulse output (H2-01, H2-02, or H2-03 = 39) or regenerated power pulse output (H2-01, H2-02, or H2-03 = 3A), parameter H2-06 determines the units for the output signal.

This output function provides a watt hour meter or a PLC input by a 200 ms pulse signal. H2-06 determines the frequency that pulses are issued to keep track of the kWh for the drive.

| No.   | Parameter Name                          | Setting Range | Default |
|-------|-----------------------------------------|---------------|---------|
| H2-06 | Power Consumption Output Unit Selection | 0 to 4 <1>    | 1       |

<1> Setting range is 1 to 4 in drive software versions PRG: 1014 and earlier.

Setting 0: 0.1 kWh Units
Setting 1: 1 kWh Units
Setting 2: 10 kWh Units
Setting 3: 100 kWh Units
Setting 4: 1000 kWh Units

Note:

- 1. A regenerated power pulse output does not subtract from the total watt hours while power is applied. A power consumption output does not subtract from the total watt hours during regeneration.
- 2. The drive keeps track of the watt hours as long as the control circuit has power. The value is reset when the power supply is shut off.

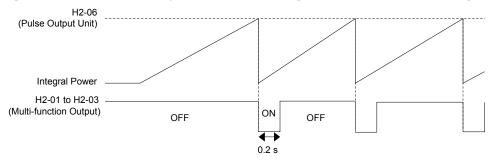



Figure 5.79 Watt Hour Output Example

#### ■ H2-07 to H2-10: MEMOBUS Registers

These parameters specify the MEMOBUS/Modbus registers and bits from which data will be sent to the multi-function contact outputs.

| No.   | Name                              | Setting Range | Default |
|-------|-----------------------------------|---------------|---------|
| H2-07 | MEMOBUS Register 1 Address Select | 1 to 1FFFH    | 1       |
| H2-08 | MEMOBUS Register 1 Bit Select     | 0 to FFFFH    | 0       |
| H2-09 | MEMOBUS Register 2 Address Select | 1 to 1FFFH    | 1       |
| H2-10 | MEMOBUS Register 2 Bit Select     | 0 to FFFFH    | 0       |

The MEMOBUS/Modbus register addresses for sending data to multi-function contact outputs 62 and 63 are specified in H2-07 and H2-09, and the bits for the MEMOBUS/Modbus registers are specified in H2-08 and H2-10.

# ♦ H3: Multi-Function Analog Inputs

The drive is equipped with three multi-function analog input terminals: A1, A2, and A3. *Refer to Multi-Function Analog Input Terminal Settings on page 308* for a listing of the functions that can be set to these terminals.

# ■ H3-01: Terminal A1 Signal Level Selection

Selects the input signal level for analog input A1.

| No.   | Name                               | Setting Range | Default |
|-------|------------------------------------|---------------|---------|
| H3-01 | Terminal A1 Signal Level Selection | 0 to 1        | 0       |

#### Setting 0: 0 to 10 Vdc

The input level is 0 to 10 Vdc. The minimum input level is limited to 0%, so that a negative input signal due to gain and bias settings will be read as 0%.

#### Setting 1: -10 to 10 Vdc

The input level is -10 to 10 Vdc. If the resulting voltage is negative after being adjusted by gain and bias settings, then the motor will rotate in reverse.

#### ■ H3-02: Terminal A1 Function Selection

Selects the input signal level for analog input A1. *Refer to Multi-Function Analog Input Terminal Settings on page 308* for instructions on adjusting the signal level.

| No.   | Name                           | Setting Range | Default |
|-------|--------------------------------|---------------|---------|
| H3-02 | Terminal A1 Function Selection | 0 to 32       | 0       |

# ■ H3-03, H3-04: Terminal A1 Gain and Bias Settings

Parameter H3-03 sets the level of the selected input value that is equal to 10 Vdc input at terminal A1 (gain).

Parameter H3-04 sets the level of the selected input value that is equal to 0 V input at terminal A1 (bias).

Use both parameters to adjust the characteristics of the analog input signal to terminal A1.

| No.   | Name                     | Setting Range    | Default |
|-------|--------------------------|------------------|---------|
| Н3-03 | Terminal A1 Gain Setting | -999.9 to 999.9% | 100.0%  |
| Н3-04 | Terminal A1 Bias Setting | -999.9 to 999.9% | 0.0%    |

#### **Setting Examples**

• Gain H3-03 = 200%, bias H3-04 = 0, terminal A1 as frequency reference input (H3-02 = 0):

A 10 Vdc input is equivalent to a 200% frequency reference and 5 Vdc is equivalent to a 100% frequency reference. Since the drive output is limited by the maximum frequency parameter (E1-04), the frequency reference will be equal to E1-04 above 5 Vdc.

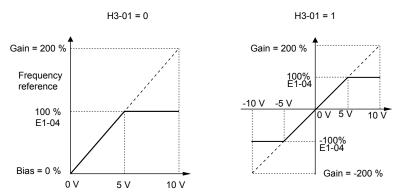



Figure 5.80 Frequency Reference Setting by Analog Input with Increased Gain

• Gain H3-03 = 100%, bias H3-04 = -25%, terminal A1 as frequency reference input:

An input of 0 Vdc will be equivalent to a -25% frequency reference.

When parameter H3-01 = 0, the frequency reference is 0% between 0 and 2 Vdc input.

When parameter H3-01 = 1, the motor will rotate in reverse between -10 and 2 Vdc input.

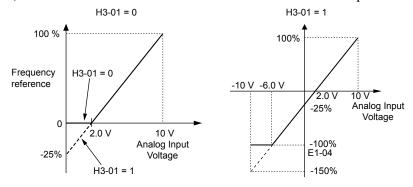



Figure 5.81 Frequency Reference Setting by Analog Input with Negative Bias

# ■ H3-05: Terminal A3 Signal Level Selection

Selects the input signal level for analog input A3. *Refer to Multi-Function Analog Input Terminal Settings on page 308* for a list of functions and descriptions.

Be sure to set DIP switch S4 on the terminal board accordingly for multi-function analog input or PTC input. Also *Refer to Terminal A3 Analog/PTC Input Selection on page 121*.

| No.   | Name                               | Setting Range | Default |
|-------|------------------------------------|---------------|---------|
| H3-05 | Terminal A3 Signal Level Selection | 0, 1          | 0       |

#### Setting 0: 0 to 10 Vdc

The input level is 0 to 10 Vdc. See the explanation provided for H3-01. Refer to Setting 0: 0 to 10 Vdc on page 305.

#### Setting 1: -10 to 10 Vdc

The input level is -10 to 10 Vdc. See the explanation provided for H3-01. *Refer to Setting 1: -10 to 10 Vdc on page 306*.

#### ■ H3-06: Terminal A3 Function Selection

Determines the function assigned to analog input terminal A3. *Refer to Multi-Function Analog Input Terminal Settings on page 308* for a list of functions and descriptions.

| No.   | Name                           | Setting Range | Default |
|-------|--------------------------------|---------------|---------|
| Н3-06 | Terminal A3 Function Selection | 0 to 32       | 2       |

# ■ H3-07, H3-08: Terminal A3 Gain and Bias Setting

Parameter H3-07 sets the level of the selected input value that is equal to 10 Vdc input at terminal A3 (gain).

Parameter H3-08 sets the level of the selected input value that is equal to 0 V input at terminal A3 (bias).

| No.   | Name                     | Setting Range    | Default |
|-------|--------------------------|------------------|---------|
| Н3-07 | Terminal A3 Gain Setting | -999.9 to 999.9% | 100.0%  |
| H3-08 | Terminal A3 Bias Setting | -999.9 to 999.9% | 0.0%    |

# ■ H3-09: Terminal A2 Signal Level Selection

Selects the input signal level for analog input A2. Set DIP switch S1 on the terminal board accordingly for a voltage input or current input.

| No.   | Name                               | Setting Range | Default |
|-------|------------------------------------|---------------|---------|
| Н3-09 | Terminal A2 Signal Level Selection | 0 to 3        | 2       |

#### Setting 0: 0 to 10 Vdc

The input level is 0 to 10 Vdc. Refer to Setting 0: 0 to 10 Vdc on page 305.

#### Setting 1: 0 to 10 Vdc Bipolar

The input level is -10 to 10 Vdc. *Refer to Setting 1: -10 to 10 Vdc on page 306*.

#### Setting 2: 4 to 20 mA

The input level is 4 to 20 mA. Negative input values by negative bias or gain settings will be limited to 0%.

#### Setting 3: 0 to 20 mA

The input level is 0 to 20 mA. Negative input values by negative bias or gain settings will be limited to 0%.

#### ■ H3-10: Terminal A2 Function Selection

Determines the function assigned to analog input terminal A2. *Refer to Multi-Function Analog Input Terminal Settings on page 308* for a list of functions and descriptions.

| No.   | Name                           | Setting Range | Default |
|-------|--------------------------------|---------------|---------|
| H3-10 | Terminal A2 Function Selection | 0 to 32       | 0       |

# ■ H3-11, H3-12: Terminal A2 Gain and Bias Setting

Parameter H3-11 sets the level of the input value selected that is equal to 10 Vdc input or 20 mA input to terminal A2.

Parameter H3-12 sets the level of the input value selected that is equal to 0 V, 4 mA or 0 mA input at terminal A2.

Use both parameters to adjust the characteristics of the analog input signal to terminal A2. The setting works in the same way as parameters H3-03 and H3-04 for analog input A1.

| No.   | Name                     | Setting Range    | Default |
|-------|--------------------------|------------------|---------|
| Н3-11 | Terminal A2 Gain Setting | -999.9 to 999.9% | 100.0%  |
| H3-12 | Terminal A2 Bias Setting | -999.9 to 999.9% | 0.0%    |

# ■ H3-13: Analog Input Filter Time Constant

Parameter H3-13 sets the time constant for a first order filter that will be applied to the analog inputs.

An analog input filter prevents erratic drive control when using a "noisy" analog reference. Drive operation becomes more stable as the programmed time becomes longer, but it also becomes less responsive to rapidly changing analog signals.

| No.   | Name                              | Setting Range  | Default |
|-------|-----------------------------------|----------------|---------|
| H3-13 | Analog Input Filter Time Constant | 0.00 to 2.00 s | 0.03 s  |

# ■ H3-14: Analog Input Terminal Enable Selection

When one of the multi-function digital input parameters is set for "Analog input enable" (H1- $\square\square$  = C), the value set to H3-14 determines which analog input terminals are enabled when the input is closed. All of the analog input terminals will be enabled all of the time when H1- $\square\square$   $\neq$  C. The terminals not set as the target are not influenced by input signals.

| No.   | Name                                   | Setting Range | Default |
|-------|----------------------------------------|---------------|---------|
| Н3-14 | Analog Input Terminal Enable Selection | 1 to 7        | 7       |

Setting 1: A1 Only Enabled

Setting 2: A2 Only Enabled

Setting 3: A1 and A2 Only Enabled

Setting 4: A3 Only Enabled

Setting 5: A1 and A3 Only Enabled

Setting 6: A2 and A3 Only Enabled

**Setting 7: All Analog Input Terminals Enabled** 

#### ■ H3-16 to H3-18: Terminal A1/A2/A3 Offset

Set the offset level of the selected input value to terminals A1, A2, or A3 that is equal to 0 Vdc input. These parameters rarely require adjustment.

| No.   | Name               | Setting Range | Default |
|-------|--------------------|---------------|---------|
| Н3-16 | Terminal A1 Offset | -500 to 500   | 0       |
| Н3-17 | Terminal A2 Offset | -500 to 500   | 0       |
| H3-18 | Terminal A3 Offset | -500 to 500   | 0       |

# ■ Multi-Function Analog Input Terminal Settings

See *Table 5.42* for information on how H3-02, H3-10, and H3-06 determine functions for terminals A1, A2, and A3.

**Note:** The scaling of all input functions depends on the gain and bias settings for the analog inputs. Set these to appropriate values when selecting and adjusting analog input functions.

**Table 5.42 Multi-Function Analog Input Terminal Settings** 

| Setting | Function                        | Page |
|---------|---------------------------------|------|
| 0       | Frequency Bias                  | 309  |
| 1       | Frequency Gain                  | 309  |
| 2       | Auxiliary Frequency Reference 1 | 309  |
| 3       | Auxiliary Frequency Reference 2 | 309  |
| 4       | Output Voltage Bias             | 309  |

| Setting | Function                           | Page       |
|---------|------------------------------------|------------|
| 5       | Accel/Decel Time Gain              | <i>309</i> |
| 6       | DC Injection Braking Current       | <i>309</i> |
| 7       | Torque Detection Level             | 310        |
| 8       | Stall Prevention Level During Run  | 310        |
| 9       | Output Frequency Lower Limit Level | 310        |

| Setting | Function                                             | Page |
|---------|------------------------------------------------------|------|
| В       | PID Feedback                                         | 310  |
| С       | PID Setpoint                                         | 310  |
| D       | Frequency Bias                                       | 310  |
| Е       | Motor Temperature (PTC Input)                        | 310  |
| F       | Through Mode                                         | 310  |
| 10      | Forward Torque Limit                                 |      |
| 11      | Reverse Torque Limit                                 | 310  |
| 12      | Regenerative Torque limit                            |      |
| 13      | Torque Limit Using Torque Reference/Speed<br>Control | 311  |

| Setting | Function                    | Page |
|---------|-----------------------------|------|
| 14      | Torque Compensation         | 311  |
| 15      | General Torque Limit        | 310  |
| 16      | Differential PID Feedback   | 311  |
| 1F      | Through Mode                | 310  |
| 30      | DriveWorksEZ Analog Input 1 |      |
| 31      | DriveWorksEZ Analog Input 2 | 311  |
| 32      | DriveWorksEZ Analog Input 3 |      |

#### **Setting 0: Frequency Bias**

The input value of an analog input set to this function will be added to the analog frequency reference value. When the frequency reference is supplied by a different source other than the analog inputs, this function will have no effect. Use this setting also when only one of the analog inputs is used to supply the frequency reference.

By default, analog inputs A1 and A2 are set for this function. Simultaneously using A1 and A2 increases the frequency reference by the total of all inputs.

Example: If the analog frequency reference from analog input terminal A1 is 50% and a bias of 20% is applied by analog input terminal A2, the resulting frequency reference will be 70% of the maximum output frequency.

#### **Setting 1: Frequency Gain**

The input value of an analog input set to this function will be multiplied with the analog frequency reference value.

Example: If the analog frequency reference from analog input terminal A1 is 80% and a gain of 50% is applied from analog input terminal A2, the resulting frequency reference will be 40% of the maximum output frequency.

#### **Setting 2: Auxiliary Reference 1**

Sets the auxiliary frequency reference 1 when multi-step speed operation is selected. *Refer to Multi-Step Speed Selection on page 244* for details.

#### Setting 3: Auxiliary Reference 2

Sets the auxiliary frequency reference 2 when multi-step speed operation is selected. *Refer to Multi-Step Speed Selection on page 244* for details.

#### **Setting 4: Output Voltage Bias**

Voltage bias boosts the output voltage of the V/f curve as a percentage of the maximum output voltage (E1-05). Available only when using V/f Control.

#### Setting 5: Accel/Decel Time Gain

Adjusts the gain level for the acceleration and deceleration times set to parameters C1-01 through C1-08.

The drive acceleration time is calculated by multiplying the gain level to C1- $\Box\Box$  as follows:

C1- $\square\square \times Accel/decel time gain = Drive accel/decel time$ 

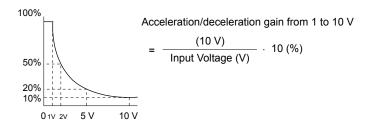



Figure 5.82 Accel/Decel Time Gain with Analog Input Terminal

#### **Setting 6: DC Injection Braking Current**

The current level used for DC Injection Braking is set as a percentage of the drive rated current.

# DC Injection Braking Current Level 100% Drive Rated Current 0 10 V (4) (20 mA)

Figure 5.83 DC Injection Braking Current Using an Analog Input Terminal

#### **Setting 7: Torque Detection Level**

Using this setting, the overtorque/undertorque detection level for torque detection 1 (L6-01) can be set by an analog input. The analog input replaces the level set to L6-02. An analog input of 100% (10 V or 20 mA) sets a torque detection level equal to 100% drive rated current/motor rated torque. Adjust the analog input gain if higher detection level settings are required. **Refer to L6: Torque Detection on page 331** for details on torque detection.

#### **Setting 8: Stall Prevention Level**

Allows an analog input signal to adjust the Stall Prevention level. *Figure 5.84* shows the setting characteristics. The drive will use the lower value of the Stall Prevention level set to L3-06 or the level coming from the selected analog input terminal.

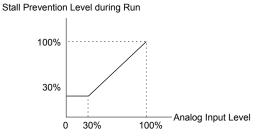



Figure 5.84 Stall Prevention During Run Using an Analog Input Terminal

#### **Setting 9: Output Frequency Lower Limit Level**

The user can adjust the lower limit of the output frequency using an analog input signal.

#### Setting B: PID Feedback

Supplies the PID feedback value. This setting requires PID operation to be enabled in b5-01. *Refer to PID Feedback Input Methods on page 214*.

#### **Setting C: PID Setpoint**

Supplies the PID setpoint value and makes the frequency reference selected in parameter b1-01 no longer the PID setpoint. PID operation to be enabled in b5-01 to use this setting. *Refer to PID Setpoint Input Methods on page 214*.

#### **Setting D: Frequency Bias**

The input value of an analog input set to this function will be added to the frequency reference. This function can be used with any frequency reference source.

#### **Setting E: Motor Temperature**

In addition to motor overload fault detection oL1, it is possible to use a Positive Temperature Coefficient (PTC) thermistor for motor insulation protection. *Refer to Motor Protection Using a Positive Temperature Coefficient (PTC) Thermistor on page 319* for a detailed explanation.

#### Setting F, 1F: Through Mode

When set to F or 1F, an input does not affect any drive function, but the input level can still be read out by a PLC via a communication option or MEMOBUS/Modbus communications.

# Setting 10, 11, 12, 15: Forward, Reverse, Regenerative, General Torque Limit (OLV, CLV, AOLV/PM, CLV/PM)

These functions set a torque limit using analog inputs for different operating conditions. *Refer to L7: Torque Limit on page 333* for details.

#### Setting 13: Torque Limit Using Torque Reference/Speed Control

Sets the torque reference (when in Torque Control) or the torque limit (when in Speed Control). *Refer to Setting the Torque Reference, Speed Limit, and Torque Compensation Values on page 252* for details.

#### **Setting 14: Torque Compensation**

Sets a torque compensation value when using Torque Control. *Refer to Setting the Torque Reference, Speed Limit, and Torque Compensation Values on page 252* for details.

#### **Setting 16: Differential PID Feedback**

If an analog value is set for this function, the PID controller is set for differential feedback. The difference of the PID feedback input value and the differential feedback input value builds the feedback value used to calculate the PID input. *Refer to PID Feedback Input Methods on page 214*.

#### Setting 30, 31, 32: DriveWorksEZ Analog Inputs 1, 2, and 3

These settings are for DriveWorksEZ functions. Normally there is no need to change or apply these settings.

# **♦** H4: Multi-Function Analog Outputs

These parameters assign functions to analog output terminals FM and AM for monitoring a specific aspect of drive performance.

# ■ H4-01, H4-04: Multi-Function Analog Output Terminal FM, AM Monitor Selection

Sets the desired drive monitor parameter  $U\Box - \Box\Box$  to output as an analog value via terminal FM and AM. *Refer to U: Monitor Parameters on page 360* for a list of all monitors. The "Analog Output Level" column indicates whether a monitor can be used for analog output.

Example: Enter "103" for U1-03.

| No.   | Name                                                       | Setting Range | Default |
|-------|------------------------------------------------------------|---------------|---------|
| H4-01 | Multi-Function Analog Output Terminal FM Monitor Selection | 000 to 999    | 102     |
| H4-04 | Multi-Function Analog Output Terminal AM Monitor Selection | 000 to 999    | 103     |

A setting of 031 or 000 applies no drive monitor to the analog output. With either of these settings, the output level of the terminals FM and AM can be set by a PLC via a communication option or MEMOBUS/Modbus (through mode).

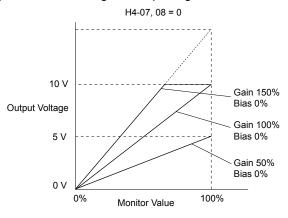
# ■ H4-02, H4-03: Multi-Function Analog Output Terminal FM Gain and Bias H4-05, H4-06: Multi-Function Analog Output Terminal AM Gain and Bias

Parameters H4-02 and H4-05 set the terminal FM and AM output signal level when the value of the selected monitor is at 100%. Parameters H4-03 and H4-06 set the terminal FM and AM output signal level when the value of the selected monitor is at 0%. Both are set as a percentage, where 100% equals 10 Vdc or 20 mA analog output and 0% equals 0 V or 4 mA. The output voltage of both terminals is limited to +/-10 Vdc.

The output signal range can be selected between 0 to +10 Vdc or -10 to +10 Vdc, or 4 to 20 mA using parameter H4-07 and H4-08. *Figure 5.85* illustrates how gain and bias settings work.

| No.   | Name                                          | Setting Range    | Default |
|-------|-----------------------------------------------|------------------|---------|
| H4-02 | Multi-Function Analog Output Terminal FM Gain | -999.9 to 999.9% | 100.0%  |
| H4-03 | Multi-Function Analog Output Terminal FM Bias | -999.9 to 999.9% | 0.0%    |
| H4-05 | Multi-Function Analog Output Terminal AM Gain | -999.9 to 999.9% | 50.0%   |
| H4-06 | Multi-Function Analog Output Terminal AM Bias | -999.9 to 999.9% | 0.0%    |

#### Using Gain and Bias to Adjust Output Signal Level


The output signal is adjustable while the drive is stopped.

#### **Terminal FM**

- **1.** View the value set to H4-02 (Terminal FM Monitor Gain) on the digital operator. A voltage equal to 100% of the parameter being set in H4-01 will be output from terminal FM.
- Adjust H4-02 viewing the monitor connected to the terminal FM.
- **3.** View the value set to H4-03 on the digital operator; terminal FM will output a voltage equal to 0% of the parameter being set in H4-01.
- **4.** Adjust H4-03 viewing the output signal on the terminal FM.

#### **Terminal AM**

- **1.** View the value set to H4-05 (Terminal AM Monitor Gain) on the digital operator. A voltage equal to 100% of the parameter being set in H4-04 will be output from terminal AM.
- 2. Adjust H4-05 viewing the monitor connected to the terminal AM.
- **3.** View the value set to H4-06 on the digital operator; terminal AM will output a voltage equal to 0% of the parameter being set in H4-04.
- **4.** Adjust H4-06 viewing the output signal on the terminal AM.



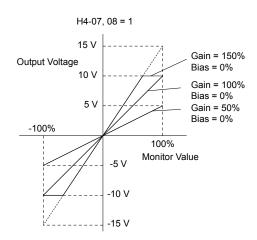
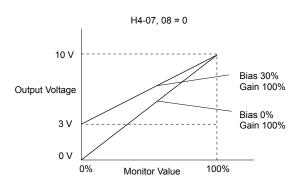




Figure 5.85 Analog Output Gain and Bias Setting Example 1 and 2

Set H4-03 to 30% for an output signal of 3 V at terminal FM when the monitored value is at 0%.



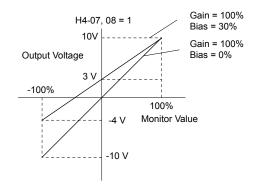



Figure 5.86 Analog Output Gain and Bias Setting Example 3

#### ■ H4-07, H4-08: Multi-Function Analog Output Terminal FM, AM Signal Level Selection

Sets the voltage output level of U parameter (monitor parameter) data to terminal FM and terminal AM using parameters H4-07 and H4-08.

Set jumper S5 on the terminal board accordingly when changing these parameters. *Refer to Terminal AM/FM Signal Selection on page 122* for details on setting S5.

| No.   | Name                                                               | Setting Range | Default |
|-------|--------------------------------------------------------------------|---------------|---------|
| H4-07 | Multi-Function Analog Output Terminal FM<br>Signal Level Selection | 0 to 2        | 0       |
| H4-08 | Multi-Function Analog Output Terminal AM<br>Signal Level Selection | 0 to 2        | 0       |

Setting 0: 0 to 10 V Setting 1: -10 V to 10 V Setting 2: 4 to 20 mA

# ◆ H5: MEMOBUS/Modbus Serial Communication

Serial communication is possible in the drive using the built-in RS-422/485 port (terminals R+, R-, S+, S-) and programmable logic controllers (PLCs) or similar devices running the MEMOBUS/Modbus protocol.

•

The H5- $\Box\Box$  parameters set the drive for MEMOBUS/Modbus Communications. *Refer to MEMOBUS/Modbus Serial Communication on page 633* for detailed descriptions of the H5- $\Box\Box$  parameters.

# ♦ H6: Pulse Train Input/Output

A one-track pulse train signal with a maximum frequency of 32 kHz can be input to the drive at terminal RP. This pulse train signal can be used as the frequency reference, for PID functions, or as the speed feedback signal in V/f Control.

The pulse output monitor terminal MP can output drive monitor values as a pulse train signal with a maximum frequency of 32 kHz in sinking or sourcing mode. *Refer to Using the Pulse Train Output on page 120* for details.

Use parameters H6- $\square\square$  to set the scale and other aspects of the pulse input terminal RP and pulse output terminal MP.

# ■ H6-01: Pulse Train Input Terminal RP Function Selection

Selects the function of pulse train input terminal RP.

| No.   | Name                                             | Setting Range | Default |
|-------|--------------------------------------------------|---------------|---------|
| H6-01 | Pulse Train Input Terminal RP Function Selection | 0 to 3        | 0       |

#### Setting 0: Frequency Reference

If the pulse input is set for this function and the frequency reference source is set to pulse input (b1-01, b1-15=4), the drive reads the frequency value from terminal RP.

#### Setting 1: PID Feedback Value

Using this setting, the feedback value for PID control can be supplied as a pulse signal at terminal RP. *Refer to b5: PID Control on page 213* for details on PID control.

#### **Setting 2: PID Setpoint Value**

Using this setting, the setpoint value for PID control can be supplied as a pulse signal at terminal RP. *Refer to b5: PID Control on page 213* for details on PID control.

# Setting 3: Speed Feedback (V/f Control with Simple Speed Feedback)

This setting can be used in V/f control to increase the speed control precision by using a motor speed feedback signal. The drive reads the speed feedback from terminal RP, compares it to the frequency reference and compensates the motor slip using a speed regulator (ASR, set up in the C5- $\Box\Box$  parameters) like shown in *Figure 5.87*. Because input terminal RP is incapable of detecting motor direction, a separate way of determining motor direction still needs to be set up:

#### 1. Using a Digital Input

If a digital input programmed for "Forward/reverse detection" (H1- $\square\square$  = 7E) is closed, the drive assumes reverse rotation. If open, then the drive assumes that the motor is rotating forwards.

# 2. Using the Frequency Reference Direction

If no digital input is set to "Forward/reverse detection" (H1-\(\sigma\) = 7E), the drive uses the direction of the frequency reference as the direction for the speed feedback detected at the pulse input.

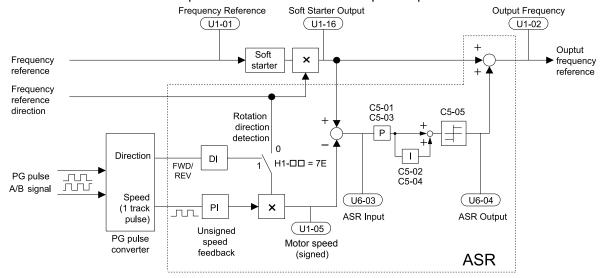



Figure 5.87 Speed Control with ASR in V/f with Simple Speed Feedback

#### **Enabling V/f Control with Simple Speed Feedback:**

- **1.** Set the drive to V/f Control (A1-02 = 0).
- 2. Connect the motor speed pulse signal to the pulse input RP, set H6-01 = 3, and set the pulse signal frequency that is equal to the maximum speed to H6-02 (pulse input scaling). Make sure the pulse input bias (H6-04) is 0% and the gain (H6-03) is 100%.
- **3.** Decide on the signal used for detecting the direction. Set H1- $\Box\Box$  = 7E if using a digital input.
- **4.** Use the ASR gain and integral time parameters described in **C5**: **Automatic Speed Regulator (ASR)** on page **234** for adjusting the responsiveness.

Note:

- 1. C5 parameters will appear when using V/f Control (A1-02 = 0) and when the pulse input RP function is set for simple PG feedback in V/f Control (H6-01 = 3).
- 2. If running two motors from the same drive, V/f Control with simple PG feedback can be used for motor 1 only.

# H6-02: Pulse Train Input Scaling

Sets the pulse signal frequency that is equal to 100% of the input value selected in parameter H6-01.

| No.   | Name                      | Setting Range   | Default |
|-------|---------------------------|-----------------|---------|
| H6-02 | Pulse Train Input Scaling | 100 to 32000 Hz | 1440 Hz |

# ■ H6-03: Pulse Train Input Gain

Sets the level of the input value selected in H6-01 when a pulse train signal with the frequency set in H6-02 is input to terminal RP.

| No.   | Name                   | Setting Range  | Default |
|-------|------------------------|----------------|---------|
| H6-03 | Pulse Train Input Gain | 0.0 to 1000.0% | 100.0%  |

#### ■ H6-04: Pulse Train Input Bias

Sets the level of the input value selected in H6-01 when no signal (0 Hz) is input to terminal RP.

| No.   | Name                   | Setting Range    | Default |
|-------|------------------------|------------------|---------|
| H6-04 | Pulse Train Input Bias | -100.0 to 100.0% | 0.0%    |

#### H6-05: Pulse Train Input Filter Time

Sets the pulse train input filter time constant in seconds.

| No.   | Name                          | Setting Range  | Default |
|-------|-------------------------------|----------------|---------|
| H6-05 | Pulse Train Input Filter Time | 0.00 to 2.00 s | 0.10 s  |

#### ■ H6-06: Pulse Train Monitor Selection

Selects the monitor to output as a pulse train signal via terminal MP. Enter the three digits in  $U\Box -\Box\Box$  to indicate which monitor to output. *Refer to U: Monitor Parameters on page 360* for a complete list of monitors. Monitors that can be selected by H6-06 appear in the table below.

| No.   | Name                          | Setting Range                                                                                    | Default |
|-------|-------------------------------|--------------------------------------------------------------------------------------------------|---------|
| Н6-06 | Pulse Train Monitor Selection | 000 <sup><i></i></sup> , 031 <sup><i></i></sup> , 101, 102,<br>105, 116, 501, 502,<br>801 to 809 | 102     |

<sup>&</sup>lt;1> Set "000" when the terminal is not used or when using the terminal in the through mode.

#### ■ H6-07: Pulse Train Monitor Scaling

Sets the output frequency at terminal MP when the specified monitor item is at 100%. Set H6-06 to 102 and H6-07 to 0 to make the pulse train monitor output synchronous to the output frequency.

| No.   | Name                        | Setting Range | Default |
|-------|-----------------------------|---------------|---------|
| H6-07 | Pulse Train Monitor Scaling | 0 to 32000 Hz | 1440 Hz |

#### ■ H6-08: Pulse Train Input Minimum Frequency

Sets the minimum output frequency detected by the pulse train input. Increasing this setting reduces the time the drive needs to react to changes in the input signal.

\_

- The pulse input value becomes 0 when the pulse input frequency falls below this level.
- Enabled when H6-01 = 0, 1, or 2.
- When simple speed feedback in V/f Control is set as the function for terminal RP (H6-01 = 3), the minimum frequency becomes the detection time for PG disconnect (F1-14).

| No.   | Name                                | Setting Range    | Default |
|-------|-------------------------------------|------------------|---------|
| H6-08 | Pulse Train Input Minimum Frequency | 0.1 to 1000.0 Hz | 0.5 Hz  |

# 5.8 L: Protection Functions

#### L1: Motor Protection

#### ■ L1-01: Motor Overload Protection Selection

The drive has an electronic overload protection function that estimates the motor overload level based on output current, output frequency, thermal motor characteristics, and time. When the drive detects a motor overload an oL1 fault is triggered and the drive output shuts off.

L1-01 sets the overload protection function characteristics according to the motor being used.

| No.   | Name                                | Setting Range | Default             |
|-------|-------------------------------------|---------------|---------------------|
| L1-01 | Motor Overload Protection Selection | 0 to 6        | Determined by A1-02 |

Note:

- 1. When the motor protection function is enabled (L1-01 ≠ 0), an oL1 alarm can be output through one of the multi-function outputs by setting H2-01 to 1F. The output closes when the motor overload level reaches 90% of the oL1 detection level.
- 2. Set L1-01 to a value between 1 and 6 when running a single motor from the drive to select a method to protect the motor from overheat. An external thermal relay is not necessary.

#### Setting 0: Disabled (Motor Overload Protection Is Not Provided)

Use this setting if no motor overheat protection is desired or if multiple motors are connected to a single drive. If multiple motors are connected to a single drive, install a thermal relay for each motor as shown in *Figure 5.88*.

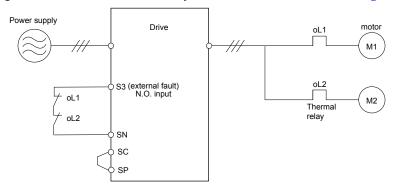
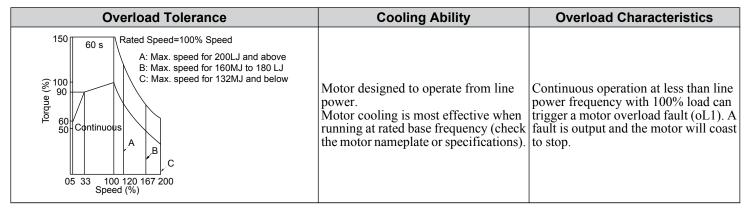
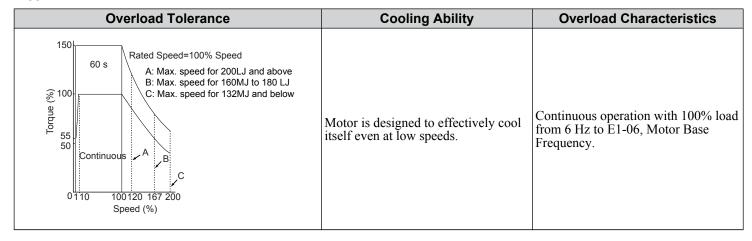



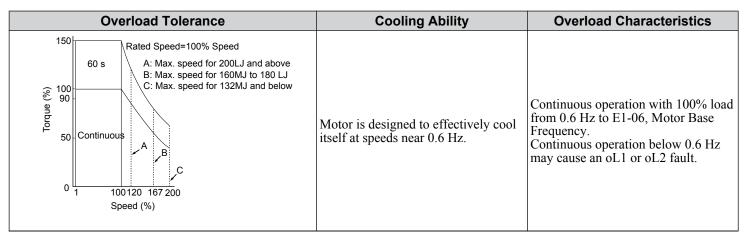

Figure 5.88 Example of Protection Circuit Design for Multiple Motors

**NOTICE:** Thermal protection cannot be provided when running multi-motors simultaneously with the same drive, or when using motors with a relatively high current rating compared to other standard motors (such as a submersible motor). Failure to comply could result in motor damage. Disable the electronic overload protection of the drive (L1-01 = "0: Disabled") and protect each motor with individual motor thermal overloads.


#### Setting 1: General-purpose Motor (Standard Self-cooled)

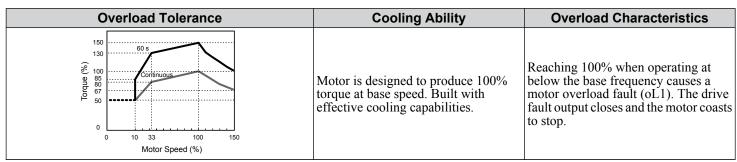
Because the motor is self-cooled, the overload tolerance drops when the motor speed is lowered. The drive appropriately adjusts the electrothermal trigger point according to the motor overload characteristics, protecting the motor from overheat throughout the entire speed range.




#### Setting 2: Drive Dedicated Motor (Speed Range for Constant Torque: 1:10)

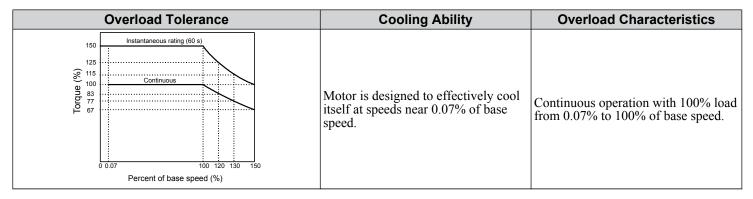
Use this setting when operating a drive duty motor that allows constant torque in a speed range of 1:10. The drive will allow the motor to run with 100% load from 10% up to 100% speed. Running the motor below 10% speed with 100% load will trigger an overload fault.




#### Setting 3: Vector Motor (Speed Range for Constant Torque: 1:100)

Use this setting when operating a drive-dedicated motor that allows constant torque in a speed range of 1:100. This motor type is allowed to run with 100% load from 1% up to 100% speed. Running the motor below 1% speed with 100% load will trigger an overload fault.

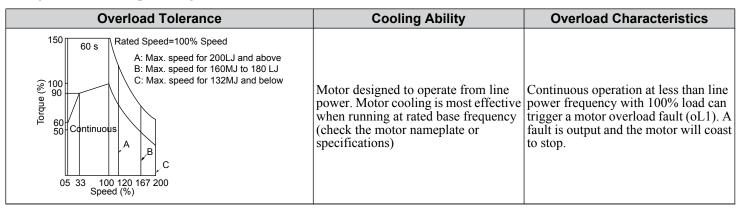



#### **Setting 4: PM Derated Torque Motor**

Use this setting when operating a PM motor. PM motors for derated torque have a self-cooling design and the overload tolerance drops as the motor slows. Electronic thermal overload is triggered in accordance with the motor overload characteristics, providing overheat protection across the entire speed range.



**Setting 5: Constant Torque PM Motors (Constant Torque Range of 1:1500)** 


Sets necessary protection characteristics when driving a PM with constant torque. These motors allow for a speed control from 0.07% to 100% when operating with 100% load. Running the motor below 0.07% speed with 100% load will trigger an overload fault.



#### **Setting 6: General-purpose Motor**

**Note:** General-purpose motors are designed with a base speed that operates at line frequency (50/60 Hz depending on geographic region).

Because the motor is self-cooled, the overload tolerance drops when the motor speed is lowered. The drive appropriately adjusts the electrothermal trigger point according to the motor overload characteristics and protects the motor from overheat throughout the entire speed range.



# ■ L1-02: Motor Overload Protection Time

Sets the time for the drive to shut down on motor overload (oL1) when the motor is running with excessive current. Enter the time the motor can withstand operating at 150% current after previously running at 100% current (hot motor overload condition). There is normally no need to change this parameter from the default value.

| No.   | Name                           | Setting Range      | Default     |
|-------|--------------------------------|--------------------|-------------|
| L1-02 | Motor Overload Protection Time | 0.1 to 5.0 minutes | 1.0 minutes |

Defaulted to operate with an allowance of 150% overload operation for one minute in a hot start after continuous operation at 100%.

*Figure 5.89* illustrates an example of the electrothermal protection operation time using a general-purpose motor operating at the value of E1-06, Motor Base Speed, with L1-02 set to one minute.

Motor overload protection operates in the area between a cold start and a hot start.

- Cold start: Characteristics of motor protection operation time in response to an overload situation that was suddenly reached when starting a stationary motor.
- Hot start: Characteristics of motor protection operation time in response to an overload situation that occurred while the motor was operating continuously at or below its rated current.

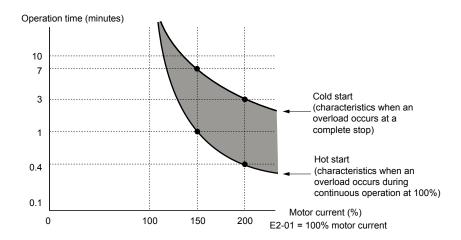



Figure 5.89 Protection Operation Time for General Purpose Motors at the Rated Output Frequency

# ■ Motor Protection Using a Positive Temperature Coefficient (PTC) Thermistor

Connect a motor PTC can to an analog input of the drive for motor overheat protection.

The motor overheat alarm level triggers an oH3 alarm and the drive continues the operation selected in L1-03. The overheat fault level triggers an oH4 fault, outputs a fault signal, and the drive stops the motor using the stop method selected in L1-04.

Connect the PTC between terminals AC and A3 and set jumper S4 on the terminal board to "PTC" as shown in *Figure 5.90*. Set H3-05 to 0 and H3-06 to E.

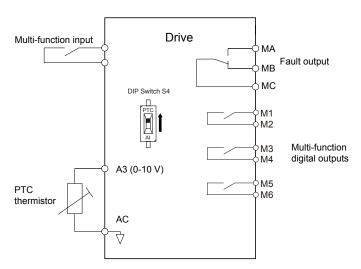



Figure 5.90 Connection of a Motor PTC

The PTC must exhibit the characteristics shown in *Figure 5.91* in one motor phase. The motor overload protection of the drive expects 3 of these PTCs to be connected in a series.

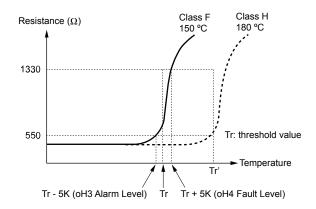



Figure 5.91 Motor PTC Characteristics

Set up overheat detection using a PTC using parameters L1-03, L1-04, and L1-05 as explained in the following sections.

# ■ L1-03: Motor Overheat Alarm Operation Selection (PTC input)

Sets the drive operation when the PTC input signal reaches the motor overheat alarm level (oH3).

| No.   | Name                                                 | Setting Range | Default |
|-------|------------------------------------------------------|---------------|---------|
| L1-03 | Motor Overheat Alarm Operation Selection (PTC input) | 0 to 3        | 3       |

#### **Setting 0: Ramp to Stop**

The drive stops the motor using the deceleration time 1 set in parameter C1-02.

#### **Setting 1: Coast to Stop**

The drive output is switched off and the motor coasts to stop.

#### **Setting 2: Fast Stop**

The drive stops the motor using the Fast Stop time set in parameter C1-09.

#### **Setting 3: Alarm Only**

The operation is continued and an oH3 alarm is displayed on the digital operator.

# ■ L1-04: Motor Overheat Fault Operation Selection (PTC input)

Sets the drive operation when the PTC input signal reaches the motor overheat fault level (oH4).

| No.   | Name                                                 | Setting Range | Default |
|-------|------------------------------------------------------|---------------|---------|
| L1-04 | Motor Overheat Fault Operation Selection (PTC input) | 0 to 2        | 1       |

#### Setting 0: Ramp to Stop

The drive stops the motor using the deceleration time 1 set in parameter C1-02.

#### Setting 1: Coast to Stop

The drive output is switched off and the motor coasts to stop.

#### **Setting 2: Fast Stop**

The drive stops the motor using the Fast Stop time set in parameter C1-09.

# ■ L1-05: Motor Temperature Input Filter Time (PTC input)

Sets a filter on the PTC input signal to prevent erroneous detection of a motor overheat fault.

| No.   | Name                                            | Setting Range   | Default |
|-------|-------------------------------------------------|-----------------|---------|
| L1-05 | Motor Temperature Input Filter Time (PTC input) | 0.00 to 10.00 s | 0.20 s  |

#### ■ L1-08: oL1 Current Level

Sets the reference current for motor thermal overload detection for motor 1 in amperes. When L1-08 is set to 0.0 A (default), parameter E2-01 (E5-03 in PM control modes) is used as the reference for motor overload protection. When L1-08  $\neq$  0.0 A, the set value is used as the reference for motor overload protection.

| No.   | Name              | Setting Range                                      | Default |
|-------|-------------------|----------------------------------------------------|---------|
| L1-08 | oL1 Current Level | 0.0 A or 10 to 150% of drive rated current <1> <2> | 0.00 A  |

<1> Display is in the following units:

2□0028, 2□0042, and 4□0011 to 4□0027: 0.01 A units

 $2\square 0054$  to  $2\square 0248$  and  $4\square 0034$  to  $4\square 0930$ : 0.1 A units

<2> Cannot be set to a value smaller than 10% of drive rated current when the current level is set to a value greater than 0.0 A.

#### ■ L1-09: oL1 Current Level for Motor 2

Sets the reference current for motor thermal overload detection for motor 2 in amperes. When L1-09 is set to 0.0 A (default), parameter E4-01 is used as the reference for motor overload protection. When L1-09  $\neq$  0.0 A, the set value is used as the reference for motor overload protection.

| No.   | Name                          | Setting Range                                      | Default |
|-------|-------------------------------|----------------------------------------------------|---------|
| L1-09 | oL1 Current Level for Motor 2 | 0.0 A or 10 to 150% of drive rated current <1> <2> | 0.0 A   |

<1> Display is in the following units:

 $2\square 0028$ ,  $2\square 0042$ , and  $4\square 0011$  to  $4\square 0027$ : 0.01 A units

2□0054 to 2□0248 and 4□0034 to 4□0930: 0.1 A units

<2> Cannot be set to a value smaller than 10% of drive rated current when the current level is set to a value greater than 0.0 A.

# ■ L1-13: Continuous Electrothermal Operation Selection

Determines whether to hold the current value of the electrothermal motor protection (L1-01) when the power supply is interrupted.

| No.   | Name                                          | Setting Range | Default |
|-------|-----------------------------------------------|---------------|---------|
| L1-13 | Continuous Electrothermal Operation Selection | 0, 1          | 1       |

#### Setting 0: Disabled

Setting 1: Enabled

# L2: Momentary Power Loss Ride-Thru

# ■ L2-01: Momentary Power Loss Operation Selection

When a momentary power loss occurs, the drive can automatically return to the operation it was performing prior to the power loss based on certain conditions.

| No.   | Name                                     | Setting Range | Default |
|-------|------------------------------------------|---------------|---------|
| L2-01 | Momentary Power Loss Operation Selection | 0 to 2        | 0       |

#### Setting 0: Disabled

If a momentary power loss occurs, a power supply frequency fault (Fdv) is detected and the drive output is turned OFF. The motor coasts to stop.

#### Setting 1: Recover within L2-02

When a momentary power loss occurs, the drive output will be shut off. If the power returns within the time set to parameter L2-02, the drive will perform Speed Search and attempt to resume operation. If power is not restored within this time, then an Fdv fault is triggered and the drive will stop.

#### Setting 2: Recover as long as CPU Has Power

When a momentary power loss occurs, the drive output will be shut off. If the power returns and the drive control circuit has power, the drive will attempt to perform Speed Search and resume the operation. This will not trigger an Fdv fault.

Note:

- 1. Keep the magnetic contactor closed during the momentary power loss when using a magnetic contactor between the motor and the drive
- 2. "Uv" will flash on the operator while the drive is attempting to recover from a momentary power loss. A fault signal is not output at this time.

# ■ L2-02: Momentary Power Loss Ride-Thru Time

Sets the length of time that the drive will wait if the control circuit voltage is less than the detection level of the Uv1 after a momentary power loss before the drive detects a control circuit undervoltage fault (Uv1). This function is applicable when L2-01 = 1 (Momentary Power Loss Operation Selection = Recover within L2-02). After a power loss, if all of these conditions are satisfied, the drive detects a Uv1 fault, shuts off the output, and the motor coasts to stop:

- The control circuit voltage is less than the detection level of Uv1.
- The time set in L2-02 is expired.
- The drive does not detect a control power supply voltage fault (Uv2).

Depending on use conditions, if the time set in L2-02 is long, the drive can detect Uv2 before it detects Uv1. If this is a problem, decrease the time set in L2-02 to prevent Uv2.

Note:

- 1. The length of time that the drive can recover after a power loss changes when drive capacity changes.
- 2. The upper limit of the possible momentary power loss Ride-Thru time changes when drive capacity changes.

| No.   | Name                                | Setting Range | Default |
|-------|-------------------------------------|---------------|---------|
| L2-02 | Momentary Power Loss Ride-Thru Time | 0.0 to 2.5 s  | 0.5 s   |

# ■ L2-03: Momentary Power Loss Minimum Baseblock Time

Sets the minimum baseblock time when power is restored following a momentary power loss. This determines the time the drive waits for the residual voltage in the motor to dissipate. Increase this setting if overcurrent occurs at the beginning of Speed Search, after a power loss, or during DC Injection Braking.

| No.   | Name                                        | Setting Range | Default                       |
|-------|---------------------------------------------|---------------|-------------------------------|
| L2-03 | Momentary Power Loss Minimum Baseblock Time | 0.1 to 5.0 s  | Determined by C6-01 and o2-04 |

# ■ L2-04: Momentary Power Loss Voltage Recovery Ramp Time

Sets the time for the drive to restore the output voltage to the level specified by the V/f pattern after Speed Search. The setting value determines the time for the voltage to go from 0 V to the maximum voltage.

| No.   | Name                                            | Setting Range | Default                       |
|-------|-------------------------------------------------|---------------|-------------------------------|
| L2-04 | Momentary Power Loss Voltage Recovery Ramp Time | 0.0 to 5.0 s  | Determined by C6-01 and o2-04 |

#### ■ L2-07: Momentary Power Loss Voltage Recovery Acceleration Time

Sets the time to reaccelerate from the deceleration frequency to the frequency set in frequency reference (frequency before before power loss) after momentary power loss.

When set to 0.0 s, the drive will accelerate to speed according to the active acceleration time set by C1-01, C1-03, C1-05, or C1-07.

| No.   | Name                                                    | Setting Range        | Default |
|-------|---------------------------------------------------------|----------------------|---------|
| L2-07 | Momentary Power Loss Voltage Recovery Acceleration Time | 0.00 to 6000.0 s <1> | 0.00 s  |

<sup>&</sup>lt;1> Setting range is determined by the accel/decel time units set in C1-10. If the time is set in units of 0.01 s (C1-10 = 0), the setting range becomes 0.00 to 600.00 s.

#### ■ L2-13: Input Power Frequency Fault Detection Gain

Sets the gain used to detect a power supply frequency fault (Fdv). If an Fdv fault occurs with no momentary power loss, reduce the setting value in 0.1 increments.

| No.   | Name                                       | Setting Range | Default |
|-------|--------------------------------------------|---------------|---------|
| L2-13 | Input Power Frequency Fault Detection Gain | 0.1 to 2.0    | 1.0     |

#### ■ L2-21: Low Input Voltage Detection Level

Sets the low input voltage detection level.

| No.   | Name                              | Setting Range    | Default   |
|-------|-----------------------------------|------------------|-----------|
| L2-21 | Low Input Voltage Detection Level | 100 to 230 V <1> | 150 V <1> |

<sup>&</sup>lt;1> Values are specific to 200 V class drives. Double the value for 400 V class drives.

# L2-27: Power Supply Frequency Fault Detection Width

Sets the frequency width used to detect a power supply frequency fault (Fdv) in Hz. There is normally no need to change this parameter from the default value.

| No.   | Name                                         | Setting Range  | Default |
|-------|----------------------------------------------|----------------|---------|
| L2-27 | Power Supply Frequency Fault Detection Width | 3.0 to 20.0 Hz | 6.0 Hz  |

# L3: Stall Prevention

The motor may experience excessive slip because it cannot keep up with the frequency reference when the load is too high or acceleration and deceleration times are too short. If the motor slips during acceleration, it usually causes an overcurrent fault (oC), drive overload (oL2), or motor overload (oL1). If the motor slips during deceleration, it can cause excessive regenerative power to flow back into the DC bus capacitors, and eventually cause the drive to fault out from overvoltage (ov). The Stall Prevention Function prevents the motor from stalling and while allowing the motor to reach the desired speed without requiring the user to change the acceleration or deceleration time settings. The Stall Prevention function can be set separately for acceleration, operating at constant speeds, and deceleration.

# L3-01: Stall Prevention Selection during Acceleration

Stall Prevention during acceleration prevents tripping with overcurrent (oC), motor overload (oL1), or drive overload (oL2) faults common when accelerating with heavy loads.

L3-01 determines the type of Stall prevention the drive should use during acceleration.

| No.   | Name                                           | Setting Range | Default |
|-------|------------------------------------------------|---------------|---------|
| L3-01 | Stall Prevention Selection during Acceleration | 0, 1, 3 <1>   | 1       |

<sup>&</sup>lt;1> Setting 3 is not available for OLV/PM.

#### Setting 0: Disabled

No Stall Prevention is provided. If the acceleration time is too short, the drive may not be able to get the motor up to speed fast enough, causing an overload fault.

#### Setting 1: Enabled

Enables Stall Prevention during acceleration. Operation varies depending on the control mode.

• V/f Control, V/f Control with PG, and Open Loop Vector Control:

Acceleration is reduced when the output current value exceeds 85% of the level set to parameter L3-02 for a longer than the time set to L3-27. The acceleration stops when the current exceeds L3-02. Acceleration continues when the current falls below L3-02 for longer than the time set to L3-27.

The Stall Prevention level is automatically reduced in the constant power range. Refer to L3-03: Stall Prevention Limit during Acceleration/Deceleration on page 325

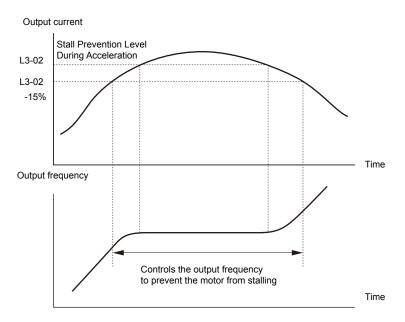



Figure 5.92 Stall Prevention During Acceleration for Induction Motors

• Open Loop Vector Control for PM:

Acceleration stops when the output current reaches the level set to parameter L3-02. When the time set to parameter L3-27 passes, the drive decelerates using the deceleration time set to L3-22 (*Refer to L3-22: Deceleration Time at Stall Prevention during Acceleration on page 327*). Deceleration stops when the current falls below 85% of L3-02,. The drive will attempt to reaccelerate after the time set to L3-27.



Figure 5.93 Stall Prevention During Acceleration for Permanent Magnet Motors

# **Setting 3: Enabled (Current Limit)**

The acceleration rate is automatically adjusted while limiting the output current at the value set to L3-02, Stall Prevention Level during Acceleration.

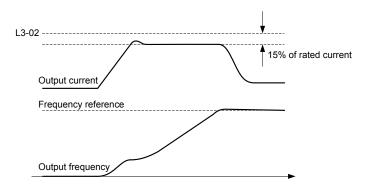



Figure 5.94 Current-Limited Acceleration

## ■ L3-02/L3-14: Stall Prevention Level during Acceleration/Deceleration

Set the output voltage level at which to enable stall prevention during acceleration and deceleration as a percentage of drive rated current. L3-02 is valid when stall prevention is selected during acceleration (L3-01 = 1, 3). L3-14 is valid when stall prevention is selected during deceleration (L3-04 = 1, 6). Decrease the setting values if stalling occurs when parameters are set to default. There is normally no need to change these parameters from their default values.

| No.   | Name                                       | Setting Range  | Default |
|-------|--------------------------------------------|----------------|---------|
| L3-02 | Stall Prevention Level during Acceleration | 0 to 150% <1>  | <1>     |
| L3-14 | Stall Prevention Level during Deceleration | 80 to 150% <1> | <1>     |

- <1> The upper limit and default value are determined by C6-01, Drive Duty Selection, and L8-38, Carrier Frequency Reduction Selection.
- Stalling may occur when the motor is rated at a smaller current than the drive rated output current and the stall prevention default settings are used. Set L3-02/L3-14 appropriately if stalling occurs.
- Also set parameter L3-03 when operating the motor in the constant power range.

## ■ L3-03: Stall Prevention Limit during Acceleration/Deceleration

The Stall Prevention level is automatically reduced when the motor is operated in the constant power range. L3-03 sets the lower limit for this reduction as a percentage of the drive rated current.

| No.   | Name                                                    | Setting Range | Default |
|-------|---------------------------------------------------------|---------------|---------|
| L3-03 | Stall Prevention Limit during Acceleration/Deceleration | 0 to 100%     | 50%     |

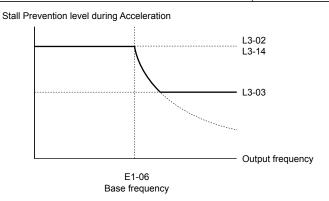



Figure 5.95 Stall Prevention Level and Limit During Acceleration

## ■ L3-04: Stall Prevention Selection during Deceleration

Stall prevention during deceleration prevents the motor from stalling when a large load is imposed on the motor or rapid deceleration is performed.

| No.   | Name                                           | Setting Range  | Default |
|-------|------------------------------------------------|----------------|---------|
| L3-04 | Stall Prevention Selection During Deceleration | 0, 1, 4, 6 <1> | 1       |

<sup>&</sup>lt;1> Setting 4 is not available in OLV/PM, AOLV/PM, or CLV/PM.

#### Setting 0: Disabled

The drive decelerates according to the set deceleration time. High inertia loads or rapid deceleration may trigger an overcurrent (oC) fault. Switch to another L3-04 selection if an oC fault occurs.

#### **Setting 1: General-purpose Stall Prevention**

The drive tries to decelerate within the set deceleration time. The drive pauses deceleration when the output current exceeds the Stall Prevention level and then continues deceleration when the output current drops below that level. Stall Prevention may be triggered repeatedly to avoid an overcurrent (oC) fault.

*Figure 5.96* illustrates the function of Stall Prevention during deceleration.

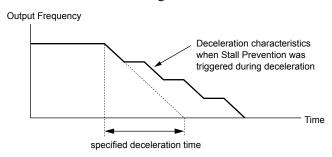



Figure 5.96 Stall Prevention During Deceleration

## **Setting 4: Overexcitation Deceleration**

Enables Overexcitation Deceleration. Decelerates according to the deceleration times set for the drive.

With overexcitation (when the magnetic flux density of the motor is higher than usual), the motor decelerates at the set deceleration time. The motor decelerates in the time set in L3-04 = 0 (Deceleration Stall Disabled). However, frequent repetitions of deceleration and a long overexcitation time can trigger oL1 (Motor Overload). If oL1 is detected, select 0, 1, and 6 instead of Overexcitation Deceleration. To adjust this function, use n3-13 (Overexcitation Breaking Gain).

#### **Setting 6: Enable (Current Limit)**

The deceleration rate is automatically adjusted during deceleration of the load while limiting the regeneration current at the setting value of the stall prevention level during deceleration (L3-14).

The stall prevention level may be reached if an external force is applied in the regeneration direction, dramatically decreasing the possibility of stopping the motor.

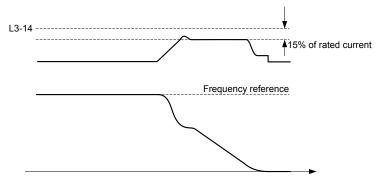



Figure 5.97 Deceleration for Current Limit

### ■ L3-05: Stall Prevention Selection during Run

Determines how Stall Prevention works during Run. Stall Prevention during run prevents the motor from stalling by automatically reducing the speed when a transient overload occurs while the motor is running at constant speed.

|   | No.   | Name                                  | Setting Range | Default |
|---|-------|---------------------------------------|---------------|---------|
| I | L3-05 | Stall Prevention Selection During Run | 0 to 2        | 1       |

Note:

- 1. This parameter is available in V/f, V/f w/PG, and OLV/PM.
- 2. Stall Prevention during run is disabled when the output frequency is 6 Hz or lower regardless of the L3-05 and L3-06 settings.

#### Setting 0: Disabled

Drive runs at the set frequency reference. A heavy load may cause the motor to stall and trip the drive with an oC or oL fault.

#### Setting 1: Decelerate Using C1-02

If the current exceeds the Stall Prevention level set in parameter L3-06, the drive will decelerate at decel time 1 (C1-02). When the current level drops below the value of L3-06 minus 2% for 100 ms, the drive accelerates back to the frequency reference at the active acceleration time.

#### Setting 2: Decelerate Using C1-04

Same as setting 1 except the drive decelerates at decel time 2 (C1-04).

## ■ L3-06: Stall Prevention Level during Run

Sets the current level to trigger Stall Prevention during run. Depending on the setting of parameter L3-23, the level is automatically reduced in the constant power range (speed beyond base speed). A setting of 100% is equal to the drive rated current

The Stall Prevention level can be adjusted using an analog input. *Refer to Multi-Function Analog Input Terminal Settings on page 308* for details.

| No.   | Name                              | Setting Range  | Default |
|-------|-----------------------------------|----------------|---------|
| L3-06 | Stall Prevention Level During Run | 30 to 150% <1> | <1>     |

<sup>&</sup>lt;1> The upper limit and default for this setting is determined by C6-01 and L8-38.

## ■ L3-22: Deceleration Time at Stall Prevention during Acceleration

Sets the brief deceleration time used when stalling occurs while accelerating a PM motor. When set to 0, this function is disabled and the drive decelerates at the selected deceleration time when stalling occurs.

The function is effective only in OLV/PM control and when parameter L3-01 is set to 1.

| No.   | Name                                                      | Setting Range   | Default |
|-------|-----------------------------------------------------------|-----------------|---------|
| L3-22 | Deceleration Time at Stall Prevention During Acceleration | 0.0 to 6000.0 s | 0.0 s   |

## ■ L3-23: Automatic Reduction Selection for Stall Prevention during Run

Reduces the Stall Prevention during run level in the constant power range.

| No.   | Name                                                          | Setting Range | Default |
|-------|---------------------------------------------------------------|---------------|---------|
| L3-23 | Automatic Reduction Selection for Stall Prevention During Run | 0, 1          | 0       |

#### Setting 0: Disabled

The level set in L3-06 is used throughout the entire speed range.

#### Setting 1: Enabled

The Stall Prevention level during run is reduced in the constant power range. The lower limit will be 40% of L3-06.

#### ■ L3-27: Stall Prevention Detection Time

Sets a delay time from when the Stall Prevention level is reached and the actual Stall Prevention function is activated.

| No.   | Name                            | Setting Range | Default |
|-------|---------------------------------|---------------|---------|
| L3-27 | Stall Prevention Detection Time | 0 to 5000 ms  | 50 ms   |

## ■ L3-36/L3-41: Vibration Suppression Gain during Acceleration/Deceleration (with Current Limit)

There is normally no need to change these parameters from their default values. These parameters are valid when acceleration stall prevention (with current limit) is enabled (L3-01 = 3), or when current-limited deceleration is selected for stall prevention during deceleration (L3-04 = 6). Increase the setting values if oscillation occurs in the output current during acceleration/deceleration.

| No.   | Name                                                                | Setting Range | Default             |
|-------|---------------------------------------------------------------------|---------------|---------------------|
| L3-36 | Vibration Suppression Gain during Acceleration (with Current Limit) | 0.0 to 100.0  | Determined by A1-02 |
| L3-41 | Vibration Suppression Gain during Deceleration (with Current Limit) | 1.0 to 1000.0 | Determined by A1-02 |

## ■ L3-39/L3-44: Current-Limited Integral Time Constant during Acceleration/Deceleration

Set the time constant for acceleration/deceleration rate adjustment for current-limited acceleration/deceleration. There is normally no need to change these parameters from their default values. These parameters are valid when acceleration or deceleration stall prevention (with current limit) is enabled (L3-01 = 3 or 6).

| No.   | Name                                                       | Setting Range    | Default  |
|-------|------------------------------------------------------------|------------------|----------|
| L3-39 | Current-Limited Integral Time Constant during Acceleration | 1.0 to 1000.0 ms | 100.0 ms |
| L3-44 | Current-Limited Integral Time Constant during Deceleration | 1.0 to 1000.0 ms | 100.0 ms |

## ■ L3-40/L3-45: Current-Limited Maximum S-curve Selection during Acceleration/Deceleration

Enable or disable the maximum S-curve for current-limited acceleration/deceleration (acceleration: L3-40, deceleration: L3-45). Because it is optimized, the actual acceleration/deceleration time may exceed the setting.

Enable this function when an overcurrent (oC) or other error occurs immediately after starting acceleration or deceleration.

| No.   | Name                                                          | Setting Range | Default |
|-------|---------------------------------------------------------------|---------------|---------|
| L3-40 | Current-Limited Maximum S-curve Selection during Acceleration | 0, 1          | 0       |
| L3-45 | Current-Limited Maximum S-curve Selection during Deceleration | 0, 1          | 0       |

Setting 0: Disabled Setting 1: Enabled

## ◆ L4: Speed Detection

These parameters set up the speed agree and speed detection functions that can be assigned to the multi-function output terminals.

The speed is detected using the motor speed when A1-02 = 3 or 7.

## ■ L4-01, L4-02: Speed Agree Detection Level and Detection Width

Parameter L4-01 sets the detection level for the digital output functions Speed agree 1, User-set speed agree 1, Frequency detection 1, and Frequency detection 2.

Parameter L4-02 sets the hysteresis level for these functions.

| No.   | Name                        | Setting Range   | Default             |
|-------|-----------------------------|-----------------|---------------------|
| L4-01 | Speed Agree Detection Level | 0.0 to 400.0 Hz | 0.0 Hz              |
| L4-02 | Speed Agree Detection Width | 0.0 to 20.0 Hz  | Determined by A1-02 |

Refer to H2-01 to H2-03: Terminal M1-M2, M3-M4, and M5-M6 Function Selection on page 294, Settings 2, 3, 4, and 5.

## ■ L4-03, L4-04: Speed Agree Detection Level and Detection Width (+/-)

Parameter L4-03 sets the detection level for the digital output functions Speed agree 2, User-set speed agree 2, Frequency detection 3, and Frequency detection 4.

Parameter L4-04 sets the hysteresis level for these functions.

| No.   | Name                              | Setting Range      | Default             |
|-------|-----------------------------------|--------------------|---------------------|
| L4-03 | Speed Agree Detection Level (+/-) | -400.0 to 400.0 Hz | 0.0 Hz              |
| L4-04 | Speed Agree Detection Width (+/-) | 0.0 to 20.0 Hz     | Determined by A1-02 |

Refer to H2-01 to H2-03: Terminal M1-M2, M3-M4, and M5-M6 Function Selection on page 294, Settings 13, 14, 15, and 16.

## ■ L4-05: Frequency Reference Loss Detection Selection

The drive can detect a loss of an analog frequency reference from input A1, A2, or A3. Frequency reference loss is detected when the frequency reference drops below 10% of the reference or below 5% of the maximum output frequency within 400 ms. Restoring the analog frequency reference to the L4-06 value or higher before loss occurs will clear the frequency reference loss status.

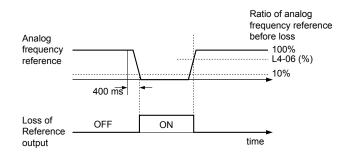



Figure 5.98 Loss of Reference Function

Set H2-01, H2-02, or H2-03 to C for a digital output to trigger when frequency reference loss occurs. *Refer to Setting C: Frequency Reference Loss on page 299* for details on setting the output function.

Parameter L4-05 selects the operation when a frequency reference loss is detected.

| No.   | Name                                         | Setting Range | Default |
|-------|----------------------------------------------|---------------|---------|
| L4-05 | Frequency Reference Loss Detection Selection | 0, 1          | 0       |

#### Setting 0: Operate following the frequency reference

#### Setting 1: Continue operation with reduced frequency reference

The drive will continue operation at the frequency reference value set to parameter L4-06. When the external frequency reference value is restored, the operation is continued with the frequency reference.

## ■ L4-06: Frequency Reference at Reference Loss

Sets the frequency reference level at which the drive runs when L4-05 = 1 and when detecting a reference loss. The value is set as a percentage of the frequency reference before the loss was detected.

| No.   | Name                                  | Setting Range | Default |
|-------|---------------------------------------|---------------|---------|
| L4-06 | Frequency Reference at Reference Loss | 0.0 to 100.0% | 80.0%   |

## ■ L4-07: Speed Agree Detection Selection

Determines when frequency detection is active using parameters L4-01 through L4-04.

| No.   | Name                            | Setting Range | Default |
|-------|---------------------------------|---------------|---------|
| L4-07 | Speed Agree Detection Selection | 0, 1          | 0       |

#### Setting 0: No Detection during baseblock

#### Setting 1: Detection always enabled

## L5: Fault Restart

After a fault has occurred, Fault Restart attempts to automatically restart the motor and continue operation instead of stopping. The drive can perform a self-diagnostic check and resume the operation after a fault has occurred. If the self-check is successful and the cause of the fault has disappeared, the drive restarts by first performing Speed Search (*Refer to b3: Speed Search on page 204* for details).

**WARNING!** Sudden Movement Hazard. Do not use the fault restart function in lifting applications. Fault restart may cause the machine to drop the load, which could result in death or serious injury.

The drive can attempt to restart itself following the faults listed below.

| Fault | Name                     |  |
|-------|--------------------------|--|
| Aov   | Power Supply Overvoltage |  |
| GF    | Ground Fault             |  |
| LF    | Output Open Phase        |  |
| LSo   | LSo Fault                |  |
| oC    | Overcurrent              |  |
| oH1   | Drive Overheat           |  |

| Fault | Name               |  |
|-------|--------------------|--|
| oL1   | Motor Overload     |  |
| oL3   | Overtorque 1       |  |
| oL4   | Overtorque 2       |  |
| ov    | DC Bus Overvoltage |  |
| STo   | Pull-Out Detection |  |
|       |                    |  |

Use parameters L5-01 to L5-05 to set up automatic fault restart.

Set H2-01, H2-02, or H2-03 to 1E. to output a signal during fault restart.

## **■ L5-01: Number of Auto Restart Attempts**

Sets the number of times that the drive may attempt to restart itself.

Parameter L5-05 determines the method of incrementing the restart counter. When the counter reaches the number set to L5-01, the operation stops and the fault must be manually cleared and reset.

The restart counter is incremented at each restart attempt, regardless of whether the attempt was successful. When the counter reaches the number set to L5-01, the operation stops and the fault must be manually cleared and reset.

The number of fault restarts is reset to zero when:

- The drive operates normally for 10 minutes following a fault restart.
- A fault is cleared manually after protective functions are triggered.
- The power supply is cycled.

| No.   | Name                            | Setting Range | Default |
|-------|---------------------------------|---------------|---------|
| L5-01 | Number of Auto Restart Attempts | 0 to 10 Times | 0 Times |

## ■ L5-02: Auto Restart Fault Output Operation Selection

Determines if a fault output is triggered (H2- $\square\square$  = E) when the drive attempts to restart.

| No.   | Name                                          | Setting Range | Default |
|-------|-----------------------------------------------|---------------|---------|
| L5-02 | Auto Restart Fault Output Operation Selection | 0, 1          | 0       |

#### **Setting 0: No Fault Output**

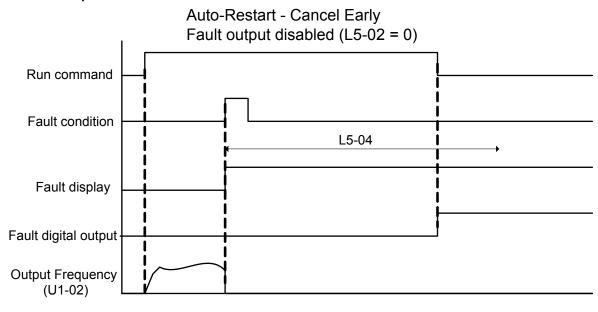



Figure 5.99 Auto Restart Cancel Early

#### **Setting 1: Fault Output Is Set**

#### ■ L5-04: Fault Reset Interval Time

Determines the amount of time to wait between restart attempts when parameter L5-05 is set to 1.

| No.   | Name                      | Setting Range  | Default |
|-------|---------------------------|----------------|---------|
| L5-04 | Fault Reset Interval Time | 0.5 to 600.0 s | 10.0 s  |

### ■ L5-05: Fault Reset Operation Selection

| No.   | Name                            | Setting Range | Default |
|-------|---------------------------------|---------------|---------|
| L5-05 | Fault Reset Operation Selection | 0, 1          | 0       |

#### Setting 0: Count Successful Restarts

The drive will continuously attempt to restart. If it restarts successfully, the restart counter is increased. This operation is repeated each time a fault occurs until the counter reaches the value set to L5-01.

#### **Setting 1: Count Restart Attempts**

The drive will attempt to restart using the time interval set to parameter L5-04. A record is kept of the number of attempts to restart to the drive, regardless of whether those attempts were successful. When the number of attempted restarts exceeds the value set to L5-01, the drive stops attempting to restart.

## L6: Torque Detection

The drive provides two independent torque detection functions that trigger an alarm or fault signal when the load is too heavy (oL), or suddenly drops (UL). These functions are set up using the L6- $\square$  parameters. Program the digital outputs as shown below to indicate the underload or overload condition to an external device:

Note:

When overtorque occurs in the application, the drive may stop due to overcurrent (oC) or overload (oL1). To prevent the drive from stopping, use torque detection to indicate an overload situation to the controller before oC or oL1 occur. Use undertorque detection to discover application problems like a torn belt, a pump shutting off, or other similar trouble.

| H2-01, H2-02, H2-03<br>Setting | Description                                                                     |  |
|--------------------------------|---------------------------------------------------------------------------------|--|
| В                              | Torque detection 1, N.O. (output closes when overload or underload is detected) |  |
| 17                             | Torque detection 1, N.C. (output opens when overload or underload is detected)  |  |
| 18                             | Torque detection 2, N.O. (output closes when overload or underload is detected) |  |
| 19                             | Torque detection 2, N.C. (output opens when overload or underload is detected)  |  |

Figure 5.100 and Figure 5.101 illustrate the functions of overtorque and undertorque detection.

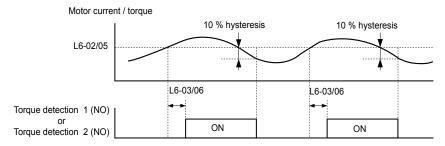



Figure 5.100 Overtorque Detection Operation

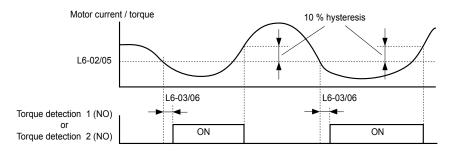



Figure 5.101 Undertorque Detection Operation

Note:

- 1. The torque detection function uses a hysteresis of 10% of the drive rated output current and motor rated torque.
- 2. In V/f, V/f w/PG and OLV/PM, the level is set as a percentage of the drive rated output current. In OLV, CLV, AOLV/PM and CLV/PM, the level is set as a percentage of the motor rated torque.

#### ■ L6-01, L6-04: Torque Detection Selection 1, 2

The torque detection function is triggered when the current or torque exceed the levels set to L6-02 and L6-05 for longer than the times set to L6-03 and L6-06. L6-01 and L6-04 select the conditions for detection and the operation that follows.

| No.   | Name                         | Setting Range | Default |
|-------|------------------------------|---------------|---------|
| L6-01 | Torque Detection Selection 1 | 0 to 8        | 0       |
| L6-04 | Torque Detection Selection 2 | 0 to 8        | 0       |

#### Setting 0: Disabled

#### Setting 1: oL3, oL4 at Speed Agree (Alarm)

Overtorque detection is active only when the output speed is equal to the frequency reference (i.e., no detection during acceleration and deceleration). The operation continues after detecting overtorque and triggering an oL3/oL4 alarm.

#### Setting 2: oL3, oL4 at Run (Alarm)

Overtorque detection works as long as the Run command is active. The operation continues after detecting overtorque and triggering an oL3/oL4 alarm.

#### Setting 3: oL3, oL4 at Speed Agree (Fault)

Overtorque detection is active only when the output speed is equal to the frequency reference, i.e., no detection during acceleration and deceleration. The operation stops and triggers an oL3/oL4 fault.

#### Setting 4: oL3, oL4 at Run (Fault)

Overtorque detection works as long as a Run command is active. The operation stops and triggers an oL3/oL4 fault.

#### Setting 5: UL3, UL4 at Speed Agree (Alarm)

Undertorque detection is active only when the output speed is equal to the frequency reference, i.e., no detection during acceleration and deceleration. The operation continues after detecting overtorque and triggering a UL3/UL4 alarm.

#### Setting 6: UL3, UL4 at Run (Alarm)

Undertorque detection works as long as the Run command is active. The operation continues after detecting overtorque and triggering a UL3/UL4 alarm.

### Setting 7: UL3, UL4 at Speed Agree (Fault)

Undertorque detection is active only when the output speed is equal to the frequency reference, i.e., no detection during acceleration and deceleration. The operation stops and triggers a UL3/UL4 fault.

#### Setting 8: UL3, UL4 at Run (Fault)

Undertorque detection works as long as a Run command is active. The operation stops and triggers a UL3/UL4 fault.

## ■ L6-02, L6-05: Torque Detection Level 1, 2

These parameters set the detection levels for torque detection functions 1 and 2. In V/f and OLV/PM control modes, these levels are set as a percentage of the drive rated output current. In vector control modes, these levels are set as a percentage of the motor rated torque.

When Mechanical Weakening detection is enabled (L6-08  $\neq$  0), the level for L6-02 is set as a percentage of the drive rated output current in all control modes.

| No.   | Name                     | Setting Range | Default |
|-------|--------------------------|---------------|---------|
| L6-02 | Torque Detection Level 1 | 0 to 300%     | 150%    |
| L6-05 | Torque Detection Level 2 | 0 to 300%     | 150%    |

Note:

The torque detection level 1 (L6-02) can also be supplied by an analog input terminal set to H3- $\Box\Box$  = 7. Here, the analog value has priority and the setting in L6-02 is disregarded. Torque detection level 2 (L6-05) cannot be set by an analog input.

#### ■ L6-03, L6-06: Torque Detection Time 1, 2

These parameters determine the time required to trigger an alarm or fault after exceeding the levels in L6-02 and L6-05.

| No.   | Name                    | Setting Range | Default |
|-------|-------------------------|---------------|---------|
| L6-03 | Torque Detection Time 1 | 0.0 to 10.0 s | 10.0 s  |
| L6-06 | Torque Detection Time 2 | 0.0 to 10.0 s | 0.1 s   |

#### ■ Mechanical Weakening Detection

This function detects the mechanical weakening of a machine that leads to overtorque or undertorque situations after a set machine operation time has elapsed.

The function is activated in the drive when the cumulative operation counter U4-01 exceeds the time set to parameter L6-11. Mechanical Weakening Detection uses the torque detection 1 settings (L6-01, L6-02, L6-03) and triggers an oL5 or UL5 fault when overtorque or undertorque occurs in the speed range determined by parameter L6-08 and L6-09. The oL5 or UL5 operation is set by parameter L6-08.

Set H2-□□ to 22 to output a signal for Mechanical Weakening Detection.

## ■ L6-08: Mechanical Weakening Detection Operation

Sets the speed range to detect mechanical weakening and the action to take when mechanical weakening is detected.

| No.   | Name                                     | Setting Range | Default |
|-------|------------------------------------------|---------------|---------|
| L6-08 | Mechanical Weakening Detection Operation | 0 to 8        | 0       |

#### Setting 0: Disabled

#### Setting 1: Continue Running if the Speed Is Greater than L6-09 (Signed) (Alarm)

Detection when the speed is above L6-09 (signed). Operation continues and triggers an oL5 alarm after detection.

#### Setting 2: Continue Running if the Speed Is Greater than L6-09 (Alarm)

Detection when the speed is above L6-09 (unsigned). Operation continues and triggers an oL5 alarm after detection.

#### Setting 3: Stop when Motor Speed Is Greater than L6-09 (Signed)

Detection when the speed is above L6-09 (signed). Operation stops and triggers an oL5 fault after detection.

#### Setting 4: Stop when Motor Speed Is Greater than L6-09

Detection when the speed is above L6-09 (unsigned). Operation stops and triggers an oL5 fault after detection.

#### Setting 5: Continue Running if the Speed Is Less than L6-09 (Signed) (Alarm)

Detection when the speed is below L6-09 (signed). Operation continues and triggers a UL5 alarm after detection.

#### **Setting 6: Continue Running if the Speed Is Less than L6-09 (Alarm)**

Detection when the speed is below L6-09 (unsigned). Operation continues and triggers a UL5 alarm after detection.

#### Setting 7: Stop when Motor Speed Is Less than L6-09 (Signed)

Detection when the speed is below L6-09 (signed). Operation stops and triggers a UL5 fault after detection.

### Setting 8: Stop when Motor Speed Is Less than L6-09

Detection when the speed is below L6-09 (unsigned). Operation stops and triggers a UL5 fault after detection.

## ■ L6-09: Mechanical Weakening Detection Speed Level

Sets the speed level for Mechanical Weakening Detection as a percentage of the maximum frequency. If L6-08 is set for unsigned speed detection (L6-08 = 2, 4, 6, 8), the absolute value of L6-09 is used (negative settings are treated as positive values).

| No.   | Name                                       | Setting Range    | Default |
|-------|--------------------------------------------|------------------|---------|
| L6-09 | Mechanical Weakening Detection Speed Level | -110.0 to 110.0% | 110%    |

## ■ L6-10: Mechanical Weakening Detection Time

Sets the time permitted for the situation selected in parameter L6-08 to arise before detecting mechanical weakening.

| No.   | Name                                | Setting Range | Default |
|-------|-------------------------------------|---------------|---------|
| L6-10 | Mechanical Weakening Detection Time | 0.0 to 10.0 s | 0.1 s   |

## ■ L6-11: Mechanical Weakening Detection Start Time

Sets the cumulative drive operation time at which Mechanical Weakening Detection is activated. The function activates when U4-01 reaches the L6-11 value.

| No.   | Name                                      | Setting Range | Default |
|-------|-------------------------------------------|---------------|---------|
| L6-11 | Mechanical Weakening Detection Start Time | 0 to 65535 h  | 0 h     |

## ♦ L7: Torque Limit

The torque limit function limits the torque in each of the four quadrants individually to protect machinery in OLV, CLV, AOLV/PM, and CLV/PM control modes. Set the limit through parameters, analog inputs, or by switching a digital output programmed for "During torque limit" (H2-01, H2-02, H2-03 = 30) when the drive is operating at the torque limit.

## ■ Setting Torque Limits

Parameters L7-01 to L7-04 define the torque limits for each of the four operation quadrants. it is also possible to use Analog inputs to define a general limit for all operation conditions (H3-02, H3-06, H3-10 = 15) or to set separate limits for each operation condition (H3-02, H3-06, H3-10 = 10, 11, or 12). *Figure 5.102* shows limit setting is applied in each quadrant.

If two limit values are defined for the same operation conditions, the drive will use the lower value.

Note

The maximum output torque is ultimately limited by the drive output current (max. 150% of drive rated current in HD, 120% in ND [105% for Max kVA settings (o2-04 = E8H - ECH)]). Output torque will not exceed the drive rated current limit even if the torque limits are set to higher values.

Example: If parameter L7-01 = 130%, L7-02 to L7-04 = 200%, and an analog input sets a general torque limit of 150% (H3-02, H3-06, H3-10 = 15), then the torque limit will be 130% in quadrant 1, but 150% in the other quadrants.

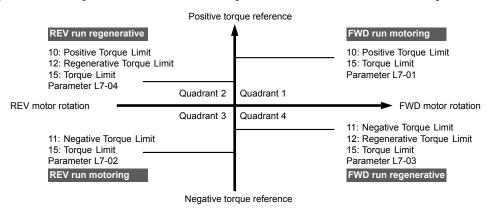



Figure 5.102 Torque Limit Parameters and Analog Input Settings

**Note:** If a torque limit was set, it can be checked in Torque Reference (U1-09).

### Settings between Torque Limits from Parameters and Torque Limits from Analog Input

*Figure 5.103* shows the relation between torque limits from parameters and torque limits from analog input. The lowest value of the torque limits from parameters, torque limits from analog input, 150% of the drive rated Heavy Duty current set in C6-01, or 120% of the drive rated Normal Duty current set in C6-01 is enabled.

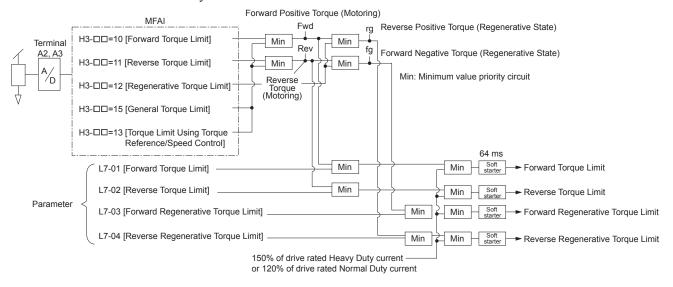



Figure 5.103 Torque Limits from Parameters and Analog Input

## ■ L7-01 to L7-04: Torque Limits

These parameters set the torque limits in each quadrant.

| No.   | Name                 | Setting Range | Default |
|-------|----------------------|---------------|---------|
| L7-01 | Forward Torque Limit | 0 to 300%     | 200%    |
| L7-02 | Reverse Torque Limit | 0 to 300%     | 200%    |

| No.   | Name                              | Setting Range | Default |
|-------|-----------------------------------|---------------|---------|
| L7-03 | Forward Regenerative Torque Limit | 0 to 300%     | 200%    |
| L7-04 | Reverse Regenerative Torque Limit | 0 to 300%     | 200%    |

Note:

- 1. If the multi-function analog input is programmed for "10: Forward torque limit", "11: Reverse torque limit", "12: Regenerative torque limit", or "15: General torque limit", the drive uses the lowest value from L7-01 through L7-04, or analog input torque limit.
- **2.** If a torque limit was set, it can be checked in Torque Reference (U1-09).

## ■ L7-06: Torque Limit Integral Time Constant

Sets the integral time constant for the torque limit function. Decrease the setting for faster torque limit response. Increase the setting if oscillation occurs when operating at the torque limit.

| No.   | Name                                | Setting Range | Default |
|-------|-------------------------------------|---------------|---------|
| L7-06 | Torque Limit Integral Time Constant | 5 to 10000 ms | 200 ms  |

## ■ L7-07: Torque Limit Control Method Selection during Accel/Decel

Selects the function of torque limit during acceleration and deceleration.

| No.   | Name                                                     | Setting Range | Default |
|-------|----------------------------------------------------------|---------------|---------|
| L7-07 | Torque Limit Control Method Selection during Accel/Decel | 0, 1          | 0       |

#### **Setting 0: Proportional Control**

The torque limit function works with P control during accel and decel, and switches to I control at constant speed. Use this setting when accelerating or decelerating to the desired speed has priority over the torque limit during speed changes.

#### **Setting 1: Integral Control**

The torque limit function always uses I control. Use this setting when a highly accurate torque limit is required, even during speed changes. Using this function may increase the acceleration time, or prevent the motor speed from reaching the frequency reference if the torque limit is reached first.

## ■ L7-16: Torque Limit Process at Start

Assigns a time filter to allow the torque limit to build at start.

| No.   | Name                          | Setting Range | Default |
|-------|-------------------------------|---------------|---------|
| L7-16 | Torque Limit Process at Start | 0, 1          | 1       |

#### Setting 0: Disabled

Torque limit is created at start without a delay time. Disable L7-16 to maximize the response time when the application requires sudden acceleration or deceleration at start.

#### Setting 1: Enabled

A delay time of 64 ms is added to allow the torque limit to build at start.

## L8: Drive Protection

#### ■ L8-02: Overheat Alarm Level

Sets the overheat alarm (oH) detection level.

The drive outputs an alarm when the heatsink temperature exceeds the overheat alarm level. If the temperature reaches the overheat fault level, the drive will trigger an oH1 fault and stop operation.

When an output terminal is set for the oH pre-alarm ( $H2-\Box\Box=20$ ), the switch will close when the heatsink temperature rises above L8-02.

| No.   | Name                 | Setting Range | Default                       |
|-------|----------------------|---------------|-------------------------------|
| L8-02 | Overheat Alarm Level | 50 to 150 °C  | Determined by C6-01 and o2-04 |

## ■ L8-03: Overheat Pre-Alarm Operation Selection

Sets the operation when an overheat pre-alarm is detected.

**Note:** Change L8-03 setting only when necessary.

| No.   | Name                                   | Setting Range | Default |
|-------|----------------------------------------|---------------|---------|
| L8-03 | Overheat Pre-Alarm Operation Selection | 0 to 4        | 3       |

#### Setting 0: Ramp to Stop

If an overheat alarm occurs, the drive decelerates to stop using the currently selected deceleration time. If a digital output is programmed for "fault" (H2- $\square\square$  = E), this output will be triggered.

#### **Setting 1: Coast to Stop**

If an overheat alarm occurs, the drive switches off the output and the motor coasts to stop. If a digital output is programmed for "fault" (H2- $\square\square$  = E), this output will be triggered.

#### **Setting 2: Fast Stop**

If an overheat alarm occurs, the drive decelerates to stop using the Fast Stop time (C1-09). If a digital output is programmed for "fault" (H2- $\Box\Box$  = E), this output will be triggered.

### **Setting 3: Alarm Only**

If an overheat alarm occurs, an alarm is output and the drive continues operation.

#### **Setting 4: Operation with Reduced Speed**

If an overheat alarm occurs, the operation continues with the speed reduced to the level set to parameter L8-19. If the oH alarm is still present after 10 s, the speed is reduced again. The amount of speed reduction depends on how often the alarm repeats. If the oH alarm disappears while the drive is operating at a reduced speed, the drive will switch to the previous speed in 10 s increments until reaching base frequency. *Figure 5.104* explains the operation with reduced speed during an oH alarm. A digital output programmed for 4D is switched when the oH alarm is still active after ten reduction cycles.

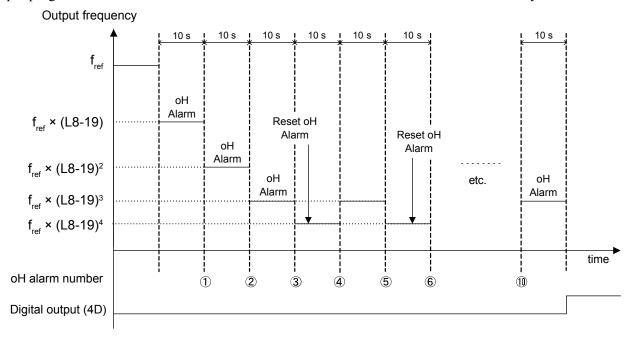



Figure 5.104 Output Frequency Reduction During Overheat Alarm

### ■ L8-07: Output Phase Loss Protection Selection

Enables or disables the output phase loss detection.

1. Output phase loss detection can mistakenly be triggered if the motor rated current is very small compared to the drive rating. Disable this parameter in such cases.

2. Output phase loss detection is not possible when the drive is running a PM motor with light load.

| No.   | Name                                   | Setting Range | Default |
|-------|----------------------------------------|---------------|---------|
| L8-07 | Output Phase Loss Protection Selection | 0 to 2        | 1       |

Note:

#### Setting 0: Disabled

#### Setting 1: Fault when One Phase Is Lost

An output phase loss fault (LF) is triggered when the output current for any phase U, V, or W drops to 5% or less of the drive rated current.

When using a PM motor, this is applicable when the output current is 30% or higher of the drive rated current.

When using an IM motor, this is applicable when the output current is 5% or higher of the drive rated current.

#### **Setting 2: Fault when Two Phases Are Lost**

An output phase loss fault (LF) is triggered when the output current for phases U, V, and W all drop to 5% or less of the drive rated current.

The output shuts off and the motor coasts to stop.

## ■ L8-09: Output Ground Fault Detection Selection

Enables or disables the output ground fault detection.

| No.   | Name                                    | Setting Range | Default |
|-------|-----------------------------------------|---------------|---------|
| L8-09 | Output Ground Fault Detection Selection | 0, 1          | 1       |

#### Setting 0: Disabled

Ground faults are not detected.

#### Setting 1: Enabled

A ground fault (GF) is triggered when high leakage current or a ground short circuit occurs in one or two output phases.

## ■ L8-10: Heatsink Cooling Fan Operation Selection

Selects the heatsink cooling fan operation.

| No.   | Name                                     | Setting Range | Default |
|-------|------------------------------------------|---------------|---------|
| L8-10 | Heatsink Cooling Fan Operation Selection | 0, 1          | 0       |

#### Setting 0: Run with Timer

The fan is switched on when a Run command is active and switched off with the delay set to parameter L8-11 after releasing the Run command. This setting extends the fan lifetime.

Note: The cooling fan will always turn on when a damping resistor overheat (doH) is detected regardless of the setting value.

#### **Setting 1: Run Always**

The fan runs when power is supplied to the drive.

### ■ L8-11: Heatsink Cooling Fan Off-Delay Time

Sets the cooling fan switch off-delay time if parameter L8-10 is set to 0.

| No.   | Name                                | Setting Range | Default |
|-------|-------------------------------------|---------------|---------|
| L8-11 | Heatsink Cooling Fan Off-Delay Time | 0 to 300 s    | 60 s    |

## ■ L8-12: Ambient Temperature Setting

Automatically adapts the drive rated current to safe values when used with parameter L8-35. This eliminates the need to reduce the drive rated current when the temperature where the drive is mounted is above the specified values. *Refer to Temperature Derating on page 499* for details.

| No.   | Name                        | Setting Range | Default |
|-------|-----------------------------|---------------|---------|
| L8-12 | Ambient Temperature Setting | -10 to +50 °C | 40 °C   |

#### ■ L8-15: oL2 Characteristics Selection at Low Speeds

Selects whether the drive overload capability (oL fault detection level) is reduced at low speeds to prevent premature output transistor failures. Set this parameter to 0 (Protection disabled at low speed) when protection is activated for an oL2 fault for a light load at low speed.

Note:

- 1. Contact Yaskawa or a Yaskawa representative before using the drive for applications for which the setting is 0 (disabled).
- 2. Do not set this parameter to 0 (disabled) in V/f or OLV control.

3. Do not set this parameter to 0 (disabled) in models  $4\square 0302$  to  $4\square 0930$ .

| No.   | Name                                       | Setting Range | Default |
|-------|--------------------------------------------|---------------|---------|
| L8-15 | oL2 Characteristics Selection at Low Speed | 0, 1          | 1       |

#### Setting 0: oL2 (Drive Overload) Characteristics Disabled at Low Speed

The overload protection level is not reduced. Frequently operating the drive with high output current at low speed can lead to premature drive faults.

#### Setting 1: oL2 (Drive Overload) Characteristics Enabled at Low Speed

The overload protection level (oL2 fault detection level) is automatically reduced at speeds below 6 Hz. At zero speed, the overload is derated by 50%.

#### ■ L8-18: Software Current Limit Selection

Enables and disables the Software Current Limit (CLA) protection function to prevent main circuit transistor failures caused by high current.

Note:

- 1. This setting should not be changed unless absolutely necessary.
- 2. For drives with software versions PRG: 1021 or later, the default setting is 1 (Software CLA Enabled) when in Open Loop Vector Control (A1-02 = 2).

| No.   | Name                             | Setting Range | Default             |
|-------|----------------------------------|---------------|---------------------|
| L8-18 | Software Current Limit Selection | 0, 1          | Determined by A1-02 |

### **Setting 0: Software CLA Disabled**

The drive may trip on an oC fault if the load is too heavy or the acceleration is too short.

#### **Setting 1: Software CLA Enabled**

When the Software CLA current level is reached, the drive reduces the output voltage to reduce the current. Normal operation continues when the current level drops below the Software CLA level.

## ■ L8-19: Frequency Reduction Rate during Overheat Pre-Alarm

Specifies the output frequency reduction when L8-03 is set to 4 and an oH alarm is present.

| No.   | Name                                               | Setting Range | Default |
|-------|----------------------------------------------------|---------------|---------|
| L8-19 | Frequency Reduction Rate During Overheat Pre-Alarm | 0.1 to 0.9    | 0.8     |

#### ■ L8-27: Overcurrent Detection Gain

Adjusts the overcurrent detection level in OLV/PM, AOLV/PM, or CLV/PM. A setting of 100% is equal to the motor rated current. When the drive rated current is considerably higher than the motor rated current, use this parameter to decrease the overcurrent level and prevent motor demagnetization from high current.

Overcurrent detection uses the lower value between the overcurrent level for the drive and the motor rated current multiplied by L8-27.

**Note:** The drive detects the lowest overcurrent from the overcurrent level of the drive, the setting value of this parameter, and the overcurrent level determined from the motor rated current.

| No.   | Name                       | Setting Range | Default |
|-------|----------------------------|---------------|---------|
| L8-27 | Overcurrent Detection Gain | 0.0 to 400.0% | 300.0%  |

## ■ L8-29: Current Unbalance Detection (LF2)

Enables and disables output current unbalance detection in OLV/PM, AOLV/PM, or CLV/PM. Current unbalance can heat a PM motor and demagnetize the magnets. The current unbalance detection function monitors output current and triggers the LF2 fault to prevent such motor damage.

| No.   | Name                              | Setting Range | Default |
|-------|-----------------------------------|---------------|---------|
| L8-29 | Current Unbalance Detection (LF2) | 0, 2          | 2       |

#### Setting 0: Disabled

Motor protection with LF2 is disabled.

#### Setting 2: Enabled

LF2 fault is triggered when an output current imbalance is detected. Drive output shuts off and the motor coasts to stop.

## ■ L8-32: Cooling Fan Failure Selection

Determines drive operation when a FAn fault occurs.

| No.   | Name                          | Setting Range | Default |
|-------|-------------------------------|---------------|---------|
| L8-32 | Cooling Fan Failure Selection | 0 to 2        | 1       |

#### Setting 0: Ramp to Stop

The drive stops the motor using the deceleration time 1 set in parameter C1-02.

#### **Setting 1: Coast to Stop**

The drive output is switched off and the motor coasts to a stop.

#### **Setting 2: Fast Stop**

The drive stops the motor using the Fast stop time set in parameter C1-09.

#### ■ L8-35: Installation Method Selection

Selects the type of installation for the drive and changes the drive overload (oL2) limits accordingly.

Note

- 1. Initialization does not reset this parameter.
- 2. The value is preset to the appropriate value when the drive is shipped. Change the value only when mounting a standard drive with the heatsink outside the cabinet.

| No.   | Name                          | Setting Range | Default             |
|-------|-------------------------------|---------------|---------------------|
| L8-35 | Installation Method Selection | 0, 2, 3       | Determined by o2-04 |

#### Setting 0: IP00/Open-Chassis Enclosure

For an Open Type enclosure drive installed with at a minimum of 30 mm space to the next drive or a cabinet wall.

#### Setting 2: IP20/UL Type 1 Enclosure

For drives compliant with IP20/UL Type 1 enclosure specifications.

#### **Setting 3: External Heatsink Installation**

For a standard drive mounted with the heatsink outside the cabinet or enclosure panel.

## ■ L8-38: Carrier Frequency Reduction Selection

Selects the operation of the carrier frequency reduction function. Reduces the carrier frequency when the output current exceeds a certain level. This temporarily increases the overload capability (oL2 detection), allowing the drive to run through transient load peaks without tripping.

**Note:** This function cannot be used in AOLV/PM.

| No.   | Name                                  | Setting Range | Default                                    |
|-------|---------------------------------------|---------------|--------------------------------------------|
| L8-38 | Carrier Frequency Reduction Selection | 0 to 2        | Determined by<br>A1-02, C6-01 and<br>o2-04 |

#### Setting 0: Disabled

No carrier frequency reduction at high current.

#### Setting 1: Enabled for Output Frequencies below 6 Hz

The carrier frequency is reduced at speeds below 6 Hz when the current exceeds 100% of the drive rated current. The drive returns to the normal carrier frequency when the current falls below 88% or the output frequency exceeds 7 Hz.

#### **Setting 2: Enabled for Entire Frequency Range**

The carrier frequency is reduced at the following speeds:

- Below 6 Hz when the current exceeds 100% of the drive rated current.
- Above 7 Hz when the current exceeds 112% of the drive rated current.

The drive uses the delay time set in parameter L8-40 and a hysteresis of 12% when switching the carrier frequency back to the set value.

## ■ L8-40: Carrier Frequency Reduction Off-Delay Time

The following settings are used when the carrier frequency is to be reduced at start:

- Time taken for the reduced carrier frequency to return to the carrier frequency set at C6-02.
- Time taken to return to the set carrier frequency after reducing it by setting L8-38 to 1 or 2.

The carrier frequency reduction function at start is disabled if this value is 0.00 s.

| No.   | Name                                       | Setting Range  | Default             |
|-------|--------------------------------------------|----------------|---------------------|
| L8-40 | Carrier Frequency Reduction Off-Delay Time | 0.00 to 2.00 s | Determined by A1-02 |

## ■ L8-41: High Current Alarm Selection

Triggers a high current alarm (HCA) when the output current exceeds 150% of the drive rated current.

| No.   | Name                         | Setting Range | Default |
|-------|------------------------------|---------------|---------|
| L8-41 | High Current Alarm Selection | 0, 1          | 0       |

#### Setting 0: Disabled

No alarm is detected.

#### Setting 1: Enabled

An alarm is triggered when the output current exceeds 150% of the drive rated current. A digital output set for an alarm (H2- $\Box\Box$  = 10) will close.

## ■ L8-93: LSo Detection Time at Low Speed

Sets the amount of time until baseblock is executed after LSo has been detected at low speed.

A setting of 0.0 s disables this parameter.

| No.   | Name                            | Setting Range | Default |
|-------|---------------------------------|---------------|---------|
| L8-93 | LSo Detection Time at Low Speed | 0.0 to 10.0 s | 1.0 s   |

## ■ L8-94: LSo Detection Level at Low Speed

Determines the detection level of LSo at low speed. Set as a percentage of the maximum frequency (E1-04).

| No.   | Name                             | Setting Range | Default |
|-------|----------------------------------|---------------|---------|
| L8-94 | LSo Detection Level at Low Speed | 0 to 10%      | 3%      |

### ■ L8-95: Average LSo Frequency at Low Speed

Sets the average number of times LSo can occur at low speed.

| No.   | Name                               | Setting Range | Default  |
|-------|------------------------------------|---------------|----------|
| L8-95 | Average LSo Frequency at Low Speed | 1 to 50 times | 10 times |

## ◆ L9: Drive Protection 2

## ■ L9-03: Carrier Frequency Reduction Level Selection

Selects start or clear current level for automatic carrier frequency reduction. There is normally no need to change this parameter from the default value.

| No.   | Name                                        | Setting Range | Default |
|-------|---------------------------------------------|---------------|---------|
| L9-03 | Carrier Frequency Reduction Level Selection | 0, 1          | 0       |

Setting 0: Reduces the Carrier Frequency Based on the Drive Rated Current that Is Not Derated

Setting 1: Reduces the Carrier Frequency Based on the Drive Rated Current that Is Derated by the Carrier Frequency and Temperature with C6-02 Selection

## ■ L9-12: SoH Alarm Selection during bb

Sets the SoH (Snubber Discharge Resistor Overheat) alarm to output a fault or a minor fault during baseblock (bb). There is normally no need to change this parameter from the default value.

**Note:** This parameter is available in drive software versions PRG: 1015 and later.

| No.   | Name                          | Setting Range | Default |
|-------|-------------------------------|---------------|---------|
| L9-12 | SoH Alarm Selection during bb | 0, 1          | 0       |

Setting 0: Outputs a Fault for an SoH Alarm during Baseblock (bb)

Setting 1: Outputs a Minor Fault for an SoH Alarm during Baseblock (bb)

## 5.9 n: Special Adjustments

These parameters control a variety of specialized adjustments and functions, including Hunting Prevention, AFR Control, resistance between motor lines, and PM motor control functions.

## n1: Hunting Prevention

Hunting Prevention prevents the drive from hunting as a result of low inertia and operating with light load. Hunting often occurs with a high carrier frequency and an output frequency below 30 Hz.

## ■ n1-01: Hunting Prevention Selection

Enables or disables the Hunting Prevention function.

**Note:** This function is available only when using V/f Control. Disable Hunting Prevention when drive response is more important than suppressing motor oscillation. This function may be disabled without problems in applications with high inertia loads or relatively heavy loads.

| No.   | Name                         | Setting Range | Default |
|-------|------------------------------|---------------|---------|
| n1-01 | Hunting Prevention Selection | 0, 1          | 1       |

Setting 0: Disabled

Setting 1: Enabled

## ■ n1-02: Hunting Prevention Gain Setting

Sets the gain for the Hunting Prevention Function.

| No.   | Name                            | Setting Range | Default |
|-------|---------------------------------|---------------|---------|
| n1-02 | Hunting Prevention Gain Setting | 0.00 to 2.50  | 1.00    |

Although this parameter rarely needs to be changed, it may require adjustment in the following situations:

- If the motor vibrates while lightly loaded and n1-01 = 1, increase the gain by 0.1 until vibration ceases.
- If the motor stalls while n1-01 = 1, decrease the gain by 0.1 until the stalling ceases.

## ■ n1-03: Hunting Prevention Time Constant

Determines the responsiveness of the Hunting Prevention function (affects the primary delay time for Hunting Prevention).

| No.   | Name                             | Setting Range | Default             |
|-------|----------------------------------|---------------|---------------------|
| n1-03 | Hunting Prevention Time Constant | 0 to 500 ms   | Determined by o2-04 |

Although this parameter rarely needs to be changed, it may require adjustment in the following situations:

- Increase this value for applications with a large load inertia. A higher setting leads to slower response, which can result in oscillation at lower frequencies.
- Lower this setting if oscillation occurs at low speed.

## ■ n1-05: Hunting Prevention Gain while in Reverse

This parameter functions the same as n1-02, except it is used when rotating in reverse. See the explanation for n1-02.

**Note:** n1-02 is enabled for forward and reverse operation when n1-05 = 0.0 ms.

| No.   | Name                                     | Setting Range | Default |
|-------|------------------------------------------|---------------|---------|
| n1-05 | Hunting Prevention Gain while in Reverse | 0.00 to 2.50  | 0.00    |

### ■ n1-09: Vibration Suppression Level

Adjusts the responsiveness of the vibration suppression function. When using speed control, there is normally no need to adjust this parameter. When using torque control, set this parameter to 0.00.

**Note:** This parameter is available in drive software versions PRG: 1017 and later.

| No.   | Name                        | Setting Range | Default |
|-------|-----------------------------|---------------|---------|
| n1-09 | Vibration Suppression Level | 0.00 to 10.00 | 2.00    |

## ■ n1-10: Suppression Frequency

There is normally no need to change this parameter from the default value.

**Note:** This parameter is available in drive software versions PRG: 1017 and later.

| No.   | Name                  | Setting Range   | Default |
|-------|-----------------------|-----------------|---------|
| n1-10 | Suppression Frequency | 5.0 to 100.0 Hz | 10.0 Hz |

## ■ n1-11: Suppression Auxiliary Frequency

There is normally no need to change this parameter from the default value.

**Note:** This parameter is available in drive software versions PRG: 1017 and later.

| No.   | Name                            | Setting Range   | Default |
|-------|---------------------------------|-----------------|---------|
| n1-11 | Suppression Auxiliary Frequency | 10.0 to 50.0 Hz | 20.0 Hz |

## ■ n1-12: Vibration Suppression Time Constant

There is normally no need to change this parameter from the default value.

**Note:** This parameter is available in drive software versions PRG: 1017 and later.

| No.   | Name                                | Setting Range | Default |
|-------|-------------------------------------|---------------|---------|
| n1-12 | Vibration Suppression Time Constant | 0 to 1000 ms  | 0 ms    |

## n2: Speed Feedback Detection Control (AFR) Tuning

These parameters help achieve speed stability when a load is suddenly applied or removed.

**Note:** Properly set all motor parameters or perform Auto-Tuning before making changes to the AFR parameters.

#### ■ n2-01: AFR Gain

Sets the internal speed feedback detection control gain in the AFR.

| No.   | Name     | Setting Range | Default |
|-------|----------|---------------|---------|
| n2-01 | AFR Gain | 0.00 to 10.00 | 1.00    |

Although this parameter rarely needs to be changed, it may require adjustment in the following situations:

- If hunting occurs, increase the setting value in steps of 0.05 while checking the response.
- If response is low, decrease the setting value in steps of 0.05 while checking the response.

#### n2-02: AFR Time Constant 1

Sets the time constant normally used by AFR.

| No.   | Name                | Setting Range | Default |
|-------|---------------------|---------------|---------|
| n2-02 | AFR Time Constant 1 | 0 to 2000 ms  | 50 ms   |

Although this parameter rarely needs to be changed, adjustment may be required in the following situations:

- If hunting occurs, increase the value. If response is low, decrease it.
- When setting the parameter to a higher value, increase C4-02, Torque Compensation Delay Time Constant 1, proportionally.

## n3: Overexcitation Braking

### Overexcitation Deceleration (Induction Motors)

Increases the flux during deceleration and allows shorter deceleration time settings. Enabled by setting L3-04 to 4. *Refer to L3-04: Stall Prevention Selection during Deceleration on page 325*.

#### **Notes on Overexcitation Deceleration**

- During Overexcitation Deceleration 2, Hunting Prevention in V/f Control and torque limits in OLV Control are disabled.
- Overexcitation Deceleration can be used in OLV and CLV, but it lowers the accuracy of Torque Control and braking efficiency. It can be most efficiently used in a V/f Control.
- Overexcitation Deceleration cannot be used with PM motors.

#### **Parameter Adjustments**

- When repetitive or long Overexcitation Deceleration causes motor overheat, lower the overexcitation gain (n3-13) and reduce the overslip suppression current level (n3-21).
- During Overexcitation Deceleration (L3-04 = 4), the drive decelerates at the active deceleration time (C1-02, C1-04, C1-06, or C1-08). Set this time so no overcurrent (oC) fault occurs.
- During Overexcitation Deceleration 2 (L3-04 = 5), the drive decelerates using the active deceleration time while adjusting the deceleration rate to keep the DC bus voltage at the level set to L3-17. The actual stopping time will be longer or shorter than the set deceleration time depending on the motor characteristics and the load inertia. Increase the deceleration time if overcurrent (oC) occurs.
- Entering a Run command during Overexcitation Deceleration cancels overexcitation operation and the drive reaccelerates to the specified speed.

#### ■ n3-13: Overexcitation Deceleration Gain

Multiplies a gain to the V/f pattern output value during Overexcitation Deceleration to determine the level of overexcitation. The drive returns to the normal V/f value after the motor has stopped or when it is accelerating to the frequency reference.

| No.   | Name                             | Setting Range | Default |
|-------|----------------------------------|---------------|---------|
| n3-13 | Overexcitation Deceleration Gain | 1.00 to 2.00  | 1.10    |

The optimum setting for n3-13 depends on the motor flux saturation characteristics.

- Gradually increase the gain to 1.25 or 1.90 to improve the braking power of Overexcitation Deceleration.
- Lower n3-13 when flux saturation characteristics cause overcurrent. A high setting sometimes causes overcurrent (oC), motor overload (oL1), or drive overload (oL2).

## n5: Feed Forward Control

Enabling Feed Forward improves the responsiveness of the drive to speed reference changes in applications where a high speed control proportional gain setting (ASR gain, C5-01, C5-03) would lead to problems with overshoot, undershoot, or oscillation. *Figure 5.105* gives an example of overshoot reduction by Feed Forward. Parameters related to this function and the function principle are illustrated in *Figure 5.106*. Feed Forward can only be used in CLV, CLV/PM, or AOLV/PM (A1-02 = 3, 6, or 7).

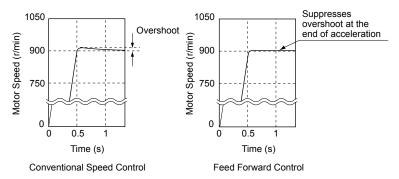



Figure 5.105 Overshoot Suppression by Feed Forward Control

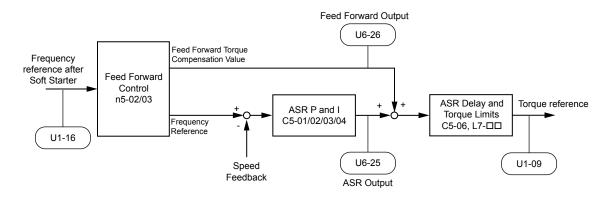



Figure 5.106 Feed Forward Control

Note:

- 1. Feed Forward can only be used in CLV, AOLV/PM, and CLV/PM control modes.
- 2. Prior to using Feed Forward, always perform Auto-Tuning or manually enter the correct motor data. Perform ASR Auto-Tuning to set the speed loop gain (C5-01), or adjust it manually. Fine-tune the other speed control loop parameters (C5-\sqrt{\textsup} \sqrt{\textsup}) if required.
- 3. If not restricted by the application, use Inertia Auto Tuning (T1-01, T2-01 = 8) to automatically optimize Feed Forward parameters. If Inertia Auto Tuning cannot be performed, manually set parameters related to Feed Forward.

#### n5-01: Feed Forward Control Selection

Enables and disables the Feed Forward function.

| No.   | Name                           | Setting Range | Default |
|-------|--------------------------------|---------------|---------|
| n5-01 | Feed Forward Control Selection | 0, 1          | 0       |

Setting 0: Disabled

Setting 1: Enabled

#### ■ n5-02: Motor Acceleration Time

Sets the time required to accelerate the motor from a full stop to the rated speed at the rated torque.

| No.   | Parameter Name          | Setting Range     | Default                              |
|-------|-------------------------|-------------------|--------------------------------------|
| n5-02 | Motor Acceleration Time | 0.001 to 10.000 s | Determined by C6-01, E5-01 and o2-04 |

Set this value automatically with Inertia Auto-Tuning. If Inertia Auto-Tuning cannot be performed, use one of the following methods to determine the setting value for this parameter.

#### Calculation

The motor acceleration time can be calculated by one of the following formulas:

n5-02 = 
$$\frac{\pi \cdot J_{\text{Motor}} \cdot n_{\text{rated}}}{30 \cdot T_{\text{rated}}}$$
 Where:

•  $J_{\text{Motor}}$  is the motor inertia in kgm/s<sup>2</sup>.

•  $n_{\text{rated}}$  is the rated speed of the motor in r/min.

•  $T_{\text{rated}}$  is the rated torque of the motor in N•m.

or

n5-02 = 
$$\frac{4 \cdot \pi \cdot J_{Motor} \cdot f_{rated}}{p \cdot T_{rated}}$$
 Where:

•  $J_{Motor}$  is the motor inertia in kgm<sup>2</sup>.

•  $f_{rated}$  is the rated frequency of the motor in Hz.

• p is the number of motor poles (not pole pairs).

•  $T_{rated}$  is the rated torque of the motor in N•m.

#### **Measuring Acceleration Time**

Take the following steps when measuring the motor acceleration time:

1. Select the control mode; CLV (A1-02 = 3), AOLV/PM (A1-02 = 6), or CLV/PM (A1-02 = 7).

## 5.9 n: Special Adjustments

- 2. Decouple motor and load.
- **3.** Perform Auto-Tuning or manually enter the correct motor data.
- **4.** Properly set up the speed loop (ASR).
- 5. Set the acceleration time to zero.
- **6.** Set the forward torque limit in parameter L7-01 to 100%.
- **7.** Set the frequency reference equal to the motor rated speed.
- **8.** While monitoring the motor speed in U1-05, start the motor in the forward direction and measure the time it takes to reach the rated speed.
- **9.** Reverse the parameter settings above and set the measured time to parameter n5-02.

#### ■ n5-03: Feed Forward Control Gain

Sets the inertia ratio of the load connected to the motor. This value can be set automatically by Inertia Auto-Tuning.

| No.   | Parameter Name            | Setting Range  | Default |
|-------|---------------------------|----------------|---------|
| n5-03 | Feed Forward Control Gain | 0.00 to 100.00 | 1.00    |

Set this value automatically with Inertia Auto-Tuning. If Inertia Auto Tuning cannot be performed, determine the value for parameter n5-03 using the following steps:

- 1. Select the control mode; CLV (A1-02 = 3), AOLV/PM (A1-02 = 6), or CLV/PM (A1-02 = 7).
- 2. Set parameter n5-02 correctly.
- 3. Couple motor and load.
- **4.** Set the acceleration time in C1-01 to 0.
- 5. Set the torque limits in the L7-□□ parameters to a value that will easily be reached during the test (T<sub>Lim Test</sub>).
- **6.** Set the frequency reference equal to a value in the upper speed range of the machine (f<sub>ref. Test</sub>).
- **7.** While monitoring the motor speed in U1-05, start the motor in the forward direction and measure the time it takes to reach the reference speed (t<sub>accel</sub>).
- **8.** Reverse the parameter settings above and calculate the set value for parameter n5-03 using the formula below.

$$n5-03 = \frac{t_{accel} \cdot T_{Lim\_Test} \cdot f_{rated}}{n5-02 \cdot f_{ref\_Test} \cdot 100} - 1$$

#### Where:

- ullet  $t_{accel}$  is the measured acceleration time in s.
- $f_{rated}$  is the rated frequency of the motor in Hz.
- $T_{Lim Test}$  is torque limit setting during the test (%).
- f<sub>ref Test</sub> is the frequency reference during the test in Hz.

## ♦ n6: Online Tuning

Online Tuning prevents loss from insufficient torque and diminished speed control accuracy due to fluctuating motor temperature.

## ■ n6-01: Online Tuning Selection

Selects the type of motor data Online Tuning uses for OLV control.

| No.   | Name                    | Setting Range | Default |
|-------|-------------------------|---------------|---------|
| n6-01 | Online Tuning Selection | 0 to 2        | 0       |

### Setting 0: Disabled

#### **Setting 1: Line-to-line Resistance Tuning**

This setting enables line-to-line resistance online tuning. This procedure is effective for speed values up to 6 Hz and improves the overload capacity in the low speed range by adjusting the value set for the motor resistance.

### **Setting 2: Voltage Correction**

The drive adjusts the output voltage during run to improve overload tolerance and minimize the effects of high temperatures on speed accuracy.

**Note:** This setting can only be selected when the Energy Saving function is disabled (b8-01 = 0).

## n6-05: Online Tuning Gain

Sets the compensation gain for the voltage correction in the Online Tuning function (n6-01 = 2).

Although this parameter rarely needs to be changed, increase the set value in steps of 0.1 if an overload fault occurs during voltage correction.

| No.   | Name               | Setting Range | Default |
|-------|--------------------|---------------|---------|
| n6-05 | Online Tuning Gain | 0.1 to 50.0   | 1.0     |

## ◆ n8: PM Motor Control Tuning

These parameters adjust the control performance in the vector control modes for permanent magnet motors.

### ■ n8-01: Initial Rotor Position Estimation Current

Sets the current used for initial rotor position estimation as a percentage of the motor rated current (E5-03). If the motor nameplate lists an "Si" value, that value should be entered here. There is normally no need to change this parameter from the default value.

**Note:** This parameter is only available in AOLV/PM or CLV/PM.

| No.   | Name                                      | Setting Range | Default |
|-------|-------------------------------------------|---------------|---------|
| n8-01 | Initial Rotor Position Estimation Current | 0 to 100%     | 50%     |

#### ■ n8-02: Pole Attraction Current

In AOLV/PM control, this parameter sets the current to attract the rotor after detecting the initial rotor position. The value is set as a percentage of the motor rated current. Increase this setting to increase the starting torque.

In CLV/PM control, this parameter sets the current used to detect the rotor pole when tuning the phase-Z pulse position. Set this parameter to a large value if the motor does not follow the target position during the phase-Z pulse position tuning. Set to a small value if the motor vibrates. There is normally no need to change this parameter from the default value.

| No.   | Name                    | Setting Range | Default |
|-------|-------------------------|---------------|---------|
| n8-02 | Pole Attraction Current | 0 to 150%     | 80%     |

## ■ n8–03: Current Startup Time

Sets the current starting time to detect the motor magnetic pole of the rotors when performing Z Pulse Offset Tuning. Usually it is not necessary to change this setting. If there is vibration in the motor when performing Z Pulse Offset Tuning, increase the setting value.

| No.   | Name                 | Setting Range | Default |
|-------|----------------------|---------------|---------|
| n8-03 | Current Startup Time | 1.5 to 5.0 s  | 1.5 s   |

#### n8-04: Pole Attraction Time

Sets the magnetic pole alignment time to detect the motor magnetic pole of the rotors when performing Z Pulse Offset Tuning. Usually it is not necessary to change this setting. If there is vibration in the motor when performing Z Pulse Offset Tuning, increase the setting value.

| No.   | Name                 | Setting Range | Default |
|-------|----------------------|---------------|---------|
| n8-04 | Pole Attraction Time | 1.5 to 5.0 s  | 1.5 s   |

## ■ n8-11: Induction Voltage Estimation Gain 2

Sets the gain for speed estimation. There is normally no need to change this parameter from the default value.

| No.  |   | Name                                | Setting Range | Default                 |
|------|---|-------------------------------------|---------------|-------------------------|
| n8-1 | 1 | Induction Voltage Estimation Gain 2 | 0.0 to 1000.0 | Determined by n8-72 <1> |

<sup>&</sup>lt;1> When n8-72 is set to 0, the default setting is 50.0 and when n8-72 is set to 1, the default setting is 150.0. *Refer to n8-14: Polarity Compensation Gain 3 on page 348* for a list of monitors.

## ■ n8-14: Polarity Compensation Gain 3

Sets the gain for speed estimation. There is normally no need to change this parameter from the default value.

| No.   | Name                         | Setting Range   | Default |
|-------|------------------------------|-----------------|---------|
| n8-14 | Polarity Compensation Gain 3 | 0.000 to 10.000 | 1.000   |

### ■ n8-15: Polarity Compensation Gain 4

Sets the gain for speed estimation. There is normally no need to change this parameter from the default value.

| No.   | Name                         | Setting Range   | Default |
|-------|------------------------------|-----------------|---------|
| n8-15 | Polarity Compensation Gain 4 | 0.000 to 10.000 | 0.500   |

#### ■ n8-21: Motor Ke Gain

Sets the gain for speed estimation. There is normally no need to change this parameter from the default value.

| No.   | Name          | Setting Range | Default |
|-------|---------------|---------------|---------|
| n8-21 | Motor Ke Gain | 0.80 to 1.00  | 0.90    |

### ■ n8-35: Initial Rotor Position Detection Selection

Selects how the rotor position is detected at start.

Note

- 1. In CLV/PM, the drive performs a magnetic pole search the first time it starts the motor. After that, rotor position is calculated from the PG encoder signal and saved until the drive is switched off. Parameter n8-35 determines how this initial pole search operates.
- 2. High Frequency Injection and pulse injection for rotor position detection (n8-35 = 1 or 2) can be used with IPM motors only. When using an SPM motor, select the pull in method to find the initial position of the rotor (n8-35 = 0).
- **3.** This parameter is only available in AOLV/PM or CLV/PM.

| No.   | Name                                       | Setting Range | Default |
|-------|--------------------------------------------|---------------|---------|
| n8-35 | Initial Rotor Position Detection Selection | 0 to 2        | 1       |

#### Setting 0: Pull In

Starts the rotor using pull-in current.

#### Setting 1: High Frequency Injection

High frequency is injected to detect the rotor position. Some noise may be generated from the motor at start.

#### **Setting 2: Pulse Injection**

A pulse signal is injected into the motor to detect the rotor position.

#### ■ n8-36: High Frequency Injection Level

Sets the frequency level used for High Frequency Injection. Enabled when n8-57 = 1. In this case *Refer to T2-01: PM Motor Auto-Tuning Mode Selection on page 172* for details.

**Note:** This parameter is enabled when n8–35 (Initial Rotor Position Detection Selection) = 1 (High Frequency Injection) or n8–57 (High Frequency Injection) = 1 (Enabled).

| No.   | Name                           | Setting Range  | Default |
|-------|--------------------------------|----------------|---------|
| n8-36 | High Frequency Injection Level | 200 to 1000 Hz | 500 Hz  |

## ■ n8-37: High Frequency Injection Amplitude

Sets the amplitude of high-frequency injection as a percentage of the voltage class standard (200 V Class: 200 V, 400 V Class: 400 V). There is normally no need to change this parameter from the default value.

**Note:** This parameter is enabled when n8–35 (Initial Rotor Position Detection Selection) = 1 (High Frequency Injection) or n8–57 (High Frequency Injection) = 1 (Enabled).

| No.   | Name                               | Setting Range | Default |
|-------|------------------------------------|---------------|---------|
| n8-37 | High Frequency Injection Amplitude | 0.0 to 50.0%  | 20.0%   |

## ■ n8-39: Low Pass Filter Cutoff Frequency for High Frequency Injection

Sets a cutoff frequency of a low pass filter for high frequency injection. There is normally no need to change this parameter from the default value.

Note:

This parameter is enabled when n8–35 (Initial Rotor Position Detection Selection) = 1 (High Frequency Injection) or n8–57 (High Frequency Injection) = 1 (Enabled).

| No.   | Name                                                          | Setting Range | Default |
|-------|---------------------------------------------------------------|---------------|---------|
| n8-39 | Low Pass Filter Cutoff Frequency for High Frequency Injection | 0 to 1000 Hz  | 50 Hz   |

## ■ n8-41: HFI Overlap Pole Detection Pgain

Sets the speed estimation response for High Frequency Injection. Adjust this parameter when the motor vibrates in a low speed range.

Note:

This parameter is enabled when n8-35 (Initial Rotor Position Detection Selection) = 1 (High Frequency Injection) or n8-57 (High Frequency Injection) = 1 (Enabled).

| No.       | Name                             | Setting Range | Default |
|-----------|----------------------------------|---------------|---------|
| n8-41 <1> | HFI Overlap Pole Detection Pgain | 0.01 to 10.00 | 2.50    |

<sup>&</sup>lt;1> This parameter is available in the drive software versions PRG:1021 and later.

## ■ n8-45: Speed Feedback Detection Control Gain (for PM Motors)

Sets the gain for internal speed feedback detection control. Although this parameter rarely needs to be changed, adjustment may be necessary under the following conditions:

- Increase this setting if motor oscillation or hunting occurs.
- Decrease this setting in increments of 0.05 to decrease drive responsiveness.

**Note:** This parameter is only available in OLV/PM.

| No.   | Name                                                  | Setting Range | Default |
|-------|-------------------------------------------------------|---------------|---------|
| n8-45 | Speed Feedback Detection Control Gain (for PM Motors) | 0.00 to 10.00 | 0.80    |

## ■ n8-47: Pull-In Current Compensation Time Constant (for PM Motors)

Sets the time constant for pull-in current to match the actual current.

Although this setting rarely needs to be changed, adjustment may be necessary under the following conditions:

- Increase this setting when it takes too long for the reference value of the pull-in current to match the target value.
- Decrease this setting if motor oscillation occurs.

**Note:** This parameter is only available in OLV/PM.

| No.   | Name                                                       | Setting Range  | Default |
|-------|------------------------------------------------------------|----------------|---------|
| n8-47 | Pull-In Current Compensation Time Constant (for PM Motors) | 0.0 to 100.0 s | 5.0 s   |

### n8-48: Pull-In Current (for PM Motors)

Sets the d-Axis current during no-load operation at a constant speed. Set as a percentage of the motor rated current (E5-03).

- Increase this setting when hunting occurs or the motor speed is unstable while running at a constant speed.
- Slightly reduce this value if there is too much current when driving a light load at a constant speed.

**Note:** This parameter is only available in OLV/PM.

| No.   | Name                            | Setting Range | Default |
|-------|---------------------------------|---------------|---------|
| n8-48 | Pull-In Current (for PM Motors) | 20 to 200%    | 30%     |

## ■ n8-49: d-Axis Current for High Efficiency Control (for PM Motors)

Sets the d-Axis current reference when running with high load at constant speed. When using an IPM motor, this parameter uses the reluctance torque to increase the efficiency and reduce energy consumption. Set this parameter to 0 when using an SPM motor.

Although this setting rarely needs to be changed, adjustment may be necessary under the following conditions:

• Lower the setting if motor operation is unstable when driving heavy loads.

## 5.9 n: Special Adjustments

• If motor parameters (E5-□□) have been changed, this value will be reset to 0 and will require readjustment.

Note: This parameter is only available in OLV/PM.

| No.   | Name                                                       | Setting Range  | Default             |
|-------|------------------------------------------------------------|----------------|---------------------|
| n8-49 | d Axis Current for High Efficiency Control (for PM Motors) | -200.0 to 0.0% | Determined by E5-01 |

## ■ n8-51: Acceleration/Deceleration Pull-In Current (for PM Motors)

Sets the pull-in current during acceleration and deceleration as a percentage of the motor rated current (E5-03).

Adjustment may be necessary under the following conditions:

- Increase this setting when a large amount of starting torque is required.
- Lower this setting if there is excessive current during acceleration.

**Note:** This parameter is only available in OLV/PM.

| No.   | Name                                                      | Setting Range | Default |
|-------|-----------------------------------------------------------|---------------|---------|
| n8-51 | Acceleration/Deceleration Pull-In Current (for PM Motors) | 0 to 200%     | 50%     |

## ■ n8-54: Voltage Error Compensation Time Constant

Sets the time constant for voltage error compensation.

Adjustment may be necessary under the following conditions:

- Adjust the value when hunting occurs at low speed.
- Increase the value in steps of 0.1 when hunting occurs with sudden load changes. Set the value to 0 to disable the compensation if increasing n8-54 does not help.
- Increase the value when oscillations occur at start.

**Note:** This parameter is only available in OLV/PM.

| No.   | Name                                     | Setting Range | Default |
|-------|------------------------------------------|---------------|---------|
| n8-54 | Voltage Error Compensation Time Constant | 0.00 to 10.00 | 1.00    |

#### ■ n8-55: Load Inertia

Sets the ratio between motor inertia and the inertia of the connected machinery. If this value is set too low, the motor may not start very smoothly and trigger an STo (Pull-Out Detection) fault.

Increase this setting for large inertia loads or to improve speed control response. A high setting with low inertia load may cause oscillation.

**Note:** This parameter is only available in OLV/PM.

| No.   | Name         | Setting Range | Default |
|-------|--------------|---------------|---------|
| n8-55 | Load Inertia | 0 to 3        | 0       |

#### Setting 0: Below 1:10

The inertia ratio between the motor and the load is lower than 1:10.

#### Setting 1: Between 1:10 and 1:30

The inertia ratio between the motor and the load is between 1:10 and 1:30. Set n8-55 to 1 if an STo fault occurs as a result of impact load or sudden acceleration/deceleration when n8-55 = 0.

#### Setting 2: Between 1:30 and 1:50

The inertia ratio between the motor and the load is between 1:30 and 1:50. Set n8-55 to 2 if an STo fault occurs as a result of impact load or sudden acceleration/deceleration when n8-55 = 1.

#### Setting 3: Beyond 1:50

The inertia ratio between the motor and the load is higher than 1:50. Set n8-55 to 3 if an STo fault occurs as a result of impact load or sudden acceleration/deceleration when n8-55 = 2.

## ■ n8-57: High Frequency Injection

Injects a high frequency into the motor to detect motor speed.

**Note:** This parameter is only available in AOLV/PM.

| No.   | Name                     | Setting Range | Default |
|-------|--------------------------|---------------|---------|
| n8-57 | High Frequency Injection | 0, 1          | 0       |

#### Setting 0: Disabled

Disable n8-57 with SPM motors. The speed control range will be limited to approximately 1:20.

#### Setting 1: Enabled

Enable n8-57 with IPM motors. This allows precise speed detection in a speed control range of approximately 1:100. In this case, perform High Frequency Injection Parameter Tuning after setting the motor parameters. High Frequency Injection cannot be used with an SPM motor. *Refer to T2-01: PM Motor Auto-Tuning Mode Selection on page 172* for details.

Note:

- 1. This function generates some audible noise in the motor up to a certain speed.
- 2. Set E1-09 to 0.0 when using zero speed control.

## n8-62: Output Voltage Limit (for PM Motors)

Sets the output voltage limit to prevent voltage saturation. Do not set this value higher than the actual input voltage.

**Note:** This parameter is only available in OLV/PM, AOLV/PM, and CLV/PM.

| No.   | Name                                 | Setting Range        | Default     |
|-------|--------------------------------------|----------------------|-------------|
| n8-62 | Output Voltage Limit (for PM Motors) | 0.0 to 250.0 Vac <1> | 200 Vac <1> |

<sup>&</sup>lt;1> Values shown are specific to 200 V class drives. Double value for 400 V class drives.

## n8-63: Output Voltage Limit Proportional Gain (for PM Motors)

Stabilizes constant output.

There is normally no need to change this parameter from the default value.

Note:

- 1. This parameter is only available in OLV/PM, AOLV/PM, and CLV/PM.
- 2. This parameter is available in drive software versions PRG: 1017 and later.

| No.   | Name                                                   | Setting Range  | Default |
|-------|--------------------------------------------------------|----------------|---------|
| n8-63 | Output Voltage Limit Proportional Gain (for PM Motors) | 0.00 to 100.00 | 1.00    |

## ■ n8-64: Output Voltage Limit Integral Time (for PM Motors)

There is normally no need to change this parameter from the default value.

Note:

- 1. This parameter is only available in OLV/PM, AOLV/PM, and CLV/PM.
- 2. This parameter is available in drive software versions PRG: 1017 and later.

| No.   | Name                                               | Setting Range    | Default |
|-------|----------------------------------------------------|------------------|---------|
| n8-64 | Output Voltage Limit Integral Time (for PM Motors) | 0.000 to 5.000 s | 0.040 s |

## ■ n8-66: Output Voltage Limit Output Filter Time Constant (for PM Motors)

There is normally no need to change this parameter from the default value.

ote:

- 1. This parameter is only available in OLV/PM, AOLV/PM, and CLV/PM.
- 2. This parameter is available in drive software versions PRG: 1017 and later.

| No.   | Name                                                             | Setting Range    | Default |
|-------|------------------------------------------------------------------|------------------|---------|
| n8-66 | Output Voltage Limit Output Filter Time Constant (for PM Motors) | 0.000 to 5.000 s | 0.001 s |

### ■ n8-69: Speed Calculation Gain

Sets the proportional gain for Phase Locked Loop (PLL) control of an extended observer.

There is normally no need to change this parameter from the default value.

| No.   | Name                   | Setting Range | Default |
|-------|------------------------|---------------|---------|
| n8-69 | Speed Calculation Gain | 0.00 to 20.00 | 1.00    |

## ■ n8-72: Speed Estimation Method Selection

Sets the method of the speed estimation. There is normally no need to change this parameter from the default value.

#### 5.9 n: Special Adjustments

| No.   | Name                              | Setting Range | Default |
|-------|-----------------------------------|---------------|---------|
| n8-72 | Speed Estimation Method Selection | 0, 1          | 1       |

Setting 0: Conventional Method Setting 1: 1000-Series Method

## ■ n8-84: Initial Polarity Estimation Timeout Current

Sets the current to determine polarity for the initial polarity calculation as a percentage of the motor rated current.

Set the value in % unit (E5-03 = 100%)

Note:

- 1. This parameter is only available in AOLV/PM and CLV/PM.
- 2. If operating in AOLV/PM (A1-02 = 6) or CLV/PM (A1-02 = 7), the drive determines motor polarity by performing initial polarity estimation when it starts the motor (this is done only the first time the motor is started when using CLV/PM). The drive may begin operating in the wrong direction if it determines motor polarity incorrectly as the opposite direction of the Run command

Monitor U6-57 displays the deviation from the integrated current, making it possible to see if initial polarity estimation has successfully determined the motor polarity.

- 3. If an "Si" value is listed on a Yaskawa motor nameplate, set n8-84 to "Si" value x 2 or more.
- 4. Increase the setting value when dv3, dv4, or LSo is detected.

| No.   | Name                                        | Setting Range | Default |
|-------|---------------------------------------------|---------------|---------|
| n8-84 | Initial Polarity Estimation Timeout Current | 0 to 150%     | 100%    |

## 5.10 o: Operator Related Settings

These parameters control the various functions, features, and display of the digital operator.

## ◆ o1: Digital Operator Display Selection

These parameters determine the data display on the digital operator.

#### ■ o1-01: Drive Mode Unit Monitor Selection

When o1-02 is set to 5, any U monitors can be displayed. This parameter will select the monitors. Pressing the up arrow key will display the following data: frequency reference  $\rightarrow$  rotational direction  $\rightarrow$  output frequency  $\rightarrow$  output current  $\rightarrow$  o1-01 selection.

Parameter o1-01 selects the content of the last monitor in this sequence. This is done by entering the " $1\square\square$ " part of " $1\square\square$ ". Certain monitors are not available in some control modes. There is no effect like this on an LCD operator.

| No.   | Name                              | Setting Range                                                      | Default     |
|-------|-----------------------------------|--------------------------------------------------------------------|-------------|
| 01-01 | Drive Mode Unit Monitor Selection | 104 to 914<br>U1-04 (Control Mode) to<br>U9-14 (Power Monitor) <1> | 106 (U1-06) |

<sup>&</sup>lt;1> U2-\(\sigma\) and U3-\(\sigma\) parameters cannot be selected.

## ■ o1-02: User Monitor Selection after Power Up

Selects which monitor parameter is displayed upon power up. *Refer to U: Monitor Parameters on page 360* for a list of monitors.

| No.   | Name                                  | Setting Range | Default |
|-------|---------------------------------------|---------------|---------|
| 01-02 | User Monitor Selection after Power Up | 1 to 5        | 1       |

Setting 1: Frequency Reference (U1-01)

**Setting 2: Motor Direction** 

Setting 3: Output Frequency (U1-02)

Setting 4: Output Current (U1-03)

Setting 5: User-selected Monitor (Set by o1-01)

## ■ o1-03: Digital Operator Display Selection

Sets the units used to display the frequency reference and output frequency. Set o1-03 to 3 for user-set units before setting parameters o1-10 and o1-11.

| No.   | Name                               | Setting Range | Default             |
|-------|------------------------------------|---------------|---------------------|
| o1-03 | Digital Operator Display Selection | 0 to 3        | Determined by A1-02 |

Setting 0: 0.01 Hz Units

Setting 1: 0.01% Units (100% = Max. Output Frequency)

Setting 2: r/min Units (Calculated by the Max. Output Frequency and the No. of Motor Poles)

#### Setting 3: User-set Units (Use o1-10, o1-11)

Set the value used for the maximum frequency reference to o1-10. Set the placement of the decimal point in this number to o1-11.

For example, to have the maximum output frequency displayed as "100.00", set o1-10 = 10000 and o1-11 = 2 (i.e., 10000 with 2 decimal points).

Note:

 Parameter o1-03 allows the programmer to change the units used in the following parameters and monitors: U1-01: frequency reference U1-02: output frequency U1-05: motor speed

U1-16: output frequency after softstarter (accel/decel ramp generator)

d1-01 to d1-17: frequency references

2. Setting o1-03 to 2 requires entering the number of motor poles to E2-04, E4-04, and E5-04.

#### ■ o1-04: V/f Pattern Display Unit

Determines the units used for the frequency reference when setting parameters that create the V/f pattern: E1-04, E1-06, E1-09, E1-11, and E2-04. For motor 2, this includes parameters E3-04, E3-06, E3-07, E3-09, and E3-11. Enabled only in vector control modes (CLV, AOLV/PM, CLV/PM).

| No.   | Name                     | Setting Range | Default |
|-------|--------------------------|---------------|---------|
| o1-04 | V/f Pattern Display Unit | 0, 1          | 0       |

Setting 0: Hertz

Setting 1: r/min

**Note:** For motor 2, o1-04 can only be set to 0 for Hertz.

### ■ o1-05: LCD Contrast Control

Sets the brightness of the digital operator. The lower the setting, the brighter the LCD contrast. The higher the setting, the darker the LCD contrast.

| No.   | Name                 | Setting Range | Default |
|-------|----------------------|---------------|---------|
| o1-05 | LCD Contrast Control | 0 to 5        | 3       |

## ■ o1-10: User-Set Display Units Maximum Value

Determines the display value that is equal to the maximum output frequency.

| No.   | Name                                 | Setting Range | Default             |
|-------|--------------------------------------|---------------|---------------------|
| o1-10 | User-Set Display Units Maximum Value | 1 to 60000    | Determined by o1-03 |

## ■ o1-11: User-Set Display Units Decimal Display

Determines how many decimal points should be used to set and display the frequency reference.

| No.   | Name                                   | Setting Range | Default             |
|-------|----------------------------------------|---------------|---------------------|
| o1-11 | User-Set Display Units Decimal Display | 0 to 3        | Determined by o1-03 |

**Setting 0: No Decimal Point** 

Setting 1: One Decimal Point Setting 2: Two Decimal Points

**Setting 3: Three Decimal Points** 

## ◆ o2: Digital Operator Keypad Functions

These parameters determine the functions assigned to the operator keys.

## ■ o2-01: LO/RE (LOCAL/REMOTE) Key Function Selection

Determines whether the LO/RE key on the digital operator will be enabled for switching between LOCAL and REMOTE.

| No.   | Name                         | Setting Range | Default |
|-------|------------------------------|---------------|---------|
| o2-01 | LO/RE Key Function Selection | 0, 1          | 1       |

#### Setting 0: Disabled

The LO/RE key is disabled.

#### **Setting 1: Enabled**

The LO/RE switches between LOCAL and REMOTE operation. Switching is possible during stop only. When LOCAL is selected, the LED indicator on the LO/RE key will light up.

**WARNING!** Sudden Movement Hazard. The drive may start unexpectedly if the Run command is already applied when switching from LOCAL mode to REMOTE mode when b1-07 = 1, resulting in death or serious injury. Check all mechanical or electrical connections thoroughly before making any setting changes to o2-01 and b1-07. **Table 5.43** lists the setting combinations for o2-01 and b1-07.

Table 5.43 LO/RE Key and b1-07

| o2-01 | b1-07 | Switch from LOCAL to REMOTE                                                                                                  | Switch from REMOTE to LOCAL |
|-------|-------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 0     | 0     | Not possible                                                                                                                 | Not possible                |
| 0     | 1     | Not possible                                                                                                                 | Not possible                |
|       | 0     | Will not run until a new Run command is entered.                                                                             | Run not possible            |
| 1     | 1     | If a Run command is entered, the drive will start running as soon as the LO/RE key is pushed to change from LOCAL to REMOTE. |                             |

## ■ o2-02: STOP Key Function Selection

Determines if the STOP key on the digital operator will stop drive operation when the drive is controlled from a remote source (i.e., not from digital operator).

| No.   | Name                        | Setting Range | Default |
|-------|-----------------------------|---------------|---------|
| o2-02 | STOP Key Function Selection | 0, 1          | 1       |

#### Setting 0: Disabled

#### Setting 1: Enabled

The STOP key will terminate drive operation even if the Run command source is not assigned to the digital operator. Cycle the Run command to restart the drive if the drive has been stopped by pressing the STOP key.

#### ■ o2-03: User Parameter Default Value

After completely setting up drive parameters, save the values as user-set defaults with parameter o2-03. After saving the values, parameter A1-03 (Initialize Parameters) will offer the choice of "1110: User Initialize". Selecting 1110 resets all parameters to the user-set default values. *Refer to A1-03: Initialize Parameters on page 187* for details on drive initialization.

| No.   | Name                         | Setting Range | Default |
|-------|------------------------------|---------------|---------|
| 02-03 | User Parameter Default Value | 0 to 2        | 0       |

#### Setting 0: No Change (Awaiting Command)

#### **Setting 1: Set User Initialize Values**

The current parameter settings are saved as user-set default for a later User Initialization. Setting o2-03 to 1 and pressing the ENTER key saves the values and returns the display to 0.

#### **Setting 2: Clear User Initialize Values**

All user-set defaults for "User Initialize" are cleared. Setting o2-03 to 2 and pressing the ENTER key erases the values and returns the display to 0.

#### ■ o2-04: Drive Model Selection

Set this parameter when replacing the control board or the terminal board. *Refer to Defaults by Drive Model and Duty Rating ND/HD on page 603* for information on drive model selection.

NOTICE: Drive performance will suffer and protective functions will not operate properly if the correct drive capacity is not set to 02-04.

| No.   | Name                  | Setting Range | Default                      |
|-------|-----------------------|---------------|------------------------------|
| o2-04 | Drive Model Selection | -             | Determined by drive capacity |

**Note:** Change o2-04 setting only when necessary.

## ■ o2-05: Frequency Reference Setting Method Selection

Determines if the ENTER key must be pressed after changing the frequency reference using the digital operator while in the Drive Mode.

## 5.10 o: Operator Related Settings

| No.   | Name                                         | Setting Range | Default |
|-------|----------------------------------------------|---------------|---------|
| 02-05 | Frequency Reference Setting Method Selection | 0, 1          | 0       |

#### Setting 0: ENTER Key Required

The ENTER key must be pressed every time the frequency reference is changed using the digital operator for the drive to accept the change.

#### **Setting 1: ENTER Key Not Required**

The output frequency changes immediately when the reference is changed by the up or down arrow keys on the digital operator. The ENTER key does not need to be pressed. The frequency reference (Fref) is saved to memory after remaining unchanged for 5 seconds.

## ■ o2-06: Operation Selection when Digital Operator is Disconnected

Determines whether the drive will stop when the remote control extension cable of the digital operator is removed in LOCAL mode or when b1-02 or b1-16 is set to 0. When the operator is reconnected, the display will indicate that it was disconnected.

| No.   | Name                                     | Setting Range | Default |
|-------|------------------------------------------|---------------|---------|
| o2-06 | Digital Operator Disconnection Operation | 0, 1          | 1       |

#### **Setting 0: Continue Operation**

The operation continues.

#### Setting 1: Trigger a Fault

The operation stops and triggers an oPr fault. The motor coasts to stop.

## ■ o2-07: Motor Direction at Power Up when Using Operator

Determines the direction the motor will rotate after the drive is powered up and the Run command is given from the digital operator.

**Note:** This parameter is effective only when the Run command is set to be given from the digital operator (b1-02, b1-16=0).

| No.   | Name                                            | Setting Range | Default |
|-------|-------------------------------------------------|---------------|---------|
| o2-07 | Motor Direction at Power Up when Using Operator | 0, 1          | 0       |

#### Setting 0: Forward

**Setting 1: Reverse** 

#### o2-19: Selection of Parameter Write during Uv

Determines whether parameter settings can be changed during a control circuit undervoltage condition. To be used with 24 V Power Supply Unit Built-in model.

| No.   | Name                                   | Setting Range | Default |
|-------|----------------------------------------|---------------|---------|
| o2-19 | Selection of Parameter Write during Uv | 0, 1          | 0       |

## Setting 0: Disabled

Setting 1: Enabled

## ◆ o3: Copy Function

These parameters control the Copy function of the digital operator. The Copy function stores parameter settings into the memory of the digital operator to facilitate the transfer of those settings to other drives that are the same model, capacity, and same control mode setting. *Refer to Copy Function Related Displays on page 414* for a description of errors and displays.

## ■ o3-01: Copy Function Selection

Instructs the drive to Read, Write, or Verify parameter settings.

| No.   | Name                    | Setting Range | Default |
|-------|-------------------------|---------------|---------|
| o3-01 | Copy Function Selection | 0 to 3        | 0       |

#### Setting 0: Copy Select (No Function)

#### Setting 1: INV --> OP READ

Copies all parameters from the drive to the digital operator.

**Note:** Set o3-02 to 1 to unlock copy protection.

#### Setting 2: OP --> INV WRITE

Copies all parameters from the digital operator to the drive.

#### Setting 3: OP<-->INV VERIFY

Compares the parameters in the drive with the parameter settings saved on the digital operator for matches.

## ■ o3-02: Copy Allowed Selection

Allows and restricts the use of the Copy function.

| No.   | Name                   | Setting Range | Default |
|-------|------------------------|---------------|---------|
| 03-02 | Copy Allowed Selection | 0, 1          | 0       |

# Setting 0: Disabled Setting 1: Enabled

## ♦ o4: Maintenance Monitor Settings

## ■ o4-01: Cumulative Operation Time Setting

Sets the cumulative operation time of the drive. The user can also manually set this parameter to begin keeping track of operation time from some desired value. Total operation time can be viewed in monitor U4-01.

**Note:** The value in o4-01 is set in 10 h units. For example, a setting of 30 will set the cumulative operation time counter to 300 h. 300 h will also be displayed in monitor U4-01.

| No.   | Name                              | Setting Range | Default |
|-------|-----------------------------------|---------------|---------|
| o4-01 | Cumulative Operation Time Setting | 0 to 9999     | 0       |

## ■ o4-02: Cumulative Operation Time Selection

Selects the conditions for how the drive keeps track of its total operation time. This time log can be viewed in monitor U4-01.

| No.   | Name                                | Setting Range | Default |
|-------|-------------------------------------|---------------|---------|
| 04-02 | Cumulative Operation Time Selection | 0, 1          | 0       |

#### **Setting 0: Power On Time**

The drive logs the time it is connected to a power supply, regardless of whether the motor is running.

#### Setting 1: Run Time

The drive logs the time that the output is active including when the Run command is active (even if the motor is not rotating) and when there is voltage output.

## o4-03: Cooling Fan Operation Time Setting

Sets the value for how long the cooling fan has been operating. This value can be viewed in monitor U4-03. Parameter o4-03 also sets the base value used for the cooling fan maintenance, which is displayed in U4-04. Reset this parameter to 0 after replacing the cooling fan.

Note:

- 1. The value in o4-03 increases after every 10 hours of use. A setting of 30 will set the cooling fan operation time counter to 300 h. "300" will be displayed in monitor U4-03.
- 2. The cooling fan may require maintenance at an earlier date in harsher environments.

| No.   | Name                               | Setting Range | Default |
|-------|------------------------------------|---------------|---------|
| 04-03 | Cooling Fan Operation Time Setting | 0 to 9999     | 0       |

## ■ o4-05: Capacitor Maintenance Setting

Starts estimates for capacitor maintenance times from this setting value. This value should be reset to 0 when the capacitors have been replaced.

**Note:** The actual maintenance time will depend on the environment where the drive is used.

## 5.10 o: Operator Related Settings

| No.   | Name                          | Setting Range | Default |
|-------|-------------------------------|---------------|---------|
| 04-05 | Capacitor Maintenance Setting | 0 to 150%     | 0%      |

## ■ 04-07: DC Bus Pre-Charge Relay Maintenance Setting

Starts estimates for soft charge bypass relay maintenance times from this setting value. This value should be reset to 0 when the bypass relay has been replaced.

**Note:** The actual maintenance time will depend on the environment where the drive is used.

| No.   | Name                                        | Setting Range | Default |
|-------|---------------------------------------------|---------------|---------|
| o4-07 | DC Bus Pre-charge Relay Maintenance Setting | 0 to 150%     | 0%      |

### ■ o4-11: U2, U3 Initialization

Resets the fault trace and fault history monitors (U2- $\square$  and U3- $\square$ ).

**Note:** Initializing the drive using A1-03 does not reset these monitors.

| No.   | Name                  | Setting Range | Default |
|-------|-----------------------|---------------|---------|
| o4-11 | U2, U3 Initialization | 0, 1          | 0       |

### **Setting 0: No Action**

The drive keeps the previously saved record concerning fault trace and fault history.

#### **Setting 1: Reset Fault Data**

Resets the data for the U2- $\square\square$  and U3- $\square\square$  monitors. Setting o4-11 to 1 and pressing the ENTER key erases fault data and returns the display to 0.

### ■ o4-12: kWh Monitor Initialization

Resets the electric power (U9-01 to U9-03) and regenerative power (U9-04 to U9-06). Resets electric power rate (U9-07 to U9-10) and regenerative power rate (U9-11 to U9-14).

| No.   | Name                       | Setting Range | Default |
|-------|----------------------------|---------------|---------|
| o4-12 | kWh Monitor Initialization | 0, 1          | 0       |

#### **Setting 0: No Action**

Setting 1: Reset kWh Data

#### • o4-13: Number of Run Commands Counter Initialization

Resets the Run command counter displayed in U4-02. Initializing the drive or cycling the power does not reset this monitor.

| No.   | Name                                          | Setting Range | Default |
|-------|-----------------------------------------------|---------------|---------|
| o4-13 | Number of Run Commands Counter Initialization | 0, 1          | 0       |

### **Setting 0: No Action**

The Run command data are kept.

#### **Setting 1: Number of Run Commands Counter**

Resets the Run command counter. The monitor U4-02 will show 0. Setting o4-13 to 1 and pressing the ENTER key erases the counter value and returns the display to 0.

#### ■ o4-19: Power Unit Price

Sets the price per 1 kWh to calculate the power rate displayed for total consumed power (U9-07 to U9-10) and total regenerated power (U9-11 to U9-14).

| No.   | Name             | Setting Range  | Default |
|-------|------------------|----------------|---------|
| o4-19 | Power Unit Price | 0.00 to 650.00 | 000.00  |

## ♦ q: DriveWorksEZ Parameters

These parameters are reserved for use with DriveWorksEZ. Refer to the DriveWorksEZ manual for more information.

## ■ q1-01 to q6-07: Reserved for Use by DriveWorksEZ

These parameters are reserved for use with DriveWorksEZ. Refer to the DriveWorksEZ manual for more information.

## r: DriveWorksEZ Connection Parameters

These parameters are reserved for use with DriveWorksEZ. Refer to the DriveWorksEZ manual for more information.

### ■ r1-01 to r1-40: DriveWorksEZ Connection Parameters

These parameters are reserved for use with DriveWorksEZ. Refer to the DriveWorksEZ manual for more information.

## ◆ T: Motor Tuning

Auto-Tuning automatically sets and tunes parameters required for optimal motor performance.

**Refer to Auto-Tuning on page 163** for details on Auto-Tuning parameters.

## 5.11 U: Monitor Parameters

Monitor parameters let the user view various aspects of drive performance using the digital operator display. Some monitors can be output from terminals FM and AM by assigning the specific monitor parameter number ( $U\Box - \Box\Box$ ) to H4-01 and H4-04. *Refer to H4-01, H4-04: Multi-Function Analog Output Terminal FM, AM Monitor Selection on page 311* for details on assigning functions to an analog output.

## U1: Operation Status Monitors

Status monitors display drive status data such as output frequency and output current. *Refer to U1: Operation Status Monitors on page 586* for a complete list of U1- $\Box\Box$  monitors and descriptions.

## U2: Fault Trace

Use these monitor parameters to view the status of various drive aspects when a fault occurs.

This information is helpful for determining the cause of a fault. *Refer to U2: Fault Trace on page 589* for a complete list of U2- $\square\square$  monitors and descriptions.

U2-□□ monitors are not reset when the drive is initialized. *Refer to o4-11: U2, U3 Initialization on page 358* for instructions on how to reset these monitor values.

Note: Fault trace (i.e., the fault history) is not kept when CPF00, CPF01, CPF06, CPF24, oFA00, oFb00, oFC00, Uv1, Uv2, Uv3, AUv, Fdv, or Src occur.

## U3: Fault History

These parameters display faults that have occurred during operation as well as the drive operation time when those faults occurred. **Refer to U3: Fault History on page 590** for a complete list of U3- $\Box\Box$  monitors and descriptions.

U3-□□ monitors are not reset when the drive is initialized. *Refer to 04-11: U2, U3 Initialization on page 358* for instructions on how to reset these monitor values.

Note: Fault trace (i.e., the fault history) is not kept when CPF00, CPF01, CPF06, CPF24, oFA00, oFb00, oFC00, Uv1, Uv2, Uv3, AUv, Fdv, or Src occur.

## U4: Maintenance Monitors

Maintenance monitors show:

- Runtime data of the drive and cooling fans and number of Run commands issued
- Maintenance data and replacement information for various drive components
- kWh data
- · Highest peak current that has occurred and output frequency at the time the peak current occurred
- · Motor overload status information
- Detailed information about the present Run command and frequency reference source selection

**Refer to U4: Maintenance Monitors on page 591** for a complete list of U4-□□ monitors and descriptions.

#### U5: PID Monitors

These monitors display various aspects of PID control. *Refer to PID Block Diagram on page 215* for details on how these monitors display PID data.

**Refer to U5: PID Monitors on page 593** for a complete list of U5- $\Box\Box$  monitors and descriptions.

## U6: Operation Status Monitors

Control monitors show:

- Reference data for the output voltage and vector control
- Data on PM motor rotor synchronization, forward phase compensation, and flux positioning
- Pulse data from the PG motor encoder
- · Pulse data for Zero Servo control
- ASR and Feed Forward control monitors

Refer to *Figure 5.36* and *Figure 5.37* on page 234 for details and an illustration showing where monitors are located in the ASR block.

- The offset value added to the frequency reference by the frequency offset function. Refer to Setting 44, 45, 46: Offset Frequency 1, 2, 3 on page 292.
- The bias value added to the frequency reference by the Up/Down 2 function (see Setting 75, 76: Up 2/Down 2 Function) **Refer to U6: Operation Status Monitors on page 593** for a complete list of U6-□□ monitors and descriptions.

#### **U8: DriveWorksEZ Monitors**

These monitors are reserved for use with DriveWorksEZ.

A complete description of the U8-\(\Pi\) monitors can be found in the DriveWorksEZ instruction manual.

#### **U9: Power Monitors**

The total consumed power and regenerated power are displayed for these parameters. Refer to U9: Power Monitors on page **595** for a complete list of U9- $\square\square$  monitors and descriptions.

**5.11 U: Monitor Parameters** 

This Page Intentionally Blank

# **Troubleshooting**

This chapter provides descriptions of the drive faults, alarms, errors, related displays, and guidance for troubleshooting. This chapter can also serve as a reference guide for tuning the drive during a trial run.

| 6.1  | SECTION SAFETY                        | 364 |
|------|---------------------------------------|-----|
| 6.2  | MOTOR PERFORMANCE FINE-TUNING         | 366 |
| 6.3  | DRIVE ALARMS, FAULTS, AND ERRORS      | 372 |
| 6.4  | FAULT DETECTION                       | 377 |
| 6.5  | ALARM DETECTION                       | 394 |
| 6.6  | OPERATOR PROGRAMMING ERRORS           | 403 |
| 6.7  | AUTO-TUNING FAULT DETECTION           | 408 |
| 6.8  | COPY FUNCTION RELATED DISPLAYS        | 414 |
| 6.9  | DIAGNOSING AND RESETTING FAULTS       | 416 |
| 6.10 | TROUBLESHOOTING WITHOUT FAULT DISPLAY | 418 |

### 6.1 Section Safety

#### **⚠** DANGER

#### **Electrical Shock Hazard**

#### Before servicing, disconnect all power to the equipment.

The capacitor for the control power supply remains charged even after the power supply is turned off. The charge indicator LED will extinguish when the control power supply voltage is below 50 Vdc. To prevent electric shock, wait for at least the time specified on the warning label, once all indicators are OFF, measure for unsafe voltages to confirm the drive is safe prior to servicing.

Failure to comply will result in death or serious injury.

#### **A** WARNING

#### **Arc Flash Hazard**

#### It is possible that there is more than one source of power for equipment.

Obey the requirements for Electrical Safety in the Workplace and local codes for safe work procedures and applicable personal protective equipment (PPE).

Failure to obey can cause serious injury or death.

#### **Electrical Shock Hazard**

#### Do not operate equipment with covers removed.

Failure to comply could result in death or serious injury.

The diagrams in this section may illustrate drives without covers or safety shields to display details. Be sure to reinstall covers or shields before operating the drives and run the drives according to the instructions described in this manual.

#### Always ground the motor-side grounding terminal.

Improper equipment grounding could result in death or serious injury by contacting the motor case.

#### Do not touch terminals before the drive has fully discharged.

Failure to comply could result in death or serious injury.

Before servicing, disconnect all power to the equipment. The capacitor for the control power supply remains charged even after the power supply is turned off. The charge indicator LED will extinguish when the control power supply voltage is below 50 Vdc. To prevent electric shock, wait for at least the time specified on the warning label; after all indicators are OFF, measure for unsafe voltages to confirm the drive is safe prior to servicing.

# After blowing a fuse or tripping a GFCI, do not attempt to restart the drive or operate peripheral devices until five minutes pass and CHARGE lamp is OFF.

Failure to comply could result in death, serious injury, and damage to the drive.

Check wiring and peripheral device ratings to identify the cause of trips.

Contact Yaskawa or a Yaskawa representative if the cause cannot be identified.

#### Do not allow unqualified personnel to perform work on the drive.

Failure to comply could result in death or serious injury.

Installation, maintenance, inspection, and service must be performed only by authorized personnel familiar installation, adjustment, and maintenance of drives.

#### Do not perform work on the drive while wearing loose clothing, jewelry, or without eye protection.

Failure to comply could result in death or serious injury.

Remove all metal objects such as watches and rings, secure loose clothing and wear eye protection before beginning work on the drive.

#### Do not remove covers or touch circuit boards while the power is on.

Failure to comply could result in death or serious injury.

#### **WARNING**

#### **Fire Hazard**

#### Tighten all terminal screws to the specified tightening torque.

Loose electrical connections could result in death or serious injury by fire due to overheating of electrical connections.

#### Do not use an improper voltage source.

Failure to comply could result in death or serious injury by fire.

Verify that the rated voltage of the drive matches the voltage of the incoming drive input power before applying power.

#### Do not use improper combustible materials for the drive and filter module.

Failure to comply could result in death or serious injury by fire.

Attach the drive and filter module to metal or other noncombustible material.

#### NOTICE

#### Observe proper electrostatic discharge procedures (ESD) when handling the drive and circuit boards.

Failure to comply may result in ESD damage to the drive circuitry.

#### Never connect or disconnect the motor from the drive while the drive is outputting voltage.

Improper equipment sequencing could result in damage to the drive.

#### Do not use unshielded cable for control wiring.

Failure to comply may cause electrical interference resulting in poor system performance. Use shielded twisted-pair wires and ground the shield to the ground terminal of the drive.

#### Do not allow unqualified personnel to use the product.

Failure to comply could result in damage to the drive.

Installation, maintenance, inspection, and service must be performed only by authorized personnel familiar installation, adjustment, and maintenance of drives.

#### Do not modify the drive circuitry.

Failure to comply could result in damage to the drive and will void warranty.

Yaskawa is not responsible for modification of the product made by the user.

Check all the wiring after installing the drive and connecting other devices to ensure that all connections are correct.

Failure to comply could result in damage to the drive.

### 6.2 Motor Performance Fine-Tuning

This section offers helpful information for counteracting oscillation, hunting, and other problems that occur while performing a trial run. Refer to the appropriate control method in this section.

**Note:** This section describes commonly edited parameters that may be set incorrectly. Consult Yaskawa for more information on detailed settings and for fine-tuning the drive.

### Fine-Tuning V/f Control and V/f Control with PG

Table 6.1 Parameters for Fine-Tuning Performance in V/f and V/f w/PG

| Problem                                                                                       | Parameter No.                                                                                        | Corrective Action                                                                                                                                                                                                                                                                                                                                                                     | Default                              | Suggested<br>Setting                                                       |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------|
| Motor hunting and oscillation at speeds between 10 and 40 Hz                                  | Hunting Prevention<br>Gain Setting (n1-02)                                                           | <ul> <li>Reduce the setting if insufficient motor torque relative to the size of the load causes hunting.</li> <li>Increase the setting when motor hunting and oscillation occur with a light load.</li> <li>Reduce the setting if hunting occurs when using a motor with a relatively low inductance, such as a high-frequency motor or a motor with a larger frame size.</li> </ul> | 1.00                                 | 0.10 to 2.00                                                               |
| Motor noise     Motor hunting and oscillation at speeds up to 40 Hz                           | Carrier Frequency<br>Selection (C6-02)                                                               | <ul> <li>Increase the carrier frequency if the motor noise is too loud.</li> <li>Lower the carrier frequency when motor hunting and oscillation occur at speeds up to 40 Hz.</li> <li>The default setting for the carrier frequency depends on the drive model selection (o2-04) and the drive duty mode selection (C6-01).</li> </ul>                                                | 1 (4 kHz) />                         | 0 to 4, F                                                                  |
| <ul><li>Poor torque or speed<br/>response</li><li>Motor hunting and<br/>oscillation</li></ul> | Torque Compensation<br>Primary Delay Time<br>(C4-02)                                                 | <ul> <li>Reduce the setting if motor torque and speed response are too slow.</li> <li>Increase the setting if motor hunting and oscillation occur.</li> </ul>                                                                                                                                                                                                                         | 200 ms <2>                           | 100 to 1000 ms                                                             |
| Poor motor torque at<br>speeds below 10 Hz     Motor hunting and<br>oscillation               | Torque Compensation<br>Gain (C4-01)                                                                  | <ul> <li>Increase the setting if motor torque is insufficient at speeds below 10 Hz.</li> <li>Reduce the setting if motor hunting and oscillation with a relatively light load.</li> </ul>                                                                                                                                                                                            | 1.00                                 | 0.50 to 1.50                                                               |
| Poor motor torque at low speeds     Motor instability at motor start                          | Middle Output Frequency Voltage (E1-08) Minimum Output Frequency Voltage (E1-10)                     | <ul> <li>Increase the setting if motor torque is insufficient at speeds below 10 Hz.</li> <li>Reduce the setting if motor instability occurs at motor start.</li> <li>Note: The recommended setting value is for 200 V class drive. Double this value when using a 400 V class drive.</li> </ul>                                                                                      | E1-08: 15.0 V<br>E1-10: 9.0 V<br><3> | Default setting ±5 V                                                       |
| Poor speed precision (V/f control)                                                            | Slip Compensation Gain (C3-01)                                                                       | Set the motor-rated current (E2-01), motor-rated slip (E2-02), and motor no-load current (E2-03), then adjust the slip compensation gain (C3-01).                                                                                                                                                                                                                                     | 0.0 (no slip compensation)           | 0.5 to 1.5                                                                 |
| Poor speed precision (V/f control with PG)                                                    | ASR Proportional Gain 1 (C5-01) ASR Integral Time 1 (C5-02)  <-> <-> <-> <-> <-> <-> <-> <-> <-> <-> | Adjust the ASR proportional gain 1 (C5-01) and the ASR integral time 1 (C5-02).                                                                                                                                                                                                                                                                                                       | C5-01: 0.20<br>C5-02: 0.200 s        | Proportional gain<br>= 0.10 to 1.00<br>Integral time =<br>0.100 to 2.000 s |

<sup>&</sup>lt;1> Default setting value is dependent on parameter o2-04, Drive Model Selection.

<sup>&</sup>lt;2> Default setting value is dependent on parameter A1-02, Control Method Selection, and o2-04, Drive Model Selection.

<sup>&</sup>lt;3> Changing the control method in A1-02 or selecting a different V/f pattern in E1-03 will change the default setting.

<sup>&</sup>lt;4> ASR in V/f Control with PG only controls the output frequency, and does not allow the same high gain settings as CLV control.

<sup>&</sup>lt;5> Refer to C5: Automatic Speed Regulator (ASR) on page 234 for details on ASR.

### ◆ Fine-Tuning Open Loop Vector Control

Table 6.2 Parameters for Fine-Tuning Performance in OLV

| Problem                                                                                                                                        | Parameter No.                                                                    | Corrective Action                                                                                                                                                                                                                                                                                                                                                                                                 | Default                                    | Suggested<br>Setting |
|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------|
| Poor motor torque<br>and speed response     Motor hunting and<br>oscillation at speeds<br>between 10 and 40<br>Hz                              | Speed Feedback<br>Detection Control (AFR)<br>Gain<br>(n2-01)                     | <ul> <li>Gradually reduce the setting in 0.05 increments if motor torque and speed response are too slow.</li> <li>Gradually increase the setting in 0.05 increments if motor hunting and oscillation occur.</li> </ul>                                                                                                                                                                                           | 1.00                                       | 0.50 to 2.00         |
| <ul> <li>Poor motor torque<br/>and speed response</li> <li>Motor hunting and<br/>oscillation at speeds<br/>between 10 and 40<br/>Hz</li> </ul> | Speed Feedback<br>Detection Control (AFR)<br>Time Constant 1<br>(n2-02)          | <ul> <li>Gradually reduce the setting in 10 ms increments and check the performance to improve motor torque speed response.</li> <li>Gradually increase the setting by 50 ms increments and check the performance if motor hunting and oscillation occur as a result of load inertia.</li> <li>Note: When changing n2-02, set C4-02 (Torque Compensation Primary Delay Time) accordingly.</li> </ul>              | 50 ms                                      | 50 to 2000 ms        |
| <ul> <li>Poor motor torque<br/>and speed response</li> <li>Motor hunting and<br/>oscillation</li> </ul>                                        | Torque Compensation<br>Primary Delay Time<br>(C4-02)                             | <ul> <li>Gradually reduce the setting in 2 ms increments and check the performance to improve motor torque speed response.</li> <li>Gradually increase the setting in 10 ms increments if motor hunting and oscillation occur.</li> <li>Note: Ensure that C4-02 ≤ C4-06. When making adjustments to C4-02, increase the Speed Feedback Detection Control (AFR) Time Constant 1 (n2-02) proportionally.</li> </ul> | 20 ms < <i>I</i> >                         | 20 to 100 ms         |
| Poor speed response and stability                                                                                                              | Slip Compensation<br>Primary Delay Time<br>(C3-02)                               | <ul> <li>Gradually reduce the setting in 10 ms increments if response is slow.</li> <li>Gradually increase the setting in 10 ms increments if speed is unstable.</li> </ul>                                                                                                                                                                                                                                       | 200 ms <2>                                 | 100 to 500 ms        |
| Poor speed precision                                                                                                                           | Slip Compensation Gain (C3-01)                                                   | <ul> <li>Gradually increase the setting in 0.1 ms increments if speed is too slow.</li> <li>Gradually reduce the setting in 0.1 ms increments if speed is too fast.</li> </ul>                                                                                                                                                                                                                                    | 1.0 <2>                                    | 0.5 to 1.5           |
| Poor speed precision during regenerative operation                                                                                             | Slip Compensation<br>Selection during<br>Regeneration (C3-04)                    | Enable slip compensation during regeneration by setting parameter $C3-04 = 1$ .                                                                                                                                                                                                                                                                                                                                   | 0                                          | 1                    |
| Motor noise     Motor hunting and oscillation occur at speeds below 10 Hz                                                                      | Carrier Frequency<br>Selection (C6-02)                                           | <ul> <li>Increase the carrier frequency if there is too much motor noise.</li> <li>Reduce the carrier frequency if motor hunting and oscillation occur at low speeds.</li> <li>Note: The default setting for the carrier frequency depends on the drive model selection (o2-04) and drive duty mode selection (C6-01).</li> </ul>                                                                                 | 1 (4 kHz)                                  | 0 to 4, F <3>        |
| <ul><li>Poor motor torque at low speeds</li><li>Poor speed response</li><li>Motor instability at start</li></ul>                               | Middle Output Frequency Voltage (E1-08) Minimum Output Frequency Voltage (E1-10) | <ul> <li>Increase the setting if motor torque and speed response are too slow.</li> <li>Reduce the setting if the motor exhibits excessive instability at start-up.</li> <li>Note: When working with a relatively light load, increasing this value too much can cause overtorque.</li> </ul>                                                                                                                     | E1-08:<br>11.0 V<br><2><br>E1-10:<br>2.0 V | Default setting ±2 V |

Oefault setting value is dependent on parameter A1-02, Control Method Selection, and o2-04, Drive Model Selection.

When using OLV, leave the torque compensation gain (C4-01) at its default setting of 1.00.

<sup>&</sup>lt;2> Changing the control method in A1-02 or selecting a different V/f pattern in E1-03 will change the default setting.

<sup>&</sup>lt;3> Default setting value is dependent on parameter o2-04, Drive Model Selection.

### **♦** Fine-Tuning Closed Loop Vector Control

Table 6.3 Parameters for Fine-Tuning the Performance in CLV

| Problem                                                                                                                     | Parameter No.                                                                                                                                                                                                                  | Corrective Action                                                                                                                                                                                                                                                                                         | Default          | Suggested<br>Setting        |
|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------|
| Poor torque or speed response     Motor hunting and oscillation                                                             | ASR Proportional Gain 1<br>(C5-01)<br>ASR Proportional Gain 2<br>(C5-03)                                                                                                                                                       | <ul> <li>Gradually increase the ASR gain setting in increments of 5 if motor torque and speed response are too slow.</li> <li>Reduce the setting if motor hunting and oscillation occur.</li> <li>Only adjust parameter C5-03 when C5-05 &gt; 0.</li> <li>Perform ASR Auto-Tuning if possible.</li> </ul> | 20.00            | 10.00 to 50.00              |
| Poor torque or speed response     Motor hunting and oscillation                                                             | ASR Integral Time 1 (C5-02)<br>ASR Integral Time 2 (C5-04)                                                                                                                                                                     | <ul> <li>Reduce the setting if motor torque and speed response are too slow.</li> <li>Increase the setting if motor hunting and oscillation occur.</li> <li>Only adjust parameter C5-04 when C5-05 &gt; 0.</li> </ul>                                                                                     | 0.500 s          | 0.300 to 1.000 s            |
| Difficulty maintaining the<br>ASR proportional gain or<br>the integral time at the low<br>or high end of the speed<br>range | ASR Gain Switching Frequency (C5-07) </td <td>Switch the drive between two different ASR proportional gain and integral time settings based on the output frequency.</td> <td>0.0 Hz</td> <td>0.0 to max output frequency</td> | Switch the drive between two different ASR proportional gain and integral time settings based on the output frequency.                                                                                                                                                                                    | 0.0 Hz           | 0.0 to max output frequency |
| Motor hunting and oscillation                                                                                               | ASR Primary Delay<br>Time Constant (C5-06)                                                                                                                                                                                     | <ul> <li>Gradually reduce the setting in 0.01 s increments if motor torque and speed response are too slow.</li> <li>Increase the setting if the load is less rigid and subject to oscillation.</li> </ul>                                                                                                | 0.004 s          | 0.004 to 0.020 s            |
| Motor noise     Control motor hunting<br>and oscillation occur at<br>speeds below 3 Hz                                      | Carrier Frequency<br>Selection (C6-02)                                                                                                                                                                                         | <ul> <li>Increase the carrier frequency if there is too much motor noise.</li> <li>Reduce the carrier frequency if motor hunting and oscillation occur at low speeds.</li> </ul>                                                                                                                          | 1 (4 kHz)<br><2> | 0 to 4, F                   |
| Poor torque response                                                                                                        | Vibration Suppression<br>Level (n1-09)                                                                                                                                                                                         | Set to 0.00.                                                                                                                                                                                                                                                                                              | 2.00             | 0.00                        |
| Overshoot or undershoot when the speed changes with high inertia load                                                       | Feed Forward Control<br>Selection (n5-01)<br>Inertia Tuning<br>(T1-01 = 8)                                                                                                                                                     | Set parameter n5-01 to 1 to Enable Feed Forward then perform Inertia Tuning. Manually set parameters C5-17, C5-18, and n5-03 if Inertia Tuning is not possible.                                                                                                                                           | 0                | 1                           |

<sup>&</sup>lt;1> Refer to C5: Automatic Speed Regulator (ASR) on page 234 for details on ASR.

<sup>&</sup>lt;2> Default setting is dependent on parameter o2-04, Drive Model Selection.

## **♦** Fine-Tuning Open Loop Vector Control for PM Motors

Table 6.4 Parameters for Fine-Tuning Performance in OLV/PM

| Table 6.4 Farameters for Fine-Tuning Performance in OLV/PM                            |                                                                                     |                                                                                                                                                                                                                                                                                |                                                                                  |                                                  |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------|
| Problem                                                                               | Parameter No.                                                                       | Corrective Action                                                                                                                                                                                                                                                              | Default                                                                          | Suggested<br>Setting                             |
| Undesirable motor performance                                                         | Motor parameters (E1-□□, E5-□□)                                                     | <ul> <li>Check the settings for base and maximum frequency in the E1-□□ parameters.</li> <li>Check E5-□□ parameters and set motor data correctly. Do not enter line-to-line data where single-phase data is required, and vice versa.</li> <li>Perform Auto-Tuning.</li> </ul> | -                                                                                | -                                                |
|                                                                                       | Load Inertia (n8-55)                                                                | Adjust parameter n8-55 to meet the load inertia ratio of the machine.                                                                                                                                                                                                          | 0                                                                                | Close to the actual load inertia ratio           |
| Poor motor torque and speed response                                                  | Speed Feedback<br>Detection Control Gain<br>(for PM Motors) (n8-45)                 | Increase the speed feedback detection control gain (n8-45).                                                                                                                                                                                                                    | 0.8                                                                              | Increase in increments of 0.05                   |
|                                                                                       | Torque Compensation<br>Gain (C4-01)                                                 | Enable torque compensation.  Note: Setting this value too high can cause overcompensation and motor oscillation.                                                                                                                                                               | 0                                                                                | 1                                                |
|                                                                                       | Acceleration/<br>Deceleration Pull-In<br>Current (for PM Motors)<br>(n8-51)         | Increase the pull-in current in n8-51.                                                                                                                                                                                                                                         | 50%                                                                              | Increase in steps of 5%                          |
| Oscillation at start or the motor stalls                                              | DC Injection Braking<br>Current (b2-02), DC<br>Injection Time at Start<br>(b2-03)   | Use DC Injection Braking at start to align the rotor. This may cause a short reverse rotation at start.                                                                                                                                                                        | b2-02 = 50%<br>b2-03 = 0.0 s                                                     | b2-03 = 0.5 s<br>Increase b2-02 if<br>needed     |
|                                                                                       | Load Inertia (n8-55)                                                                | Increase the load inertia ratio.  Note: Setting this value too high can cause overcompensation and motor oscillation.                                                                                                                                                          | 0                                                                                | Close to the actual load inertia ratio           |
| Stalling or oscillation occur when load is                                            | Pull-In Current<br>Compensation Time<br>Constant (for PM<br>Motors) (n8-47)         | Reduce n8-47 if hunting occurs during constant speed.                                                                                                                                                                                                                          | 5.0 s                                                                            | Reduce in increments of 0.2 s                    |
| applied during constant speed                                                         | Pull-In Current (for PM Motors) (n8-48)                                             | Increase the pull-in current in n8-48.                                                                                                                                                                                                                                         | 30%                                                                              | Increase in increments of 5%                     |
|                                                                                       | Load Inertia (n8-55)                                                                | Increase the load inertia ratio.                                                                                                                                                                                                                                               | 0                                                                                | Close to the actual load inertia ratio           |
| Hunting or oscillation occur                                                          | Speed Feedback<br>Detection Control Gain<br>(for PM Motors) (n8-47)                 | Reduce the speed feedback detection gain in n8-45.                                                                                                                                                                                                                             | 0.8                                                                              | Increase in increments 0.05                      |
| STo fault trips when the load is not excessively high                                 | Motor Induction<br>Voltage Constant 1/2<br>(Ke) (for PM Motors)<br>(E5-09 or E5-24) | <ul> <li>Check and adjust the induced voltage constant.</li> <li>Check the motor nameplate and the data sheet or contact the motor manufacturer.</li> </ul>                                                                                                                    | Depends on drive capacity and motor code                                         | Refer to the motor data sheet or the nameplate.  |
| Stalling or STo occurs at<br>high speed as the output<br>voltage becomes<br>saturated | Output Voltage Limit<br>(for PM Motors) (n8-62)                                     | Set the value of the input voltage to parameter n8-62.                                                                                                                                                                                                                         | 200 Vac<br>(200 V class)<br>400 Vac<br>(400 V class)<br>575 Vac<br>(600 V class) | Set equal to input voltage                       |
| Oscillation at constant output when U6-02 displays -10% or more.                      | Output Voltage Limit<br>Proportional Gain (for<br>PM Motors) (n8-63)                | Decrease the output voltage limit proportional gain (n8-63).  Note: The speed response will be slow if the setting is too low.                                                                                                                                                 | 1.00                                                                             | 0.10 to 1.00<br>Decrease in<br>decrements of 0.1 |

### **♦** Fine-Tuning Advanced Open Loop Vector Control for PM Motors

Table 6.5 Parameters for Fine-Tuning Performance in AOLV/PM

| Problem                                                                                                                     | Parameter No.                                                            | Corrective Action                                                                                                                                                                                                                                  | Default | Suggested<br>Setting                             |
|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------|
| <ul><li>Poor torque or speed<br/>response</li><li>Motor hunting and<br/>oscillation</li></ul>                               | ASR Proportional Gain<br>1 (C5-01)<br>ASR Proportional Gain<br>2 (C5-03) | <ul> <li>Gradually increase the setting in increments of 5 if motor torque and speed response are too slow.</li> <li>Reduce the setting if motor hunting and oscillation occur.</li> <li>Only adjust parameter C5-03 when C5-05 &gt; 0.</li> </ul> | 10.00   | 5.00 to 30.00 <1>                                |
| <ul><li>Poor torque or speed response</li><li>Motor hunting and oscillation</li></ul>                                       | ASR Integral Time 1<br>(C5-02)<br>ASR Integral Time 2<br>(C5-04)         | <ul> <li>Reduce the setting if motor torque and speed response are too slow.</li> <li>Increase the setting if motor hunting and oscillation occur.</li> <li>Only adjust parameter C5-04 when C5-05 &gt; 0.</li> </ul>                              | 0.500 s | 0.300 to<br>1.000 s                              |
| Difficulty maintaining<br>the ASR proportional<br>gain or the integral time<br>at the low or high end of<br>the speed range | ASR Gain Switching<br>Frequency (C5-07)                                  | Switch the drive between two different ASR proportional gain and integral time settings based on the output frequency.                                                                                                                             | 0.0%    | 0.0 to<br>Max r/min                              |
| Motor hunting and oscillation                                                                                               | ASR Primary Delay<br>Time Constant (C5-06)                               | Increase the setting if the load is less rigid and subject to oscillation.                                                                                                                                                                         | 0.010 s | 0.016 to<br>0.035 s <1>                          |
| Motor stalling makes<br>normal operation<br>impossible                                                                      | Motor parameters (E1-□□, E5-□□)                                          | Check the motor parameter settings.                                                                                                                                                                                                                | -       | -                                                |
| Oscillation at constant<br>output when U6-02<br>displays -10% or more                                                       | Output Voltage Limit<br>Proportional Gain (for<br>PM Motors) (n8-63)     | Decrease the output voltage limit proportional gain (n8-63).  Note: The speed response will be slow if the setting is too low.                                                                                                                     | 1.00    | 0.10 to 1.00<br>Decrease in<br>decrements of 0.1 |
| Poor torque response                                                                                                        | Vibration Suppression<br>Level (n1-09)                                   | Set to 0.00.                                                                                                                                                                                                                                       | 2.00    | 0.00                                             |

<sup>&</sup>lt;1> Optimal settings will differ between no-load and loaded operation.

### ◆ Fine-Tuning Closed Loop Vector Control for PM Motors

Table 6.6 Parameters for Fine-Tuning Performance in CLV/PM

| Problem                                                                                                                     | Parameter No.                                                                   | Corrective Action                                                                                                                                                                                                                             | Default | Suggested<br>Setting    |
|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------|
| <ul> <li>Poor torque or speed<br/>response</li> <li>Motor hunting and<br/>oscillation</li> </ul>                            | ASR Proportional Gain<br>1 (C5-01)<br>ASR Proportional Gain<br>2 (C5-03)        | <ul> <li>Gradually increase the setting in increments of 5 if motor torque and speed response are too slow.</li> <li>Reduce the setting if motor hunting and oscillation occur.</li> <li>Perform ASR Gain Auto-Tuning if possible.</li> </ul> | 20.00   | 10.00 to 50.00 <i></i>  |
| <ul><li>Poor torque or speed<br/>response</li><li>Motor hunting and<br/>oscillation</li></ul>                               | ASR Integral Time 1<br>(C5-02)<br>ASR Integral Time 2<br>(C5-04)                | <ul> <li>Reduce the setting if torque and speed response are too slow.</li> <li>Increase the setting if motor hunting and oscillation occur.</li> </ul>                                                                                       | 0.500 s | 0.300 to<br>1.000 s <1> |
| Difficulty maintaining<br>the ASR proportional<br>gain or the integral time<br>at the low or high end of<br>the speed range | ASR Gain Switching<br>Frequency (C5-07)                                         | Switch the drive between two different ASR proportional gain and integral time settings based on the output frequency.                                                                                                                        | 0.0%    | 0.0 to<br>Max r/min     |
| Motor hunting and oscillation                                                                                               | ASR Primary Delay<br>Time Constant (C5-06)                                      | Increase the setting if the load is less rigid and subject to oscillation.                                                                                                                                                                    | 0.016 s | 0.004 to<br>0.020 s <1> |
| Motor stall makes<br>normal operation<br>impossible                                                                         | Motor parameters (E1-<br>□□, E5-□□)                                             | Check the motor parameter settings.                                                                                                                                                                                                           | -       | -                       |
| Overshoot or<br>undershoot at speed<br>changes with high<br>inertia load                                                    | Feed Forward Control<br>Selection (n5-01)<br>Inertia Auto-Tuning<br>(T2-01 = 8) | Set parameter n5-01 to 1 to Enable Feed Forward then perform Inertia Tuning. Manually set parameters C5-17, C5-18, and n5-03 if Inertia Tuning is not possible.                                                                               | 0       | 1                       |

| d | 3 |  |
|---|---|--|
| c | 5 |  |
| = | 3 |  |
| ٤ | 2 |  |
| ٠ | - |  |
|   |   |  |
| d | d |  |

| Problem                                                         | Parameter No.                                                        | Corrective Action                                                                                                              | Default | Suggested<br>Setting                             |
|-----------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------|
| Oscillation at constant output when U6-02 displays -10% or more | Output Voltage Limit<br>Proportional Gain (for<br>PM Motors) (n8-63) | Decrease the output voltage limit proportional gain (n8-63).  Note: The speed response will be slow if the setting is too low. | 1.00    | 0.10 to 1.00<br>Decrease in<br>decrements of 0.1 |
| Poor torque response                                            | Vibration Suppression<br>Level (n1-09)                               | Set to 0.00.                                                                                                                   | 2.00    | 0.00                                             |

<sup>&</sup>lt;1> Optimal settings will differ between no-load and loaded operation.

### **Parameters to Minimize Motor Hunting and Oscillation**

In addition to the parameters discussed on pages 366 through 370, parameters in Table 6.7 indirectly affect motor hunting and oscillation.

**Table 6.7 Parameters that Affect Control Performance in Applications** 

| Name<br>(Parameter No.)                              | Application                                                                                                                                                                                                                                           |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dwell Function<br>(b6-01 through b6-04)              | Prevents motor speed loss by maintaining the output frequency when working with heavy loads or when there is powerful backlash on the machine side.                                                                                                   |
| Droop Function<br>(b7-01, b7-02)                     | Balances the load between two motors driving the same load when A1-02 is set to 3 or 7.                                                                                                                                                               |
| Accel/Decel Time<br>(C1-01 through C1-11)            | Adjusting accel and decel times will affect the torque presented to the motor during acceleration or deceleration.                                                                                                                                    |
| S-Curve Characteristics<br>(C2-01 through C2-04)     | Prevents shock at the beginning and end of acceleration and deceleration.                                                                                                                                                                             |
| Jump Frequency<br>(d3-01 through d3-04)              | Skips over the resonant frequencies of connected machinery.                                                                                                                                                                                           |
| Analog Input Filter Time Constant (H3-13)            | Prevents fluctuation in the analog input signal due to noise.                                                                                                                                                                                         |
| Stall Prevention<br>(L3-01 through L3-06)            | <ul> <li>Prevents motor speed loss when the load is too heavy or during sudden acceleration/deceleration.</li> <li>Adjustment is not normally necessary because Stall Prevention is enabled as a default.</li> </ul>                                  |
| Torque Limits<br>(L7-01 through L7-04, L7-06, L7-07) | <ul> <li>Sets the maximum torque for OLV Control.</li> <li>When increasing setting values, select the drive based on calculations from the motor rated torque. Motor speed loss may occur with heavy loads.</li> </ul>                                |
| Feed Forward Control<br>(n5-01 through n5-03)        | Increases response for acceleration/deceleration and reduces overshooting when there is low machine rigidity and ASR gain cannot be increased. Set the inertia ratio between the load and motor and the acceleration time of the motor running alone. |

## 6.3 Drive Alarms, Faults, and Errors

### ◆ Types of Alarms, Faults, and Errors

Check the digital operator for information about possible faults if the drive or motor fails to operate. *Refer to Using the Digital Operator on page 141*.

If problems occur that are not covered in this manual, contact Yaskawa or a Yaskawa representative with the following information:

- Drive model
- Software version
- · Date of purchase
- Description of the problem

**Table 6.8** contains descriptions of the various types of alarms, faults, and errors that may occur while operating the drive.

Table 6.8 Types of Alarms, Faults, and Errors

| Table 6.8 Types of Alarms, Faults, and Errors |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Type                                          | Drive Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Faults                                        | <ul> <li>When the drive detects a fault:</li> <li>The digital operator displays text indicating the specific fault and the ALM indicator LED remains lit until the fault is reset.</li> <li>The fault interrupts drive output and the motor coasts to a stop.</li> <li>Some faults allow the user to select the stopping method when the fault occurs.</li> <li>Fault output terminals MA-MC will close, and MB-MC will open.</li> <li>The drive will remain inoperable until the fault is cleared. <i>Refer to Fault Reset Methods on page 417</i>.</li> </ul>                                                                                                                                              |  |  |
| Minor Faults and<br>Alarms                    | <ul> <li>When the drive detects an alarm or a minor fault:</li> <li>The digital operator displays text indicating the specific alarm or minor fault, and the ALM indicator LED flashes.</li> <li>The drive continues running the motor, although some alarms allow the user to select a stopping method when the alarm occurs.</li> <li>A multi-function contact output set to be tripped by a minor fault (H2- □□ = 10) closes. If the output is set to be tripped by an alarm, the contact will not close.</li> <li>The digital operator displays text indicating a specific alarm and the ALM indicator LED flashes.</li> <li>Remove the cause of the problem to reset a minor fault or alarm.</li> </ul> |  |  |
| Operation Errors                              | An operation error occurs when parameter settings conflict or do not match hardware settings (such as with an option card). When the drive detects an operation error:  • The digital operator displays text indicating the specific error.  • Multi-function contact outputs do not operate.  The drive will not operate the motor until the error has been reset. Correct the settings that caused the operation error to clear the error.                                                                                                                                                                                                                                                                 |  |  |
| Tuning Errors                                 | Tuning errors occur while performing Auto-Tuning. When the drive detects a tuning error:  • The digital operator displays text indicating the specific error.  • Multi-function contact outputs do not operate.  • Motor coasts to stop. Remove the cause of the error and repeat the Auto-Tuning process.                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Copy Function Errors                          | Copy Function Errors occur when using the digital operator or the USB Copy Unit to copy, read, or verify parameter settings.  • The digital operator displays text indicating the specific error.  • Multi-function contact outputs do not operate.  Pressing any key on the digital operator will clear the fault. Investigate the cause of the problem (such as model incompatibility) and try again.                                                                                                                                                                                                                                                                                                      |  |  |

### Alarm and Error Displays

#### ■ Faults

**Table 6.9** gives an overview of possible fault codes. Conditions such as overvoltages can trip faults and alarms. It is important to distinguish between faults and alarms to determine the proper corrective actions.

When the drive detects a fault, the ALM indicator LED lights, the fault code appears on the digital operator, and the fault contact MA-MB-MC triggers. An alarm is present if the ALM LED blinks and the fault code on the digital operator flashes. *Refer to Minor Faults and Alarms on page 375* for a list of alarm codes.

**Table 6.9 Fault Displays** 

| Digital Op<br>Displ                                                                                      | erator<br>ay                                                                                                                  | Name                                       | Page       |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------|
| Rou                                                                                                      | Aov                                                                                                                           | Power Supply Overvoltage                   | 377        |
| RUu                                                                                                      | AUv                                                                                                                           | Power Supply Undervoltage                  | 377        |
| <i>6US</i>                                                                                               | bUS                                                                                                                           | Option Communication Error                 | 377        |
| EΕ                                                                                                       | CE                                                                                                                            | MEMOBUS/Modbus Communication<br>Error      | 378        |
| [F                                                                                                       | CF                                                                                                                            | Control Fault                              | 378        |
| [oF                                                                                                      | CoF                                                                                                                           | Current Offset Fault                       | 378        |
| CPF00 to CPF03, CPF07, CPF08, CPF11 to CPF16 to CPF26 to CPF26 to CPF35, CPF40 to CPF45 <<>> <>> <>> <>> | CPF00 to<br>CPF03,<br>CPF07,<br>CPF08,<br>CPF11 to<br>CPF14,<br>CPF16 to<br>CPF24,<br>CPF26 to<br>CPF35,<br>CPF40 to<br>CPF45 | Control Circuit Error                      | 378        |
| CPF06                                                                                                    | CPF06                                                                                                                         | Control Circuit Error                      | <i>378</i> |
| CPF25                                                                                                    | CPF25                                                                                                                         | Terminal Board Not Connected               | <i>379</i> |
| dEu                                                                                                      | dEv                                                                                                                           | Speed Deviation (for Control Mode with PG) | 379        |
| doH                                                                                                      | doH                                                                                                                           | Damping Resistor Overheat                  | 379        |
| du l                                                                                                     | dv1                                                                                                                           | Z Pulse Fault                              | 379        |
| duZ                                                                                                      | dv2                                                                                                                           | Z Pulse Noise Fault Detection              | 379        |
| du3                                                                                                      | dv3                                                                                                                           | Inversion Detection                        | 379        |
| du Y                                                                                                     | dv4                                                                                                                           | Inversion Prevention Detection             | 380        |
| du 7                                                                                                     | dv7                                                                                                                           | Initial Polarity Estimation Timeout        | 380        |
| dbJRL                                                                                                    | dWAL                                                                                                                          | DW 1 . E. 7 E 1:                           | 200        |
| dbJFL                                                                                                    | dWFL                                                                                                                          | DriveWorksEZ Fault                         | 380        |
| dbJF I                                                                                                   | dWF1                                                                                                                          | EEPROM Memory DriveWorksEZ<br>Data Error   | 380        |
| E 5                                                                                                      | E5                                                                                                                            | MECHATROLINK Watchdog Timer<br>Error       | 381        |
| EF0                                                                                                      | EF0                                                                                                                           | Option Card External Fault                 | 381        |
| EF I to EFB                                                                                              | EF1 to<br>EF8                                                                                                                 | External Fault (input terminal S1 to S8)   | 381        |
| Err                                                                                                      | Err                                                                                                                           | EEPROM Write Error                         | 381        |
| FRn                                                                                                      | FAn                                                                                                                           | Fan Fault                                  | 382        |
| FbH                                                                                                      | FbH                                                                                                                           | Excessive PID Feedback                     | 382        |
| FbL                                                                                                      | FbL                                                                                                                           | PID Feedback Loss                          | 382        |
| Fdu                                                                                                      | Fdv                                                                                                                           | Power Supply Frequency Fault               | 382        |

| Digital Operator<br>Display |                   | Name                                                 | Page |
|-----------------------------|-------------------|------------------------------------------------------|------|
| GF .                        | GF                | Ground Fault                                         | 382  |
| LF                          | LF                | Output Phase Loss                                    | 383  |
| LF2                         | LF2               | Current Imbalance                                    | 383  |
| L 5 o<br><4>                | LSo               | LSo Fault                                            | 384  |
| n5E                         | nSE               | Node Setup Error                                     | 383  |
| oΕ                          | оC                | Overcurrent                                          | 384  |
| oFA00<br><3>                | oFA00             | Option Card Connection Error at Option<br>Port CN5-A | 385  |
| oFRO I                      | oFA01             | Option Card Fault at Option Port CN5-A               | 385  |
| oFAO3 to<br>oFAO5           | oFA03 to<br>oFA06 | Option Card Error Occurred at Option<br>Port CN5-A   | 385  |
| oFA 10,<br>oFA 1 1          | oFA10,<br>oFA11   | Option Card Error (CN5-A)                            | 385  |
| oFA 12 to<br>oFA 17         | oFA12 to<br>oFA17 | Option Card Connection Error (CN5-A)                 | 385  |
| oFA30 to<br>oFA43           | oFA30 to<br>oFA43 | Comm Option Card Connection Error (CN5-A)            | 385  |
| oFb00<br><3>                | oFb00             | Option Card Fault at Option Port CN5-B               | 385  |
| oFb0 I                      | oFb01             | Option Card Fault at Option Port CN5-B               | 386  |
| oF602                       | oFb02             | Option Card Fault at Option Port CN5-B               | 386  |
| of603,<br>of611             | oFb03,<br>oFb11   | Option card error occurred at Option Port CN5-B      | 386  |
| oFb 12 to<br>oFb 17         | oFb12 to<br>oFb17 | Option card error occurred at Option<br>Port CN5-B   | 386  |
| oF[00<br><3>                | oFC00             | Option Card Connection Error at Option Port CN5-C    | 386  |
| oFEO I                      | oFC01             | Option Card Fault at Option Port CN5-C               | 386  |
| oFE02                       | oFC02             | Option Card Fault at Option Port CN5-C               | 386  |
| oF[03,<br>oF[11             | oFC03,<br>oFC11   | Option Card Error Occurred at Option<br>Port CN5-C   | 387  |
| oF[ 12 to<br>oF[ 17         | oFC12 to<br>oFC17 | Option Card Error Occurred at Option<br>Port CN5-C   | 387  |
| oFE50 to<br>oFE55           | oFC50 to<br>oFC55 | Option Card Error Occurred at Option<br>Port CN5-C   | 387  |
| οН                          | οН                | Heatsink Overheat                                    | 387  |
| oK I                        | oH1               | Overheat 1 (Heatsink Overheat)                       | 387  |
| oH3                         | оН3               | Motor Overheat Alarm (PTC input)                     | 387  |

#### 6.3 Drive Alarms, Faults, and Errors

| Digital Op<br>Displ |      | Name                                        | Page |
|---------------------|------|---------------------------------------------|------|
| o#4                 | oH4  | Motor Overheat Fault (PTC input)            | 388  |
| oL I                | oL1  | Motor Overload                              | 388  |
| oL2                 | oL2  | Drive Overload                              | 389  |
| oL 3                | oL3  | Overtorque Detection 1                      | 389  |
| oL4                 | oL4  | Overtorque Detection 2                      | 389  |
| oL5                 | oL5  | Mechanical Weakening Detection 1            | 389  |
| oPr                 | oPr  | External Digital Operator Connection Fault  | 390  |
| o 5                 | oS   | Overspeed                                   | 390  |
| 00                  | ov   | Control Circuit Overvoltage                 | 390  |
| PGo                 | PGo  | PG Disconnect<br>(for Control Mode with PG) | 390  |
| РСоН                | PGoH | PG Hardware Fault<br>(when using PG-X3)     | 391  |
| 5 <i>CF</i>         | SCF  | Safety Circuit Fault                        | 391  |

| Digital Op<br>Displ |     | Name                                                 | Page |
|---------------------|-----|------------------------------------------------------|------|
| SEr                 | SEr | Too Many Speed Search Restarts                       | 391  |
| SoX                 | SoH | Snubber Discharge Resistor Overheat                  | 391  |
| SrE                 | SrC | Phase Order Detection Fault                          | 391  |
| Ser                 | Srr | Internal Resistance Fault                            | 391  |
| 5Fo                 | STo | Pull-Out Detection                                   | 392  |
| 508                 | SvE | Zero Servo Fault                                     | 392  |
| UL 3                | UL3 | Undertorque Detection 1                              | 392  |
| ULY                 | UL4 | Undertorque Detection 2                              | 392  |
| ULS                 | UL5 | Mechanical Weakening Detection 2                     | 392  |
| Uu I                | Uv1 | Control Circuit Undervoltage Fault                   | 393  |
| UuZ                 | Uv2 | Control Power Supply Voltage Fault                   | 393  |
| Uu 3                | Uv3 | Undervoltage 3 (Soft-Charge Bypass<br>Circuit Fault) | 393  |

<sup>&</sup>lt;1> Displayed as CPF00 when occurring at drive power up. When one of the faults occurs after successfully starting the drive, the display will show CPF01.

<sup>&</sup>lt;2> Displayed as CPF20 when occurring at drive power up. When one of the faults occurs after successfully starting the drive, the display will show CPF21.

<sup>&</sup>lt;3> Fault trace (i.e., the fault history) is not kept when CPF00, CPF01, CPF06, CPF24, oFA00, oFb00, oFC00, Uv1, Uv2, Uv3, AUv, Fdv, or Src occur.

<sup>&</sup>lt;4> This function prevents continuous operation in reverse when using high frequency injection (n8-57 = 1) in AOLV/PM (A1-02 = 6) with a motor for which no motor code has been entered (it does not only prevent reverse operation). Set L8-93, L8-94, and L8-95 to low values within range of erroneous detection to quickly detect undesirable reverse operation.

#### ■ Minor Faults and Alarms

Refer to *Table 6.10* for an overview of possible alarm codes. Conditions such as overvoltages can trip faults and alarms. It is important to distinguish between faults and alarms to determine the proper corrective actions.

When the drive detects an alarm, the ALM indicator LED blinks and the alarm code display flashes. Most alarms trigger a digital output programmed for alarm output (H2- $\Box\Box$  = 10). A fault (not an alarm) is present if the ALM LED lights without blinking. *Refer to Faults on page 373* for information on fault codes.

Table 6.10 Minor Fault and Alarm Displays

| Digital Operator<br>Display |               | Name                                                                 | Minor Fault<br>Output<br>(H2-□□ =<br>10) | Page |
|-----------------------------|---------------|----------------------------------------------------------------------|------------------------------------------|------|
| RE-                         | AEr           | Station Address Setting Error<br>(CC-Link, CANopen,<br>MECHATROLINK) | YES                                      | 394  |
| RU∪                         | AUv           | Power Supply Undervoltage                                            | YES                                      | 377  |
| 66                          | bb            | Baseblock                                                            | No output <2>                            | 394  |
| <i>6U5</i>                  | bUS           | Option Card Communications<br>Error                                  | YES                                      | 394  |
| <i>6U5Y</i>                 | bUSy          | Parameter Change                                                     | No output                                | 395  |
| EALL                        | CALL          | Serial Communication<br>Transmission Error                           | YES                                      | 395  |
| ΕE                          | CE            | MEMOBUS/Modbus<br>Communication Error                                | YES                                      | 395  |
| Er5F                        | CrST          | Cannot Reset                                                         | YES                                      | 396  |
| EBE                         | СуС           | MECHATROLINK Comm.<br>Cycle Setting Error                            | YES                                      | 396  |
| dΕυ                         | dEv           | Excessive Speed Deviation (for Control Mode with PG)                 | YES                                      | 396  |
| dnE                         | dnE           | Drive Disabled                                                       | YES                                      | 396  |
| doH                         | doH           | Damping Resistor Overheat                                            | YES                                      | 379  |
| dbJAL                       | dWAL          | DriveWorksEZ Fault                                                   | YES                                      | 380  |
| <i>E</i> 5                  | E5            | MECHATROLINK Watchdog<br>Timer Error                                 | YES                                      | 381  |
| EF                          | EF            | Forward/Reverse Run Command<br>Input Error                           | YES                                      | 396  |
| EF0                         | EF0           | Option Card External Fault                                           | YES                                      | 396  |
| EF I to<br>EFB              | EF1 to<br>EF8 | External Fault (input terminal S1 to S8)                             | YES                                      | 397  |
| FAn                         | FAn           | Fan Fault                                                            | YES                                      | 381  |
| FbH                         | FbH           | Excessive PID Feedback                                               | YES                                      | 397  |
| FbL                         | FbL           | PID Feedback Loss                                                    | YES                                      | 397  |
| Fdu                         | Fdv           | Power Supply Frequency Fault                                         | YES                                      | 382  |
| H66                         | Hbb           | Safe Disable Signal Input                                            | YES                                      | 398  |
| HbbF                        | HbbF          | Safe Disable Signal Input                                            | YES                                      | 398  |

| Digital Operator<br>Display |      | Name                                         | Minor Fault<br>Output<br>(H2-□□ =<br>10) | Page       |
|-----------------------------|------|----------------------------------------------|------------------------------------------|------------|
| нЕЯ                         | HCA  | Current Alarm                                | YES                                      | <i>398</i> |
| LT-1                        | LT-1 | Cooling Fan Maintenance Time                 | No output <1>                            | 398        |
| LF-2                        | LT-2 | Capacitor Maintenance Time                   | No output <1>                            | 399        |
| LF-3                        | LT-3 | Soft Charge Bypass Relay<br>Maintenance Time | No output <1>                            | 399        |
| οН                          | оН   | Heatsink Overheat                            | YES                                      | 399        |
| oH∂                         | оН2  | Heatsink Overheat Warning                    | YES                                      | 399        |
| оН3                         | оН3  | Motor Overheat                               | YES                                      | 399        |
| oL3                         | oL3  | Overtorque 1                                 | YES                                      | 400        |
| oL4                         | oL4  | Overtorque 2                                 | YES                                      | 400        |
| oL5                         | oL5  | Mechanical Weakening<br>Detection 1          | YES                                      | 400        |
| o 5                         | oS   | Overspeed                                    | YES                                      | 400        |
| Oυ                          | ov   | Control Circuit Overvoltage                  | YES                                      | 400        |
| PR55                        | PASS | MEMOBUS/Modbus Test Mode<br>Complete         | No output                                | 401        |
| PGo                         | PGo  | PG Disconnect<br>(for Control Mode with PG)  | YES                                      | 401        |
| РСоН                        | PGoH | PG Hardware Fault<br>(when using PG-X3)      | YES                                      | 401        |
| rUn                         | rUn  | Motor Switch during Run                      | YES                                      | 401        |
| 5 <i>E</i>                  | SE   | MEMOBUS/Modbus Test Mode Fault               | YES                                      | 401        |
| 5-[                         | SrC  | Phase Order Detection Fault                  | YES                                      | 391        |
| UL 3                        | UL3  | Undertorque Detection 1                      | YES                                      | 402        |
| UL 4                        | UL4  | Undertorque Detection 2                      | YES                                      | 402        |
| UL 5                        | UL5  | Mechanical Weakening<br>Detection 2          | YES                                      | 392        |
| Uu                          | Uv   | Control Circuit Undervoltge                  | YES                                      | 402        |

<sup>&</sup>lt;1> Output when H2- $\square\square$  = 2F.

<sup>&</sup>lt;2> Baseblock alarm "bb" will not activate a digital output programmed for minor fault H2-0 = 10. Set H2-0 = 8 or 1B to activate a digital output for "bb".

### ■ Operation Errors

**Table 6.11 Operation Error Displays** 

| Digital Op<br>Displ |       | Name                                           | Page |
|---------------------|-------|------------------------------------------------|------|
| oPE0 I              | oPE01 | Unit Capacity Setting Fault                    | 403  |
| oPE02               | oPE02 | Parameter Range Setting Error                  | 403  |
| oPE03               | oPE03 | Multi-Function Input Selection Error           | 403  |
| oPEO4               | oPE04 | Initialization Required                        | 404  |
| oPE05               | oPE05 | Initialization Required                        | 404  |
| oPE06               | oPE06 | Control Method Selection Error                 | 404  |
| oPE07               | oPE07 | Multi-Function Analog Input Selection<br>Error | 404  |
| oPE08               | oPE08 | Parameter Selection Error                      | 405  |
| oPE09               | oPE09 | PID Control Selection Fault                    | 405  |

|   | Digital Operator<br>Display |       | Name                                  | Page |
|---|-----------------------------|-------|---------------------------------------|------|
|   | oPE 10                      | oPE10 | V/f Data Setting Error                | 405  |
|   | oPE I I                     | oPE11 | Carrier Frequency Setting Error       | 406  |
|   | oPE 13                      | oPE13 | Pulse Monitor Selection Error         | 406  |
| Ī | oPE 15                      | oPE15 | Torque Control Setting Error          | 406  |
| Ī | oPE 16                      | oPE16 | Energy Saving Constants Error         | 406  |
| Ī | oPE 18                      | oPE18 | Online Tuning Parameter Setting Error | 406  |
| Ī | oPE20                       | oPE20 | PG-F3 Setting Error                   | 406  |
|   | oPE30                       | oPE30 | Incorrect Input Voltage Adjustment    | 406  |

### **■** Auto-Tuning Errors

Table 6.12 Auto-Tuning Error Displays

| Digital Op<br>Displ |       | Name                                      | Page |
|---------------------|-------|-------------------------------------------|------|
| End I               | End1  | Excessive V/f Setting                     | 408  |
| End2                | End2  | Motor Iron-Core Saturation<br>Coefficient | 408  |
| End3                | End3  | Rated Current Setting Alarm               | 408  |
| End4                | End4  | Adjusted Slip Calculation Error           | 408  |
| EndS                | End5  | Resistance Tuning Error                   | 408  |
| Endb                | End6  | Leakage Inductance Alarm                  | 408  |
| End7                | End7  | No-Load Current Alarm                     | 409  |
| Er-01               | Er-01 | Motor Data Error                          | 409  |
| Er-02               | Er-02 | Minor Fault                               | 409  |
| Er-03               | Er-03 | STOP Button Input                         | 409  |
| Er-04               | Er-04 | Line-to-Line Resistance Error             | 409  |
| Er-05               | Er-05 | No-Load Current Error                     | 410  |
| Er-08               | Er-08 | Rated Slip Error                          | 410  |
| Er-09               | Er-09 | Acceleration Error                        | 410  |

| Digital Operator<br>Display |       | Name                                               | Page |
|-----------------------------|-------|----------------------------------------------------|------|
| Er-10                       | Er-10 | Motor Direction Error                              | 410  |
| Er-11                       | Er-11 | Motor Speed Error                                  | 410  |
| Er-12                       | Er-12 | Current Detection Error                            | 411  |
| Er-13                       | Er-13 | Leakage Inductance Error                           | 412  |
| Er-14                       | Er-14 | Motor Speed Error 2                                | 412  |
| Er-15                       | Er-15 | Torque Saturation Error                            | 412  |
| Er-16                       | Er-16 | Inertia ID Error                                   | 412  |
| Er-17                       | Er-17 | Reverse Prohibited Error                           | 412  |
| Er-18                       | Er-18 | Induction Voltage Error                            | 412  |
| Er-19                       | Er-19 | PM Inductance Error                                | 412  |
| Er-20                       | Er-20 | Stator Resistance Error                            | 412  |
| Er-21                       | Er-21 | Z Pulse Correction Error                           | 413  |
| Er-25                       | Er-25 | High Frequency Injection Parameter<br>Tuning Error | 413  |

### ■ Errors and Displays When Using the Copy Function

Table 6.13 Copy Errors

| Digital Operator<br>Display |      | Name                                       | Page |
|-----------------------------|------|--------------------------------------------|------|
| CoPY                        | CoPy | Writing Parameter Settings (flashing)      | 414  |
| [PEr                        | CPEr | Control Mode Mismatch                      | 414  |
| СРУЕ                        | СРуЕ | Error Writing Data                         | 414  |
| £58r                        | CSEr | Copy Unit Error                            | 414  |
| dFP5                        | dFPS | Drive Model Mismatch                       | 414  |
| End                         | End  | Task Complete                              | 414  |
| ıFEr                        | iFEr | Communication Error                        | 414  |
| ndAf                        | ndAT | Model, Voltage Class, Capacity<br>Mismatch | 415  |

| Digital Operator<br>Display |      | Name                                                                                  | Page |
|-----------------------------|------|---------------------------------------------------------------------------------------|------|
| rdEr                        | rdEr | Error Reading Data                                                                    | 415  |
| r EAd                       | rEAd | Reading Parameter Settings<br>(Flashing)                                              | 415  |
| uREr                        | vAEr | Voltage Class, Capacity Mismatch                                                      | 415  |
| uFYE                        | vFyE | Parameter settings in the drive and those saved to the copy function are not the same | 415  |
| ur FY                       | vrFy | Comparing Parameter Settings (Flashing)                                               | 415  |

## 6.4 Fault Detection

### Fault Displays, Causes, and Possible Solutions

Faults are detected for drive protection, and cause the drive to stop while toggling the form-C output associated with terminals MA-MB-MC. Remove the cause of the fault and manually clear the fault before attempting to run the drive again.

Table 6.14 Detailed Fault Displays, Causes, and Possible Solutions

|   | Digital Operator Display                                                                                       |     | Fault Name                                                                                                                                                                                  |
|---|----------------------------------------------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                                                                                                                |     | Power Supply Overvoltage                                                                                                                                                                    |
|   | Rou                                                                                                            | Aov | The input power supply voltage became equal to or higher than the Input Power Supply Overvoltage Detection Level.  200 V Class: Approximately 290 Vrms  400 V Class: Approximately 580 Vrms |
|   | Cause                                                                                                          |     | Possible Solution                                                                                                                                                                           |
| • | The power supply voltage exceeded the<br>range listed in drive input power<br>specifications.                  |     |                                                                                                                                                                                             |
| • | <ul> <li>Regenerative operation was performed<br/>when the power supply capacity was too<br/>small.</li> </ul> |     | <ul> <li>Reduce the voltage to within the range in the power supply specifications.</li> <li>Increase the capacity of the power supply.</li> </ul>                                          |
| • | <ul> <li>The power supply circuit opened during regeneration.</li> </ul>                                       |     |                                                                                                                                                                                             |

| Digital Operator Display                         |     | Fault Name                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                  |     | Power Supply Undervoltage                                                                                                                                                                                                                                                                                       |
| AUu                                              | AUv | The input power supply voltage became equal to or lower than the Input Power Supply Undervoltage Detection Level (L2-21).  200 V Class: Approximately 150 Vrms  400 V Class: Approximately 300 Vrms                                                                                                             |
| Cause                                            |     | Possible Solution                                                                                                                                                                                                                                                                                               |
| The capacity of the power supply is too small.   |     | Increase the capacity of the power supply.                                                                                                                                                                                                                                                                      |
| The distortion in the power supply is too large. |     | Lower the impedance of the input power supply wiring.                                                                                                                                                                                                                                                           |
| A phase loss occurred in the input power supply. |     | Check the input power supply for phase loss or an imbalance in the interphase voltages. Investigate and correct the cause and then reset the fault.                                                                                                                                                             |
| The built-in fuse is open.                       |     | An internal transistor was destroyed. The input wiring is grounded or short circuited. The output transistor has failed because the drive output has grounded or short circuited. Replace the board or the drive. For instructions on replacing the control board, contact Yaskawa or a Yaskawa representative. |

| Digital Operator Display    |                       | Fault Name                                                                                                                  |
|-----------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------|
|                             |                       | Option Communication Error                                                                                                  |
| bUS                         | bUS                   | The connection was lost after establishing initial communication.                                                           |
|                             |                       | Only detected when the run command frequency reference is assigned to an option card.                                       |
| Cau                         | se                    | Possible Solution                                                                                                           |
| No signal was received      | from the PLC.         | Check for faulty wiring.                                                                                                    |
| Faulty communications       | wiring or an existing | Correct the wiring.                                                                                                         |
| short circuit.              |                       | Check for disconnected cables and short circuits and repair as needed.                                                      |
|                             |                       | Check the various options available to minimize the effects of noise.                                                       |
|                             | ror occurred due to   | Counteract noise in the control circuit, main circuit, and ground wiring.                                                   |
| Communication data err      |                       | Ensure that other equipment such as switches or relays do not cause noise. Use surge absorbers if necessary.                |
| noise.                      |                       | Use only recommended cables or other shielded line. Ground the shield on the controller side or the drive input power side. |
|                             |                       | Separate all communication wiring from drive power lines. Install an EMC noise filter to the drive power supply input.      |
| The option card is damaged. |                       | Replace the option card if there are no problems with the wiring and the error continues to occur.                          |
| The option card is not pr   | roperly connected to  | • The connector pins on the option card do not line up properly with the connector pins on the drive.                       |
| the drive.                  |                       | Reinstall the option card.                                                                                                  |

| Digital Opera                                                                                                | tor Display                                                                                                 | Fault Name                                                                                                                                                                                                 |  |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| C E                                                                                                          | CE                                                                                                          | MEMOBUS/Modbus Communication Error                                                                                                                                                                         |  |
|                                                                                                              | CE                                                                                                          | Control data was not received for the CE detection time set to H5-09.                                                                                                                                      |  |
| Cau                                                                                                          | se                                                                                                          | Possible Solution                                                                                                                                                                                          |  |
| E1titi                                                                                                       |                                                                                                             | Check for faulty wiring.                                                                                                                                                                                   |  |
| Faulty communications short circuit.                                                                         | wiring or an existing                                                                                       | Correct the wiring.                                                                                                                                                                                        |  |
|                                                                                                              |                                                                                                             | Check for disconnected cables and short circuits and repair as needed.                                                                                                                                     |  |
|                                                                                                              |                                                                                                             | • Check the various options available to minimize the effects of noise.                                                                                                                                    |  |
|                                                                                                              |                                                                                                             | <ul> <li>Counteract noise in the control circuit, main circuit, and ground wiring.</li> <li>Use only recommended cables or other shielded line. Ground the shield on the controller side or the</li> </ul> |  |
| Communication data err                                                                                       | ror occurred due to                                                                                         | drive input power side.                                                                                                                                                                                    |  |
| noise.                                                                                                       |                                                                                                             | • Ensure that other equipment such as switches or relays do not cause noise. Use surge suppressors if                                                                                                      |  |
|                                                                                                              |                                                                                                             | required. • Separate all communication wiring from drive power lines. Install an EMC noise filter to the drive                                                                                             |  |
|                                                                                                              |                                                                                                             | power supply input.                                                                                                                                                                                        |  |
| Digital Opera                                                                                                | tor Display                                                                                                 | Fault Name                                                                                                                                                                                                 |  |
| Digital Opera                                                                                                | lioi Dispiay                                                                                                | Control Fault                                                                                                                                                                                              |  |
| ĹF                                                                                                           | CF                                                                                                          | The torque limit was reached continuously for three seconds after the Stop command was input and                                                                                                           |  |
| _                                                                                                            | -                                                                                                           | deceleration was not possible in OLV Control.                                                                                                                                                              |  |
| Cau                                                                                                          | se                                                                                                          | Possible Solution                                                                                                                                                                                          |  |
| Motor parameters are se                                                                                      | et improperly.                                                                                              | Check the motor parameter settings and repeat Auto-Tuning.                                                                                                                                                 |  |
| Torque limit is too low.                                                                                     |                                                                                                             | Set the torque limit to the most appropriate setting (L7-01 through L7-04).                                                                                                                                |  |
|                                                                                                              |                                                                                                             | Adjust the deceleration time (C1-02, C1-04, C1-06, C1-08).                                                                                                                                                 |  |
| Load inertia is too big.                                                                                     |                                                                                                             | Set the frequency to the minimum value and interrupt the Run command when the drive finishes decelerating.                                                                                                 |  |
| Digital Operator Display                                                                                     |                                                                                                             | Fault Name                                                                                                                                                                                                 |  |
|                                                                                                              |                                                                                                             | Current Offset Fault                                                                                                                                                                                       |  |
| E <sub>o</sub> F                                                                                             | CoF                                                                                                         | Drive starts operation while the current-detection circuit failure, or the induced voltage remains in the motor (coasting and after rapid deceleration).                                                   |  |
| Cau                                                                                                          | se                                                                                                          | Possible Solution                                                                                                                                                                                          |  |
| The drive newformed as                                                                                       |                                                                                                             | • The set value exceeds the allowable setting range while the drive automatically adjusts the current offset. This happens when attempting to restart a PM motor that is coasting to stop.                 |  |
| The drive performed a cadjustment while the mo                                                               | otor was rotating                                                                                           | • Set b3-01 to 1 to enable Speed Search at Start.                                                                                                                                                          |  |
|                                                                                                              |                                                                                                             | • Perform Speed Search 1 or 2 (H1-□□ = 61 or 62) via one of the external terminals.  Note: Speed Searches 1 and 2 are the same when using OLV/PM.                                                          |  |
|                                                                                                              |                                                                                                             | Note: Speed Searches 1 and 2 are the same when using OLV/PM.  If the problem continues, replace the control board or the entire drive. Contact Yaskawa or a Yaskawa                                        |  |
| Hardware problem                                                                                             |                                                                                                             | representative for instructions on replacing the control board.                                                                                                                                            |  |
| Digital Opera                                                                                                | tor Display                                                                                                 | Fault Name                                                                                                                                                                                                 |  |
| EPF00 to EPF03,<br>EPF07, EPF08,<br>EPF 11 to EPF14,<br>EPF16 to EPF24,<br>EPF26 to EPF35,<br>EPF40 to EPF45 | CPF00 to CPF03,<br>CPF07, CPF08,<br>CPF11 to CPF14,<br>CPF16 to CPF24,<br>CPF26 to CPF35,<br>CPF40 to CPF45 | Control Circuit Error                                                                                                                                                                                      |  |
| Cause                                                                                                        |                                                                                                             | Possible Solution                                                                                                                                                                                          |  |
|                                                                                                              |                                                                                                             | Cycle power to the drive.                                                                                                                                                                                  |  |
| Hardware is damaged.                                                                                         |                                                                                                             | • If the problem continues, replace either the control board or the entire drive. For instructions on replacing the control board, contact Yaskawa or a Yaskawa representative.                            |  |
| Connector on the operator is damaged.                                                                        |                                                                                                             | Replace the operator.                                                                                                                                                                                      |  |
| Digital Operator Display                                                                                     |                                                                                                             | Fault Name                                                                                                                                                                                                 |  |
| CPF05                                                                                                        | CPF06                                                                                                       | Control Circuit Error                                                                                                                                                                                      |  |
| 27700                                                                                                        | CITOO                                                                                                       | There is an error in the data saved to EEPROM.                                                                                                                                                             |  |
| Cause                                                                                                        |                                                                                                             | Possible Solution                                                                                                                                                                                          |  |
| The power supply was switched off when parameters were being saved to the drive.                             |                                                                                                             | Reinitialize the drive (A1-03 = 2220, 3330).                                                                                                                                                               |  |

| Digital Operator Display | Fault Name                                                                                                                                                                                                                                                                                      |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | <ul> <li>Turn the power off and check the connection between the control board and the drive.</li> <li>If the problem continues, replace either the control board or the entire drive. For instructions on replacing the control board, contact Yaskawa or a Yaskawa representative.</li> </ul> |

| Digital Operator Display                   |  | Fault Name                                                                                     |
|--------------------------------------------|--|------------------------------------------------------------------------------------------------|
| [PF25 CPF25                                |  | Terminal Board Not Connected                                                                   |
| Cause                                      |  | Possible Solution                                                                              |
| Terminal board is not connected correctly. |  | Reconnect the terminal board to the connector on the drive, then cycle the power to the drive. |

| Digital Operator Display                               |     | Fault Name                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                        |     | Speed Deviation (for Control Mode with PG)                                                                                                                                                                                                                                                 |
| dEu                                                    | dEv | The deviation between the speed detection value for the pulse input and the speed reference after speed agreement was reached exceeded the setting value of F1-10 for the time set in F1-11 or longer when the Operation Selection at Deviation was set to continue operation (F1-04 = 3). |
| Cause                                                  |     | Possible Solution                                                                                                                                                                                                                                                                          |
| The load is too heavy.                                 |     | Reduce the load.                                                                                                                                                                                                                                                                           |
| Acceleration and deceleration times are set too short. |     | Increase the acceleration and deceleration times (C1-01 through C1-08).                                                                                                                                                                                                                    |
| The load is locked up.                                 |     | Check the machine.                                                                                                                                                                                                                                                                         |
| Parameters are not set appropriately.                  |     | Check the settings of parameters F1-10 and F1-11.                                                                                                                                                                                                                                          |
| The motor brake is engaged.                            |     | Ensure the motor brake releases properly.                                                                                                                                                                                                                                                  |
| The torque limit is small for the load.                |     | Increase the setting values of L7-01 to L7-04, the value of the torque limit from the analog input, or the value of the torque limit set from the communication option.                                                                                                                    |

|     | Digital Operator Display                           |     | Fault Name                                                                              |
|-----|----------------------------------------------------|-----|-----------------------------------------------------------------------------------------|
|     | doX                                                | doH | Damping Resistor Overheat                                                               |
|     | 0011                                               |     | The temperature of the built-in damping resistor exceeded the set value.                |
| Γ   | Cause                                              |     | Possible Solution                                                                       |
| •   | The capacity of the power supply is too small.     |     | Increase the capacity of the power supply.                                              |
| •   | • The distortion in the power supply is too large. |     | Lower the impedance of the input power supply wiring.                                   |
| - 1 | A phase loss occurred in the input power supply.   |     | Check the input power supply for phase loss or an imbalance in the interphase voltages. |

| Digital Operator Display                                                                       |      | Fault Name                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>dυ</i>                                                                                      | du 1 | Z Pulse Fault (CLV/PM control mode only)                                                                                                                                                                              |
|                                                                                                | uvi  | The motor turned one full rotation without the Z Pulse being detected.                                                                                                                                                |
| Cause                                                                                          |      | Possible Solution                                                                                                                                                                                                     |
| PG encoder is disconnected, improperly wired, or the PG option card or PG encoder are damaged. |      | <ul> <li>Make sure the PG encoder is properly connected and all shielded lines are properly grounded.</li> <li>If the problem continues after cycling power, replace the PG option card or the PG encoder.</li> </ul> |

| Digital Operator Display                      |     | Fault Name                                                                                  |
|-----------------------------------------------|-----|---------------------------------------------------------------------------------------------|
| 402                                           | dv2 | Z Pulse Noise Fault Detection (CLV/PM control mode only)                                    |
| OUL                                           |     | The Z Pulse is out of phase by more than 5 degrees for 10 consecutive revolutions.          |
| Cause                                         |     | Possible Solution                                                                           |
| Noise interference along the PG cable.        |     | Separate the PG cable lines from the source of the noise.                                   |
| PG cable is not wired properly.               |     | Rewire the PG encoder and properly ground all shielded lines.                               |
| PG option card or the PG encoder are damaged. |     | If the problem continues after cycling power, replace the PG option card or the PG encoder. |

| Digital Operator Display |     | Fault Name                                                                                                                                                                    |
|--------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| du3                      | dv3 | Inversion Detection (CLV/PM control mode only)                                                                                                                                |
|                          |     | The torque reference and acceleration are in opposite directions and the speed reference and actual motor speed differ by more than 30% for the number of times set to F1-18. |
| Cause                    |     | Possible Solution                                                                                                                                                             |

| Digital Operator Display                                                                      | Fault Name                                                                                                                                                                                                                  |  |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| The Z Pulse offset is not set properly to E5-11                                               | Set the value for $\Delta\theta$ to E5-11 as specified on the motor nameplate. Replacing the PG encoder or changing the application to rotate the motor in reverse requires readjustment of the Z-pulse offset. (T2-01 = 3) |  |
| An external force on the load side caused the                                                 | Make sure the motor is rotating in the proper direction.                                                                                                                                                                    |  |
| motor to move                                                                                 | • Identify and fix any problems on the load side causing the motor to rotate in the opposite direction.                                                                                                                     |  |
| Noise interference along the PG cable affecting the A or B pulse                              | Properly rewire the PG encoder and connect all lines including shielded line.                                                                                                                                               |  |
| PG encoder is disconnected, improperly wired, or the PG option card or PG encoder are damaged |                                                                                                                                                                                                                             |  |
| Rotational direction for the PG encoder set to F1-05 is the opposite of the motor line order  | Properly connect the motor lines for each phase (U, V, W).                                                                                                                                                                  |  |
| The drive incorrectly detected the position of the motor poles.                               | If the value displayed in the U6–57 is lower than 819, then set the polarity judge current (n8–84) higher than the default value.                                                                                           |  |

| Digital Operator Display                                            |                   | Fault Name                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                     | dv4               | Inversion Prevention Detection (CLV/PM control mode only)                                                                                                                                                                                  |
| du4                                                                 |                   | Pulses indicate that the motor is rotating in the opposite direction of the speed reference. Set the number of pulses to trigger inverse detection to F1-19.                                                                               |
|                                                                     |                   | <b>Note:</b> Set F1-19 to 0 to disable inverse detection in applications where the motor may rotate in the opposite direction of the speed reference.                                                                                      |
| Cau                                                                 | se                | Possible Solution                                                                                                                                                                                                                          |
|                                                                     |                   | • Set the value for $\Delta\theta$ to E5-11 as specified on the motor nameplate.                                                                                                                                                           |
| The Z Pulse offset is not set properly to E5-11.                    |                   | • If the problem continues after cycling power, replace the PG option card or the PG encoder. Replacing the PG encoder or changing the application to rotate the motor in reverse requires readjustment of the Z-pulse offset. (T2-01 = 3) |
| Electrical signal interfer                                          | ence along the PG | Make sure the motor is rotating in the proper direction.                                                                                                                                                                                   |
| cable affecting the A or B pulse.                                   |                   | • Identify and fix any problems on the load side causing the motor to rotate in the opposite direction.                                                                                                                                    |
| PG encoder is disconnected, improperly                              |                   | Rewire the PG encoder and properly connect all lines including shielded line.                                                                                                                                                              |
| wired, or the PG option card or PG encoder are damaged.             |                   | If the problem continues after cycling power, replace the PG option card or the PG encoder.                                                                                                                                                |
| The drive incorrectly detected the position of the motor poles.     |                   | If the value displayed in the U6-57 is lower than 819, then set the polarity judge current (n8-84) higher than the default value.                                                                                                          |
| The setting value of the polarity judge current (n8-84) is too low. |                   | The polarity judge current (n8-84) is higher than default value. Check with the motor manufacturer for the maximum set value.                                                                                                              |

| Digital Operator Display                 |     | Fault Name                                                                                                                                                                                                                                                                               |
|------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| dul                                      | dv7 | Initial Polarity Estimation Timeout                                                                                                                                                                                                                                                      |
| Cause                                    |     | Possible Solution                                                                                                                                                                                                                                                                        |
| Disconnection in the motor coil winding. |     | Measure the motor line-to-line resistance and replace the motor if the motor coil winding is open.                                                                                                                                                                                       |
| Loose output terminals.                  |     | • Check for loose terminals. Apply the tightening torque specified in this manual to fasten the terminals. <i>Refer to Main Circuit Wire Gauges and Tightening Torque on page 101</i> for details.                                                                                       |
|                                          |     | • Ensure that monitor U6-57 displays a value greater than 819 during the initial test runs for the application to prevent the drive from incorrectly determining motor polarity. If U6-57 shows a value less than 819, increase the polarity judge current level set in parameter n8-84. |

| Digital Operator Display      |      | Fault Name                      |  |
|-------------------------------|------|---------------------------------|--|
| abuRL                         | dWAL | DriveWorksEZ Foult              |  |
| გნე£                          | dWFL | - DriveWorksEZ Fault            |  |
| Cause                         |      | Possible Solution               |  |
| Fault output by DriveWorksEZ. |      | Correct the cause of the fault. |  |

| Digital Operator Display  |      | Fault Name                                                                               |
|---------------------------|------|------------------------------------------------------------------------------------------|
| dbdF I                    | dWF1 | EEPROM Memory DriveWorksEZ Data Error                                                    |
|                           |      | There is an error in the DriveWorksEZ program saved to EEPROM.                           |
| Cause                     |      | Possible Solution                                                                        |
| Problem with EEPROM data. |      | Reinitialize the drive (A1-03 = 2220, 3330) and download the DriveWorksEZ program again. |

| Digital Operator Display                         | Fault Name                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| There is an error in the EEPROM control circuit. | <ul> <li>Turn the power off and check the connection between the control board and the drive.</li> <li>If the problem continues, replace either the control board or the entire drive and then download the DriveWorksEZ program. For instructions on replacing the control board, contact Yaskawa or a Yaskawa representative.</li> </ul> |

| Digital Operator Display                 |    | Fault Name                                                                                                                                                                              |
|------------------------------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E5                                       | E5 | MECHATROLINK Watchdog Timer Error                                                                                                                                                       |
| L J                                      |    | The watchdog timed out.                                                                                                                                                                 |
| Cause                                    |    | Possible Solution                                                                                                                                                                       |
| Data has not been received from the PLC. |    | Execute DISCONNECT or ALM_CLR, then issue a CONNECT command or SYNC_SET command and proceed to phase 3. Refer to the SI-T3 Option Technical Manual for more details on troubleshooting. |

| Digital Operator Display                    |     | Fault Name                                    |
|---------------------------------------------|-----|-----------------------------------------------|
| EF0                                         | EF0 | Option Card External Fault                    |
| Liu                                         |     | An external fault condition is present.       |
| Cause                                       |     | Possible Solution                             |
| An external fault was received from the PLC |     | Remove the cause of the external fault.       |
| and F6-03 is set to a value other than 3.   |     | Remove the external fault input from the PLC. |
| Problem with the PLC program.               |     | Check the PLC program and correct problems.   |

| Digital Opera                                 | ator Display | Fault Name                                                                                                     |  |
|-----------------------------------------------|--------------|----------------------------------------------------------------------------------------------------------------|--|
| EF I                                          | EE1          | External Fault (input terminal S1)                                                                             |  |
| [ [                                           | EF1          | External fault at multi-function input terminal S1.                                                            |  |
| EF2                                           | EF2          | External Fault (input terminal S2)                                                                             |  |
|                                               | Er2          | External fault at multi-function input terminal S2.                                                            |  |
| EF3                                           | EF3          | External Fault (input terminal S3)                                                                             |  |
| [, ]                                          | Er3          | External fault at multi-function input terminal S3.                                                            |  |
| EF4                                           | EF4          | External Fault (input terminal S4)                                                                             |  |
|                                               | EF4          | External fault at multi-function input terminal S4.                                                            |  |
| EF5                                           | EF5          | External Fault (input terminal S5)                                                                             |  |
|                                               | ErJ          | External fault at multi-function input terminal S5.                                                            |  |
| EF8                                           | EF6          | External Fault (input terminal S6)                                                                             |  |
| 2,0                                           | EFO          | External fault at multi-function input terminal S6.                                                            |  |
| EF7                                           | EF7          | External Fault (input terminal S7)                                                                             |  |
|                                               | Er/          | External fault at multi-function input terminal S7.                                                            |  |
| EF8                                           | EF8          | External Fault (input terminal S8)                                                                             |  |
| L 1 U                                         |              | External fault at multi-function input terminal S8.                                                            |  |
| Cause                                         |              | Possible Solution                                                                                              |  |
| An external device tripped an alarm function. |              | Remove the cause of the external fault and reset the fault.                                                    |  |
| Wiring is incorrect.                          |              | • Properly connect the signal lines to the terminals assigned for external fault detection (H1-□□ = 20 to 2B). |  |
|                                               |              | Reconnect the signal line.                                                                                     |  |
| Multi-function contact input setting is       |              | • Check for unused terminals set for H1- $\square\square$ = 20 to 2B (External Fault).                         |  |
| incorrect.                                    |              | Change the terminal settings.                                                                                  |  |

| Digital Operator Display |     | Fault Name                            |
|--------------------------|-----|---------------------------------------|
|                          |     | EEPROM Write Error                    |
| Err                      | Err | Data cannot be written to the EEPROM. |
| Cause                    |     | Possible Solution                     |

| Digital Operator Display                      | Fault Name                                                                                                                                                              |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                               | Press "ENTER" on the digital operator.                                                                                                                                  |
| Noise has corrupted data while writing to the | Correct the parameter setting.                                                                                                                                          |
| EEPROM.                                       | Cycle power to the drive.                                                                                                                                               |
|                                               | • If the problem continues, replace the control board or the entire drive. Contact Yaskawa or a Yaskawa representative for instructions on replacing the control board. |
| Hardware problem.                             | If the problem continues, replace the control board or the entire drive. Contact Yaskawa or a Yaskawa representative for instructions on replacing the control board.   |

| Digital Operator Display                                        |     | Fault Name                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FAn                                                             | FAn | Fan fault                                                                                                                                                                                                                                                                             |
| 7 1111                                                          |     | Fan failure                                                                                                                                                                                                                                                                           |
| Cause                                                           |     | Possible Solution                                                                                                                                                                                                                                                                     |
| Cooling fan has malfunctioned.                                  |     | Cycle power to the drive. Verify the cumulative operation time of the fan and the fan maintenance timer using monitors U4-03, and U4-04. Replace damaged cooling fans and cooling fans that have exceeded expected performance life. <i>Refer to Drive Cooling Fans on page 435</i> . |
| Fault detected in the internal cooling fan to the power supply. |     | Cycle power to the drive.  If the fault still occurs, replace the control circuit board or the entire unit. For instructions on replacing the power board, contact Yaskawa or a Yaskawa representative.                                                                               |

| Digital Operator Display                     |     | Fault Name                                                                                                                                      |
|----------------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------|
| FBH                                          | FbH | Excessive PID Feedback                                                                                                                          |
|                                              |     | PID feedback input is greater than the level set to b5-36 for longer than the time set to b5-37. Set b5-12 to 2 or 5 to enable fault detection. |
| Cause                                        |     | Possible Solution                                                                                                                               |
| Parameters are set inappropriately.          |     | Check b5-36 and b5-37 settings.                                                                                                                 |
| Incorrect PID feedback wiring.               |     | Correct the wiring.                                                                                                                             |
| There is a problem with the feedback sensor. |     | Check the sensor on the control side.                                                                                                           |
|                                              |     | Replace the sensor if damaged.                                                                                                                  |

| Digital Operator Display                     |     | Fault Name                                                                                                                                                                                |
|----------------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| _                                            | FbL | PID Feedback Loss                                                                                                                                                                         |
| FbL                                          |     | PID feedback loss detection is programmed to trigger a fault (b5-12 = 2 or 5) and the PID feedback level is below the detection level set to b5-13 for longer than the time set to b5-14. |
| Cause                                        |     | Possible Solution                                                                                                                                                                         |
| Parameters are set inappropriately.          |     | Check b5-13 and b5-14 settings.                                                                                                                                                           |
| Incorrect PID feedback wiring.               |     | Correct the wiring.                                                                                                                                                                       |
| There is a problem with the feedback sensor. |     | Check the sensor on the control side.                                                                                                                                                     |
|                                              |     | Replace the sensor if damaged.                                                                                                                                                            |

| Digital Operator Display                                               |     | Fault Name                                                                                                                                          |
|------------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Fdu                                                                    | Fdv | Power Supply Frequency Fault                                                                                                                        |
| ' 00                                                                   |     | The input power supply frequency exceeded the allowable frequency fluctuation.                                                                      |
| Cau                                                                    | se  | Possible Solution                                                                                                                                   |
| A momentary power loss occurred.                                       |     | Reset the fault.                                                                                                                                    |
| An input power supply wiring terminal is loose.                        |     | Check for loose terminals.                                                                                                                          |
| The fluctuation in the voltage of the input power supply is too large. |     | Increase the power supply frequency fault detection width (L2-27).                                                                                  |
| The built-in fuse is open.                                             |     | Replace either the control board or the entire drive. For instructions on replacing the control board, contact Yaskawa or a Yaskawa representative. |

| Digital Operator Display |    | Fault Name                                                                                                                                                                                     |
|--------------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GF                       | GF | <ul> <li>Ground Fault</li> <li>A current short to ground exceeded 50% of rated current on the output side of the drive.</li> <li>Setting L8-09 to 1 enables ground fault detection.</li> </ul> |

| Digital Operator Display                       | Fault Name                                                                                                                                                                                                |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cause                                          | Possible Solution                                                                                                                                                                                         |
| Motor insulation is demaged                    | Check the insulation resistance of the motor.                                                                                                                                                             |
| Motor insulation is damaged.                   | Replace the motor.                                                                                                                                                                                        |
|                                                | Check the motor cable.                                                                                                                                                                                    |
| A damaged motor cable is creating a short      | Remove the short circuit and reapply power to the drive                                                                                                                                                   |
| circuit.                                       | • Check the resistance between the cable and the ground terminal ⊕.                                                                                                                                       |
|                                                | Replace the cable.                                                                                                                                                                                        |
| Excessive leakage current at the drive output. | Reduce the carrier frequency.                                                                                                                                                                             |
| Excessive leakage current at the drive output. | Reduce the amount of stray capacitance.                                                                                                                                                                   |
| The drive performed a current offset           | • The set value exceeds the allowable setting range while the drive automatically adjusts the current offset. This generally only happens when attempting to restart a PM motor that is coasting to stop. |
| adjustment while the motor was rotating.       | Set b3-01 to 1 to enable Speed Search at Start.                                                                                                                                                           |
|                                                | • Perform Speed Search 1 or 2 (H1- $\square\square$ = 61 or 62) via one of the external terminals.                                                                                                        |
| Hardware problem.                              | If the problem continues, replace the control board or the entire drive. Contact Yaskawa or a Yaskawa representative for instructions on replacing the control board.                                     |

| Digital Operator Display                                                              |           | Fault Name                                                                                                                                                              |
|---------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                       |           | Output Phase Loss                                                                                                                                                       |
| LF                                                                                    | LF        | Phase loss on the output side of the drive.                                                                                                                             |
|                                                                                       |           | • Setting L8-07 to 1 or 2 enables Phase Loss Detection.                                                                                                                 |
| Cau                                                                                   | se        | Possible Solution                                                                                                                                                       |
| The output cable is disc                                                              | annaatad  | Check for wiring errors and properly connect the output cable.                                                                                                          |
| The output cable is disc                                                              | onnected. | Correct the wiring.                                                                                                                                                     |
| The motor winding is damaged.                                                         |           | Check the resistance between motor lines.                                                                                                                               |
| The motor winding is da                                                               | amageu.   | Replace the motor if the winding is damaged.                                                                                                                            |
| The output terminal is loose.                                                         |           | • Apply the tightening torque specified in this manual to fasten the terminals. <i>Refer to Main Circuit Wire Gauges and Tightening Torque on page 101</i> for details. |
| The rated current of the motor being used is less than 5% of the drive rated current. |           | Check the drive selection and motor capacities.                                                                                                                         |
| An output transistor is damaged.                                                      |           | If the problem continues, replace the control board or the entire drive. Contact Yaskawa or a Yaskawa representative for instructions on replacing the control board.   |
| A single-phase motor is being used.                                                   |           | The drive cannot operate a single phase motor.                                                                                                                          |

| Digital Operator Display                                  |                       | Fault Name                                                                                                                                                            |
|-----------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.62                                                      | 1.52                  | Output Current Imbalance                                                                                                                                              |
| [ [ [                                                     | LF2                   | One or more of the phases in the output current are lost.                                                                                                             |
| Cau                                                       | se                    | Possible Solution                                                                                                                                                     |
| Phase loss has occurred                                   | on the output side of | Check for faulty wiring or poor connections on the output side of the drive.                                                                                          |
| the drive.                                                | _                     | Correct the wiring.                                                                                                                                                   |
| Terminal wires are loose on the output side of the drive. |                       | Apply the tightening torque specified in this manual to fasten the terminals. <i>Refer to Main Circuit Wire Gauges and Tightening Torque on page 101</i> for details. |
| The output circuit is damaged.                            |                       | If the problem continues, replace the control board or the entire drive. Contact Yaskawa or a Yaskawa representative for instructions on replacing the control board. |
| Motor impedance or motor phases are uneven.               |                       | Measure the line-to-line resistance for each motor phase. Ensure all values match.                                                                                    |
|                                                           |                       | Replace the motor.                                                                                                                                                    |

| Digital Operator Display                                        |                        | Fault Name                                                                                                                                                                                                                            |
|-----------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L 5 o                                                           | I.C.                   | LSo Fault                                                                                                                                                                                                                             |
| [ [ ]                                                           | LSo                    | Pull-out has been detected at low speed.                                                                                                                                                                                              |
| Cau                                                             | se                     | Possible Solution                                                                                                                                                                                                                     |
|                                                                 |                        | Enter the correct motor code for the PM motor being used into E5-01.                                                                                                                                                                  |
| The incorrect motor cod                                         | e has been entered.    | • For special-purpose motors, enter the correct data to all E5 parameters according to the test report provided for the motor.                                                                                                        |
| The load is too heavy.                                          |                        | Reduce the load.                                                                                                                                                                                                                      |
| The load is too heavy.                                          |                        | Use a larger drive.                                                                                                                                                                                                                   |
|                                                                 |                        | Make sure some external force is not rotating the motor at start.                                                                                                                                                                     |
| The drive incorrectly de                                        | tected the position of | • Enable Speed Search Selection at start. (b3-01 = 1).                                                                                                                                                                                |
| The drive incorrectly detected the position of the motor poles. |                        | • If the value displayed in U6-57 is lower than 819, then set the polarity judge current (n8-84) higher than the default value. If the motor is to be operated at a speed higher than the rated speed, consult with the manufacturer. |
|                                                                 |                        | • Increase the value set to L8-93.                                                                                                                                                                                                    |
| Values set to parameters L8-95 are incorrect.                   | s L8-93, L8-94, and    | • Increase the value set to L8-94.                                                                                                                                                                                                    |
| E6-75 are meorreet.                                             |                        | • Increase the value set to L8-95.                                                                                                                                                                                                    |

This function prevents continuous operation in reverse when using high frequency injection (n8-57 = 1) in AOLV/PM (A1-02 = 6) with a motor for which no motor code has been entered (it does not only prevent reverse operation). Set L8-93, L8-94, and L8-95 to low values within range of erroneous detection to quickly detect undesirable reverse operation.

| Digital Operator Display                                           |     | Fault Name                                                        |
|--------------------------------------------------------------------|-----|-------------------------------------------------------------------|
| n5E                                                                | nSE | Node Setup Error                                                  |
| 11.16                                                              |     | A terminal assigned to the node setup function closed during run. |
| Cause                                                              |     | Possible Solution                                                 |
| The node setup terminal closed during run.                         |     |                                                                   |
| A Run command was issued while the node setup function was active. |     | Stop the drive when using the node setup function.                |

| Digital Operator Display                                                                                 |                         | Fault Name                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| oΣ                                                                                                       | a.C                     | Overcurrent                                                                                                                                                                                             |
| oC oC                                                                                                    | oc.                     | Drive sensors detected an output current greater than the specified overcurrent level.                                                                                                                  |
| Cau                                                                                                      | se                      | Possible Solution                                                                                                                                                                                       |
| Overcurrent occurred du Deceleration.                                                                    | uring Overexcitation    | Reduce the overexcitation deceleration gain (n3-13).                                                                                                                                                    |
| The motor has been dan overheating or the moto damaged.                                                  |                         | <ul> <li>Check the insulation resistance.</li> <li>Replace the motor.</li> </ul>                                                                                                                        |
| One of the motor cables                                                                                  | has shorted out or      | <ul><li> Check the motor cables.</li><li> Remove the short circuit and reapply power to the drive.</li></ul>                                                                                            |
| there is a grounding pro                                                                                 | blem.                   | <ul> <li>Check the resistance between the motor cables and the ground terminal .</li> <li>Replace damaged cables.</li> </ul>                                                                            |
|                                                                                                          |                         | Measure the current flowing into the motor.                                                                                                                                                             |
| The load is too heavy.                                                                                   |                         | Use a drive that is one frame larger if the current value exceeds the rated current.                                                                                                                    |
| The load is too neavy.                                                                                   |                         | Determine if there is sudden fluctuation in the current level.                                                                                                                                          |
|                                                                                                          |                         | Reduce the load to avoid sudden changes in the current level or use a drive that is one frame larger.                                                                                                   |
|                                                                                                          |                         | Calculate the torque needed during acceleration relative to the load inertia and the specified acceleration time. If it is not possible to set the proper amount of torque, make the following changes: |
| The acceleration or dece                                                                                 | eleration times are too | • Increase the acceleration time (C1-01, C1-03, C1-05, C1-07).                                                                                                                                          |
| short.                                                                                                   |                         | • Increase the S-curve characteristics (C2-01 through C2-04).                                                                                                                                           |
|                                                                                                          |                         | Use a drive that is one frame larger.                                                                                                                                                                   |
| The drive is attempting to operate a specialized motor or a motor larger than the rated current allowed. |                         | Check the motor capacity.                                                                                                                                                                               |
|                                                                                                          |                         | • Ensure that the rated current of the drive is greater than or equal to the current rating found on the motor nameplate.                                                                               |
| Magnetic contactor (MC) on the output side of the drive has turned on or off.                            |                         | Set up the operation sequence so the MC does not trip while the drive is outputting current.                                                                                                            |

| Digital Operator Display                                                                            | Fault Name                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| V/f setting is not operating as expected.                                                           | <ul> <li>Check the ratios between the voltage and frequency.</li> <li>Set parameters E1-04 through E1-10 appropriately (E3-04 through E3-10 for motor 2).</li> <li>Lower the voltage if it is too high relative to the frequency.</li> </ul>               |
| Excessive torque compensation.                                                                      | <ul> <li>Check the amount of torque compensation.</li> <li>Reduce the torque compensation gain (C4-01) until there is no speed loss and less current.</li> </ul>                                                                                           |
| Drive fails to operate properly due to electrical signal interference.                              | <ul> <li>Review the possible solutions provided for handling electrical signal interference.</li> <li>Review the section on handling noise interference on page 423 and check the control circuit lines, main circuit lines, and ground wiring.</li> </ul> |
| Overexcitation gain is set too high.                                                                | <ul> <li>Check if the fault occurs simultaneously with overexcitation function operation.</li> <li>Consider motor flux saturation and reduce the value of n3-13 (Overexcitation Deceleration Gain).</li> </ul>                                             |
| Run command was applied while motor was coasting.                                                   | <ul> <li>Set b3-01 to 1 to enable Speed Search at Start.</li> <li>Program the Speed Search command input through one of the multi-function contact input terminals (H1-□□ = 61 or 62).</li> </ul>                                                          |
| The wrong motor code has been entered for OLV/PM (Yaskawa motors only) or the motor data are wrong. | <ul> <li>Enter the correct motor code to E5-01.</li> <li>Set E5-01 to FFFF if using a non-Yaskawa PM motor. Set the correct motor data to the E5-□□ parameters or perform Auto-Tuning.</li> </ul>                                                          |
| The overcurrent level has exceeded the value set to L8-27 (PM control modes).                       | Correct the value set to overcurrent detection gain (L8-27).                                                                                                                                                                                               |
| The motor control method and motor do not match.                                                    | <ul> <li>Check the control mode.</li> <li>For IM motors, set A1-02 to 0, 1, 2, or 3.</li> <li>For PM motors, set A1-02 to 5, 6, or 7.</li> </ul>                                                                                                           |
| The rated output current of the drive is too small.                                                 | Use a larger drive.                                                                                                                                                                                                                                        |

| Digital Operator Display |       | Fault Name                                                                                                                 |
|--------------------------|-------|----------------------------------------------------------------------------------------------------------------------------|
| oF800                    | oFA00 | Option Card Connection Error at Option Port CN5-A                                                                          |
|                          |       | Option compatibility error                                                                                                 |
| Cause                    |       | Possible Solution                                                                                                          |
|                          |       | Check if the drive supports the option card to be installed. Contact Yaskawa or a Yaskawa representative for assistance.   |
|                          |       | PG option cards are supported by option ports CN5-B and CN5-C only. Connect the PG option card to the correct option port. |

| Digital Operator Display                            |       | Fault Name                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| oFAO I                                              | oFA01 | Option Card Fault at Option Port CN5-A                                                                                                                                                                                                                                                         |
|                                                     |       | Option not properly connected                                                                                                                                                                                                                                                                  |
| Cause                                               |       | Possible Solution                                                                                                                                                                                                                                                                              |
| The option card connection to port CN5-A is faulty. |       | Turn off the power and reconnect the option card.                                                                                                                                                                                                                                              |
|                                                     |       | • Check if the option card is properly plugged into the option port. Make sure the card is fixed properly.                                                                                                                                                                                     |
|                                                     |       | • If the option is not a communication option card, try to use the card in a different option port. If the option card works properly in a different option port, CN5-A is damaged, and the drive requires replacement. If the error persists (oFb01 or oFC01 occur), replace the option card. |

| Digital Operator Display            |                | Fault Name                                                                                                                                                              |
|-------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| oF803 to oF808                      | oFA03 to oFA06 | Ontion Cord Error Occurred at Ontion Bort CN5 A                                                                                                                         |
| oFR 10, oFR 1 1                     | oFA10, oFA11   | Option Card Error Occurred at Option Port CN5-A                                                                                                                         |
| oFR 12 to oFR 17                    | oFA12 to oFA17 | Option Card Connection Error (CN5-A)                                                                                                                                    |
| oFR30 to oFR43                      | oFA30 to oFA43 | Communication Option Card Connection Error (CN5-A)                                                                                                                      |
| Cause                               |                | Possible Solution                                                                                                                                                       |
|                                     |                | Cycle power to the drive.                                                                                                                                               |
| Option card or hardware is damaged. |                | • If the problem continues, replace the control board or the entire drive. Contact Yaskawa or a Yaskawa representative for instructions on replacing the control board. |

| Digital Operator Display |       | Fault Name                             |
|--------------------------|-------|----------------------------------------|
| oF600                    | oFb00 | Option Card Fault at Option Port CN5-B |
|                          |       | Option compatibility error             |

| Digital Operator Display                                                  |                           | Fault Name                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cau                                                                       | se                        | Possible Solution                                                                                                                                                                                                                                                                                                                                                                              |
| The option card installed into port CN5-B is incompatible with the drive. |                           | Make sure the drive supports the option card to be installed. Contact Yaskawa or a Yaskawa representative for assistance.                                                                                                                                                                                                                                                                      |
| A communication option installed in option port                           | n card has been<br>CN5-B. | Communication option cards are only supported by option port CN5-A. It is not possible to install more than one communication option.                                                                                                                                                                                                                                                          |
| Digital Opera                                                             | tor Display               | Fault Name                                                                                                                                                                                                                                                                                                                                                                                     |
| C                                                                         | El 01                     | Option Card Fault at Option Port CN5-B                                                                                                                                                                                                                                                                                                                                                         |
| ofb01                                                                     | oFb01                     | Option not properly connected                                                                                                                                                                                                                                                                                                                                                                  |
| Cau                                                                       | se                        | Possible Solution                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                           |                           | Turn off the power and reconnect the option card.                                                                                                                                                                                                                                                                                                                                              |
| The option card connection to port CN5-B is faulty.                       |                           | Check if the option card is properly plugged into the option port. Make sure the card is fixed properly     Try to use the card in a different option port (in case of a PG option, use port CN5-C). If the option card works properly in a different option port, CN5-B is damaged, and the drive requires replacement If the error persists (oFA01 or oFC01 occur), replace the option card. |
| Digital Opera                                                             | tor Display               | Fault Name                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                           |                           | Option Card Fault at Option Port CN5-B                                                                                                                                                                                                                                                                                                                                                         |
| oF602                                                                     | oFb02                     | Same type of option card is currently connected                                                                                                                                                                                                                                                                                                                                                |
| Cau                                                                       | se                        | Possible Solution                                                                                                                                                                                                                                                                                                                                                                              |
| An option card of the sa installed in option port                         | me type is already        | Except for PG options, only one of each option card type can only be installed simultaneously. Make sure only one type of option card is connected.                                                                                                                                                                                                                                            |
| An input option card is option port CN5-A.                                | already installed in      | Install a communication option, a digital input option, or an analog input option. More than one of the same type of card cannot be installed simultaneously.                                                                                                                                                                                                                                  |
| Digital Opera                                                             | tor Display               | Fault Name                                                                                                                                                                                                                                                                                                                                                                                     |
| oFb03 to oFb 11                                                           | oFb03 to oFb11            |                                                                                                                                                                                                                                                                                                                                                                                                |
| of b 12 to of b 19                                                        | oFb12 to oFb17            | Option card error occurred at Option Port CN5-B                                                                                                                                                                                                                                                                                                                                                |
| Cau                                                                       | se                        | Possible Solution                                                                                                                                                                                                                                                                                                                                                                              |
| Option card or hardware                                                   | e is damaged.             | <ul> <li>Cycle power to the drive.</li> <li>If the problem continues, replace the control board or the entire drive. Contact Yaskawa or a Yaskawa representative for instructions on replacing the control board.</li> </ul>                                                                                                                                                                   |
| Digital Opera                                                             | tor Display               | Fault Name                                                                                                                                                                                                                                                                                                                                                                                     |
| 5500                                                                      | EGOO                      | Option Card Connection Error at Option Port CN5-C                                                                                                                                                                                                                                                                                                                                              |
| oFE00                                                                     | oFC00                     | Option compatibility error                                                                                                                                                                                                                                                                                                                                                                     |
| Cau                                                                       | se                        | Possible Solution                                                                                                                                                                                                                                                                                                                                                                              |
| The option card installed incompatible with the di                        |                           | Confirm that the drive supports the option card to be installed. Contact Yaskawa or a Yaskawa representative for assistance.                                                                                                                                                                                                                                                                   |
| A communication option installed in option port                           |                           | Communication option cards are only supported by option port CN5-A. It is not possible to install more than one communication option.                                                                                                                                                                                                                                                          |
| Digital Operator Display                                                  |                           | Fault Name                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                           |                           | Option Card Fault at Option Port CN5-C                                                                                                                                                                                                                                                                                                                                                         |
| oFEO;                                                                     | oFC01                     | Option not properly connected                                                                                                                                                                                                                                                                                                                                                                  |
| Cause                                                                     |                           | Possible Solution                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                           |                           | Turn the power off and reconnect the option card.                                                                                                                                                                                                                                                                                                                                              |
| The option cord connection to part CNS C is                               |                           | • Check if the option card is properly plugged into the option port. Make sure the card is fixed properly                                                                                                                                                                                                                                                                                      |
| The option card connection to port CN5-C is faulty.                       |                           | Try to use the card in a different option port (in case of a PG option, use port CN5-B). If the option card works properly in a different option port, CN5-C is damaged, and the drive requires replacement If the error persists (oFA01 or oFb01 occur), replace the option card.                                                                                                             |
| Digital Operator Display                                                  |                           | Fault Name                                                                                                                                                                                                                                                                                                                                                                                     |

| Digital Operator Display |       | Fault Name                                      |
|--------------------------|-------|-------------------------------------------------|
| oFE02                    | oFC02 | Option Card Fault at Option Port CN5-C          |
|                          |       | Same type of option card is currently connected |
| Cause                    |       | Possible Solution                               |

| Digital Operator Display                                                 | Fault Name                                                                                                                                                    |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                          | Except for PG options, only one of each option card type can only be installed simultaneously. Make sure only one type of option card is connected.           |
| An input option card is already installed in option port CN5-A or CN5-B. | Install a communication option, a digital input option, or an analog input option. More than one of the same type of card cannot be installed simultaneously. |
| Three PG option boards are installed.                                    | A maximum of two PG option boards can be used simultaneously. Remove the PG option board installed into option port CN5-A.                                    |

| Digital Operator Display            |                | Fault Name                                                                                                                                                                                                                   |
|-------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| oFE03 to oFE 11                     | oFC03 to oFC11 | Oution Cord Error Occurred at Oution Bort CNS C                                                                                                                                                                              |
| oFE 12 to oFE 17                    | oFC12 to oFC17 | Option Card Error Occurred at Option Port CN5-C                                                                                                                                                                              |
| Cause                               |                | Possible Solution                                                                                                                                                                                                            |
| Option card or hardware is damaged. |                | <ul> <li>Cycle power to the drive.</li> <li>If the problem continues, replace the control board or the entire drive. Contact Yaskawa or a Yaskawa representative for instructions on replacing the control board.</li> </ul> |

| Digital Operator Display                      |  | Fault Name                                      |
|-----------------------------------------------|--|-------------------------------------------------|
| <i>aF[50</i> to <i>aF[55</i> ] oFC50 to oFC55 |  | Option Card Error Occurred at Option Port CN5-C |
| Cause                                         |  | Possible Solution                               |
| Option card or hardware is damaged.           |  | Refer to the option manual for details.         |

| Digital Operator Display         |                | Fault Name                                                                                                                                               |
|----------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| οН                               | оН             | Heatsink Overheat                                                                                                                                        |
|                                  |                | The heatsink temperature exceeded the overheat pre-alarm level set to L8-02. The default value for L8-02 is determined by drive model selection (o2-04). |
| Cause                            |                | Possible Solution                                                                                                                                        |
|                                  |                | • Check the temperature surrounding the drive. Verify temperature is within drive specifications.                                                        |
| Surrounding temperatur           | ea is too high | • Improve the air circulation within the enclosure panel.                                                                                                |
| Surrounding temperatur           | e is too mgn.  | • Install a fan or air conditioner to cool the surrounding area.                                                                                         |
|                                  |                | • Remove anything near the drive that might be producing excessive heat.                                                                                 |
| Load is too heavy.               |                | Measure the output current.                                                                                                                              |
|                                  |                | • Decrease the load.                                                                                                                                     |
|                                  |                | • Lower the carrier frequency selection (C6-02).                                                                                                         |
| Internal cooling fan is stopped. |                | Replace the cooling fan.                                                                                                                                 |
|                                  |                | • After replacing the cooling fan, set parameter o4-03 to 0 to reset the cooling fan maintenance.                                                        |

| Digital Operator Display |                 | Fault Name                                                                                                          |
|--------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------|
| o# !                     |                 | Overheat 1 (Heatsink Overheat)                                                                                      |
|                          | оН1             | The heatsink temperature exceeded the drive overheat level. Overheat level is determined by drive capacity (o2-04). |
| Cause                    |                 | Possible Solution                                                                                                   |
|                          |                 | Check the temperature surrounding the drive.                                                                        |
| Currann din a taman arat | ura ia tao hiah | • Improve the air circulation within the enclosure panel.                                                           |
| Surrounding temperat     | ure is too mgn. | • Install a fan or air conditioner to cool the surrounding area.                                                    |
|                          |                 | Remove anything near the drive that might be producing excessive heat.                                              |
| Load is too heavy.       |                 | Measure the output current.                                                                                         |
|                          |                 | • Lower the carrier frequency selection (C6-02).                                                                    |
|                          |                 | Reduce the load.                                                                                                    |

| Digital Operator Display |     | Fault Name                                                                                             |
|--------------------------|-----|--------------------------------------------------------------------------------------------------------|
|                          |     | Motor Overheat Alarm (PTC Input)                                                                       |
| o#3                      | оН3 | • The motor overheat signal to analog input terminal A1, A2, or A3 exceeded the alarm detection level. |
|                          |     | Detection requires setting multi-function analog inputs H3-02, H3-10, or H3-06 to E.                   |
| Cause                    |     | Possible Solution                                                                                      |

| Digital Operator Display | Fault Name                                                                                         |
|--------------------------|----------------------------------------------------------------------------------------------------|
|                          | Check the size of the load, the accel/decel times, and the cycle times.                            |
|                          | Decrease the load.                                                                                 |
|                          | • Increase the acceleration and deceleration times (C1-01 through C1-08).                          |
|                          | • Adjust the preset V/f pattern (E1-04 through E1-10) by reducing E1-08 and E1-10.                 |
| Motor has overheated.    | <ul> <li>Do not set E1-08 and E1-10 too low. This reduces load tolerance at low speeds.</li> </ul> |
|                          | Check the motor rated current.                                                                     |
|                          | • Enter the motor rated current to parameter E2-01 as indicated on the motor nameplate.            |
|                          | Ensure the motor cooling system is operating normally.                                             |
|                          | Repair or replace the motor cooling system.                                                        |

| Digital Operator Display |     | Fault Name                                                                                             |
|--------------------------|-----|--------------------------------------------------------------------------------------------------------|
|                          |     | Motor Overheat Fault (PTC Input)                                                                       |
| o#4                      | oH4 | • The motor overheat signal to analog input terminal A1, A2, or A3 exceeded the fault detection level. |
|                          |     | Detection requires setting multi-function analog inputs H3-02, H3-10, or H3-06 to E.                   |
| Cause                    |     | Possible Solution                                                                                      |
|                          |     | Check the size of the load, the accel/decel times, and the cycle times.                                |
|                          |     | Decrease the load.                                                                                     |
|                          |     | • Increase the acceleration and deceleration times (C1-01 through C1-08).                              |
|                          |     | • Adjust the preset V/f pattern (E1-04 through E1-10) by reducing E1-08 and E1-10.                     |
| Motor has overheated.    |     | • Do not set E1-08 and E1-10 too low. This reduces load tolerance at low speeds.                       |
|                          |     | Check the motor rated current.                                                                         |
|                          |     | • Enter the motor rated current to parameter E2-01 as indicated on the motor nameplate.                |
|                          |     | Ensure the motor cooling system is operating normally.                                                 |
|                          |     | Repair or replace the motor cooling system.                                                            |

| Digital Operator Display                                                                                                                     |                          | Fault Name                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| oL I                                                                                                                                         | . Т. 1                   | Motor Overload                                                                                                                                                      |
|                                                                                                                                              | oL1                      | The electronic motor overload protection tripped                                                                                                                    |
| Cau                                                                                                                                          | se                       | Possible Solution                                                                                                                                                   |
| Overload occurred during Deceleration.                                                                                                       | g Overexcitation         | Reduce the overexcitation deceleration gain (n3-13).                                                                                                                |
|                                                                                                                                              |                          | Reduce the load.                                                                                                                                                    |
| Load is too heavy.                                                                                                                           |                          | Note: Reset oL1 when the U4-16 value falls below 100.0%. U4-16 value must be less than 100.0% before oL1 can be reset.                                              |
| Cycle times are too shor and deceleration.                                                                                                   | t during acceleration    | Increase the acceleration and deceleration times (C1-01 through C1-08).                                                                                             |
|                                                                                                                                              |                          | Reduce the load.                                                                                                                                                    |
| A general-purpose moto                                                                                                                       |                          | Increase the speed.                                                                                                                                                 |
| rated speed with a high                                                                                                                      | load.                    | • If the motor is supposed to operate at low speeds, either increase the motor capacity or use a motor specifically designed to operate in the desired speed range. |
| L1-01 (Motor Overload Protection Selection) is set to 1 (General-purpose motor (standard self-cooled)) when a drive dedicated motor is used. |                          | Set L1-01 to 2.                                                                                                                                                     |
| V/f characteristics (voltage and frequency) are not suitable.                                                                                |                          | Set V/f pattern setting parameters E1-04 through E1-10 to match the motor characteristics.                                                                          |
| The wrong motor rated c                                                                                                                      | urrent is set to E2 01   | Check the motor-rated current.                                                                                                                                      |
| The wrong motor rated c                                                                                                                      | diffent is set to E2-01. | • Enter the motor rated current to parameter E2-01 as indicated on the motor nameplate.                                                                             |
| The electrical thermal pr                                                                                                                    | rotection                | Check the motor characteristics.                                                                                                                                    |
| characteristics and motor overload characteristics do not match.                                                                             |                          | Correct the type of motor protection that has been selected (L1-01).                                                                                                |
|                                                                                                                                              |                          | Install an external thermal relay.                                                                                                                                  |
| The electrical thermal re                                                                                                                    | lay is operating at the  | Check the current rating listed on the motor nameplate.                                                                                                             |
| wrong level.                                                                                                                                 |                          | Check the value set for the motor rated current (E2-01).                                                                                                            |

| Digital Operator Display                                | Fault Name                                                                                                                                                                                                       |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Motor overheated by overexcitation                      | Overexcitation increases the motor loss and the motor temperature. Excessive duration of overexcitation may cause motor damage. Prevent excessive overexcitation operation or apply proper cooling to the motor. |
| operation.                                              | • Reduce the excitation deceleration gain (n3-13).                                                                                                                                                               |
|                                                         | • Set L3-04 (Stall Prevention during Deceleration) to a value other than 4.                                                                                                                                      |
|                                                         | Check values set to Speed Search related parameters.                                                                                                                                                             |
| Parameters related to Speed Search are set incorrectly. | • Reduce the Speed Search Operation Current Level 1 (Current Detection Type 2, Current Detection Type 3, Speed Estimation Type 2) (b3-31).                                                                       |
|                                                         | • After Auto-Tuning, set b3-24 to 1 to enable Speed Estimation Speed Search.                                                                                                                                     |
| Output current fluctuation due to power supply loss.    | Check the power supply for phase loss.                                                                                                                                                                           |
| Digital Operator Digular                                | Faulé Nama                                                                                                                                                                                                       |

| Digital Operator Display                     |                          | Fault Name                                                                                                                                 |
|----------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| -! 2                                         | <i>a</i>                 | Drive Overload                                                                                                                             |
| OLL                                          |                          | The thermal sensor of the drive triggered overload protection.                                                                             |
| Cau                                          | se                       | Possible Solution                                                                                                                          |
| Overload occurred during Deceleration.       | ng Overexcitation        | Reduce the overexcitation deceleration gain (n3-13).                                                                                       |
| Load is too heavy.                           |                          | Reduce the load.                                                                                                                           |
| Acceleration or decelera                     | ation time is too short. | Increase the settings for the acceleration and deceleration times (C1-01 through C1-08).                                                   |
| V/f voltage characteristi                    | ics are not suitable.    | Set V/f pattern setting parameters E1-04 through E1-10 to match the motor characteristics.                                                 |
| Drive capacity is too small.                 |                          | Use a larger drive.                                                                                                                        |
| 0 1 1 1 1                                    | 1                        | Reduce the load when operating at low speeds.                                                                                              |
| Overload occurred when speeds.               | n operating at low       | Use a larger drive.                                                                                                                        |
| speeds.                                      |                          | • Lower the carrier frequency (C6-02).                                                                                                     |
| Excessive torque compensation.               |                          | Reduce the torque compensation gain in parameter C4-01 until there is no speed loss but less current.                                      |
|                                              |                          | Check the settings for all Speed Search related parameters.                                                                                |
| Daramatara ralatad ta Cr                     | and Conrob ore get       | Adjust the current used during the Speed Search deceleration time (b3-03).                                                                 |
| Parameters related to Speed Sea incorrectly. | beed Search are set      | • Reduce the Speed Search Operation Current Level 1 (Current Detection Type 3, Current Detection Type 3, Speed Estimation Type 2) (b3-31). |
|                                              |                          | • After Auto-Tuning, set b3-24 to 1 to enable Speed Estimation Speed Search.                                                               |
| Output current fluctuation loss.             | on due to input phase    | Check the power supply for phase loss.                                                                                                     |

| Digital Opera                                           | tor Display            | Fault Name                                                                                                              |
|---------------------------------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------|
|                                                         |                        | Overtorque Detection 1                                                                                                  |
| oL3                                                     | oL3                    | The current has exceeded the value set for Torque Detection Level 1 (L6-02) for longer than the allowable time (L6-03). |
| Cau                                                     | se                     | Possible Solution                                                                                                       |
| Parameter settings are n load.                          | ot appropriate for the | Check L6-02 and L6-03 settings.                                                                                         |
| Fault on the machine side (e.g., machine is locked up). |                        | Check the status of the load. Remove the cause of the fault.                                                            |

| Digital Opera                                                                            | tor Display            | Fault Name                                                                                                              |
|------------------------------------------------------------------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------|
|                                                                                          |                        | Overtorque Detection 2                                                                                                  |
| oL4                                                                                      | oL4                    | The current has exceeded the value set for Torque Detection Level 2 (L6-05) for longer than the allowable time (L6-06). |
| Cau                                                                                      | se                     | Possible Solution                                                                                                       |
| Parameter settings are n load.                                                           | ot appropriate for the | Check the settings of parameters L6-05 and L6-06.                                                                       |
| A fault occurred on the machine (e.g., the machine is locked up when overtorque occurs). |                        | Check the status of the machine. Remove the cause of the fault.                                                         |

| Digital Opera | tor Display | Fault Name                                                       |
|---------------|-------------|------------------------------------------------------------------|
| aL5           | oL5         | Mechanical Weakening Detection 1                                 |
|               |             | Overtorque occurred, matching the conditions specified in L6-08. |

| Digital Operator Display                                                | Fault Name                                  |
|-------------------------------------------------------------------------|---------------------------------------------|
| Cause                                                                   | Possible Solution                           |
| Overtorque triggered mechanical weakening detection level set to L6-08. | Identify the cause of mechanical weakening. |

| Digital Operator Display                                  |     | Fault Name                                                                                                          |
|-----------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------|
|                                                           |     | External Digital Operator Connection Fault                                                                          |
|                                                           |     | The external operator has been disconnected from the drive.                                                         |
| oρr                                                       | oPr | Note: An oPr fault will occur when all of the following conditions are true:                                        |
|                                                           |     | • Output is interrupted when the operator is disconnected ( $o2-06 = 1$ ).                                          |
|                                                           |     | • The Run command is assigned to the operator (b1-02 = 0 and LOCAL has been selected).                              |
| Cause                                                     |     | Possible Solution                                                                                                   |
| External operator is not properly connected to the drive. |     | Check the connection between the operator and the drive.                                                            |
|                                                           |     | Replace the cable if damaged.                                                                                       |
|                                                           |     | • Turn off the drive input power and disconnect the operator. Reconnect the operator and reapply drive input power. |

| Digital Opera                                                                          | tor Display | Fault Name                                                                                                                     |
|----------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------|
| o5                                                                                     | - 0         | Overspeed                                                                                                                      |
| 0.0                                                                                    | oS          | The motor speed feedback exceeded the F1-08 setting.                                                                           |
| Cause                                                                                  |             | Possible Solution                                                                                                              |
| Overshoot is occurring.                                                                |             | • Reduce the C5-01, Speed Control Proportional Gain 1, setting and increase the C5-02, Speed Control Integral Time 1, setting. |
|                                                                                        |             | If using Closed Loop Vector mode, enable Feed Forward and perform Inertia Auto-Tuning.                                         |
| Incorrect speed feedback scaling if terminal RP is used as speed feedback input in V/f |             | • Set H6-02 to the value of the speed feedback signal frequency when the motor runs at the maximum speed.                      |
| control.                                                                               |             | • Adjust the input signal using parameters H6-03 through H6-05.                                                                |
| Incorrect number of PG pulses has been set.                                            |             | Check and correct parameter F1-01.                                                                                             |
| Inappropriate parameter settings.                                                      |             | Check the setting for the overspeed detection level and the overspeed detection time (F1-08 and F1-09).                        |

| Digital Opera                                                                                         | tor Display             | Fault Name                                                                              |
|-------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------|
|                                                                                                       |                         | Control Circuit Overvoltage                                                             |
| O U                                                                                                   | OV                      | Voltage in the control circuit has exceeded the overvoltage level.                      |
|                                                                                                       | OV                      | For 200 V class drives: approximately 450 V                                             |
|                                                                                                       |                         | For 400 V class drives: approximately 900 V                                             |
| Cau                                                                                                   | se                      | Possible Solution                                                                       |
| Ground fault in the outp                                                                              | out circuit causing the | Check the motor wiring for ground faults.                                               |
| capacitor to overcharge.                                                                              |                         | Correct grounding shorts and reapply power.                                             |
| Drive input power volta                                                                               | ge is too high          | Check the voltage.                                                                      |
| Drive input power voita                                                                               | ge is too mgn.          | Lower drive input power voltage within the limits listed in the specifications.         |
| The capacity of the input power supply is too small.                                                  |                         | Use a power supply that has at least twice the input capacity of the drive.             |
| The input power supply repeatedly turned on and off over a short period of time.                      |                         | Implement countermeasures so that chattering does not occur for the input power supply. |
| An I/O terminal is loose                                                                              | ).                      | Check the tightening torque of the I/O terminals.                                       |
| Chattering in the magnetic contactor (MC) installed between the drive output terminals and the motor. |                         | Implement countermeasures so that chattering does not occur for the MC.                 |
| There is a phase loss or an imbalance in the interphase voltages of the input power supply.           |                         | Check the status of the input power supply and eliminate phase losses and imbalance.    |

| Digital Operator Display  |      | Fault Name                                                       |
|---------------------------|------|------------------------------------------------------------------|
| PGo                       | DC - | PG Disconnect (for any control modes using a PG option card)     |
| 7 00                      | PGo  | No PG pulses are received for longer than the time set to F1-14. |
| Cause                     |      | Possible Solution                                                |
| PG cable is disconnected. |      | Reconnect the cable.                                             |
| PG cable wiring is wrong. |      | Correct the wiring.                                              |

|                                                  |                         | 6.4 Fault Detection                                                                                                                                 |
|--------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Digital Opera                                    | tor Display             | Fault Name                                                                                                                                          |
|                                                  |                         | Check the power line to the PG encoder.                                                                                                             |
| PG encoder brake is clar                         | mped shut.              | Ensure the motor brake releases properly.                                                                                                           |
| Digital Opera                                    | tor Display             | Fault Name                                                                                                                                          |
|                                                  | · ·                     | PG Hardware Fault (detected when using a PG-X3 option card)                                                                                         |
| PGoH                                             | PGoH                    | PG cable is not connected properly.                                                                                                                 |
| Cau                                              | se                      | Possible Solution                                                                                                                                   |
| PG cable is disconnected                         | d.                      | Reconnect the cable and check the setting of F1-20.                                                                                                 |
| Digital Opera                                    | tor Display             | Fault Name                                                                                                                                          |
| SEF                                              | SCF                     | Safety Circuit Fault                                                                                                                                |
| ברר  <br>                                        | SCF                     | Safety Circuit Fault is detected.                                                                                                                   |
| Cau                                              | se                      | Possible Solution                                                                                                                                   |
| The safety circuit is dam                        | naged.                  | Replace either the control board or the entire drive. For instructions on replacing the control board, contact Yaskawa or a Yaskawa representative. |
| Digital Opera                                    | tor Display             | Fault Name                                                                                                                                          |
| 5Er                                              | CE                      | Too Many Speed Search Restarts                                                                                                                      |
| ישני                                             | SEr                     | The number of Speed Search restarts exceeded the value set to b3-19.                                                                                |
| Cau                                              | se                      | Possible Solution                                                                                                                                   |
|                                                  |                         | • Reduce the detection compensation gain during Speed Search (b3-10).                                                                               |
| Parameters related to Sp the wrong values.       | eed Search are set to   | • Increase the current level when attempting Speed Search (b3-17).                                                                                  |
| the wrong values.                                |                         | <ul> <li>Increase the detection time during Speed Search (b3-18).</li> <li>Repeat Auto-Tuning.</li> </ul>                                           |
| The motor is coasting in of the Run command.     | the opposite direction  | ^ -                                                                                                                                                 |
| Digital Opera                                    | tor Display             | Fault Name                                                                                                                                          |
| SoH                                              | SoH                     | Snubber Discharge Resistor Overheat                                                                                                                 |
| Cau                                              | se                      | Possible Solution                                                                                                                                   |
| The input power supp                             | ly voltage is too high. |                                                                                                                                                     |
| The capacity of the po                           | ower supply is too      | • Reduce the voltage to within the range in the power supply specifications.                                                                        |
| small.  • The distortion in the p                | ower supply is too      | <ul><li>Increase the capacity of the power supply.</li><li>Lower the impedance of the input power supply wiring.</li></ul>                          |
| large.                                           | lower suppry is too     | Lower the impedance of the input power suppry wiring.                                                                                               |
| The load was too large of                        | luring repetitious      | Check the load conditions. Reduce the load.                                                                                                         |
| operation.                                       |                         | Increase the acceleration/deceleration time.                                                                                                        |
| A phase loss occurred in the input power supply. |                         | Check the input power supply for phase loss or an imbalance in the interphase voltages.                                                             |
| Digital Opera                                    | tor Display             | Fault Name                                                                                                                                          |
| 5r.E                                             | SrC                     | Phase Order Detection Fault                                                                                                                         |
|                                                  |                         | The phase rotation direction for the input power supply changed.                                                                                    |
| Cau                                              | se                      | Possible Solution                                                                                                                                   |
| The power supply phase operation.                | order changed during    |                                                                                                                                                     |
| An input power supply wiring terminal is loose.  |                         | Investigate and correct the cause and reset the fault. <i>Refer to Diagnosing and Resetting Faults on page 416</i> .                                |

| Digital Opera | tor Display | Fault Name                                                               |
|---------------|-------------|--------------------------------------------------------------------------|
| Sec           | Crr         | Internal Resistance Fault                                                |
| '''           | Srr         | An operation failure occurred in the snubber discharge resistor circuit. |
| Cau           | ise         | Possible Solution                                                        |

The fluctuation in the voltage of the input power supply is too large.

| Digital Operator Display                                      | Fault Name                                                                                                                                                                                                                           |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The snubber discharge resistor or peripheral circuits failed. | <ul> <li>Cycle power to the drive.</li> <li>If the problem continues, replace either the control board or the entire drive. For instructions on replacing the control board, contact Yaskawa or a Yaskawa representative.</li> </ul> |

| Digital Opera                                      | tor Display          | Fault Name                                                                                                                     |  |
|----------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------|--|
| 5f o                                               | OT.                  | Pull-Out Detection                                                                                                             |  |
| ט יכ                                               | STo                  | Motor pull out or step out has occurred. Motor has exceeded its pull-out torque.                                               |  |
| Cau                                                | se                   | Possible Solution                                                                                                              |  |
| The wrong motor and is                             | got (Vaglanya motora | • Enter the correct motor code for the PM being used into E5-01.                                                               |  |
| The wrong motor code is set (Yaskawa motors only). |                      | • For special-purpose motors, enter the correct data to all E5 parameters according to the test report provided for the motor. |  |
|                                                    |                      | • Increase the load inertia for PM motor (n8-55).                                                                              |  |
| Load is too heavy.                                 |                      | • Increase the pull-in current during accel/decel (n8-51).                                                                     |  |
| Load is too neavy.                                 |                      | Reduce the load.                                                                                                               |  |
|                                                    |                      | Use a larger motor and drive.                                                                                                  |  |
| Load inertia is too heavy.                         |                      | Increase the load inertia for PM motor (n8-55).                                                                                |  |
| Acceleration and deceleration times are too        |                      | • Increase the acceleration and deceleration times (C1-01 through C1-08).                                                      |  |
| short.                                             |                      | Increase the S-curve acceleration and deceleration times (C2-01).                                                              |  |
| Speed response is too slow.                        |                      | Increase the load inertia for PM motor (n8-55).                                                                                |  |

| Digital Operator Display                                |     | Fault Name                                                                    |
|---------------------------------------------------------|-----|-------------------------------------------------------------------------------|
| 5uE                                                     | SvE | Zero Servo Fault                                                              |
| 300                                                     |     | Position deviation during zero servo.                                         |
| Cause                                                   |     | Possible Solution                                                             |
| Torque limit is set too lo                              | OW. | Set the torque limit to an appropriate value using parameters L7-01 to L7-04. |
| Excessive load torque.                                  |     | Reduce the amount of load torque.                                             |
| Electrical signal interference along PG encoder wiring. |     | Check the PG signal for electrical signal interference.                       |

| Digital Operator Display                             |               | Fault Name                                                                                                                          |
|------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------|
| _                                                    | UL3           | Undertorque Detection 1                                                                                                             |
| UL 3                                                 |               | The current has fallen below the minimum value set for Torque Detection Level 1 (L6-02) for longer than the allowable time (L6-03). |
| Cau                                                  | se            | Possible Solution                                                                                                                   |
| Parameter settings are not appropriate for the load. |               | Check the settings of parameters L6-02 and L6-03.                                                                                   |
| There is a fault on the m                            | nachine side. | Check the load for any problems.                                                                                                    |

| Digital Opera                                        | tor Display   | Fault Name                                                                                                                          |
|------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------|
|                                                      | UL4           | Undertorque Detection 2                                                                                                             |
| UL 4                                                 |               | The current has fallen below the minimum value set for Torque Detection Level 2 (L6-05) for longer than the allowable time (L6-06). |
| Cau                                                  | se            | Possible Solution                                                                                                                   |
| Parameter settings are not appropriate for the load. |               | Check L6-05 and L6-06 settings                                                                                                      |
| There is a fault on the m                            | nachine side. | Check the load for any problems.                                                                                                    |

| Digital Operator Display                                                                        |     | Fault Name                                                    |
|-------------------------------------------------------------------------------------------------|-----|---------------------------------------------------------------|
| UL 5                                                                                            | UL5 | Mechanical Weakening Detection 2                              |
| ULJ                                                                                             | OL3 | The operation conditions matched the conditions set to L6-08. |
| Cau                                                                                             | se  | Possible Solution                                             |
| Undertorque was detected and matched the conditions for mechanical loss detection set to L6-08. |     | Check the load side for any problems.                         |

| Digital Operator Display                                |                       | Fault Name                                                                                                                                                              |  |
|---------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                         |                       | Control Circuit Undervoltage Fault                                                                                                                                      |  |
|                                                         |                       | Voltage in the control circuit fell below the detection level:                                                                                                          |  |
| Uu I                                                    | Uv1                   | • 200 V class: When Input Voltage Setting (E1-22) ≤ 220 Vrms, approximately 190 V. When Input Voltage Setting (E1-22) > 220 Vrms, approximately 225 V.                  |  |
|                                                         |                       | • 400 V class: When Input Voltage Setting (E1-22) ≤ 440 Vrms, approximately 380 V. When Input Voltage Setting (E1-22) > 440 Vrms, approximately 450 V.                  |  |
| Cau                                                     | ise                   | Possible Solution                                                                                                                                                       |  |
| Innut nowar phase loss                                  |                       | The main circuit drive input power is wired incorrectly.                                                                                                                |  |
| Input power phase loss.                                 |                       | Correct the wiring.                                                                                                                                                     |  |
| One of the drive input n                                | ower wiring terminals | Ensure there are no loose terminals.                                                                                                                                    |  |
| One of the drive input power wiring terminals is loose. |                       | • Apply the tightening torque specified in this manual to fasten the terminals. <i>Refer to Main Circuit Wire Gauges and Tightening Torque on page 101</i> for details. |  |
|                                                         |                       | Check the voltage.                                                                                                                                                      |  |
| There is a problem with                                 | the voltage from the  | Correct the voltage to be within the range listed in drive input power specifications.                                                                                  |  |
| drive input power.                                      |                       | • If there is no problem with the power supply to the main circuit, check for problems with the main circuit magnetic contactor.                                        |  |
| The power has been into                                 | errupted.             | Correct the drive input power.                                                                                                                                          |  |
| The committees are seen                                 |                       | Check the maintenance time for the capacitors (U4-05).                                                                                                                  |  |
| The capacitors are worn.                                |                       | • Replace the entire drive if U4-05 exceeds 90%. Contact Yaskawa or a Yaskawa representative.                                                                           |  |
|                                                         |                       | Cycle power to the drive.                                                                                                                                               |  |
|                                                         |                       | • If the problem continues, replace the entire drive. Contact Yaskawa or a Yaskawa representative.                                                                      |  |
|                                                         |                       | Check monitor U4-06 for the performance life of the soft-charge bypass.                                                                                                 |  |
|                                                         |                       | • Replace the entire drive if U4-06 exceeds 90%. Contact Yaskawa or a Yaskawa representative.                                                                           |  |
|                                                         |                       |                                                                                                                                                                         |  |

| Digital Operator Display                |       | Fault Name                                                                                         |
|-----------------------------------------|-------|----------------------------------------------------------------------------------------------------|
| Uu2                                     | Uv2   | Control Power Supply Voltage Fault                                                                 |
| UUL                                     | 0 7 2 | Voltage is too low for the control drive input power.                                              |
| Cause                                   |       | Possible Solution                                                                                  |
| Control power supply wiring is damaged. |       | Cycle power to the drive.                                                                          |
|                                         |       | • If the problem continues, replace the entire drive or the control power supply.                  |
| Internal circuitry is damaged.          |       | Cycle power to the drive.                                                                          |
|                                         |       | • If the problem continues, replace the entire drive. Contact Yaskawa or a Yaskawa representative. |

| Digital Operator Display |     | Fault Name                                                                                         |
|--------------------------|-----|----------------------------------------------------------------------------------------------------|
| Uu 3                     | Uv3 | Undervoltage 3 (Soft-Charge Bypass Relay Fault)                                                    |
| 003                      |     | The soft-charge bypass relay failed.                                                               |
| Cause                    |     | Possible Solution                                                                                  |
|                          |     | Cycle power to the drive.                                                                          |
|                          |     | • If the problem continues, replace the entire drive. Contact Yaskawa or a Yaskawa representative. |
|                          |     | Check monitor U4-06 for the performance life of the soft-charge bypass.                            |
|                          |     | • Replace the entire drive if U4-06 exceeds 90%. Contact Yaskawa or a Yaskawa representative.      |

### 6.5 Alarm Detection

## ◆ Alarm Codes, Causes, and Possible Solutions

Alarms are drive protection functions that do not necessarily cause the drive to stop. After removing the cause of an alarm, the drive will return to the same status is was before the alarm occurred.

When an alarm has been triggered, the ALM light on the digital operator display blinks and the alarm code display flashes. If a multi-function output is set for an alarm ( $H2-\Box\Box=10$ ), that output terminal will be triggered.

Note:

If a multi-function output is set to close when an alarm occurs (H2- $\square\square$  = 10), it will also close when maintenance periods are reached, triggering alarms LT-1 through LT-3 (triggered only if H2- $\square\square$  = 2F).

Table 6.15 Alarm Codes, Causes, and Possible Solutions

| Digital Operator Display                   |     | Minor Fault Name                                                       |
|--------------------------------------------|-----|------------------------------------------------------------------------|
| 88c AEr                                    |     | Station Address Setting Error (CC-Link, CANopen, MECHATROLINK)         |
| 1161                                       | ALI | Option card node address is outside of the acceptable setting range.   |
| Cause                                      |     | Possible Solutions                                                     |
| Station number is set outside the possible |     | • Set parameter F6-10 to the proper value when using a CC-Link option. |
| setting range.                             |     | • Set parameter F6-35 to the proper value when using a CANopen option. |

| Digital Operate                                  | or Display | Minor Fault Name                                                                                                                                                                                    |  |
|--------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                  |            | Power Supply Undervoltage                                                                                                                                                                           |  |
| RUJ                                              | AUv        | The input power supply voltage became equal to or lower than the Input Power Supply Undervoltage Detection Level (L2-21).  200 V Class: Approximately 150 Vrms  400 V Class: Approximately 300 Vrms |  |
| Cause                                            | 9          | Possible Solution                                                                                                                                                                                   |  |
| The power supply voltage is low.                 |            | Increase the power supply voltage.                                                                                                                                                                  |  |
| A phase loss occurred in the input power supply. |            | Check the input power supply for phase loss or an imbalance in the interphase voltages. Investigate and correct the cause and then reset the fault.                                                 |  |
| Voltage detection failed.                        |            | Correctly wire r1/111, s1/121, and t1/131.                                                                                                                                                          |  |

| Digital Operator Display                                                                        |    | Minor Fault Name                                                       |                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------|----|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 66                                                                                              | bb | Baseblock                                                              |                                                                                                                                                                              |
|                                                                                                 |    | Drive output interrupted as indicated by an external baseblock signal. |                                                                                                                                                                              |
| Cause                                                                                           |    | Possible Solutions                                                     |                                                                                                                                                                              |
| External baseblock signal was entered via one of the multi-function input terminals (S1 to S8). |    | Check exteri                                                           | nal sequence and baseblock signal input timing.                                                                                                                              |
|                                                                                                 |    | Note:                                                                  | Baseblock alarm "bb" will not activate a digital output programmed for minor fault $H2-0\square = 10$ . Set $H2-0\square = 8$ or $1B$ to activate a digital output for "bb". |

| Digital Operator Display                      |     | Minor Fault Name                                                                                   |
|-----------------------------------------------|-----|----------------------------------------------------------------------------------------------------|
|                                               |     | Option Communication Error                                                                         |
| bU5                                           | bUS | The connection was lost after initial communication was established.                               |
|                                               |     | Assign a Run command frequency reference to the option.                                            |
| Cause                                         |     | Possible Solutions                                                                                 |
|                                               |     | Check for faulty wiring.                                                                           |
| Connection is broken of stopped communicating |     | Correct the wiring.                                                                                |
| stopped communicating.                        |     | Check for disconnected cables and short circuits. Repair as needed.                                |
| Option is damaged.                            |     | If there are no problems with the wiring and the fault continues to occur, replace the option.     |
| The option is not properly connected to the   |     | • The connector pins on the option are not properly lined up with the connector pins on the drive. |
| drive.                                        |     | Reinstall the option.                                                                              |

| Digital Operator Display            | Minor Fault Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A data error occurred due to noise. | <ul> <li>Check options available to minimize the effects of noise.</li> <li>Take steps to counteract noise in the control circuit wiring, main circuit lines and ground wiring.</li> <li>Try to reduce noise on the controller side.</li> <li>Use surge absorbers on magnetic contactors or other equipment causing the disturbance.</li> <li>Use recommended cables or some other type of shielded line. Ground the shield to the controller side or on the input power side.</li> <li>Separate the wiring for communication devices from the drive input power lines. Install an EMC noise filter to the drive input power.</li> </ul> |

| Digital Operator Display                                                                                                             |      | Minor Fault Name                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------|
| 6U5Y                                                                                                                                 | bUSy | Parameter Change                                                                                           |
| 0033                                                                                                                                 |      | The drive detected a different setting being changed while it was changing a setting.                      |
| Caus                                                                                                                                 | e    | Possible Solutions                                                                                         |
| You set the drive to use MEMOBUS/<br>Modbus communications to change<br>parameters, but you used the keypad to<br>change parameters. |      | Use MEMOBUS/Modbus communications to enter the enter command, then use the keypad to change the parameter. |
| You tried to change a parameter while the drive was changing setting.                                                                |      | Wait until the process is complete.                                                                        |

| Digital Operator Display                   |                         | Minor Fault Name                                                                                                                                                                     |
|--------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ERLL                                       | CALL                    | Serial Communication Transmission Error                                                                                                                                              |
| נווננ                                      | CALL                    | Communication has not yet been established.                                                                                                                                          |
| Caus                                       | ie                      | Possible Solutions                                                                                                                                                                   |
| Communications wiring                      | g is faulty, there is a | Check for wiring errors.                                                                                                                                                             |
| short circuit, or somethi                  | ing is not connected    | Correct the wiring.                                                                                                                                                                  |
| properly.                                  |                         | Check for disconnected cables and short circuits. Repair as needed.                                                                                                                  |
| Programming error on                       | the master side.        | Check communications at start-up and correct programming errors.                                                                                                                     |
|                                            |                         | Perform a self-diagnostics check.                                                                                                                                                    |
| Communications circuitry is damaged.       |                         | • If the problem continues, replace either the control board or the entire drive. For instructions on replacing the control board, contact Yaskawa or a Yaskawa representative.      |
| Termination resistor setting is incorrect. |                         | Install a termination resistor at both ends of a communication line. Set the internal termination resistor switch correctly on slave drives. Place DIP switch S2 to the ON position. |

| Digital Operator Display                                           |                     | Minor Fault Name                                                                                                                           |
|--------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| CE                                                                 | CE                  | MEMOBUS/Modbus Communication Error                                                                                                         |
|                                                                    | CE                  | Control data was not received correctly for two seconds.                                                                                   |
| Caus                                                               | e                   | Possible Solutions                                                                                                                         |
|                                                                    |                     | Check options available to minimize the effects of noise.                                                                                  |
|                                                                    |                     | Take steps to counteract noise in the control circuit wiring, main circuit lines, and ground wiring.                                       |
|                                                                    |                     | Reduce noise on the controller side.                                                                                                       |
| A data error occurred d                                            | ue to noise.        | • Use surge absorbers for the magnetic contactors or other components that may be causing the disturbance.                                 |
|                                                                    |                     | Use only recommended shielded line. Ground the shield on the controller side or on the drive input power side.                             |
|                                                                    |                     | • Separate all wiring for communication devices from drive input power lines. Install an EMC noise filter to the drive input power supply. |
| Communication protoco                                              | al ia inaammatihla  | Check the H5 parameter settings and the protocol setting in the controller.                                                                |
| Communication protoco                                              | of is incompatible. | Ensure settings are compatible.                                                                                                            |
| The CE detection time                                              | (H5-09) is set      | Check the PLC.                                                                                                                             |
| shorter than the time red                                          | quired for a        | Change the software settings in the PLC.                                                                                                   |
| communication cycle to                                             | take place.         | Set a longer CE detection time using parameter H5-09.                                                                                      |
| Incompatible PLC software settings or there is a hardware problem. |                     | Check the PLC.                                                                                                                             |
|                                                                    |                     | Remove the cause of the error on the controller side.                                                                                      |
| Communications cable                                               | is disconnected or  | Check the connector to make sure the cable has a signal.                                                                                   |
| damaged.                                                           |                     | Replace the communications cable.                                                                                                          |

| Digital Operator Display                                       |      | Minor Fault Name                                                                                                                                             |
|----------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [-51                                                           | CrST | Cannot Reset                                                                                                                                                 |
| Cause                                                          |      | Possible Solutions                                                                                                                                           |
| Fault reset was being executed when a Run command was entered. |      | <ul> <li>Ensure that a Run command cannot be entered from the external terminals or option during fault reset.</li> <li>Turn off the Run command.</li> </ul> |

| Digital Operator Display                                                                              |     | Minor Fault Name                                                                                             |
|-------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------|
| £ 4£                                                                                                  | СуС | MECHATROLINK Comm. Cycle Setting Error                                                                       |
|                                                                                                       |     | Comm. Cycle Setting Error was detected.                                                                      |
| Cause                                                                                                 |     | Possible Solutions                                                                                           |
| The controller is using a comm. cycle beyond the allowable setting range for the MECHATROLINK option. |     | Set the comm. cycle for the upper controller within the allowable setting range for the MECHATROLINK option. |

| Digital Operator Display                               |     | Minor Fault Name                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                        |     | Speed Deviation (for Control Mode with PG)                                                                                                                                                                                                                                                       |
| dEυ                                                    | dEv | The deviation between the speed detection value for the pulse input and the speed reference after speed agreement was reached exceeded the setting value of $F1-10$ for the time set in $F1-11$ or longer when the Operation Selection at Deviation was set to continue operation ( $F1-04=3$ ). |
| Cause                                                  | 2   | Possible Solution                                                                                                                                                                                                                                                                                |
| The load is too heavy.                                 |     | Reduce the load.                                                                                                                                                                                                                                                                                 |
| Acceleration and deceleration times are set too short. |     | Increase the acceleration and deceleration times (C1-01 through C1-08).                                                                                                                                                                                                                          |
| The load is locked up.                                 |     | Check the machine.                                                                                                                                                                                                                                                                               |
| Parameter settings are incorrect.                      |     | Check the settings of parameters F1-10 and F1-11.                                                                                                                                                                                                                                                |
| The motor brake has engaged.                           |     | Ensure the brake releases properly.                                                                                                                                                                                                                                                              |
| The torque limit is small for the load.                |     | Increase the setting values of L7-01 to L7-04, the value of the torque limit from the analog input, or the value of the torque limit set from the communication option.                                                                                                                          |

| Digital Operator Display                                                                                              |     | Minor Fault Name              |
|-----------------------------------------------------------------------------------------------------------------------|-----|-------------------------------|
| dnE                                                                                                                   | dnE | Drive Disabled                |
| Cause                                                                                                                 |     | Possible Solutions            |
| "Drive Enable" is set to a multi-function contact input (H1- $\square\square$ = 6A) and that signal was switched off. |     | Check the operation sequence. |

| Digital Operator Display                           |     | Minor Fault Name                                                                        |
|----------------------------------------------------|-----|-----------------------------------------------------------------------------------------|
| doX                                                | doH | Damping Resistor Overheat                                                               |
| ייטטי                                              |     | The temperature of the built-in damping resistor exceeded the set value.                |
| Caus                                               | e   | Possible Solution                                                                       |
| • The capacity of the power supply is too small.   |     | Increase the capacity of the power supply.                                              |
| • The distortion in the power supply is too large. |     | Lower the impedance of the input power supply wiring.                                   |
| A phase loss occurred in the input power supply.   |     | Check the input power supply for phase loss or an imbalance in the interphase voltages. |

| Digital Operator Display |    | Minor Fault Name                                                              |
|--------------------------|----|-------------------------------------------------------------------------------|
| EF                       | EF | Forward/Reverse Run Command Input Error                                       |
|                          |    | Both forward run and reverse run closed simultaneously for longer than 0.5 s. |
| Cause                    |    | Possible Solutions                                                            |
| C                        |    | Check the forward and reverse command sequence and correct the problem.       |
| Sequence error           |    | <b>Note:</b> When minor fault EF detected, motor ramps to stop.               |

| Digital Operator Display |     | Minor Fault Name                        |
|--------------------------|-----|-----------------------------------------|
| EF0                      | EF0 | Option Card External Fault              |
| [ [                      | Erv | An external fault condition is present. |
| Cause                    |     | Possible Solutions                      |

| Digital Operator Display                                                                                                                    | Minor Fault Name                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| An external fault was received from the PLC with F6-03 set to 3, which allows the drive to continue running after an external fault occurs. | <ul> <li>Remove the cause of the external fault.</li> <li>Remove the external fault input from the PLC.</li> </ul> |
| There is a problem with the PLC program.                                                                                                    | Check the PLC program and correct problems.                                                                        |

| Digital Opera                                      | tor Display | Minor Fault Name                                                                                                                              |
|----------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| EF I                                               | EF1         | External Fault (Input Terminal S1)                                                                                                            |
|                                                    | EFI         | External fault at multi-function input terminal S1.                                                                                           |
| EF2                                                | EF2         | External fault (input terminal S2)                                                                                                            |
|                                                    | EF2         | External fault at multi-function input terminal S2.                                                                                           |
| EF3                                                | EF3         | External fault (input terminal S3)                                                                                                            |
| (7)                                                | EF3         | External fault at multi-function input terminal S3.                                                                                           |
| EFY                                                | EF4         | External fault (input terminal S4)                                                                                                            |
|                                                    | EF4         | External fault at multi-function input terminal S4.                                                                                           |
| EF5                                                | EF5         | External fault (input terminal S5)                                                                                                            |
|                                                    | EF3         | External fault at multi-function input terminal S5.                                                                                           |
| EF S                                               | EE(         | External fault (input terminal S6)                                                                                                            |
|                                                    | EF6         | External fault at multi-function input terminal S6.                                                                                           |
| EFT                                                | EF7         | External fault (input terminal S7)                                                                                                            |
|                                                    | EF/         | External fault at multi-function input terminal S7.                                                                                           |
| EF8                                                | EF8         | External fault (input terminal S8)                                                                                                            |
|                                                    | EFO         | External fault at multi-function input terminal S8.                                                                                           |
| Cau                                                | se          | Possible Solutions                                                                                                                            |
| An external device has tripped an alarm function.  |             | Remove the cause of the external fault and reset the multi-function input value.                                                              |
| Wiring is incorrect.                               |             | • Ensure the signal lines have been connected properly to the terminals assigned for external fault detection (H1-□□ = 2C to 2F).             |
|                                                    |             | Reconnect the signal line.                                                                                                                    |
| Multi-function contact inputs are set incorrectly. |             | <ul> <li>Check if the unused terminals have been set for H1-□□ = 2C to 2F (External Fault).</li> <li>Change the terminal settings.</li> </ul> |

| Digital Operat                     | or Display          | Minor Fault Name                                                                                                                                    |  |
|------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <i>FЪН</i> FbН                     |                     | Excessive PID Feedback                                                                                                                              |  |
|                                    |                     | The PID feedback input is higher than the level set to b5-36 for longer than the time set to b5-37, and b5-12 is set to 1 or 4.                     |  |
| Caus                               | -                   | Possible Solutions                                                                                                                                  |  |
| Parameter settings for bincorrect. | o5-36 and b5-37 are | Check parameters b5-36 and b5-37.                                                                                                                   |  |
| PID feedback wiring is             | faulty.             | Correct the wiring.                                                                                                                                 |  |
| Feedback sensor has ma             | alfunctioned.       | Check the sensor and replace it if damaged.                                                                                                         |  |
| Feedback input circuit is damaged. |                     | Replace either the control board or the entire drive. For instructions on replacing the control board, contact Yaskawa or a Yaskawa representative. |  |

| Digital Operat                     | or Display          | Minor Fault Name                                                                                                                                    |  |
|------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| FbL                                | FbL                 | PID Feedback Loss                                                                                                                                   |  |
| 100                                | FDL                 | The PID feedback input is lower than the level set to b5-13 for longer than the time set to b5-14.                                                  |  |
| Caus                               |                     | Possible Solutions                                                                                                                                  |  |
| Parameter settings for bincorrect. | o5-13 and b5-14 are | Check parameters b5-13 and b5-14.                                                                                                                   |  |
| PID feedback wiring is faulty.     |                     | Correct the wiring.                                                                                                                                 |  |
| Feedback sensor has m              | alfunctioned.       | Check the sensor and replace it if damaged.                                                                                                         |  |
| Feedback input circuit is damaged. |                     | Replace either the control board or the entire drive. For instructions on replacing the control board, contact Yaskawa or a Yaskawa representative. |  |

| Digital Operato                                                        | or Display  | Minor Fault Name                                                                                                                                    |  |
|------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Fdu                                                                    | F.1         | Power Supply Frequency Fault                                                                                                                        |  |
| , 00                                                                   | Fdv         | The input power supply frequency exceeded the allowable frequency fluctuation.                                                                      |  |
| Cause                                                                  | 2           | Possible Solution                                                                                                                                   |  |
| A momentary power los                                                  | s occurred. | Reset the fault.                                                                                                                                    |  |
| An input power supply wiring terminal is loose.                        |             | Check for loose terminals.                                                                                                                          |  |
| The fluctuation in the voltage of the input power supply is too large. |             | Increase the Power Supply Frequency Fault Detection Width (L2-27).                                                                                  |  |
| The built-in fuse is open.                                             |             | Replace either the control board or the entire drive. For instructions on replacing the control board, contact Yaskawa or a Yaskawa representative. |  |
| The phase rotation direction has changed in the input power supply.    |             | Correct the wiring.                                                                                                                                 |  |
| The detected power supply frequency exceeded the allowable value.      |             | Improve the power supply.                                                                                                                           |  |

| Digital Operato                                    | or Display | Minor Fault Name                                                                                                                                    |  |
|----------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <i>H</i> bb                                        | Hbb        | Safe Disable Signal Input                                                                                                                           |  |
| 1100                                               | 1100       | Both Safe Disable Input channels are open.                                                                                                          |  |
| Cause                                              | 2          | Possible Solution                                                                                                                                   |  |
| Both Safe Disable Inputs H1 and H2 are open.       |            | Check signal status at the input terminals H1 and H2.                                                                                               |  |
|                                                    |            | Check the Sink/Source Selection for the digital inputs.                                                                                             |  |
|                                                    |            | • If the Safe Disable function is not utilized, determine if terminals H1-HC, and H2-HC are linked.                                                 |  |
| Internally, both Safe Disable channels are broken. |            | Replace either the control board or the entire drive. For instructions on replacing the control board, contact Yaskawa or a Yaskawa representative. |  |

| Digital Operato                                     | or Display | Minor Fault Name                                                                                                                                    |  |
|-----------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| HbbF                                                |            | Safe Disable Signal Input                                                                                                                           |  |
| 11001                                               | поог       | One Safe Disable channel is open while the other channel is closed.                                                                                 |  |
| Cause                                               |            | Possible Solution                                                                                                                                   |  |
| The signals to the Safe I wrong or the wiring is in |            | Check signal status at the input terminals H1 and H2. If the Safe Disable function is not utilized, terminals H1-HC, and H2-HC must be linked.      |  |
| One of the Safe Disable channels is faulty.         |            | Replace either the control board or the entire drive. For instructions on replacing the control board, contact Yaskawa or a Yaskawa representative. |  |

| Digital Operat                                                                                                               | tor Display           | Minor Fault Name                                                                                                           |  |
|------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------|--|
| HER HCA                                                                                                                      |                       | Current Alarm                                                                                                              |  |
| 11611                                                                                                                        | пса                   | Drive current exceeded overcurrent warning level (150% of the rated current).                                              |  |
| Caus                                                                                                                         | se                    | Possible Solutions                                                                                                         |  |
| Load is too heavy.                                                                                                           |                       | Reduce the load for applications with repetitive operations (i.e., stops and starts), or use a larger drive.               |  |
|                                                                                                                              |                       | Calculate the torque required during acceleration and for the moment of inertia.                                           |  |
| Acceleration and decele                                                                                                      | eration times are too | • If the torque level is not right for the load, take the following steps:                                                 |  |
| short.                                                                                                                       |                       | • Increase the acceleration and deceleration times (C1-01 through C1-08).                                                  |  |
|                                                                                                                              |                       | Use a larger drive.                                                                                                        |  |
| A special-purpose moto                                                                                                       | or is being used, or  | Check the motor capacity.                                                                                                  |  |
| the drive is attempting to run a motor greater than the rated output current.                                                |                       | • Use a motor appropriate for the drive. Ensure the motor is within the rated output current range.                        |  |
| The current level increased due to Speed Search after a momentary power loss or while attempting to perform a fault restart. |                       | The alarm will only appear briefly. There is no need to take action to prevent the alarm from occurring in such instances. |  |

| Digital Operator Display |      |             | Minor Fault Name                                                                                                             |
|--------------------------|------|-------------|------------------------------------------------------------------------------------------------------------------------------|
|                          |      | Cooling Far | n Maintenance Time                                                                                                           |
| 15-1                     | LT-1 | The cooling | fan has reached its expected maintenance period and may need to be replaced.                                                 |
|                          |      | Note:       | The signal closes when the maintenance period ends if H2- $\Box\Box$ = 2F. The signal will not close if H2- $\Box\Box$ = 10. |
| Caus                     | se   |             | Possible Solutions                                                                                                           |

| Digital Operator Display                                          | Minor Fault Name                                                             |
|-------------------------------------------------------------------|------------------------------------------------------------------------------|
| The cooling fan has reached 90% of its expected performance life. | Replace the cooling fan and set o4-03 to 0 to reset the Maintenance Monitor. |

| Digital Operator Display                                             |                                            | Minor Fault Name                                                                                                                      |
|----------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| [[-2] LT-2                                                           |                                            | Capacitor Maintenance Time                                                                                                            |
|                                                                      |                                            | The main circuit and control circuit capacitors are nearing the end of their expected performance life.                               |
|                                                                      |                                            | <b>Note:</b> The signal closes when the maintenance period ends if $H2-\Box\Box=2F$ . The signal will not close if $H2-\Box\Box=10$ . |
| Caus                                                                 | se                                         | Possible Solutions                                                                                                                    |
| The main circuit and co capacitors have reached expected performance | re reached 90% of their Replace the drive. |                                                                                                                                       |

| Digital Operator Display                                                   |             |                               | Minor Fault Name                                                                                                             |
|----------------------------------------------------------------------------|-------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| <i>LΓ-3</i> LT-3                                                           | Soft Charge | Bypass Relay Maintenance Time |                                                                                                                              |
|                                                                            | LT-3        | The DC bus                    | soft charge relay is nearing the end of its expected performance life.                                                       |
| 2, 3                                                                       | L1-3        | Note:                         | The signal closes when the maintenance period ends if H2- $\Box\Box$ = 2F. The signal will not close if H2- $\Box\Box$ = 10. |
| Cause                                                                      |             |                               | Possible Solutions                                                                                                           |
| The DC bus soft charge relay has reached 90% of expected performance life. |             | Replace the                   | drive.                                                                                                                       |

| Digital Operator Display                |                 | Minor Fault Name                                                                                                                                                        |
|-----------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| оН                                      | оН              | Heatsink Overheat                                                                                                                                                       |
|                                         |                 | The temperature of the heatsink exceeded the overheat pre-alarm level set to L8-02 (90-100 °C). Default value for L8-02 is determined by drive model selection (o2-04). |
| Caus                                    | e               | Possible Solutions                                                                                                                                                      |
|                                         |                 | Check the surrounding temperature.                                                                                                                                      |
| Surrounding temperatu                   | ra is too high  | Improve the air circulation within the enclosure panel.                                                                                                                 |
| Surrounding temperatu                   | ie is too nign. | Install a fan or air conditioner to cool surrounding area.                                                                                                              |
|                                         |                 | Remove anything near drive that may cause extra heat.                                                                                                                   |
| Internal cooling fan has stopped.       |                 | Replace the cooling fan.                                                                                                                                                |
|                                         |                 | • After replacing the drive, set parameter o4-03 to 0 to reset the cooling fan operation time.                                                                          |
| Airflow around the drive is restricted. |                 | • Provide proper installation space around the drive as indicated in the manual. <i>Refer to Installation Orientation and Spacing on page 61</i> for details.           |
|                                         |                 | • Allow for the proper space and ensure that there is sufficient circulation around the control panel.                                                                  |
|                                         |                 | Check for dust or other foreign materials clogging the cooling fan.                                                                                                     |
|                                         |                 | Clear debris caught in the fan that restricts air circulation.                                                                                                          |

| Digital Operator Display                                       |     | Minor Fault Name                                                                                     |
|----------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------|
| oH2                                                            | oH2 | Heatsink Overheat Warning                                                                            |
|                                                                |     | "Heatsink Overheat Warning" was input to a multi-function input terminal, S1 through S8 (H1-□□ = B). |
| Cause                                                          |     | Possible Solutions                                                                                   |
| An external device triggered an overheat warning in the drive. |     | Search for the device that tripped the overheat warning. Remove the cause of the problem.            |

| Digital Operator Display                                               |     | Minor Fault Name                                                                                                                  |
|------------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------|
|                                                                        |     | Motor Overheat                                                                                                                    |
| o#3                                                                    | оН3 | The motor overheat signal entered to a multi-function analog input terminal exceeded the alarm level (H3-02, H3-06 or H3-10 = E). |
| Cause                                                                  |     | Possible Solutions                                                                                                                |
| Motor thermostat wiring is faulty (PTC input).                         |     | Repair the PTC input wiring.                                                                                                      |
| There is a fault on the machine side (e.g., the machine is locked up). |     | <ul><li> Check the status of the machine.</li><li> Remove the cause of the fault.</li></ul>                                       |

| Digital Operator Display | Minor Fault Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Motor has overheated.    | <ul> <li>Check the load size, accel/decel times, and cycle times.</li> <li>Decrease the load.</li> <li>Increase accel and decel times (C1-01 to C1-08).</li> <li>Adjust the preset V/f pattern (E1-04 through E1-10). This involves reducing E1-08 and E1-10.</li> <li>Note: Refrain from lowering E1-08 and E1-10 excessively to prevent a reduction in load tolerance at low speeds.</li> <li>Check the motor-rated current.</li> <li>Enter motor-rated current on motor nameplate (E2-01).</li> <li>Ensure the motor cooling system is operating normally.</li> <li>Repair or replace the motor cooling system.</li> </ul> |

| Digital Operator Display                                               |     | Minor Fault Name                                                                                                                |
|------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------|
| oL3                                                                    | oL3 | Overtorque 1                                                                                                                    |
|                                                                        |     | Drive output current (or torque in OLV, CLV, AOLV/PM, and CLV/PM) was greater than L6-02 for longer than the time set to L6-03. |
| Cause                                                                  |     | Possible Solutions                                                                                                              |
| Inappropriate parameter settings.                                      |     | Check parameters L6-02 and L6-03.                                                                                               |
| There is a fault on the machine side (e.g., the machine is locked up). |     | Check the status of the machine.     Remove the cause of the fault.                                                             |

| Digital Operator Display                                               |     | Minor Fault Name                                                                                                            |
|------------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------|
| oL4                                                                    | oL4 | Overtorque 2                                                                                                                |
|                                                                        |     | Drive output current (or torque in OLV, CLV, AOLV/PM, CLV/PM) was greater than L6-05 for longer than the time set to L6-06. |
| Cause                                                                  |     | Possible Solutions                                                                                                          |
| Parameter settings are not appropriate.                                |     | Check parameters L6-05 and L6-06.                                                                                           |
| There is a fault on the machine side (e.g., the machine is locked up). |     | <ul><li> Check the status of the machine being used.</li><li> Remove the cause of the fault.</li></ul>                      |

| Digital Operator Display                                                     |     | Minor Fault Name                                                 |
|------------------------------------------------------------------------------|-----|------------------------------------------------------------------|
| oL5                                                                          | oL5 | Mechanical Weakening Detection 1                                 |
|                                                                              | OLS | Overtorque occurred, matching the conditions specified in L6-08. |
| Cause                                                                        |     | Possible Solutions                                               |
| Overtorque occurred, triggering the mechanical weakening level set to L6-08. |     | Check for the cause of mechanical weakening.                     |

| Digital Operator Display                                                                        |     | Minor Fault Name                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| o5                                                                                              | . 0 | Overspeed                                                                                                                                                                                      |
| 0.5                                                                                             | oS  | The motor speed feedback exceeded the F1-08 setting.                                                                                                                                           |
| Caus                                                                                            | se  | Possible Solutions                                                                                                                                                                             |
| Overshoot is occurring.                                                                         |     | • Increase the settings for C5-01 (Speed Control Proportional Gain 1) and reduce C5-02 (Speed Control Integral Time 1).                                                                        |
|                                                                                                 |     | If using a Closed Loop Vector mode enable Feed Forward Control and perform Inertia Auto-Tuning.                                                                                                |
| Incorrect speed feedback scaling if terminal RP is used as speed feedback input in V/f control. |     | <ul> <li>Set H6-02 to value of the speed feedback signal frequency when the motor runs at the maximum speed.</li> <li>Adjust the input signal using parameters H6-03 through H6-05.</li> </ul> |
| Incorrect PG pulse number has been set.                                                         |     | Check and correct parameter F1-01.                                                                                                                                                             |
| Inappropriate parameter settings.                                                               |     | Check the setting for the overspeed detection level and the overspeed detection time (F1-08 and F1-09).                                                                                        |

| Digital Operate | or Display | Minor Fault Name                                            |
|-----------------|------------|-------------------------------------------------------------|
|                 |            | Control Circuit Overvoltage                                 |
| 3               | ov         | Voltage in the control circuit has exceeded the trip point. |
| 00              |            | For 200 V class drives: approximately 450 V                 |
|                 |            | For 400 V class drives: approximately 900 V                 |
| Cause           |            | Possible Solution                                           |

| Digital Operator Display                                                                    | Minor Fault Name                                                                                                                    |
|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Surge voltage present in the drive input power.                                             | Voltage surge can result from a thyristor converter and a phase advancing capacitor operating on the same drive input power system. |
| Drive input power voltage is too high.                                                      | <ul> <li>Check the voltage.</li> <li>Lower drive input power voltage within the limits listed in the specifications.</li> </ul>     |
|                                                                                             | Lower drive input power voltage within the mints listed in the specifications.                                                      |
| The capacity of the input power supply is too small.                                        | Use a power supply that has at least twice the input capacity of the drive.                                                         |
| The input power supply repeatedly turned on and off over a short period of time.            | Implement countermeasures so that chattering does not occur for the input power supply.                                             |
| An I/O terminal is loose.                                                                   | Check the tightening torque of the I/O terminals.                                                                                   |
| There is a phase loss or an imbalance in the interphase voltages of the input power supply. | Check the status of the input power supply and eliminate phase losses and imbalance.                                                |
|                                                                                             |                                                                                                                                     |

| Digital Operator Display                   |      | Minor Fault Name                            |
|--------------------------------------------|------|---------------------------------------------|
| PR55                                       | PASS | MEMOBUS/Modbus Comm. Test Mode Complete     |
| Cause                                      |      | Possible Solutions                          |
| MEMOBUS/Modbus test has finished normally. |      | This verifies that the test was successful. |

| Digital Operator Display               |     | Minor Fault Name                                                                 |
|----------------------------------------|-----|----------------------------------------------------------------------------------|
| PGo                                    | PGo | PG Disconnect (for Control Mode with PG)                                         |
|                                        |     | Detected when no PG pulses are received for a time longer than setting in F1-14. |
| Cause                                  |     | Possible Solutions                                                               |
| PG cable is disconnected.              |     | Reconnect the cable.                                                             |
| PG cable wiring is wrong.              |     | Correct the wiring.                                                              |
| PG encoder does not have enough power. |     | Make sure the correct power supply is properly connected to the PG encoder.      |
| Brake is holding the PG.               |     | Ensure the brake releases properly                                               |

| Digital Operator Display  |        | Minor Fault Name                                            |
|---------------------------|--------|-------------------------------------------------------------|
| PGoX                      | ⊢ PGoH | PG Hardware Fault (detected when using a PG-X3 option card) |
| ruon                      |        | PG cable has become disconnected.                           |
| Cause                     |        | Possible Solutions                                          |
| PG cable is disconnected. |        | Reconnect the cable and check the setting of F1-20.         |

| Digital Operator Display                       |      | Minor Fault Name                                                                                     |
|------------------------------------------------|------|------------------------------------------------------------------------------------------------------|
| rUn rUn                                        |      | Motor Switch during Run                                                                              |
| 1 011                                          | 1011 | A command to switch motors was entered during run.                                                   |
| Cause                                          |      | Possible Solutions                                                                                   |
| A motor switch command was entered during run. |      | Change the operation pattern so that the motor switch command is entered while the drive is stopped. |

| Digital Operator Display                                                                 |    | Minor Fault Name |                                                                                                                |  |
|------------------------------------------------------------------------------------------|----|------------------|----------------------------------------------------------------------------------------------------------------|--|
|                                                                                          |    |                  | MEMOBUS/Modbus Communication Test Mode Error                                                                   |  |
| 5 <i>E</i>                                                                               | SE | Note:            | This alarm will not trigger a multi-function output terminal that is set for alarm output $(H2-\Box\Box=10)$ . |  |
| Cause                                                                                    |    |                  | Possible Solutions                                                                                             |  |
| A digital input set to 67H (MEMOBUS/Modbus test) was closed while the drive was running. |    | Stop the driv    | ve and run the test again.                                                                                     |  |

| Digital Operator Display |     | Minor Fault Name                                                 |
|--------------------------|-----|------------------------------------------------------------------|
| 5r.E                     | SrC | Phase Order Detection Fault                                      |
| 37.                      | SIC | The phase rotation direction for the input power supply changed. |
| Cause                    |     | Possible Solution                                                |

| Digital Operator Display                                               | Minor Fault Name                                                                                               |
|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| An input power supply wiring terminal is loose.                        | Investigate and correct the cause and reset the fault. <i>Refer to Diagnosing and Resetting Faults on page</i> |
| The fluctuation in the voltage of the input power supply is too large. | 416.                                                                                                           |

| Digital Operator Display                     |     | Minor Fault Name                                                                                              |
|----------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------|
| _                                            |     | Undertorque Detection 1                                                                                       |
| UL3                                          | UL3 | Drive output current (or torque in OLV, CLV, AOLV/PM, and CLV/PM) less than L6-02 for longer than L6-03 time. |
| Cause                                        |     | Possible Solutions                                                                                            |
| Inappropriate parameter settings.            |     | Check parameters L6-02 and L6-03.                                                                             |
| Load has dropped or decreased significantly. |     | Check for broken parts in the transmission system.                                                            |

| Digital Operator Display                         |     | Minor Fault Name                                                                                              |
|--------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------|
|                                                  |     | Undertorque Detection 2                                                                                       |
| UL Y                                             | UL4 | Drive output current (or torque in OLV, CLV, AOLV/PM, and CLV/PM) less than L6-05 for longer than L6-06 time. |
| Cause                                            |     | Possible Solutions                                                                                            |
| Inappropriate parameter settings.                |     | Check parameters L6-05 and L6-06.                                                                             |
| The load has dropped or decreased significantly. |     | Check for broken parts in the transmission system.                                                            |

| Digital Operator Display                                                                        |    | Minor Fault Name                                                                                                                                                                    |  |
|-------------------------------------------------------------------------------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                 |    | Control Circuit Undervoltage                                                                                                                                                        |  |
| l Uu                                                                                            | Uv | One of the following conditions occurred:                                                                                                                                           |  |
|                                                                                                 | OV | Contactor to suppress inrush current in the drive was opened.                                                                                                                       |  |
|                                                                                                 |    | • Low voltage in the control drive input power. This alarm outputs only if L2-01 is not 0.                                                                                          |  |
| Caus                                                                                            | e  | Possible Solution                                                                                                                                                                   |  |
| Innut navvar nhaga laga                                                                         |    | The main circuit drive input power is wired incorrectly.                                                                                                                            |  |
| Input power phase loss                                                                          | •  | Correct the wiring.                                                                                                                                                                 |  |
| One of the drive input                                                                          |    | Ensure there are no loose terminals.                                                                                                                                                |  |
| One of the drive input power wiring terminals is loose.                                         |    | • Apply the tightening torque specified in this manual to fasten the terminals. <i>Refer to Main Circuit Wire Gauges and Tightening Torque on page 101</i> for details.             |  |
| There is a problem with the voltage from the drive input power.                                 |    | Check the voltage.                                                                                                                                                                  |  |
|                                                                                                 |    | Correct the voltage to be within the range listed in drive input power specifications.                                                                                              |  |
|                                                                                                 |    | • If there is no problem with the power supply to the main circuit, check for problems with the main circuit magnetic contactor.                                                    |  |
| The power has been interrupted.                                                                 |    | Correct the drive input power.                                                                                                                                                      |  |
| The capacitors are worn.                                                                        |    | Check the maintenance time for the capacitors (U4-05).                                                                                                                              |  |
|                                                                                                 |    | • Replace the entire drive if U4-05 exceeds 90%. Contact Yaskawa or a Yaskawa representative.                                                                                       |  |
| The drive input power transformer is too small and voltage drops when the power is switched on. |    | <ul> <li>Check for an alarm when the magnetic contactor, line breaker, and leakage breaker are closed.</li> <li>Check the capacity of the drive input power transformer.</li> </ul> |  |

# 6.6 Operator Programming Errors

# Operator Programming Error Codes, Causes, and Possible Solutions

An Operator Programming Error (oPE) occurs when a contradictory parameter is set or an individual parameter is set to an inappropriate value.

The drive will not operate until the parameter or parameters causing the problem are set correctly. An oPE, however, does not trigger an alarm or fault output. If an oPE occurs, investigate the cause and refer to *Table 6.16* for the appropriate action. When an oPE appears on the operator display, press the ENTER button to view U1-18 and see which parameter is causing the oPE.

Table 6.16 oPE Codes, Causes, and Possible Solutions

| Digital Oper                                        | ator Display                           | Error Name                                             |
|-----------------------------------------------------|----------------------------------------|--------------------------------------------------------|
| oPEN I                                              | oPE01                                  | Unit Capacity Setting Fault                            |
| 0,50                                                | OFEOI                                  | Unit capacity and the value set to o2-04 do not match. |
| Ca                                                  | use                                    | Possible Solutions                                     |
| The drive model selection (o2-04) and not the same. | d the actual capacity of the drive are | Correct the value set to o2-04.                        |

| Digital Oper                          | ator Display                            | Error Name                                          |
|---------------------------------------|-----------------------------------------|-----------------------------------------------------|
| oPE02                                 | oPE02                                   | Parameter Range Setting Error                       |
| orcuc<br>                             |                                         | Use U1-18 to find parameters set outside the range. |
| Ca                                    | use                                     | Possible Solutions                                  |
| Parameters were set outside the possi | ble setting range.                      | Set parameters to the proper values.                |
| <b>Note:</b> When multiple errors o   | ccur simultaneously, other errors are g | iven precedence over oPE02.                         |

| <b>Note:</b> When multiple errors occur simultaneously, other errors are given precedence over oPE02. |                                      |                                                                                                          |  |
|-------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------|--|
| Digital Oper                                                                                          | ator Display                         | Error Name                                                                                               |  |
|                                                                                                       |                                      | Multi-Function Input Selection Error                                                                     |  |
| oPE03                                                                                                 | oPE03                                | A contradictory setting is assigned to multi-function contact inputs H1-01 to H1-08.                     |  |
| Ca                                                                                                    | use                                  | Possible Solutions                                                                                       |  |
| The same function is assigned to tv                                                                   | vo multi-function inputs.            | Ensure all multi-function inputs are assigned to different functions.                                    |  |
| Excludes "Not used" and "External                                                                     | l Fault."                            | Re-enter the multi-function settings to ensure this does not occur.                                      |  |
| The Up command was set but the Dor (settings 10 vs. 11).                                              | wn command was not, or vice versa    | Properly set the functions that required for use in combination with other                               |  |
| The Up 2 command was set but the Do (settings 75 vs. 76).                                             | own 2 command was not, or vice versa | functions.                                                                                               |  |
| • Run/Stop command for a 2-wire se Forward/Reverse command (H1-                                       |                                      | Properly set the functions that required for use in combination with other functions.                    |  |
| • "Drive Enable" is set to multi-func<br>H1-02 = 6A).                                                 | tion input S1 or S2 (H1-01 = $6A$ or |                                                                                                          |  |
| Two of the following functions are se                                                                 | t simultaneously:                    |                                                                                                          |  |
| • Up/Down Command (10 vs. 11)                                                                         |                                      | Check if controdictors settings have simultaneously been essigned to the                                 |  |
| • Up 2/Down 2 Command (75 vs. 76                                                                      |                                      | Check if contradictory settings have simultaneously been assigned to the multi-function input terminals. |  |
| Hold Accel/Decel Stop (A)                                                                             |                                      | Correct setting errors.                                                                                  |  |
| Analog Frequency Reference Samp                                                                       |                                      | č                                                                                                        |  |
| Offset Frequency 1, 2, 3 Calculations (44, 45, 46)                                                    |                                      |                                                                                                          |  |
| The Up/Down command (10, 11) and PID control (b5-01) are enabled simultaneously.                      |                                      | Set b5-01 to 0 to disable control PID or disable the Up/Down command.                                    |  |
| Settings for N.C. and N.O. input for the following functions were selected simultaneously:            |                                      |                                                                                                          |  |
| External Search Command 1 and Ex                                                                      | xternal Search Command 2 (61 vs. 62) |                                                                                                          |  |
| • Fast Stop N.O. and Fast Stop N.C. (15 vs. 17)                                                       |                                      | Check if contradictory settings have simultaneously been assigned to the multi-function input terminals. |  |
| <ul> <li>Motor Switch Command and Accel/Decel Time 2 (16 vs. 1A)</li> </ul>                           |                                      |                                                                                                          |  |
| • FWD Run Command (or REV) and FWD/REV Run Command (2-wire) (40, 41 vs. 42, 43)                       |                                      | Correct setting errors.                                                                                  |  |

• Motor Switch Command and Up 2/Down 2 Command (16 vs. 75, 76)

• External DB Command and Drive Enable (60 vs. 6A)

| Digital Operator Display                                                                                                                | Error Name                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| One of the following settings was entered while H1- $\square\square$ = 2 (External Reference 1/2):                                      |                                                                                          |
| • $b1-15 = 4$ (Pulse Train Input) but the pulse train input selection is not set for the frequency reference (H6-01 > 0)                |                                                                                          |
| • b1-15 or b1-16 set to 3 but no option card is connected                                                                               |                                                                                          |
| • Although b1-15 = 1 (Analog Input) and H3-02 or H3-10 are set to 0 (Frequency Bias)                                                    | Correct the settings for the multi-function input terminal parameters.                   |
| H2-□□ is set to 38 (Drive Enabled) and H1-□□ is not set to 6A (Drive Enable).                                                           |                                                                                          |
| H1-□□ is set to 7E (Direction Detection) and H6-01 is not set to 3 (for V/f Control with PG using terminal RP as speed feedback input). |                                                                                          |
| H1-□□ is set to 16 when using PG-RT3.                                                                                                   | Correct the setting. PG-RT3 is not available for the application with Motor 2 selection. |

| Digital Operator Display                                                                                                                      |       | Error Name                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| oPE04                                                                                                                                         | oPE04 | Initialization Required                                                                                                                                                     |
| Cause                                                                                                                                         |       | Possible Solutions                                                                                                                                                          |
| The drive, control board, or terminal board have been replaced and the parameter settings between the control board and the terminal board no |       | Set A1-03 to 5550 to load the parameter settings stored in the terminal board to the drive. Initialize parameters after drive replacement by setting A1-03 to 2220 or 3330. |

| Digital Operator Display                                                                                                                                                                                                                                                              |       | Error Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| oPE05                                                                                                                                                                                                                                                                                 | oPE05 | Run Command/Frequency Reference Source Selection Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Ca                                                                                                                                                                                                                                                                                    | use   | Possible Solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Frequency reference is assigned to an option card is not connected to the dri                                                                                                                                                                                                         |       | December decimal and a series and a decimal |
| The Run command is assigned to an option card $(b1-02 = 3)$ and an input option card is not connected to the drive.                                                                                                                                                                   |       | Reconnect the input option card to the drive.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Frequency reference is assigned to the pulse train input ( $b1-01 = 4$ ) and terminal RP is not set for frequency reference input ( $H6-01 > 0$ )                                                                                                                                     |       | Set H6-01 to 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Although the digital card input is set for BCD special for a 5-digit input (F3-01 = 6), the data length is set for 8-bit or 12-bit (F3-03 = 0, 1).                                                                                                                                    |       | Set F3-03 to 2 to set the input data for 16-bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ul> <li>The following values have been set while an AI-A3 option card is installed:</li> <li>The source of frequency reference setting is assigned to an option card (b1-01 = 3).</li> <li>The action for the analog card is set for separate terminal input (F2-01 = 0).</li> </ul> |       | Properly set parameters.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Digital Operator Display                                                               |       | Error Name                                  |
|----------------------------------------------------------------------------------------|-------|---------------------------------------------|
| oPE06                                                                                  | oPE06 | Control Method Selection Error              |
| 0, 00                                                                                  |       | Correct the setting for the control method. |
| Cause                                                                                  |       | Possible Solutions                          |
|                                                                                        |       | Connect a PG option card.                   |
| installed, but no PG encoder is installed ( $^{\text{A}}1-02 = 1, 3, \text{ or } 7$ ). |       | • Correct the value set to A1-02.           |

| Digital Operator Display                                                                                                                                 |       |                             | Error Name                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------|---------------------------------------------------------------------------------------------------------|
|                                                                                                                                                          |       | Multi-Funct                 | ion Analog Input Selection Error                                                                        |
| oPE01                                                                                                                                                    | oPE07 | A contradict<br>H3-10, or H | ory setting is assigned to multi-function analog inputs H3-02, 3-06 and PID functions conflict.         |
| Cause                                                                                                                                                    |       |                             | Possible Solutions                                                                                      |
| At least two analog input terminals are set to the same function (i.e., at least two of these parameters have the same setting: H3-02, H3-10, or H3-06). |       |                             | settings to H3-02, H3-10, and H3-06 so that functions no longer                                         |
|                                                                                                                                                          |       | Note:                       | Both 0 (Frequency Reference Bias) and F (Not Used) can be set to H3-02, H3-10, or H3-06 simultaneously. |

| Digital Operator Display                                                                                                      | Error Name                         |
|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| The following simultaneous contradictory settings:                                                                            |                                    |
| • H3-02, H3-10, or H3-06 = B (PID Feedback) while H6-01 (Pulse Train Input Terminal RP Function Selection) = 1 (PID Feedback) |                                    |
| • H3-02, H3-10, or H3-06 = C (PID Setpoint Value) while H6-01 = 2 (PID Setpoint Value)                                        | Disable one of the PID selections. |
| • H3-02, H3-10, or H3-06 = C (PID Setpoint Value) while b5-18 = 1 (enables b5-19 as the PID Setpoint Value)                   |                                    |
| • H6-01 = 2 (PID Setpoint Value) while b5-18 = 1 (enables b5-19 as the PID Setpoint Value)                                    |                                    |

| Digital Operator Display                                                                                                                                           |                                        | Error Name                                                                                                                                                                            |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                    |                                        | Parameter Selection Error                                                                                                                                                             |  |
| oPE08                                                                                                                                                              | oPE08                                  | A function has been set that cannot be used in the motor control method selected.                                                                                                     |  |
| Ca                                                                                                                                                                 | use                                    | Possible Solutions                                                                                                                                                                    |  |
| Attempted to use a function that is no                                                                                                                             | t valid for the selected control mode. | Check the motor control method and the functions available.                                                                                                                           |  |
| La OL V/DM grammatage E5 02 to E5                                                                                                                                  | 07                                     | • Set the correct motor code in accordance with the motor being used (E5-01).                                                                                                         |  |
| In OLV/PM, parameters E5-02 to E5-07 are set to 0.                                                                                                                 |                                        | • When using a special-purpose motor, set E5-□□ in accordance with the test report provided.                                                                                          |  |
| The following settings have occurred                                                                                                                               | in OLV/PM:                             | • Set E5-09 or E5-24 to the correct value, and set the other to 0.                                                                                                                    |  |
| • E5-03 does not equal 0                                                                                                                                           |                                        | • Set the motor rated current for PM to 0 (E5-03).                                                                                                                                    |  |
| • E5-09 and E5-24 are both equal to 0, or neither equals 0                                                                                                         |                                        | Set the motor rated current for FW to 0 (E3-03).                                                                                                                                      |  |
| b1-14 (Phase Order Selection) is set to 1 (Switch phase order) when using a PG option card.                                                                        |                                        | Correct the parameter settings.                                                                                                                                                       |  |
| In AOLV/PM High Frequency Injection is disabled (n8-57 = 0) and the minimum frequency (E1-09) is set lower than 1/20 of the base frequency setting.                |                                        | Correct the parameter settings. Or, set n8-57 to 1 to enable High Frequency Injection, and then perform High-Frequency Injection Parameter Tuning after setting the motor parameters. |  |
|                                                                                                                                                                    |                                        | Note: High Frequency Injection cannot be used with an SPM motor.  *Refer to T2-01: PM Motor Auto-Tuning Mode Selection on page 172 for details.                                       |  |
| Note: Use U1-18 to find parameters that are set outside the specified setting range. When multiple errors occur simultaneously, other given precedence over oPE08. |                                        | setting range. When multiple errors occur simultaneously, other errors are                                                                                                            |  |

| Digital Operator Display                                                                                                                                                                                                                                                      |       | Error Name                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                               |       | PID Control Selection Fault                                                                                                                  |
| oPE09                                                                                                                                                                                                                                                                         | oPE09 | PID control function selection is incorrect. Requires that PID control is enabled (b5-01 = 1 to 4).                                          |
| Ca                                                                                                                                                                                                                                                                            | use   | Possible Solutions                                                                                                                           |
| <ul> <li>The following simultaneous contradictory settings have occurred:</li> <li>b5-15 is not set to 0.0 (PID Sleep Function Operation Level)</li> <li>The stopping method is set to either DC Injection Braking or coast to stop with a timer (b1-03 = 2 or 3).</li> </ul> |       | <ul> <li>Set b5-15 to a value other than 0.0.</li> <li>Set the stopping method to coast to stop or ramp to stop (b1-03 = 0 or 1).</li> </ul> |
| b5-01 is set to 1 or 2, enabling PID control, but the lower limit for the frequency reference (d2-02) is not set to 0 while reverse output is enabled (b5-11 = 1).                                                                                                            |       | Correct the parameter settings.                                                                                                              |
| b5-01 is set to 3 or 4, enabling PID control, but the lower limit for the frequency reference (d2-01) is not 0.                                                                                                                                                               |       | Correct the parameter settings.                                                                                                              |

| Digital Operator Display |       | Error Name                                                                                                                  |
|--------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------|
|                          | oPE10 | V/f Data Setting Error                                                                                                      |
| oPE 10                   |       | One or more of the parameters listed below are not set according to the formula:                                            |
|                          |       | • E1-09 ≤ E1-07 < E1-06 ≤ E1-11 ≤ E1-04                                                                                     |
|                          |       | • E3-09 ≤ E3-07 < E3-06 ≤ E3-11 ≤ E3-04                                                                                     |
| Cause                    |       | Possible Solutions                                                                                                          |
|                          |       | Correct the settings for E1-04, E1-06, E1-07, E1-09, and E1-11. For motor 2, correct E3-04, E3-06, E3-07, E3-09, and E3-11. |

| Digital Operator Display                                                                                                                                                                                                |       | Error Name                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------|
| oPE LI                                                                                                                                                                                                                  | oPE11 | Carrier Frequency Setting Error                |
| 0,5,1,                                                                                                                                                                                                                  |       | Correct the setting for the carrier frequency. |
| Cause                                                                                                                                                                                                                   |       | Possible Solutions                             |
| The following simultaneous contradictory settings have occurred: $C6-05 > 6$ and $C6-04 > C6-03$ (carrier frequency lower limit is greater than the upper limit).<br>If $C6-05 \le 6$ , the drive operates at $C6-03$ . |       | Correct the parameter settings.                |
| The upper and lower limits between C6-02 and C6-05 are contradictory.                                                                                                                                                   |       |                                                |

| Digital Operator Display                                                                                               |       | Error Name                                                                        |
|------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------|
| nPE 13                                                                                                                 | oPE13 | Pulse Monitor Selection Error                                                     |
| 0, 2, 13                                                                                                               | OPE13 | Incorrect setting of monitor selection for pulse train (H6-06).                   |
| Cause                                                                                                                  |       | Possible Solutions                                                                |
| Scaling for the pulse train monitor is set to $0 \text{ (H6-07 = 0)}$ while H6-06 is not set to 101, 102, 105, or 116. |       | Change scaling for the pulse train monitor or set H6-06 to 101, 102, 105, or 116. |

| Digital Operator Display                                                                                                                                                |       | Error Name                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------|
|                                                                                                                                                                         | oPE15 | Torque Control Setting Error                                                              |
| oPE 15                                                                                                                                                                  |       | Parameter settings that are not allowed in combination with Torque Control have been set. |
| Cause                                                                                                                                                                   |       | Possible Solutions                                                                        |
| Torque Control is enabled (d5-01 = 1) while the Speed/Torque Control switch function is assigned to a digital input (H1- $\square$ $\square$ = 71).                     |       |                                                                                           |
| Either d5-01 is set to 1 to enable Torque Control, or the Speed/Torque Control switch is assigned to a digital input H1- $\square\square$ = 71, while at the same time: |       | Correct the parameter settings.                                                           |
| • Feed Forward is enabled (n5-01 = 1) or                                                                                                                                |       |                                                                                           |
| • Droop Control is enabled (b7-01 $\neq$ 0)                                                                                                                             |       |                                                                                           |

| Digital Operator Display                                                                            |       | Error Name                                         |
|-----------------------------------------------------------------------------------------------------|-------|----------------------------------------------------|
| oPE 16                                                                                              | oPE16 | Energy Savings Constants Error                     |
| Ca                                                                                                  | use   | Possible Solutions                                 |
| In AOLV/PM, the automatically calculated energy saving coefficients are out of the allowable range. |       | Check and correct the motor data in E5 parameters. |

| Digital Operator Display                                                                  |       | Error Name                                                  |
|-------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------|
| oPE 18                                                                                    | oPE18 | Online Tuning Parameter Setting Error                       |
| 01 2 10                                                                                   | OPE18 | Parameters controlling online tuning are not set correctly. |
| Cause                                                                                     |       | Possible Solutions                                          |
| One of the following errors occurred while online tuning was enabled in OLV $(A1-02=2)$ : |       |                                                             |
| • E2-02 was set below 30% of the original default value                                   |       | Set E2-02, E2-03, and E2-06 to the correct values.          |
| • E2-06 was set below 50% of the original default value                                   |       |                                                             |
| • $E2-03 = 0$                                                                             |       |                                                             |

| Digital Operator Display                                                                                                                                                                    |       | Error Name                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| oPE20                                                                                                                                                                                       | oPE20 | PG-F3 Setting Error                                                                                                                                                                                                  |
| 0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                     | OPE20 | The encoder signal frequency is too high.                                                                                                                                                                            |
| Cause                                                                                                                                                                                       |       | Possible Solutions                                                                                                                                                                                                   |
| With the entered encoder resolution (F1-01), maximum output frequency (E1-04), and motor pole number (E5-04), the calculation encoder signal frequency exceeded 50 kHz (with PG-F3 option). |       | <ul> <li>Set F1-01 to the correct encoder resolution.</li> <li>Reduce the maximum output frequency of the drive in parameter E1-04 so the encoder signal frequency at maximum speed is lower than 50 kHz.</li> </ul> |

| Digital Operator Display |       | Error Name                                                  |
|--------------------------|-------|-------------------------------------------------------------|
| oPE30                    | oPE30 | Incorrect Input Voltage Adjustment                          |
| 07630                    |       | The input voltage offset adjustment has not been performed. |
| Cause                    |       | Possible Solutions                                          |

| Digital Operator Display                                        | Error Name                                                              |
|-----------------------------------------------------------------|-------------------------------------------------------------------------|
| • o2-04, Drive Model Selection, setting changed.                | Contact Yaskawa or a Yaskawa representative for information on clearing |
| <ul> <li>EEPROM failed for the input voltage offset.</li> </ul> | the error.                                                              |

# 6.7 Auto-Tuning Fault Detection

Auto-Tuning faults in this section are displayed on the digital operator and will cause the motor to coast to a stop. Auto-Tuning faults do not trigger a multi-function digital output set for fault or alarm output.

An End $\square$  error on the digital operator display indicates Auto-Tuning has successfully completed with discrepancies in the calculations. Restart Auto-Tuning after fixing the cause of the End $\square$  error.

The drive may be used in the application if no cause can be identified despite the existence of an End $\square$  error.

An Er error indicates that Auto-Tuning has not completed successfully. Check for the cause of the error using the tables in this section, and perform Auto-Tuning again after fixing the cause.

# Auto-Tuning Codes, Causes, and Possible Solutions

Table 6.17 Auto-Tuning Codes, Causes, and Possible Solutions

| Digital Opera                             | ator Display        | Error Name                                                                                                                                       |
|-------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| End I                                     | End1                | Excessive V/f Setting (detected only during Rotational Auto-Tuning and displayed after Auto-Tuning is complete)                                  |
| Car                                       | use                 | Possible Solutions                                                                                                                               |
|                                           | exceeded 20% during | Prior to Auto-Tuning, verify the information on the motor nameplate.                                                                             |
| Auto-Tuning.                              |                     | • Enter proper values from motor nameplate to parameters T1-03 to T1-05 and repeat Auto-Tuning.                                                  |
| The results from Autocurrent exceeded 80% |                     | • If possible, disconnect the motor from the load and perform Auto-Tuning. If the load cannot be uncoupled, use the current Auto-Tuning results. |

| Digital Oper                                                                          | ator Display                                 | Error Name                                                                                                                                                                                |
|---------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| End2                                                                                  | End2                                         | Motor Iron-Core Saturation Coefficient (detected only during Rotational Auto-Tuning and displayed after Auto-Tuning is complete)                                                          |
| Ca                                                                                    | use                                          | Possible Solutions                                                                                                                                                                        |
| Motor data entered di was incorrect.                                                  | aring Auto-Tuning                            | <ul> <li>Make sure the data entered to the T1 parameters match the information written on the motor nameplate.</li> <li>Restart Auto-Tuning and enter the correct information.</li> </ul> |
| Results from Auto-Tuparameter setting rang core saturation coeffi E2-08) to temporary | ge, assigning the iron-<br>cients (E2-07 and | <ul> <li>Check and correct faulty motor wiring.</li> <li>Disconnect the motor from machine and perform Rotational Auto-Tuning.</li> </ul>                                                 |

| Digital Oper                                     | ator Display                          | Error Name                                                                                                      |
|--------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| End3                                             | End3                                  | Rated Current Setting Alarm (displayed after Auto-Tuning is complete)                                           |
| Ca                                               | use                                   | Possible Solutions                                                                                              |
| The correct current ramotor nameplate was T1-04. | nting printed on the not entered into | <ul> <li>Check the setting of parameter T1-04.</li> <li>Check the motor data and repeat Auto-Tuning.</li> </ul> |

| Digital Oper           | ator Display          | Error Name                                                                                        |
|------------------------|-----------------------|---------------------------------------------------------------------------------------------------|
| End4                   | End4                  | Adjusted Slip Calculation Error                                                                   |
| Ca                     | use                   | Possible Solutions                                                                                |
| The calculated slip is | outside the allowable | Make sure the data entered for Auto-Tuning is correct.                                            |
| range.                 |                       | • If possible, perform Rotational Auto-Tuning. If not possible, perform Stationary Auto-Tuning 2. |

| Digital Oper                               | ator Display          | Error Name                                                                                                                                     |
|--------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| End5                                       | End5                  | Resistance Tuning Error                                                                                                                        |
| Ca                                         | use                   | Possible Solutions                                                                                                                             |
| The calculated resistathe allowable range. | ince value is outside | <ul> <li>Double-check the data entered for the Auto-Tuning process.</li> <li>Check the motor and motor cable connection for faults.</li> </ul> |

| Digital Oper         | ator Display | play Error Name                                            |  |
|----------------------|--------------|------------------------------------------------------------|--|
| End6                 | End6         | Leakage Inductance Alarm                                   |  |
| Ca                   | use          | Possible Solutions                                         |  |
|                      |              | Double-check the data entered for the Auto-Tuning process. |  |
| A1-02 setting error. |              | • Check the setting of A1-02.                              |  |
|                      |              | Check the control mode and repeat Auto-Tuning.             |  |

| Digital Opera                                                     | ator Display | Error Name                                                 |
|-------------------------------------------------------------------|--------------|------------------------------------------------------------|
| End7                                                              | End7         | No-Load Current Alarm                                      |
| Car                                                               | use          | Possible Solutions                                         |
| The entered no-load outside the allowable                         |              | Check and correct faulty motor wiring.                     |
| Auto-Tuning results were less than 5% of the motor rated current. |              | Double-check the data entered for the Auto-Tuning process. |

| Digital Oper                                  | ator Display                                | Error Name                                                                                                                                                                               |
|-----------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Er-01                                         | Er-01                                       | Motor Data Error                                                                                                                                                                         |
| Ca                                            | use                                         | Possible Solutions                                                                                                                                                                       |
| Motor data or data er<br>Auto-Tuning was inc  |                                             | <ul> <li>Check that the motor data entered to T1 parameters matches motor nameplate input before Auto-Tuning.</li> <li>Restart Auto-Tuning and enter the correct information.</li> </ul> |
| Motor rated power an settings (T1-02 and T    | nd motor-rated current (1-04) do not match. | <ul> <li>Check the drive and motor capacities.</li> <li>Correct the settings of parameters T1-02 and T1-04.</li> </ul>                                                                   |
| Motor rated current a current are inconsisted |                                             | <ul> <li>Check the motor rated current and no-load current.</li> <li>Correct the settings of parameters T1-04 and E2-03.</li> </ul>                                                      |
| Base frequency and r<br>(T1-05 and T1-07) do  | notor rated speed o not match.              | <ul> <li>Correct the settings of parameters T1-05 and T1-07.</li> <li>Check that the correct number of poles were entered to T1-06.</li> </ul>                                           |

| Digital Operator Display                             |       | Error Name                                                                                                                             |
|------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------|
| Er-02                                                | Er-02 | Minor Fault                                                                                                                            |
| Ca                                                   | use   | Possible Solutions                                                                                                                     |
| An alarm was triggered during Auto-<br>Tuning.       |       | Exit the Auto-Tuning menu, check the alarm code, remove the alarm cause, and repeat Auto-Tuning.                                       |
| Motor data entered during Auto-Tuning was incorrect. |       | • Check that the motor data entered matches the motor nameplate input before performing Auto-Tuning (T1-02 to T1-07).                  |
|                                                      |       | Restart Auto-Tuning and enter the correct information.                                                                                 |
|                                                      |       | Check and correct faulty motor wiring.                                                                                                 |
| Faulty cable connection The load is too heavy.       |       | Check the vicinity of the machine.                                                                                                     |
|                                                      |       | Check the load conditions.                                                                                                             |
|                                                      |       | • Investigate and correct the cause and then reset the fault. <i>Refer to Diagnosing and Resetting Faults on page 416</i> for details. |

| Digital Operator Display                      |  | Error Name                                                  |
|-----------------------------------------------|--|-------------------------------------------------------------|
| <i>Er-03</i> Er-03                            |  | STOP Button Input                                           |
| Cause                                         |  | Possible Solutions                                          |
| Auto-Tuning canceled by pressing STOP button. |  | Auto-Tuning did not complete properly. Restart Auto-Tuning. |

| Digital Operator Display                                                                              |       | Error Name                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Er-04                                                                                                 | Er-04 | Line-to-Line Resistance Error                                                                                                                                                             |
| Cause                                                                                                 |       | Possible Solutions                                                                                                                                                                        |
| Motor data entered during Auto-Tuning was incorrect.                                                  |       | <ul> <li>Make sure the data entered to the T1 parameters match the information written on the motor nameplate.</li> <li>Restart Auto-Tuning and enter the correct information.</li> </ul> |
| Results from Auto-Tuning are outside the parameter setting range or the tuning process took too long. |       | Check and correct faulty motor wiring.                                                                                                                                                    |
| Faulty motor cable or cable connection.                                                               |       |                                                                                                                                                                                           |

| Digital Operator Display                                                                              |       | Error Name                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Er-05                                                                                                 | Er-05 | No-Load Current Error                                                                                                                                                                                                                               |
| Car                                                                                                   | use   | Possible Solutions                                                                                                                                                                                                                                  |
| Motor data entered during Auto-Tuning was incorrect.                                                  |       | <ul> <li>Make sure the data entered to the T1 parameters match the information written on the motor nameplate.</li> <li>Restart Auto-Tuning and enter the correct information.</li> </ul>                                                           |
| Results from Auto-Tuning are outside the parameter setting range or the tuning process took too long. |       | Check and correct faulty motor wiring.     Perform Rotational Auto-Tuning.                                                                                                                                                                          |
| The load was too high during Rotational Auto-tuning.                                                  |       | <ul> <li>Disconnect the motor from machine and restart Auto-Tuning. If motor and load cannot be uncoupled make sure the load is lower than 30%.</li> <li>If a mechanical brake is installed, make sure it is fully lifted during tuning.</li> </ul> |

| Digital Operator Display                                                                              |       | Error Name                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Er-08                                                                                                 | Er-08 | Rated Slip Error                                                                                                                                                                                                                                    |
| Car                                                                                                   | use   | Possible Solutions                                                                                                                                                                                                                                  |
| Motor data entered during Auto-Tuning was incorrect.                                                  |       | <ul> <li>Make sure the data entered to the T1 parameters match the information written on the motor nameplate.</li> <li>Restart Auto-Tuning and enter the correct information.</li> </ul>                                                           |
| Results from Auto-Tuning are outside the parameter setting range or the tuning process took too long. |       | Check and correct faulty motor wiring.     Perform Rotational Auto-Tuning.                                                                                                                                                                          |
| The load was too high during rotational Auto-tuning.                                                  |       | <ul> <li>Disconnect the motor from machine and restart Auto-Tuning. If motor and load cannot be uncoupled make sure the load is lower than 30%.</li> <li>If a mechanical brake is installed, make sure it is fully lifted during tuning.</li> </ul> |

| Digital Operator Display                             |       | Error Name                                                                                                                               |
|------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------|
| Er-09                                                | Er-09 | Acceleration Error                                                                                                                       |
| Ca                                                   | use   | Possible Solutions                                                                                                                       |
| The motor did not accelerate for the                 |       | • Increase the acceleration time (C1-01).                                                                                                |
| specified acceleration                               | time. | Disconnect the machine from the motor if possible.                                                                                       |
| Torque limit when motoring is too low                |       | Check L7-01 and L7-02 settings.                                                                                                          |
| (L7-01 and L7-02).                                   |       | • Increase the setting.                                                                                                                  |
| The load was too high during Rotational Auto-Tuning. |       | • Disconnect the motor from machine and restart Auto-Tuning. If motor and load cannot be uncoupled make sure the load is lower than 30%. |
|                                                      |       | If a mechanical brake is installed, make sure it is fully lifted during tuning.                                                          |

| Digital Operator Display                                                                                 |       | Error Name                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Er - 10                                                                                                  | Er-10 | Motor Direction Error                                                                                                                                   |
| Ca                                                                                                       | use   | Possible Solutions                                                                                                                                      |
| The encoder signal lines are not properly connected to the drive.                                        |       | Check and correct wiring to the PG encoder.                                                                                                             |
| Motor direction and PG direction are opposite.                                                           |       | Check the motor speed monitor U1-05 while manually turning the motor forward. If the sign displayed is negative, change the setting of parameter F1-05. |
| The load pulled the motor in the opposite direction of the speed reference and the torque exceeded 100%. |       | Uncouple the motor from the load and restart Auto-Tuning.                                                                                               |

| Digital Operator Display      |  | Error Name                                         |
|-------------------------------|--|----------------------------------------------------|
| <i>Er-11</i> Er-11            |  | Motor Speed Error                                  |
| Cause                         |  | Possible Solutions                                 |
| Torque reference is too high. |  | • Increase the acceleration time 1 (C1-01).        |
| Torque reference is too nign. |  | Disconnect the machine from the motor if possible. |

| Digital Operator Display                                    |                  | Error Name                                                                                                                                   |
|-------------------------------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| Er - 12                                                     | Er-12            | Current Detection Error                                                                                                                      |
| Ca                                                          | use              | Possible Solutions                                                                                                                           |
| One of the motor pha (U/T1, V/T2, W/T3).                    | ises is missing: | Check motor wiring and correct any problems.                                                                                                 |
| The current exceeded the current rating of the drive.       |                  | <ul> <li>Check motor wiring for a short between motor lines.</li> <li>Close any magnetic contactors used between motors.</li> </ul>          |
| The current is too low.                                     |                  | Replace the control board or the entire drive. For instructions on replacing the control board, contact Yaskawa or a Yaskawa representative. |
| Attempted Auto-Tuning without motor connected to the drive. |                  | Connect the motor and restart Auto-Tuning.                                                                                                   |
| Current detection signal error.                             |                  | Replace the control board or the entire drive. For instructions on replacing the control board, contact Yaskawa or a Yaskawa representative. |

## **6.7 Auto-Tuning Fault Detection**

| 5.7 Auto-Tuning Fault Detection                                                                              |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Digital Operator Display                                                                                     |                                               | Error Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Er - 13                                                                                                      | Er-13                                         | Leakage Inductance Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Car                                                                                                          | _                                             | Possible Solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Drive was unable to c                                                                                        |                                               | Check all wiring and correct any mistakes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| leakage inductance w                                                                                         | ithin 300 seconds.                            | • Check the motor rated current value written on the motor nameplate and enter the correct value to T1-04.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Digital Oper                                                                                                 | ator Display                                  | Error Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Er- 14                                                                                                       | Er-14                                         | Motor Speed Error 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Car                                                                                                          |                                               | Possible Solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| The motor speed exce<br>amplitude of speed re<br>Tuning.                                                     | eeded twice the ference during Inertia        | Reduce the ASR gain set to C5-01.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Digital Oper                                                                                                 | ator Display                                  | Error Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Er - 15                                                                                                      | Er-15                                         | Torque Saturation Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Cai                                                                                                          | use                                           | Possible Solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| The output torque rea set in L7-01 through Tuning.                                                           | ched the torque limit<br>L7-04 during Inertia | <ul> <li>Increase the torque limits in L7-01 through L7-04 within reasonable limits.</li> <li>Reduce the test signal frequency in T3-01 and restart Auto-Tuning. If necessary, reduce the test signal amplitude (T3-02) and restart Auto-Tuning.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| D'all al Cara                                                                                                |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Digital Opera                                                                                                |                                               | Error Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                                                                              | Er-16                                         | Inertia ID Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Car                                                                                                          |                                               | Possible Solutions  Postate the text size of free constant T2 01 and market A set. Trustice, If accounting the text size of t |  |
| The inertia identified abnormally small or a during Inertia Tuning                                           | abnormally large                              | <ul> <li>Reduce the test signal frequency in T3-01 and restart Auto-Tuning. If necessary, reduce the test signal amplitude (T3-02) and restart Auto-Tuning.</li> <li>Check the basic motor inertia value entered to T3-03.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Digital Oper                                                                                                 | ator Display                                  | Error Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Er-17                                                                                                        | Er-17                                         | Reverse Prohibited Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Car                                                                                                          | use                                           | Possible Solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Drive is prohibited from reverse while attention Inertia Tuning.                                             |                                               | <ul> <li>Inertia Auto-Tuning cannot be performed if the drive is restricted from rotating in reverse.</li> <li>Assuming it is acceptable for the application to rotate in reverse, set b1-04 to 0 and then perform Inertia Tuning.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Digital Oper                                                                                                 | ator Display                                  | Error Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Er - 18                                                                                                      | Er-18                                         | Induction Voltage Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Car                                                                                                          | use                                           | Possible Solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| The result of Back EN (induced voltage) exceeding range.                                                     | MF Constant Tuning seeds the allowable        | Double-check the data entered to the T2-□□ parameters and restart Auto-Tuning.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Digital Oper                                                                                                 | ator Display                                  | Error Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Er - 19                                                                                                      | Er-19                                         | PM Inductance Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Car                                                                                                          | use                                           | Possible Solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| The induced voltage constant attempted to set a value to E5-08 or E5-09 that is outside the allowable range. |                                               | Double-check the data entered to the T2-□□ parameters and restart Auto-Tuning.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Digital Operator Display                                                                                     |                                               | Error Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Er-20                                                                                                        | Er-20                                         | Stator Resistance Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Car                                                                                                          | use                                           | Possible Solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Stator resistance tuning attempted to set a                                                                  |                                               | Double-check the data entered to the T2-□□ parameters and restart Auto-Tuning.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |

| Digital Operator Display                                                                                      |                  | Error Name                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Er-21                                                                                                         | Er-21            | Z Pulse Correction Error                                                                                                                                                                                                                                      |
| Ca                                                                                                            | use              | Possible Solutions                                                                                                                                                                                                                                            |
| Motor was coasting was performed.                                                                             | when Auto-Tuning | Make sure the motor comes to a complete stop. Repeat Auto-Tuning.                                                                                                                                                                                             |
| Either the motor or the motor are not properly                                                                |                  | Check the wiring for the motor and the PG encoder. Restart Auto-Tuning.                                                                                                                                                                                       |
| The direction for the PG encoder is set incorrectly, or the number of pulses set for the PG encoder is wrong. |                  | Check the direction and number of pulses set for the PG encoder. Restart Auto-Tuning.                                                                                                                                                                         |
| PG encoder is damaged.                                                                                        |                  | Check the signal output from the PG encoder attached to the motor. Replace the PG if damaged.                                                                                                                                                                 |
| Motor inertia is large.                                                                                       |                  | Increase the setting of n8-02 (Pole Attraction Current).                                                                                                                                                                                                      |
| Z-Pulse Offset Tuning was performed when b1-04 was set to 1.                                                  |                  | <ul> <li>Z-Pulse Offset Tuning cannot be performed for a machine with reverse operation prohibited.</li> <li>If the machine allows reverse operation, set b1-04 to 0 to enable Reverse Operation Selection and then perform Z-Pulse Offset Tuning.</li> </ul> |
| Motor vibrates during tuning.                                                                                 |                  | <ul> <li>Increase the setting of n8-03, Current Startup Time, and n8-04, Pole Attraction Time.</li> <li>Decrease the setting of n8-02, Pole Attraction Current.</li> </ul>                                                                                    |

| Digital Operator Display  |       | Error Name                                                                                                                                                                                         |
|---------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Er-25                     | Er-25 | High Frequency Injection Parameter Tuning Error                                                                                                                                                    |
| Cause                     |       | Possible Solutions                                                                                                                                                                                 |
| Motor data was incorrect. |       | Perform Stationary Auto-Tuning and then perform High Frequency Injection Parameter Tuning again. If the problem continues, high frequency injection control might not be possible with that motor. |
|                           |       | <b>Note:</b> Auto-Tuning is not applicable for SPM motors.                                                                                                                                         |

# 6.8 Copy Function Related Displays

# **♦** Tasks, Errors, and Troubleshooting

The table below lists the messages and errors that may appear when using the Copy function.

When executing the tasks offered by the Copy function, the operator will indicate the task being performed. When an error occurs, a code appears on the operator to indicate the error. Note that errors related to the Copy function do not trigger a multifunction output terminal that has been set up to close when a fault or alarm occurs. To clear an error, simply press any key on the operator and the error display will disappear.

*Table 6.18* lists the corrective action that can be taken when an error occurs.

Note

- 1. Whenever using the copy function, the drive should be fully stopped.
- 2. The drive will not accept a Run command while the Copy function is being executed.
- 3. Parameters can only be saved to a drive when the voltage class, capacity, control mode, and software version match.

#### Table 6.18 Copy Function Task and Error Displays

| Digital Operator Display  |                    | Task                                  |
|---------------------------|--------------------|---------------------------------------|
| <i>CoPy</i> CoPy          |                    | Writing Parameter Settings (flashing) |
| Car                       | use                | Possible Solutions                    |
| Parameters are being writ | tten to the drive. | This is not an error.                 |

| Digital Operator Display                                      |                                                   | Task                                                                                                                                                                                                                                    |
|---------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [PEr CPEr                                                     |                                                   | Control Mode Mismatch                                                                                                                                                                                                                   |
| Cause                                                         |                                                   | Possible Solutions                                                                                                                                                                                                                      |
| Control mode of the para the drive and the control not match. | meters to be loaded onto mode set to the drive do | <ul> <li>Verify the control mode for the parameters to be loaded onto the drive and the control mode on drive to which those parameters will be written.</li> <li>Set the same control mode using parameter A1-02 and retry.</li> </ul> |

| Digital Operator Display  |      | Task                               |
|---------------------------|------|------------------------------------|
| ЕРУЕ                      | СРуЕ | Error Writing Data                 |
| Cause                     |      | Possible Solutions                 |
| Failed writing parameters |      | Attempt to write parameters again. |

| Digital Operator Display |      | Task                                       |
|--------------------------|------|--------------------------------------------|
| ESEr                     | CSEr | Copy Unit Error                            |
| Ca                       | use  | Possible Solutions                         |
| Hardware fault           |      | Replace the operator or the USB Copy Unit. |

| Digital Operator Display                                                                            |                          | Task                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| dFP5                                                                                                | dFPS                     | Drive Model Mismatch                                                                                                                                                                                                                                          |
| Ca                                                                                                  | use                      | Possible Solutions                                                                                                                                                                                                                                            |
| The drives used in the co<br>not the same model.  • The drive from which<br>copied is a different m |                          | <ul> <li>Verify the model number of the drive from which the parameters were copied and the model of the drive to which those parameters will be written.</li> <li>Make sure the two drives are the same model and have the same software version.</li> </ul> |
| • The drive to be written                                                                           | to is a different model. |                                                                                                                                                                                                                                                               |

| Digital Operator Display                            |     | Task                  |
|-----------------------------------------------------|-----|-----------------------|
| End                                                 | End | Task Complete         |
| Cause                                               |     | Possible Solutions    |
| Finished reading, writing, or verifying parameters. |     | This is not an error. |

| Digital Operator Display                          |                                         | Task                        |
|---------------------------------------------------|-----------------------------------------|-----------------------------|
| ,FEr                                              | iFEr                                    | Communication Error         |
|                                                   | use                                     | Possible Solutions          |
| A communication error o and the operator or the U | ccurred between the drive SB copy unit. | Check the cable connection. |

| _                                                                                                                                                                                 |                                 | 6.8 Copy Function Related Displays                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Digital Operator Disp                                                                                                                                                             | olay                            | Task                                                                                                                                                                                      |
| A non-compatible cable is being us the USB Copy Unit and the drive.                                                                                                               | ed to connect                   | Use the cable originally packaged with the USB Copy Unit.                                                                                                                                 |
| Digital Operator Disp                                                                                                                                                             | olay                            | Task                                                                                                                                                                                      |
| ndRf                                                                                                                                                                              | ndAT                            | Model, Voltage Class, Capacity Mismatch                                                                                                                                                   |
| Cause                                                                                                                                                                             |                                 | Possible Solutions                                                                                                                                                                        |
| The drive from which the paramete<br>and the drive to which the paramete<br>written have different electrical spe<br>capacities, are set to different contro<br>different models. | ers will be cifications,        | Make sure model numbers and specifications are the same for both drives.                                                                                                                  |
| The device being used to write the blank and does not have any param it.                                                                                                          | parameters is<br>eters saved on | Make sure all connections are correct, and copy the parameter settings onto the USB Copy Unit or the operator.                                                                            |
| Digital Operator Disp                                                                                                                                                             | olay                            | Task                                                                                                                                                                                      |
| rdEr                                                                                                                                                                              | rdEr                            | Error Reading Data                                                                                                                                                                        |
| Cause                                                                                                                                                                             |                                 | Possible Solutions                                                                                                                                                                        |
| Failed while attempting to read par from the drive.                                                                                                                               | ameter settings                 | Press and hold the READ key on the USB Copy Unit for at least one second to have the unit read parameters from the drive.                                                                 |
| Digital Operator Disp                                                                                                                                                             | olay                            | Task                                                                                                                                                                                      |
| r E R d                                                                                                                                                                           | rEAd                            | Reading Parameter Settings (flashing)                                                                                                                                                     |
| Cause                                                                                                                                                                             |                                 | Possible Solutions                                                                                                                                                                        |
| Displayed while the parameter setti read onto the USB Copy Unit.                                                                                                                  | ngs are being                   | This is not an error.                                                                                                                                                                     |
| Digital Operator Disp                                                                                                                                                             | olay                            | Task                                                                                                                                                                                      |
| uREr                                                                                                                                                                              | vAEr                            | Voltage Class, Capacity Mismatch                                                                                                                                                          |
| Cause                                                                                                                                                                             |                                 | Possible Solutions                                                                                                                                                                        |
| The drive from which the parameters were copied and the drive on which the Verify mode is being performed have different electrical specifications or are a different capacity.   |                                 | Make sure electrical specifications and capacities are the same for both drives.                                                                                                          |
| Digital Operator Disp                                                                                                                                                             | olay                            | Task                                                                                                                                                                                      |
| uF Y E                                                                                                                                                                            | vFyE                            | Parameter settings in the drive and those saved to the copy function are not the same                                                                                                     |
| Cause                                                                                                                                                                             |                                 | Possible Solutions                                                                                                                                                                        |
| Indicates that parameter settings that have been Read and loaded onto the Copy Unit or Digital Operator are different.                                                            |                                 | To synchronize parameters, either write the parameters saved on the USB Copy Unit or digital operator onto the drive, or Read the parameter settings on the drive onto the USB Copy Unit. |

| Digital Operator Display                                                 |  | Task                                    |
|--------------------------------------------------------------------------|--|-----------------------------------------|
| urfy vrFy                                                                |  | Comparing Parameter Settings (flashing) |
| Cause                                                                    |  | Possible Solutions                      |
| The Verify mode has corsettings on the drive and p device are identical. |  | This is not an error.                   |

# 6.9 Diagnosing and Resetting Faults

When a fault occurs and the drive stops, follow the instructions below to remove whatever conditions triggered the fault, then restart the drive.

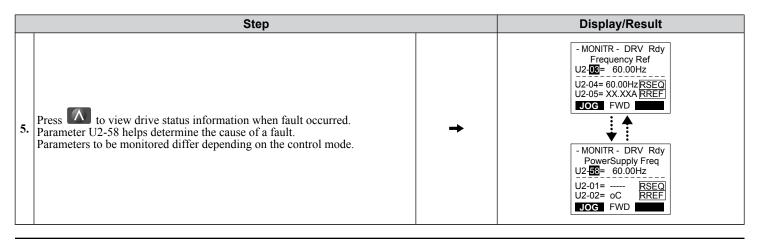
Note: An oC/SC fault will be displayed in the event of an IGBT failure. It may not be possible to reset this fault until the IGBT problem is corrected.

## Fault Occurs Simultaneously with Power Loss

**WARNING!** Electrical Shock Hazard. Ensure there are no short circuits between the main circuit terminals (R/L1, S/L2, and T/L3) or between the ground and main circuit terminals before restarting the drive. Do not immediately operate peripheral devices if a fuse is blown or a GFCI has tripped. Failure to comply may result in serious injury or death and will cause damage to equipment.

- **1.** Turn on the drive input power.
- 2. Use monitor parameters U2-□□ to display data on the operating status of the drive just before the fault occurred.
- **3.** Remove the cause of the fault and reset.

Note:


- To find out what faults were triggered, check the fault history in U2-02. Information on drive status when the fault occurred such as the frequency, current, and voltage can be found in U2-03 through U2-58. Refer to Viewing Fault Trace Data After Fault on page 416 for information on how to view fault data.
- 2. When the fault continues to be displayed after cycling power, remove the cause of the fault and reset.

#### If the Drive Still has Power After a Fault Occurs

- 1. Look at the digital operator for information on the fault that occurred.
- 2. Refer to Fault Displays, Causes, and Possible Solutions on page 377.
- Reset the fault. Refer to Fault Reset Methods on page 417.

### ♦ Viewing Fault Trace Data After Fault

|    | Step                                                                                                                                                                            |          | Display/Result                                                                                         |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------|
| 1. | Turn on the drive input power. The first screen displays.                                                                                                                       | <b>→</b> | - MODE - DRV Rdy   FREF(AI)   U1-01= 0.00Hz   U1-02= 0.00Hz   RSEQ    U1-03= 0.00A   RREF    JOG   FWD |
| 2. | Press  to display the monitor menu screen.                                                                                                                                      | <b>→</b> | - MODE - DRV Rdy Monitor Menu U1-01= 0.00Hz U1-02= 0.00Hz RSEQ U1-03= 0.00A RREF JOG FWD               |
| 3. | Press to display the monitor mode screen.                                                                                                                                       | <b>→</b> | - MODE - DRV Rdy Monitor U1-01= 0.00Hz U1-02= 0.00Hz RSEQ U1-03= 0.00A RREF JOG FWD                    |
| 4. | Press and and to scroll to monitor U2-02. The fault code shown in U2-02 is the fault that occurred most recently. In this example, the most recent fault is "oC" (overcurrent). | <b>→</b> | - MONITR - DRV Rdy Last Fault U2-102 = oC U2-03 = 60.00Hz RSEQ U2-04 = 60.00Hz RREF JOG FWD            |



#### **Fault Reset Methods**

When a fault occurs, the cause of the fault must be removed and the drive must be restarted. The table below lists the different ways to restart the drive.

| After the Fault Occurs                                                                  | Procedu                                                                                                              | ire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fix the cause of the fault, restart the drive, and reset the fault.                     | Press on the digital operator when the error code is displayed.                                                      | -MODE - DRV OC OVERTILE PARO DESIST  FOR D |
| Resetting via Fault Reset Digital Input S4                                              | Close then open the fault signal digital input via terminal S4. S4 is set for "Fault Reset" as default (H1-04 = 14). | Fault Reset Switch S4 Fault Reset Digital Input SN Digital Input Common SC SC SP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Turn off the main power supply if the above me digital operator display has turned off. | thods do not reset the fault. Reapply power after the                                                                | ② ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Note: If the Run command is present, the drive will disregard any attempts to reset the fault. Remove the Run command before attempting to clear a fault situation.

# 6.10 Troubleshooting without Fault Display

This section describes troubleshooting problems that do not trip an alarm or fault.

The following symptoms indicate that the drive is not set correctly for proper performance with the motor. *Refer to Motor Performance Fine-Tuning on page 366* for guidance on troubleshooting.

- Motor hunting and oscillation
- · Poor motor torque
- Poor speed precision
- Poor motor torque and speed response
- Motor noise

#### Common Problems

| Common                                                                                                                         | Problems                                                                                                   | Page |  |
|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------|--|
| Cannot Change Parameter Settings                                                                                               |                                                                                                            | 418  |  |
|                                                                                                                                | Motor Does Not Rotate                                                                                      | 419  |  |
| Motor Does Not Rotate Properly after Pressing RUN Button or after<br>Entering External Run Command                             | Motor Rotates in the Opposite Direction from the Run Command                                               | 420  |  |
| Entering External Rail Command                                                                                                 | Motor Rotates in One Direction Only                                                                        | 420  |  |
| Motor is Too Hot                                                                                                               |                                                                                                            | 421  |  |
| Drive Does Not Allow Selection of Rotational Auto-Tuning                                                                       |                                                                                                            | 421  |  |
| oPE02 Error Occurs When Lowering the Motor Rated Current Sett.                                                                 | ing                                                                                                        | 421  |  |
| Motor Stalls During Acceleration or With Large Loads                                                                           |                                                                                                            | 421  |  |
| Drive Frequency Reference Differs from the Controller Frequency                                                                | Reference Command                                                                                          | 422  |  |
| Excessive Motor Oscillation and Erratic Rotation                                                                               |                                                                                                            | 422  |  |
| Noise From Drive or Motor Cables When the Drive is Powered On                                                                  |                                                                                                            | 423  |  |
| Ground Fault Circuit Interrupter (GFCI) Trips During Run                                                                       |                                                                                                            | 423  |  |
| Connected Machinery Vibrates When Motor Rotates                                                                                | Unexpected Noise from Connected Machinery                                                                  | 423  |  |
| Connected Machinery Vibrates When Motor Rotates                                                                                | Oscillation or Hunting                                                                                     | 423  |  |
| PID Output Fault                                                                                                               |                                                                                                            | 424  |  |
| Insufficient Starting Torque                                                                                                   |                                                                                                            | 424  |  |
| Motor Rotates After the Drive Output is Shut Off (Motor Rotates D                                                              | Ouring DC Injection Braking)                                                                               | 424  |  |
| Output Frequency is not as High as Frequency Reference                                                                         |                                                                                                            | 424  |  |
| Buzzing Sound from Motor at 2 kHz                                                                                              |                                                                                                            | 425  |  |
| Unstable Motor Speed when Using PM                                                                                             |                                                                                                            | 425  |  |
| Motor Does Not Restart after Power Loss                                                                                        |                                                                                                            | 425  |  |
| The Safety Controller Does Not Recognize Safe Disable Monitor C                                                                | The Safety Controller Does Not Recognize Safe Disable Monitor Output Signals (Terminals DM+ and DM-)       |      |  |
| Troubleshooting if the PM Motor Speed is Unstable; when the Mot External Speed Search Command 1 or 2; or when Speed Search Sel | or Starts after Momentary Power Loss Recovery; when Enabling lection at Start is Enabled and Motor Starts. | 425  |  |

# ◆ Cannot Change Parameter Settings

| Cause                                                                            | Possible Solutions                                                                                                                                                             |
|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The drive is running the motor                                                   | Stop the drive and switch over to the Programming Mode.                                                                                                                        |
| (i.e., the Run command is present).                                              | Most parameters cannot be edited during run.                                                                                                                                   |
| The Access Level is set to restrict access to parameter settings.                | • Set the Access Level to allow parameters to be edited (A1-01 = 2).                                                                                                           |
| The operator is not in the Parameter Setup Mode (the screen will display "PAr"). | See what mode the operator is currently set for.                                                                                                                               |
|                                                                                  | • Parameters cannot be edited when in the Setup Mode ("STUP"). Switch modes so that "PAr" appears on the screen. <i>Refer to The Drive and Programming Modes on page 146</i> . |

| Cause                                                                                                                  | Possible Solutions                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| A multi-function contact input terminal is set to allow or restrict parameter editing $(H1-01 \ through \ H1-08=1B)$ . | <ul> <li>When the terminal is open, parameters cannot be edited.</li> <li>Turn on the multi-function contact input set to 1B.</li> </ul> |
| The wrong password was entered.                                                                                        | • If the password entered to A1-04 does not match the password saved to A1-05, then drive settings cannot be changed.                    |
|                                                                                                                        | Reset the password.                                                                                                                      |
|                                                                                                                        | If you cannot remember the password:                                                                                                     |
|                                                                                                                        | • Scroll to A1-04. Press the STOP and up arrow keys simultaneously. Parameter A1-05 will appear.                                         |
|                                                                                                                        | • Set a new password to parameter A1-05.                                                                                                 |
| Undervoltage was detected.                                                                                             | Check the drive input power voltage by looking at the control circuit voltage (U1-07).                                                   |
|                                                                                                                        | Check all main circuit wiring.                                                                                                           |

# ♦ Motor Does Not Rotate Properly after Pressing RUN Button or after Entering External Run Command

#### ■ Motor Does Not Rotate

| Cause                                                                                               | Possible Solutions                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                     | Check if the DRV light on the digital operator is lit.                                                                                                                                                                                                           |
| The drive is not in the Drive Mode.                                                                 | • Enter the Drive Mode to begin operating the motor. <i>Refer to The Drive and Programming Modes on page 146</i> .                                                                                                                                               |
| The LO/RE key was pushed.                                                                           | Stop the drive and check if the correct frequency reference source is selected. If the operator keypad shall be the source, the LO/RE key LED must be illuminated. If the source is REMOTE, it must be off.  Take the following steps to solve the problem:      |
|                                                                                                     | Push the LO/RE key.                                                                                                                                                                                                                                              |
|                                                                                                     | • If o2-01 is set to 0, then the LO/RE key will be disabled.                                                                                                                                                                                                     |
| Auto-Tuning has just completed.                                                                     | When Auto-Tuning completes, the drive is switched back to the Programming Mode. The Run command will not be accepted unless the drive is in the Drive Mode.                                                                                                      |
| Auto-1 uning has just completed.                                                                    | <ul> <li>Use the digital operator to enter the Drive Mode. Refer to The Drive and Programming<br/>Modes on page 146.</li> </ul>                                                                                                                                  |
| A Fast Stop was executed and has not yet been reset.                                                | Reset the Fast Stop command.                                                                                                                                                                                                                                     |
| Settings are incorrect for the source that provides the Run command.                                | Check parameter b1-02 (Run Command Selection). Set b1-02 so that it corresponds with the correct Run command source. 0: Digital operator 1: Control circuit terminal (default setting) 2: MEMOBUS/Modbus communications 3: Option card                           |
| There is faulty wiring in the control circuit terminals.                                            | <ul> <li>Check the wiring for the control terminal.</li> <li>Correct wiring mistakes.</li> <li>Check the input terminal status monitor (U1-10).</li> </ul>                                                                                                       |
| The drive has been set to accept the frequency reference from the incorrect source.                 | Check parameter b1-01 (Frequency Reference Selection 1). Set b1-01 to the correct source of the frequency reference. 0: Digital operator 1: Control circuit terminal (default setting) 2: MEMOBUS/Modbus communications 3: Option card 4: Pulse train input (RP) |
| The terminal set to accept the main speed reference is set to the incorrect voltage and/or current. | Check parameter H3-01 for the correct signal level selection when setting the frequency reference at terminal A1. Check parameter H3-08 when using terminals A2 or A3. <i>Refer to Terminal A2 Input Signal Selection on page 121</i> for details.               |
| Selection for the sink/source mode and the internal/external power supply is incorrect.             | Check jumper S3. Refer to Sinking/Sourcing Mode for Digital Inputs on page 119.                                                                                                                                                                                  |
| Frequency reference is too low.                                                                     | <ul> <li>Check the frequency reference monitor (U1-01).</li> <li>Increase the frequency by changing the maximum output frequency (E1-09).</li> </ul>                                                                                                             |

### 6.10 Troubleshooting without Fault Display

| Cause                                                                                                                         | Possible Solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Multi-function analog input is set up to accept gain for the frequency reference, but no voltage (current) has been provided. | <ul> <li>Check the multi-function analog input settings.</li> <li>Check if analog input A1, A2, or A3 is set for frequency reference gain (H3-02, H3-10, H3-06 = 1). If so, check if the correct signal is applied to the terminal. The gain and the frequency reference will be 0 if no signal is applied to the gain input.</li> <li>Check if H3-02, H3-10, and H3-06 have been set to the proper values.</li> <li>Check if the analog input value has been set properly. (U1-13 to U1-15)</li> </ul> |
| The STOP key was pressed when the drive was started from a REMOTE source.                                                     | <ul> <li>Pressing the STOP key will decelerate the drive to stop.</li> <li>Switch off the Run command and then re-enter a new Run command.</li> <li>Set o2-02 to 0 to disable the STOP key.</li> </ul>                                                                                                                                                                                                                                                                                                  |
| Motor starting torque is too low.                                                                                             | Refer to Motor Performance Fine-Tuning on page 366.                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Frequency reference value is too low or the drive does not accept the value entered.                                          | Enter a value that is above the minimum output frequency determined by E1-09.                                                                                                                                                                                                                                                                                                                                                                                                                           |
| The sequence Start/Stop sequence is set up incorrectly.                                                                       | <ul> <li>If the drive is supposed to be set up for a 2-wire sequence, then ensure parameters H1-03 through H1-08 are not set to 0.</li> <li>If the drive is supposed to be set up for a 3-wire sequence, then one of the parameters H1-03 through H1-08 must be set to 0. Terminal S1 will become the Start, terminal S2 will become the Stop input.</li> </ul>                                                                                                                                         |

# ■ Motor Rotates in the Opposite Direction from the Run Command

| Cause                                                                                                         | Possible Solutions                                                                                               |
|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
|                                                                                                               | Check the motor wiring.                                                                                          |
|                                                                                                               | Switch two motor cables (U, V, and W) to reverse motor direction.                                                |
| Phase wiring between the drive and motor is incorrect.                                                        | Connect drive output terminals U/T1, V/T2, and W/T3 in the right order to match motor terminals U, V, and W.     |
|                                                                                                               | Change the setting of parameter b1-14.                                                                           |
| The forward direction for the motor is set up incorrectly.                                                    | Typically, forward is designated as being counterclockwise when looking from the motor shaft (see figure below). |
|                                                                                                               | 2                                                                                                                |
|                                                                                                               | Forward Rotating Motor (looking down the motor shaft)                                                            |
|                                                                                                               | 2. Motor Shaft                                                                                                   |
| The motor is running at almost 0 Hz and the Speed Search estimated the speed to be in the opposite direction. | • Disable bi-directional search (b3-14 = 0) so that Speed Search is performed only in the specified direction.   |

**Note:** Check the motor specifications for the forward and reverse directions. The motor specifications will vary depending on the manufacturer of the motor.

# ■ Motor Rotates in One Direction Only

| Cause                                                                            | Possible Solutions                                                                                          |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| The drive prohibits reverse rotation.                                            | Check parameter b1-04.  Statement of 1 044 and 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                        |
|                                                                                  | • Set parameter b1-04 to 0 to allow the motor to rotate in reverse.                                         |
| A Reverse run signal has not been entered, although 3-Wire sequence is selected. | • Make sure that one of the input terminals S3 to S8 used for the 3-Wire sequence has been set for reverse. |

# **♦** Motor is Too Hot

| Cause                                                                                       | Possible Solutions                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                             | If the load is too heavy for the motor, the motor will overheat as it exceeds its rated torque value for an extended period of time.  Keep in mind that the motor also has a short-term overload rating in addition to the possible solutions provided below: |
| The load is too heavy.                                                                      | Reduce the load.                                                                                                                                                                                                                                              |
|                                                                                             | Increase the acceleration and deceleration times.                                                                                                                                                                                                             |
|                                                                                             | • Check the values set for the motor protection (L1-01, L1-02) as well as the motor rated current (E2-01).                                                                                                                                                    |
|                                                                                             | Increase motor capacity.                                                                                                                                                                                                                                      |
| The singular day makes is too bet                                                           | Check the ambient temperature.                                                                                                                                                                                                                                |
| The air around the motor is too hot.                                                        | Cool the area until it is within the specified temperature range.                                                                                                                                                                                             |
|                                                                                             | Perform Auto-Tuning.                                                                                                                                                                                                                                          |
| The drive is operating in a vector control mode but Auto-Tuning has not yet been performed. | Calculate the motor value and reset the motor parameters.                                                                                                                                                                                                     |
| rute runing has not yet been performed.                                                     | • Change the motor control method to $V/f$ Control (A1-02 = 0).                                                                                                                                                                                               |
|                                                                                             | When the motor cable is long, high voltage surges occur between the motor coils and drive switching.  Normally, surges can reach up to three times the drive input power supply voltage.                                                                      |
| Insufficient voltage insulation between motor phases.                                       | • Use a motor with a voltage tolerance higher than the maximum voltage surge.                                                                                                                                                                                 |
|                                                                                             | • Use an inverter-duty motor rated for use with AC drives when using the motor on drives rated higher than 200 V class.                                                                                                                                       |
| The motor fan has stopped or is clogged.                                                    | Check the motor fan.                                                                                                                                                                                                                                          |
| The carrier frequency is too low.                                                           | Increase the carrier frequency to lower the current harmonic distortion and lower the motor temperature.                                                                                                                                                      |

# ◆ Drive Does Not Allow Selection of the Desired Auto-Tuning Mode

| Cause                                                                       | Possible Solutions                                                                                                       |
|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| The desired Auto-Tuning mode is not available for the selected control mode | • Check if the desired tuning mode is available for the selected control mode. <i>Refer to Auto-Tuning on page 163</i> . |
|                                                                             | Change the motor control method by setting A1-02.                                                                        |

# ◆ oPE02 Error Occurs When Lowering the Motor Rated Current Setting

| Cause                                                                                 | Possible Solutions                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Motor rated current and the motor no-load current setting in the drive are incorrect. | <ul> <li>The user is trying to set the motor rated current in E2-01 to a value lower than the no-load current set in E2-03.</li> <li>Make sure that value set in E2-01 is higher than E2-03.</li> <li>If it is necessary to set E2-01 lower than E2-03, first lower the value set to E2-03, then change the setting in E2-01 as needed.</li> </ul> |

# ◆ Motor Stalls during Acceleration or Acceleration Time is Too Long

| Cause                                                | Possible Solutions                                                                                                                                                                                                 |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Torque limit has been reached or current suppression | Take the following steps to resolve the problem:                                                                                                                                                                   |
| keeps the drive from accelerating.                   | Reduce the load.                                                                                                                                                                                                   |
|                                                      | Increase motor capacity.                                                                                                                                                                                           |
| Load is too heavy.                                   | Note: Although the drive has a Stall Prevention function and a Torque Compensation Limit function, accelerating too quickly or trying to drive an excessively large load can exceed the capabilities of the motor. |
| Torque limit is not set properly.                    | Check the torque limit setting.                                                                                                                                                                                    |
| Frequency reference is too low.                      | Check the maximum output frequency (E1-04).                                                                                                                                                                        |
|                                                      | • Increase E1-04 if it is set too low.                                                                                                                                                                             |
|                                                      | Check U1-01 for proper frequency reference.                                                                                                                                                                        |
|                                                      | Check if a frequency reference signal switch has been set to one of the multi-function input terminals.                                                                                                            |
|                                                      | Check for low gain level set to terminals A1, A2, or A3 (H3-03, H3-11, H3-07).                                                                                                                                     |

# **6.10 Troubleshooting without Fault Display**

| Cause                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Possible Solutions                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Load is too heavy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Reduce the load so that the output current remains within the motor rated current.                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • In extruder and mixer applications, the load will sometimes increase as the temperature drops.                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Increase the acceleration time.                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Check if the mechanical brake is fully releasing as it should.                                                                                                                                                            |
| Acceleration time has been set too long.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Check if the acceleration time parameters have been set too long (C1-01, C1-03, C1-05, C1-07).                                                                                                                            |
| Material and desired and the comment of the comment | Set the correct V/f pattern so that it matches the characteristics of the motor being used.                                                                                                                               |
| Motor characteristics and drive parameter settings are incompatible with one another.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • Check the V/f pattern set to E1-03.                                                                                                                                                                                     |
| meompation with one another.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Execute Rotational Auto-Tuning.                                                                                                                                                                                           |
| Although the drive is operating in Open Loop Vector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Perform Auto-Tuning.                                                                                                                                                                                                      |
| motor control method, Auto-Tuning has not been                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Calculate motor data and reset motor parameters.                                                                                                                                                                          |
| performed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • Switch to $V/f$ Control (A1-02 = 0).                                                                                                                                                                                    |
| Incorrect frequency reference setting.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • Check the multi-function analog input settings. Multi-function analog input terminal A1, A2, or A3 is set for frequency gain (H3-02, H3-10, or H3-06 is set to "1"), but there is no voltage or current input provided. |
| meorreet requency reference setting.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • Make sure H3-02, H3-10, and H3-06 are set to the proper values.                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • See if the analog input value is set to the right value (U1-13 to U1-15).                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Check the Stall Prevention level during acceleration (L3-02).                                                                                                                                                             |
| The Stall Prevention level during acceleration and deceleration set too low.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • If L3-02 is set too low, acceleration may be taking too long.                                                                                                                                                           |
| deceleration set too low.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • Increase L3-02.                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Check the Stall Prevention level during run (L3-06).                                                                                                                                                                      |
| The Stall Prevention level during run has been set too low.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • If L3-06 is set too low, speed will drop as the drive outputs torque.                                                                                                                                                   |
| low.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Increase the setting value.                                                                                                                                                                                               |
| Drive reached the limitations of the V/f motor control method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | The motor cable may be long enough (over 50 m) to require Auto-Tuning for line-to-line resistance.                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Be aware that V/f Control is comparatively limited when it comes to producing torque at low speeds.                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Consider switching to Open Loop Vector Control.                                                                                                                                                                           |

# ◆ Drive Frequency Reference Differs from the Controller Frequency Reference Command

| Cause                                                                                                                                                                                                                    | Possible Solutions                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The analog input gain and bias for the frequency reference input are set to incorrect values.                                                                                                                            | • Check the gain and bias settings for the analog inputs that are used to set the frequency reference. Check parameters H3-03 and H3-04 for input A1, check parameters H3-11, and H3-12 for input A2, and check parameters H3-07 and H3-08 for input A3. |
|                                                                                                                                                                                                                          | Set these parameters to the appropriate values.                                                                                                                                                                                                          |
| A frequency bias signal is being entered via analog input terminals A1 to A3.                                                                                                                                            | • If more than one of multi-function analog inputs A1 to A3 is set for frequency reference bias (H3-02, H3-10, or H3-06 is set to "0"), then the sum of all signals builds the frequency reference.                                                      |
|                                                                                                                                                                                                                          | Make sure that H3-02, H3-10, and H3-06 are set appropriately.                                                                                                                                                                                            |
|                                                                                                                                                                                                                          | • Check the input level set for terminals A1 to A3 (U1-13 to U1-15).                                                                                                                                                                                     |
| PID control is enabled, and the drive is consequently adjusting the output frequency to match the PID setpoint. The drive will only accelerate to the maximum output frequency set in E1-04 while PID control is active. | If PID control is not necessary for the application, disable it by setting b5-01 to 0.                                                                                                                                                                   |

# **◆** Excessive Motor Oscillation and Erratic Rotation

| Cause                                    | Possible Solutions                                                       |
|------------------------------------------|--------------------------------------------------------------------------|
| Poor balance between motor phases.       | Check drive input power voltage to ensure that it provides stable power. |
| Hunting prevention function is disabled. | • Enable Hunting Prevention (n1-01 = 1).                                 |
|                                          | • Increase the AFR gain (n2-01) or the AFR time constant 1 (n2-02).      |

# ♦ Noise From Drive or Motor Cables When the Drive is Powered On

| Cause                                                   | Possible Solutions                                                                             |
|---------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Relay switching in the drive generates excessive noise. | • Lower the carrier frequency (C6-02).                                                         |
|                                                         | Install a noise filter on the input side of drive input power.                                 |
|                                                         | Install a noise filter on the output side of the drive.                                        |
|                                                         | <ul> <li>Place the wiring inside a metal conduit to shield it from switching noise.</li> </ul> |
|                                                         | Ground the drive and motor properly.                                                           |
|                                                         | Separate the main circuit wiring and the control lines.                                        |
|                                                         | Make sure wires and the motor have been properly grounded.                                     |

# ◆ Ground Fault Circuit Interrupter (GFCI) Trips During Run

| Cause                                 | Possible Solutions                                                   |
|---------------------------------------|----------------------------------------------------------------------|
| Excessive leakage current trips GFCI. | Check the wiring and rating of peripheral devices.                   |
|                                       | Increase the GFCI sensitivity or use GFCI with a higher threshold.   |
|                                       | • Lower the carrier frequency (C6-02).                               |
|                                       | Reduce the length of the cable used between the drive and the motor. |
|                                       | Disable the internal EMC filter.                                     |

# Connected Machinery Vibrates When Motor Rotates

# ■ Unexpected Noise from Connected Machinery

| Cause                                                                                        | Possible Solutions                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The carrier frequency is at the resonant frequency of the connected machinery.               | Adjust the carrier frequency using parameters C6-02 through C6-05.                                                                                                                                        |
| The drive output frequency is the same as the resonant frequency of the connected machinery. | <ul> <li>Adjust the parameters used for the Jump Frequency function (d3-01 through d3-04) to skip the problem-causing bandwidth.</li> <li>Place the motor on a rubber pad to reduce vibration.</li> </ul> |

**Note:** Set C6-02 to a value between 1 and 4 and check the motor to inspect for a motor error.

### ■ Oscillation or Hunting

| Cause                                                                              | Possible Solutions                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Insufficient tuning.                                                               | Perform Auto-Tuning.  Refer to Motor Performance Fine-Tuning on page 366.                                                                                                                                                                                                                |
| Gain is too low when using PID control.                                            | Refer to b5: PID Control on page 213 for details.                                                                                                                                                                                                                                        |
| The frequency reference is assigned to an external source and the signal is noisy. | <ul> <li>Ensure that noise is not affecting the signal lines.</li> <li>Separate main circuit wiring and control circuit wiring.</li> <li>Use twisted-pair cables or shielded wiring for the control circuit.</li> <li>Increase the analog input time filter constant (H3-13).</li> </ul> |
| The cable between the drive and motor is too long.                                 | <ul><li>Perform Auto-Tuning.</li><li>Reduce the length of the cable.</li></ul>                                                                                                                                                                                                           |

# ♦ PID Output Fault

| Cause                                                                                                                 | Possible Solutions                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                       | Check the multi-function analog input terminal settings.                                                                                  |
|                                                                                                                       | • Set multi-function analog input terminal A1, A2, or A3 for PID feedback (H3-02, H3-10, or H3-06 = B).                                   |
| No PID feedback input.                                                                                                | A signal input to the terminal selection for PID feedback is needed.                                                                      |
| No FID reedoack input.                                                                                                | Check the connection of the feedback signal.                                                                                              |
|                                                                                                                       | Check the various PID-related parameter settings.                                                                                         |
|                                                                                                                       | • No PID feedback input to the terminal causes the value detected to be 0, causing a PID fault and the drive to operate at max frequency. |
| The level of detection and the target value do not correspond with each other.                                        | • PID control keeps the difference between target and detection values at 0. Set the input level for the values relative to one another.  |
|                                                                                                                       | • Use analog input gains H3-03, H3-07, and H3-11 to adjust PID target and feedback signal scaling.                                        |
| Reverse drive output frequency and speed detection. When output frequency rises, the sensor detects a speed decrease. | Set PID output for reverse characteristics (b5-09 = 1).                                                                                   |
| Adjustment made to PID parameter settings are insufficient.                                                           | Refer to b5: PID Control on page 213 for details.                                                                                         |

# ♦ Insufficient Starting Torque

| Cause                                                      | Possible Solutions                                                       |
|------------------------------------------------------------|--------------------------------------------------------------------------|
|                                                            | Perform Auto-Tuning. Refer to Motor Performance Fine-Tuning on page 366. |
| The control mode was changed after performing Auto-Tuning. | Perform Auto-Tuning again.                                               |
| Only Stationary Auto-Tuning was performed.                 | Perform Rotational Auto-Tuning.                                          |

# ◆ Motor Rotates after the Drive Output is Shut Off (Motor Rotates During DC Injection Braking)

| Cause                                                                         | Possible Solutions                                                                                                                                                                                           |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DC Injection Braking is set too low and the drive cannot decelerate properly. | <ul> <li>Adjust the DC Injection braking settings.</li> <li>Increase the current level for DC Injection Braking Current (b2-02).</li> <li>Increase the DC Injection Braking time at stop (b2-04).</li> </ul> |
| The stopping method is set so that the drive coasts to stop.                  | Set b1-03 (Stopping Method Selection) to 0 or 2.                                                                                                                                                             |

# ◆ Output Frequency is Not as High as Frequency Reference

| Cause                                                               | Possible Solutions                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Frequency reference is set within the range of the Jump Frequency.  | <ul> <li>Adjust the parameters used for the Jump Frequency function (d3-01, d3-02, d3-03).</li> <li>Enabling the Jump Frequency prevents the drive from outputting the frequencies specified in the Jump range.</li> </ul>                              |
| Upper limit for the frequency reference has been exceeded.          | <ul> <li>Set the maximum output frequency and the upper limit for the frequency reference to more appropriate values (E1-04, d2-01).</li> <li>The following calculation yields the upper value for the output frequency: E1-04 x d2-01 / 100</li> </ul> |
| Large load triggered Stall Prevention function during acceleration. | <ul><li>Reduce the load.</li><li>Adjust the Stall Prevention level during acceleration (L3-02).</li></ul>                                                                                                                                               |

#### **♦** Sound from Motor

| Cause                                                  | Possible Solutions                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Exceeded 110% of the roted output current of the drive | <ul> <li>If the output current rises too high at low speeds, the carrier frequency is automatically reduced and causes a whining or buzzing sound.</li> <li>If the sound is coming from the motor, disable carrier frequency derating (L8-38 = 0).</li> <li>Disabling the automatic carrier frequency derating increases the chances of an overload fault (oL2). Switch to a larger capacity motor if oL2 faults occur too frequently.</li> </ul> |

# ◆ Unstable Motor Speed when Using PM

| Cause                                                                                                 | Possible Solutions                                                                                                                               |
|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| The motor code for the PM motor (E5-01 or T2-02) is set incorrectly (Yaskawa motors only).            | Refer to Motor Performance Fine-Tuning on page 366 for details.                                                                                  |
| Drive is attempting to operate the motor beyond the speed control range listed in the specifications. | Check the speed control range and adjust the speed accordingly.                                                                                  |
|                                                                                                       | When in Open Loop Vector Control for PM (A1-02 = 5), readjust the following parameters to have the greatest effect.                              |
|                                                                                                       | • n8-55 (Load Inertia)                                                                                                                           |
|                                                                                                       | n8-45 (Speed Feedback Detection Control Gain)                                                                                                    |
| D: : : : : : : : : : : : : : : : : : :                                                                | n8-41 (HFI Overlap Pole Detection Pgain)                                                                                                         |
| Drive is attempting to operate the motor at 5% or less of the speed reference value.                  | n8-39 (Low Pass Filter Cutoff Frequency for High Frequency Injection)                                                                            |
| of the speed reference value.                                                                         | C4-02 (Torque Compensation Primary Delay Time)                                                                                                   |
|                                                                                                       | When High Frequency Injection (n8-57 = 1) is enabled in Advanced Open Loop Vector Control for PM (A1-02 = 6), readjust the following parameters: |
|                                                                                                       | n8-41 (HFI Overlap Pole Detection Pgain)                                                                                                         |
|                                                                                                       | n8-39 (Low Pass Filter Cutoff Frequency for High Frequency Injection)                                                                            |
| Motor hunting occurs.                                                                                 | Refer to Motor Performance Fine-Tuning on page 366 for details.                                                                                  |
| Hunting occurs at start.                                                                              | Increase the S-curve time at the start of acceleration (C2-01).                                                                                  |
| Too much current is flowing through the drive.                                                        | • Enter the correct motor code for the PM motor being used into E5-01.                                                                           |
|                                                                                                       | • For special-purpose motors, enter the correct data to all E5 parameters according to the test report provided for the motor.                   |

#### ◆ Motor Does Not Restart after Power Loss

| Cause                                                                         | Possible Solutions                                                                                                                                                                                         |
|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The Run command was not issued again when power was restored.                 | <ul> <li>Check the sequence and wiring that has been set up to enter the Run command.</li> <li>A relay should be set up to make sure the Run command remains enabled throughout any power loss.</li> </ul> |
| The relay that is supposed to maintain the Run command has been switched off. | Check wiring and circuitry for the relay intended to keep the Run command enabled.                                                                                                                         |

# ◆ The Safety Controller Does Not Recognize Safe Disable Monitor Output Signals (Terminals DM+ and DM-)

| Cause                                                                | Possible Solutions                                                                                               |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| There is faulty wiring in the Safe Disable monitor output terminals. | <ul> <li>Check the Safe Disable monitor output terminal wiring.</li> <li>Correct any wiring mistakes.</li> </ul> |

# ◆ Troubleshooting if the PM Motor Speed is Unstable; when the Motor Starts after Momentary Power Loss Recovery; when Enabling External Speed Search Command 1 or 2; or when Speed Search Selection at Start is Enabled and Motor Starts

| Cause                   | Possible Solutions                                                                                                                                                                                                                |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LSo (LSo Fault) occurs. | When High Frequency Injection is enabled (n8-57 = 1) in Advanced Open Loop Vector Control for PM (A1-02 = 6), readjust the following parameters to stop the motor. b3-59 (PM Speed Search DC Injection Braking Time at Low Speed) |

| 6.10 Troubleshooting without Fault Display |  |  |
|--------------------------------------------|--|--|
|                                            |  |  |
|                                            |  |  |
|                                            |  |  |
|                                            |  |  |
|                                            |  |  |

This Page Intentionally Blank

# **Periodic Inspection & Maintenance**

This chapter describes the periodic inspection and maintenance of the drive to ensure that it receives the proper care to maintain overall performance.

| 7.1 | SECTION SAFETY       | 428 |
|-----|----------------------|-----|
| 7.2 | INSPECTION           | 430 |
| 7.3 | PERIODIC MAINTENANCE | 433 |
| 7.4 | DRIVE COOLING FANS   | 435 |
| 7.5 | DRIVE REPLACEMENT    | 464 |

# 7.1 Section Safety

#### **A WARNING**

#### **Electrical Shock Hazard**

### Do not connect or disconnect wiring while the power is on.

Failure to comply could result in death or serious injury.

Before servicing, disconnect all power to the equipment. The capacitor for the control power supply remains charged even after the power supply is turned off. The charge indicator LED will extinguish when the control power supply voltage is below 50 Vdc. To prevent electric shock, wait for at least the time specified on the warning label; after all indicators are OFF, measure for unsafe voltages to confirm the drive is safe prior to servicing.

#### Do not operate equipment with covers removed.

Failure to comply could result in death or serious injury.

The diagrams in this section may show drives without covers or safety shields to show details. Be sure to reinstall covers or shields before operating the drives and run the drives according to the instructions described in this manual.

#### Always ground the motor-side grounding terminal.

Improper equipment grounding could result in death or serious injury by contacting the motor case.

#### Do not remove covers or touch circuit boards while the power is on.

Failure to comply could result in death or serious injury.

#### Do not allow unqualified personnel to perform work on the drive.

Failure to comply could result in death or serious injury.

Installation, maintenance, inspection, and service must be performed only by authorized personnel familiar installation, adjustment, and maintenance of drives.

#### Do not perform work on the drive while wearing loose clothing, jewelry or without eye protection.

Failure to comply could result in death or serious injury.

Remove all metal objects such as watches and rings, secure loose clothing, and wear eye protection before beginning work on the drive.

#### Do not touch any terminals before the capacitors have fully discharged.

Failure to comply could result in death or serious injury.

Before servicing, disconnect all power to the equipment. The capacitor for the control power supply remains charged even after the power supply is turned off. The charge indicator LED will extinguish when the control power supply voltage is below 50 Vdc. To prevent electric shock, wait for at least the time specified on the warning label; after all indicators are OFF, measure the control power supply voltage level to confirm it has reached a safe level.

#### Fire Hazard

#### Tighten all terminal screws to the specified tightening torque.

Loose electrical connections could result in death or serious injury by fire due to overheating of electrical connections.

#### Do not use an improper voltage source.

Failure to comply could result in death or serious injury by fire.

Verify that the rated voltage of the drive matches the voltage of the incoming power supply before applying power.

#### Do not use improper combustible materials for the drive and filter module.

Failure to comply could result in death or serious injury by fire.

Attach the drive and filter module to metal or other noncombustible material.

429

#### NOTICE

Observe proper electrostatic discharge procedures (ESD) when handling the drive and circuit boards.

Failure to comply may result in ESD damage to the drive circuitry.

Follow cooling fan replacement instructions. The cooling fan cannot operate properly when it is installed incorrectly and could seriously damage the drive.

Follow the instructions in this manual to replace the cooling fan, making sure that the label is on top before inserting the cooling fan into the drive. To ensure maximum useful product life, replace both cooling fans when performing maintenance.

Never connect or disconnect the motor from the drive while the drive is outputting voltage.

Improper equipment sequencing could result in damage to the drive.

#### Do not use unshielded cable for control wiring.

Failure to comply may cause electrical interference resulting in poor system performance. Use shielded, twisted-pair wires and ground the shield to the ground terminal of the drive.

#### Do not allow unqualified personnel to use the product.

Failure to comply could result in damage to the drive.

Maintenance, inspection, and replacement of parts must be performed only by authorized personnel familiar with installation, adjustment and maintenance of AC drives.

#### Do not modify the drive circuitry.

Failure to comply could result in damage to the drive and will void warranty.

Yaskawa is not responsible for any modification of the product made by the user. This product must not be modified.

# Check all the wiring to ensure that all connections are correct after installing the drive and connecting any other devices.

Failure to comply could result in damage to the drive.

#### Comply with proper wiring practices.

The motor may run in reverse if the phase order is backward.

Connect motor input terminals U, V and W to drive output terminals U/T1, V/T2, and W/T3. The phase order for the drive and motor should match.

#### Frequently switching the drive power supply to stop and start the motor can damage the drive.

To get the full performance life out of the capacitor for the control power supply and circuit relays, refrain from switching the drive power supply off and on more than once every 30 minutes. Frequent use can damage the drive. Use the drive to stop and start the motor.

#### Do not operate damaged equipment.

Failure to comply could result in further damage to the equipment.

Do not connect or operate any equipment with visible damage or missing parts.

#### Inspection 7.2

Power electronics have limited life and may exhibit changes in characteristics or performance deterioration after years of use under normal conditions. To help avoid such problems, it is important to perform preventive maintenance and periodic inspection on the drive.

Drives contain a variety of power electronics such as power transistors, semiconductors, capacitors, resistors, fans, and relays. The electronics in the drive serve a critical role in maintaining proper motor control.

Follow the inspection lists provided in this chapter as a part of a regular maintenance program.

**Note:** The drive will require more frequent inspection if it is placed in harsh environments, such as:

- High ambient temperatures
- Frequent starting and stopping
- Fluctuations in the AC supply or load
- Excessive vibrations or shock loading
- Dust, metal dust, salt, sulfuric acid, chlorine atmospheres
- Poor storage conditions.

Perform the first equipment inspection one to two years after installation.

## **Recommended Daily Inspection**

Table 7.1 outlines the recommended daily inspection for Yaskawa drives. Check the following items on a daily basis to avoid premature deterioration in performance or product failure. Copy this checklist and mark the "Checked" column after each inspection.

|   | Table 7.1 General Recommended Daily Inspection Checklist |                |  |
|---|----------------------------------------------------------|----------------|--|
| У | Inspection Points                                        | Corrective Act |  |

| Inspection Category  | Inspection Points                                                                                                   | Corrective Action                                                       | Checked |
|----------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------|
| Motor                | Inspect for abnormal oscillation or noise coming from the motor.                                                    | Check the load coupling.                                                |         |
|                      |                                                                                                                     | Measure motor vibration.                                                |         |
|                      |                                                                                                                     | Tighten all loose components.                                           |         |
|                      | Inspect for abnormal heat generated from the drive or motor and visible discoloration.                              | Check for the following:                                                |         |
|                      |                                                                                                                     | Excessive load.                                                         |         |
|                      |                                                                                                                     | Loose connections.                                                      |         |
| C !!                 |                                                                                                                     | Dirty heatsink or motor.                                                |         |
| Cooling              |                                                                                                                     | Ambient temperature.                                                    |         |
|                      | Inspect drive cooling fan and circulation fan operation.                                                            | Check for the following:                                                |         |
|                      |                                                                                                                     | Clogged or dirty fan.                                                   |         |
|                      |                                                                                                                     | Correct Fan operation parameter setting.                                |         |
| Environment          | Verify the drive environment complies with the specifications listed in <i>Installation Environment</i> on page 60. | Eliminate the source of contaminants or correct poor environment.       |         |
|                      | The drive output current should not be higher than the motor or drive rating for an extended period of time.        | Check for the following:                                                |         |
| Load                 |                                                                                                                     | Excessive load.                                                         |         |
|                      | inition of drive rating for an extended period of time.                                                             | Correct motor parameter settings.                                       |         |
| Power Supply Voltage | Check main power supply and control voltages.                                                                       | Correct the voltage or power supply to within nameplate specifications. |         |
|                      |                                                                                                                     | Verify all main circuit phases.                                         |         |

# **♦** Recommended Periodic Inspection

*Table 7.2* outlines the recommended periodic inspections for Yaskawa drive installations. Although periodic inspections should generally be performed once a year; the drive may require more frequent inspection in harsh environments or with rigorous use. Operating and environmental conditions, along with experience in each application, will determine the actual inspection frequency for each installation. Periodic inspection will help to avoid premature deterioration in performance or product failure. Copy this checklist and mark the "Checked" column after each inspection.

#### ■ Periodic Inspection

**WARNING!** Electrical Shock Hazard. Do not inspect, connect, or disconnect any wiring while the power is on. Failure to comply can result in serious personal injury. Before servicing, disconnect all power to the equipment. The capacitor for the control power supply remains charged even after the power supply is turned off. The charge indicator LED will extinguish when the control power supply voltage is below 50 Vdc. To prevent electric shock, wait for at least the time specified on the warning label; after all indicators are OFF, measure for unsafe voltages to confirm the drive is safe prior to servicing.

Table 7.2 Periodic Inspection Checklist

| Inspection Area                    | Inspection Area Inspection Points Corrective Action Checked                                                                                                        |                                                                                                                                 |          |  |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------|--|
| mspection Area                     | Inspection Points  Main Circuit Periodic                                                                                                                           |                                                                                                                                 | Cilecked |  |
|                                    |                                                                                                                                                                    | -                                                                                                                               |          |  |
|                                    | <ul> <li>Inspect equipment for discoloration from overheating<br/>or deterioration.</li> <li>Inspect for damaged or deformed parts.</li> </ul>                     | Replace damaged components as required.     The drive has few serviceable parts and may require complete drive replacement.     |          |  |
| General                            | inspect for damaged of deformed parts.                                                                                                                             | Inspect enclosure door seal if used.                                                                                            |          |  |
| General                            | Inspect for dirt, foreign particles, or dust collection on components.                                                                                             | Remove foreign particles and dust with a vacuum cleaner to avoid touching parts.                                                |          |  |
|                                    | tomponents.                                                                                                                                                        | Replace components if cleaning is not possible.                                                                                 |          |  |
| Conductors and<br>Wiring           | Inspect wiring and connections for discoloration, damage, or heat stress.                                                                                          | Repair or replace damaged wiring.                                                                                               |          |  |
|                                    | Inspect wire insulation and shielding for wear.                                                                                                                    |                                                                                                                                 |          |  |
| Terminals                          | Inspect terminals for stripped, damaged, or loose connections.                                                                                                     | Tighten loose screws and replace damaged screws or terminals.                                                                   |          |  |
| Relays and Contactors              | Inspect contactors and relays for excessive noise during operation.                                                                                                | Check coil voltage for overvoltage or undervoltage conditions.                                                                  |          |  |
| Relays and Contactors              | Inspect coils for signs of overheating such as melted or cracked insulation.                                                                                       | Replace damaged removable relays, contactors, or circuit board.                                                                 |          |  |
| Electrolytic Capacitor             | <ul> <li>Inspect for leaking, discoloration, or cracks.</li> <li>Check if the cap has come off, for any swelling, or if the sides have burst open.</li> </ul>      | The drive has few serviceable parts and may require complete drive replacement.                                                 |          |  |
| Diode, IGBT<br>(Power Transistor)  | Inspect for dust or other foreign material collected on the surface.                                                                                               | Remove foreign particles and dust with a vacuum cleaner to avoid touching parts.                                                |          |  |
|                                    | Motor Periodic Ins                                                                                                                                                 | spection                                                                                                                        |          |  |
| <b>Operation Check</b>             | Check for increased vibration or abnormal noise.                                                                                                                   | Stop the motor and contact qualified maintenance personnel as required.                                                         |          |  |
|                                    | Control Circuit Periodi                                                                                                                                            | c Inspection                                                                                                                    |          |  |
| General                            | Inspect terminals for stripped, damaged, or loose connections.                                                                                                     | Tighten loose screws and replace damaged screws or terminals.                                                                   |          |  |
| General                            | Make sure all terminals have been properly tightened.                                                                                                              | If terminals are integral to a circuit board, then<br>board or drive replacement may be required.                               |          |  |
|                                    |                                                                                                                                                                    | Fix any loose connections.                                                                                                      |          |  |
|                                    | Check for any odor, discolaration, and rust. Make sure                                                                                                             | If an antistatic cloth or vacuum plunger cannot be used, replace the board.                                                     |          |  |
| Circuit Boards                     | Check for any odor, discoloration, and rust. Make sure connections are properly fastened and that no dust or oil mist has accumulated on the surface of the board. | Do not use any solvents to clean the board.                                                                                     |          |  |
| Circuit Boards                     |                                                                                                                                                                    | Remove foreign particles and dust with a vacuum cleaner to avoid touching parts.                                                |          |  |
|                                    |                                                                                                                                                                    | The drive has few serviceable parts and may require complete drive replacement.                                                 |          |  |
| Cooling System Periodic Inspection |                                                                                                                                                                    |                                                                                                                                 |          |  |
| Cooling Fan,<br>Circulation Fan    | <ul> <li>Check for abnormal oscillation or unusual noise.</li> <li>Check for damaged or missing fan blades.</li> </ul>                                             | <ul> <li>Replace as required.</li> <li>Refer to Drive Cooling Fans on page 435 for</li> </ul>                                   |          |  |
| Heatsink                           | Inspect for dust or other foreign material collected on the surface.                                                                                               | information on cleaning or replacing the fan.  Remove foreign particles and dust with a vacuum cleaner to avoid touching parts. |          |  |

| Inspection Area  | Inspection Points                                                                                                                                 | Corrective Action                                                                                  | Checked |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------|
|                  | Display Periodic In                                                                                                                               | spection                                                                                           |         |
| Digital Operator | Make sure data appears on the display properly.     Inspect for dust or other foreign material that may have collected on surrounding components. | Contact Yaskawa or a Yaskawa representative if<br>there is any trouble with the display or keypad. |         |

# Storage Guidelines

The drive contains electrolytic capacitors and fine electronic parts that undergo chemical changes. Observe the following precautions to help maintain the expected performance life and reliability during long-term storage.

### ■ Storage Location

#### **Temperature and Humidity**

Store the drive in a location that is between -10 and +40 °C with a relative humidity of 95% or less. Do not store the drive in direct sunlight or where condensation or ice will form. Storage temperatures between -20 to +60 °C are allowed when storing the drive for approximately one month.

**Note:** Package and store the drive during shipping to protect it from vibration and shock.

#### **Dust and Oil Mist**

Do not store the drive in a dusty location or a location subject to oil mist.

#### **Corrosive Gas**

Do not store the drive in a dusty location or a location subject to oil mist.

#### Salt Damage

Do not store the drive in a location subject to salt damage, such as near the ocean.

Do not store the drive in adverse environments. Store all drives in storage rooms that are not subjected to adverse environmental elements.

#### **Periodic Power Application**

Yaskawa recommends applying power to the drive once per year for at least 30 minutes to prevent the capacitors from deteriorating.

When applying power after power has not been applied for more than two years, Yaskawa recommends using a variable power source and gradually increasing the power from 0 V to the rated drive voltage over a period of 2 to 3 minutes. Apply power for at least 1 hour with no load to age the main circuit electrolytic capacitor.

Wire the drive normally and check for faults, overcurrents, motor vibration, speed fluctuations, and other abnormalities during operation after performing the above procedure.

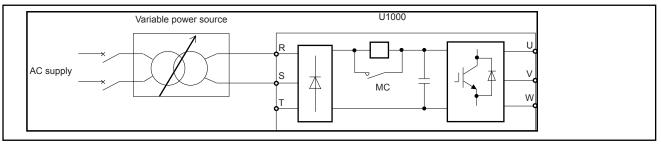



Figure 7.1 Power Distribution Method

# 7.3 Periodic Maintenance

The drive has Maintenance Monitors that keep track of component wear. This feature provides advance maintenance warning and eliminates the need to shut down the entire system for unexpected problems. The drive allows the user to check predicted maintenance periods for the components listed below.

- Cooling Fan, Circulation Fan
- Capacitors for the Control Power Supply
- Inrush Prevention Circuit

For replacement parts, contact the distributor where the drive was purchased or contact Yaskawa or a Yaskawa representative.

## Replacement Parts

**Table 7.3** contains the estimated performance life of components that require replacement during the life of the drive. Only use Yaskawa replacement parts for the appropriate drive model and revision.

**Table 7.3 Estimated Performance Life** 

| Component                               | Estimated Performance Life |  |
|-----------------------------------------|----------------------------|--|
| Cooling Fan, Circulation Fan            | 10 years                   |  |
| Capacitors for the Control Power Supply | 10 years <1>               |  |

<sup>&</sup>lt;1> Capacitors for the control power supply cannot be replaced on some lower capacity models. Complete drive replacement may be required for these models.

**NOTICE:** Estimated performance life based on specific usage conditions. These conditions are provided for the purpose of replacing parts to maintain performance. Some parts may require more frequent replacement due to poor environments or rigorous use. Usage conditions for estimated performance life:

Ambient temperature: Yearly average of 40 °C (IP00/Open Type enclosure)

Load factor: 80% maximum Operation time: 24 hours a day

#### ■ Performance Life Monitors Maintenance Monitors

The drive calculates the maintenance period for components that may require replacement during the life of the drive. A percentage of the maintenance period is displayed on the digital operator by viewing the appropriate monitor parameter.

When the maintenance period reaches 100%, there is increased risk that the drive may malfunction. Yaskawa recommends checking the maintenance period regularly to ensure maximum performance life.

Refer to Recommended Periodic Inspection on page 431 for more details.

**Table 7.4 Performance Life Monitors Used for Component Replacement** 

| Parameter | Component          | Contents                                                                                                                                                                                    |
|-----------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| U4-03     | Cooling Fan        | Displays the accumulated operation time of the fan from 0 to 99999 hours. The default value is 0. The value counts up from 0. The value is automatically reset to 0 after it reaches 99999. |
| U4-04     | Circulation Fan    | Displays the accumulated fan operation time as a percentage of the specified maintenance period. The default value is 0. The value counts up from 0.                                        |
| U4-05     | DC Bus Capacitors  | Displays the accumulated time the capacitors are used as a percentage of the specified maintenance period. The default value is 0. The value counts up from 0.                              |
| U4-06     | Pre-charge Circuit | Displays the number of times the drive is powered up as a percentage of the performance life of the inrush circuit. The default value is 0. The value counts up from 0.                     |

#### ■ Alarm Outputs for Maintenance Monitors

An output can be set up to inform the user when a specific components has neared its expected performance life.

When one of multi-function digital output terminals has been assigned the maintenance monitor function (H2- $\square\square$  = 2F), the terminal will close when the cooling fan, DC bus capacitors, or DC bus pre-charge relay reach 90% of expected performance life. Additionally the digital operator will display an alarm like shown in *Table 7.5* to indicate the specific components that may need maintenance.

Table 7.5 Maintenance Alarms

| Display  | Function                                                              | Corrective Action                                                          |
|----------|-----------------------------------------------------------------------|----------------------------------------------------------------------------|
| LT-1 <1> | The cooling fans have reached 90% of their designated life time.      | Replace the cooling fan.                                                   |
| LT-2 <1> | The DC bus capacitors have reached 90% of their designated life time. | Contact Yaskawa or a Yaskawa representative on possible drive replacement. |
| LT-3 <1> | The pre-charge circuit has reached 90% of its designated life time.   | Contact Yaskawa or a Yaskawa representative on possible drive replacement. |

<sup>&</sup>lt;1> This alarm message will be output only if the Maintenance Monitor function is assigned to one of the digital outputs (H2- $\Box\Box$  = 2F). The alarm will also trigger a digital output that is programmed for alarm indication (H2- $\Box\Box$  = 10).

#### ■ Related Drive Parameters

Use parameters o4-03, o4-05, and o4-07, to reset a Maintenance Monitor to zero after replacing a specific component. *Refer to Parameter List on page 501* for details on parameter settings.

**NOTICE:** If these parameters are not reset after the corresponding parts have been replaced, the Maintenance Monitor function will continue to count down the performance life from the value that was reached with the old part. If the Maintenance Monitor is not reset, the drive will not have the correct value of the performance life for the new component.

# 7.4 Drive Cooling Fans

**NOTICE:** Follow cooling fan replacement instructions. The cooling fan cannot operate properly when installed incorrectly and could seriously damage the drive. To ensure maximum useful product life, replace all cooling fans when performing maintenance.

Contact Yaskawa or a Yaskawa representative to order replacement cooling fans as required.

For drives with multiple cooling fans, replace all the fans when performing maintenance to ensure maximum product performance life.

# Number of Cooling Fans

#### ■ Drive Models 2□0028 to 2□0248 and 4□0011 to 4□0930

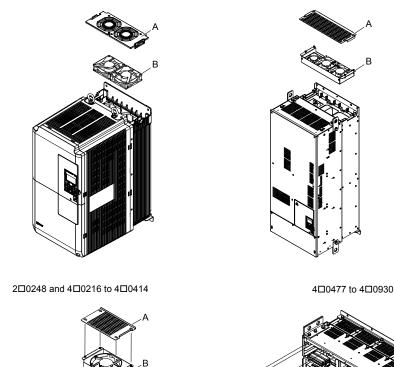
| Drive Model | Cooling Fans | Circulation Fans       | Control Board<br>Cooling Fans | Page |
|-------------|--------------|------------------------|-------------------------------|------|
|             | Т            | hree-Phase 200 V Class |                               |      |
| 2□0028      | 2            | -                      | -                             |      |
| 2□0042      | 2            | -                      | -                             |      |
| 2□0054      | 2            | _                      | -                             |      |
| 2□0068      | 2            | _                      | -                             | 439  |
| 2□0081      | 2            | -                      | -                             |      |
| 2□0104      | 2            | -                      | -                             |      |
| 2□0130      | 2            | _                      | -                             |      |
| 2□0154      | 3            | _                      | -                             | 441  |
| 2□0192      | 3            | _                      | -                             | 441  |
| 2□0248      | 1            | 2                      | _                             | 445  |
|             | Т            | hree-Phase 400 V Class |                               |      |
| 4□0011      | 2            | -                      | -                             |      |
| 4□0014      | 2            | _                      | _                             |      |
| 4□0021      | 2            | _                      | _                             |      |
| 4□0027      | 2            | _                      | _                             |      |
| 4□0034      | 2            | _                      | _                             |      |
| 4□0040      | 2            | _                      | _                             | 439  |
| 4□0052      | 2            | _                      | -                             |      |
| 4□0065      | 2            | _                      | -                             |      |
| 4□0077      | 2            | _                      | _                             |      |
| 4□0096      | 2            | _                      | _                             |      |
| 4□0124      | 2            | _                      | _                             |      |
| 4□0156      | 3            | _                      | _                             | 441  |
| 4□0180      | 3            | _                      | _                             | 441  |
| 4□0216      | 1            | 2                      | -                             |      |
| 4□0240      | 1            | 2                      | _                             |      |
| 4□0302      | 2            | 2                      | _                             | 445  |
| 4□0361      | 2            | 2                      | _                             |      |
| 4□0414      | 2            | 2                      | _                             |      |
| 4□0477      | 4            | 4                      | 2                             | 450  |
| 4□0590      | 4            | 4                      | 2                             | 450  |
| 4□0720      | 4            | 4                      | 2                             |      |
| 4□0900      | 4            | 4                      | 2                             | 454  |
| 4□0930      | 4            | 4                      | 2                             | 1    |

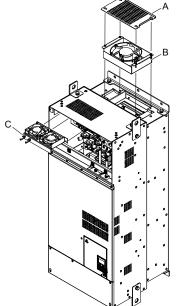
#### **■** Filter Modules

| Model       | Cooling Fans | Circulation Fans | Control Board<br>Cooling Fans | Page |
|-------------|--------------|------------------|-------------------------------|------|
| EUJ71180□.□ | 4            | 1                | 1                             |      |
| EUJ71181□.□ | 4            | 1                | 1                             | 459  |
| EUJ71182□.□ | 4            | 1                | 1                             |      |

## **♦** Cooling Fan Component Names

**WARNING!** Electrical Shock Hazard. Do not connect or disconnect wiring while the power is on. Failure to comply can result in serious personal injury. Before servicing the drive, disconnect all power to the equipment. The capacitor for the control power supply remains charged even after the power supply is turned off. After shutting off the power, wait for at least the amount of time specified on the drive before touching any components.


**CAUTION!** Burn Hazard. Do not touch a hot drive heatsink. Failure to comply could result in minor or moderate injury. Shut off the power to the drive when replacing the cooling fan. To prevent burns, wait at least 15 minutes and ensure the heatsink has cooled down.


**NOTICE:** Damage to Equipment. Follow cooling fan and circulation fan replacement instructions. Fans cannot operate properly when they are installed incorrectly and can damage the drive. Follow the instructions below to replace the fans, making sure that the label is on top before inserting the fan into the drive. To ensure maximum useful product life, replace all fans when performing maintenance.

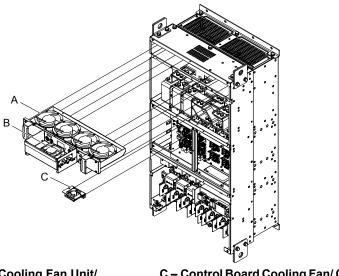
**Note:** Procedures shown in this section use a representative drive model. Figures in these procedures may differ slightly from the actual model used by the customer.

#### Drive Models 2□0028 to 2□0248 and 4□0011 to 4□0930

2□0028 to 2□0130 and 4□0011 to 4□0124






D - Circulation Fan

2□0154, 2□0192, 4□0156, and 4□0180

- E Control Board Cooling Fan/ Control **Board Cooling Fan Unit**
- A Fan guard
  B Cooling Fan/Cooling Fan Unit
  C Cooling Fan/Cooling Fan Unit/
  - **Circulation Fan Unit**

Figure 7.2 Drive Cooling Fan Component Names

## **■** Filter Modules



- A Cooling Fan/Cooling Fan Unit/ Circulation Fan Unit
- **B** Circulation Fan

C – Control Board Cooling Fan/ Control Board Cooling Fan Unit

Figure 7.3 Filter Module Cooling Fan Component Names

# ◆ Drive Cooling Fan Replacement: Models 2□0028 to 2□0130 and 4□0011 to 4□0124

**WARNING!** Electrical Shock Hazard. Do not connect or disconnect wiring while the power is on. Failure to comply can result in serious personal injury. Before servicing the drive, disconnect all power to the equipment. The capacitor for the control power supply remains charged even after the power supply is turned off. After shutting off the power, wait for at least the amount of time specified on the drive before touching any components.

**CAUTION!** Burn Hazard. Do not touch a hot drive heatsink. Failure to comply could result in minor or moderate injury. Shut off the power to the drive when replacing the cooling fan. To prevent burns, wait at least 15 minutes and ensure the heatsink has cooled down.

**NOTICE:** Damage to Equipment. Follow cooling fan and circulation fan replacement instructions. Improper fan replacement could cause damage to equipment. Make sure the fan is facing upwards when installing the replacement fan into the drive. Replace all fans when performing maintenance to help ensure maximum useful product life.

## Removing the Cooling Fan Guard and Cooling Fan

1. Depress the right and left sides of the fan guard tabs and pull upward. Remove the fan guard from the top of the drive.

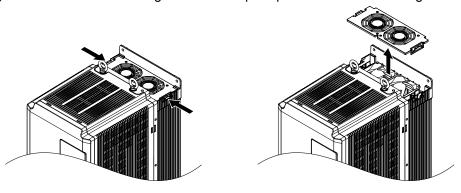



Figure 7.4 Remove the Fan Guard

2. Remove the cooling fan cartridge.

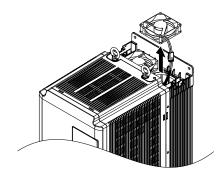



Figure 7.5 Remove the Cooling Fan Cartridge

**3.** Disconnect the pluggable connector and remove the fan.

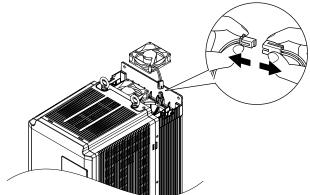



Figure 7.6 Disconnect the Cooling Fan

#### ■ Installing the Cooling Fan

Reverse the procedure described above to reinstall the cooling fan.

**1.** Properly plug the relay connector.

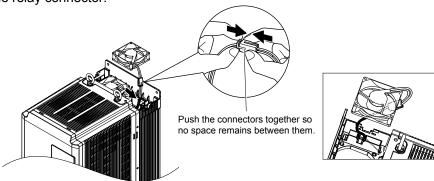



Figure 7.7 Plug the Relay Connector

2. Install the replacement fan into the drive, ensuring the alignment pins line up as shown in Figure 7.8.

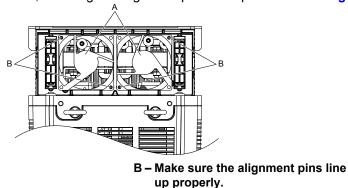



Figure 7.8 Install the Cooling Fan

**3.** Properly connect the fan power lines, then place the cable back into the recess of the drive.

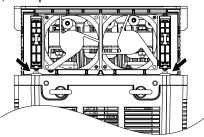



Figure 7.9 Relay Connector Placement

**4.** While pressing in on the tabs on the left and right sides of the fan guard, guide the fan guard until it clicks back into place.

**Note:** The fan guard has a cutout on the front side for proper alignment.

A - Label facing up

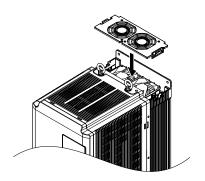
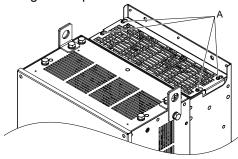



Figure 7.10 Reattach the Fan Guard

**5.** Turn on the power supply and set o4-03 to 0 to reset the Maintenance Monitor cooling fan operation time.

# ◆ Drive Cooling Fan Replacement: Models 2□0154, 2□0192, 4□0156, and 4□0180


**WARNING!** Electrical Shock Hazard. Do not connect or disconnect wiring while the power is on. Failure to comply can result in serious personal injury. Before servicing the drive, disconnect all power to the equipment. The capacitor for the control power supply remains charged even after the power supply is turned off. After shutting off the power, wait for at least the amount of time specified on the drive before touching any components.

**CAUTION!** Burn Hazard. Do not touch a hot drive heatsink. Failure to comply could result in minor or moderate injury. Shut off the power to the drive when replacing the cooling fan. To prevent burns, wait at least 15 minutes and ensure the heatsink has cooled down.

**NOTICE:** Damage to Equipment. Follow cooling fan and circulation fan replacement instructions. Improper fan replacement could cause damage to equipment. Make sure the fan is facing upwards when installing the replacement fan into the drive. Replace all fans when performing maintenance to help ensure maximum useful product life.

## ■ Removing the Fan Guard and Cooling Fan

1. Loosen the 4 screws that hold the fan guard in place.



A -Screw locations

Figure 7.11 Loosen the Screws

2. Slide the fan guard toward the front of the drive to remove it from the drive.

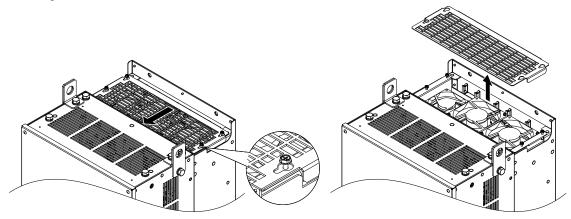
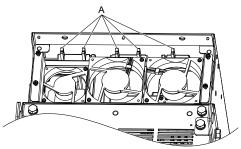




Figure 7.12 Remove the Fan Guard

**3.** Release the cables from the hooks in 5 locations.



A -Hook locations

Figure 7.13 Release the Cables

**4.** Loosen the 4 screws affixing the cooling fan unit.

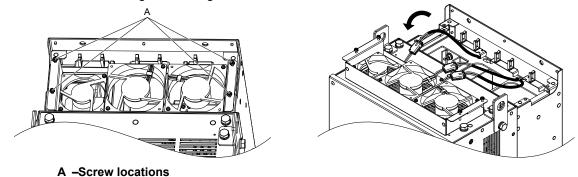



Figure 7.14 Remove the Cooling Fan Unit

**5.** Disconnect the 3 pluggable connectors and remove the fan unit from the drive.

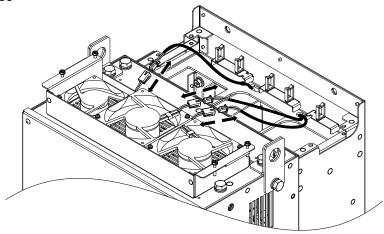



Figure 7.15 Unplug the Relay Connectors

# ■ Installing the Cooling Fan Unit

1. Connect the relay connectors for the fans in the replacement fan unit.

**Note:** Replace the whole unit when performing maintenance on the cooling fans.

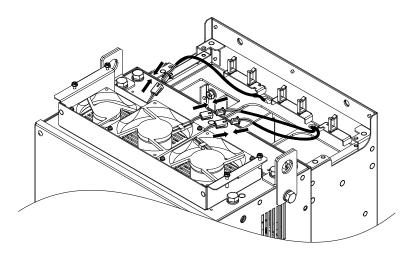



Figure 7.16 Plug the Relay Connectors

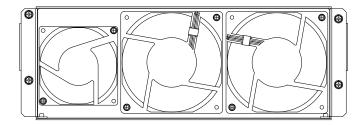



Figure 7.17 Cooling Fan Unit

**2.** Guide the fan cables through the provided hooks to hold the cables in place.

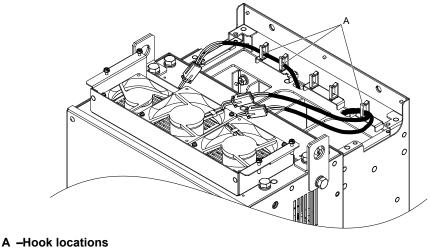



Figure 7.18 Position the Fan Cables

**3.** Install the cooling fan unit while pulling the cables upward.

**Note:** Do not pinch the fan cable between parts when reassembling the fan unit.

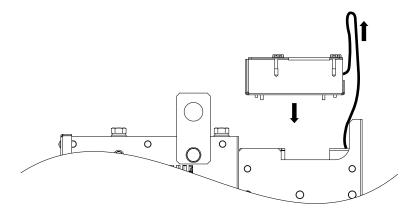



Figure 7.19 Install the Cooling Fan Unit

**4.** Guide the cables through the second set of provided hooks to hold the cables in place.

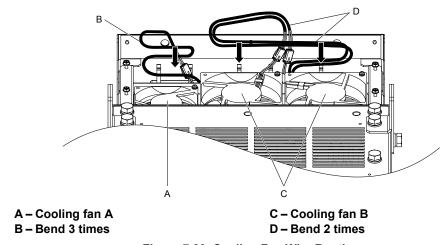
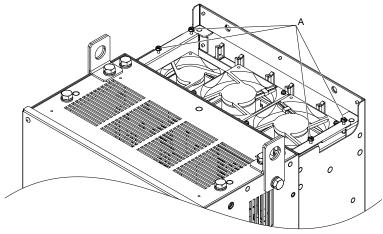
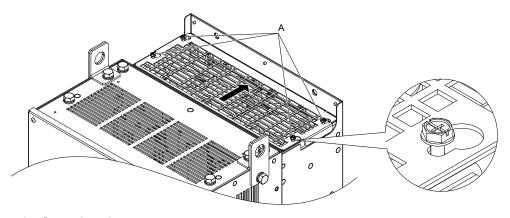




Figure 7.20 Cooling Fan Wire Routing


**5.** Thread the 4 fan unit screws into the proper holes approximately 2/3 of the way. Leave enough space to reinsert the fan guard.



A -Screw locations

Figure 7.21 Insert Cooling Fan Screws

**6.** Insert the fan guard and firmly tighten the screws so they do not come loose.

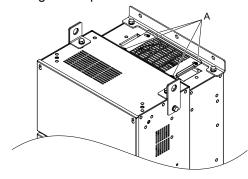


A -Screw locations

Figure 7.22 Reattach the Fan Guard

7. Turn on the power supply and set o4-03 to 0 to reset the Maintenance Monitor cooling fan operation time.

# ◆ Drive Cooling Fan Replacement: Models 2□0248 and 4□0216 to 4□0414


**WARNING!** Electrical Shock Hazard. Do not connect or disconnect wiring while the power is on. Failure to comply can result in serious personal injury. Before servicing the drive, disconnect all power to the equipment. The internal capacitor remains charged even after the power supply is turned off. After shutting off the power, wait for at least the amount of time specified on the drive before touching any components.

**CAUTION!** Burn Hazard. Do not touch a hot drive heatsink. Failure to comply could result in minor or moderate injury. Shut off the power to the drive when replacing the cooling fan. To prevent burns, wait at least 15 minutes and ensure the heatsink has cooled down.

**NOTICE:** Damage to Equipment. Follow cooling fan and circulation fan replacement instructions. Improper fan replacement could cause damage to equipment. Follow the instructions and replace the entire unit when replacing the cooling fan.

## Removing the Fan Guard and Cooling Fan

1. Loosen the 4 screws that hold the fan guard in place.



A -Screw locations

Figure 7.23 Loosen the Screws

2. Slide the fan guard toward the right to remove it from the drive.

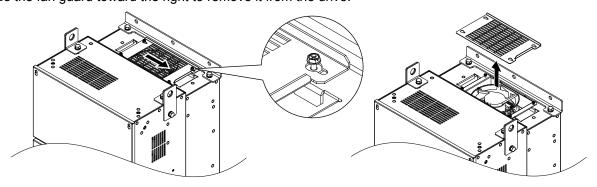
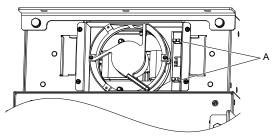




Figure 7.24 Remove the Fan Guard

**3.** Release the cable from the hooks.

**Note:** Models  $4\square 0302$  to  $4\square 0414$  have 4 hooks.



A -Hook locations

Figure 7.25 Release the Cable

**4.** Loosen the 2 screws affixing the cooling fan unit.

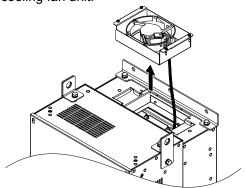



Figure 7.26 Remove the Cooling Fan Unit

**5.** Unplug the relay connector and release the fan from the drive.

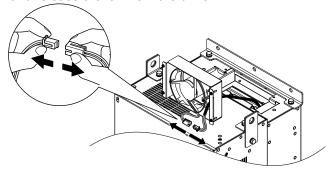
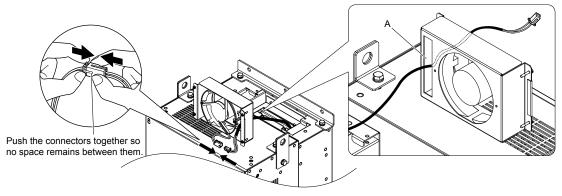




Figure 7.27 Unplug the Relay Connector

# ♦ Installing the Cooling Fan

1. Pass the cable through the opening of the replacement cooling fan unit from the back side, then plug the relay connector.



A -Opening

Figure 7.28 Attach the Relay Connector

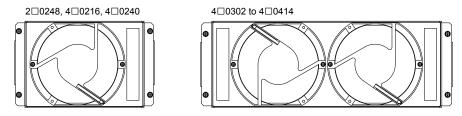



Figure 7.29 Cooling Fan Unit

2. Install the cooling fan unit and place the cable back into position.

**Note:** 1. Replace the whole unit when performing maintenance on the cooling fans.

2. Install the cooling fan unit while pulling the cable upward so that the cable does not get pinched between parts.

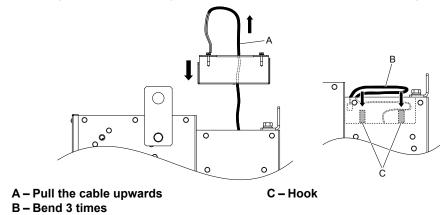
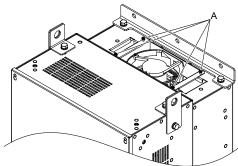




Figure 7.30 Install the Cooling Fan

3. Thread the 4 fan unit screws into the proper holes approximately 2/3 of the way. Leave enough space to reinsert the fan guard.



A -Screw locations

Figure 7.31 Attach the Cooling Fan Unit

**4.** Reattach the fan guard and then tighten the screws firmly so that the screws do not come loose.

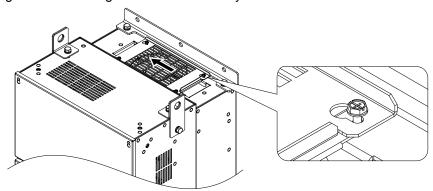
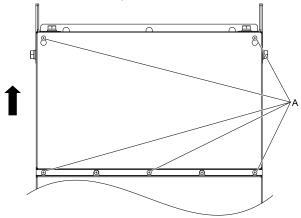




Figure 7.32 Reattach the Fan Cover

# ■ Removing the Circulation Fan

**CAUTION!** Crush Hazard. Do not completely remove the cover screws, just loosen them. If the cover screws are removed completely, the terminal cover may fall off causing an injury. Take special care when removing/reattaching the terminal covers for larger drives.

**1.** Loosen the 5 screws that hold the drive cover in place.



A -Screw locations

Figure 7.33 Remove the Drive Cover

2. Unlock the 2 cable hooks.

**Note:** The circulation fan unit on models 4□0302 to 4□0414 is located on the right side of the drive.

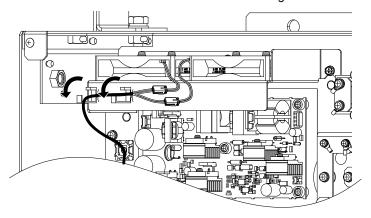



Figure 7.34 Unlock the Cable Hooks

**3.** Unplug the relay connectors and release the cable from the hooks.

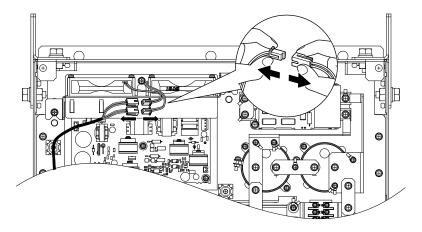



Figure 7.35 Unplug the Relay Connector

**4.** Loosen the 3 screws, then slide the circulation fan unit and carefully pull it out.

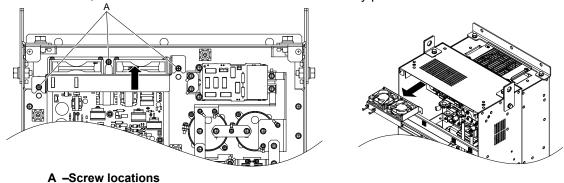



Figure 7.36 Remove the Circulation Fan

# ■ Installing the Circulation Fan

**CAUTION!** Crush Hazard. Do not completely remove the cover screws, just loosen them. If the cover screws are removed completely, the terminal cover may fall off causing an injury. Take special care when removing/reattaching the terminal covers for larger drives.

1. Reverse the procedure described above to install the replacement circulation fan unit.

Note:

- 1. Replace the whole unit when performing maintenance on the circulation fans.
- 2. Place the cables back into the hooks to secure.
- 3. Do not pinch the fan cable between parts when reassembling the fan unit.
- 4. Tighten the screws firmly so they do not come loose.

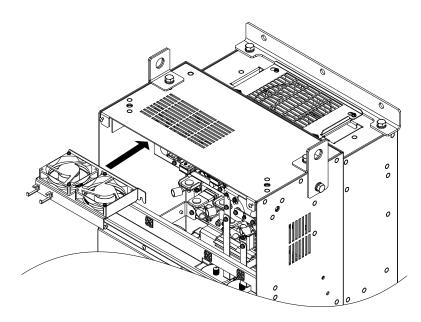
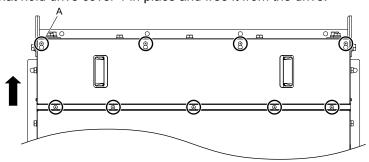



Figure 7.37 Installing the Circulation Fan

**2.** Turn on the power supply and set o4-03 to 0 to reset the Maintenance Monitor circulation fan operation time.

## **♦** Drive Cooling Fan Replacement: Models 4□0477 and 4□0590

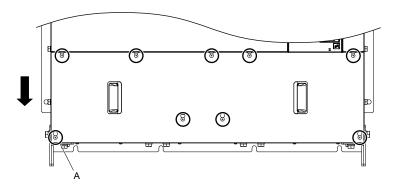
**WARNING!** Electrical Shock Hazard. Do not connect or disconnect wiring while the power is on. Failure to comply can result in serious personal injury. Before servicing the drive, disconnect all power to the equipment. The internal capacitor remains charged even after the power supply is turned off. After shutting off the power, wait for at least the amount of time specified on the drive before touching any components.


**CAUTION!** Burn Hazard. Do not touch a hot drive heatsink. Failure to comply could result in minor or moderate injury. Shut off the power to the drive when replacing the cooling fan. To prevent burns, wait at least 15 minutes and ensure the heatsink has cooled down.

**NOTICE:** Damage to Equipment. Follow cooling fan and circulation fan replacement instructions. Improper fan replacement could cause damage to equipment. Follow the instructions and replace the entire unit when replacing the cooling fan.

## ■ Removing the Cooling Fan Unit

**CAUTION!** Crush Hazard. Do not completely remove the cover screws, just loosen them. If the cover screws are removed completely, the terminal cover may fall off causing an injury. Take special care when removing/reattaching the terminal covers for larger drives.

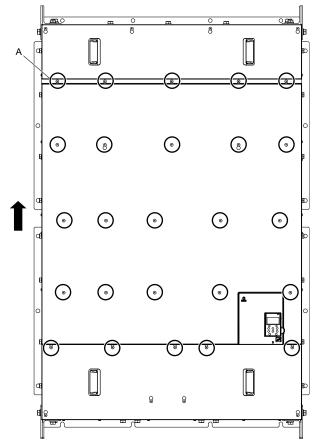

1. Loosen the 9 screws that hold drive cover 1 in place and free it from the drive.



A -9 screw locations

Figure 7.38 Loosen the Screws and Remove Drive Cover 1

2. Loosen the 9 screws that hold the terminal cover in place and free it from the drive.




A -9 screw locations

Figure 7.39 Loosen the Screws and Remove the Terminal Cover

3. Loosen the 25 screws that hold the drive cover 2 in place and free it from the drive.

**CAUTION!** Crush Hazard. Do not completely remove the cover screws, just loosen them. If the cover screws are removed completely, the terminal cover may fall off causing an injury. Take special care when removing/reattaching the terminal covers for larger drives.



A -25 screw locations

Figure 7.40 Loosen the Screws and Remove Drive Cover 2

**4.** Unplug the relay connectors and free the cable from the cooling fan unit.

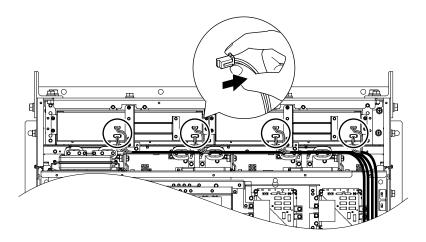
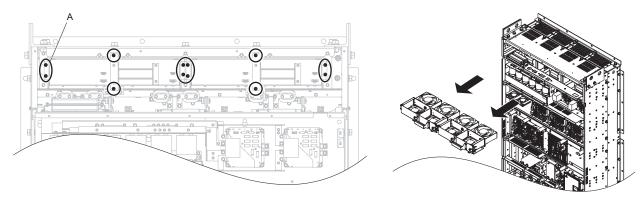




Figure 7.41 Unplug the Relay Connectors

**5.** Loosen the 12 screws, then slide the cooling fan unit and carefully pull it out.



A -25 screw locations

Figure 7.42 Remove the Cooling Fan Unit

# ■ Installing the Cooling Fan Unit

**CAUTION!** Crush Hazard. Do not completely remove the cover screws, just loosen them. If the cover screws are removed completely, the terminal cover may fall off causing an injury. Take special care when removing/reattaching the terminal covers for larger drives.

1. Reverse the procedure described above to install the replacement cooling fan unit.

Note:

- 1. Replace the whole unit when performing maintenance on the cooling fan unit.
- 2. Do not pinch the fan cable between parts when reassembling the fan unit.
- 3. Tighten the screws firmly so they do not come loose.

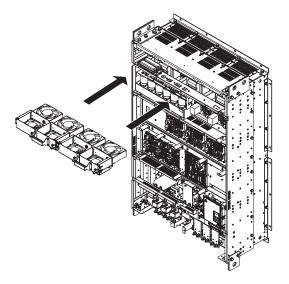



Figure 7.43 Installing the Cooling Fan Unit

2. Turn on the power supply and set o4-03 to 0 to reset the Maintenance Monitor circulation fan operation time.

# ■ Removing the Control Board Cooling Fan Unit

1. Unplug the relay connectors and free the cable from the control board cooling fan unit.

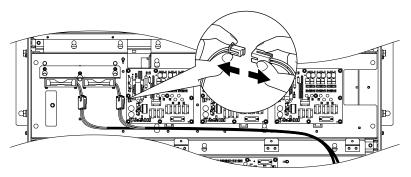



Figure 7.44 Unplug the Relay Connectors

2. Loosen the 3 screws, then slide the control board cooling fan unit and carefully pull it out.

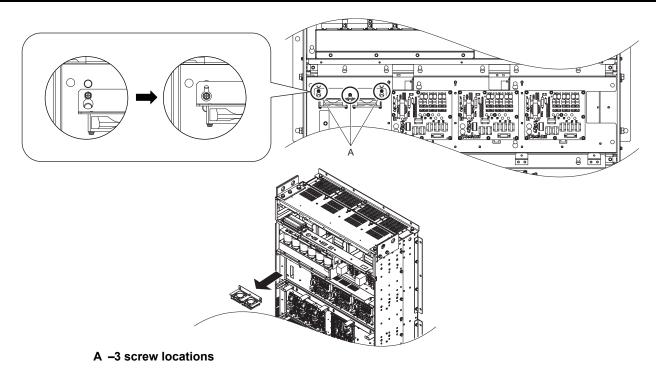



Figure 7.45 Remove the Control Board Cooling Fan Unit

#### ■ Installing the Control Board Cooling Fan Unit

**CAUTION!** Crush Hazard. Do not completely remove the cover screws, just loosen them. If the cover screws are removed completely, the terminal cover may fall off causing an injury. Take special care when removing/reattaching the terminal covers for larger drives.

1. Reverse the procedure described above to install the replacement control board cooling fan unit.

Note:

- 1. Replace the whole unit when performing maintenance on the control board cooling fan unit.
- 2. Do not pinch the fan cable between parts when reassembling the fan unit.
- 3. Tighten the screws firmly so they do not come loose.

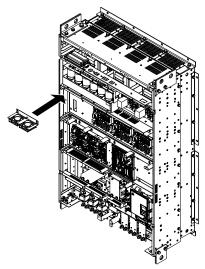
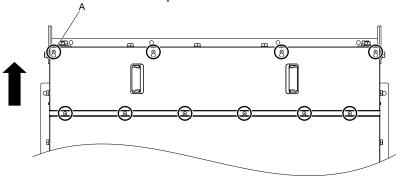



Figure 7.46 Installing the Control Board Cooling Fan Unit

2. Turn on the power supply and set o4-03 to 0 to reset the Maintenance Monitor control board cooling fan operation time.

# **♦** Drive Cooling Fan Replacement: Models 4□0720 to 4□0930

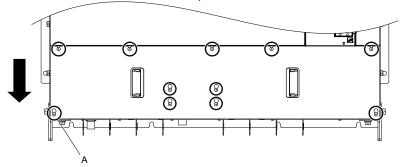
**WARNING!** Electrical Shock Hazard. Do not connect or disconnect wiring while the power is on. Failure to comply can result in serious personal injury. Before servicing the drive, disconnect all power to the equipment. The internal capacitor remains charged even after the power supply is turned off. After shutting off the power, wait for at least the amount of time specified on the drive before touching any components.


**CAUTION!** Burn Hazard. Do not touch a hot drive heatsink. Failure to comply could result in minor or moderate injury. Shut off the power to the drive when replacing the cooling fan. To prevent burns, wait at least 15 minutes and ensure the heatsink has cooled down.

**NOTICE:** Damage to Equipment. Follow cooling fan and circulation fan replacement instructions. Improper fan replacement could cause damage to equipment. Follow the instructions and replace the entire unit when replacing the cooling fan.

## Removing the Cooling Fan Unit

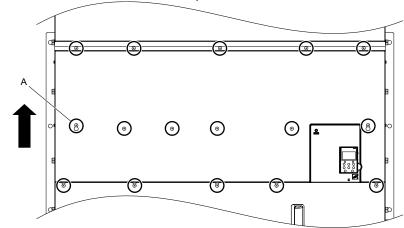
**CAUTION!** Crush Hazard. Do not completely remove the cover screws, just loosen them. If the cover screws are removed completely, the terminal cover may fall off causing an injury. Take special care when removing/reattaching the terminal covers for larger drives.


1. Loosen the 10 screws that hold drive cover 1 in place and free it from the drive.



A -10 screw locations

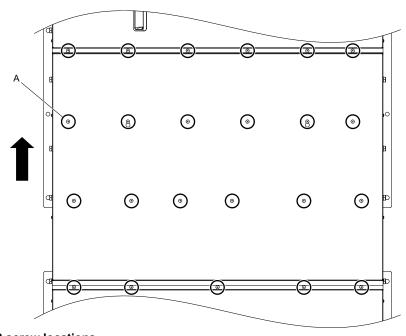
Figure 7.47 Loosen the Screws and Remove Drive Cover 1


2. Loosen the 11 screws that hold the terminal cover in place and free it from the drive.



A -11 screw locations

Figure 7.48 Loosen the Screws and Remove the Terminal Cover


**3.** Loosen the 16 screws that hold the drive cover 2 in place and free it from the drive.



A -16 screw locations

Figure 7.49 Loosen the Screws and Remove Drive Cover 2

**4.** Loosen the 23 screws that hold the drive cover 3 in place and free it from the drive.



A -23 screw locations

Figure 7.50 Loosen the Screws and Remove Drive Cover 3

**5.** Unplug the relay connectors and free the cable from the cooling fan unit.

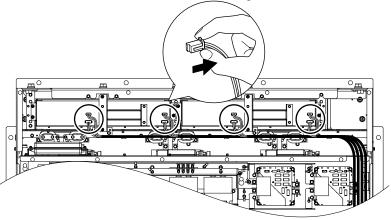



Figure 7.51 Unplug the Relay Connectors

**6.** Loosen the 12 screws, then slide the cooling fan unit and carefully pull it out.



Figure 7.52 Remove the Cooling Fan Unit

#### ■ Installing the Cooling Fan Unit

**CAUTION!** Crush Hazard. Do not completely remove the cover screws, just loosen them. If the cover screws are removed completely, the terminal cover may fall off causing an injury. Take special care when removing/reattaching the terminal covers for larger drives.

1. Reverse the procedure described above to install the replacement cooling fan unit.

Note:

- 1. Replace the whole unit when performing maintenance on the cooling fans.
- 2. Do not pinch the fan cable between parts when reassembling the fan unit.
- 3. Tighten the screws firmly so they do not come loose.

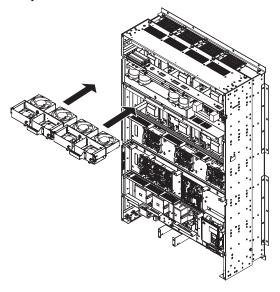



Figure 7.53 Installing the Cooling Fan Unit

**2.** Turn on the power supply and set o4-03 to 0 to reset the Maintenance Monitor circulation fan operation time.

## ■ Removing the Control Board Cooling Fan Unit

1. Unplug the relay connectors and free the cable from the control board cooling fan unit.

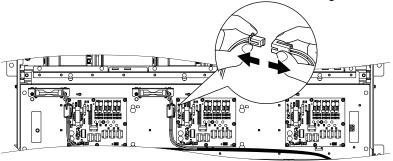



Figure 7.54 Unplug the Relay Connectors

2. Loosen the 4 screws, then slide the control board cooling fan unit and carefully pull it out.

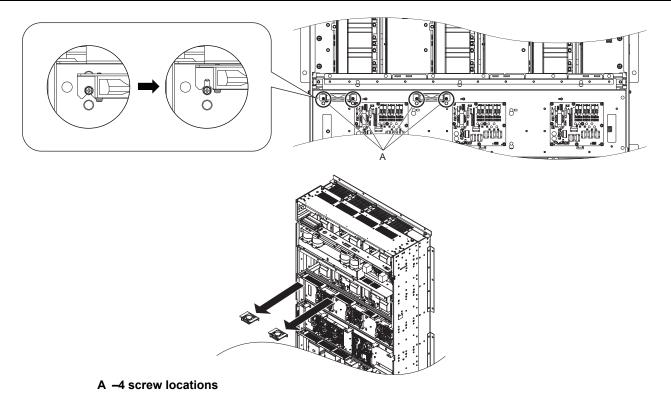



Figure 7.55 Remove the Control Board Cooling Fan Unit

## ■ Installing the Control Board Cooling Fan Unit

**CAUTION!** Crush Hazard. Do not completely remove the cover screws, just loosen them. If the cover screws are removed completely, the terminal cover may fall off causing an injury. Take special care when removing/reattaching the terminal covers for larger drives.

1. Reverse the procedure described above to install the replacement control board cooling fan unit.

Note:

- 1. Replace the whole unit when performing maintenance on the control board cooling fans.
- 2. Do not pinch the fan cable between parts when reassembling the fan unit.
- 3. Tighten the screws firmly so they do not come loose.

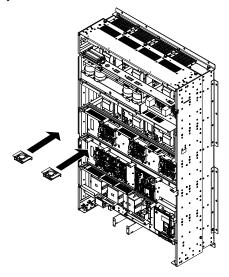
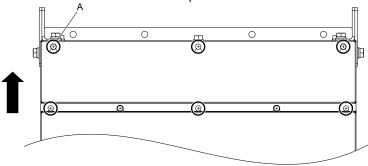



Figure 7.56 Installing the Control Board Cooling Fan Unit

**2.** Turn on the power supply and set o4-03 to 0 to reset the Maintenance Monitor control board cooling fan operation time.

# ◆ Filter Module Cooling Fan Replacement

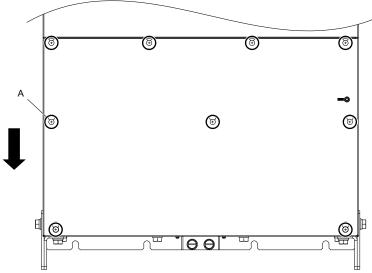
**WARNING!** Electrical Shock Hazard. Do not connect or disconnect wiring while the power is on. Failure to comply can result in serious personal injury. Before servicing the filter module, disconnect all power to the equipment. The internal capacitor remains charged even after the power supply is turned off. After shutting off the power, wait for at least the amount of time specified on the filter module before touching any components.


**CAUTION!** Burn Hazard. Do not touch a hot filter module heatsink. Failure to comply could result in minor or moderate injury. Shut off the power to the filter module when replacing the cooling fan. To prevent burns, wait at least 15 minutes and ensure the heatsink has cooled down.

**NOTICE:** Damage to Equipment. Follow cooling fan and circulation fan replacement instructions. Improper fan replacement could cause damage to equipment. Follow the instructions and replace the entire unit when replacing the cooling fan.

#### ■ Removing the Cooling Fan Unit

**CAUTION!** Crush Hazard. Do not completely remove the cover screws, just loosen them. If the cover screws are removed completely, the terminal cover may fall off causing an injury. Take special care when removing/reattaching the terminal covers for larger filter modules.

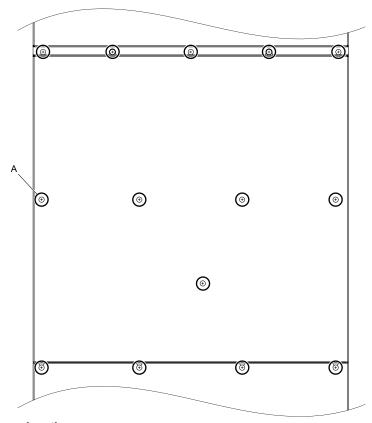

1. Loosen the 6 screws that hold filter module cover 1 in place and free it from the filter module.



A -6 screw locations

Figure 7.57 Loosen the Screws and Remove Filter Module Cover 1

2. Loosen the 9 screws that hold the terminal cover in place and free it from the filter module.




A -9 screw locations

Figure 7.58 Loosen the Screws and Remove the Terminal Cover

3. Loosen the 14 screws that hold the filter module cover 2 in place and free it from the filter module.

**CAUTION!** Crush Hazard. Do not completely remove the cover screws, just loosen them. If the cover screws are removed completely, the terminal cover may fall off causing an injury. Take special care when removing/reattaching the terminal covers for larger filter modules.



A -14 screw locations

Figure 7.59 Loosen the Screws and Remove Filter Module Cover 2

**4.** Unplug the relay connectors and free the cable from the cooling fan unit.

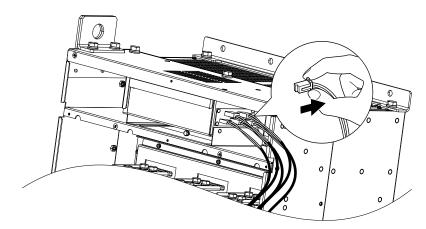
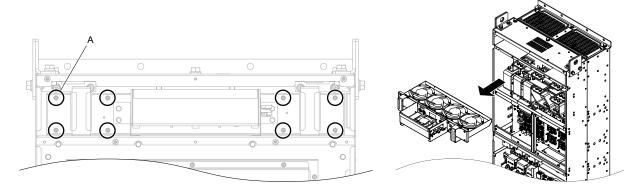




Figure 7.60 Unplug the Relay Connectors

**5.** Loosen the 8 screws, then slide the cooling fan unit and carefully pull it out.



A -8 screw locations

Figure 7.61 Remove the Cooling Fan Unit

# ■ Installing the Cooling Fan Unit

**CAUTION!** Crush Hazard. Do not completely remove the cover screws, just loosen them. If the cover screws are removed completely, the terminal cover may fall off causing an injury. Take special care when removing/reattaching the terminal covers for larger filter modules.

1. Reverse the procedure described above to install the replacement cooling fan unit.

Note:

- 1. Replace the whole unit when performing maintenance on the cooling fans.
- 2. Do not pinch the fan cable between parts when reassembling the fan unit.
- 3. Tighten the screws firmly so they do not come loose.

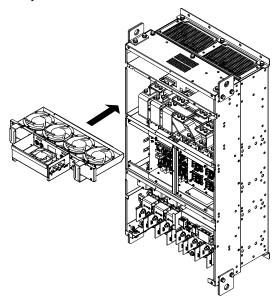



Figure 7.62 Installing the Cooling Fan Unit

**2.** Guide the cables through the second set of provided hooks to hold the cables in place.

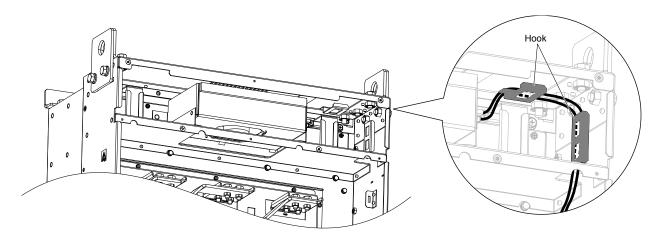



Figure 7.63 Route the Cooling Fan Wire

**3.** Turn on the power supply and set o4-03 to 0 to reset the Maintenance Monitor circulation fan operation time.

# ■ Removing the Control Board Cooling Fan Unit

1. Unplug the relay connector and free the cable from the control board cooling fan unit.

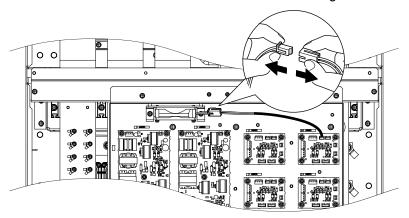
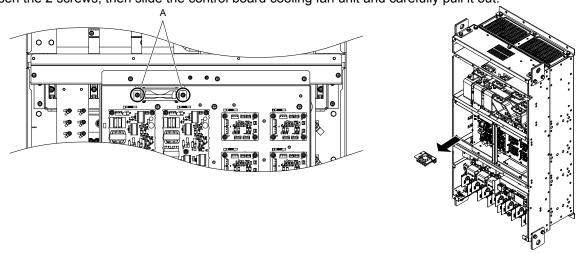




Figure 7.64 Unplug the Relay Connector

2. Loosen the 2 screws, then slide the control board cooling fan unit and carefully pull it out.



A -2 screw locations

Figure 7.65 Remove the Control Board Cooling Fan Unit

## ■ Installing the Control Board Cooling Fan Unit

**CAUTION!** Crush Hazard. Do not completely remove the cover screws, just loosen them. If the cover screws are removed completely, the terminal cover may fall off causing an injury. Take special care when removing/reattaching the terminal covers for larger filter modules.

1. Reverse the procedure described above to install the replacement control board cooling fan unit.

Note:

- 1. Replace the whole unit when performing maintenance on the control board cooling fans.
- 2. Place the cables back into the hooks to secure.
- 3. Do not pinch the fan cable between parts when reassembling the fan unit.
- 4. Tighten the screws firmly so they do not come loose.

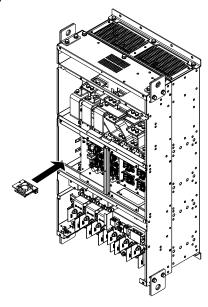



Figure 7.66 Installing the Control Board Cooling Fan Unit

**2.** Turn on the power supply and set o4-03 to 0 to reset the Maintenance Monitor control board cooling fan operation time.

# 7.5 Drive Replacement

#### Serviceable Parts

The drive contains some serviceable parts. The following parts can be replaced over the life span of the drive:

- Cooling fan(s)
- · Front cover


Replace the drive if the main power circuitry is damaged. However, the drive can be replaced easily when using the removable control circuit terminal board. Contact Yaskawa or a Yaskawa representative before replacing parts if the drive is still under warranty. Yaskawa reserves the right to replace or repair the drive according to Yaskawa warranty policy.

#### Terminal Board

The drive has a modular I/O terminal block that facilitates quick drive replacement. The terminal board contains on-board memory that stores all drive parameter settings and allows the parameters to be saved and transferred to the replacement drive. To transfer the terminal board, disconnect the terminal board from the damaged drive and reconnect it to the replacement drive. There is no need to manually reprogram the replacement drive after transferring the terminal board.

Note:

If the damaged drive and the new replacement drive are have different capacities, the data stored in the terminal board cannot be transferred to the new drive and an oPE01 error will appear on the display. The terminal board can still be used, but parameter setting from the old drive cannot be transferred. The replacement drive must be initialized and manually programmed.



A - Terminal board locking screws

B - Removable terminal board

Figure 7.67 Terminal Board

# Replacing the Drive

**WARNING!** Electrical Shock Hazard. Do not connect or disconnect wiring while the power is on. Failure to comply can result in serious personal injury. Before servicing the drive, disconnect all power to the equipment. The capacitor for the control power supply remains charged even after the power supply is turned off. After shutting off the power, wait for at least the amount of time specified on the drive before touching any components.

**WARNING!** Electrical Shock Hazard. Do not allow unqualified personnel to perform work on the drive. Failure to comply could result in serious injury. Installation, maintenance, inspection, and service must be performed only by authorized personnel familiar installation, adjustment, and maintenance of drives.

**NOTICE**: Observe proper electrostatic discharge procedures (ESD) when handling the drive and circuit boards. Failure to comply may result in ESD damage to the drive circuitry.

The following procedure explains how to replace a drive.

This section provides instructions for drive replacement only.

To install option boards or other types of options, refer to the specific manuals for those options.

**NOTICE:** When transferring a braking transistor, braking resistor, or other type of option from a damaged drive to a new replacement drive, make sure it is working properly before reconnecting it to the new drive. Replace broken options to prevent immediate breakdown of the replacement drive.

1. Remove the terminal cover.

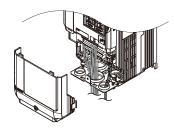



Figure 7.68 Remove the Terminal Cover

2. Loosen the screws holding the terminal board in place. Remove the screw securing the bottom cover and remove the bottom cover from the drive.

Note: IP00/Open Type enclosure drives do not have a bottom cover.

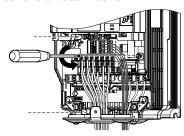



Figure 7.69 Unscrew the Terminal Board

**3.** Slide the terminal board as illustrated by the arrows in *Figure 7.70* to remove it from the drive along with the bottom cover.

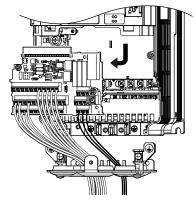



Figure 7.70 Remove the Terminal Board

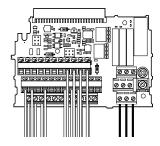



Figure 7.71 Disconnected Removable Terminal Board

- **4.** Disconnect all option cards and options, making sure they are intact before reusing.
- **5.** Replace the drive and wire the main circuit.

#### ■ Installing the Drive

1. After wiring the main circuit, connect the terminal block to the drive as shown in *Figure 7.72*. Use the installation screw (M3: 0.49 - 0.73 N·m) to fasten the terminal block into place.

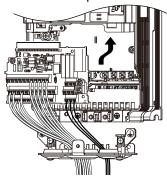



Figure 7.72 Install the Terminal Board

- 2. Reconnect options for the new drive the same way the options were connected in the old drive. Connect option boards to the same option ports in the new drive that were used in the old drive.
- **3.** Replace the terminal cover.
- **4.** After powering on the drive, all parameter settings are transferred from the terminal board to the drive memory. If an oPE04 error occurs, load the parameter settings saved on the terminal board to the new drive by setting parameter A1-03 to 5550. Reset the Maintenance Monitor function timers by setting parameters o4-01 through o4-12 to 0, and parameter o4-13 to 1.

Note:

- 1. When replacing a previous generation product with U1000, do not use the previous generation terminal board.
- 2. Set the correct value in o2-04. Refer to Defaults by Drive Model and Duty Rating ND/HD on page 603 for details.
- 3. Contact Yaskawa or a Yaskawa representative for instructions on replacing the terminal board. Improperly replacing the terminal board will result in drive malfunction.

# **Peripheral Devices & Options**

This chapter explains the installation of peripheral devices and options available for the drive.

| 8.1 | SECTION SAFETY                       | 468 |
|-----|--------------------------------------|-----|
| 8.2 | DRIVE OPTIONS AND PERIPHERAL DEVICES | 470 |
| 8.3 | CONNECTING PERIPHERAL DEVICES        | 472 |
| 8.4 | OPTION INSTALLATION                  | 474 |
| 8.5 | INSTALLING PERIPHERAL DEVICES        | 484 |

# 8.1 Section Safety

## **⚠** DANGER

#### **Electrical Shock Hazard**

#### Before servicing, disconnect all power to the equipment.

The capacitor for the internal power supply remains charged even after the power supply is turned off. The charge indicator LED will extinguish when the control power supply voltage is below 50 Vdc. To prevent electric shock, wait for at least the time specified on the warning label, once all indicators are OFF, measure for unsafe voltages to confirm the drive is safe prior to servicing.

Failure to comply will result in death or serious injury.

# **A** WARNING

#### **Electrical Shock Hazard**

#### Do not operate equipment with covers removed.

Failure to comply could result in death or serious injury.

The diagrams in this section may show drives without covers or safety shields to show details. Be sure to reinstall covers or shields before operating the drives and run the drives according to the instructions described in this manual.

#### Do not remove covers or touch circuit boards while the power is on.

Failure to comply could result in death or serious injury.

#### Do not allow unqualified personnel to perform work on the drive.

Failure to comply could result in death or serious injury.

Installation, maintenance, inspection, and service must be performed only by authorized personnel familiar installation, adjustment, and maintenance of drives.

#### Do not perform work on the drive while wearing loose clothing, jewelry or without eye protection.

Failure to comply could result in death or serious injury.

Remove all metal objects such as watches and rings, secure loose clothing and wear eye protection before beginning work on the drive.

#### Always ground the motor-side grounding terminal.

Improper equipment grounding could result in death or serious injury by contacting the motor case.

#### Do not remove covers or touch circuit boards while the power is on.

Failure to comply could result in death or serious injury.

#### Do not use damaged wires, place excessive stress on wiring, or damage the wire insulation.

Failure to comply could result in death or serious injury.

#### Fire Hazard

#### Tighten all terminal screws to the specified tightening torque.

Loose electrical connections could result in death or serious injury by fire due to overheating of electrical connections.

#### **NOTICE**

Observe proper electrostatic discharge procedures (ESD) when handling the drive and circuit boards.

Failure to comply may result in ESD damage to the drive circuitry.

Never connect or disconnect the motor from the drive while the drive is outputting voltage.

Improper equipment sequencing could result in damage to the drive.

If a fuse is blown or a Ground Fault Circuit Interrupter (GFCI) is tripped, check the wiring and the selection of the peripheral devices.

Contact Yaskawa or a yaskawa representative if the cause cannot be identified after checking the above.

Do not restart the drive or immediately operate the peripheral devices if a fuse is blown or a GFCI is tripped.

Check the wiring and the selection of peripheral devices to identify the cause. Contact Yaskawa or a Yaskawa representative before restarting the drive or the peripheral devices if the cause cannot be identified.

#### Do not operate damaged equipment.

Failure to comply could result in further damage to the equipment.

Do not connect or operate any equipment with visible damage or missing parts.

#### Do not use unshielded wire for control wiring.

Failure to comply may cause electrical interference resulting in poor system performance. Use shielded twisted-pair wires and ground the shield to the ground terminal of the drive.

#### Properly connect all pins and connectors.

Failure to comply may prevent proper operation and possibly damage equipment.

Check all the wiring to ensure that all connections are correct after installing the option and connecting any other devices.

Failure to comply could result in damage to the option.

## 8.2 Drive Options and Peripheral Devices

*Table 8.1* lists the names of the various peripheral devices, accessories, and options available for Yaskawa drives. Contact Yaskawa or a Yaskawa representative to order these peripheral devices.

- Peripheral Device Selection: Refer to the Yaskawa catalog for selection and part numbers.
- Peripheral Device Installation: Refer to the corresponding option manual for installation instructions.

Table 8.1 Available Peripheral Devices

| Option                                              | Model Number | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                     | <u>'</u>     | Input/Output Option Cards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Analog Input                                        | AI-A3        | <ul> <li>Allows high precision, high resolution analog reference input</li> <li>Input channels: 3</li> <li>Voltage input: -10 to 10 Vdc (20 kΩ), 13-bit signed</li> <li>Current input: 4 to 20 mA or 0 to 20 mA (250 Ω), 12-bit</li> </ul>                                                                                                                                                                                                                                                                                                                 |
| Analog Monitor                                      | AO-A3        | <ul> <li>Provides extra multi-function analog output terminals</li> <li>Output channels: 2</li> <li>Output voltage: -10 to 10 V, 11-bit (signed)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                |
| Digital Input                                       | DI-A3        | <ul> <li>Sets the frequency reference by digital inputs</li> <li>Input channels: 18 (including SET signal and SIGN signal)</li> <li>Input signal type: BCD 16-bit (4-digit), 12-bit (3-digit), 8-bit (2-digit)</li> <li>Input signal: 24 Vdc, 8 mA</li> </ul>                                                                                                                                                                                                                                                                                              |
| Digital Output DO-A3 • Photocoupler re              |              | <ul> <li>Provides extra insulated multi-function digital outputs</li> <li>Photocoupler relays: 6 (48 V, up to 50 mA)</li> <li>Contact relays: 2 (250 Vac/up to 1 A, 30 Vdc/up to 1 A)</li> </ul>                                                                                                                                                                                                                                                                                                                                                           |
|                                                     | l            | Motor Speed Feedback Option Cards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Motor PG Feedback Line<br>Driver Interface          | PG-X3        | This option can be used with Closed Loop Vector Control, Closed Loop V/f Control, and Closed Loop Vector Control for PM. Motor rotation speed is detected from the pulse generator as feedback, which enables control of the output frequency of drives to ensure constant motor speeds.  • RS-422 output encoder support  • A, B, and Z pulse (differential pulse) input  • Maximum input frequency: 300 kHz  • Pulse monitor: Equivalent to RS-422 level  • Encoder voltage output: 5 V or 12V, maximum current of 200 mA                                |
| Motor PG Feedback Open<br>Collector Interface PG-B3 |              | This option can be used with Closed Loop vector Control and V/f Control with PG. Motor rotation speed is detected from the pulse generator as feedback, which enables control of the output frequency of drives to ensure constant motor speeds.  • Complementary output PG support  • A, B, and Z pulse (Three-phase pulse) input  • Maximum input frequency: 50 kHz  • Pulse monitor output: Open-collector (24 V, maximum of 30 mA)  • Encoder power supply: 12 V, maximum current of 200 mA  Note: Closed Loop Vector Control for PM is not supported. |

| Option                                      | Model Number                                   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EnDat Encoder                               | PG-F3                                          | This option can be used with CLV/PM. Motor rotation speed is detected from the pulse generator as feedback, which enables control of the output frequency of drives to ensure constant motor speeds.  • Supports EnDat 2.1/01, EnDat 2.2/01, EnDat 2.2/22 models from HEIDENHAIN  • Supports HIPERFACE models from SICK STEGMANN  • Maximum input frequency: 20 kHz (use for low-speed applications such as gearless motors)  Note: EnDat 2.2/22 has no restrictions on input frequencies.  • Cable length: Maximum of 20 m for encoders and maximum of 30 m for pulse monitors  • Pulse monitor: Equivalent to RS-422 level  Note: EnDat 2.2/22 cannot be used.  • Encoder voltage output: 5 V at a maximum current of 330 mA, or 8 V at a maximum current of 150 mA  Note: Use the following types of encoder cables.  • EnDat 2.1/01 and EnDat 2.2/01: HEIDENHAIN 17-pin cables  • EnDat 2.2/22: HEIDENHAIN 8-pin cables  • HIPERFACE: SICK STEGMANN 8-pin cables |
| Motor Feedback Resolver<br>Interface        | PG-RT3                                         | <ul> <li>For motor speed feedback by connecting a resolver that meets the specifications set by Yaskawa.</li> <li>Input voltage: 10 Vac rms 10 kHz</li> <li>Transformation ratio: 0.5 ± 5%</li> <li>Maximum input current: 100 mA rms</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                             |                                                | Communication Option Cards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| EtherNet/IP                                 | SI-EN3                                         | Connects to an EtherNet/IP network.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Modbus TCP/IP                               | SI-EM3                                         | Connects to a Modbus TCP/IP network.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PROFINET                                    | SI-EP3                                         | Connects to a PROFINET network.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| LonWorks                                    | SI-W3                                          | Connects to a LonWorks network.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| DeviceNet                                   | SI-N3                                          | Connects to a DeviceNet network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| PROFIBUS-DP                                 | SI-P3                                          | Connects to a PROFIBUS-DP network.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MECHATROLINK-II                             | SI-T3                                          | Connects to a MECHATROLINK-II network.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MECHATROLINK-III                            | SI-ET3                                         | Connects to a MECHATROLINK-III network.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| BACnet                                      | SI-B3                                          | Connects to a BACnet network.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| EtherCAT                                    | SI-ES3                                         | Connects to an EtherCAT network.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CC-Link <1>                                 | SI-C3                                          | Connects to a CC-Link network.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CANopen <1>                                 | SI-S3                                          | Connects to a CANopen network.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                             |                                                | Interface Options                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| LED Operator                                | JVOP-182                                       | 5-digit LED operator with Copy function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Remote Control Extension<br>Cable           | UWR000051, 1 m cable<br>UWR000052, 2 m cable   | RJ-45, 8-pin straight through, UTP CAT5e, extension cable (1 m or 2 m) to connect the digital operator for remote operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| USB Copy Unit                               | JVOP-181                                       | <ul> <li>Allows the user to copy and verify parameter settings between drives.</li> <li>Functions as an adapter to connect the drive to a USB port on a PC.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                             |                                                | Mechanical Options                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Attachment for External<br>Heatsink         | EZZ022706A-F                                   | Installation kit for mounting the drive with the heatsink outside of the panel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| UL Type 1 Kit                               | EZZ022745A-G                                   | Parts to make the drive conform to UL Type 1 enclosure requirements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| UL Type 1, 4, 12 Blank<br>Keypad Kit        | UUX0000526                                     | Provides digital operator functionality on an enclosure designed for UL Type 1, 3R, 4, 4X, 12, or IP□6 environment. This keypad has a blank label on the front.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| UL Type 1, 4, 12 Yaskawa<br>Logo Keypad Kit | UUX0000527                                     | Provides digital operator functionality on an enclosure designed for UL Type 1, 3R, 4, 4X, 12, or IP□6 environment. This keypad has a Yaksawa brand label on the front.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                             | I                                              | PC Software Tools                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DriveWizard Industrial                      | Contact Yaskawa or a<br>Yaskawa representative | PC tool for drive setup and parameter management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DriveWorksEZ                                | Contact Yaskawa or a<br>Yaskawa representative | PC tool for enhanced programming of the drive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

<sup>&</sup>lt;1> Limited support. Contact Yaskawa or a Yaskawa representative for assistance.

## 8.3 Connecting Peripheral Devices

*Figure 8.1* and *Figure 8.2* illustrate how to configure the drive and motor to operate with various peripheral devices. Refer to the specific manual for the devices shown below for installation instructions.

#### ◆ Drive Models 2□0028 to 2□0248 and 4□0011 to 4□0590

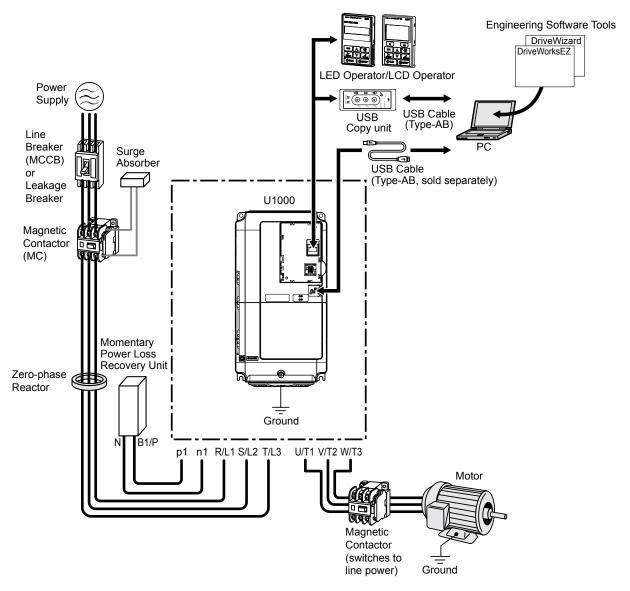



Figure 8.1 Connecting Peripheral Devices to Drive Model 2□0028

**NOTICE**: Damage to Equipment. Do not connect an Ethernet cable to the RJ-45 keypad port of the drive. Damage to your PC port may occur when directly connecting a cable from the drive RJ-45 port to your PC port using an Ethernet cable. Contact Yaskawa for specific methods of connecting to your drive using your PC.

## **♦** Drive Models 4□0720 to 4□0930

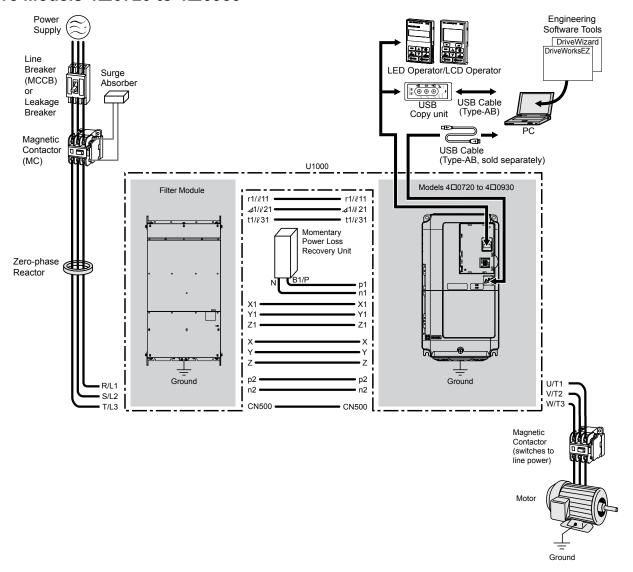



Figure 8.2 Connecting Peripheral Devices to Drive Model 4□0720

## 8.4 Option Installation

This section provides instructions on installing the options in *Table 8.2*.

#### Prior to Installing the Option

Prior to installing the option, wire the drive, make necessary connections to the drive terminals, and verify that the drive functions normally without the option installed.

**Table 8.2** below lists the number of options that can be connected to the drive and the drive ports for connecting those options.

| Table | 8.2 | Option | Instal | lation |
|-------|-----|--------|--------|--------|
|-------|-----|--------|--------|--------|

| Option                                                                                                   | Port/Connector    | Number of Options Possible |
|----------------------------------------------------------------------------------------------------------|-------------------|----------------------------|
| PG-B3, PG-X3                                                                                             | CN5-C (CN5-B) <1> | 2<1>                       |
| PG-F3 <2>, PG-RT3 <2>                                                                                    | CN5-C             | 1                          |
| AO-A3, DO-A3                                                                                             | CN5-A, B, C       | 1                          |
| SI-B3, SI-C3, SI-EN3, SI-EM3, SI-EP3, SI-ES3,<br>SI-ET3, SI-N3, SI-P3, SI-S3, SI-T3, SI-W3, AI-A3, DI-A3 | CN5-A             | 1                          |

<sup>&</sup>lt;1> When connecting two PG option cards, use both CN5-B and CN5-C. When connecting only one PG option card, use the CN5-C connector.

Figure 8.3 shows an exploded view of the drive with the option and related components for reference.

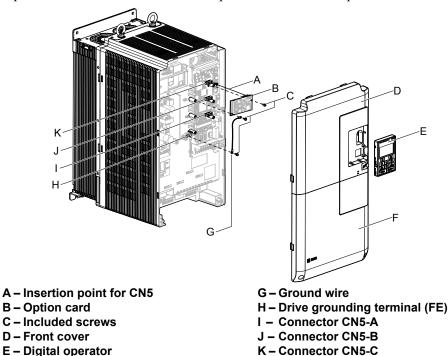



Figure 8.3 Drive Components with Option

## PG Option Installation Example

F - Terminal cover

Remove the front covers of the drive before installing the option. PG options can inserted into the CN5-B or CN5-C connectors located on the drive control board.

 Shut off power to the drive, wait the appropriate amount of time for voltage to dissipate, then remove the digital operator (E) and front covers (D, F). Front cover removal varies by model.

**DANGER!** Electrical Shock Hazard. Do not connect or disconnect wiring while the power is on. Failure to comply will result in death or serious injury. Before installing the option, disconnect all power to the drive. The capacitor for the control power supply remains charged even after the power supply is turned off. The charge indicator LED will extinguish when the control circuit DC voltage is below 50 Vdc. To prevent electric shock, wait at least five minutes after all indicators are off and measure the control power supply voltage level to confirm safe level.

<sup>&</sup>lt;2> Not available for the application with Motor 2 Selection.

**NOTICE:** Damage to Equipment. Observe proper electrostatic discharge procedures (ESD) when handling the option, drive, and circuit boards. Failure to comply may result in ESD damage to circuitry.

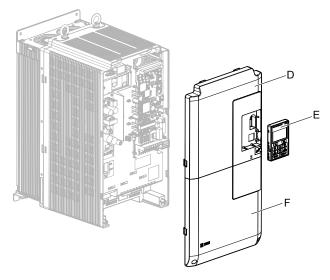



Figure 8.4 Remove the Front Covers and Digital Operator

2. Insert the option (B) into the CN5-B or CN5-C connector (J, K) located on the drive and fasten it using one of the included screws (C). When connecting only one PG option, use the CN5-C connector. Refer to *Table 8.2* for more information.

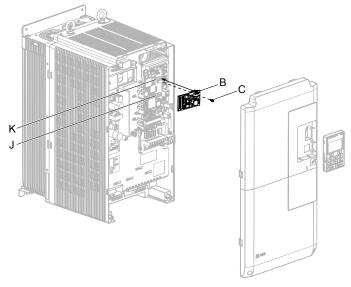



Figure 8.5 Insert the Option

**3.** Connect the ground wire (G) to the ground terminal (H) using one of the remaining provided screws (C). Connect the other end of the ground wire (G) to the remaining ground terminal and installation hole on the option (B) using the last remaining provided screw (C) and tighten both screws to 0.5 to 0.6 N m or (4.4 to 5.3 in lbs).

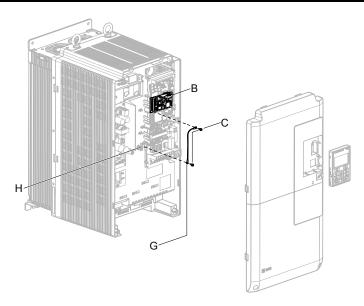



Figure 8.6 Connect the Ground Wire

Note:

- The option package includes two ground wires. Use the longer wire when plugging the option into connector CN5-C on the
  drive side. Use the shorter wire when plugging the option into connector CN5-B. Refer to the Option Installation manual for
  more information.
- 2. There are two screw holes on the drive for use as ground terminals (H). When connecting three options, two ground wires will need to share the same drive ground terminal.
- 4. Prepare and connect the wire ends as shown in Figure 8.7 and Figure 8.8. Refer to Wire Gauges and Tightening Torques of PG-X3 Option on page 482 or Refer to Wire Gauges and Tightening Torques of PG-X3 Option on page 482 to confirm that the proper tightening torque is applied to each terminal. Take particular precaution to ensure that each wire is properly connected and that wire insulation is not accidentally pinched into electrical terminals.

**WARNING!** Fire Hazard. Tighten all terminal screws according to the specified tightening torque. Loose electrical connections could result in death or serious injury by fire due to overheating electrical connections. Tightening screws beyond the specified tightening torque may result in erroneous operation, damage to the terminal block, or cause a fire.

**NOTICE:** Heat shrink tubing or electrical tape may be required to ensure that cable shielding does not contact other wiring. Insufficient insulation may cause a short circuit and damage the option or drive.

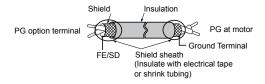



Figure 8.7 Preparing Ends of Shielded Cable

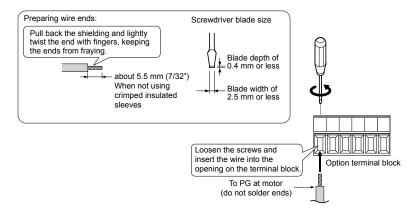



Figure 8.8 Preparing and Connecting Cable Wiring

**5.** Wire the motor PG encoder to the terminal block on the option. Refer to *Figure 8.9* and *Figure 8.13* for wiring instructions.

Refer to PG-B3 Option Terminal Functions on page 478 for a detailed description of the option terminal functions.

#### **PG-B3 Parameter Settings**

- Connecting a Single-Pulse Encoder in V/f with PG Control Mode: Connect the pulse output from the PG to the option and set F1-21 to 0.
- Connecting a Two-Pulse Encoder: Connect the A and B pulse outputs on the PG to the option and set F1-21 to 1. When using a two-pulse encoder in CLV control mode, connect pulse outputs A and B from the encoder to the corresponding terminals on the option.
- Connecting a Two-Pulse Encoder with Z Marker Pulse: Connect the A, B, and Z pulse outputs to the corresponding terminals on the option.

| Control Method               | V/f with PG |           | Closed Loop Vector  |                     |
|------------------------------|-------------|-----------|---------------------|---------------------|
| No. of Encoders              | 1 (CN5-C)   | 2 (CN5-B) | 1 (CN5-C)           | 2 (CN5-B)           |
| Single Pulse (A)             | F1-21 = 0   | F1-37 = 0 | N/A                 | N/A                 |
| Two Pulse (AB<br>Quadrature) | F1-21 = 1   | F1-37 = 1 | No setting required | No setting required |
| Two Pulse with Marker (ABZ)  | F1-21 = 1   | F1-37 = 1 | No setting required | No setting required |

#### **PG-B3 Connection Diagram**

Refer to PG-B3 Option Terminal Functions on page 478 for a detailed description of the option board terminal functions.

Refer to Wire Gauges and Tightening Torques of PG-B3 Option on page 479 for information on making cables.

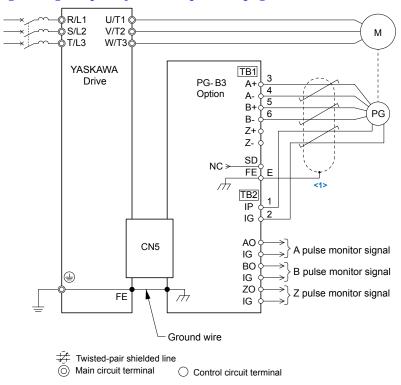



Figure 8.9 PG-B3 Option and Encoder Connection Diagram

<1> Ground the shield on the PG side and the drive side. If electrical signal interference problems arise in the PG signal, remove the shield ground from one end of the signal line or remove the shield ground connection on both ends.

**Note:** The PG-B3 option reads a maximum input frequency of 50 kHz from the PG encoder. Select a PG encoder with an output pulse frequency of maximum 50 kHz when operating at maximum speed.

Take the following steps to prevent erroneous operation caused by noise interference:

- Use shielded wire for the PG encoder signal lines.
- Limit the length of all motor output power cables to less than 100 m. Limit the length of open-collector output lines to less than 50 m.

• Use separate conduit or cable tray dividers to separate option control wiring, main circuit input power wiring, and motor output power cables.

#### **PG-B3 Interface Circuit**

Complementary Output

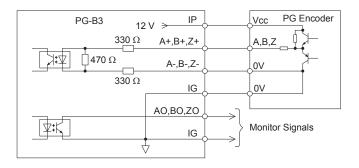



Figure 8.10 Complementary Outputs for the Interface Circuit

#### **Open-Collector Outputs**

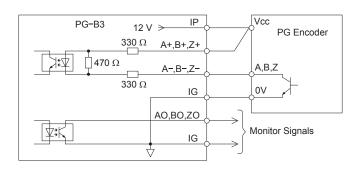



Figure 8.11 Open-Collector Outputs for the Interface Circuit

#### **PG-B3 Terminal Functions**

Table 8.3 PG-B3 Option Terminal Functions

| Terminal Block                                                                                       |     | Terminal | Function               | Description                                                                    |
|------------------------------------------------------------------------------------------------------|-----|----------|------------------------|--------------------------------------------------------------------------------|
|                                                                                                      |     | A+       | A+ pulse signal input  | D. I                                                                           |
|                                                                                                      |     | A-       | A- pulse signal input  | Pulse signal inputs from the PG     Signal inputs from complementary and open- |
| TB1                                                                                                  |     | B+       | B+ pulse signal input  | collector outputs                                                              |
|                                                                                                      | TB1 | B–       | B- pulse signal input  | Signal level                                                                   |
|                                                                                                      | 161 | Z+       | Z+ pulse signal input  | H level: 8 to 12 V<br>L level: 2.0 V or less                                   |
|                                                                                                      |     | Z–       | Z– pulse signal input  | E level. 2.0 v of less                                                         |
|                                                                                                      |     | SD       | NC pin (open)          | For use when cables shields should not be grounded                             |
|                                                                                                      |     | FE       | Ground                 | Used for grounding shielded lines                                              |
|                                                                                                      | TB2 | IP       | PG power supply        | • Output voltage: $12.0 \text{ V} \pm 5\%$                                     |
|                                                                                                      |     | IG       | PG power supply common | • Max output current: 200 mA <1>                                               |
| ( <u>)</u> <u> </u> |     | AO       | A pulse monitor signal | • Outputs the monitor signal for the A, B, and Z                               |
|                                                                                                      |     | ВО       | B pulse monitor signal | pulses from the PG speed control card                                          |
|                                                                                                      |     | ZO       | Z pulse monitor signal | For open collector outputs from the option     Max voltage: 24 V               |
|                                                                                                      |     | IG       | Monitor signal common  | Max current: 30 mA                                                             |

<sup>&</sup>lt;1> A separate UL Listed class 2 power supply is necessary when the PG requires more than 200 mA to operate.

#### **PG-B3 Wire Gauges and Tightening Torques**

Wire gauge and torque specifications are listed in *Table 8.4*. For simpler and more reliable wiring, use crimp ferrules on the wire ends. Refer to the option manuals for the wire size and torque specifications of other options.

Table 8.4 Wire Gauges and Tightening Torques of PG-B3 Option

| Torminal                              | Terminal Screw Size Tightening Torque N·n |                                | Bare                             | Cable                                                          | Crimp T                          | erminals                          |                             |
|---------------------------------------|-------------------------------------------|--------------------------------|----------------------------------|----------------------------------------------------------------|----------------------------------|-----------------------------------|-----------------------------|
|                                       |                                           |                                | Recomm.<br>Gauge mm <sup>2</sup> | Applicable Gauges mm <sup>2</sup>                              | Recomm.<br>Gauge mm <sup>2</sup> | Applicable Gauges mm <sup>2</sup> | Wire Type                   |
| A+, A-, B+, B-,<br>Z+, Z-, FE, IP, IG |                                           | 0.00                           |                                  | Stranded wire:<br>0.25 to 1.0                                  |                                  | 0.050.5                           | Shielded twisted pair, etc. |
| AO, IG, BO, IG,<br>ZO, IG             | M2                                        | 0.22 to 0.25<br>(1.95 to 2.21) | 0.75 (18 AWG)                    | (24 to 17 AWG)<br>Solid wire:<br>0.25 to 1.5<br>(24 to 16 AWG) | 0.5 (20 AWG)                     | 0.25 to 0.5<br>(24 to 20 AWG)     | Shielded cable, etc.        |

#### **PG-B3 Crimp Terminals**

Yaskawa recommends using CRIMPFOX 6 by Phoenix Contact or equivalent crimp terminals with the specifications listed in *Table 8.5* for wiring to ensure proper connections.

**Note:** Properly trim wire ends so loose wire ends do not extend from the crimp terminals.

#### **Table 8.5 Crimp Terminal Sizes**

|            | Wire Gauge<br>mm <sup>2</sup> | Phoenix Contact<br>Model | L mm (in)    | d1 mm (in) | d2 mm (in) |
|------------|-------------------------------|--------------------------|--------------|------------|------------|
| <u> </u>   | 0.25 (24 AWG)                 | AI 0.25-6YE              | 10.5 (13/32) | 0.8 (1/32) | 2 (5/64)   |
| d1 6 mm d2 | 0.34 (22 AWG)                 | AI 0.34-6TQ              | 10.5 (13/32) | 0.8 (1/32) | 2 (5/64)   |
|            | 0.5 (20 AWG)                  | AI 0.5-6WH               | 14 (9/16)    | 1.1 (3/64) | 2.5 (3/32) |

#### PG Encoder Cables for PG-B3 Option

Yaskawa recommends using a LMA- $\square\square$ B-S185Y (complementary output) for cables running between the option and the PG as shown in *Figure 8.12*.

Refer to PG-B3 Option Terminal Functions on page 478 for instructions on wiring the terminal block.

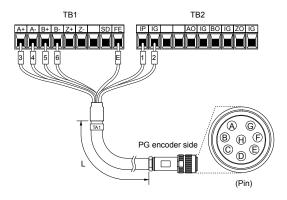



Figure 8.12 Wiring the PG Encoder Cable

Table 8.6 Connecting the PG Encoder Cable Specification

| Ontion Torminal | PG Encoder Cable |              |     |  |  |
|-----------------|------------------|--------------|-----|--|--|
| Option Terminal | Wire             | Color        | Pin |  |  |
| IP              | 1                | Blue         | C   |  |  |
| IG              | 2                | White        | Н   |  |  |
| A+              | 3                | Yellow       | В   |  |  |
| A-              | 4                | White        | G   |  |  |
| B+              | 5                | Green        | A   |  |  |
| В-              | 6                | White        | F   |  |  |
| FE              | Е                | N/A (shield) | D   |  |  |

Table 8.7 PG Encoder Cable Types

| Length        | Туре  | Length          | Туре  |
|---------------|-------|-----------------|-------|
| 10 m (32 ft.) | W5010 | 50 m (164 ft.)  | W5050 |
| 30 m (98 ft.) | W5030 | 100 m (328 ft.) | W5100 |

#### **PG-X3 Parameter Settings**

- Connecting a Single-Pulse Encoder in V/f with PG Control Mode: Connect the pulse output from the PG to the option and set F1-21 to 0.
- Connecting a Two-Pulse Encoder: Connect the A and B pulse outputs on the PG to the option and set F1-21 to 1. When using a two-pulse encoder in CLV control mode, connect pulse outputs A and B from the encoder to the corresponding terminals on the option.
- Connecting a Two-Pulse Encoder with Z Marker Pulse: Connect the A, B, and Z pulse outputs to the corresponding terminals on the option.

| Control Method              | V/f with PG |           | Closed Loop Vector  |                     |
|-----------------------------|-------------|-----------|---------------------|---------------------|
| No. of Encoders             | 1 (CN5-C)   | 2 (CN5-B) | 1 (CN5-C)           | 2 (CN5-B)           |
| Single Pulse (A)            | F1-21 = 0   | F1-37 = 0 | N/A                 | N/A                 |
| Two Pulse (AB Quadrature)   | F1-21 = 1   | F1-37 = 1 | No setting required | No setting required |
| Two Pulse with Marker (ABZ) | F1-21 = 1   | F1-37 = 1 | No setting required | No setting required |

#### **PG-X3 Connection Diagram**

Refer to PG-X3 Option Terminal Functions on page 481 for a detailed description of the option board terminal functions.

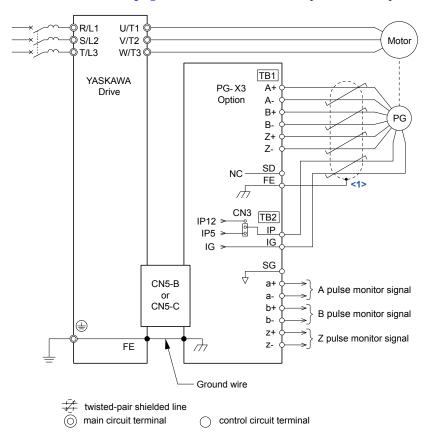



Figure 8.13 PG-X3 Option and Encoder Connection Diagram

<1> Ground the shield on the PG side and the drive side. If electrical signal interference problems arise in the PG signal, remove the shield ground from one end of the signal line or remove the shield ground connection on both ends.

**Note:** The PG-X3 option reads a maximum input frequency of 300 kHz from the PG encoder. Select a PG encoder with an output pulse frequency of maximum 300 kHz when operating at maximum speed.

Take the following steps to prevent erroneous operation caused by noise interference:

- Use shielded wire for the PG encoder signal lines.
- Use separate conduit or cable tray dividers to separate option control wiring, main circuit input power wiring, and motor output power cables.

#### **PG-X3 Interface Circuit**

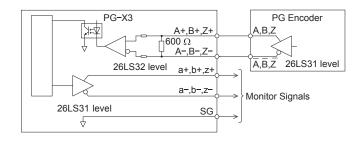
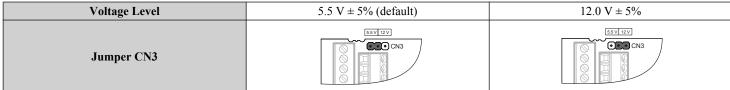



Figure 8.14 PG-X3 Interface Circuit

#### **PG-X3 Terminal Functions**

**Table 8.8 PG-X3 Option Terminal Functions** 

| Terminal Block |     | Terminal | Function                       | Description                                                             |
|----------------|-----|----------|--------------------------------|-------------------------------------------------------------------------|
|                |     | A+       | A pulse signal input           |                                                                         |
|                |     | A-       | A inverse pulse signal input   |                                                                         |
|                |     | B+       | B pulse signal input           | • Inputs for the A channel, B channel, and Z pulses from the PG encoder |
|                |     | B–       | B inverse pulse signal input   | • Signal level matches RS-422                                           |
| TB1            | TB1 | Z+       | Z pulse signal input           |                                                                         |
|                |     | Z–       | Z inverse pulse signal input   |                                                                         |
|                |     | SD       | NC pin (open)                  | Open connection port for use when cable shields should not be grounded  |
|                |     | FE       | Ground                         | Used as the shield ground termination point.                            |
|                |     | IP       | PG encoder power supply        | • Output voltage: 12.0 V $\pm$ 5% or 5.5 V $\pm$                        |
| THE SOLE SOLE  |     | IG       | PG encoder power supply common | • Max. output current: 200 mA <1>                                       |
| 728            |     | SG       | Monitor signal common          |                                                                         |
|                |     | a+       | A pulse monitor signal         |                                                                         |
| TB2            | TB2 | a–       | A pulse inverse monitor signal | • Output signal for monitoring A channel, B                             |
|                |     | b+       | B pulse monitor signal         | channel, and Z pulses from the PG encoder                               |
|                |     | b–       | B pulse inverse monitor signal | Signal level matches RS-422                                             |
|                |     | z+       | Z pulse monitor signal         |                                                                         |
|                |     | z–       | Z pulse inverse monitor signal |                                                                         |


<sup>&</sup>lt;1> A separate UL Listed class 2 power supply is necessary when the PG requires more than 200 mA to operate.

#### **PG Encoder Power Supply Voltage**

For the PG-X3 option, set the voltage for the PG encoder power supply using jumper CN3 located on the option. Position the jumper as shown in *Table 8.9* to select the voltage level.

**NOTICE:** The positioning of jumper CN3 selects the PG encoder power supply voltage (5.5 V or 12 V). Select the voltage level for the PG encoder connected to the option and motor. If the wrong voltage is selected, the PG encoder may not operate properly or may become damaged as a result.

Table 8.9 Setting the PG Encoder Power Supply Voltage (IP) with Jumper CN3



#### **PG-X3 Wire Gauges and Tightening Torques**

Wire gauge and torque specifications are listed in *Table 8.10*. For simpler and more reliable wiring, use crimp ferrules on the wire ends. Refer to the option manuals for the wire size and torque specifications of other options.

Table 8.10 Wire Gauges and Tightening Torques of PG-X3 Option

| Tarminal                                     | Terminal Tight |                       | Bare                 | Cable                                           | Crimp T                          | erminals                             |                             |
|----------------------------------------------|----------------|-----------------------|----------------------|-------------------------------------------------|----------------------------------|--------------------------------------|-----------------------------|
| Signal                                       | Screw Size     | Torque N·m<br>(in·lb) | Recomm.<br>Gauge mm² | Applicable<br>Gauges mm <sup>2</sup>            | Recomm.<br>Gauge mm <sup>2</sup> | Applicable<br>Gauges mm <sup>2</sup> | Wire Type                   |
| A+, A-, B+, B-,<br>Z+, Z-, SD, FE,<br>IP, IG | M2             | 0.22 to 0.25          | 0.75 (18 AWG)        | Stranded wire:<br>0.25 to 1.0<br>(24 to 17 AWG) | 0.5 (20 AWG)                     | 0.25 to 0.5                          | Shielded twisted pair, etc. |
| a+, a-, b+, b-, z+,<br>z-, SG                |                | (1.95 to 2.21)        | 0.73 (10 11 (10)     | Solid wire:<br>0.25 to 1.5<br>(24 to 16 AWG)    | 0.5 (20 11 11 0)                 | (24 to 20 AWG)                       | Shielded cable, etc.        |

#### **PG-X3 Crimp Terminals**

Yaskawa recommends using CRIMPFOX 6 by Phoenix Contact or equivalent crimp terminals with the specifications listed in *Table 8.11* for wiring to ensure proper connections.

**Note:** Properly trim wire ends so loose wire ends do not extend from the crimp terminals.

**Table 8.11 Crimp Terminal Sizes** 

|            | Wire Gauge<br>mm <sup>2</sup> | Phoenix Contact<br>Model | L mm (in)    | d1 mm (in) | d2 mm (in) |
|------------|-------------------------------|--------------------------|--------------|------------|------------|
| 1          | 0.25 (24 AWG)                 | AI 0.25-6YE              | 10.5 (13/32) | 0.8 (1/32) | 2 (5/64)   |
| d1 6 mm d2 | 0.34 (22 AWG)                 | AI 0.34-6TQ              | 10.5 (13/32) | 0.8 (1/32) | 2 (5/64)   |
| L   L      | 0.5 (20 AWG)                  | AI 0.5-6WH               | 14 (9/16)    | 1.1 (3/64) | 2.5 (3/32) |

#### Replacing the Drive Covers and Digital Operator and Checking for Proper Motor Rotation

1. Route the communication wiring inside the enclosure as shown in *Figure 8.15*.

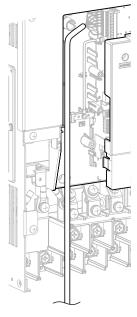



Figure 8.15 Wire Routing Examples

**2.** Replace and secure the front covers of the drive (D, F) and replace the digital operator (E).

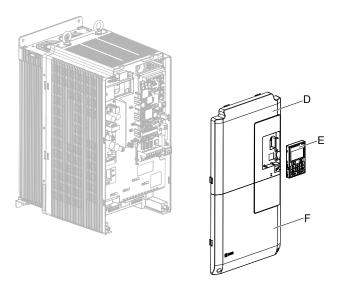



Figure 8.16 Replace the Front Covers and Digital Operator

**Note:** Take proper precautions when wiring the option so that the front covers will easily fit back onto the drive. Make sure no cables are pinched between the front covers and the drive when replacing the covers.

3. Set drive parameters for proper motor rotation. (*Refer to A1: Initialization on page 504* and *Refer to F1: PG Speed Control Card Settings* (*PG-B3, PG-X3, PG-RT3, PG-F3*) on page 535 for details on parameter settings) With a two-pulse or three-pulse PG encoder, the leading pulse determines the motor rotation direction. When a Yaskawa induction motor rotates forward (counter-clockwise when viewing rotation from motor load side), the PG signal will have a leading A pulse, followed by a B pulse displaced at 90 degrees.

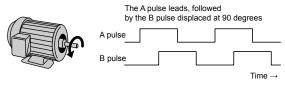



Figure 8.17 Displacement of A and B Pulses

After connecting the PG encoder outputs to the option, apply power to the drive and manually rotate the motor and check the rotation direction by viewing monitor U1-05 on the digital operator.

Reverse motor rotation is indicated by a negative value for U1-05; forward motor rotation is indicated by a positive value.

If monitor U1-05 indicates that the forward direction is opposite of what is intended, set F1-05 or F1-32 to 1 or reverse the two A pulse wires with the two B pulse wires on option terminal TB1 as shown in *Figure 8.18*.



Figure 8.18 A Channel and B Channel Wire Switching

Please note that when the drive is initialized using A1-03 =1110, 2220, 3330, the value for F1-05/F1-32 will reset to factory default and the parameter will need to be readjusted to switch the direction. When F1-05/F1-32 are saved as User Parameters (o2-03 = 1) and the User Parameter settings are initialized by setting A1-03 = 1110, the values for F1-05/F1-32 will not be reset.

## 8.5 Installing Peripheral Devices

This section describes the proper steps and precautions to take when installing or connecting various peripheral devices to the drive.

**NOTICE:** Use a class 2 power supply when connecting to the control terminals. Improper application of peripheral devices could result in drive performance degradation due to improper power supply. Refer to NEC Article 725 Class 1, Class 2, and Class 3 Remote-Control, Signaling, and Power Limited Circuits for requirements concerning class 2 power supplies.

### Installing a Molded Case Circuit Breaker (MCCB) or Ground Fault Circuit Interrupter (GFCI)

Install an MCCB or GFCI for line protection between the power supply and the main circuit power supply input terminals R/L1, S/L2, and T/L3. This protects the main circuit and devices wired to the main circuit while also providing overload protection.

Consider the following when selecting and installing an MCCB or GFCI:

- The capacity of the MCCB or GFCI should be 1.5 to 2 times the rated output current of the drive. Use an MCCB or GFCI to keep the drive from faulting out instead of using overheat protection (150% for one minute at the rated output current).
- If several drives are connected to one MCCB or GFCI that is shared with other equipment, use a sequence that shuts the power OFF when errors are output by using magnetic contactor (MC) as shown in *Figure 8.19*.

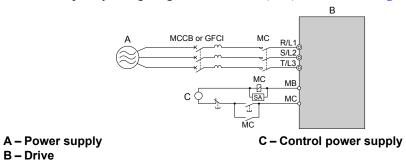



Figure 8.19 Power Supply Interrupt Wiring (Example)

**WARNING!** Electrical Shock Hazard. Disconnect the MCCB (or GFCI) and MC before wiring terminals. Failure to comply may result in serious injury or death.

#### ■ Application Precautions when Installing a GFCI

Drive outputs generate high-frequency leakage current as a result of high-speed switching. Install a GFCI on the input side of the drive to switch off potentially harmful leakage current.

Factors in determining leakage current:

- Size of the AC drive
- AC drive carrier frequency
- · Motor cable type and length
- EMI/RFI filter

If the GFCI trips spuriously, consider changing these items or use a GFCI with a higher trip level.

Note

Choose a GFCI designed specifically for an AC drive. The operation time should be at least 0.1 s with sensitivity amperage of at least 200 mA per drive. The output waveform of the drive and built-in EMC filter may cause an increase in leakage current. This may in turn cause the leakage breaker to malfunction. Increase the sensitivity amperage or lower the carrier frequency to correct the problem.

## Installing a Magnetic Contactor at the Power Supply Side

Install a magnetic contactor (MC) to the drive input for the purposes explained below.

#### Disconnecting the Power Supply

Shut off the drive with an MC when a fault occurs in any external equipment such as braking resistors.

**NOTICE:** Do not connect electromagnetic switches or MCs to the output motor circuits without proper sequencing. Improper sequencing of output motor circuits could result in damage to the drive.

**NOTICE:** Install an MC on the input side of the drive when the drive should not automatically restart after power loss. To get the full performance life out of the capacitor for the control power supply and circuit relays, refrain from switching the drive power supply off and on more than once every 30 minutes. Frequent use can damage the drive. Use the drive to stop and start the motor.

**NOTICE:** Use a magnetic contactor (MC) to ensure that power to the drive can be completely shut off when necessary. The MC should be wired so that it opens when a fault output terminal is triggered.

Note:

- 1. Install an MC to the drive input side to prevent the drive from restarting automatically when power is restored after momentary power loss.
- 2. Set up a delay that prevents the MC from opening prematurely to continue operating the drive through a momentary power loss.

#### Connecting a Surge Absorber

A surge absorber suppresses surge voltage generated from switching an inductive load near the drive. Inductive loads include magnetic contactors, relays, valves, solenoids, and brakes. Always use a surge absorber or diode when operating with an inductive load.

**WARNING!** Fire Hazard. Due to surge absorber short circuit on drive output terminals U/T1, V/T2, and W/T3, do not connect surge absorbers to the drive output power terminals. Failure to comply may result in serious injury or death by fire or flying debris.

## Reducing Noise

#### Preventing Induced Noise

Use shielded cables or zero phase reactors and lay the cables at least 30 cm away from the signal line to prevent induced noise.



Figure 8.20 Preventing Induced Noise

#### ■ Reducing Noise Using Internal EMC Filter Models

Models UU□E□□□□ and UU□W□□□□ contain a built-in EMC filter. These drives comply with EMC guidelines IEC/EN 61800-3 2nd Environment Category C2. Use switches on the drive to enable the EMC filters. *Refer to Enable the Internal EMC Filter on page 124* for details.

## Attachment for External Heatsink Mounting (IP00 Enclosure)

An external attachment can be used to project the heatsink outside of an enclosure to ensure that there is sufficient air circulation around the heatsink.

Contact Yaskawa or a Yaskawa representative for more information on this attachment.

#### Internal EMC Filter Model Installation

Internal EMC filter models (UUDEDDDD and UUDWDDDD) are tested according to IEC/EN 61800-3 2nd Environment Category C2 and comply with the EMC guidelines. *Refer to Enable the Internal EMC Filter on page 124* for details about EMC filter selection and installation.

## ♦ Installing a Motor Thermal Overload (oL) Relay on the Drive Output

Motor thermal overload relays protect the motor by disconnecting power lines to the motor due to a motor overload condition.

#### 8.5 Installing Peripheral Devices

Install a motor thermal overload relay between the drive and motor:

- When operating multiple motors on a single AC drive.
- When using a power line bypass to operate the motor directly from the power line.

It is not necessary to install a motor thermal overload relay when operating a single motor from a single AC drive. The AC drive has UL recognized electronic motor overload protection built into the drive software.

Note:

- 1. Disable the motor protection function (L1-01=0) when using an external motor thermal overload relay.
- 2. Create a sequence to produce an external fault (coast to a stop) when triggered.

#### ■ General Precautions when Using Thermal Overload Relays

Consider the following application precautions when using motor thermal overload relays on the output of AC drives to prevent nuisance trips or overheat of the motor at low speeds:

- Low speed motor operation
- Use of multiple motors on a single AC drive
- Motor cable length
- Nuisance tripping resulting from high AC drive carrier frequency

#### Low Speed Operation and Motor Thermal oL Relays

Generally, thermal relays are applied on general-purpose motors. When general-purpose motors are driven by AC drives, the motor current is approximately 5% to 10% greater than if driven by a commercial power supply. In addition, the cooling capacity of a motor with a shaft-driven fan decreases when operating at low speeds. Motor overheating may occur even when the load current is within the motor rated value. A thermal relay cannot effectively protect the motor due to the reduction of cooling at low speeds. For this reason, apply the UL recognized electronic thermal overload protection function built into the drive whenever possible.

**UL recognized electronic thermal overload function of the drive:** Speed-dependent heat characteristics are simulated using data from standard motors and force-ventilated motors. The motor is protected from overload using this function.

#### **Using a Single Drive to Operate Multiple Motors**

Set parameter L1-01 to 0 to disable thermal overload protection for the drive.

Note: The UL recognized electronic thermal overload function cannot be applied when operating multiple motors with a single drive.

#### **Long Motor Cables**

When a high carrier frequency and long motor cables are used, nuisance tripping of the thermal relay may occur due to increased leakage current. To avoid this, reduce the carrier frequency or increase the tripping level of the thermal overload relay.

#### Nuisance Tripping Due to a High AC Drive Carrier Frequency

Current waveforms generated by high carrier frequency drives tend to increase the temperature in overload relays. It may be necessary to increase the trip level setting when encountering nuisance triggering of the relay.

WARNING! Fire Hazard. Confirm an actual motor overload condition is not present prior to increasing the thermal oL trip setting. Check local electrical codes before making adjustments to motor thermal overload settings. Failure to comply could result in death or serious injury.

# Appendix: A

# **Specifications**

| <b>A.1</b> | HEAVY DUTY AND NORMAL DUTY RATINGS | 488 |
|------------|------------------------------------|-----|
| <b>A.2</b> | POWER RATINGS                      | 489 |
| <b>A.3</b> | DRIVE SPECIFICATIONS               | 494 |
| <b>A.4</b> | DRIVE WATT LOSS DATA               | 496 |
| <b>A.5</b> | DRIVE DERATING DATA                | 498 |

## A.1 Heavy Duty and Normal Duty Ratings

The capacity of the drive is based on two types of load characteristics: Heavy Duty (HD) and Normal Duty (ND). The user can select HD or ND torque depending on the application. Fans, pumps, and blowers should use ND, while other applications generally use HD.

Refer to *Table A.1* for the differences between HD and ND.

Table A.1 Selecting the Appropriate Load Rating

| Setting Parameter C6-01  | Rated Output Current                                                                       | Overload Tolerance                                 |  |  |  |
|--------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------|--|--|--|
| 0: Heavy Duty            | HD Rating varies by model <1>                                                              | 150% rated output current for 60 s                 |  |  |  |
| 1: Normal Duty (default) | ND Rating varies by model </td <td>120% rated output current for 60 s varies by model</td> | 120% rated output current for 60 s varies by model |  |  |  |

<sup>&</sup>lt;1> Refer to Power Ratings on page 489 for information on rating changes based on drive model.

Note: Differences between HD ratings and ND ratings for the drive include rated input and output current, overload capacity, and current limit.

## A.2 Power Ratings

#### ♦ Three-Phase 200 V Class Drive Models 2□0028 to 2□0081

Table A.2 Power Ratings (Three-Phase 200 V Class)

|                  | ltem                                           |            | Specification                                                                                                                                                                |                                |                   |              |           |  |
|------------------|------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------|--------------|-----------|--|
|                  | Drive Model                                    |            | 2□0028                                                                                                                                                                       | 2□0042                         | 2□0054            | 2□0068       | 2□0081    |  |
|                  | Maximum Applicable                             | HD Rating  | 5.5 (7.5)                                                                                                                                                                    | 7.5 (10)                       | 11 (15)           | 15 (20)      | 18.5 (25) |  |
| M                | otor Capacity kW (HP) <1>                      | ND Rating  | 7.5 (10)                                                                                                                                                                     | 11 (15)                        | 15 (20)           | 18.5 (25)    | 22 (30)   |  |
|                  | P.4.114 C4 (A) \$2                             | HD Rating  | 20                                                                                                                                                                           | 25                             | 38                | 49           | 62        |  |
|                  | Rated Input Current (A) <2>                    | ND Rating  | 25                                                                                                                                                                           | 38                             | 49                | 62           | 74        |  |
|                  | Datable of Court (IVA) S                       | HD Rating  | 9                                                                                                                                                                            | 12                             | 17                | 22           | 28        |  |
|                  | Rated Input Capacity (kVA) <3>                 | ND Rating  | 12                                                                                                                                                                           | 17                             | 22                | 28           | 34        |  |
| T 41             | put/ Rated Output Current (A) <4> <5>          | HD Rating  | 22                                                                                                                                                                           | 28                             | 42                | 54           | 68        |  |
| Input/<br>Output | Rated Output Current (A)                       | ND Rating  | 28                                                                                                                                                                           | 42                             | 54                | 68           | 81        |  |
| Rating           | Overload Tolera                                | nce        | HD Rating: 150% of rated output current for 60 s ND Rating: 120% of rated output current for 60 s (Derating may be required for applications that start and stop frequently) |                                |                   |              |           |  |
|                  | Carrier Frequen                                | ıcy        | 4 to 10 kHz                                                                                                                                                                  |                                |                   |              |           |  |
|                  | Maximum Output Vo                              | ltage (V)  | Proportional to input voltage <6>                                                                                                                                            |                                |                   |              |           |  |
|                  | Maximum Output Frequency                       | uency (Hz) | 400 Hz (User-adjustable)                                                                                                                                                     |                                |                   |              |           |  |
|                  | Rated Voltage<br>Rated Frequence               |            | Three-phase 200 to 240 Vac 50/60 Hz                                                                                                                                          |                                |                   |              |           |  |
| Power            | Allowable Voltage Flu                          | ctuation   |                                                                                                                                                                              |                                | -15 to +10%       |              |           |  |
| Supply           | Supply Allowable Frequency Fluctuation         |            |                                                                                                                                                                              | (Frequency flu                 | actuation rate: 1 | Hz/100 ms or | less)     |  |
|                  | Allowable Phase Power Supply Voltage Unbalance |            |                                                                                                                                                                              | 2% or less                     |                   |              |           |  |
|                  | Harmonic Current Distortion <6>                |            |                                                                                                                                                                              | 5% or less (IEEE519 compliant) |                   |              |           |  |
|                  | Input Power Factor                             |            |                                                                                                                                                                              | 0.98 or mo                     | re (During rated  | d operation) |           |  |
|                  |                                                |            | (= same operation)                                                                                                                                                           |                                |                   |              |           |  |

- <1> The motor capacity (HP) refers to an NEC 4-pole motor. The rated output current of the drive should be equal to or greater than the motor current. Select the appropriate capacity drive if operating the motor continuously above motor nameplate current.
- <2> Assumes operation at the rated output current. Input current rating varies depending on the power supply transformer, input reactor, wiring connections, and power supply impedance.
- <3> Rated input capacity is calculated with a power line voltage of 240 V  $\times$  1.1.
- <4> The rated output current of the drive should be equal to or greater than the motor rated current.
- <5> Carrier frequency is set to 4 kHz. Current derating is required to raise the carrier frequency.
- <6> If the harmonic current distortion should be 5% or less and the maximum output voltage is input voltage × 0.87, change C7-60 (Output Voltage Limit Mode Selection) from the default setting.

#### **♦** Three-Phase 200 V Class Drive Models 2□0104 to 2□0248

Table A.3 Power Ratings (Three-Phase 200 V Class) Continued

|                  | Item                                           |            | Specification                                                                                                                                                                      |                |                   |              |          |  |
|------------------|------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------|--------------|----------|--|
|                  | Drive Model                                    |            | 2□0104                                                                                                                                                                             | 2□0130         | 2□0154            | 2□0192       | 2□0248   |  |
|                  | Maximum Applicable                             | HD Rating  | 22 (30)                                                                                                                                                                            | 30 (40)        | 37 (50)           | 45 (60)      | 55 (75)  |  |
| M                | Motor Capacity kW (HP) <1> ND Ra               |            | 30 (40)                                                                                                                                                                            | 37 (50)        | 45 (60)           | 55 (75)      | 75 (100) |  |
|                  | Rated Input Current (A) <2>                    | HD Rating  | 74                                                                                                                                                                                 | 95             | 118               | 140          | 175      |  |
|                  | Rated Input Current (A)                        | ND Rating  | 95                                                                                                                                                                                 | 118            | 140               | 175          | 226      |  |
|                  | Rated Input Capacity (kVA) <3>                 | HD Rating  | 34                                                                                                                                                                                 | 43             | 54                | 64           | 80       |  |
|                  | Rated Input Capacity (kvA)                     | ND Rating  | 43                                                                                                                                                                                 | 54             | 64                | 80           | 103      |  |
| Immut/           | Rated Output Current (A) <4> <5>               | HD Rating  | 81                                                                                                                                                                                 | 104            | 130               | 154          | 192      |  |
| Input/<br>Output | Rated Output Current (A)                       | ND Rating  | 104                                                                                                                                                                                | 130            | 154               | 192          | 248      |  |
| Rating           | Overload Tolera                                | nce        | HD Rating: 150% of rated output current for 60 s<br>ND Rating: 120% of rated output current for 60 s<br>(Derating may be required for applications that start and stop frequently) |                |                   |              |          |  |
|                  | Carrier Frequer                                | ıcy        | 4 to 8 kHz                                                                                                                                                                         |                | 4 to 6 kHz        |              | 4 kHz    |  |
|                  | Maximum Output Vo                              | ltage (V)  |                                                                                                                                                                                    | Proporti       | onal to input vo  | oltage <6>   |          |  |
|                  | Maximum Output Frequency                       | uency (Hz) | 400 Hz (User-adjustable)                                                                                                                                                           |                |                   |              |          |  |
|                  | Rated Voltage<br>Rated Frequence               | e<br>cy    | Three-phase 200 to 240 Vac 50/60 Hz                                                                                                                                                |                |                   |              |          |  |
| Power            | Allowable Voltage Flu                          | ctuation   |                                                                                                                                                                                    |                | -15 to +10%       |              |          |  |
| Supply           | Supply Allowable Frequency Fluctuation         |            | ±3%                                                                                                                                                                                | (Frequency flu | actuation rate: 1 | Hz/100 ms or | less)    |  |
|                  | Allowable Phase Power Supply Voltage Unbalance |            |                                                                                                                                                                                    | 2% or less     |                   |              |          |  |
|                  | Harmonic Current Distortion <6>                |            |                                                                                                                                                                                    | 5% or le       | ss (IEEE519 co    | ompliant)    |          |  |
|                  | Input Power Factor                             |            |                                                                                                                                                                                    | 0.98 or mo     | re (During rated  | d operation) |          |  |

<sup>&</sup>lt;1> The motor capacity (HP) refers to an NEC 4-pole motor. The rated output current of the drive should be equal to or greater than the motor current. Select the appropriate capacity drive if operating the motor continuously above motor nameplate current.

<sup>&</sup>lt;2> Assumes operation at the rated output current. Input current rating varies depending on the power supply transformer, input reactor, wiring connections, and power supply impedance.

<sup>&</sup>lt;3> Rated input capacity is calculated with a power line voltage of 240 V  $\times$  1.1.

<sup>&</sup>lt;4> The rated output current of the drive should be equal to or greater than the motor rated current.

<sup>&</sup>lt;5> Carrier frequency is set to 4 kHz. Current derating is required to raise the carrier frequency.

<sup>&</sup>lt;6> If the harmonic current distortion should be 5% or less and the maximum output voltage is input voltage × 0.87, change C7-60 (Output Voltage Limit Mode Selection) from the default setting.

#### ♦ Three-Phase 400 V Class Drive Models 4□0011 to 4□0077

Table A.4 Power Ratings (Three-Phase 400 V Class)

|                  | Item                                              |                                                                                                                                                                              | Specification                                                                                                                                                                |                                |           |            |                         |             |            |         |         |
|------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------|------------|-------------------------|-------------|------------|---------|---------|
|                  | Drive Model                                       |                                                                                                                                                                              | 4□0011                                                                                                                                                                       | 4□0014                         | 4□0021    | 4□0027     | 4□0034                  | 4□0040      | 4□0052     | 4□0065  | 4□0077  |
| Maxim            | um Applicable Motor                               | HD Rating                                                                                                                                                                    | 3.7 (5)                                                                                                                                                                      | 5.5 (7.5)                      | 7.5 (10)  | 11 (15)    | 15 (20)                 | 18.5 (25)   | 22 (30)    | 30 (40) | 37 (50) |
| Cap              | eacity kW (HP) <1>                                | ND Rating                                                                                                                                                                    | 5.5 (7.5)                                                                                                                                                                    | 7.5 (10)                       | 11 (15)   | 15 (20)    | 18.5 (25)               | 22 (30)     | 30 (40)    | 37 (50) | 45 (60) |
|                  | Rated Input                                       | HD Rating                                                                                                                                                                    | 8.7                                                                                                                                                                          | 10                             | 13        | 19         | 25                      | 31          | 36         | 47      | 59      |
|                  | Current (A) <2>                                   | ND Rating                                                                                                                                                                    | 10                                                                                                                                                                           | 13                             | 19        | 25         | 31                      | 36          | 47         | 59      | 70      |
|                  | Rated Input                                       | HD Rating                                                                                                                                                                    | 8                                                                                                                                                                            | 9                              | 12        | 17         | 22                      | 28          | 33         | 43      | 54      |
| <b>.</b>         | Capacity (kVA) <>>                                | ND Rating                                                                                                                                                                    | 9                                                                                                                                                                            | 12                             | 17        | 22         | 28                      | 33          | 43         | 54      | 64      |
|                  | Rated Output                                      | HD Rating                                                                                                                                                                    | 9.6                                                                                                                                                                          | 11                             | 14        | 21         | 27                      | 34          | 40         | 52      | 65      |
| Input/<br>Output | Current (A) <4> <5>                               | ND Rating                                                                                                                                                                    | 11                                                                                                                                                                           | 14                             | 21        | 27         | 34                      | 40          | 52         | 65      | 77      |
| Rating           | Overload Tol                                      | HD Rating: 150% of rated output current for 60 s ND Rating: 120% of rated output current for 60 s (Derating may be required for applications that start and stop frequently) |                                                                                                                                                                              |                                |           |            |                         |             |            |         |         |
|                  | Carrier Freq                                      | 4 to 10 kHz                                                                                                                                                                  |                                                                                                                                                                              |                                |           |            |                         |             |            |         |         |
|                  | Maximum Output                                    | Voltage (V)                                                                                                                                                                  | Proportional to input voltage <6>                                                                                                                                            |                                |           |            |                         |             |            |         |         |
|                  | Maximum Output Fi                                 | requency (Hz)                                                                                                                                                                |                                                                                                                                                                              |                                |           | 400 Hz     | z (User-adj             | ustable)    |            |         |         |
|                  | Rated Volt<br>Rated Frequ                         |                                                                                                                                                                              | Three-phase 4A \( \Pi \) \( \Pi \) and 4P \( \Pi \) \( \Pi \) 380 to 500 Vac 50/60 Hz  Three-phase 4E \( \Pi \) \( \Pi \) and 4W \( \Pi \) \( \Pi \) 380 to 480 Vac 50/60 Hz |                                |           |            |                         |             |            |         |         |
| Power            | Allowable Voltage                                 | Fluctuation                                                                                                                                                                  |                                                                                                                                                                              |                                |           |            | -15 to +10 <sup>9</sup> | <b>%</b>    |            |         |         |
| Supply           | Allowable Frequency                               | y Fluctuation                                                                                                                                                                |                                                                                                                                                                              |                                | ±3% (Freq | uency fluc | tuation rate            | e: 1 Hz/100 | ms or less | )       |         |
|                  | Allowable Phase Power Supply<br>Voltage Unbalance |                                                                                                                                                                              |                                                                                                                                                                              | 2% or less                     |           |            |                         |             |            |         |         |
| I                | Harmonic Current Distortion 6>                    |                                                                                                                                                                              |                                                                                                                                                                              | 5% or less (IEEE519 compliant) |           |            |                         |             |            |         |         |
|                  | Input Power Facto                                 | or                                                                                                                                                                           |                                                                                                                                                                              |                                | 0.9       | 98 or more | (During ra              | ted operati | ion)       |         |         |

- <1> The motor capacity (HP) refers to an NEC 4-pole motor. The rated output current of the drive should be equal to or greater than the motor current. Select the appropriate capacity drive if operating the motor continuously above motor nameplate current.
- <2> Assumes operation at the rated output current. Input current rating varies depending on the power supply transformer, input reactor, wiring connections, and power supply impedance.
- <3> Rated input capacity is calculated with a power line voltage of 480 V  $\times$  1.1.
- <4> The rated output current of the drive should be equal to or greater than the motor rated current.
- <5> Carrier frequency is set to 4 kHz. Current derating is required to raise the carrier frequency.
- <6> If the harmonic current distortion should be 5% or less and the maximum output voltage is input voltage × 0.87, change C7-60 (Output Voltage Limit Mode Selection) from the default setting.

#### ◆ Three-Phase 400 V Class Drive Models 4□0096 to 4□0414

Table A.5 Power Ratings (Three-Phase 400 V Class) Continued

|                                                   | Item                        |                             | Specification                                                                                                                                                                                              |          |           |             |              |               |             |           |           |
|---------------------------------------------------|-----------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|-------------|--------------|---------------|-------------|-----------|-----------|
|                                                   | Drive Model                 |                             | 4□0096                                                                                                                                                                                                     | 4□0124   | 4□0156    | 4□0180      | 4□0216       | 4□0240        | 4□0302      | 4□0361    | 4□0414    |
| Maxim                                             | um Applicable Motor         | HD Rating                   | 45 (60)                                                                                                                                                                                                    | 55 (75)  | 75 (100)  | 90 (125)    | 110 (150)    | 132 (175)     | 150 (200)   | 185 (250) | 220 (300) |
| Cap                                               | eacity kW (HP) <1>          | ND Rating                   | 55 (75)                                                                                                                                                                                                    | 75 (100) | 90 (125)  | 110 (150)   | 132 (175)    | 150 (200)     | 185 (250)   | 220 (300) | 260 (350) |
|                                                   | Rated Input                 | HD Rating                   | 70                                                                                                                                                                                                         | 87       | 113       | 142         | 164          | 197           | 218         | 275       | 329       |
|                                                   | Current (A) <2>             | ND Rating                   | 87                                                                                                                                                                                                         | 113      | 142       | 164         | 197          | 218           | 275         | 329       | 377       |
|                                                   | Rated Input                 | HD Rating                   | 64                                                                                                                                                                                                         | 80       | 103       | 130         | 150          | 180           | 200         | 251       | 300       |
|                                                   | Capacity (kVA) <3>          | ND Rating                   | 80                                                                                                                                                                                                         | 103      | 130       | 150         | 180          | 200           | 251         | 300       | 344       |
| T4/                                               | Rated Output                | HD Rating                   | 77                                                                                                                                                                                                         | 96       | 124       | 156         | 180          | 216           | 240         | 302       | 361       |
| Input/<br>Output<br>Rating                        | Current (A) 4> <5>          | ND Rating                   | 96                                                                                                                                                                                                         | 124      | 156       | 180         | 216          | 240           | 302         | 361       | 414       |
|                                                   | Overload Tolerance          |                             | HD Rating: 150% of rated output current for 60 s<br>ND Rating: 120% of rated output current for 60 s<br>(Derating may be required for applications that start and stop frequently)                         |          |           |             |              |               |             |           |           |
|                                                   | Carrier Frequ               | 4 to 8 kHz 4 to 6 kHz 4 kHz |                                                                                                                                                                                                            |          |           |             |              |               |             |           |           |
|                                                   | Maximum Output V            | oltage (V)                  | Proportional to input voltage <6>                                                                                                                                                                          |          |           |             |              |               |             |           |           |
|                                                   | Maximum Output Fre          | equency (Hz)                |                                                                                                                                                                                                            |          |           | 400 Hz      | (User-adjı   | ıstable)      |             |           |           |
|                                                   | Rated Volta<br>Rated Freque |                             | Three-phase 4A \( \begin{aligned} \pi \equiv \text{and } 4P \( \pi \pi \pi \) \( \pi \) 380 to 500 Vac 50/60 Hz  Three-phase 4E \( \pi \pi \pi \pi \) and 4W \( \pi \pi \pi \pi \) 380 to 480 Vac 50/60 Hz |          |           |             |              |               |             |           |           |
| Power                                             | Allowable Voltage F         | luctuation                  | -15 to +10%                                                                                                                                                                                                |          |           |             |              |               |             |           |           |
| Supply                                            | Allowable Frequency         | Fluctuation                 |                                                                                                                                                                                                            |          | ±3% (Free | uency fluct | tuation rate | : 1 Hz/100    | ms or less) |           |           |
| Allowable Phase Power Supply<br>Voltage Unbalance |                             |                             | 2% or less                                                                                                                                                                                                 |          |           |             |              |               |             |           |           |
| H                                                 | armonic Current Distor      | tion <6>                    | 5% or less (IEEE519 compliant)                                                                                                                                                                             |          |           |             |              |               |             |           |           |
|                                                   | Input Power Factor          |                             |                                                                                                                                                                                                            |          | 0.        | 98 or more  | (During rat  | ted operation | on)         |           |           |

<sup>&</sup>lt;1> The motor capacity (HP) refers to an NEC 4-pole motor. The rated output current of the drive should be equal to or greater than the motor current. Select the appropriate capacity drive if operating the motor continuously above motor nameplate current.

<sup>&</sup>lt;2> Assumes operation at the rated output current. Input current rating varies depending on the power supply transformer, input reactor, wiring connections, and power supply impedance.

<sup>&</sup>lt;3> Rated input capacity is calculated with a power line voltage of 480 V  $\times$  1.1.

<sup>&</sup>lt;4> The rated output current of the drive should be equal to or greater than the motor rated current.

<sup>&</sup>lt;5> Carrier frequency is set to 4 kHz. Current derating is required to raise the carrier frequency.

<sup>&</sup>lt;6> If the harmonic current distortion should be 5% or less and the maximum output voltage is input voltage × 0.87, change C7-60 (Output Voltage Limit Mode Selection) from the default setting.

# Specif

#### ◆ Three-Phase 400 V Class Drive Models 4□0477 to 4□0930

Table A.6 Power Ratings (Three-Phase 400 V Class) Continued

| Item             |                                                   |                                                                                                                                                                                     | Specification                                                                                                       |                                |                   |                |           |  |
|------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------|----------------|-----------|--|
|                  | Drive Model                                       |                                                                                                                                                                                     | 4□0477                                                                                                              | 4□0590                         | 4□0720            | 4□0900         | 4□0930    |  |
| Maximum          | Applicable Motor Capacity kW                      | HD Rating                                                                                                                                                                           | 260 (350)                                                                                                           | 300 (400)                      | 375 (500)         | 450 (600)      | 560 (750) |  |
|                  | (HP) <1>                                          | ND Rating                                                                                                                                                                           | 300 (400)                                                                                                           | 375 (500)                      | 450 (600)         | 560 (750)      | 580 (800) |  |
|                  | Rated Input                                       | HD Rating                                                                                                                                                                           | 377                                                                                                                 | 434                            | 537               | 655            | 819       |  |
|                  | Current (A) <2>                                   | ND Rating                                                                                                                                                                           | 434                                                                                                                 | 537                            | 655               | 819            | 846       |  |
|                  | Rated Input                                       | HD Rating                                                                                                                                                                           | 344                                                                                                                 | 396                            | 490               | 598            | 748       |  |
|                  | Capacity (kVA) <3>                                | ND Rating                                                                                                                                                                           | 396                                                                                                                 | 490                            | 598               | 748            | 773       |  |
|                  | Rated Output                                      | HD Rating                                                                                                                                                                           | 414                                                                                                                 | 477                            | 590               | 720            | 900       |  |
| Input/           | Current (A) <4>                                   | ND Rating                                                                                                                                                                           | 477                                                                                                                 | 590                            | 720               | 900            | 930       |  |
| Output<br>Rating | Overload Tolera<br>Carrier Frequen                | HD Rating: 150% of rated output current for 60 s ND Rating: 120% of rated output current for 60 s (Derating may be required for applications that start and stop frequently)  3 kHz |                                                                                                                     |                                |                   |                |           |  |
|                  | Maximum Output Vol                                | Proportional to input voltage <5>                                                                                                                                                   |                                                                                                                     |                                |                   |                |           |  |
|                  | Maximum Output Frequ                              | uency (Hz)                                                                                                                                                                          | 400 Hz (User-adjustable)                                                                                            |                                |                   |                |           |  |
|                  | Rated Voltage<br>Rated Frequenc                   |                                                                                                                                                                                     | Three-phase 4A \( \Pi \) \( \Pi \) and 4P \( \Pi \) \( \Pi \) \( \text{380 to 500 Vac } \( \frac{6}{50} \) 50/60 Hz |                                |                   |                |           |  |
| Power            | Allowable Voltage Flu                             | ctuation                                                                                                                                                                            |                                                                                                                     |                                | -15 to +10%       |                |           |  |
| Supply           | Allowable Frequency Fl                            | luctuation                                                                                                                                                                          | ±39                                                                                                                 | % (Frequency fl                | uctuation rate: 1 | Hz/100 ms or 1 | ess)      |  |
|                  | Allowable Phase Power Supply<br>Voltage Unbalance |                                                                                                                                                                                     |                                                                                                                     | 2% or less                     |                   |                |           |  |
|                  | Harmonic Current Distortion <5>                   |                                                                                                                                                                                     |                                                                                                                     | 5% or less (IEEE519 compliant) |                   |                |           |  |
|                  | Input Power Factor                                |                                                                                                                                                                                     |                                                                                                                     | 0.98 or mo                     | ore (During rated | l operation)   |           |  |
|                  |                                                   |                                                                                                                                                                                     | ( 8 )                                                                                                               |                                |                   |                |           |  |

- <1> The motor capacity (HP) refers to an NEC 4-pole motor. The rated output current of the drive should be equal to or greater than the motor current. Select the appropriate capacity drive if operating the motor continuously above motor nameplate current.
- <2> Assumes operation at the rated output current. Input current rating varies depending on the power supply transformer, input reactor, wiring connections, and power supply impedance.
- <3> Rated input capacity is calculated with a power line voltage of 480 V  $\times$  1.1.
- <4> The rated output current of the drive should be equal to or greater than the motor rated current.
- <5> If the harmonic current distortion should be 5% or less and the maximum output voltage is input voltage × 0.87, change C7-60 (Output Voltage Limit Mode Selection) from the default setting.
- <6> Use a stand-alone EMC filter with a voltage of 380 to 480 V.

## A.3 Drive Specifications

Note:

- 1. Perform rotational Auto-Tuning to obtain the performance specifications given below.
- 2. For optimum performance life of the drive, install the drive in an environment that meets the required specifications.

|                      | Item                                         | Specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|----------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                      | Control Method                               | The following control methods can be set using drive parameters:  • V/f Control (V/f)  • V/f Control with PG (V/f w/PG)  • Open Loop Vector Control (OLV)  • Closed Loop Vector Control (CLV)  • Open Loop Vector Control for PM (OLV/PM)  • Advanced Open Loop Vector Control for PM (AOLV/PM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|                      |                                              | Closed Loop Vector Control for PM (CLV/PM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                      | Frequency Control Range                      | 0.01 to 400 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                      | Frequency Accuracy (Temperature Fluctuation) | Digital input: within ±0.01% of the max output frequency (-10 to +40 °C)<br>Analog input: within ±0.1% of the max output frequency (25 °C ±10 °C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|                      | Frequency Setting Resolution                 | Digital inputs: 0.01 Hz Analog inputs: 1/2048 of the maximum output frequency setting (11 bit plus sign)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                      | <b>Output Frequency Resolution</b>           | 0.001 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                      | Frequency Setting Signal                     | Main speed frequency reference: -10 to +10 Vdc (20 k $\Omega$ ), 0 to +10 Vdc (20 k $\Omega$ ), 4 to 20 mA (250 $\Omega$ ), 0 to 20 mA (250 $\Omega$ ) Main speed reference: Pulse train input (max. 32 kHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Control              | Starting Torque                              | V/f, V/f w/PG: 150% at 3 Hz OLV: 200% at 0.3 Hz  CLV: 200% at 0.0 r/min  CLV: 200% at 5 % speed. AOLV/PM: 200% at 0.0 min-1 <2> <3>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Character-<br>istics | Speed Control Range                          | V/f, V/f w/PG: 1:40<br>OLV: 1:200<br>CLV, CLV/PM: 1:1500<br>OLV/PM: 1:20<br>AOLV/PM: 1:100 <>> <3> <4>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|                      | Speed Control Accuracy <5>                   | OLV: ±0.2% (25 °C ±10 °C (77 °F ±50 °F)) <5><br>CLV: ±0.02% (25 °C ±10 °C (77 °F ±50 °F)) <5>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|                      | Speed Response                               | OLV: 10 Hz (25 °C ±10 °C (77 °F ±50 °F))<br>CLV: 250 Hz (25 °C ±10 °C (77 °F ±50 °F))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|                      | Torque Limit                                 | Parameters setting allow separate limits in four quadrants (available in OLV, CLV, AOLV/PM, CLV/PM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|                      | Accel/Decel Time                             | 0.0 to 6000.0 s (4 selectable combinations of independent acceleration and deceleration settings)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|                      | Braking Torque <6>                           | Same value as overload tolerance in motoring or regeneration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|                      | V/f Characteristics                          | User-selected programs and V/f preset patterns possible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|                      | Main Control Functions                       | Torque Control, Droop Control, Speed/torque Control Switching, Feed Forward Control, Zero Serve Function, Momentary Power Loss Ride-Thru, Speed Search, Synchronous Transfer with Commercia Power Supply, Overtorque/Undertorque Detection, Torque Limit, 17 Step Speed (max), Accel/decel Switch, S-curve Accel/decel, 3-wire Sequence, Auto-tuning (rotational, stationary tuning), Dwell, Cooling Fan on/off Switch, Slip Compensation, Torque Compensation, Frequency Jump, Upper/lowe Limits for Frequency Reference, DC Injection Braking at Start and Stop, PID Control (with sleep function), Energy Saving Control, MEMOBUS/Modbus Comm. (RS-422/RS-485 max, 115.2 kbps), Fault Restart, Application Presets, DriveWorksEZ (customized function), Removable Terminal Bloc with Parameter Backup Function, Online Tuning, Overexcitation Deceleration, Inertia (ASR) Tuning High Frequency Injection. |  |  |  |  |

|                         | Item                                                | Specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|-------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                         | Power Supply Regeneration                           | Available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|                         | <b>Motor Protection</b>                             | Electronic thermal overload relay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                         | Momentary Overcurrent<br>Protection                 | Drive stops when output current reaches about 200% of the rated Heavy Duty current.                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                         | Overload Protection                                 | Drive stops after 60 s at 150% of rated Heavy Duty output current <7>                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| Protection<br>Functions | Overvoltage Protection                              | 200 V class: Stops when input voltage exceeds approx. 315 V 400 V class: Stops when input voltage exceeds approx. 630 V                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|                         | Undervoltage Protection                             | 200 V class: Stops when input voltage falls below approx. 150 V 400 V class: Stops when input voltage falls below approx. 300 V                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|                         | Momentary Power Loss Ride-<br>Thru                  | Immediately stop after 2 ms or longer power loss <8> Continuous operation during power loss shorter than 2 s (standard) <9>                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                         | <b>Heatsink Overheat Protection</b>                 | Thermistor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|                         | Stall Prevention                                    | Stall Prevention is available during acceleration, deceleration, and during run.                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|                         | <b>Ground Protection</b>                            | Electronic circuit protection <10>                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|                         | Charge LED of Capacitor for<br>Control Power Supply | Remains lit until control power supply voltage falls below 50 V                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|                         | Area of Use                                         | Indoors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|                         | Ambient Temperature                                 | IP20/UL Type 1 enclosure: -10 °C to +40 °C (14 °F to 104 °F)<br>IP00 enclosure: -10 °C to +50 °C (14 °F to 122 °F)                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|                         | Humidity                                            | 95 RH% or less (no condensation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|                         | Storage Temperature                                 | -20 °C to +60 °C (short-term temperature during transportation)                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Environment             | Altitude                                            | Up to 1000 meters without derating, up to 3000 m with output current and voltage derating. <i>Refer to Altitude Derating on page 500</i> for details.                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|                         | Vibration/Shock                                     | 10 to 20 Hz: $9.8 \text{ m/s}^2$ ( $2\square 0028 \text{ to } 2\square 0248 \text{ and } 4\square 0011 \text{ to } 4\square 0414$ ) 10 to 20 Hz: $5.9 \text{ m/s}^2$ ( $4\square 0477 \text{ to } 4\square 0930$ ) 20 to $55 \text{ Hz}$ : $5.9 \text{ m/s}^2$ ( $2\square 0028 \text{ to } 2\square 0081 \text{ and } 4\square 0011 \text{ to } 4\square 0077$ ) 20 to $55 \text{ Hz}$ : $2.0 \text{ m/s}^2$ ( $2\square 0104 \text{ to } 2\square 0248 \text{ and } 4\square 0096 \text{ to } 4\square 0930$ ) |  |  |  |  |
|                         | Standards                                           | <ul> <li>UL 61800-5-1</li> <li>IEC/EN 61800-3, IEC/EN 61800-5-1</li> <li>EN ISO 13849-1 Cat.3 PLe, IEC/EN 61508 SIL3</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| ]                       | Protection Design                                   | IP00/Open Type enclosure 11 , IP20/UL Type 1 enclosure                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |

- <1> Current derating is required. Select control modes in accordance with drive capacity.
- 42> High-frequency current superposition (n8-57 = 1) can be set. In this case, perform High Frequency Injection Parameter Tuning. High Frequency Injection cannot be used with an SPM motor. *Refer to T2-01: PM Motor Auto-Tuning Mode Selection on page 172* for more information.
- <3> Rotational Auto Tuning must be performed. Refer to T2-01: PM Motor Auto-Tuning Mode Selection on page 172 for more information.
- <4> Contact Yaskawa or a Yaskawa representative if using a PM motor other than Super Energy-saving Motors manufactured by Yaskawa Motor Co., Ltd. (SSR1 series and SST4 series with standard specifications).
- <5> The accuracy of these values depends on motor characteristics, ambient conditions, and drive settings. Specifications may vary with different motors and with changing motor temperature. Contact Yaskawa or a Yaskawa representative for consultation.
- <6> Actual specifications may vary depending on motor characteristics.
- <7> Overload protection may be triggered when operating with 150% of the rated output current if the output frequency is less than 6 Hz.
- <8> Momentary power loss ride-thru during utility power loss designates the time the drive is able to maintain control over a motor operating at full load after utility power is lost. Actual specifications may vary depending on motor characteristics.
- <9> Continuous operation time varies depending on the drive capacity. An auxiliary Momentary Power Loss Ride-Thru Unit is required if the application needs to maintain control power long after a 2 second momentary power loss. When L2-01 (Momentary Power Loss Operation Selection) is enabled, operation will stop about 2 ms after momentary power loss occurs. For applications where momentary power loss and power supply interruptions are likely to occur, such as power supply for crane trolleys, contact Yaskawa or a Yaskawa representative.
- <10> Ground protection is triggered when a ground short circuit occurs while the drive is running. The ground protection cannot be provided when the impedance of the ground fault path is too low, or when the drive is powered up while a ground fault is present at the output.
- <11> An IP20/UL Type 1 enclosure drive requires an IP20/UL Type 1 kit. Models 4\(\sigma 0720\) to 4\(\sigma 0930\) are not compatible with IP/20UL Type 1 enclosures.

## A.4 Drive Watt Loss Data

#### **♦** Drive Models 2□0028 to 2□0248

Table A.7 Watt Loss 200 V Class Three-Phase Models

|             |                   | Norma                | al Duty                   |                   | Heavy Duty        |                      |                           |                   |  |  |
|-------------|-------------------|----------------------|---------------------------|-------------------|-------------------|----------------------|---------------------------|-------------------|--|--|
| Drive Model | Rated Amps<br>(A) | Heatsink<br>Loss (W) | Interior Unit<br>Loss (W) | Total Loss<br>(W) | Rated Amps<br>(A) | Heatsink<br>Loss (W) | Interior Unit<br>Loss (W) | Total Loss<br>(W) |  |  |
| 2□0028      | 28                | 659                  | 103                       | 762               | 22                | 543                  | 91                        | 634               |  |  |
| 2□0042      | 42                | 854                  | 168                       | 1022              | 28                | 586                  | 138                       | 724               |  |  |
| 2□0054      | 54                | 1037                 | 195                       | 1232              | 42                | 808                  | 168                       | 976               |  |  |
| 2□0068      | 68                | 1295                 | 225                       | 1520              | 54                | 1016                 | 190                       | 1206              |  |  |
| 2□0081      | 81                | 1420                 | 238                       | 1658              | 68                | 1181                 | 208                       | 1389              |  |  |
| 2□0104      | 104               | 1696                 | 282                       | 1978              | 81                | 1313                 | 234                       | 1547              |  |  |
| 2□0130      | 130               | 2157                 | 341                       | 2498              | 104               | 1673                 | 280                       | 1953              |  |  |
| 2□0154      | 154               | 2441                 | 366                       | 2807              | 130               | 2037                 | 318                       | 2355              |  |  |
| 2□0192      | 192               | 3064                 | 447                       | 3511              | 154               | 2400                 | 366                       | 2766              |  |  |
| 2□0248      | 248               | 3785                 | 578                       | 4363              | 192               | 2815                 | 460                       | 3275              |  |  |

#### ◆ Drive Models 4□0011 to 4□0930

Table A.8 Watt Loss 400 V Class Three-Phase Models

|             |                   | Norma                | al Duty                   |                   | Heavy Duty        |                      |                           |                   |  |
|-------------|-------------------|----------------------|---------------------------|-------------------|-------------------|----------------------|---------------------------|-------------------|--|
| Drive Model | Rated Amps<br>(A) | Heatsink<br>Loss (W) | Interior Unit<br>Loss (W) | Total Loss<br>(W) | Rated Amps<br>(A) | Heatsink<br>Loss (W) | Interior Unit<br>Loss (W) | Total Loss<br>(W) |  |
| 4□0011      | 11                | 452                  | 80                        | 532               | 10                | 415                  | 76                        | 491               |  |
| 4□0014      | 14                | 459                  | 79                        | 538               | 11                | 372                  | 70                        | 442               |  |
| 4□0021      | 21                | 641                  | 105                       | 746               | 14                | 438                  | 80                        | 518               |  |
| 4□0027      | 27                | 675                  | 106                       | 781               | 21                | 549                  | 93                        | 642               |  |
| 4□0034      | 34                | 798                  | 124                       | 922               | 27                | 658                  | 107                       | 765               |  |
| 4□0040      | 40                | 877                  | 174                       | 1051              | 34                | 693                  | 150                       | 843               |  |
| 4□0052      | 52                | 1109                 | 209                       | 1318              | 40                | 855                  | 178                       | 1033              |  |
| 4□0065      | 65                | 1369                 | 240                       | 1609              | 52                | 1087                 | 204                       | 1291              |  |
| 4□0077      | 77                | 1479                 | 251                       | 1730              | 65                | 1238                 | 220                       | 1458              |  |
| 4□0096      | 96                | 1715                 | 290                       | 2005              | 77                | 1373                 | 247                       | 1620              |  |
| 4□0124      | 124               | 2256                 | 362                       | 2618              | 96                | 1693                 | 290                       | 1983              |  |
| 4□0156      | 156               | 2857                 | 421                       | 3278              | 124               | 2242                 | 343                       | 2585              |  |
| 4□0180      | 180               | 3316                 | 482                       | 3798              | 156               | 2833                 | 421                       | 3254              |  |
| 4□0216      | 216               | 3720                 | 587                       | 4307              | 180               | 3035                 | 503                       | 3538              |  |
| 4□0240      | 240               | 3897                 | 600                       | 4497              | 216               | 3498                 | 551                       | 4049              |  |
| 4□0302      | 302               | 5202                 | 857                       | 6059              | 240               | 3867                 | 689                       | 4556              |  |
| 4□0361      | 361               | 5434                 | 863                       | 6297              | 302               | 4384                 | 735                       | 5119              |  |
| 4□0414      | 414               | 6444                 | 1012                      | 7456              | 361               | 5563                 | 902                       | 6465              |  |
| 4□0477      | 477               | 7163                 | 1115                      | 8279              | 414               | 6037                 | 983                       | 7020              |  |
| 4□0590      | 590               | 9071                 | 1349                      | 10421             | 477               | 7054                 | 1115                      | 8169              |  |
| 4□0720      | 720               | 7602                 | 1581                      | 9183              | 590               | 6240                 | 1308                      | 7548              |  |
| 4□0900      | 900               | 9632                 | 1988                      | 11620             | 720               | 7602                 | 1582                      | 9184              |  |
| 4□0930      | 930               | 9986                 | 2059                      | 12045             | 900               | 9632                 | 1988                      | 11620             |  |

## **♦** Filter Modules for Drive Models 4□0720 to 4□0930

#### **Table A.9 Filter Module Watt Loss**

|             |                   | Norma                | al Duty                   |                   | Heavy Duty        |                      |                           |                   |  |
|-------------|-------------------|----------------------|---------------------------|-------------------|-------------------|----------------------|---------------------------|-------------------|--|
| Drive Model | Rated Amps<br>(A) | Heatsink<br>Loss (W) | Interior Unit<br>Loss (W) | Total Loss<br>(W) | Rated Amps<br>(A) | Heatsink<br>Loss (W) | Interior Unit<br>Loss (W) | Total Loss<br>(W) |  |
| EUJ71180□.□ | 720               | 3268                 | 27                        | 3295              | 590               | 2411                 | 27                        | 2438              |  |
| EUJ71181□.□ | 900               | 3934                 | 27                        | 3962              | 720               | 2778                 | 27                        | 2806              |  |
| EUJ71182□.□ | 930               | 4149                 | 27                        | 4176              | 900               | 3934                 | 27                        | 3962              |  |

## A.5 Drive Derating Data

The drive can be operated at above the rated temperature, altitude, and default carrier frequency by derating the drive capacity.

## **♦** Rated Current Depending on Carrier Frequency

The table below shows the drive output current depending on the carrier frequency settings.

Use the data in the following tables to linearly calculate output current values for carrier frequencies not listed.

Table A.10 Three-Phase 200 V Class Carrier Frequency and Current Derating

|                    |                  | Rated Current [A] |       |       |        |                        |       |       |        |  |
|--------------------|------------------|-------------------|-------|-------|--------|------------------------|-------|-------|--------|--|
| <b>Drive Model</b> | Setting<br>Range |                   |       |       |        | Heavy Duty Rating (HD) |       |       |        |  |
|                    | runge            | 4 kHz             | 6 kHz | 8 kHz | 10 kHz | 4 kHz                  | 6 kHz | 8 kHz | 10 kHz |  |
| 2□0028             | 4 to 10 kHz      | 28                | 25    | 22    | 20     | 22                     | 20    | 18    | 15     |  |
| 2□0042             | 4 to 10 kHz      | 42                | 38    | 34    | 29     | 28                     | 25    | 22    | 20     |  |
| 2□0054             | 4 to 10 kHz      | 54                | 49    | 43    | 38     | 42                     | 38    | 34    | 29     |  |
| 2□0068             | 4 to 10 kHz      | 68                | 61    | 54    | 48     | 54                     | 49    | 43    | 38     |  |
| 2□0081             | 4 to 10 kHz      | 81                | 73    | 65    | 57     | 68                     | 61    | 54    | 48     |  |
| 2□0104             | 4 to 8 kHz       | 104               | 94    | 83    | _      | 81                     | 73    | 65    | _      |  |
| 2□0130             | 4 to 8 kHz       | 130               | 117   | 104   | _      | 104                    | 94    | 83    | _      |  |
| 2□0154             | 4 to 6 kHz       | 154               | 139   | _     | _      | 130                    | 117   | _     | _      |  |
| 2□0192             | 4 to 6 kHz       | 192               | 173   | _     | _      | 154                    | 139   | _     | _      |  |
| 2□0248             | 4 kHz            | 248               | _     | _     | _      | 192                    | _     | _     | _      |  |

Table A.11 Three-Phase 400 V Class Carrier Frequency and Current Derating

|                    |                  | Rated Current [A] |             |               |        |           |                        |       |        |  |
|--------------------|------------------|-------------------|-------------|---------------|--------|-----------|------------------------|-------|--------|--|
| <b>Drive Model</b> | Setting<br>Range |                   | Normal Duty | / Rating (ND) |        |           | Heavy Duty Rating (HD) |       |        |  |
|                    | Range            | 4 kHz             | 6 kHz       | 8 kHz         | 10 kHz | 4 kHz <1> | 6 kHz                  | 8 kHz | 10 kHz |  |
| 4□0011             | 4 to 10 kHz      | 11                | 9.9         | 8.8           | 7.7    | 9.6       | 8.6                    | 7.7   | 6.7    |  |
| 4□0014             | 4 to 10 kHz      | 14                | 13          | 11            | 9.8    | 11        | 9.9                    | 8.8   | 7.7    |  |
| 4□0021             | 4 to 10 kHz      | 21                | 19          | 17            | 15     | 14        | 13                     | 11    | 9.8    |  |
| 4□0027             | 4 to 10 kHz      | 27                | 24          | 22            | 19     | 21        | 19                     | 17    | 15     |  |
| 4□0034             | 4 to 10 kHz      | 34                | 31          | 27            | 24     | 27        | 24                     | 22    | 19     |  |
| 4□0040             | 4 to 10 kHz      | 40                | 36          | 32            | 28     | 34        | 31                     | 27    | 24     |  |
| 4□0052             | 4 to 10 kHz      | 52                | 47          | 42            | 36     | 40        | 36                     | 32    | 28     |  |
| 4□0065             | 4 to 10 kHz      | 65                | 59          | 52            | 46     | 52        | 47                     | 42    | 36     |  |
| 4□0077             | 4 to 10 kHz      | 77                | 69          | 62            | 54     | 65        | 59                     | 52    | 46     |  |
| 4□0096             | 4 to 8 kHz       | 96                | 86          | 77            | _      | 77        | 69                     | 62    | _      |  |
| 4□0124             | 4 to 8 kHz       | 124               | 112         | 99            | _      | 96        | 86                     | 77    | _      |  |
| 4□0156             | 4 to 6 kHz       | 156               | 140         | _             | _      | 124       | 112                    |       | _      |  |
| 4□0180             | 4 to 6 kHz       | 180               | 162         | _             | _      | 156       | 140                    |       | _      |  |
| 4□0216             | 4 kHz            | 216               | _           | _             | _      | 180       | _                      |       | _      |  |
| 4□0240             | 4 kHz            | 240               | _           | _             | _      | 216       | _                      |       | _      |  |
| 4□0302             | 4 kHz            | 302               | _           | _             | _      | 240       | _                      |       | _      |  |
| 4□0361             | 4 kHz            | 361               | _           | _             | _      | 302       | _                      |       | _      |  |
| 4□0414             | 4 kHz            | 414               | _           | _             | _      | 361       | _                      |       | _      |  |
| 4□0477             | 3 kHz            | 477               | _           | _             | _      | 414       | _                      | _     | _      |  |
| 4□0590             | 3 kHz            | 590               | _           | _             | _      | 477       | _                      |       | _      |  |
| 4□0720             | 3 kHz            | 720               | _           | _             | _      | 590       | _                      | _     | _      |  |
| 4□0900             | 3 kHz            | 900               | _           | _             | _      | 720       | _                      | _     | _      |  |
| 4□0930             | 3 kHz            | 930               | _           | _             | _      | 900       | _                      | _     | _      |  |

<sup>&</sup>lt;1> Carrier frequency is 3 kHz for models 4\(\simega\)0477 to 4\(\simega\)0930.

## **♦** Carrier Frequency Derating

Derate the drive according to *Figure A.1* as the carrier frequency increases above the factory default setting.

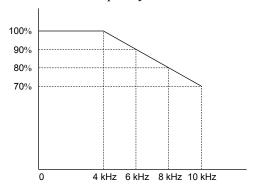



Figure A.1 Carrier Frequency Derating

## **◆** Temperature Derating

To ensure the maximum performance life, the drive output current must be derated as shown in *Figure A.2* when the drive is installed in areas with high ambient temperature. Set parameters L8-12 and L8-35 according to the installation conditions to ensure reliable drive overload protection.

#### ■ Parameter Settings

| No.   | Name | Description                                                                                                                                 | Range      | Default       |
|-------|------|---------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|
| L8-12 |      | Adjust the drive overload (oL2) protection level when the drive is installed in an environment that exceeds its ambient temperature rating. | -10 to +50 | +40 °C        |
| L8-35 |      | 0: IP00/Open-Chassis Enclosure<br>2: IP20/UL Type 1 Enclosure<br>3: External Heatsink Installation                                          | 0, 2, 3    | Det. by o2-04 |

#### Setting 0: IP00/Open-Chassis Enclosure

Drive operation between -10 °C and +50 °C allows 100% continuous current without derating.

#### Setting 2: IP20/UL Type 1 Enclosure

Drive operation between -10 °C and +40 °C allows 100% continuous current without derating. Operation between +40 °C and +50 °C requires output current derating.

#### **Setting 3: External Heatsink Installation**

Drive operation between -10 °C and +40 °C allows 100% continuous current without derating. Operation between +40 °C and +50 °C requires output current derating.

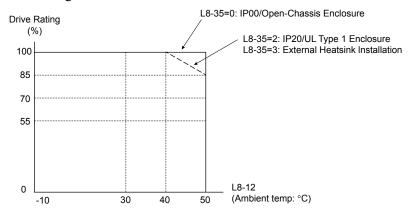



Figure A.2 Ambient Temperature and Installation Method Derating

## **♦** Altitude Derating

The drive standard ratings are valid for installation altitudes up to 1000 m. For installations from 1000 m to 3000 m, the drive rated voltage and the rated output current must be derated for 1% per 100 m.

# **Appendix: B**

## **Parameter List**

This appendix contains a full listing of all parameters and settings available in the drive.

| B.1  | UNDERSTANDING PARAMETER DESCRIPTIONS               | 502 |
|------|----------------------------------------------------|-----|
| B.2  | PARAMETER GROUPS                                   | 503 |
| B.3  | A: INITIALIZATION PARAMETERS                       | 504 |
| B.4  | B: APPLICATION                                     | 506 |
| B.5  | C: TUNING                                          | 516 |
| B.6  | D: REFERENCE SETTINGS                              | 522 |
| B.7  | E: MOTOR PARAMETERS                                | 528 |
| B.8  | F: OPTION SETTINGS                                 | 535 |
| B.9  | H PARAMETERS: MULTI-FUNCTION TERMINALS             | 547 |
| B.10 | L: PROTECTION FUNCTION                             | 562 |
| B.11 | N: SPECIAL ADJUSTMENTS                             | 571 |
| B.12 | O: OPERATOR-RELATED SETTINGS                       | 577 |
| B.13 | DRIVEWORKSEZ PARAMETERS                            | 580 |
| B.14 | T: MOTOR TUNING                                    | 581 |
| B.15 | U: MONITORS                                        | 586 |
| B.16 | CONTROL MODE DEPENDENT PARAMETER DEFAULT VALUES    | 597 |
| B.17 | V/F PATTERN DEFAULT VALUES                         | 602 |
| B.18 | DEFAULTS BY DRIVE MODEL AND DUTY RATING ND/HD      | 603 |
| B.19 | PARAMETERS CHANGED BY MOTOR CODE SELECTION (FOR PM |     |
|      | MOTORS)                                            | 609 |
|      |                                                    |     |

## **B.1 Understanding Parameter Descriptions**

## ◆ Control Modes, Symbols, and Terms

The table below lists terms and symbols used in this section to indicate which parameters are available in which control modes.

Note: Refer to Control Mode Selection on page 33 for detailed instructions on each control mode.

Table B.1 Symbols and Icons Used in Parameter Descriptions

| Symbol    | Description                                                                                                                           |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------|
| All Modes | Parameter is available in all control modes.                                                                                          |
| V/f       | Parameter is available when operating the drive with V/f Control.                                                                     |
| V/f w PG  | Parameter is available when operating the drive with V/f with PG Control.                                                             |
| OLV       | Parameter is available when operating the drive with Open Loop Vector.                                                                |
| CLV       | Parameter is available when operating the drive with Closed Loop Vector.                                                              |
| OLV/PM    | Parameter is available when operating the drive with Open Loop Vector for PM motors.                                                  |
| AOLV/PM   | Parameter is available when operating the drive with Advanced Open Loop Vector for PM motors.                                         |
| CLV/PM    | Parameter is available when operating the drive with Closed Loop Vector for PM motors.                                                |
|           | Parameter is NOT available when operating the drive in the control mode.                                                              |
| RUN       | Parameter can be changed during run.                                                                                                  |
| Motor 2   | Refers to a second motor when the drive is operating two motors. Switch between these motors using the multifunction input terminals. |

## **B.2** Parameter Groups

Table B.2 Parameter Groups

| Parameter<br>Group | Name                                                                                        | Page |
|--------------------|---------------------------------------------------------------------------------------------|------|
| A1                 | Initialization Parameters                                                                   | 504  |
| A2                 | User Parameters                                                                             | 505  |
| b1                 | Operation Mode Selection                                                                    | 506  |
| b2                 | DC Injection Braking                                                                        | 508  |
| b3                 | Speed Search                                                                                | 508  |
| b4                 | Timer Function                                                                              | 510  |
| b5                 | PID Control                                                                                 | 511  |
| b6                 | Dwell Function                                                                              | 513  |
| b7                 | Droop Control                                                                               | 513  |
| b8                 | Energy Saving                                                                               | 514  |
| b9                 | Zero Servo                                                                                  | 515  |
| C1                 | Acceleration and Deceleration Times                                                         | 516  |
| C2                 | S-Curve Characteristics                                                                     | 517  |
| C3                 | Slip Compensation                                                                           | 517  |
| C4                 | Torque Compensation                                                                         | 518  |
| C5                 | Automatic Speed Regulator (ASR)                                                             | 518  |
| C6                 | Carrier Frequency                                                                           | 520  |
| C7                 | Voltage Adjustment                                                                          | 521  |
| d1                 | Frequency Reference                                                                         | 522  |
| d2                 | Frequency Upper/Lower Limits                                                                | 524  |
| d3                 | Jump Frequency                                                                              | 524  |
| d4                 | Frequency Reference Hold and Up/Down 2<br>Function                                          | 524  |
| d5                 | Torque Control                                                                              | 525  |
| d6                 | Field Weakening and Field Forcing                                                           | 526  |
| d7                 | Offset Frequency                                                                            | 526  |
| E1                 | V/f Pattern for Motor 1                                                                     | 528  |
| E2                 | Motor 1 Parameters                                                                          | 529  |
| E3                 | V/f Pattern for Motor 2                                                                     | 530  |
| E4                 | Motor 2 Parameters                                                                          | 531  |
| E5                 | PM Motor Settings                                                                           | 533  |
| F1                 | PG Speed Control Card (PG-B3, PG-X3, PG-RT3, PG-F3)                                         | 535  |
| F2                 | Analog Input Card (AI-A3)                                                                   | 538  |
| F3                 | Digital Input Card (DI-A3)                                                                  | 538  |
| F4                 | Analog Monitor Card (AO-A3)                                                                 | 538  |
| F5                 | Digital Output Card (DO-A3)                                                                 | 539  |
| F6                 | Communication Option Card (SI-C3, SI-S3, SI-N3, SI-P3, SI-T3, SI-EP3, SI-ES3, SI-B3, SI-W3) | 540  |
| F7                 | Communication Option Card (SI-EN3, SI-EM3, SI-EP3)                                          | 543  |

| H1         Multi-Function Digital Inputs         547           H2         Multi-Function Digital Outputs         552           H3         Multi-Function Analog Inputs         556           H4         Multi-Function Analog Outputs         558           H5         MEMOBUS/Modbus Serial Communication         559           H6         Pulse Train Input/Output         560           L1         Motor Protection         562           L2         Momentary Power Loss Ride-Thru         563           L3         Stall Prevention         563           L4         Speed Detection         565           L5         Fault Restart         566           L6         Torque Detection         566           L7         Torque Limit         568           L8         Drive Protection         568           L9         Drive Protection         570           n1         Hunting Prevention         571           n2         Speed Feedback Detection Control (AFR)         571           n3         Speed Feedback Detection Control (AFR)         571           n4         Mining Prevention         572           n6         Online Tuning         573           o1                                                                            | Parameter<br>Group | Name                                | Page |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------|------|
| H3         Multi-Function Analog Inputs         556           H4         Multi-Function Analog Outputs         558           H5         MEMOBUS/Modbus Serial Communication         559           H6         Pulse Train Input/Output         560           L1         Motor Protection         562           L2         Momentary Power Loss Ride-Thru         563           L3         Stall Prevention         563           L4         Speed Detection         565           L5         Fault Restart         566           L6         Torque Detection         566           L7         Torque Limit         568           L8         Drive Protection 2         570           n1         Hunting Prevention         571           n2         Speed Feedback Detection Control (AFR)         571           n3         Speed Feedback Detection Control (AFR)         571           n4         Online Tuning         572           n5         Feed Forward Control         572           n6         Online Tuning         573           o1         Digital Operator Keypad Functions         577           o2         Digital Operator Keypad Functions         577           o3 <td>H1</td> <td>Multi-Function Digital Inputs</td> <td>547</td>   | H1                 | Multi-Function Digital Inputs       | 547  |
| H4   Multi-Function Analog Outputs   558     H5   MEMOBUS/Modbus Serial Communication   559     H6   Pulse Train Input/Output   560     L1   Motor Protection   562     L2   Momentary Power Loss Ride-Thru   563     L3   Stall Prevention   563     L4   Speed Detection   565     L5   Fault Restart   566     L6   Torque Detection   568     L8   Drive Protection   568     L8   Drive Protection   570     n1   Hunting Prevention   571     n2   Speed Feedback Detection Control (AFR)   571     n3   Feed Forward Control   572     n6   Online Tuning   573     o1   Digital Operator Display Selection   577     o2   Digital Operator Keypad Functions   577     o3   Copy Function   578     o4   Maintenance Monitor Settings   579     q   DriveWorksEZ Parameters   580     T1   Induction Motor Auto-Tuning   583     T3   ASR and Inertia Tuning   585     U1   Operation Status Monitors   590     U4   Maintenance Monitors   591     U5   PID Monitors   593     U8   DriveWorksEZ Monitors   595                                                                                                                                                                                                                                | H2                 | Multi-Function Digital Outputs      | 552  |
| H5   MEMOBUS/Modbus Serial Communication   559     H6   Pulse Train Input/Output   560     L1   Motor Protection   562     L2   Momentary Power Loss Ride-Thru   563     L3   Stall Prevention   565     L4   Speed Detection   565     L5   Fault Restart   566     L6   Torque Detection   568     L8   Drive Protection   568     L9   Drive Protection 2   570     n1   Hunting Prevention   571     n2   Speed Feedback Detection Control (AFR)   771     n3   Feed Forward Control   572     n6   Online Tuning   573     o1   Digital Operator Display Selection   577     o2   Digital Operator Keypad Functions   578     o4   Maintenance Monitor Settings   579     q   DriveWorksEZ Parameters   580     T1   Induction Motor Auto-Tuning   581     T2   PM Motor Auto-Tuning   583     T3   ASR and Inertia Tuning   585     U1   Operation Status Monitors   591     U3   Fault Trace   589     U4   Maintenance Monitor Settings   591     U5   PID Monitors   593     U8   DriveWorksEZ Monitors   595                                                                                                                                                                                                                                 | Н3                 | Multi-Function Analog Inputs        | 556  |
| H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H4                 | Multi-Function Analog Outputs       | 558  |
| L1         Motor Protection         562           L2         Momentary Power Loss Ride-Thru         563           L3         Stall Prevention         563           L4         Speed Detection         565           L5         Fault Restart         566           L6         Torque Detection         566           L7         Torque Limit         568           L8         Drive Protection         568           L9         Drive Protection 2         570           n1         Hunting Prevention         571           n2         Speed Feedback Detection Control (AFR)         571           n5         Feed Forward Control         572           n6         Online Tuning         572           n8         PM Motor Control Tuning         573           o1         Digital Operator Display Selection         577           o2         Digital Operator Keypad Functions         577           o3         Copy Function         578           o4         Maintenance Monitor Settings         579           q         DriveWorksEZ Parameters         580           r         DriveWorksEZ Connection Parameters         580           r         DriveWorksEZ Conn                                                                         | Н5                 | MEMOBUS/Modbus Serial Communication | 559  |
| L2         Momentary Power Loss Ride-Thru         563           L3         Stall Prevention         563           L4         Speed Detection         565           L5         Fault Restart         566           L6         Torque Detection         566           L7         Torque Limit         568           L8         Drive Protection         568           L9         Drive Protection 2         570           n1         Hunting Prevention         571           n2         Speed Feedback Detection Control (AFR)         571           n5         Feed Forward Control         572           n6         Online Tuning         572           n8         PM Motor Control Tuning         573           o1         Digital Operator Display Selection         577           o2         Digital Operator Keypad Functions         577           o3         Copy Function         578           o4         Maintenance Monitor Settings         579           q         DriveWorksEZ Parameters         580           r         DriveWorksEZ Connection Parameters         580           T1         Induction Motor Auto-Tuning         581           T2         PM Mo                                                                         | Н6                 | Pulse Train Input/Output            | 560  |
| L3         Stall Prevention         563           L4         Speed Detection         565           L5         Fault Restart         566           L6         Torque Detection         566           L7         Torque Limit         568           L8         Drive Protection         568           L9         Drive Protection 2         570           n1         Hunting Prevention         571           n2         Speed Feedback Detection Control (AFR) Tuning         571           n5         Feed Forward Control         572           n6         Online Tuning         572           n8         PM Motor Control Tuning         573           o1         Digital Operator Display Selection         577           o2         Digital Operator Keypad Functions         577           o3         Copy Function         578           o4         Maintenance Monitor Settings         579           q         DriveWorksEZ Parameters         580           r         DriveWorksEZ Connection Parameters         580           T1         Induction Motor Auto-Tuning         581           T2         PM Motor Auto-Tuning         585           U1         Operatio                                                                         | L1                 | Motor Protection                    | 562  |
| L4         Speed Detection         565           L5         Fault Restart         566           L6         Torque Detection         566           L7         Torque Limit         568           L8         Drive Protection         568           L9         Drive Protection 2         570           n1         Hunting Prevention         571           n2         Speed Feedback Detection Control (AFR) Tuning         571           n5         Feed Forward Control         572           n6         Online Tuning         572           n8         PM Motor Control Tuning         573           o1         Digital Operator Display Selection         577           o2         Digital Operator Keypad Functions         577           o3         Copy Function         578           o4         Maintenance Monitor Settings         579           q         DriveWorksEZ Parameters         580           r         DriveWorksEZ Connection Parameters         580           T1         Induction Motor Auto-Tuning         581           T2         PM Motor Auto-Tuning         585           U1         Operation Status Monitors         586           U2 <td< td=""><td>L2</td><td>Momentary Power Loss Ride-Thru</td><td>563</td></td<> | L2                 | Momentary Power Loss Ride-Thru      | 563  |
| L5         Fault Restart         566           L6         Torque Detection         566           L7         Torque Limit         568           L8         Drive Protection         568           L9         Drive Protection 2         570           n1         Hunting Prevention         571           n2         Speed Feedback Detection Control (AFR) Tuning         571           n5         Feed Forward Control         572           n6         Online Tuning         572           n8         PM Motor Control Tuning         573           o1         Digital Operator Display Selection         577           o2         Digital Operator Keypad Functions         577           o3         Copy Function         578           o4         Maintenance Monitor Settings         579           q         DriveWorksEZ Parameters         580           r         DriveWorksEZ Connection Parameters         580           T1         Induction Motor Auto-Tuning         581           T2         PM Motor Auto-Tuning         583           T3         ASR and Inertia Tuning         585           U2         Fault Trace         589           U3         Fault                                                                          | L3                 | Stall Prevention                    | 563  |
| L6         Torque Detection         566           L7         Torque Limit         568           L8         Drive Protection         568           L9         Drive Protection 2         570           n1         Hunting Prevention         571           n2         Speed Feedback Detection Control (AFR) Tuning         571           n5         Feed Forward Control         572           n6         Online Tuning         573           n8         PM Motor Control Tuning         573           o1         Digital Operator Display Selection         577           o2         Digital Operator Keypad Functions         577           o3         Copy Function         578           o4         Maintenance Monitor Settings         579           q         DriveWorksEZ Parameters         580           r         DriveWorksEZ Connection Parameters         580           T1         Induction Motor Auto-Tuning         581           T2         PM Motor Auto-Tuning         583           T3         ASR and Inertia Tuning         585           U1         Operation Status Monitors         580           U2         Fault Trace         589           U3                                                                            | L4                 | Speed Detection                     | 565  |
| L7         Torque Limit         568           L8         Drive Protection         568           L9         Drive Protection 2         570           n1         Hunting Prevention         571           n2         Speed Feedback Detection Control (AFR) Tuning         571           n5         Feed Forward Control         572           n6         Online Tuning         573           n8         PM Motor Control Tuning         573           o1         Digital Operator Display Selection         577           o2         Digital Operator Keypad Functions         577           o3         Copy Function         578           o4         Maintenance Monitor Settings         579           q         DriveWorksEZ Parameters         580           r         DriveWorksEZ Connection Parameters         580           T1         Induction Motor Auto-Tuning         581           T2         PM Motor Auto-Tuning         583           T3         ASR and Inertia Tuning         585           U2         Fault Trace         589           U3         Fault History         590           U4         Maintenance Monitors         591           U5         PI                                                                         | L5                 | Fault Restart                       | 566  |
| L8         Drive Protection         568           L9         Drive Protection 2         570           n1         Hunting Prevention         571           n2         Speed Feedback Detection Control (AFR) Tuning         571           n5         Feed Forward Control         572           n6         Online Tuning         573           n8         PM Motor Control Tuning         573           o1         Digital Operator Display Selection         577           o2         Digital Operator Keypad Functions         577           o3         Copy Function         578           o4         Maintenance Monitor Settings         579           q         DriveWorksEZ Parameters         580           r         DriveWorksEZ Connection Parameters         580           T1         Induction Motor Auto-Tuning         581           T2         PM Motor Auto-Tuning         583           T3         ASR and Inertia Tuning         585           U1         Operation Status Monitors         580           U2         Fault Trace         589           U3         Fault History         590           U4         Maintenance Monitors         591           U5                                                                       | L6                 | Torque Detection                    | 566  |
| L9         Drive Protection 2         570           n1         Hunting Prevention         571           n2         Speed Feedback Detection Control (AFR) Tuning         571           n5         Feed Forward Control         572           n6         Online Tuning         573           n8         PM Motor Control Tuning         573           o1         Digital Operator Display Selection         577           o2         Digital Operator Keypad Functions         577           o3         Copy Function         578           o4         Maintenance Monitor Settings         579           q         DriveWorksEZ Parameters         580           r         DriveWorksEZ Connection Parameters         580           T1         Induction Motor Auto-Tuning         581           T2         PM Motor Auto-Tuning         583           T3         ASR and Inertia Tuning         585           U1         Operation Status Monitors         580           U2         Fault Trace         589           U3         Fault History         590           U4         Maintenance Monitors         591           U5         PID Monitors         593           U6                                                                           | L7                 | Torque Limit                        | 568  |
| n1         Hunting Prevention         571           n2         Speed Feedback Detection Control (AFR) Tuning         571           n5         Feed Forward Control         572           n6         Online Tuning         572           n8         PM Motor Control Tuning         573           o1         Digital Operator Display Selection         577           o2         Digital Operator Keypad Functions         577           o3         Copy Function         578           o4         Maintenance Monitor Settings         579           q         DriveWorksEZ Parameters         580           r         DriveWorksEZ Connection Parameters         580           T1         Induction Motor Auto-Tuning         581           T2         PM Motor Auto-Tuning         583           T3         ASR and Inertia Tuning         585           U1         Operation Status Monitors         589           U3         Fault History         590           U4         Maintenance Monitors         591           U5         PID Monitors         593           U6         Operation Status Monitors         593           U8         DriveWorksEZ Monitors         595                                                                       | L8                 | Drive Protection                    | 568  |
| n2         Speed Feedback Detection Control (AFR) Tuning         571           n5         Feed Forward Control         572           n6         Online Tuning         572           n8         PM Motor Control Tuning         573           o1         Digital Operator Display Selection         577           o2         Digital Operator Keypad Functions         577           o3         Copy Function         578           o4         Maintenance Monitor Settings         579           q         DriveWorksEZ Parameters         580           r         DriveWorksEZ Connection Parameters         580           T1         Induction Motor Auto-Tuning         581           T2         PM Motor Auto-Tuning         583           T3         ASR and Inertia Tuning         585           U1         Operation Status Monitors         586           U2         Fault Trace         589           U3         Fault History         590           U4         Maintenance Monitors         591           U5         PID Monitors         593           U6         Operation Status Monitors         593           U8         DriveWorksEZ Monitors         595                                                                              | L9                 | Drive Protection 2                  | 570  |
| II2         Tuning         571           n5         Feed Forward Control         572           n6         Online Tuning         572           n8         PM Motor Control Tuning         573           o1         Digital Operator Display Selection         577           o2         Digital Operator Keypad Functions         577           o3         Copy Function         578           o4         Maintenance Monitor Settings         579           q         DriveWorksEZ Parameters         580           r         DriveWorksEZ Connection Parameters         580           T1         Induction Motor Auto-Tuning         581           T2         PM Motor Auto-Tuning         583           T3         ASR and Inertia Tuning         585           U1         Operation Status Monitors         586           U2         Fault Trace         589           U3         Fault History         590           U4         Maintenance Monitors         591           U5         PID Monitors         593           U6         Operation Status Monitors         593           U8         DriveWorksEZ Monitors         595                                                                                                                    | n1                 | Hunting Prevention                  | 571  |
| n6         Online Tuning         572           n8         PM Motor Control Tuning         573           o1         Digital Operator Display Selection         577           o2         Digital Operator Keypad Functions         577           o3         Copy Function         578           o4         Maintenance Monitor Settings         579           q         DriveWorksEZ Parameters         580           r         DriveWorksEZ Connection Parameters         580           T1         Induction Motor Auto-Tuning         581           T2         PM Motor Auto-Tuning         583           T3         ASR and Inertia Tuning         585           U1         Operation Status Monitors         586           U2         Fault Trace         589           U3         Fault History         590           U4         Maintenance Monitors         591           U5         PID Monitors         593           U6         Operation Status Monitors         593           U8         DriveWorksEZ Monitors         595                                                                                                                                                                                                                   | n2                 |                                     | 571  |
| n8         PM Motor Control Tuning         573           o1         Digital Operator Display Selection         577           o2         Digital Operator Keypad Functions         577           o3         Copy Function         578           o4         Maintenance Monitor Settings         579           q         DriveWorksEZ Parameters         580           r         DriveWorksEZ Connection Parameters         580           T1         Induction Motor Auto-Tuning         581           T2         PM Motor Auto-Tuning         583           T3         ASR and Inertia Tuning         585           U1         Operation Status Monitors         586           U2         Fault Trace         589           U3         Fault History         590           U4         Maintenance Monitors         591           U5         PID Monitors         593           U6         Operation Status Monitors         593           U8         DriveWorksEZ Monitors         595                                                                                                                                                                                                                                                                  | n5                 | Feed Forward Control                | 572  |
| o1         Digital Operator Display Selection         577           o2         Digital Operator Keypad Functions         577           o3         Copy Function         578           o4         Maintenance Monitor Settings         579           q         DriveWorksEZ Parameters         580           r         DriveWorksEZ Connection Parameters         580           T1         Induction Motor Auto-Tuning         581           T2         PM Motor Auto-Tuning         583           T3         ASR and Inertia Tuning         585           U1         Operation Status Monitors         586           U2         Fault Trace         589           U3         Fault History         590           U4         Maintenance Monitors         591           U5         PID Monitors         593           U6         Operation Status Monitors         593           U8         DriveWorksEZ Monitors         595                                                                                                                                                                                                                                                                                                                           | n6                 | Online Tuning                       | 572  |
| o2         Digital Operator Keypad Functions         577           o3         Copy Function         578           o4         Maintenance Monitor Settings         579           q         DriveWorksEZ Parameters         580           r         DriveWorksEZ Connection Parameters         580           T1         Induction Motor Auto-Tuning         581           T2         PM Motor Auto-Tuning         583           T3         ASR and Inertia Tuning         585           U1         Operation Status Monitors         586           U2         Fault Trace         589           U3         Fault History         590           U4         Maintenance Monitors         591           U5         PID Monitors         593           U6         Operation Status Monitors         593           U8         DriveWorksEZ Monitors         595                                                                                                                                                                                                                                                                                                                                                                                               | n8                 | PM Motor Control Tuning             | 573  |
| o3         Copy Function         578           o4         Maintenance Monitor Settings         579           q         DriveWorksEZ Parameters         580           r         DriveWorksEZ Connection Parameters         580           T1         Induction Motor Auto-Tuning         581           T2         PM Motor Auto-Tuning         583           T3         ASR and Inertia Tuning         585           U1         Operation Status Monitors         586           U2         Fault Trace         589           U3         Fault History         590           U4         Maintenance Monitors         591           U5         PID Monitors         593           U6         Operation Status Monitors         593           U8         DriveWorksEZ Monitors         595                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | o1                 | Digital Operator Display Selection  | 577  |
| 04         Maintenance Monitor Settings         579           q         DriveWorksEZ Parameters         580           r         DriveWorksEZ Connection Parameters         580           T1         Induction Motor Auto-Tuning         581           T2         PM Motor Auto-Tuning         583           T3         ASR and Inertia Tuning         585           U1         Operation Status Monitors         586           U2         Fault Trace         589           U3         Fault History         590           U4         Maintenance Monitors         591           U5         PID Monitors         593           U6         Operation Status Monitors         593           U8         DriveWorksEZ Monitors         595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | o2                 | Digital Operator Keypad Functions   | 577  |
| q         DriveWorksEZ Parameters         580           r         DriveWorksEZ Connection Parameters         580           T1         Induction Motor Auto-Tuning         581           T2         PM Motor Auto-Tuning         583           T3         ASR and Inertia Tuning         585           U1         Operation Status Monitors         586           U2         Fault Trace         589           U3         Fault History         590           U4         Maintenance Monitors         591           U5         PID Monitors         593           U6         Operation Status Monitors         593           U8         DriveWorksEZ Monitors         595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 03                 | Copy Function                       | 578  |
| r         DriveWorksEZ Connection Parameters         580           T1         Induction Motor Auto-Tuning         581           T2         PM Motor Auto-Tuning         583           T3         ASR and Inertia Tuning         585           U1         Operation Status Monitors         586           U2         Fault Trace         589           U3         Fault History         590           U4         Maintenance Monitors         591           U5         PID Monitors         593           U6         Operation Status Monitors         593           U8         DriveWorksEZ Monitors         595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | o4                 | Maintenance Monitor Settings        | 579  |
| T1         Induction Motor Auto-Tuning         581           T2         PM Motor Auto-Tuning         583           T3         ASR and Inertia Tuning         585           U1         Operation Status Monitors         586           U2         Fault Trace         589           U3         Fault History         590           U4         Maintenance Monitors         591           U5         PID Monitors         593           U6         Operation Status Monitors         593           U8         DriveWorksEZ Monitors         595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | q                  | DriveWorksEZ Parameters             | 580  |
| T2         PM Motor Auto-Tuning         583           T3         ASR and Inertia Tuning         585           U1         Operation Status Monitors         586           U2         Fault Trace         589           U3         Fault History         590           U4         Maintenance Monitors         591           U5         PID Monitors         593           U6         Operation Status Monitors         593           U8         DriveWorksEZ Monitors         595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r                  | DriveWorksEZ Connection Parameters  | 580  |
| T3         ASR and Inertia Tuning         585           U1         Operation Status Monitors         586           U2         Fault Trace         589           U3         Fault History         590           U4         Maintenance Monitors         591           U5         PID Monitors         593           U6         Operation Status Monitors         593           U8         DriveWorksEZ Monitors         595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T1                 | Induction Motor Auto-Tuning         | 581  |
| U1         Operation Status Monitors         586           U2         Fault Trace         589           U3         Fault History         590           U4         Maintenance Monitors         591           U5         PID Monitors         593           U6         Operation Status Monitors         593           U8         DriveWorksEZ Monitors         595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T2                 | PM Motor Auto-Tuning                | 583  |
| U2         Fault Trace         589           U3         Fault History         590           U4         Maintenance Monitors         591           U5         PID Monitors         593           U6         Operation Status Monitors         593           U8         DriveWorksEZ Monitors         595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T3                 | ASR and Inertia Tuning              | 585  |
| U3         Fault History         590           U4         Maintenance Monitors         591           U5         PID Monitors         593           U6         Operation Status Monitors         593           U8         DriveWorksEZ Monitors         595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U1                 | Operation Status Monitors           | 586  |
| U4         Maintenance Monitors         591           U5         PID Monitors         593           U6         Operation Status Monitors         593           U8         DriveWorksEZ Monitors         595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U2                 | Fault Trace                         | 589  |
| U5         PID Monitors         593           U6         Operation Status Monitors         593           U8         DriveWorksEZ Monitors         595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | U3                 | Fault History                       | 590  |
| U6 Operation Status Monitors 593 U8 DriveWorksEZ Monitors 595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U4                 | Maintenance Monitors                | 591  |
| U8 DriveWorksEZ Monitors 595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U5                 | PID Monitors                        | 593  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | U6                 | Operation Status Monitors           | 593  |
| U9 Power Monitors 595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | U8                 | DriveWorksEZ Monitors               | 595  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | U9                 | Power Monitors                      | 595  |

## **B.3** A: Initialization Parameters

The A parameter group creates the operating environment for the drive. This includes the parameter Access Level, Motor Control Method, Password, User Parameters and more.

#### **◆** A1: Initialization

| No.<br>(Addr.<br>Hex)            | Name                               | LCD Display                                                                                                                                      | Description                                                                                                                                                                                                                           | Values                                     | Page |
|----------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------|
| A1-00<br>(0100)<br>ORUN          | Language Selection                 | Select Language<br>0: English<br>1: ニホンゴ (Japanese)<br>2: Deutsch<br>3: Français<br>4: Italiano<br>5: Español<br>6: Portuguêse<br>7: 中文          | All Modes  0: English 1: Japanese 2: German 3: French 4: Italian 5: Spanish 6: Portuguese 7: Chinese                                                                                                                                  | Default: 0<br>Range: 0 to 7                | 186  |
| A1-01<br>(0101)<br>(0101)<br>(2> | Access Level Selection             | Access Level 0: Operation Only 1: User Parameters 2: Advanced Level                                                                              | All Modes  0: View and set A1-01 and A1-04. U□-□□ parameters can also be viewed.  1: User Parameters (access to a set of parameters selected by the user, A2-01 to A2-32)  2: Advanced Access (access to view and set all parameters) | Default: 2<br>Range: 0 to 2                | 186  |
| A1-02<br>(0102)<br><i></i>       | Control Method<br>Selection        | Control Method 0: V/f Control 1: V/f with PG 2: Open Loop Vector 3: Closed Loop Vect 5: PM OpenLoop Vect 6: PM AdvOpLoopVect 7: PM ClosedLoopVct | Open Loop Vector Control for PM     Advanced Open Loop Vector Control for PM                                                                                                                                                          | Default: 0<br>Range: 0 to 3;<br>5 to 7     | 186  |
| A1-03<br>(0103)                  | Initialize Parameters              | Init Parameters 0: No Initialize 1110: User Initialize 2220: 2-Wire Initial 3330: 3-Wire Initial 5550: Term->Cntrl Int                           | All Modes  0: No initialization 1110: User Initialize (parameter values must be stored using parameter o2-03) 2220: 2-Wire initialization 3330: 3-Wire initialization 5550: oPE04 error reset                                         | Default: 0<br>Range: 0 to<br>3330;<br>5550 | 187  |
| A1-04<br>(0104)                  | Password                           | Enter Password                                                                                                                                   | When the value set into A1-04 does not match the value set into A1-05, parameters A1-01 through A1-03, A1-06, A1-07, and A2-01 through A2-32 cannot be changed.                                                                       | Default: 0000<br>Min.: 0000<br>Max.: 9999  | 188  |
| A1-05<br>(0105)                  | Password Setting                   | Select Password                                                                                                                                  | When the value set into A1-04 does not match the value set into A1-05, parameters A1-01 through A1-03, A1-06, A1-07, and A2-01 through A2-32 cannot be changed.                                                                       | Default: 0000<br>Min.: 0000<br>Max.: 9999  | 188  |
| A1-06<br>(0127)                  | Application Preset                 | Application Sel 0: General 1: Pump 2: Conveyor 3: Exhaust Fan 4: Supply Fan 5: Compressor                                                        | All Modes  0: General-purpose 1: Water supply pump 2: Conveyor 3: Exhaust fan 4: HVAC fan 5: Air compressor                                                                                                                           | Default: 0<br>Range: 0 to 5                | 190  |
| A1-07<br>(0128)                  | DriveWorksEZ<br>Function Selection | DWEZ Func Sel 0: Disabled 1: Enabled 2: Terminal Control                                                                                         | All Modes  0: DWEZ Disabled 1: DWEZ Enabled 2: Digital input (enabled when H1-□□ = 9F)                                                                                                                                                | Default: 0<br>Range: 0 to 2                | 192  |

<sup>&</sup>lt;1> Parameter setting value is not reset to the default value when the drive is initialized.

<sup>&</sup>lt;2> Default setting value is determined by he Application Preset selected in parameter A1-06.

### ◆ A2: User Parameters

| No.<br>(Addr.<br>Hex)                  | Name                                  | LCD Display                                 | Description                                                                                                                                                                                                                                | Values                                       | Page |
|----------------------------------------|---------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------|
| A2-01 to<br>A2-32<br>(0106 to<br>0125) | User Parameters 1 to 32               | User Param 1 - 32                           | Recently edited parameters are listed here. The user can also                                                                                                                                                                              | Default: <1> <2><br>Range: b1-01 to<br>o4-19 | 192  |
| A2-33<br>(0126)                        | User Parameter<br>Automatic Selection | User Parms Sel<br>0: Disabled<br>1: Enabled | All Modes  0: Parameters A2-01 to A2-32 are reserved for the user to create a list of User Parameters.  1: Save history of recently viewed parameters. Recently edited parameters will be saved to A2-17 through A2-32 for quicker access. | Default: 1 <3>                               | 192  |

- <1> Default setting value is determined by the Application Preset selected in parameter A1-06.
- <2> This setting is the default setting of the Setup Group parameters. Refer to Setup Group Parameters on page 151 for details.
- <3> Default setting value is determined by parameter A1-06. Default is 0 when A1-06 = 0, and 1 when A1-06  $\neq$  0.

# **B.4** b: Application

Application parameters configure the source of the Run command, DC Injection Braking, Speed Search, timer functions, PID control, the Dwell function, Energy Savings, and a variety of other application-related settings.

### ♦ b1: Operation Mode Selection

| No.<br>(Addr.<br>Hex) | Name                                                  | LCD Display                                                                                        | Description                                                                                                                                                                                                                                                                                                    | Values                      | Page |
|-----------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------|
| b1-01<br>(0180)       | Frequency Reference<br>Selection 1                    | Ref Source 1<br>0: Operator<br>1: Analog Input<br>2: Serial Com<br>3: Option PCB<br>4: Pulse Input | All Modes  0: Digital operator 1: Analog input terminals 2: MEMOBUS/Modbus communications 3: Option PCB 4: Pulse train input (terminal RP)                                                                                                                                                                     | Default: 1<br>Range: 0 to 4 | 193  |
| b1-02<br>(0181)       | Run Command<br>Selection 1                            | Run Source 1 0: Operator 1: Digital Inputs 2: Communication 3: Option PCB                          | All Modes  0: Digital operator 1: Digital input terminals 2: MEMOBUS/Modbus communications 3: Option PCB                                                                                                                                                                                                       | Default: 1<br>Range: 0 to 3 | 194  |
| b1-03<br>(0182)       | Stopping Method<br>Selection                          | Stopping Method 0: Ramp to Stop 1: Coast to Stop 2: DCInj to Stop 3: Coast w/Timer                 | All Modes  0: Ramp to stop 1: Coast to stop 2: DC Injection Braking to stop 3: Coast with timer                                                                                                                                                                                                                | Default: 0 Range: 0 to 3    | 195  |
| b1-04<br>(0183)       | Reverse Operation<br>Selection                        | Reverse Oper<br>0: Reverse Enabled<br>1: Reverse Disabled                                          | All Modes 0: Reverse enabled. 1: Reverse disabled.                                                                                                                                                                                                                                                             | Default: 0<br>Range: 0, 1   | 198  |
| b1-05<br>(0184)       | Action Selection below<br>Minimum Output<br>Frequency | Zero-Speed Oper<br>0: RUN at Freq Ref<br>1: STOP<br>2: RUN at Min Freq<br>RUN at Zero PRM          | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Operates according to frequency reference (E1-09 is disabled). 1: Output shuts off (coast to stop if less than E1-09). 2: Operates according to E1-09 (frequency reference set to E1-09). 3: Zero speed (frequency reference becomes zero when less than E1-09). | Default: 0<br>Range: 0 to 3 | 198  |
| b1-06<br>(0185)       | Digital Input Reading                                 | Cntl Input Scans<br>0: 1 Scan<br>1: 2 Scans                                                        | O: Input status is read once and processed immediately (for quicker response) 1: Input is read twice and processed only if the status is the same in both readings (robust against noisy signals)                                                                                                              | Default: 1<br>Range: 0, 1   | 199  |
| b1-07<br>(0186)       | LOCAL/REMOTE Run<br>Selection                         | LOC/REM Dur Run<br>0: Cycle Extrn RUN<br>1: Accept Extrn RUN                                       | O: An external Run command must be cycled at the new source in order to be activated.  1: An external Run command at the new source is accepted immediately.                                                                                                                                                   | Default: 0<br>Range: 0, 1   | 200  |
| b1-08<br>(0187)       | Run Command Selection<br>in Programming Mode          | RUN dur PRG Mode<br>0: Run<br>Disabled@PRG<br>1: Run Enabled@PRG<br>2: Prg only @ Stop             | O: Run command is not accepted while in Programming Mode. 1: Run command is accepted while in Programming Mode. 2: Prohibit entering Programming Mode during run.                                                                                                                                              | Default: 0<br>Range: 0 to 2 | 200  |
| b1-14<br>(01C3)       | Phase Order Selection                                 | Rotation Sel 0: Standard 1: SwitchPhaseOrder                                                       | OLV/PM AOLV/PM CLV/PM  0: Standard  1: Switch phase order (reverses the direction of the motor)                                                                                                                                                                                                                | Default: 0<br>Range: 0, 1   | 200  |

| st |
|----|
| Ë  |
| -  |
| ij |
| Ĕ  |
| ā  |
| æ  |

| No.<br>(Addr.<br>Hex) | Name                                                          | LCD Display                                                                                        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Values                                    | Page |
|-----------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------|
| b1-15<br>(01C4)       | Frequency Reference<br>Selection 2                            | Ref Source 2<br>0: Operator<br>1: Analog Input<br>2: Serial Com<br>3: Option PCB<br>4: Pulse Input | All Modes  Enabled when an input terminal set for "External reference" (H1-□□ = 2) closes.  0: Digital operator 1: Terminals (analog input terminals) 2: MEMOBUS/Modbus communications 3: Option card 4: Pulse train input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Default: 0<br>Range: 0 to 4               | 200  |
| b1-16<br>(01C5)       | Run Command<br>Selection 2                                    | Run Source 2<br>0: Operator<br>1: Digital Inputs<br>2: Communication<br>3: Option PCB              | All Modes  Enabled when a terminal set for "External reference" (H1-□□ = 2) closes. 0: Digital operator 1: Digital input terminals 2: MEMOBUS/Modbus communications 3: Option card                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Default: 0<br>Range: 0 to 3               | 201  |
| b1-17<br>(01C6)       | Run Command at Power<br>Up                                    | Run Cmd @ Pwr On<br>0: Cycle Ext Run<br>1: Accept Ext Run                                          | All Modes  0: Disregarded. A new Run command must be issued after power up.  1: Allowed. Motor will start immediately after power up if a Run command is already enabled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Default: 0<br>Range: 0, 1                 | 201  |
| b1-21<br>(0748)       | Start Condition<br>Selection at Closed Loop<br>Vector Control | PG Start Sel<br>0: RejectRunCmd<br>1: AcceptRunCmd                                                 | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Selects a condition to start CLV control. There is normally no need to change this parameter from the default value. 0: Run command is not accepted when b2-01 ≤ motor speed < E1-09 1: Run command is accepted when b2-01 ≤ motor speed < E1-09                                                                                                                                                                                                                                                                                                                                                                                                                              | Default: 0<br>Range: 0, 1                 | 201  |
| b1-24<br>(0B2C)       | Commercial Power<br>Operation Switching<br>Selection          | CommerclPwrSwSel<br>0: Disabled<br>1: Enabled                                                      | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Disabled 1: Enabled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Default: 0<br>Range: 0, 1                 | 201  |
| b1-25<br>(0B2D)       | Commercial Power<br>Supply Operation<br>Cancellation Level    | Freq Deviate Lvl                                                                                   | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Default: 1.0 Hz<br>Min.: 0.4<br>Max.: 6.0 | 201  |
| b1-26<br>(0B2E)       | Commercial Power<br>Supply Operation<br>Switching Level       | Freq Accept Lvl                                                                                    | Sets the judgement value of the hysteresis comparator in the judgment section for the commercial power switching function in increments of 0.1 Hz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Default: 0.2 Hz<br>Min.: 0.0<br>Max.: 3.0 | 202  |
| b1-36<br>(119EH)      | Auto-Tuning Error<br>Detection                                |                                                                                                    | Vif Vif w PG OLV OLV/PM AOLV/PM CLV/PM Sets whether Er-04 (Line-to-Line Resistance Error) and Er-13 (Leakage Inductance Error) are detected during Auto-Tuning of the induction motor.  If Er-04 and Er-13 are detected during Auto-Tuning, set b1-36 = 1. Make sure to set the motor test report value manually to E2-05 (Motor Line-to-Line Resistance) and E2-06 (Motor Leakage Inductance), and then perform Auto-Tuning again. Even if detection conditions are established for Er-04 and Er-13 when setting b1-36 = 1, Auto-Tuning continues to be performed with the set values for E2-05 (Motor Line-to-Line Resistance) and E2-06 (Motor Leakage Inductance).  Note: This parameter is only displayed in models | Default: 0<br>Min: 0                      | 202  |
|                       |                                                               |                                                                                                    | CIMR-U $\square$ 4 $\square$ 0477 to 4 $\square$ 0930.<br>•0: Er-04 and Er-13 are detected<br>•1: Er-04 and Er-13 are not detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                           |      |

<sup>&</sup>lt;1> Setting range is 0, 1, 3 in CLV, OLV/PM, AOLV/PM, and CLV/PM control modes.

# ♦ b2: DC Injection Braking

| No.<br>(Addr.<br>Hex) | Name                                    | LCD Display      | Description                                                                                                                         | Values                                        | Page |
|-----------------------|-----------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------|
| b2-01<br>(0189)       | DC Injection Braking<br>Start Frequency | DCInj Start Freq | All Modes Sets the frequency at which DC Injection Braking starts when "Ramp to stop" (b1-03 = 0) is selected.                      | Default: <1> Min.: 0.0 Hz Max.: 10.0 Hz       | 202  |
| b2-02<br>(018A)       | DC Injection Braking<br>Current         | DCInj Current    | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the DC Injection Braking current as a percentage of the drive rated current.        | Default: 50%<br>Min.: 0<br>Max.: 100          | 203  |
| b2-03<br>(018B)       | DC Injection Braking<br>Time at Start   | DCInj Time@Start | All Modes Sets DC Injection Braking (Zero Speed Control when in CLV and CLV/PM) time at start. Disabled when set to 0.00 seconds.   | Default: 0.00 s<br>Min.: 0.00<br>Max.: 10.00  | 203  |
| b2-04<br>(018C)       | DC Injection Braking<br>Time at Stop    | DCInj Time@Stop  | All Modes Sets DC Injection Braking (Zero Speed Control when in CLV and CLV/PM) time at stop.                                       | Default: <1><br>Min.: 0.00 s<br>Max.: 10.00 s | 203  |
| b2-08<br>(0190)       | Magnetic Flux<br>Compensation Value     | Field Comp       | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the magnetic flux compensation as a percentage of the noload current value (E2-03). | Default: 0%<br>Min.: 0<br>Max.: 1000          | 203  |

<sup>&</sup>lt;1> Default setting is determined by parameter A1-02, Control Method Selection.

# ♦ b3: Speed Search

| No.<br>(Addr<br>Hex.) | Name                                                                                                                   | LCD Display                                   | Description                                                                                                                                                                                        | Values                                     | Page |
|-----------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------|
| b3-01<br>(0191)       | Speed Search Selection at Start                                                                                        | SpdSrch at Start<br>0: Disabled<br>1: Enabled | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Disabled 1: Enabled                                                                                                                                  | Default:  Range: 0, 1                      | 206  |
| b3-03<br>(0193)       | Speed Search<br>Deceleration Time                                                                                      | SpdSrch Dec Time                              | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets output frequency reduction time during Speed Search.                                                                                               | Default: 2.0 s<br>Min.: 0.1<br>Max.: 10.0  | 207  |
| b3-04<br>(0194)       | V/f Gain during Speed<br>Search<br>(Speed Estimation Type,<br>Speed Estimation Type<br>2, Current Detection<br>Type 2) | SpdSrch V/f                                   | V/f V/f w PG OLV CLV  OLV/PM AOLV/PM CLV/PM  Determines how much to lower the V/f ratio during Speed Search.  Output voltage during Speed Search equals the V/f setting multiplied by b3-04.       | Default: <2><br>Min.: 10%<br>Max.: 100%    | 207  |
| b3-05<br>(0195)       | Speed Search Delay<br>Time                                                                                             | Search Delay                                  | When using an external contactor on the output side, b3-05 delays executing Speed Search after a momentary power loss to allow time for the contactor to close.                                    | Default: 0.2 s<br>Min.: 0.0<br>Max.: 100.0 | 207  |
| b3-06<br>(0196)       | Output Current 1 during<br>Speed Search<br>(Speed Estimation Type)                                                     | Srch Im Lvl1                                  | OLV/PM AOLV/PM CLV/PM Sets the current injected to the motor at the beginning of Speed Estimation Speed Search. Set as a coefficient for the motor rated current.                                  | Default: <2><br>Min.: 0.0<br>Max.: 2.0     | 207  |
| b3-08<br>(0198)       | Current Control Gain<br>during Speed Search<br>(Speed Estimation Type)                                                 | Srch ACR P Gain                               | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the proportional gain for the current controller during Speed Search. There is normally no need to change this parameter from the default setting. | Default: <3><br>Min.: 0.00<br>Max.: 6.00   | 207  |

| No.<br>(Addr<br>Hex.) | Name                                                                                                                            | LCD Display                                                                                      | Description                                                                                                                                                                                                                                                                                                                             | Values                                        | Page |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------|
| b3-09<br>(0199H)      | Current Control Integral<br>Time during Speed<br>Search (Speed<br>Estimation Type)                                              | Srch ACR I Time                                                                                  | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the integral time for the current regulator during Speed Estimation Speed Search. Adjusts the responsiveness during the Speed Search.                                                                                                                                                   | Default: <1><br>Min: 0.0 ms<br>Max: 1000.0 ms | 207  |
| b3-10<br>(019A)       | Speed Search Detection<br>Compensation Gain<br>(Speed Estimation Type)                                                          | Srch Detect Comp                                                                                 | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the gain which is applied to the speed detected by Speed Estimation Speed Search before the motor is reaccelerated. Increase this setting if ov occurs when performing Speed Search after a relatively long period of baseblock.                                                        | Default: 1.05<br>Min.: 1.00<br>Max.: 1.20     | 208  |
| b3-14<br>(019E)       | Bi-Directional Speed<br>Search Selection<br>(Speed Estimation Type,<br>Speed Estimation 2<br>Type, Current Detection<br>3 Type) | Bidir Search Sel<br>0: Disabled<br>1: Enabled                                                    | OLV/PM AOLV/PM CLV/PM  0: Disabled (uses the direction of the frequency reference)  1: Enabled (drive detects which way the motor is rotating)                                                                                                                                                                                          | Default:  Range: 0, 1                         | 208  |
| b3-17<br>(01F0)       | Speed Search Restart<br>Current Level<br>(Speed Estimation Type)                                                                | SrchRestart Lvl                                                                                  | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the Speed Search restart current level as a percentage of the drive rated current.                                                                                                                                                                                                      | Default: 150%<br>Min.: 0<br>Max.: 200         | 208  |
| b3-18<br>(01F1)       | Speed Search Restart<br>Detection Time<br>(Speed Estimation Type)                                                               | SrchRestart Time                                                                                 | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the time to detect Speed Search restart.                                                                                                                                                                                                                                                | Default: 0.10 s<br>Min.: 0.00<br>Max.: 1.00   | 208  |
| b3-19<br>(01F2)       | Number of Speed Search<br>Restarts<br>(Speed Estimation Type)                                                                   | Num of SrchRestr                                                                                 | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the number of times the drive can attempt to restart when performing Speed Search.                                                                                                                                                                                                      | Default: 3<br>Min.: 0<br>Max.: 10             | 208  |
| b3-24<br>(01C0)       | Speed Search Method<br>Selection                                                                                                | SpdSrch Method 1: CurrentDetection 2: Speed Estimation 3: Speed Estimation2 4: CurrentDetection3 | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM  1: Current Detection 2: Speed Estimation 3: Speed Estimation 2 4: Current Detection 3                                                                                                                                                                                                       | Default: <3> Range: <5>                       | 208  |
| b3-25<br>(01C8)       | Speed Search Wait Time<br>(Speed Estimation Type)                                                                               | SpdSrch WaitTime                                                                                 | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the time the drive must wait between each Speed Search restart attempt.                                                                                                                                                                                                                 | Default: 0.5 s<br>Min.: 0.0<br>Max.: 30.0     | 209  |
| b3-27<br>(01C9)       | Start Speed Search<br>Select                                                                                                    | SPD Search By AI<br>0: start from 0<br>1: start SPD                                              | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Selects a condition to activate Speed Search Selection at Start (b3-01) or External Speed Search Command 1 or 2 from the multi-function input. 0: Triggered when a Run command is issued (normal). 1: Triggered when an external baseblock is released.                                      | Default: 0<br>Range: 0, 1                     | 209  |
| b3-29<br>(077C)       | Speed Search Induced<br>Voltage Level                                                                                           | SpdSrch Ind Vlvl                                                                                 | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Performs Speed Search when the motor induced voltage exceeds the set level. There is normally no need to change this parameter from the default value, but if changes are necessary, try lowering this value in small increments. When set too low, the drive will not perform Speed Search. | Default: 10%<br>Min.: 0<br>Max.: 10           | 209  |
| b3-31<br>(0BC0)       | Speed Search Operation<br>Current Level 1 (Current<br>Detection 1)                                                              | Search (I2) Lvl1                                                                                 | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Set the current level to use to limit the output current during a Speed Search.                                                                                                                                                                                                              | Default: 1.50<br>Min.: 1.50<br>Max.: 3.50     | 209  |

#### **B.4** b: Application

| No.<br>(Addr<br>Hex.) | Name                                                               | LCD Display                                   | Description                                                                                                                                                                                                                                                                                                                       | Values                                         | Page |
|-----------------------|--------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------|
| b3-32<br>(0BC1)       | Speed Search Operation<br>Current Level 2 (Current<br>Detection 2) | Search (I2) Lvl2                              | OLV/PM AOLV/PM CLV/PM Set the current level at which to end the Speed Search for Current Detection Type Speed Search 2.                                                                                                                                                                                                           | Default: 1.20<br>Min.: 0.00<br>Max.: 1.49      | 209  |
| b3-33<br>(0B3F)       | Speed Search Selection<br>when Run Command is<br>Given during Uv   | SpdSrch Start UV<br>0: Disabled<br>1: Enabled | All Modes  Activates and deactivates Speed Search at start in accordance with whether a Run command was issued during an undervoltage (Uv) condition. Function is active when a momentary power loss (L2-01 = 1 or 2), Speed Search at start (b3-01 = 1), and coasting to a stop (b1-03 = 1) are enabled.  0: Disabled 1: Enabled | Default: 0<br>Range: 0, 1                      | 210  |
| b3-50<br>(0BC7)       | Backspin Search<br>Direction Judgment<br>Time 1                    | Bkspin Srch Time1                             | V/f V/f w PG OLV CLV                                                                                                                                                                                                                                                                                                              | Default: 0.0 s<br>Min.: 0.0<br>Max.: 10.0      | 210  |
| b3-51<br>(0BC8)       | Backspin Search<br>Direction Judgment<br>Time 2                    | Bkspin Srch Time2                             | Adjusts the direction of Speed Search to allow for backspin.                                                                                                                                                                                                                                                                      | Default: 0.0 s<br>Min.: 0.0<br>Max.: 10.0      | 210  |
| b3-52<br>(0BC9)       | Backspin Search<br>Deceleration Time 1                             | BkspinSrchDecel1                              | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the search frequency deceleration rate when searching from the direction command when the momentary power loss time is shorter than the time set in b3-50.                                                                                                                        | Default: 2.0 s<br>Min.: 0.1<br>Max.: 10.0      | 211  |
| b3-53<br>(0BCA)       | Backspin Search<br>Deceleration Time 2                             | BkspinSrchDecel2                              | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the search frequency deceleration rate for a Speed Search from the opposite direction of the direction command when the momentary power loss time is equal to or longer than the time set in b3-51.                                                                               | Default: 2.0 s<br>Min.: 0.1<br>Max.: 10.0      | 212  |
| b3-59<br>(1B44H)      | PM Speed Search DC<br>Injection Braking Time<br>at Low Speed       | Srch DCInj Time                               | OLV/PM AOLV/PM CLV/PM Sets the DC Injection Braking time at low speed PM motor Speed Search.                                                                                                                                                                                                                                      | Default: 1.00 s<br>Min: 0.50 s<br>Max: 10.00 s | 212  |

- <1> Default setting is determined by parameter A1-02, Control Method Selection.
- <2> Default setting is determined by parameter o2-04, Drive Model Selection.
- <3> Default setting is determined by parameters A1-02, Control Method Selection, and o2-04, Drive Model Selection.
- <4> Available in drive software versions PRG: 1017 and later.
- <5> Setting range is determined by o2-04, Drive Model Selection. Range is 1, 2 in models 2□0028 to 2□0248 and 4□0011 to 4□0414. Range is 2 to 4 in models 4□0477 to 4□0930.

#### ♦ b4: Timer Function

| No.<br>(Addr.<br>Hex) | Name                              | LCD Display     | Description                                                                                       | Values                                      | Page |
|-----------------------|-----------------------------------|-----------------|---------------------------------------------------------------------------------------------------|---------------------------------------------|------|
| b4-01<br>(01A3)       | Timer Function On-<br>Delay Time  | Delay-ON Timer  | All Modes Sets the on-delay and off-delay times for a digital timer output $(H2-\Box\Box = 12)$ . | Default: 0.0 s<br>Min.: 0.0<br>Max.: 3000.0 | 212  |
| b4-02<br>(01A4)       | Timer Function Off-<br>Delay Time | Delay-OFF Timer | The output is triggered by a digital input programmed to $H1-\Box\Box=18$ ).                      | Default: 0.0 s<br>Min.: 0.0<br>Max.: 3000.0 | 212  |

| No.<br>(Addr.<br>Hex) | Name                 | LCD Display     | Description                                                                 | Values        | Page |
|-----------------------|----------------------|-----------------|-----------------------------------------------------------------------------|---------------|------|
| b4-03<br>(0B30)       | H2-01 ON Delay Time  | H2-01 ON Delay  | All Modes  Sets the length of the delay time for contact outputs to open or |               |      |
| b4-04<br>(0B31)       | H2-01 OFF Delay Time | H2-01 OFF Delay | close for the related functions set in H2- $\square\square$ .               |               |      |
| b4-05<br>(0B32)       | H2-02 ON Delay Time  | H2-02 ON Delay  |                                                                             | Default: 0 ms | 212  |
| b4-06<br>(0B33)       | H2-02 OFF Delay Time | H2-02 OFF Delay |                                                                             | Max.: 65000   | 212  |
| b4-07<br>(0B34)       | H2-03 ON Delay Time  | H2-03 ON Delay  |                                                                             |               |      |
| b4-08<br>(0B35)       | H2-03 OFF Delay Time | H2-03 OFF Delay |                                                                             |               |      |

### ♦ b5: PID Control

| No.<br>(Addr.<br>Hex)    | Name                               | LCD Display                                                                                                                                                                     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Values                                       | Page |
|--------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------|
| b5-01<br>(01A5)          | PID Function Setting               | PID Mode 0: Disabled 1: Enabled D=Fdbk 2: Enabled D=Fdfwd 3: Fref+PID D=Fdbk 4: Fref+PID D=Fdfwd 5: Enabled D=Fdfwd 6: Enabled D=Fdfwd 7: Fref+PID D=Fdbk2 8: Fref +PIDD=Fdfwd2 | O: Disabled 1: Enabled (PID output becomes output frequency reference, deviation D controlled) 2: Enabled (PID output becomes output frequency reference, feedback D controlled) 3: Enabled (PID output added to frequency reference, deviation D controlled) 4: Enabled (PID output added to frequency reference, feedback D controlled) 5: Mode compatible with setting 1 of similar products from a previous product line 6: Mode compatible with setting 2 of similar products from a previous product line 7: Mode compatible with setting 3 of similar products from a previous product line 8: Mode compatible with setting 4 of similar products from a previous product line Note:  If the drive is replaced with Varispeed F7 drive or a similar product from a previous product line, use settings 5 to 8 instead of settings 1 to 4. | Default: 0 <1> Range: 0 to 8                 | 216  |
| b5-02<br>(01A6)<br>◆RUN  | Proportional Gain<br>Setting (P)   | PID Gain                                                                                                                                                                        | All Modes Sets the proportional gain of the PID controller.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Default: 1.00<br>Min.: 0.00<br>Max.: 25.00   | 216  |
| b5-03<br>(01A7)<br>◆RUN  | Integral Time Setting (I)          | PID I Time                                                                                                                                                                      | All Modes Sets the integral time for the PID controller.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Default: 1.0 s<br>Min.: 0.0<br>Max.: 360.0   | 216  |
| b5-04<br>(01A8)<br>◆RUN  | Integral Limit Setting             | PID I Limit                                                                                                                                                                     | All Modes  Sets the maximum output possible from the integrator as a percentage of the maximum output frequency.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Default: 100.0%<br>Min.: 0.0<br>Max.: 100.0  | 216  |
| b5-05<br>(01A9)<br>◆RUN  | Derivative Time (D)                | PID D Time                                                                                                                                                                      | All Modes Sets D control derivative time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Default: 0.00 s<br>Min.: 0.00<br>Max.: 10.00 | 216  |
| b5-06<br>(01AA)<br>◆RUN  | PID Output Limit                   | PID Limit                                                                                                                                                                       | All Modes  Sets the maximum output possible from the entire PID controller as a percentage of the maximum output frequency.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Default: 100.0%<br>Min.: 0.0<br>Max.: 100.0  | 216  |
| b5-07<br>(01AB)<br>◆RUN  | PID Offset Adjustment              | PID Offset                                                                                                                                                                      | All Modes  Applies an offset to the PID controller output. Set as a percentage of the maximum output frequency.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Default: 0.0%<br>Min.: -100.0<br>Max.: 100.0 | 217  |
| b5-08<br>(01AC)<br>◆ RUN | PID Primary Delay Time<br>Constant | PID Delay Time                                                                                                                                                                  | All Modes Sets a low pass filter time constant on the output of the PID controller.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Default: 0.00 s<br>Min.: 0.00<br>Max.: 10.00 | 217  |

| No.<br>(Addr.<br>Hex)    | Name                                     | LCD Display                                                                                                                     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Values                                           | Page |
|--------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------|
| b5-09<br>(01AD)          | PID Output Level<br>Selection            | Output Level Sel<br>0: Normal Character<br>1: Rev Character                                                                     | All Modes 0: Normal output (direct acting) 1: Reverse output (reverse acting)                                                                                                                                                                                                                                                                                                                                                                                       | Default: 0<br>Range: 0, 1                        | 217  |
| b5-10<br>(01AE)<br>•◆RUN | PID Output Gain Setting                  | Output Gain                                                                                                                     | All Modes Sets the gain applied to the PID output.                                                                                                                                                                                                                                                                                                                                                                                                                  | Default: 1.00<br>Min.: 0.00<br>Max.: 25.00       | 217  |
| b5-11<br>(01AF)          | PID Output Reverse<br>Selection          | Output Rev Sel<br>0: 0 limit<br>1: Reverse                                                                                      | O: Negative PID output triggers zero limit. 1: Rotation direction reverses with negative PID output.  Note: When using setting 1, make sure reverse operation is permitted by b1-04.                                                                                                                                                                                                                                                                                | Default: 0<br>Range: 0, 1                        | 217  |
| b5-12<br>(01B0)          | PID Feedback Loss<br>Detection Selection | Fb loss Det Sel 0: Disabled 1: Alarm @ PID Enbl 2: Fault @ PID Enbl 3: DO Only@PID Enbl 4: Alarm @ PID Enbl 5: Fault @ PID Enbl | All Modes  0: No fault. Digital output only. 1: Fault detection. Alarm output, drive continues operation. 2: Fault detection. Fault output, drive output is shut off. 3: No fault. Digital output only. No fault detection when PID control is disabled. 4: Fault detection. Alarm is triggered and drive continues to run. Fault detection even when PID is disabled. 5: Fault detection. Drive output shuts off. No fault detection when PID control is disabled. | Default: 0<br>Range: 0 to 5                      | 218  |
| b5-13<br>(01B1)          | PID Feedback Low<br>Detection Level      | Fb loss Det Lvl                                                                                                                 | All Modes Sets the PID feedback low detection level as a percentage of the maximum output frequency.                                                                                                                                                                                                                                                                                                                                                                | Default: 0%<br>Min.: 0<br>Max.: 100              | 218  |
| b5-14<br>(01B2)          | PID Feedback Low<br>Detection Time       | Fb loss Det Time                                                                                                                | All Modes Sets a delay time for PID feedback loss.                                                                                                                                                                                                                                                                                                                                                                                                                  | Default: 1.0 s<br>Min.: 0.0<br>Max.: 25.5        | 219  |
| b5-15<br>(01B3)          | PID Sleep Function Start<br>Level        | PID Sleep Level                                                                                                                 | All Modes Sets the frequency level that triggers the sleep function.                                                                                                                                                                                                                                                                                                                                                                                                | Default: 0.0 Hz<br>Min.: 0.0<br>Max.: 400.0      | 219  |
| b5-16<br>(01B4)          | PID Sleep Delay Time                     | PID Sleep Time                                                                                                                  | All Modes Sets a delay time before the sleep function is triggered.                                                                                                                                                                                                                                                                                                                                                                                                 | Default: 0.0 s<br>Min.: 0.0<br>Max.: 25.5        | 219  |
| b5-17<br>(01B5)          | PID Accel/Decel Time                     | PID Acc/Dec Time                                                                                                                | All Modes Sets the acceleration and deceleration time to PID setpoint.                                                                                                                                                                                                                                                                                                                                                                                              | Default: 0.0 s<br>Min.: 0.0<br>Max.: 6000.0      | 220  |
| b5-18<br>(01DC)          | PID Setpoint Selection                   | PID Setpoint Sel<br>0: Disabled<br>1: Enabled                                                                                   | All Modes 0: Disabled 1: Enabled                                                                                                                                                                                                                                                                                                                                                                                                                                    | Default: 0<br>Range: 0, 1                        | 220  |
| b5-19<br>(01DD)<br>•⊕RUN | PID Setpoint Value                       | PID Setpoint                                                                                                                    | All Modes  Sets the PID target value when b5-18 = 1. Set as a percentage of the maximum output frequency.                                                                                                                                                                                                                                                                                                                                                           | Default: 0.00%<br>Min.: 0.00<br>Max.: 100.00     | 220  |
| b5-20<br>(01E2)          | PID Setpoint Scaling                     | PID Disp Scaling 0: 0.01Hz units 1: 0.01% units 2: r/min 3: User Units                                                          | All Modes  Sets the units for setting/display b5-19. 0: 0.01 Hz units 1: 0.01% units (100% = max output frequency) 2: r/min (number of motor poles must entered) 3: User-set (set scaling to b5-38 and b5-39)                                                                                                                                                                                                                                                       | Default: 1<br>Range: 0 to 3                      | 220  |
| b5-34<br>(019F)<br>•◆RUN | PID Output Lower Limit                   | PID Out Low Lim                                                                                                                 | All Modes Sets the minimum output possible from the PID controller as a percentage of the maximum output frequency.                                                                                                                                                                                                                                                                                                                                                 | Default: 0.00%<br>Min.: -100.00<br>Max.: 100.00  | 220  |
| b5-35<br>(01A0)<br>◆ RUN | PID Input Limit                          | PID Input Limit                                                                                                                 | All Modes  Limits the PID control input (deviation signal) as a percentage of the maximum output frequency. Acts as a bipolar limit.                                                                                                                                                                                                                                                                                                                                | Default:<br>1000.0%<br>Min.: 0.0<br>Max.: 1000.0 | 220  |
| b5-36<br>(01A1)          | PID Feedback High<br>Detection Level     | Fb High Det Lvl                                                                                                                 | All Modes  Sets the PID feedback high detection level as a percentage of the maximum output frequency.                                                                                                                                                                                                                                                                                                                                                              | Default: 100%<br>Min.: 0<br>Max.: 100            | 219  |

| No.<br>(Addr.<br>Hex) | Name                                                 | LCD Display                                                                              | Description                                                                                                                                                                                                                | Values                                    | Page |
|-----------------------|------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------|
| b5-37<br>(01A2)       | PID Feedback High<br>Detection Time                  | Fb High Dly Time                                                                         | All Modes Sets the PID feedback high level detection delay time.                                                                                                                                                           | Default: 1.0 s<br>Min.: 0.0<br>Max.: 25.5 | 219  |
| b5-38<br>(01FE)       | PID Setpoint User<br>Display                         | PID UsrDspMaxVal                                                                         | All Modes Sets the display value of U5-01 and U5-04 when the maximum frequency is output.                                                                                                                                  | Default: <2> Min.: 1 Max.: 60000          | 221  |
| b5-39<br>(01FF)       | PID Setpoint Display<br>Digits                       | PID UsrDspDigits 0: No Dec (XXXXX) 1: 1 Dec (XXXXX) 2: 2 Dec (XXX.XX) 3: 3 Dec (XXX.XXX) | All Modes  0: No decimal places 1: One decimal place 2: Two decimal places 3: Three decimal places                                                                                                                         | Default: A Range: 0 to 3                  | 221  |
| b5-40<br>(017F)       | Frequency Reference<br>Monitor Content during<br>PID | Fref Mon Sel@PID<br>0: Fref Mon w PID<br>1: Fref Mon w/o PID                             | O: Display the frequency reference (U1-01) after PID compensation has been added.  1: Display the frequency reference (U1-01) before PID compensation has been added.                                                      | Default: 0<br>Range: 0, 1                 | 221  |
| b5-47<br>(017D)       | Reverse Operation<br>Selection 2                     | Output Rev Sel2<br>0: 0 limit<br>1: Reverse                                              | Reverse operation selection when b5-01 = 3 or 4. 0: Zero limit when PID output is a negative value. 1: Reverse operation when PID output is a negative value (Zero limit if the reverse operation is prohibited by b1-04). | Default: 1<br>Range: 0, 1                 | 221  |

<sup>&</sup>lt;1> Default setting is determined by parameter o2-04, Drive Model Selection.

#### ◆ b6: Dwell Function

| No.<br>(Addr.<br>Hex) | Name                     | LCD Display      | Description                                                                                            | Values                                    | Page |
|-----------------------|--------------------------|------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------|------|
| b6-01<br>(01B6)       | Dwell Reference at Start | Dwell Ref @Start | Parameters b6-01 and b6-02 set the frequency to hold and the time to maintain that frequency at start. | Default: 0.0 Hz <1> Min.: 0.0 Max.: 400.0 | 223  |
| b6-02<br>(01B7)       | Dwell Time at Start      | Dwell Time@Start |                                                                                                        | Default: 0.0 s<br>Min.: 0.0<br>Max.: 10.0 | 223  |
| b6-03<br>(01B8)       | Dwell Reference at Stop  | Dwell Ref @Stop  | Parameters b6-03 and b6-04 set the frequency to hold and the time to maintain that frequency at stop.  | Default: 0.0 Hz <1> Min.: 0.0 Max.: 400.0 | 223  |
| b6-04<br>(01B9)       | Dwell Time at Stop       | Dwell Time @Stop |                                                                                                        | Default: 0.0 s<br>Min.: 0.0<br>Max.: 10.0 | 223  |

<sup>&</sup>lt;1> Default is 0.0% and setting range is 0.0 to 100.0% in AOLV/PM and CLV/PM.

### ♦ b7: Droop Control

| No.<br>(Addr.<br>Hex)    | Name                        | LCD Display      | Description                                                                                                                                              | Values                                      | Page |
|--------------------------|-----------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------|
| b7-01<br>(01CA)          | Droop Control Gain          | DROOP Quantity   | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the speed reduction gain applied at a torque reference of 100%. Set as a percentage of motor base speed. | Default: 0.0%<br>Min.: 0.0<br>Max.: 100.0   | 223  |
| b7-02<br>(01CB)<br>•◆RUN | Droop Control Delay<br>Time | DROOP Delay Time | OLV/PM AOLV/PM CLV/PM Adjusts the responsiveness of Droop Control.                                                                                       | Default: 0.05 s<br>Min.: 0.03<br>Max.: 2.00 | 224  |

<sup>&</sup>lt;2> Default setting is determined by parameter b5-20, PID Setpoint Scaling.

#### **B.4 b: Application**

| No.<br>(Addr.<br>Hex) | Name                             | LCD Display                                  | Description                                                       | Values                    | Page |
|-----------------------|----------------------------------|----------------------------------------------|-------------------------------------------------------------------|---------------------------|------|
| b7-03<br>(017E)       | Droop Control Limit<br>Selection | Droop Limit Sel<br>0: Disabled<br>1: Enabled | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Disabled 1: Enabled | Default: 1<br>Range: 0, 1 | 224  |

### ♦ b8: Energy Saving

| No.<br>(Addr.<br>Hex)    | Name                                                                       | LCD Display                                  | Description                                                                                                                                                                                                                                                                                                   | Values                                        | Page |
|--------------------------|----------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------|
| b8-01<br>(01CC)          | Energy Saving Control<br>Selection                                         | Energy Save Sel<br>0: Disabled<br>1: Enabled | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Disabled 1: Enabled                                                                                                                                                                                                                                             | Default:  Range: 0, 1                         | 224  |
| b8-02<br>(01CD)<br>◆ RUN | Energy Saving Gain                                                         | Energy Save Gain                             | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the gain used for Energy Saving.                                                                                                                                                                                                                              | Default: <1> Min.: 0.0 Max.: 10.0             | 224  |
| b8-03<br>(01CE)<br>◆RUN  | Energy Saving Control<br>Filter Time Constant                              | Energy Save F.T                              | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets a time constant for Energy Saving.                                                                                                                                                                                                                            | Default: <2><br>Min.: 0.00 s<br>Max.: 10.00 s | 225  |
| b8-04<br>(01CF)          | Energy Saving<br>Coefficient Value                                         | Energy Save COEF                             | OLV/PM AOLV/PM CLV/PM  Determines the level of maximum motor efficiency. Setting range is 0.0 to 2000.0 for drives 3.7 kW and smaller. The display resolution depends on the rated output current after the Drive Duty has been set in parameter C6-01. Refer to Model Number and Nameplate Check on page 36. | Default:                                      | 225  |
| b8-05<br>(01D0)          | Power Detection Filter<br>Time                                             | kW Filter Time                               | V/f W PG OLV CLV  OLV/PM AOLV/PM CLV/PM  Sets a time constant filter for output power detection.                                                                                                                                                                                                              | Default: 20 ms<br>Min.: 0<br>Max.: 2000       | 225  |
| b8-06<br>(01D1)          | Search Operation<br>Voltage Limit                                          | Search V Limit                               | OLV/PM AOLV/PM CLV/PM  Sets the limit for the voltage search operation as a percentage of the motor rated voltage.                                                                                                                                                                                            | Default: 0%<br>Min.: 0<br>Max.: 100           | 225  |
| b8-16<br>(01F8)          | Energy Saving<br>Parameter (Ki) for PM<br>Motors                           | PM Enrgy Save Ki                             | V/f V/f w PG OLV CLV  OLV/PM AOLV/PM CLV/PM  Coefficient to adjust torque linearity.  Set to the Ki value on the motor nameplate.  When parameter E5-01, Motor Code Selection (for PM Motors), is set to 1□□□ or 2□□□, the automatically calculated value will be set. This set value cannot be changed.      | Default: 1.00<br>Min.: 0.00<br>Max.: 3.00     | 225  |
| b8-17<br>(01F9)          | Energy Saving<br>Parameter (Kt) for PM<br>Motors                           | PM Enrgy Save Kt                             | OLV/PM AOLV/PM CLV/PM Coefficient to adjust torque linearity. Set to the Kt value on the motor nameplate. When parameter E5-01, Motor Code Selection (for PM Motors), is set to 1□□□□ or 2□□□, the automatically calculated value will be set. This set value cannot be changed.                              | Default: 1.00<br>Min.: 0.00<br>Max.: 3.00     | 225  |
| b8-27<br>(0B52)          | q-Axis Current<br>Compensation Method<br>when Output Voltage Is<br>Limited | Iq Comp Method                               | Vif Vif w PG OLV CLV  OLV/PM AOLV/PM CLV/PM  Sets a compensation method for the q-Axis current when output voltage is limited.  0: Output Voltage Limit Priority  1: q-Axis Current Priority  There is normally no need to change this parameter from the default value.                                      | Default: 0<br>Range: 0, 1                     | 226  |

<sup>&</sup>lt;1> Default setting is determined by parameter A1-02, Control Method Selection.

<sup>&</sup>lt;2> Default setting is determined by parameters A1-02, Control Method Selection, and o2-04, Drive Model Selection.

- <3> Default setting is determined by parameters o2-04, Drive Model Selection, and C6-01, Drive Duty Selection.
- <4> Parameter value changes automatically if E2-11 is manually changed or changed by Auto-Tuning.

#### ♦ b9: Zero Servo

| No.<br>(Addr.<br>Hex) | Name                           | LCD Display      | Description                                                                                                                   | Values                                | Page |
|-----------------------|--------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------|
| b9-01<br>(01DA)       | Zero Servo Gain                | Zero Servo Gain  | OLV/PM AOLV/PM CLV/PM Sets the position loop gain for the Zero Servo function.                                                | Default: 5<br>Min.: 0<br>Max.: 100    | 226  |
| b9-02<br>(01DB)       | Zero Servo Completion<br>Width | Zero Servo Count | OLV/PM AOLV/PM CLV/PM Sets the range to trigger an output terminal set for "Zero Servo Complete" during Zero Servo operation. | Default: 10<br>Min.: 0<br>Max.: 16383 | 227  |

# **B.5** C: Tuning

C parameters are used to adjust the acceleration and deceleration times, S-curves, torque compensation, and carrier frequency selections.

#### ◆ C1: Acceleration and Deceleration Times

| No.<br>(Addr.<br>Hex) | Name                                          | LCD Display                                        | Description                                                              | Values                                         | Page |
|-----------------------|-----------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------|------|
| C1-01<br>(0200)       | Acceleration Time 1                           | Accel Time 1                                       | All Modes Sets the time to accelerate from 0 to maximum frequency.       | Default: 10.0 s<br>Min.: 0.0                   | 228  |
| C1-02<br>(0201)       | Deceleration Time 1                           | Decel Time 1                                       | All Modes Sets the time to decelerate from maximum frequency to 0.       | Max.: 6000.0                                   | 228  |
| C1-03<br>(0202)       | Acceleration Time 2                           | Accel Time 2                                       | All Modes Sets the time to accelerate from 0 to maximum frequency.       | Default: 10.0 s<br>Min.: 0.0                   | 228  |
| C1-04<br>(0203)       | Deceleration Time 2                           | Decel Time 2                                       | All Modes Sets the time to decelerate from maximum frequency to 0.       | Max.: 6000.0                                   | 228  |
| C1-05<br>(0204)       | Acceleration Time 3<br>(Motor 2 Accel Time 1) | Accel Time 3                                       | All Modes Sets the time to accelerate from 0 to maximum frequency.       | Default: 10.0 s<br>Min.: 0.0                   | 228  |
| C1-06<br>(0205)       | Deceleration Time 3<br>(Motor 2 Decel Time 1) | Decel Time 3                                       | All Modes Sets the time to decelerate from maximum frequency to 0.       | Max.: 6000.0                                   | 228  |
| C1-07<br>(0206)       | Acceleration Time 4<br>(Motor 2 Accel Time 2) | Accel Time 4                                       | All Modes Sets the time to accelerate from 0 to maximum frequency.       | Default: 10.0 s<br>Min.: 0.0                   | 228  |
| C1-08<br>(0207)       | Deceleration Time 4<br>(Motor 2 Decel Time 2) | Decel Time 4                                       | All Modes Sets the time to decelerate from maximum frequency to 0.       | Max.: 6000.0                                   | 228  |
| C1-09<br>(0208)       | Fast Stop Time                                | Fast Stop Time                                     | All Modes Sets the time for the Fast Stop function.                      | Default: 10.0 s<br>Min.: 0.0<br>Max.: 6000.0   | 229  |
| C1-10<br>(0209)       | Accel/Decel Time<br>Setting Units             | Acc/Dec Units<br>0: 0.01 Seconds<br>1: 0.1 Seconds | All Modes 0: 0.01 s (0.00 to 600.00 s) 1: 0.1 s (0.0 to 6000.0 s)        | Default: 1<br>Range: 0, 1                      | 229  |
| C1-11<br>(020A)       | Accel/Decel Time<br>Switching Frequency       | Acc/Dec SW Freq                                    | All Modes Sets the frequency to switch between accel/decel time settings | Default: <2><br>Min.: 0.0 Hz<br>Max.: 400.0 Hz | 230  |

<sup>&</sup>lt;1> Setting range value is determined by parameter C1-10, Accel/Decel Time Setting Units. When C1-10 = 0 (units of 0.01 seconds), the setting range becomes 0.00 to 600.00 seconds.

<sup>&</sup>lt;2> Default setting is determined by parameter A1-02, Control Method Selection.

# ◆ C2: S-Curve Characteristics

| No.<br>(Addr.<br>Hex) | Name                                  | LCD Display      | Description                                                           | Values                                       | Page |
|-----------------------|---------------------------------------|------------------|-----------------------------------------------------------------------|----------------------------------------------|------|
| C2-01<br>(020B)       | S-Curve Characteristic at Accel Start | SCrv Acc @ Start | The S-curve can be controlled at the four points shown below.  ON OFF | Default: 0.20 s<br>Min.: 0.00<br>Max.: 10.00 | 230  |
| C2-02<br>(020C)       | S-Curve Characteristic at Accel End   | SCrv Acc @ End   | Run Command ON ON ON D Output Frequency D C2-02 C2-03 M M             | Default: 0.20 s<br>Min.: 0.00<br>Max.: 10.00 | 230  |
| C2-03<br>(020D)       | S-Curve Characteristic at Decel Start | SCrv Dec @ Start | C2-01 C2-04 Time                                                      | Default: 0.20 s<br>Min.: 0.00<br>Max.: 10.00 | 230  |
| C2-04<br>(020E)       | S-Curve Characteristic at Decel End   | SCrv Dec @ End   |                                                                       | Default: 0.00 s<br>Min.: 0.00<br>Max.: 10.00 | 230  |

<sup>&</sup>lt;1> Default setting is determined by parameter A1-02, Control Method Selection.

### ◆ C3: Slip Compensation

| No.<br>(Addr.<br>Hex)    | Name                                                  | LCD Display      | Description                                                                                                                                                          | Values                                 | Page |
|--------------------------|-------------------------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------|
| C3-01<br>(020F)<br>•⊕RUN | Slip Compensation Gain                                | Slip Comp Gain   | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the gain for the motor slip compensation function used for motor 1.                                                  | Default: Min.: 0.0 Max.: 2.5           | 230  |
| C3-02<br>(0210)<br>•◆RUN | Slip Compensation<br>Primary Delay Time               | Slip Comp Time   | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Adjusts the slip compensation function delay time used for motor 1.                                                       | Default:  Min.: 0 ms Max.: 10000 ms    | 231  |
| C3-03<br>(0211)          | Slip Compensation Limit                               | Slip Comp Limit  | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets an upper limit for the slip compensation function as a percentage of motor rated slip for motor 1 (E2-02).           | Default: 200%<br>Min.: 0<br>Max.: 250  | 231  |
| C3-04<br>(0212)          | Slip Compensation<br>Selection during<br>Regeneration | Slip Comp Regen  | V/f V/f w PG OLV CLV  OLV/PM AOLV/PM CLV/PM  0: Disabled.  1: Enabled above 6 Hz.  2: Enabled whenever slip compensation is possible.                                | Default: 0<br>Range: 0 to 2            | 231  |
| C3-05<br>(0213)          | Output Voltage Limit<br>Operation Selection           | Output V Lim Sel | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Disabled. 1: Enabled. Automatically decreases motor flux when output voltage saturation is reached.                    | Default: 0<br>Range: 0, 1              | 231  |
| C3-21<br>(033E)<br>•◆RUN | Motor 2 Slip<br>Compensation Gain                     | SlpCmp Gain Mtr2 | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the slip compensation gain used for motor 2.                                                                         | Default: <2> Min.: 0.0 Max.: 2.5       | 232  |
| C3-22<br>(0241)<br>•◆RUN | Motor 2 Slip<br>Compensation Primary<br>Delay Time    | Slip Comp Time 2 | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the slip compensation delay time used for motor 2.                                                                   | Default: <2> Min.: 0 ms Max.: 10000 ms | 232  |
| C3-23<br>(0242)          | Motor 2 Slip<br>Compensation Limit                    | Silp Comp Limit2 | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the upper limit for the slip compensation function for motor 2. Set as a percentage of the motor rated slip (E4-02). | Default: 200%<br>Min.: 0<br>Max.: 250  | 232  |

#### **B.5 C: Tuning**

| No.<br>(Addr.<br>Hex) | Name                                                          | LCD Display         | Description | Values                      | Page |
|-----------------------|---------------------------------------------------------------|---------------------|-------------|-----------------------------|------|
| C3-24<br>(0243)       | Motor 2 Slip<br>Compensation Selection<br>During Regeneration | 2: Lowst possbl spd | 1           | Default: 0<br>Range: 0 to 2 | 232  |

- <1> Default setting is determined by parameter A1-02, Control Method Selection.
- <2> Default setting is determined by parameter E3-01, Motor 2 Control Mode Selection.

### ◆ C4: Torque Compensation

| No.<br>(Addr.<br>Hex) | Name                                        | LCD Display      | Description                                                                                                                                                               | Values                                     | Page |
|-----------------------|---------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------|
| C4-01<br>(0215)       | Torque Compensation<br>Gain                 | Torq Comp Gain   | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the gain for the automatic torque (voltage) boost function and helps to produce better starting torque. Used for motor 1. | Default:  Min.: 0.00 Max.: 2.50            | 233  |
| C4-02<br>(0216)       | Torque Compensation<br>Primary Delay Time 1 | Torq Comp Time   | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the torque compensation filter time.                                                                                      | Default: <2> Min.: 0 ms Max.: 60000 ms     | 233  |
| C4-03<br>(0217)       | Torque Compensation at<br>Forward Start     | F TorqCmp@start  | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets torque compensation at forward start as a percentage of motor torque.                                                     | Default: 0.0%<br>Min.: 0.0<br>Max.: 200.0  | 233  |
| C4-04<br>(0218)       | Torque Compensation at<br>Reverse Start     | R TorqCmp@start  | OLV/PM AOLV/PM CLV/PM Sets torque compensation at reverse start as a percentage of motor torque.                                                                          | Default: 0.0%<br>Min.: -200.0<br>Max.: 0.0 | 233  |
| C4-05<br>(0219)       | Torque Compensation<br>Time Constant        | TorqCmp Delay T  | OLV/PM AOLV/PM CLV/PM Sets the time constant for torque compensation at forward start and reverse start (C4-03 and C4-04).                                                | Default: 10 ms<br>Min.: 0<br>Max.: 200     | 234  |
| C4-07<br>(0341)       | Motor 2 Torque<br>Compensation Gain         | TrqCmp Gain Mtr2 | OLV/PM AOLV/PM CLV/PM Sets the torque compensation gain used for motor 2.                                                                                                 | Default: 1.00<br>Min.: 0.00<br>Max.: 2.50  | 234  |

- <1> Default setting is determined by parameter A1-02, Control Method Selection.
- <2> Default setting is determined by parameters A1-02, Control Method Selection, and o2-04, Drive Model Selection.

# ◆ C5: Automatic Speed Regulator (ASR)

| No.<br>(Addr.<br>Hex) | Name                    | LCD Display  | Description                                                                                               | Values                                 | Page |
|-----------------------|-------------------------|--------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------|------|
| C5-01<br>(021B)       | ASR Proportional Gain 1 | ASR P Gain 1 | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the proportional gain of the speed control loop (ASR).    | Default:   Min.: 0.00   Max.: 300.00   | 236  |
| C5-02<br>(021C)       | ASR Integral Time 1     | ASR I Time 1 | OLV/PM AOLV/PM CLV/PM Sets the integral time of the speed control loop (ASR).                             | Default:  Min.: 0.000 s Max.: 10.000 s | 236  |
| C5-03<br>(021D)       | ASR Proportional Gain 2 | ASR P Gain 2 | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the speed control gain 2 of the speed control loop (ASR). | Default:  Min.: 0.00 Max.: 300.00 <2>  | 236  |

В

| No.<br>(Addr.<br>Hex)    | Name                                     | LCD Display      | Description                                                                                                                                                                                                           | Values                                               | Page |
|--------------------------|------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------|
| C5-04<br>(021E)          | ASR Integral Time 2                      | ASR I Time 2     | OLV/PM AOLV/PM CLV/PM Sets the integral time 2 of the speed control loop (ASR).                                                                                                                                       | Default:  Min.: 0.000 s Max.: 10.000 s               | 236  |
| C5-05<br>(021F)          | ASR Limit                                | ASR Limit        | OLV/PM AOLV/PM CLV/PM  Sets the upper limit for the speed control loop (ASR) as a percentage of the maximum output frequency (E1-04).                                                                                 | Default: 5.0%<br>Min.: 0.0<br>Max.: 20.0             | 237  |
| C5-06<br>(0220)          | ASR Primary Delay<br>Time Constant       | ASR Delay Time   | OLV/PM AOLV/PM CLV/PM  Sets the filter time constant for the time from the speed loop to the torque command output.                                                                                                   | Default: <1> Min.: 0.000 s Max.: 0.500 s             | 237  |
| C5-07<br>(0221)          | ASR Gain Switching<br>Frequency          | ASR Gain Switch  | OLV/PM AOLV/PM CLV/PM  Sets the frequency for switching between proportional gain 1, 2 and integral time 1, 2.                                                                                                        | Default: 0.0 Hz<br>Min.: 0.0<br>Max.: 400.0          | 237  |
| C5-08<br>(0222)          | ASR Integral Limit                       | ASR I Limit      | OLV/PM AOLV/PM CLV/PM  Sets the ASR integral upper limit as a percentage of rated load torque.                                                                                                                        | Default: 400%<br>Min.: 0<br>Max.: 400                | 237  |
| C5-12<br>(0386)          | Integral Operation<br>during Accel/Decel | Acc/Dec I Sel    | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM  0: Disabled. Integral functions are enabled only during constant speed.  1: Enabled. Integral functions are always enabled, during accel/decel and during constant speed. | Default: 0<br>Range: 0, 1                            | 237  |
| C5-17<br>(0276)          | Motor Inertia                            | Motor Inertia    | OLV/PM AOLV/PM CLV/PM Sets the motor inertia. This value is automatically set during ASR or Inertia Auto-Tuning.                                                                                                      | Default: <3> <4> Min.: 0.0001 kgm² Max.: 600.00 kgm² | 238  |
| C5-18<br>(0277)          | Load Inertia Ratio                       | Load Inertia     | OLV/PM AOLV/PM CLV/PM  Sets the ratio between the motor and load inertia. This value is automatically set during ASR or Inertia Auto-Tuning.                                                                          | Default: 1.0<br>Min.: 0.0<br>Max.: 6000.0            | 238  |
| C5-21<br>(0356)<br>•⊕RUN | Motor 2 ASR<br>Proportional Gain 1       | ASR P Gain1 Mtr2 | OLV/PM AOLV/PM CLV/PM  Sets the proportional gain of the speed control loop (ASR) for motor 2.                                                                                                                        | Default: <5><br>Min.: 0.00<br>Max.: 300.00           | 238  |
| C5-22<br>(0357)<br>•⊕RUN | Motor 2 ASR Integral<br>Time 1           | ASR I Time1 Mtr2 | OLV/PM AOLV/PM CLV/PM  Sets the integral time of the speed control loop (ASR) for motor 2.                                                                                                                            | Default: <5><br>Min.: 0.000 s<br>Max.: 10.000 s      | 238  |
| C5-23<br>(0358)          | Motor 2 ASR<br>Proportional Gain 2       | ASR P Gain2 Mtr2 | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the speed control gain 2 of the speed control loop (ASR) for motor 2.                                                                                                 | Default: <5><br>Min.: 0.00<br>Max.: 300.00 <2>       | 238  |
| C5-24<br>(0359)          | Motor 2 ASR Integral<br>Time 2           | ASR I Time2 Mtr2 | OLV/PM AOLV/PM CLV/PM  Sets the integral time 2 of the speed control loop (ASR) for motor 2.                                                                                                                          | Default: <5><br>Min.: 0.000 s<br>Max.: 10.000 s      | 238  |
| C5-25<br>(035A)          | Motor 2 ASR Limit                        | ASR Limit Mtr2   | OLV/PM AOLV/PM CLV/PM  Sets the upper limit for the speed control loop (ASR) for motor 2 as a percentage of the maximum output frequency (E3-04).                                                                     | Default: 5.0%<br>Min.: 0.0<br>Max.: 20.0             | 238  |

| No.<br>(Addr.<br>Hex) | Name                                                    | LCD Display                                  | Description                                                                                                                                                                                                                                 | Values                                                           | Page |
|-----------------------|---------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------|
| C5-26<br>(035B)       | Motor 2 ASR Primary<br>Delay Time Constant              | ASR Dly Time 2                               | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the filter time constant for the time from the speed loop to the torque command output used for motor 2.                                                                                    | Default: <5> Min.: 0.000 s Max.: 0.500 s                         | 238  |
| C5-27<br>(035C)       | Motor 2 ASR Gain<br>Switching Frequency                 | ASRGainSwitch2                               | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the frequency for motor 2 used to switch between proportional gain 1 and 2, and between the integral time 1 and 2.                                                                          | Default: 0.0 Hz<br>Min.: 0.0<br>Max.: 400.0                      | 238  |
| C5-28<br>(035D)       | Motor 2 ASR Integral<br>Limit                           | ASR I limit 2                                | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the ASR integral upper limit for motor 2 as a percentage of rated load torque.                                                                                                              | Default: 400%<br>Min.: 0<br>Max.: 400                            | 239  |
| C5-32<br>(0361)       | Integral Operation<br>during Accel/Decel for<br>Motor 2 | Acc/Dec I Sel 2<br>0: Disabled<br>1: Enabled | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Disabled. Integral functions for motor 2 are enabled only during constant speed. 1: Enabled. Integral functions are always enabled for motor 2, during accel/decel and during constant speed. | Default: 0<br>Range: 0, 1                                        | 239  |
| C5-37<br>(0278)       | Motor 2 Inertia                                         | Motor Inertia 2                              | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the inertia of motor 2 alone without the load. This value is automatically set during ASR or Inertia Auto-Tuning.                                                                           | Default: <3> <4><br>Min.: 0.0001<br>kgm²<br>Max.: 600.00<br>kgm² | 239  |
| C5-38<br>(0279)       | Motor 2 Load Inertia<br>Ratio                           | Load Inertia 2                               | OLV/PM AOLV/PM CLV/PM Sets the ratio between the motor 2 and machine inertia. This value is automatically set during ASR or Inertia Auto-Tuning.                                                                                            | Default: 1.0<br>Min.: 0.0<br>Max.: 6000.0                        | 239  |

- <1> Default setting is determined by parameter A1-02, Control Method Selection.
- <2> The setting range is 1.00 to 300.00 in CLV and AOLV/PM control modes.
- <3> Default setting is dependent on parameter E5-01, Motor Code Selection.
- <4> Default setting is dependent on parameters C6-01, Drive Duty Selection, and o2-04, Drive Model Selection.
- <5> Default setting is determined by parameter E3-01, Motor 2 Control Mode Selection.

### **♦** C6: Carrier Frequency

| No.<br>(Addr.<br>Hex) | Name                           | LCD Display                                                                                                         | Description                                                                                                                                                                       | Values               | Page |
|-----------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------|
| C6-01<br>(0223)       | Drive Duty Selection           | Heavy/NormalDuty<br>0: Heavy Duty<br>1: Normal Duty                                                                 | 0: Heavy Duty (HD) Overload capability: 150% of drive rated Heavy Duty current for 60 s 1: Normal Duty (ND) Overload capability: 120% of drive rated Normal Duty current for 60 s | Range: 0, 1          | 239  |
| C6-02<br>(0224)       | Carrier Frequency<br>Selection | CarrierFreq Sel<br>0: Fc=3.0 kHz<br>1: Fc=4.0 kHz<br>2: Fc=6.0 kHz<br>3: Fc=8.0 kHz<br>4: Fc=10.0 kHz<br>F: Program | All Modes  0: 3.0 kHz 1: 4.0 kHz 2: 6.0 kHz 3: 8.0 kHz 4: 10.0 kHz F: User-defined (determined by C6-03 to C6-05)  Note: Setting F is not available when A1-02 = 6 (AOLV/PM).     | Default:  Range: <2> | 240  |

| No.<br>(Addr.<br>Hex) | Name                                                   | LCD Display                                | Description                                                                                                                                                                                                                                                                                                                 | Values                                          | Page |
|-----------------------|--------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------|
| C6-03<br>(0225)       | Carrier Frequency Upper<br>Limit                       | CarrierFreq Max                            | Note: C6-04 and C6-05 are available only in V/f and                                                                                                                                                                                                                                                                         | Default: <3><br>Min.: 3.0 kHz<br>Max.: 10.0 kHz | 240  |
| C6-04<br>(0226)       | Carrier Frequency<br>Lower Limit                       | CarrierFreq Min                            | V/f w/PG control modes.  Determines the upper and lower limits for the carrier frequency. In OLV, C6-03 determines the upper limit of the carrier frequency.                                                                                                                                                                | Default: <3><br>Min.: 3.0 kHz<br>Max.: 10.0 kHz | 240  |
| C6-05<br>(0227)       | Carrier Frequency<br>Proportional Gain                 | CarrierFreq Gain                           | Carrier Frequency  C6-03  C6-04  Output Frequency  × (C6-05)  Output  Frequency  Max Output  Frequency  Max Output  Frequency  Max Output  Frequency  Note:  Setting range of C6-04 and C6-05 is 4.0 to 10.0  kHz for models 2□0028 to 2□0248, 4□0011 to  4□0414. Setting value is only 3 kHz for models  4□0477 to 4□0930. |                                                 | 240  |
| C6-09<br>(022B)       | Carrier Frequency<br>during Rotational Auto-<br>Tuning | Carrier in tune 0: Fc = 5kHz 1: Fc = C6-03 | V/f V/f w PG OLV CLV  OLV/PM AOLV/PM CLV/PM  0: Carrier Frequency = 4 kHz.  Note: Carrier frequency is 3 kHz for models 4□0477 to 4□0930.  1: Setting value for C6-03.                                                                                                                                                      | Default: 0<br>Range: 0, 1                       | 241  |

- <1> Default setting value is determined by parameters A1-02, Control Method Selection, C6-01, Drive Duty Selection, and o2-04, Drive Model Selection.
- <2> Setting range is determined by o2-04, Drive Model Selection. Range is 1 to 4 and F in models 2□0028 to 2□0248 and 4□0011 to 4□0414. Range is 0, F in models 4□0477 to 4□0930.
- <3> Default setting value is determined by parameters C6-02, Carrier Frequency Selection, and o2-04, Drive Model Selection.
- <4> Default setting value is determined by parameter C6-02, Carrier Frequency Selection.

### ◆ C7: Voltage Adjustment

| No.<br>(Addr.<br>Hex) | Name                                   | LCD Display                                                 | Description                                                                                                                                                                                                                                                | Values                                  | Page |
|-----------------------|----------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------|
| C7-43<br>(112A)       | Input Voltage Offset<br>Adjustment     | InputVolt Offset                                            | All Modes  Adjusts the offset for the input voltage circuit when the control board is replaced.  0000: Standard  0002: Offset adjustment not required                                                                                                      | Default: 0000<br>Range: 0000 to<br>9999 | 241  |
| C7-56<br>(1107)       | Power Factor Control<br>Selection      | PF Control Sel<br>0: PF Ctrl Disabled<br>1: PF Ctrl Enabled | All Modes 0: Power factor control disabled 1: Power factor control enabled                                                                                                                                                                                 | Default: 0<br>Range: 0, 1               | 241  |
| C7-60<br>(0B1C)       | Output Voltage Limit<br>Mode Selection | V Out Limit Sel<br>0: Limit Harmonics<br>1: Improve PF      | O: Harmonic suppression priority mode 1: High output voltage mode  Note: For drives with software versions PRG: 1021 or later, the default setting is 0 (Harmonic Suppression Priority Mode) when in Advanced Open Loop Vector Control for PM (A1–02 = 6). | Default:  Range: 0, 1                   | 241  |

<sup>&</sup>lt;1> Default setting is determined by the control mode (A1–02).

# **B.6** d: Reference Settings

Reference parameters set the various frequency reference values during operation.

### ♦ d1: Frequency Reference

| No.<br>(Addr.<br>Hex)     | Name                  | LCD Display | Description                                                                                                                                                                                                                            | Values                                             | Page |
|---------------------------|-----------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------|
| d1-01<br>(0280)<br>•◆RUN  | Frequency Reference 1 | Reference 1 | All Modes  Sets the frequency reference for the drive. Setting units are determined by parameter o1-03.  Note: The value set to o1-03 is changed to 1 and the unit is changed to percentage automatically when A1-02 is set to 6 or 7. | Default: 0.00 Hz<br>Min.: 0.00<br>Max.: 400.00     | 243  |
| d1-02<br>(0281)<br>•◆RUN  | Frequency Reference 2 | Reference 2 | All Modes  Sets the frequency reference for the drive. Setting units are determined by parameter o1-03.  Note: The value set to o1-03 is changed to 1 and the unit is changed to percentage automatically when A1-02 is set to 6 or 7. | Default: 0.00 Hz<br>Min.: 0.00<br>Max.: 400.00 <1> | 243  |
| d1-03<br>(0282)<br>•• RUN | Frequency Reference 3 | Reference 3 | All Modes  Sets the frequency reference for the drive. Setting units are determined by parameter o1-03.  Note: The value set to o1-03 is changed to 1 and the unit is changed to percentage automatically when A1-02 is set to 6 or 7. | Default: 0.00 Hz<br>Min.: 0.00<br>Max.: 400.00 <1> | 243  |
| d1-04<br>(0283)           | Frequency Reference 4 | Reference 4 | All Modes  Sets the frequency reference for the drive. Setting units are determined by parameter o1-03.  Note: The value set to o1-03 is changed to 1 and the unit is changed to percentage automatically when A1-02 is set to 6 or 7. | Default: 0.00 Hz<br>Min.: 0.00<br>Max.: 400.00     | 243  |
| d1-05<br>(0284)<br>◆RUN   | Frequency Reference 5 | Reference 5 | All Modes  Sets the frequency reference for the drive. Setting units are determined by parameter o1-03.  Note: The value set to o1-03 is changed to 1 and the unit is changed to percentage automatically when A1-02 is set to 6 or 7. | Default: 0.00 Hz<br>Min.: 0.00<br>Max.: 400.00     | 243  |
| d1-06<br>(0285)           | Frequency Reference 6 | Reference 6 | All Modes  Sets the frequency reference for the drive. Setting units are determined by parameter o1-03.  Note: The value set to o1-03 is changed to 1 and the unit is changed to percentage automatically when A1-02 is set to 6 or 7. | Default: 0.00 Hz<br>Min.: 0.00<br>Max.: 400.00 <1> | 243  |
| d1-07<br>(0286)<br>◆RUN   | Frequency Reference 7 | Reference 7 | All Modes  Sets the frequency reference for the drive. Setting units are determined by parameter o1-03.  Note: The value set to o1-03 is changed to 1 and the unit is changed to percentage automatically when A1-02 is set to 6 or 7. | Default: 0.00 Hz<br>Min.: 0.00<br>Max.: 400.00 <1> | 243  |
| d1-08<br>(0287)<br>◆RUN   | Frequency Reference 8 | Reference 8 | All Modes  Sets the frequency reference for the drive. Setting units are determined by parameter o1-03.  Note: The value set to o1-03 is changed to 1 and the unit is changed to percentage automatically when A1-02 is set to 6 or 7. | Default: 0.00 Hz<br>Min.: 0.00<br>Max.: 400.00 <1> | 243  |

| No.<br>(Addr.<br>Hex)   | Name                       | LCD Display   | Description                                                                                                                                                                                                                            | Values                                             | Page |
|-------------------------|----------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------|
| d1-09<br>(0288)<br>◆RUN | Frequency Reference 9      | Reference 9   | All Modes  Sets the frequency reference for the drive. Setting units are determined by parameter o1-03.  Note: The value set to o1-03 is changed to 1 and the unit is changed to percentage automatically when A1-02 is set to 6 or 7. | Default: 0.00 Hz<br>Min.: 0.00<br>Max.: 400.00 <1> | 243  |
| d1-10<br>(028B)<br>◆RUN | Frequency Reference 10     | Reference 10  | All Modes  Sets the frequency reference for the drive. Setting units are determined by parameter o1-03.  Note: The value set to o1-03 is changed to 1 and the unit is changed to percentage automatically when A1-02 is set to 6 or 7. | Default: 0.00 Hz<br>Min.: 0.00<br>Max.: 400.00 <1> | 243  |
| d1-11<br>(028C)<br>◆RUN | Frequency Reference 11     | Reference 11  | All Modes  Sets the frequency reference for the drive. Setting units are determined by parameter o1-03.  Note: The value set to o1-03 is changed to 1 and the unit is changed to percentage automatically when A1-02 is set to 6 or 7. | Default: 0.00 Hz<br>Min.: 0.00<br>Max.: 400.00 <1> | 243  |
| d1-12<br>(028D)<br>◆RUN | Frequency Reference 12     | Reference 12  | All Modes  Sets the frequency reference for the drive. Setting units are determined by parameter o1-03.  Note: The value set to o1-03 is changed to 1 and the unit is changed to percentage automatically when A1-02 is set to 6 or 7. | Default: 0.00 Hz<br>Min.: 0.00<br>Max.: 400.00 <1> | 243  |
| d1-13<br>(028E)<br>◆RUN | Frequency Reference 13     | Reference 13  | All Modes  Sets the frequency reference for the drive. Setting units are determined by parameter o1-03.  Note: The value set to o1-03 is changed to 1 and the unit is changed to percentage automatically when A1-02 is set to 6 or 7. | Default: 0.00 Hz<br>Min.: 0.00<br>Max.: 400.00 <1> | 243  |
| d1-14<br>(028F)<br>◆RUN | Frequency Reference 14     | Reference 14  | All Modes  Sets the frequency reference for the drive. Setting units are determined by parameter o1-03.  Note: The value set to o1-03 is changed to 1 and the unit is changed to percentage automatically when A1-02 is set to 6 or 7. | Default: 0.00 Hz<br>Min.: 0.00<br>Max.: 400.00 <1> | 243  |
| d1-15<br>(0290)<br>◆RUN | Frequency Reference 15     | Reference 15  | All Modes  Sets the frequency reference for the drive. Setting units are determined by parameter o1-03.  Note: The value set to o1-03 is changed to 1 and the unit is changed to percentage automatically when A1-02 is set to 6 or 7. | Default: 0.00 Hz<br>Min.: 0.00<br>Max.: 400.00 <1> | 243  |
| d1-16<br>(0291)<br>◆RUN | Frequency Reference 16     | Reference 16  | All Modes  Sets the frequency reference for the drive. Setting units are determined by parameter o1-03.  Note: The value set to o1-03 is changed to 1 and the unit is changed to percentage automatically when A1-02 is set to 6 or 7. | Default: 0.00 Hz<br>Min.: 0.00<br>Max.: 400.00 <1> | 243  |
| d1-17<br>(0292)<br>◆RUN | Jog Frequency<br>Reference | Jog Reference | All Modes  Sets the Jog frequency reference. Setting units are determined by parameter o1-03.  Note: Setting A1-02 to 6 or 7 will automatically change o1-03 to 1 and unit to %.                                                       | Default: 6.00 Hz<br>Min.: 0.00<br>Max.: 400.00     | 243  |

Range upper limit is determined by parameters d2-01, Frequency Reference Upper Limit, and E1-04, Maximum Output Frequency.

<sup>&</sup>lt;2> The value of o1-03 is changed to 1 and the unit is also changed to a percentage (%) when the control mode is set to CLV/PM or AOLV/PM.

### d2: Frequency Upper/Lower Limits

| No.<br>(Addr.<br>Hex.) | Name                                  | LCD Display      | Description                                                                                                                 | Setting                                     | Page |
|------------------------|---------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------|
| d2-01<br>(0289)        | Frequency Reference<br>Upper Limit    | Ref Upper Limit  | All Modes Sets the frequency reference upper limit as a percentage of the maximum output frequency.                         | Default: 100.0%<br>Min.: 0.0<br>Max.: 110.0 | 245  |
| d2-02<br>(028A)        | Frequency Reference<br>Lower Limit    | Ref Lower Limit  | All Modes Sets the frequency reference lower limit as a percentage of the maximum output frequency.                         | Default: 0.0%<br>Min.: 0.0<br>Max.: 110.0   | 245  |
| d2-03<br>(0293)        | Master Speed Reference<br>Lower Limit | Refl Lower Limit | All Modes Sets the lower limit for frequency references from analog inputs as a percentage of the maximum output frequency. | Default: 0.0%<br>Min.: 0.0<br>Max.: 110.0   | 246  |

#### ♦ d3: Jump Frequency

| No.<br>(Addr.<br>Hex) | Name                 | LCD Display    | Description                                                                                                                                                                                                                                                                                                                 | Values                                       | Page |
|-----------------------|----------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------|
| d3-01<br>(0294)       | Jump Frequency 1     | Jump Freq 1    | Eliminates problems with resonant vibration of the motor/machine by avoiding continuous operation in predefined frequency ranges. The drive accelerates and decelerates the motor through the prohibited frequency ranges. Setting 0.0 disables this function. Parameters must be set so that $d3-01 \ge d3-02 \ge d3-03$ . | Default: 0.0 Hz<br>Min.: 0.0  Max.: 400.0    | 246  |
| d3-02<br>(0295)       | Jump Frequency 2     | Jump Freq 2    | Eliminates problems with resonant vibration of the motor/machine by avoiding continuous operation in predefined frequency ranges. The drive accelerates and decelerates the motor through the prohibited frequency ranges. Setting 0.0 disables this function. Parameters must be set so that $d3-01 \ge d3-02 \ge d3-03$ . | Default: 0.0 Hz     Min.: 0.0  Max.: 400.0   | 246  |
| d3-03<br>(0296)       | Jump Frequency 3     | Jump Freq 3    | Eliminates problems with resonant vibration of the motor/machine by avoiding continuous operation in predefined frequency ranges. The drive accelerates and decelerates the motor through the prohibited frequency ranges. Setting 0.0 disables this function. Parameters must be set so that $d3-01 \ge d3-02 \ge d3-03$ . | Default: 0.0 Hz    Min.: 0.0 <br Max.: 400.0 | 246  |
| d3-04<br>(0297)       | Jump Frequency Width | Jump Bandwidth | All Modes  Sets the dead-band width around each selected prohibited frequency reference point.                                                                                                                                                                                                                              | Default: 1.0 Hz<br>Min.: 0.0<br>Max.: 20.0   | 246  |

<sup>&</sup>lt;1> Default setting is determined by parameter A1-02, Control Method Selection.

### ♦ d4: Frequency Reference Hold and Up/Down 2 Function

| No.<br>(Addr.<br>Hex)    | Name                                           | LCD Display      | Description                                                                                                                                                              | Values                                        | Page |
|--------------------------|------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------|
| d4-01<br>(0298)          | Frequency Reference<br>Hold Function Selection | 1: Enabled       | All Modes  0: Disabled. Drive starts from zero when the power is switched on.  1: Enabled. At power up, the drive starts the motor at the Hold frequency that was saved. | Range: 0 1                                    | 247  |
| d4-03<br>(02AA)<br>•⊕RUN | Frequency Reference<br>Bias Step (Up/Down 2)   | Up/Dn 2 Step Lvl | All Modes Sets the bias added to the frequency reference when the Up 2 and Down 2 digital inputs are enabled (H1- $\square\square$ = 75, 76).                            | Default: 0.00 Hz<br>Min.: 0.00<br>Max.: 99.99 | 249  |

<sup>&</sup>lt;2> Default setting is 0.0% and setting range is 0.0 to 100.0% in AOLV/PM and CLV/PM.

| No.<br>(Addr.<br>Hex)   | Name                                                                | LCD Display                                                   | Description                                                                                                                                                                                                                                                                                                                                   | Values                                      | Page |
|-------------------------|---------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------|
| d4-04<br>(02AB)<br>◆RUN | Frequency Reference<br>Bias Accel/Decel (Up/<br>Down 2)             | Up/Dn 2 Ramp Sel<br>0: Sel Acc/Dec Time<br>1: Acc/Dec Time 4  | All Modes  0: Use selected accel/decel time. 1: Use accel/decel time 4 (C1-07 and C1-08).                                                                                                                                                                                                                                                     | Default: 0<br>Range: 0, 1                   | 250  |
| d4-05<br>(02AC)         | Frequency Reference<br>Bias Operation Mode<br>Selection (Up/Down 2) | Up/Dn 2 Bias Sel<br>0: Hold Bias Value<br>1: Reset Bias Value | O: Bias value is held if no input Up 2 or Down 2 is active.  1: When the Up 2 reference and Down 2 reference are both on or both off, the applied bias becomes 0. The specified accel/decel times are used for acceleration or deceleration.                                                                                                  | Default: 0<br>Range: 0, 1                   | 250  |
| d4-06<br>(02AD)         | Frequency Reference<br>Bias (Up/Down 2)                             | Up/Dn 2 Bias Lvl                                              | All Modes  The Up/Down 2 bias value is saved in d4-06 when the frequency reference is not input by the digital operator. Set as a percentage of the maximum output frequency.                                                                                                                                                                 | Default: 0.0%<br>Min.: -99.9<br>Max.: 100.0 | 250  |
| d4-07<br>(02AE)         | Analog Frequency<br>Reference Fluctuation<br>Limit (Up/Down 2)      | Up/Dn 2 FluctLim                                              | Limits how much the frequency reference is allowed to change while an input terminal set for Up 2 or Down 2 is enabled. If the frequency reference changes for more than the set value, then the bias value is held and the drive accelerates or decelerates to the frequency reference. Set as a percentage of the maximum output frequency. | Default: 1.0%<br>Min.: 0.1<br>Max.: 100.0   | 251  |
| d4-08<br>(02AF)         | Frequency Reference<br>Bias Upper Limit (Up/<br>Down 2)             | Up/Dn 2 UpperLim                                              | All Modes Sets the upper limit for the bias and the value that can be saved in d4-06. Set as a percentage of the maximum output frequency.                                                                                                                                                                                                    | Default: 100.0%<br>Min.: 0.0<br>Max.: 100.0 | 251  |
| d4-09<br>(02B0)<br>◆RUN | Frequency Reference<br>Bias Lower Limit (Up/<br>Down 2)             | Up/Dn 2 LowerLim                                              | All Modes Sets the lower limit for the bias and the value that can be saved in d4-06. Set as a percentage of the maximum output frequency.                                                                                                                                                                                                    | Default: 0.0%<br>Min.: -99.9<br>Max.: 0.0   | 251  |
| d4-10<br>(02B6)         | Up/Down Frequency<br>Reference Limit<br>Selection                   | Up/Dn LowLim Sel<br>0: D2-02 or Analog<br>1: D2-02 Only       | O: The lower limit is determined by d2-02 or an analog input.  1: The lower limit is determined by d2-02.                                                                                                                                                                                                                                     | Default: 0<br>Range: 0, 1                   | 251  |

# ♦ d5: Torque Control

| No.<br>(Addr.<br>Hex) | Name                           | LCD Display                                            | Description                                                                                                                                                                                                                                     | Values                                 | Page |
|-----------------------|--------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------|
| d5-01<br>(029A)       | Torque Control<br>Selection    | Torq Control Sel 0: Speed Control 1: Torque Control    | OLV/PM AOLV/PM CLV/PM  0: Speed Control 1: Torque Control Set to 0 when using a digital input to switch between Speed and Torque Control (H1-□□ = 71).                                                                                          | Default: 0<br>Range: 0, 1              | 255  |
| d5-02<br>(029B)       | Torque Reference Delay<br>Time | Tq Ref Dly Time                                        | OLV/PM AOLV/PM CLV/PM  Sets a delay time for the torque reference signal. Used to suppress effects by noisy or fluctuating torque reference signals.                                                                                            | Default:  Min.: 0 Max.: 1000           | 255  |
| d5-03<br>(029C)       | Speed Limit Selection          | Speed Limit Sel<br>1: Fref Limit<br>2: Speed Limit Sel | OLV/PM AOLV/PM CLV/PM  1: Limit set by the frequency reference in b1-01. 2: Limit set by d5-04.                                                                                                                                                 | Default: 1<br>Range: 1, 2              | 255  |
| d5-04<br>(029D)       | Speed Limit                    | Speed Limit Val                                        | V/f V/f w PG OLV CLV/PM OLV/PM AOLV/PM CLV/PM Sets the speed limit during Torque Control as a percentage of the maximum output frequency. Enabled when d5-03 = 2. A negative setting sets a limit in the opposite direction of the Run command. | Default: 0%<br>Min.: -120<br>Max.: 120 | 255  |

#### **B.6 d: Reference Settings**

| No.<br>(Addr.<br>Hex) | Name                                    | LCD Display                                   | Description                                                                                                                                                                                                   | Values                                 | Page |
|-----------------------|-----------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------|
| d5-05<br>(029E)       | Speed Limit Bias                        | Speed Limit Bias                              | OLV/PM AOLV/PM CLV/PM  Sets the speed limit bias as a percentage of the maximum output frequency.  The bias is applied to the specified speed limit and can adjust the margin for the speed limit.            | Default: 10%<br>Min.: 0<br>Max.: 120   | 255  |
| d5-06<br>(029F)       | Speed/Torque Control<br>Switchover Time | Spd/Trq Sw Timer                              | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM  Sets the delay time for switching between Speed and Torque Control using an input terminal (H1-□□ = 71). Reference values are held during this switch delay time. | Default: 0 ms<br>Min.: 0<br>Max.: 1000 | 256  |
| d5-08<br>(02B5)       | Unidirectional Speed<br>Limit Bias      | UnidirSpdLimBias<br>0: Disabled<br>1: Enabled | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Disabled 1: Enabled                                                                                                                                             | Default: 1<br>Range: 0, 1              | 256  |

<sup>&</sup>lt;1> Default setting is determined by parameter A1-02, Control Method Selection.

# ◆ d6: Field Weakening and Field Forcing

| No.<br>(Addr<br>Hex.) | Name                               | LCD Display                                  | Description                                                                                                                                                                                                                                                                     | Values                                      | Page |
|-----------------------|------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------|
| d6-01<br>(02A0)       | Field Weakening Level              | Field-Weak Lvl                               | OLV CLV OLV/PM AOLV/PM CLV/PM Sets the drive output voltage for the Field Weakening function as a percentage of the maximum output voltage. Enabled when a multi-function input is set for Field Weakening (H1-□□ = 63).                                                        | Default: 80%<br>Min.: 0<br>Max.: 100        | 256  |
| d6-02<br>(02A1)       | Field Weakening<br>Frequency Limit | Fiel-Weak Freq                               | OLV CLV OLV/PM AOLV/PM CLV/PM Sets the lower limit of the frequency range where Field Weakening control is valid. The Field Weakening command is valid only at frequencies above this setting and only when the output frequency matches the frequency reference (speed agree). | Default: 0.0 Hz<br>Min.: 0.0<br>Max.: 400.0 | 256  |
| d6-03<br>(02A2)       | Field Forcing Selection            | Field Force Sel<br>0: Disabled<br>1: Enabled | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Disabled 1: Enabled                                                                                                                                                                                                               | Default: 0<br>Range: 0, 1                   | 256  |
| d6-06<br>(02A5)       | Field Forcing Limit                | FieldForce Limit                             | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the upper limit of the excitation current command during magnetic field forcing. A setting of 100% is equal to motor noload current. Disabled only during DC Injection Braking.                                                 | Default: 400%<br>Min.: 100<br>Max.: 400     | 256  |

### ♦ d7: Offset Frequency

| No.<br>(Addr.<br>Hex) | Name               | LCD Display   | Description                                                                                                                                                                                         | Setting                                      | Page |
|-----------------------|--------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------|
| d7-01<br>(02B2)       | Offset Frequency 1 | Offset Freq 1 | All Modes  Added to the frequency reference when the digital input "Frequency offset 1" (H1- $\square\square$ = 44) is switched on. A setting of 100% is equal to the drive maximum output current. | Default: 0.0%<br>Min.: -100.0<br>Max.: 100.0 | 257  |
| d7-02<br>(02B3)       | Offset Frequency 2 | Offset Freq 2 | All Modes  Added to the frequency reference when the digital input "Frequency offset 2" (H1- $\square\square$ = 45) is switched on. A setting of 100% is equal to the drive maximum output current. | Default: 0.0%<br>Min.: -100.0<br>Max.: 100.0 | 257  |

| _ | - |   |
|---|---|---|
|   | 7 | Ξ |
|   | ю | Ξ |

| (Ad<br>He   | dr.  | Name               | LCD Display  | Description | Setting                                      | Page |
|-------------|------|--------------------|--------------|-------------|----------------------------------------------|------|
| d7-<br>(02) | D 4) | Offset Frequency 3 | onset rieq s |             | Default: 0.0%<br>Min.: -100.0<br>Max.: 100.0 | 257  |

# **B.7** E: Motor Parameters

### ◆ E1: V/f Pattern for Motor 1

| No.<br>(Addr.<br>Hex)  | Name                                 | LCD Display                                                                                                                                                                                                                                                | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Values                                           | Page |
|------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------|
| E1-03<br>(0302)        | V/f Pattern Selection                | V/F Selection 0: 50 Hz 1: 60 Hz Saturation 2: 50 Hz Saturation 3: 72 Hz 4: 50 Hz VT1 5: 50 Hz VT2 6: 60 Hz VT1 7: 60 Hz VT2 8: 50 Hz HST1 9: 50 Hz HST1 9: 50 Hz HST2 A: 60 Hz HST1 B: 60 Hz HST1 B: 60 Hz HST2 C: 90 Hz D: 120 Hz E: 180 Hz F: Custom V/F | V/f V/f w PG OLV  OLV/PM AOLV/PM CLV/PM  0: 50 Hz, Constant torque 1 1: 60 Hz, Constant torque 2 2: 60 Hz, Constant torque 3 (50 Hz base) 3: 72 Hz, Constant torque 4 (60 Hz base) 4: 50 Hz, Variable torque 1 5: 50 Hz, Variable torque 2 6: 60 Hz, Variable torque 2 7: 60 Hz, Variable torque 1 7: 60 Hz, Variable torque 1 9: 50 Hz, High starting torque 1 9: 50 Hz, High starting torque 2 A: 60 Hz, High starting torque 3 B: 60 Hz, High starting torque 3 B: 60 Hz, High starting torque 4 C: 90 Hz (60 Hz base) D: 120 Hz (60 Hz base) E: 180 Hz (60 Hz base) F: Custom V/f, E1-04 through E1-13 settings define the V/f pattern | Default: F <2> Range: 0 to 9; A to F <3>         | 258  |
| E1-04<br>(0303)        | Maximum Output<br>Frequency          | Max Frequency                                                                                                                                                                                                                                              | All Modes  Parameters E1-04 and E1-06 to E1-13 can only be changed when E1-03 is set to F.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Default: <4> <5> Min.: 40.0 Max.: 400.0 <6>      | 261  |
| E1-05<br>(0304)        | Maximum Voltage                      | Max Voltage                                                                                                                                                                                                                                                | To set linear V/f characteristics, set the same values for E1-07 and E1-09. In this case, the setting for E1-08 will be disregarded. Ensure that the five frequencies are set according to the following rules to prevent triggering an oPE10 fault:                                                                                                                                                                                                                                                                                                                                                                                       | Default: <1> <5> Min.: 0.0 V Max.: 255.0 V <1>   | 261  |
| E1-06<br>(0305)        | Base Frequency                       | Base Frequency                                                                                                                                                                                                                                             | $E1 - 09 \le E1 - 07 \le E1 - 06 \le E1 - 11 \le E1 - 04$<br>Setting E1-11 to 0 disables both E1-11 and E1-12 and the above conditions do not apply.  Output Voltage (V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Default: <4> <5><br>Min.: 0.0<br>Max.: E1-04 <6> | 261  |
| E1-07<br>(0306)        | Middle Output<br>Frequency           | Mid Frequency A                                                                                                                                                                                                                                            | E1-05 E1-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Default: 4><br>Min.: 0.0<br>Max.: E1-04          | 261  |
| E1-08<br>(0307)        | Middle Output<br>Frequency Voltage   | Mid Voltage A                                                                                                                                                                                                                                              | E1-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Default: <1> Min.: 0.0 V Max.: 255.0 V <1>       | 261  |
| E1-09<br>(0308)        | Minimum Output<br>Frequency          | Min Frequency                                                                                                                                                                                                                                              | E1-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Default: <4> <5><br>Min.: 0.0<br>Max.: E1-04 <6> | 261  |
| E1-10<br>(0309)        | Minimum Output<br>Frequency Voltage  | Min Voltage                                                                                                                                                                                                                                                | E1-09 E1-07 E1-06 E1-11 E1-04 Frequency (Hz)  Note: Some parameters may not be available                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Default: 4><br>Min.: 0.0 V<br>Max.: 255.0 V      | 261  |
| E1-11<br>(030A)<br><8> | Middle Output<br>Frequency 2         | Mid Frequency B                                                                                                                                                                                                                                            | depending on the control mode.  • E1-07, E1-08, and E1-10 are available only in the following control modes: V/f Control, V/f with PG, Open Loop Vector.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Default: 0.0 Hz<br>Min.: 0.0<br>Max.: E1-04      | 261  |
| E1-12<br>(030B)<br><8> | Middle Output<br>Frequency Voltage 2 | Mid Voltage B                                                                                                                                                                                                                                              | E1-11, E1-12, and E1-13 are available only in the following control modes: V/f Control, V/f with PG, Open Loop Vector, Closed Loop Vector.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Default: 0.0 V<br>Min.: 0.0<br>Max.: 255.0 V     | 261  |
| E1-13<br>(030C)        | Base Voltage                         | Base Voltage                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Default: 0.0 V<br><7> Min.: 0.0 Max.: 255.0 V >  | 261  |

| No.<br>(Addr.<br>Hex) | Name                  | LCD Display   | Description                                                                                                                                            | Values                                                               | Page |
|-----------------------|-----------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------|
| E1-22<br>(1BB1)       | Input Voltage Setting | Input Voltage | All Modes Sets the input power supply voltage (rms voltage value Vrms). This setting value serves as the baseline for the Uv1 and Uv detection levels. | Default: 230<br>Vrms <1><br>Min.: 190 Vrms <1><br>Max.: 250 Vrms <1> | 262  |

- <1> Values shown are specific to 200 V class drives. Double the value for 400 V class drives.
- <2> Parameter setting value is not reset to the default value when the drive is initialized.
- <3> The setting value is F in OLV modes.
- <4> Default setting is determined by parameters A1-02, Control Method Selection, C6-01, Drive Duty Selection, and o2-04, Drive Model Selection.
- <5> Default setting is determined by parameter E5-01, Motor Code Selection.
- <6> In OLV/PM, setting range varies according to the motor code entered to E5-01. The setting range is 0.0 to 400.0 Hz when E5-01 is set to FFFF.
- When E1-13, Base Voltage, is set to 0.0, output voltage is controlled with E1-05, Maximum Voltage, = E1-13. When Auto-Tuning is performed, E1-05 and E1-13 are automatically set to the same value.
- <8> Parameter ignored when E1-11 (Motor 1 Mid Output Frequency 2) and E1-12 (Motor 1 Mid Output Frequency Voltage 2) are set to 0.0.

#### E2: Motor 1 Parameters

| No.<br>(Addr.<br>Hex) | Name                                        | LCD Display      | Description                                                                                                                                                                    | Values                                                                                      | Page |
|-----------------------|---------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------|
| E2-01<br>(030E)       | Motor Rated Current                         | Motor Rated FLA  | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the motor nameplate full load current in amps. Automatically set during Auto-Tuning.                                           | Default:  Min.: 10% of<br>drive rated<br>current<br>Max.: 150% of<br>drive rated<br>current | 262  |
| E2-02<br>(030F)       | Motor Rated Slip                            | Motor Rated Slip | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the motor rated slip. Automatically set during Auto-Tuning.                                                                    | Default:  Min.: 0.00 Hz Max.: 20.00 Hz                                                      | 262  |
| E2-03<br>(0310)       | Motor No-Load Current                       | No-Load Current  | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the no-load current for the motor. Automatically set during Auto-Tuning.                                                       | Default: <1> Min.: 0.00 A Max.: E2-01 <2>                                                   | 263  |
| E2-04<br>(0311)       | Number of Motor Poles                       | Number of Poles  | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the number of motor poles. Automatically set during Auto-Tuning.                                                               | Default: 4<br>Min.: 2<br>Max.: 48                                                           | 263  |
| E2-05<br>(0312)       | Motor Line-to-Line<br>Resistance            | Term Resistance  | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the phase-to-phase motor resistance. Automatically set during Auto-Tuning.                                                     | Default: <1><br>Min.: 0.000 Ω<br>Max.: 65.000 Ω                                             | 263  |
| E2-06<br>(0313)       | Motor Leakage<br>Inductance                 | Leak Inductance  | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the voltage drop due to motor leakage inductance as a percentage of motor rated voltage. Automatically set during Auto-Tuning. | Default: <1><br>Min.: 0.0%<br>Max.: 40.0%                                                   | 263  |
| E2-07<br>(0314)       | Motor Iron-Core<br>Saturation Coefficient 1 | Saturation Comp1 | OLV/PM AOLV/PM CLV/PM  Sets the motor iron saturation coefficient at 50% of magnetic flux. Automatically set during Auto-Tuning.                                               | Default: 0.50<br>Min.: 0.00<br>Max.: 0.50                                                   | 263  |
| E2-08<br>(0315)       | Motor Iron-Core<br>Saturation Coefficient 2 | Saturation Comp2 | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the motor iron saturation coefficient at 75% of magnetic flux. Automatically set during Auto-Tuning.                           | Default: 0.75<br>Min.: E2-07<br>Max.: 0.75                                                  | 264  |

#### **B.7 E: Motor Parameters**

| No.<br>(Addr.<br>Hex) | Name                                       | LCD Display     | Description                                                                                                              | Values                                     | Page |
|-----------------------|--------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------|
| E2-09<br>(0316)       | Motor Mechanical Loss                      | Mechanical Loss | OLV/PM AOLV/PM CLV/PM Sets the motor mechanical loss as a percentage of motor rated power (kW).                          | Default: 0.0%<br>Min.: 0.0<br>Max.: 10.0   | 264  |
| E2-10<br>(0317)       | Motor Iron Loss for<br>Torque Compensation | Motor Iron Loss | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the motor iron loss.                                                     | Default: <1> Min.: 0 W Max.: 65535 W       | 264  |
| E2-11<br>(0318)       | Motor Rated Power                          | Mtr Rated Power | OLV/PM AOLV/PM CLV/PM  Sets the motor rated power in kilowatts (1 HP = 0.746 kW).  Automatically set during Auto-Tuning. | Default: <1> Min.: 0.00 kW Max.: 650.00 kW | 264  |

<sup>&</sup>lt;1> Default setting is dependent on parameters C6-01, Drive Duty Selection, and o2-04, Drive Model Selection.

#### ◆ E3: V/f Pattern for Motor 2

These parameters are hidden when a PM motor control mode has been selected for motor 1 (A1-02 = 5, 6, 7).

<sup>&</sup>lt;2> Display is in the following units:  $2\square 0028$ ,  $2\square 0042$ , and  $4\square 0011$  to  $4\square 0027$ : 0.01 A units  $2\square 0054$  to  $2\square 0248$  and  $4\square 0034$  to  $4\square 0930$ : 0.1 A units

| No.<br>(Addr.<br>Hex)  | Name                                           | LCD Display                                                                            | Description                                                                                                                                                                         | Values                                         | Page |
|------------------------|------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------|
| E3-01<br>(0319)        | Motor 2 Control Mode<br>Selection              | Mot 1 Contr Meth 0: V/f Control 1: V/f with PG 2: Open Loop Vector 3: Closed Loop Vect | OLV/PM AOLV/PM CLV/PM  0: V/f Control 1: V/f Control with PG 2: Open Loop Vector Control 3: Closed Loop Vector Control                                                              | Default: 0<br>Range: 0 to 3                    | 265  |
| E3-04<br>(031A)        | Motor 2 Maximum<br>Output Frequency            | Max Frequency                                                                          | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM To set linear V/f characteristics, set the same values for E3-07                                                                         | Default: <1><br>Min.: 40.0<br>Max.: 400.0      | 265  |
| E3-05<br>(031B)        | Motor 2 Maximum<br>Voltage                     | Max Voltage                                                                            | and E3-09. In this case, the setting for E3-08 will be disregarded. Ensure that the five frequencies are set according to the following rules to prevent triggering an oPE10 fault: | Default: <1> <4> Min.: 0.0 V Max.: 255.0 V <2> | 265  |
| E3-06<br>(031C)        | Motor 2 Base Frequency                         | Base Frequency                                                                         | $-$ E3-09 $\leq$ E3-07 $\leq$ E3-06 $\leq$ E3-11 $\leq$ E3-04<br>Setting E3-11 to 0 disables both E3-11 and E3-12 and the above conditions do not apply.<br>Output Voltage (V)      | Default:  Min.: 0.0 Max.: E3-04                | 265  |
| E3-07<br>(031D)        | Motor 2 Mid Output<br>Frequency                | Mid Frequency A                                                                        | E3-05<br>E3-12                                                                                                                                                                      | Default: <1><br>Min: 0.0<br>Max: E3-04         | 265  |
| E3-08<br>(031E)        | Motor 2 Mid Output<br>Frequency Voltage        | Mid Voltage B                                                                          |                                                                                                                                                                                     | Default: <1><br>Min: 0.0 V<br>Max: 255.0 V     | 265  |
| E3-09<br>(031F)        | Motor 2 Minimum<br>Output Frequency            | Min Frequency                                                                          |                                                                                                                                                                                     | Default: <1><br>Min.: 0.0<br>Max.: E3-04       | 265  |
| E3-10<br>(0320)        | Motor 2 Minimum<br>Output Frequency<br>Voltage | Min Voltage                                                                            | E3-09 E3-07 E3-06 E3-11 E3-04 Frequency (Hz)  Note: E3-07 and E3-08 are only available in the                                                                                       | Default:  Min: 0.0 V Max: 255.0 V <2>          | 265  |
| E3-11<br>(0345)<br><3> | Motor 2 Mid Output<br>Frequency 2              | Mid Frequency B                                                                        | following control modes: V/f, V/f w/PG and OLV.                                                                                                                                     | Default: 0.0 Hz<br>Min.: 0.0<br>Max.: E3-04    | 265  |
| E3-12<br>(0346)<br><3> | Motor 2 Mid Output<br>Frequency Voltage 2      | Mid Voltage B                                                                          |                                                                                                                                                                                     | Default: 0.0 V<br>Min.: 0.0<br>Max.: 255.0 <2> | 265  |
| E3-13<br>(0347)<br><4> | Motor 2 Base Voltage                           | Base Voltage                                                                           |                                                                                                                                                                                     | Default: 0.0 V  Min.: 0.0  Max.: 255.0 <2>     | 265  |

- <1> Default setting is determined by parameter E3-01, Motor 2 Control Mode Selection. The value shown here is for V/f Control (0).
- <2> Values shown are specific to 200 V class drives. Double the value for 400 V class drives.
- <3> Ignored when E3-11, Motor 2 Mid Output Frequency 2, and E3-12, Motor 2 Mid Output Frequency Voltage 2, are set to 0.
- <4> When E3-13, Motor 2 Base Voltage, is set to 0.0, output voltage is controlled with E3-05, Motor 2 Maximum Voltage, = E3-13. When Auto-Tuning is performed, E3-05 and E3-13 are automatically set to the same value.

#### ◆ E4: Motor 2 Parameters

These parameters are hidden when a PM motor control mode has been selected for motor 1 (A1-02 = 5, 6, 7).

#### **B.7 E: Motor Parameters**

| No.<br>(Addr.<br>Hex) | Name                                                    | LCD Display      | Description                                                                                                                                                                                             | Values                                                                              | Page |
|-----------------------|---------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------|
| E4-01<br>(0321)       | Motor 2 Rated Current                                   | Motor Rated FLA  | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the full load current for motor 2. Automatically set during Auto-Tuning.                                                                                | Default: <1> Min.: 10% of drive rated current Max.: 150% of drive rated current <2> | 266  |
| E4-02<br>(0322)       | Motor 2 Rated Slip                                      | Motor Rated Slip | V/f W/F OLV  OLV/PM AOLV/PM CLV/PM  Sets the rated slip for motor 2. Automatically set during Auto-Tuning.                                                                                              | Default:  Min.: 0.00 Hz Max.: 20.00 Hz                                              | 266  |
| E4-03<br>(0323)       | Motor 2 Rated No-Load<br>Current                        | No-Load Current  | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the no-load current for motor 2. Automatically set during Auto-Tuning.                                                                                  | Default:  Min.: 0 A Max.: E4-01 <2>                                                 | 266  |
| E4-04<br>(0324)       | Motor 2 Motor Poles                                     | Number of Poles  | V/f W PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the number of poles of motor 2. Automatically set during Auto-Tuning.                                                                                       | Default: 4<br>Min.: 2<br>Max.: 48                                                   | 267  |
| E4-05<br>(0325)       | Motor 2 Line-to-Line<br>Resistance                      | Term Resistance  | V/f W PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the phase-to-phase resistance for motor 2. Automatically set during Auto-Tuning.                                                                            | Default:  Min.: 0.000 Ω Max.: 65.000 Ω                                              | 267  |
| E4-06<br>(0326)       | Motor 2 Leakage<br>Inductance                           | Leak Inductance  | V/f W PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the voltage drop for motor 2 due to motor leakage inductance as a percentage of rated voltage. Automatically set during Auto-Tuning.                        | Default: <1><br>Min: 0.0%<br>Max: 40.0%                                             | 267  |
| E4-07<br>(0343)       | Motor 2 Motor Iron-<br>Core Saturation<br>Coefficient 1 | Saturation Comp1 | OLV/PM AOLV/PM CLV/PM  Set to the motor iron saturation coefficient at 50% of magnetic flux for motor 2. Automatically set during Auto-Tuning.                                                          | Default: 0.50<br>Min.: 0.00<br>Max.: 0.50                                           | 267  |
| E4-08<br>(0344)       | Motor 2 Motor Iron-<br>Core Saturation<br>Coefficient 2 | Saturation Comp2 | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Set to the motor iron saturation coefficient at 75% of magnetic flux for motor 2. This value is automatically set during Auto-Tuning.                        | Default: 0.75<br>Min.: E4-07<br>Max.: 0.75                                          | 267  |
| E4-09<br>(033F)       | Motor 2 Mechanical<br>Loss                              | Mechanical Loss  | V/f V/f w PG OLV OLV/PM AOLV/PM CLV/PM Sets the motor mechanical loss for motor 2 as a percentage of motor rated power (kW). There is normally no need to change this parameter from the default value. | Default: 0.0%<br>Min.: 0.0<br>Max.: 10.0                                            | 267  |
| E4-10<br>(0340)       | Motor 2 Iron Loss                                       | Motor Iron Loss  | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the motor iron loss.                                                                                                                                    | Default: <1><br>Min.: 0 W<br>Max.: 65535 W                                          | 268  |
| E4-11<br>(0327)       | Motor 2 Rated Power                                     | Mtr Rated Power  | VIF VIF W PG OLV CLV  OLV/PM AOLV/PM CLV/PM  Sets the motor rated capacity in kW. Automatically set during Auto-Tuning.                                                                                 | Default:  Min.: 0.00 kW Max.: 650.00 kW                                             | 268  |

<sup>&</sup>lt;1> Default setting is determined by parameters C6-01, Drive Duty Selection, and o2-04, Drive Model Selection.

<sup>&</sup>lt;2> Display is in the following units:  $2\square 0028$ ,  $2\square 0042$ , and  $4\square 0011$  to  $4\square 0027$ : 0.01 A units  $2\square 0054$  to  $2\square 0248$  and  $4\square 0034$  to  $4\square 0930$ : 0.1 A units

# ◆ E5: PM Motor Settings

| No.<br>(Addr.<br>Hex)  | Name                                                          | LCD Display      | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Page |
|------------------------|---------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| E5-01<br>(0329)<br><1> | Motor Code Selection<br>(for PM Motors)                       | PM Mtr Code Sel  | Vif Vifw PG OLV CLV  OLV/PM AOLV/PM CLV/PM  Enter the Yaskawa motor code for the PM motor being used. Various motor parameters are automatically set based on the value of this parameter. Settings that were changed manually will be overwritten by the defaults of the selected motor code.  Note:  1. Set to FFFF when using a non-Yaskawa PM motor or a special motor.  2. If an alarm or hunting occurs despite using a motor code, enter the value indicated on the nameplate. Refer to Auto-Tuning for Permanent Magnet Motors on page 164 for details. | Min.: 0000<br>Max.: FFFF <3>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 268  |
| E5-02<br>(032A)<br><1> | Motor Rated Power (for PM Motors)                             | PM Mtr Capacity  | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the rated capacity of the motor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Default: 4><br>Min.: 0.10 kW<br>Max.: 650.00 kW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 269  |
| E5-03<br>(032B)<br><1> | Motor Rated Current (for PM Motors)                           | PM Mtr Rated FLA | V/f V/f w PG OLV CLV  OLV/PM AOLV/PM CLV/PM  Sets the motor rated current.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Default:  Min: 10% of drive rated current  Max: 150% of drive rated current   Solution of drive rated current   Max: 150% of drive rated   Max: 150% of drive r | 269  |
| E5-04<br>(032C)<br><1> | Number of Motor Poles<br>(for PM Motors)                      | PM Motor Poles   | V/f V/f w PG OLV CLV  OLV/PM AOLV/PM CLV/PM  Sets the number of motor poles.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Default: <sup>4</sup> Min.: 2 Max.: 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 269  |
| E5-05<br>(032D)<br><1> | Motor Stator Resistance<br>(r1) (for PM Motors)               | PM Mtr Arm Ohms  | OLV/PM AOLV/PM CLV/PM Set the resistance for each motor phase.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Default: <sup>4</sup> Min.: 0.000 Ω Max.: 65.000 Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 269  |
| E5-06<br>(032E)<br>    | Motor d-Axis<br>Inductance (Ld) (for PM<br>Motors)            | PM Mtr d Induct  | OLV/PM AOLV/PM CLV/PM Sets the d-Axis inductance for the PM motor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Default:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 269  |
| E5-07<br>(032F)<br><1> | Motor q-Axis<br>Inductance (Lq) (for PM<br>Motors)            | PM Mtr q Induct  | OLV/PM AOLV/PM CLV/PM Sets the q-Axis inductance for the PM motor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Default: <4><br>Min.: 0.00 mH<br>Max.: 600.00 mH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 269  |
| E5-09<br>(0331)<br><1> | Motor Induction Voltage<br>Constant 1 (Ke) (for PM<br>Motors) | PM Mtr Ind V 1   | OLV/PM AOLV/PM CLV/PM  Sets the induced phase peak voltage in units of 0.1 mV/(rad/s) [electrical angle]. Set this parameter when using a Yaskawa SSR1-Series PM motor with derated torque, or a Yaskawa SST4-Series motor with constant torque. Set E5-24 to 0 when setting this parameter.                                                                                                                                                                                                                                                                    | Default: Min.: 0.0 mV/ (rad/s) Max.: 2000.0 mV/ (rad/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 270  |
| E5-11<br>(0333)        | Encoder Z Pulse Offset $(\Delta\theta)$ (for PM Motors)       | Enc Z-Pulse Offs | OLV/PM AOLV/PM CLV/PM  Sets the offset between the rotor magnetic axis and the Z Pulse of an incremental encoder during Z Pulse offset tuning.                                                                                                                                                                                                                                                                                                                                                                                                                  | Default: 0.0 deg<br>Min.: -180<br>Max.: 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 270  |
| E5-24<br>(0353)<br><1> | Motor Induction Voltage<br>Constant 2 (Ke) (for PM<br>Motors) | PM Mtr Ind V 2   | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the induced phase-to-phase rms voltage in units of 0.1 mV/ (r/min) [mechanical angle]. Set this parameter when using a Yaskawa SMRA-Series SPM motor.                                                                                                                                                                                                                                                                                                                                                           | Default:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 270  |

#### **B.7 E: Motor Parameters**

| No.<br>(Addr.<br>Hex) | Name                                                                             | LCD Display                                   | Description                                                                                                                                                                                                                                                                                                           | Values                    | Page |
|-----------------------|----------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------|
| E5-25<br>(035E)       | Polarity Switch for<br>Initial Polarity<br>Estimation Timeout (for<br>PM Motors) | RotPolarityInvrs<br>0: Disabled<br>1: Enabled | V/f V/f w PG OLV CLV  OLV/PM AOLV/PM CLV/PM  Switches polarity for initial polarity estimation. 0: Disabled 1: Enabled There is normally no need to change this parameter from the default value.  If "Sd = 1" is listed on the nameplate or in a test report for a Yaskawa motor, this parameter should be set to 1. | Default: 0<br>Range: 0, 1 | 270  |

- <1> Setting value is not reset to the default when drive is initialized.
- <2> Default setting is determined by parameters A1-02, Control Method Selection, o2-04, Drive Model Selection, and C6-01, Drive Duty Selection.
- <3> Selections may vary depending on the motor code entered to E5-01.
- <4> Default setting is determined by parameter E5-01, Motor Code Selection.
- <5> Display is in the following units:  $2\square 0028$ ,  $2\square 0042$ , and  $4\square 0011$  to  $4\square 0027$ : 0.01 A units  $2\square 0054$  to  $2\square 0248$  and  $4\square 0034$  to  $4\square 0930$ : 0.1 A units

### **B.8** F: Option Settings

F parameters program the drive for PG feedback from the motor and to function with option cards.

### ◆ F1: PG Speed Control Card Settings (PG-B3, PG-X3, PG-RT3, PG-F3)

Parameters F1-01, F1-05, F1-06, F1-12, F1-13, and F1-18 through F1-21 include "PG 1" in the parameter name and are used to set up a PG option card plugged into option port CN5-C of the drive.

Parameters F1-31 through F1-37 include "PG 2" in the parameter name and are used to set up a PG option card plugged into option port CN5-B of the drive.

Other parameters in the F1 group are used to set operation for PG options plugged into port CN5-C and CN5-B.

| No.<br>(Addr.<br>Hex) | Name                                            | LCD Display                                                                                               | Description                                                                                                                                                                                                                                                                                                                       | Values                                      | Page |
|-----------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------|
| F1-01<br>(0380)       | PG 1 Pulses Per<br>Revolution                   | PG1 Pulses/Rev                                                                                            | V/f V/f w PG OLV CLV  OLV/PM AOLV/PM CLV/PM  Sets the number of PG (pulse generator or encoder) pulses. Sets the number of pulses per motor revolution.  Note: Setting range is 0 to 15000 ppr when A1-02 = 7 (CLV/PM control mode).                                                                                              | Default: 1024 ppr<br>Min.: 1<br>Max.: 60000 | 271  |
| F1-02<br>(0381)       | Operation Selection at<br>PG Open Circuit (PGo) | PG Fdbk Loss Sel<br>0: Ramp to Stop<br>1: Coast to Stop<br>2: Fast-Stop<br>3: Alarm Only<br>4: Not Detect | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM  0: Ramp to stop. Decelerate to stop using the deceleration time in C1-02.  1: Coast to stop.  2: Fast Stop. Decelerate to stop using the deceleration time in C1-09.  3: Alarm only.  4: No alarm display  Note: Depending on motor speed and load conditions, an oC error may occur. | Default: 1<br>Range: 0 to 4                 | 271  |
| F1-03<br>(0382)       | Operation Selection at<br>Overspeed (oS)        | PG Overspeed Sel<br>0: Ramp to Stop<br>1: Coast to Stop<br>2: Fast-Stop<br>3: Alarm Only                  | OLV/PM AOLV/PM CLV/PM  0: Ramp to stop. Decelerate to stop using the deceleration time in C1-02.  1: Coast to stop.  2: Fast Stop. Decelerate to stop using the deceleration time in C1-09.  3: Alarm only.  Note: In AOLV/PM, the motor will coast to a stop (F1-03 = 1). The setting for F1-03 cannot be changed to 0, 2, or 3. | Default: 1<br>Range: 0 to 3                 | 271  |
| F1-04<br>(0383)       | Operation Selection at<br>Speed Deviation (dEv) | PG Deviation Sel<br>0: Ramp to Stop<br>1: Coast to Stop<br>2: Fast-Stop<br>3: Alarm Only                  | OLV/PM AOLV/PM CLV/PM  0: Ramp to stop. Decelerate to stop using the deceleration time in C1-02.  1: Coast to stop.  2: Fast Stop. Decelerate to stop using the deceleration time in C1-09.  3: Alarm only.                                                                                                                       | Default: 3<br>Range: 0 to 3                 | 272  |
| F1-05<br>(0384)       | PG 1 Rotation Selection                         | PG1 Rotation Sel<br>0: Fwd = C.C.W<br>1: Fwd = C.W.                                                       | OLV/PM AOLV/PM CLV/PM  O: Pulse A leads  1: Pulse B leads                                                                                                                                                                                                                                                                         | Default:  Range: 0, 1                       | 272  |
| F1-06<br>(0385)       | PG 1 Division Rate for<br>PG Pulse Monitor      | PG1 Output Ratio                                                                                          | OLV/PM AOLV/PM CLV/PM  Sets the division ratio for the pulse monitor used of the PG option card installed to port CN5-C.  When setting for a three-digit number "xyz", the division ratio becomes = $[(1 + x)/yz]$ .  If only using the A pulse for one-track input, the input ratio will be 1:1 regardless of F1-06 setting.     |                                             | 272  |

### **B.8 F: Option Settings**

| No.<br>(Addr.<br>Hex) | Name                                                 | LCD Display                                            | Description                                                                                                                                                                 | Values                                      | Page |
|-----------------------|------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------|
| F1-08<br>(0387)       | Overspeed Detection<br>Level                         | PG Overspd Level                                       | OLV/PM AOLV/PM CLV/PM Sets the overspeed detection level as a percentage of the maximum output frequency.                                                                   | Default: 115%<br>Min.: 0<br>Max.: 120       | 271  |
| F1-09<br>(0388)       | Overspeed Detection<br>Delay Time                    | PG Overspd Time                                        | V/f W PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the time in seconds for an overspeed situation to trigger a fault (oS).                                                         | Default: <1><br>Min.: 0.0 s<br>Max.: 2.0 s  | 271  |
| F1-10<br>(0389)       | Excessive Speed<br>Deviation Detection<br>Level      | PG Deviate Level                                       | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the speed deviation detection level as a percentage of the maximum output frequency.                                        | Default: 10%<br>Min.: 0<br>Max.: 50         | 272  |
| F1-11<br>(038A)       | Excessive Speed<br>Deviation Detection<br>Delay Time | PG Deviate Time                                        | V/f V/f w PG OLV CLV  OLV/PM AOLV/PM CLV/PM  Sets the time in seconds for a speed deviation situation to trigger a fault (dEv).                                             | Default: 0.5 s<br>Min.: 0.0<br>Max.: 10.0   | 272  |
| F1-12<br>(038B)       | PG 1 Gear Teeth 1                                    | PG1 Gear Teeth1                                        | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the gear ratio between the motor shaft and the encoder (PG). A gear ratio of 1 will be used if F1-12 or F1-13 are set to 0. | Default: 0<br>Min.: 0<br>Max.: 1000         | 272  |
| F1-13<br>(038C)       | PG 1 Gear Teeth 2                                    | PG1 Gear Teeth2                                        | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the gear ratio between the motor shaft and the encoder (PG). A gear ratio of 1 will be used if F1-12 or F1-13 are set to 0. | Default: 0<br>Min.: 0<br>Max.: 1000         | 272  |
| F1-14<br>(038D)       | PG Open-Circuit<br>Detection Time                    | PGO Detect Time                                        | OLV/PM AOLV/PM CLV/PM Sets the time required to trigger a PG Open fault (PGo).                                                                                              | Default: 2.0 s<br>Min.: 0.0<br>Max.: 10.0   | 271  |
| F1-18<br>(03AD)       | dv3 Detection Selection                              | DV3 Det Sel                                            | OLV/PM AOLV/PM CLV/PM  O: Disabled  n: Number of dv3 occurrences that must be detected to trigger a dv3 fault.                                                              | Default: 10<br>Min.: 0<br>Max.: 10          | 273  |
| F1-19<br>(03AE)       | dv4 Detection Selection                              | DV4 Det Sel                                            | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Disabled n: Number of pulses that the A and B pulse are reversed that triggers dv4 detection.                                 | Default: 128<br>Min.: 0<br>Max.: 5000       | 273  |
| F1-20<br>(03B4)       | PG Option Card<br>Disconnect Detection 1             | PGCardDisconDet1<br>0: Disabled<br>1: Enabled          | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Disabled 1: Enabled                                                                                                           | Default: 1<br>Range: 0, 1                   | 273  |
| F1-21<br>(03BC)       | PG 1 Signal Selection                                | PG1 Signal Sel 1<br>0: A Phase Det<br>1: A,B Phase Det | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM  0: A pulse detection 1: AB pulse detection                                                                                      | Default: 0<br>Range: 0, 1                   | 273  |
| F1-30<br>(03AA)       | PG Card Option Port for<br>Motor 2 Selection         | Mtr2 PG Port Sel<br>0: Port CN5-C<br>1: Port CN5-B     | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: CN5-C 1: CN5-B                                                                                                                | Default: 1<br>Range: 0, 1                   | 273  |
| F1-31<br>(03B0)       | PG 2 Pulses Per<br>Revolution                        | PG2 Pulses/Rev                                         | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the number of pulses for a PG option card connected to port CN5-B.                                                          | Default: 1024 ppr<br>Min.: 1<br>Max.: 60000 | 271  |

|    | İ |
|----|---|
| _  |   |
| ď  | Ì |
| 7  | ' |
| ~  | : |
| Ξ  | : |
| 77 | 5 |
| ~  | i |
| ä  | • |

| No.<br>(Addr.<br>Hex) | Name                                                  | LCD Display                                                                               | Description                                                                                                                                                                                                                                                                                                                                                                                                                    | Values                               | Page |
|-----------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------|
| F1-32<br>(03B1)       | PG 2 Rotation Selection                               | PG2 Rotation Sel<br>0: Fwd = C.C.W<br>1: Fwd = C.W.                                       | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Pulse A leads 1: Pulse B leads                                                                                                                                                                                                                                                                                                                                                   | Default: 0<br>Range: 0, 1            | 272  |
| F1-33<br>(03B2)       | PG 2 Gear Teeth 1                                     | PG2 Gear Teeth1                                                                           | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the gear ratio between the motor shaft and the encoder (PG). A gear ratio of 1 will be used if F1-33 or F1-34 are set to 0.                                                                                                                                                                                                                                                    | Default: 0<br>Min.: 0<br>Max.: 1000  | 272  |
| F1-34<br>(03B3)       | PG 2 Gear Teeth 2                                     | PG2 Gear Teeth2                                                                           | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the gear ratio between the motor shaft and the encoder (PG). A gear ratio of 1 will be used if F1-33 or F1-34 are set to 0.                                                                                                                                                                                                                                                    | Default: 0<br>Min.: 0<br>Max.: 1000  | 272  |
| F1-35<br>(03BE)       | PG 2 Division Rate for<br>Pulse Monitor               | PG2 Output Ratio                                                                          | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the division ratio for the pulse monitor used of the PG option card 2 installed to port CN5-B. When setting for a three-digit number "xyz", the division ratio becomes = $[(1 + x) / yz]$ .                                                                                                                                                                                    | Default: 1<br>Min.: 1<br>Max.: 132   | 272  |
| F1-36<br>(03B5)       | PG Option Card<br>Disconnect Detection 2              | PGCardDisconDet1<br>0: Disabled<br>1: Enabled                                             | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Disabled 1: Enabled                                                                                                                                                                                                                                                                                                                                                              | Default: 1<br>Range: 0, 1            | 273  |
| F1-37<br>(03BD)       | PG 2 Signal Selection                                 | PG2 Signal Sel<br>0: A Phase Det<br>1: A,B Phase Det                                      | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: A pulse detection 1: AB pulse detection                                                                                                                                                                                                                                                                                                                                          | Default: 0<br>Range: 0, 1            | 273  |
| F1-50<br>(03D2)       | Encoder Selection                                     | Encoder Select<br>0: EnDat Sin/Cos<br>1: EnDat SerialOnly<br>2: Hiperface                 | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Selects the encoder connected the PG-F3 option. 0: EnDat 2.1/01, 2.2/01 Serial Communication + Sin/Cos 1: EnDat 2.2/22 Serial Communication 2: Hiperface  Note: The use of EnDat2.2/22 encoders requires a PG-F3 option with software version 0102 or later. To identify the PG-F3 software version refer to the PG-F3 label in the field designated "C/N" (S + four digit number). | Default: 0<br>Range: 0 to 2          | 274  |
| F1-51<br>(03D3)       | PGoH Detection Level                                  | PGOH Det Level                                                                            | OLV/PM AOLV/PM CLV/PM Sets the level for detecting PG Hardware Fault (PGoH). Available when F1-20 = 1                                                                                                                                                                                                                                                                                                                          | Default: 80%<br>Min.: 1<br>Max.: 100 | 274  |
| F1-52<br>(03D4)       | Communication Speed<br>of Serial Encoder<br>Selection | Ser Enc Comm Spd<br>0: 1M/9600bps<br>1: 500k/19200bps<br>2: 1M/38400bps<br>3: 1M/38400bps | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Selects the communication speed between the PG-F3 option and serial encoder. 0: 1M bps/9600 bps (EnDat 2.2/22 / Hiperface) 1: 500k bps/19200 bps (EnDat 2.2/22 / Hiperface) 2: 1M bps/38400 bps (EnDat 2.2/22 / Hiperface) 3: 1M bps/38400 bps (EnDat 2.2/22 / Hiperface)                                                                                                           | Default: 0<br>Range: 0 to 3          | 274  |

<sup>&</sup>lt;1> Default setting is determined by parameter A1-02, Control Method Selection.

# ◆ F2: Analog Input Card Settings (AI-A3)

| No.<br>(Addr.<br>Hex) | Name                                               | LCD Display     | Description                                                                                                                                                                                     | Values                                         | Page |
|-----------------------|----------------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------|
| F2-01<br>(038F)       | Analog Input Option<br>Card Operation<br>Selection | 1: 3ch Addition | O: Option card input terminals V1, V2, and V3 replace drive input terminals A1, A2, and A3.  1: Input signals to terminals V1, V2, and V3 are added together to create the frequency reference. | Default: 0<br>Range: 0, 1                      | 274  |
| F2-02<br>(0368)       | Analog Input Option<br>Card Gain                   | AI Input Gain   | All Modes Sets the gain for the input signal to the analog card.                                                                                                                                | Default: 100.0%<br>Min.: -999.9<br>Max.: 999.9 | 275  |
| F2-03<br>(0369)       | Analog Input Option<br>Card Bias                   | AI Input Bias   | All Modes Sets the bias for the input signal to the analog card.                                                                                                                                | Default: 0.0%<br>Min.: -999.9<br>Max.: 999.9   | 275  |

### **♦** F3: Digital Input Card Settings (DI-A3)

| No.<br>(Addr.<br>Hex) | Name                                                    | LCD Display                                                                                                               | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Values                      | Page |
|-----------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------|
| F3-01<br>(0390)       | Digital Input Option<br>Card Input Selection            | DI Function Sel 0: BCD 1% 1: BCD 0.1% 2: BCD 0.01% 3: BCD 1 Hz 4: BCD 0.1 Hz 5: BCD 0.01 Hz 6: BCD(5DG) 0.01 Hz 7: Binary | 0: BCD, 1% units 1: BCD, 0.1% units 2: BCD, 0.01% units 3: BCD, 1 Hz units 4: BCD, 0.1 Hz units 5: BCD, 0.01 Hz units 6: BCD customized setting (5-digit), 0.02 Hz units 7: Binary input The unit and the setting range are determined by F3-03. F3-03 = 0: 255/100% (-255 to +255) F3-03 = 1: 40961/100% (-4095 to +4095) F3-03 = 2: 30000/100% (-33000 to +33000) When the digital operator units are set to be displayed in Hz or user-set units (01-03 = 2 or 3), the units for F3-01 are determined by parameter o1-03. | Default: 0<br>Range: 0 to 7 | 275  |
| F3-03<br>(03B9)       | Digital Input Option DI-<br>A3 Data Length<br>Selection | Data length Sel<br>0: 8bit<br>1: 12bit<br>2: 16bit                                                                        | All Modes 0: 8 bit 1: 12 bit 2: 16 bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Default: 2<br>Range: 0 to 2 | 275  |

# ◆ F4: Analog Monitor Card Settings (AO-A3)

| No.<br>(Addr.<br>Hex) | Name                             | LCD Display   | Description                                                                                                                                                                                              | Values                                         | Page |
|-----------------------|----------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------|
| F4-01<br>(0391)       | Terminal V1 Monitor<br>Selection | AO Ch1 Select | All Modes  Sets the monitor signal for output from terminal V1. Set this parameter to the last three digits of the desired U□-□□ monitor. Some U parameters are available only in certain control modes. | Default: 102<br>Range: 000 to 999<br>          | 276  |
| F4-02<br>(0392)       | Terminal V1 Monitor<br>Gain      | AO Ch1 Gain   | All Modes Sets the gain for voltage output via terminal V1.                                                                                                                                              | Default: 100.0%<br>Min.: -999.9<br>Max.: 999.9 | 276  |
| F4-03<br>(0393)       | Terminal V2 Monitor<br>Selection | AO Ch2 Select | All Modes  Sets the monitor signal for output from terminal V2. Set this parameter to the last three digits of the desired U□-□□ monitor. Some U parameters are available only in certain control modes. | Default: 103<br>Range: 000 to 999<br>          | 276  |
| F4-04<br>(0394)       | Terminal V2 Monitor<br>Gain      | AO Ch2 Gain   | All Modes Sets the gain for voltage output via terminal V2.                                                                                                                                              | Default: 50.0%<br>Min.: -999.9<br>Max.: 999.9  | 276  |

| No.<br>(Addr.<br>Hex)    | Name                        | LCD Display                                       | Description                                                                    | Values                                       | Page |
|--------------------------|-----------------------------|---------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------|------|
| F4-05<br>(0395)          | Terminal V1 Monitor<br>Bias | AO Ch1 Bias                                       | All Modes Sets the amount of bias added to the voltage output via terminal V1. | Default: 0.0%<br>Min.: -999.9<br>Max.: 999.9 | 276  |
| F4-06<br>(0396)<br>•◆RUN | Terminal V2 Monitor<br>Bias | AO Ch2 Bias                                       | All Modes Sets the amount of bias added to the voltage output via terminal V2. | Default: 0.0%<br>Min.: -999.9<br>Max.: 999.9 | 276  |
| F4-07<br>(0397)          | Terminal V1 Signal<br>Level | AO Opt Level Ch1<br>0: 0-10 VDC<br>1: -10 +10 VDC | All Modes 0: 0 to 10 V 1: -10 to 10 V                                          | Default: 0<br>Range: 0, 1                    | 276  |
| F4-08<br>(0398)          | Terminal V2 Signal<br>Level | AO Opt Level Ch2<br>0: 0-10 VDC<br>1: -10 +10 VDC | All Modes 0: 0 to 10 V 1: -10 to 10 V                                          | Default: 0<br>Range: 0, 1                    | 276  |

<sup>&</sup>lt;1> Set to 000 or 031 when using the terminal in the through mode. This setting can adjust the V1 and V2 terminal output from PLC via MEMOBUS/ Modbus communications or communications option.

### F5: Digital Output Card Settings (DO-A3)

| No.<br>(Addr.<br>Hex) | Name                               | LCD Display     | Description                                                                                                                                                                       | Values                         | Page |
|-----------------------|------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------|
| F5-01<br>(0399)       | Terminal P1-PC Output Selection    | DO Ch1 Select   | All Modes  Sets the function for contact output terminals M1-M2, M3-M4,                                                                                                           | Default: 0<br>Range: 0 to 192  | 277  |
| F5-02<br>(039A)       | Terminal P2-PC Output Selection    | DO Ch2 Select   | and photocoupler output terminals P1 through P6.                                                                                                                                  | Default: 1<br>Range: 0 to 192  | 277  |
| F5-03<br>(039B)       | Terminal P3-PC Output Selection    | DO Ch3 Select   |                                                                                                                                                                                   | Default: 2<br>Range: 0 to 192  | 277  |
| F5-04<br>(039C)       | Terminal P4-PC Output Selection    | DO Ch4 Select   |                                                                                                                                                                                   | Default: 4<br>Range: 0 to 192  | 277  |
| F5-05<br>(039D)       | Terminal P5-PC Output Selection    | DO Ch5 Select   |                                                                                                                                                                                   | Default: 6<br>Range: 0 to 192  | 277  |
| F5-06<br>(039E)       | Terminal P6-PC Output Selection    | DO Ch6 Select   |                                                                                                                                                                                   | Default: 37<br>Range: 0 to 192 | 277  |
| F5-07<br>(039F)       | Terminal M1-M2<br>Output Selection | DO Ch7 Select   |                                                                                                                                                                                   | Default: F<br>Range: 0 to 192  | 277  |
| F5-08<br>(03A0)       | Terminal M3-M4<br>Output Selection | DO Ch8 Select   |                                                                                                                                                                                   | Default: F<br>Range: 0 to 192  | 277  |
| F5-09<br>(03A1)       | DO-A3 Output Mode<br>Selection     | DO Function Sel | All Modes  0: Output terminals are each assigned separate output functions.  1: Binary code output.  2: Use output terminal functions selected by parameters F5-01 through F5-08. | Default: 0<br>Range: 0 to 2    | 277  |

# ◆ F6: Communication Option Card Settings (SI-C3, SI-ET3, SI-N3, SI-P3, SI-S3, SI-T3, SI-W3)

Parameters F6-01 through F6-03 and F6-06 through F6-08 are used for CC-Link, CANopen, DeviceNet, PROFINET, LonWorks, PROFIBUS-DP, MECHATROLINK-II, and MECHATROLINK-III options. Other parameters in the F6 group are used for communication-protocol-specific settings. For more details on a specific option card, refer to the instruction manual for the option.

| No.<br>(Addr.<br>Hex)  | Name                                                                               | LCD Display                                                                              | Description                                                                                                                                                                                                        | Values                                      | Page |
|------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------|
| F6-01<br>(03A2)        | Communications Error<br>Operation Selection                                        | Comm Bus Flt Sel<br>0: Ramp to Stop<br>1: Coast to Stop<br>2: Fast-Stop<br>3: Alarm Only | All Modes  0: Ramp to stop. Decelerate to stop using the deceleration time in C1-02.  1: Coast to stop.  2: Fast Stop. Decelerate to stop using the deceleration time in C1-09.  3: Alarm only.                    | Default: 1<br>Range: 0 to 3                 | 277  |
| F6-02<br>(03A3)        | External Fault from<br>Comm. Option<br>Detection Selection                         | EF0 Detection<br>0: Always Detected<br>1: Only During Run                                | All Modes 0: Always detected. 1: Detection during run only.                                                                                                                                                        | Default: 0<br>Range: 0, 1                   | 278  |
| F6-03<br>(03A4)        | External Fault from<br>Comm. Option<br>Operation Selection                         | EF0 Fault Action<br>0: Ramp to Stop<br>1: Coast to Stop<br>2: Fast-Stop<br>3: Alarm Only | All Modes  0: Ramp to stop. Decelerate to stop using the deceleration time in C1-02.  1: Coast to stop.  2: Fast Stop. Decelerate to stop using the deceleration time in C1-09.  3: Alarm only.                    | Default: 1<br>Range: 0 to 3                 | 278  |
| F6-04<br>(03A5)        | bUS Error Detection<br>Time                                                        | BUS Err Det Time                                                                         | All Modes  Sets the delay time for error detection if a bus error occurs.                                                                                                                                          | Default: 2.0 s<br>Min.: 0.0<br>Max.: 5.0    | 279  |
| F6-06<br>(03A7)        | Torque Reference/<br>Torque Limit Selection<br>from Comm. Option                   | Torq Ref/Lmt Sel<br>0: Disabled<br>1: Enabled                                            | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Disabled. Torque reference/limit from option board disabled. 1: Enabled. Torque reference/limit from option board enabled.                                           | Default: 0<br>Range: 0, 1                   | 278  |
| F6-07<br>(03A8)        | Multi-Step Speed<br>Enable/Disable<br>Selection when NefRef/<br>ComRef is Selected | Fref PrioritySel<br>0: Net/Com REF<br>1: MultiStep Speed                                 | All Modes 0: Multi-step reference disabled (same as F7) 1: Multi-step reference enabled (same as V7)                                                                                                               | Default: 0<br>Range: 0, 1                   | 278  |
| F6-08<br>(036A)<br><1> | Reset Communication<br>Parameters                                                  | Com Prm Init Sel<br>0: Init Com Prms<br>1: No Init Com Prms                              | O: Communication-related parameters (F6-□□/F7-□□) are not reset when the drive is initialized using A1-03.  1: Reset all communication-related parameters (F6-□□/F7-□□) when the drive is initialized using A1-03. | Default: 0<br>Range: 0, 1                   | 278  |
| F6-10<br>(03B6)        | CC-Link Node Address                                                               | CC-Link Node Add                                                                         | All Modes Sets the node address if a CC-Link option is installed.                                                                                                                                                  | Default: 0<br>Min.: 0<br>Max.: 64           | 279  |
| F6-11<br>(03B7)        | CC-Link<br>Communication Speed                                                     | CC-Link Baud<br>0: 156 kbps<br>1: 625 kbps<br>2: 2.5 Mbps<br>3: 5 Mbps<br>4: 10 Mbps     | All Modes  0: 156 Kbps 1: 625 Kbps 2: 2.5 Mbps 3: 5 Mbps 4: 10 Mbps                                                                                                                                                | Default: 0<br>Range: 0 to 4                 | 279  |
| F6-14<br>(03BB)        | CC-Link bUS Error<br>Auto Reset                                                    | Bus Err Auto Rst<br>0: Disabled<br>1: Enabled                                            | All Modes 0: Disabled 1: Enabled                                                                                                                                                                                   | Default: 0<br>Range: 0, 1                   | 279  |
| F6-20<br>(036B)        | MECHATROLINK<br>Station Address                                                    | Station Address                                                                          | All Modes Sets the station address when the MECHATROLINK option has been installed.                                                                                                                                | Default: 21<br>Min.: 20 <2><br>Max.: 3F <2> | 279  |
| F6-21<br>(036C)        | MECHATROLINK<br>Frame Size                                                         | Frame length                                                                             | All Modes 0: 32-byte <3> 1: 17-byte <3>                                                                                                                                                                            | Default: 0<br>Range: 0, 1                   | 279  |

| No.<br>(Addr.<br>Hex) | Name                                                                   | LCD Display                                                                                                           | Description                                                                                                                                                                   | Values                              | Page |
|-----------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------|
| F6-22<br>(036D)       | MECHATROLINK<br>Link Speed                                             | Link Speed<br>0: 10MHz<br>1: 4MHz                                                                                     | All Modes 0: 10 Mbps 1: 4 Mbps                                                                                                                                                | Default: 0<br>Range: 0, 1           | 280  |
| F6-23<br>(036E)       | MECHATROLINK<br>Monitor Selection (E)                                  | Mon E register                                                                                                        | All Modes Sets the MECHATROLINK monitor (E).                                                                                                                                  | Default: 0<br>Min.: 0<br>Max.: FFFF | 280  |
| F6-24<br>(036F)       | MECHATROLINK<br>Monitor Selection (F)                                  | Mon F register                                                                                                        | All Modes Sets the MECHATROLINK monitor (F).                                                                                                                                  | Default: 0<br>Min.: 0<br>Max.: FFFF | 280  |
| F6-25<br>(03C9)       | Operation Selection at<br>MECHATROLINK<br>Watchdog Timer Error<br>(E5) | SI-T WDTErr Sel<br>0: Ramp to Stop<br>1: Coast to Stop<br>2: Fast-Stop<br>3: Alarm Only                               | All Modes  0: Ramp to stop. Decelerate using the deceleration time in C1-02.  1: Coast to stop  2: Fast stop. Decelerate using the deceleration time in C1-09.  3: Alarm only | Default: 1<br>Range: 0 to 3         | 280  |
| F6-26<br>(03CA)       | MECHATROLINK<br>bUS Errors Detected                                    | Num of SI-T BUS                                                                                                       | All Modes Sets the number of option communication errors (bUS).                                                                                                               | Default: 2<br>Min.: 2<br>Max.: 10   | 280  |
| F6-30<br>(03CB)       | PROFIBUS-DP Node<br>Address                                            | PB Node Address                                                                                                       | All Modes Sets the node address.                                                                                                                                              | Default: 0<br>Min.: 0<br>Max.: 125  | 280  |
| F6-31<br>(03CC)       | PROFIBUS-DP Clear<br>Mode Selection                                    | PB Clear Select<br>0: Reset to Zero<br>1: Hold Prev Value                                                             | O: Resets drive operation with a Clear mode command.  1: Maintains the previous operation state when Clear mode command is given.                                             | Default: 0<br>Range: 0, 1           | 281  |
| F6-32<br>(03CD)       | PROFIBUS-DP Data<br>Format Selection                                   | PB Map Select<br>0: PPO Type<br>1: Conventional                                                                       | All Modes 0: PPO Type 1: Conventional                                                                                                                                         | Default: 0<br>Range: 0, 1           | 281  |
| F6-35<br>(03D0)       | CANopen Node ID<br>Selection                                           | CO Node Address                                                                                                       | All Modes Sets the node address.                                                                                                                                              | Default: 0<br>Min.: 0<br>Max.: 126  | 281  |
| F6-36<br>(03D1)       | CANopen<br>Communication Speed                                         | CO Baud Rate 0: Auto Detect 1: 10 kbps 2: 20 kbps 3: 50 kbps 4: 125 kbps 5: 250 kbps 6: 500 kbps 7: 800 kbps 8: 1Mbps | All Modes  0: Auto-detection 1: 10 kbps 2: 20 kbps 3: 50 kbps 4: 125 kbps 5: 250 kbps 6: 500 kbps 7: 800 kbps 8: 1 Mbps                                                       | Default: 6<br>Range: 0 to 8         | 281  |
| F6-40<br>(03D5)       | CompoNet Node<br>Address                                               | CN Node Adress                                                                                                        | All Modes Reserved.                                                                                                                                                           | -                                   | _    |
| F6-41<br>(03D6)       | CompoNet<br>Communication Speed                                        | CN Baud Rate                                                                                                          | All Modes Reserved.                                                                                                                                                           | _                                   | _    |
| F6-50<br>(03C1)       | DeviceNet MAC<br>Address                                               | DN MAC Address                                                                                                        | All Modes Selects the drive MAC address.                                                                                                                                      | Default: 64<br>Min.: 0<br>Max.: 64  | 281  |
| F6-51<br>(03C2)       | DeviceNet<br>Communication Speed                                       | DN Baud Rate<br>0: 125 kbps<br>1: 250 kbps<br>2: 500 kbps<br>3: Set from Network<br>4: Auto Detect                    | All Modes  0: 125 kbps 1: 250 kbps 2: 500 kbps 3: Adjustable from network 4: Detect automatically                                                                             | Default: 4<br>Range: 0 to 4         | 282  |
| F6-52<br>(03C3)       | DeviceNet PCA Setting                                                  | PCA Selection                                                                                                         | All Modes  Sets the format of the data set from the DeviceNet master to the drive.                                                                                            | Default: 21<br>Min.: 0<br>Max.: 255 | 282  |
| F6-53<br>(03C4)       | DeviceNet PPA Setting                                                  | PPA Selection                                                                                                         | All Modes  Sets the format of the data set from the drive to the DeviceNet master.                                                                                            | Default: 71<br>Min.: 0<br>Max.: 255 | 282  |

#### **B.8 F: Option Settings**

| No.<br>(Addr.<br>Hex)                  | Name                                   | LCD Display                                                      | Description                                                                                   | Values                              | Page |
|----------------------------------------|----------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------|------|
| F6-54<br>(03C5)                        | DeviceNet Idle Mode<br>Fault Detection | DN Idle Flt Det<br>0: Stop<br>1: Ignore                          | All Modes  0: Enabled 1: Disabled, no fault detection                                         | Default: 0<br>Range: 0, 1           | 282  |
| F6-55<br>(03C6)                        | DeviceNet Baud Rate<br>Monitor         | DN BAUD RATE<br>MEM<br>0: 125 kbps<br>1: 250 kbps<br>2: 500 kbps | All Modes  Verifies the baud rate running on the network. 0: 125 kbps 1: 250 kbps 2: 500 kbps | Default: 0<br>Range: 0 to 2         | 282  |
| F6-56<br>(03D7)                        | DeviceNet Speed<br>Scaling             | Speed Scale                                                      | All Modes Sets the scaling factor for the speed monitor in DeviceNet.                         | Default: 0<br>Min.: -15<br>Max.: 15 | 282  |
| F6-57<br>(03D8)                        | DeviceNet Current<br>Scaling           | Current Scale                                                    | All Modes  Sets the scaling factor for the output current monitor in DeviceNet.               | Default: 0<br>Min.: -15<br>Max.: 15 | 282  |
| F6-58<br>(03D9)                        | DeviceNet Torque<br>Scaling            | Torque Scale                                                     | All Modes Sets the scaling factor for the torque monitor in DeviceNet.                        | Default: 0<br>Min.: -15<br>Max.: 15 | 282  |
| F6-59<br>(03DA)                        | DeviceNet Power<br>Scaling             | Power Scale                                                      | All Modes Sets the scaling factor for the power monitor in DeviceNet.                         | Default: 0<br>Min.: -15<br>Max.: 15 | 282  |
| F6-60<br>(03DB)                        | DeviceNet Voltage<br>Scaling           | Voltage Scale                                                    | All Modes Sets the scaling factor for the voltage monitor in DeviceNet.                       | Default: 0<br>Min.: -15<br>Max.: 15 | 282  |
| F6-61<br>(03DC)                        | DeviceNet Time Scaling                 | Time Scale                                                       | All Modes Sets the scaling factor for the time monitor in DeviceNet.                          | Default: 0<br>Min.: -15<br>Max.: 15 | 282  |
| F6-62<br>(03DD)                        | DeviceNet Heartbeat<br>Interval        | DN Heart Beat                                                    | All Modes Sets the heartbeat interval for DeviceNet communications.                           | Default: 0<br>Min.: 0<br>Max.: 10   | 283  |
| F6-63<br>(03DE)                        | DeviceNet Network<br>MAC ID            | DN MAC ID MEM                                                    | All Modes Saves and monitors settings 0 to 63 of F6-50 (DeviceNet MAC Address).               | Default: 63<br>Min.: 0<br>Max.: 63  | 283  |
| F6-64 to<br>F6-71<br>(03DF to<br>03C8) | Reserved                               | _                                                                | All Modes Reserved for Dynamic I/O Assembly Parameters.                                       | -                                   | _    |
| F6-72<br>(03DE)                        | PowerLink Node<br>Address              | PowerLink NodeID                                                 | All Modes Reserved.                                                                           | _                                   | _    |

<sup>&</sup>lt;1> Parameter setting value is not reset to the default value when the drive is initialized.

Max.: EF

1: 32-byte

<sup>&</sup>lt;2> Values shown are for the MECHATROLINK-II option (SI-T3). Values for MECHATROLINK-III option (SI-ET3) are: Min: 03

<sup>&</sup>lt;3> Values shown are for the MECHATROLINK-II option (SI-T3). Values for MECHATROLINK-III option (SI-ET3) are: 0: 64-byte

### ◆ F7: Communication Option Card Settings (SI-EM3, SI-EN3, SI-EP3)

F7 parameters are used for EtherNet/IP, Modbus TCP/IP, and PROFINET options. Other parameters in the F7 group are used for communication-protocol-specific settings. For more details on a specific option card, refer to the instruction manual for the option.

| No.<br>(Addr.<br>Hex)  | Name                    | LCD Display                                               | Description                                                                     | Values                          | Page |
|------------------------|-------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------|------|
| F7-01<br>(03E5)<br><1> | IP Address 1            | IP Address 1                                              | All Modes Sets the most significant octet of network static IP address.         | Default: 192<br>Range: 0 to 255 | ı    |
| F7-02<br>(03E6)<br><1> | IP Address 2            | IP Address 2                                              | All Modes  Sets the second most significant octet of network static IP address. | Default: 168<br>Range: 0 to 255 | ı    |
| F7-03<br>(03E7)<br><1> | IP Address 3            | IP Address 3                                              | All Modes  Sets the third most significant octet of network static IP address.  | Default: 1<br>Range: 0 to 255   | -    |
| F7-04<br>(03E8)<br><1> | IP Address 4            | IP Address 4                                              | All Modes  Sets the fourth most significant octet of network static IP address. | Default: 20<br>Range: 0 to 255  | -    |
| F7-05<br>(03E9)        | Subnet Mask 1           | Subnet Mask 1                                             | All Modes Sets the most significant octet of network static Subnet Mask.        | Default: 255<br>Range: 0 to 255 | ı    |
| F7-06<br>(03EA)        | Subnet Mask 2           | Subnet Mask 2                                             | All Modes Sets the second most significant octet of network static Subnet Mask. | Default: 255<br>Range: 0 to 255 | I    |
| F7-07<br>(03EB)        | Subnet Mask 3           | Subnet Mask 3                                             | All Modes Sets the third most significant octet of network static Subnet Mask.  | Default: 255<br>Range: 0 to 255 | ı    |
| F7-08<br>(03EC)        | Subnet Mask 4           | Subnet Mask 4                                             | All Modes Sets the fourth most significant octet of network static Subnet Mask. | Default: 0<br>Range: 0 to 255   | ı    |
| F7-09<br>(03ED)        | Gateway Address 1       | Gateway IP Add 1                                          | All Modes Sets the most significant octet of network Gateway address.           | Default: 192<br>Range: 0 to 255 | I    |
| F7-10<br>(03EE)        | Gateway Address 2       | Gateway IP Add 2                                          | All Modes Sets the second most significant octet of network Gateway address.    | Default: 168<br>Range: 0 to 255 | ı    |
| F7-11<br>(03EF)        | Gateway Address 3       | Gateway IP Add 3                                          | All Modes Sets the third most significant octet of network Gateway address.     | Default: 1<br>Range: 0 to 255   | ı    |
| F7-12<br>(03F0)        | Gateway Address 4       | Gateway IP Add 4                                          | All Modes  Sets the fourth most significant octet of network Gateway address.   | Default: 1<br>Range: 0 to 255   | ı    |
| F7-13<br>(03F1)        | Address Mode at Startup | IP Add Mode Sel<br>0: User Defined<br>1: BOOTP<br>2: DHCP | All Modes Select the option address setting method. 0: Static 1: BOOTP 2: DHCP  | Default: 2<br>Range: 0 to 2     | _    |

### **B.8 F: Option Settings**

| No.<br>(Addr.<br>Hex)                                                            | Name                                  | LCD Display                                                                                                                        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Values                                    | Page |
|----------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------|
| F7-14<br>(03F2)                                                                  | Duplex Mode Selection                 | Duplex Select 0: Half/Half 1: Auto/Auto 2: Full/Full 3: Half/Auto 4: Half/Full 5: Auto/Half 6: Auto/Full 7: Full/Half 8: Full/Auto | Selects duplex mode setting. 0: Half duplex forced 1: Auto-negotiate duplex mode and communication speed 2: Full duplex forced 3: Half duplex forced (port 1)/Auto-negotiate duplex mode and communication speed (port 2) 4: Half duplex forced (port 1)/Full duplex forced (port 2) 5: Auto-negotiate duplex mode and communication speed (port 1)/Half duplex forced (port 2) 6: Auto-negotiate duplex mode and communication speed (port 1)/Full duplex forced (port 2) 7: Full duplex forced (port 1)/Half duplex forced (port 2) 8: Full duplex forced (port 1)/Auto-negotiate duplex mode and communication speed (port 2) | Default: 1<br>Range: 0 to 8               | -    |
| F7-15<br>(03F3)                                                                  | Communication Speed<br>Selection      | Baud Rate<br>10: 10/10 Mbps<br>100: 100/100 Mbps<br>101: 10/100 Mbps<br>102: 100/10 Mbps                                           | All Modes  Sets the communication speed. 10: 10 Mbps 100: 100 Mbps 101: 10 Mbps (port 1)/100 Mbps (port 2) 102: 100 Mbps (port 1)/10 Mbps (port 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Default: 10<br>Range: 10 to 102           | -    |
| F7-16<br>(03F4)                                                                  | Communication Loss<br>Time Out        | CommLoss Tout                                                                                                                      | All Modes  Sets the time out value for communication loss detection in tenths of a second. A value of 0 disables the connection time out.  Example: An entered value of 100 represents 10.0 seconds.                                                                                                                                                                                                                                                                                                                                                                                                                             | Default: 0.0 s<br>Min.: 0.0<br>Max.: 30.0 | -    |
| F7-17<br>(03F5)                                                                  | EtherNet/IP Speed<br>Scaling Factor   | EN Speed Scale                                                                                                                     | All Modes  Sets the scaling factor for the speed monitor in EtherNet/IP  Class ID 2AH Object.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Default: 0<br>Min.: -15<br>Max.: 15       | -    |
| F7-18<br>(03F6)                                                                  | EtherNet/IP Current<br>Scaling Factor | EN Current Scale                                                                                                                   | All Modes Sets the scaling factor for the output current monitor in EtherNet/IP Class ID 2AH Object.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Default: 0<br>Min.: -15<br>Max.: 15       | -    |
| F7-19<br>(03F7)                                                                  | EtherNet/IP Torque<br>Scaling Factor  | EN Torque Scale                                                                                                                    | All Modes Sets the scaling factor for the torque monitor in EtherNet/IP Class ID 2AH Object.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Default: 0<br>Min.: -15<br>Max.: 15       | -    |
| F7-20<br>(03F8)                                                                  | EtherNet/IP Power<br>Scaling Factor   | EN Power Scale                                                                                                                     | All Modes Sets the scaling factor for the power monitor in EtherNet/IP Class ID 2AH Object.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Default: 0<br>Min.: -15<br>Max.: 15       | -    |
| F7-21<br>(03F9)                                                                  | EtherNet/IP Voltage<br>Scaling Factor | EN Voltage Scale                                                                                                                   | All Modes Sets the scaling factor for the voltage monitor in EtherNet/IP Class ID 2AH Object.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Default: 0<br>Min.: -15<br>Max.: 15       | -    |
| F7-22<br>(03FA)                                                                  | EtherNet/IP Time<br>Scaling           | EN Time Scale                                                                                                                      | All Modes Sets the scaling factor for the time monitor in EtherNet/IP Class ID 2AH Object.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Default: 0<br>Min.: -15<br>Max.: 15       | -    |
| F7-23 to<br>F7-27<br>(03FB to<br>03FF)<br>F7-28 to<br>F7-32<br>(0370 to<br>0374) | Dynamic Output<br>Assembly Parameters | -                                                                                                                                  | All Modes  Parameters used in Output Assembly 116. Each parameter contains a MEMOBUS/Modbus address. The value received for Output Assembly 116 will be written to this corresponding MEMOBUS/Modbus address. A MEMOBUS/Modbus address value of 0 means that the value received for Output Assembly 116 will not be written to any MEMOBUS/Modbus register.                                                                                                                                                                                                                                                                      | Default: 0                                | -    |
| F7-33 to<br>F7-42<br>(0375 to<br>037E)                                           | Dynamic Input<br>Assembly Parameters  | _                                                                                                                                  | Parameters used in Input Assembly 166. Each parameter contains a MEMOBUS/Modbus address. The value sent for Input Assembly 166 will be read from this corresponding MEMOBUS/Modbus address. A MEMOBUS/Modbus address value of 0 means that the value sent for Input Assembly 166 is not defined by the user, therefore the option default register value will be returned.                                                                                                                                                                                                                                                       | Default: 0                                | -    |

| No.<br>(Addr.<br>Hex) | Name        | LCD Display | Description                                                                                                     | Values                              | Page |
|-----------------------|-------------|-------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------|------|
| F7-60<br>(0780)       | PZD1 Write  | PZD1 Write  | All Modes  Sets MEMOBUS/Modbus address for PZD1 Write (PPO Write).  Values 0 to 2 enable the PZD1 Write as STW. | Default: 0<br>Min.: 0<br>Max.: FFFF | _    |
| F7-61<br>(0781)       | PZD2 Write  | PZD2 Write  | All Modes  Sets MEMOBUS/Modbus address for PZD2 Write (PPO Write).  Values 0 to 2 enable the PZD2 Write as HSW. | Default: 0<br>Min.: 0<br>Max.: FFFF | _    |
| F7-62<br>(0782)       | PZD3 Write  | PZD3 Write  | All Modes  Sets MEMOBUS/Modbus address for PZD3 Write (PPO Write).  Values 0 to 2 disable the PZD3 Write.       | Default: 0<br>Min.: 0<br>Max.: FFFF | _    |
| F7-63<br>(0783)       | PZD4 Write  | PZD4 Write  | All Modes  Sets MEMOBUS/Modbus address for PZD4 Write (PPO Write).  Values 0 to 2 disable the PZD4 Write.       | Default: 0<br>Min.: 0<br>Max.: FFFF | _    |
| F7-64<br>(0784)       | PZD5 Write  | PZD5 Write  | All Modes  Sets MEMOBUS/Modbus address for PZD5 Write (PPO Write).  Values 0 to 2 disable the PZD5 Write.       | Default: 0<br>Min.: 0<br>Max.: FFFF | _    |
| F7-65<br>(0785)       | PZD6 Write  | PZD6 Write  | All Modes  Sets MEMOBUS/Modbus address for PZD6 Write (PPO Write).  Values 0 to 2 disable the PZD6 Write.       | Default: 0<br>Min.: 0<br>Max.: FFFF | _    |
| F7-66<br>(0786)       | PZD7 Write  | PZD7 Write  | All Modes  Sets MEMOBUS/Modbus address for PZD7 Write (PPO Write).  Values 0 to 2 disable the PZD7 Write.       | Default: 0<br>Min.: 0<br>Max.: FFFF | _    |
| F7-67<br>(0787)       | PZD8 Write  | PZD8 Write  | All Modes  Sets MEMOBUS/Modbus address for PZD8 Write (PPO Write).  Values 0 to 2 disable the PZD8 Write.       | Default: 0<br>Min.: 0<br>Max.: FFFF | _    |
| F7-68<br>(0788)       | PZD9 Write  | PZD9 Write  | All Modes  Sets MEMOBUS/Modbus address for PZD9 Write (PPO Write).  Values 0 to 2 disable the PZD9 Write.       | Default: 0<br>Min.: 0<br>Max.: FFFF | _    |
| F7-69<br>(0789)       | PZD10 Write | PZD10 Write | All Modes  Sets MEMOBUS/Modbus address for PZD10 Write (PPO Write).  Values 0 to 2 disable the PZD10 Write.     | Default: 0<br>Min.: 0<br>Max.: FFFF | _    |
| F7-70<br>(078A)       | PZD1 Read   | PZD1 Read   | All Modes  Sets MEMOBUS/Modbus address for PZD1 Read (PPO Read).  Values 0 to 2 enable the PZD1 Read as ZSW.    | Default: 0<br>Min.: 0<br>Max.: FFFF | _    |
| F7-71<br>(078B)       | PZD2 Read   | PZD2 Read   | All Modes  Sets MEMOBUS/Modbus address for PZD2 Read (PPO Read).  Values 0 to 2 enable the PZD2 Read as HIW.    | Default: 0<br>Min.: 0<br>Max.: FFFF | _    |
| F7-72<br>(078C)       | PZD3 Read   | PZD3 Read   | All Modes  Sets MEMOBUS/Modbus address for PZD3 Read (PPO Read).  Values 0 to 2 disable the PZD3 Read.          | Default: 0<br>Min.: 0<br>Max.: FFFF | _    |
| F7-73<br>(078D)       | PZD4 Read   | PZD4 Read   | All Modes  Sets MEMOBUS/Modbus address for PZD4 Read (PPO Read).  Values 0 to 2 disable the PZD4 Read.          | Default: 0<br>Min.: 0<br>Max.: FFFF | _    |

### **B.8 F: Option Settings**

| No.<br>(Addr.<br>Hex) | Name       | LCD Display | Description                                                                                              | Values                              | Page |
|-----------------------|------------|-------------|----------------------------------------------------------------------------------------------------------|-------------------------------------|------|
| F7-74<br>(078E)       | PZD5 Read  | PZD5 Read   | All Modes Sets MEMOBUS/Modbus address for PZD5 Read (PPO Read). Values 0 to 2 disable the PZD5 Read.     | Default: 0<br>Min.: 0<br>Max.: FFFF | _    |
| F7-75<br>(078F)       | PZD6 Read  | PZD6 Read   | All Modes Sets MEMOBUS/Modbus address for PZD6 Read (PPO Read). Values 0 to 2 disable the PZD6 Read.     | Default: 0<br>Min.: 0<br>Max.: FFFF | _    |
| F7-76<br>(0790)       | PZD7 Read  | PZD7 Read   | All Modes Sets MEMOBUS/Modbus address for PZD7 Read (PPO Read). Values 0 to 2 disable the PZD7 Read.     | Default: 0<br>Min.: 0<br>Max.: FFFF | _    |
| F7-77<br>(0791)       | PZD8 Read  | PZD8 Read   | All Modes Sets MEMOBUS/Modbus address for PZD8 Read (PPO Read). Values 0 to 2 disable the PZD8 Read.     | Default: 0<br>Min.: 0<br>Max.: FFFF | _    |
| F7-78<br>(0792)       | PZD9 Read  | PZD9 Read   | All Modes Sets MEMOBUS/Modbus address for PZD9 Read (PPO Read). Values 0 to 2 disable the PZD9 Read.     | Default: 0<br>Min.: 0<br>Max.: FFFF | _    |
| F7-79<br>(0793)       | PZD10 Read | PZD10 Read  | All Modes  Sets MEMOBUS/Modbus address for PZD10 Read (PPO Read).  Values 0 to 2 disable the PZD10 Read. | Default: 0<br>Min.: 0<br>Max.: FFFF | _    |

<sup>&</sup>lt;1> Cycle power for setting changes to take effect.

<sup>&</sup>lt;2> If F7-13 is set to 0, then all IP Addresses (as defined with parameters F7-01 to F7-04) must be unique.

# **B.9 H Parameters: Multi-Function Terminals**

H parameters assign functions to the multi-function input and output terminals.

## ♦ H1: Multi-Function Digital Inputs

| No.<br>(Addr.<br>Hex) | Name                                                              | LCD Display      | Description                                                                                                                                                          | Values                                        | Page |
|-----------------------|-------------------------------------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------|
| H1-01<br>(0438)       | Multi-Function Digital<br>Input Terminal S1<br>Function Selection | Term S1 Func Sel | All Modes  Assigns a function to the multi-function digital inputs.  Refer to pages 547 to 552 for descriptions of setting values.  Note: Set unused terminals to F. | Default: 40 (F)<br><1><br>Min.: 1<br>Max.: 9F | 284  |
| H1-02<br>(0439)       | Multi-Function Digital<br>Input Terminal S2<br>Function Selection | Term S2 Func Sel | All Modes  Assigns a function to the multi-function digital inputs.  Refer to pages 547 to 552 for descriptions of setting values.  Note: Set unused terminals to F. | Default: 41 (F)  Min.: 1 Max.: 9F             | 284  |
| H1-03<br>(0400)       | Multi-Function Digital<br>Input Terminal S3<br>Function Selection | Term S3 Func Sel | All Modes  Assigns a function to the multi-function digital inputs.  Refer to pages 547 to 552 for descriptions of setting values.  Note: Set unused terminals to F. | Default: 24<br>Min.: 0<br>Max.: 9F            | 284  |
| H1-04<br>(0401)       | Multi-Function Digital<br>Input Terminal S4<br>Function Selection | Term S4 Func Sel | All Modes  Assigns a function to the multi-function digital inputs.  Refer to pages 547 to 552 for descriptions of setting values.  Note: Set unused terminals to F. | Default: 14<br>Min.: 0<br>Max.: 9F            | 284  |
| H1-05<br>(0402)       | Multi-Function Digital<br>Input Terminal S5<br>Function Selection | Term S5 Func Sel | All Modes  Assigns a function to the multi-function digital inputs.  Refer to pages 547 to 552 for descriptions of setting values.  Note: Set unused terminals to F. | Default: 3 (0) <1><br>Min.: 0<br>Max.: 9F     | 284  |
| H1-06<br>(0403)       | Multi-Function Digital<br>Input Terminal S6<br>Function Selection | Term S6 Func Sel | All Modes  Assigns a function to the multi-function digital inputs.  Refer to pages 547 to 552 for descriptions of setting values.  Note: Set unused terminals to F. | Default: 4 (3) <1><br>Min.: 0<br>Max.: 9F     | 284  |
| H1-07<br>(0404)       | Multi-Function Digital<br>Input Terminal S7<br>Function Selection | Term S7 Func Sel | All Modes  Assigns a function to the multi-function digital inputs.  Refer to pages 547 to 552 for descriptions of setting values.  Note: Set unused terminals to F. | Default: 6 (4) <1> Min.: 0 Max.: 9F           | 284  |
| H1-08<br>(0405)       | Multi-Function Digital<br>Input Terminal S8<br>Function Selection | Term S8 Func Sel | All Modes  Assigns a function to the multi-function digital inputs.  Refer to pages 547 to 552 for descriptions of setting values.  Note: Set unused terminals to F. | Default: 8<br>Min.: 0<br>Max.: 9F             | 284  |

<sup>&</sup>lt;1> Value in parenthesis is the default setting when a 3-Wire initialization is performed (A1-03 = 3330).

| H1 Multi-Function Digital Input Selections |                        |                  |                                                                                                                                                                                                                |      |  |
|--------------------------------------------|------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|
| H1-□□<br>Setting                           | Function               | LCD Display      | Description                                                                                                                                                                                                    | Page |  |
| 0                                          | 3-Wire sequence        | 3-Wire Control   | Closed: Reverse rotation (only if the drive is set up for 3-Wire sequence) Terminals S1 and S2 are automatically set up for the Run command and Stop command.                                                  | 285  |  |
| 1                                          | LOCAL/REMOTE selection | Local/Remote Sel | Open: REMOTE (parameter settings determine the source of the frequency Reference 1 or 2 (b1-01, b1-02 or b1-15, b1-16) Closed: LOCAL, Frequency reference and Run command are input from the digital operator. | 285  |  |

| H1 Multi-Function Digital Input Selections |                                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                            |      |  |
|--------------------------------------------|----------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|
| H1-□□<br>Setting                           | Function                         | LCD Display      | Description                                                                                                                                                                                                                                                                                                                                                                                                | Page |  |
| 2                                          | External reference 1/2 selection | Ext Ref Sel      | Open: Run command and frequency reference source 1 (determined by b1-01 and b1-02) Closed: Run command and frequency reference source 2 (determined by b1-15 and b1-16)                                                                                                                                                                                                                                    | 286  |  |
| 3                                          | Multi-Step Speed<br>Reference 1  | Multi-Step Ref 1 | All Modes                                                                                                                                                                                                                                                                                                                                                                                                  |      |  |
| 4                                          | Multi-Step Speed<br>Reference 2  | Multi-Step Ref 2 | When input terminals are set to Multi-Step Speed References 1 through 3, switching combinations of those terminals will create a multi-step speed sequence using the speed references set in d1-01 through d1-08. When input terminals in                                                                                                                                                                  |      |  |
| 5                                          | Multi-Step Speed<br>Reference 3  | Multi-Step Ref 3 | H3-02, H3-06, and H3-10 are set to 2 (Auxiliary Speed Reference 1), the analog input of the input terminal switches to the second analog speed reference if multistep speed operation is selected. When H3-02, H3-06, and H3-10 are set to 3 (Auxiliary Speed Reference 2), the analog input of the input terminal switches to the third analog speed reference if multi-step speed operation is selected. | 286  |  |
| 6                                          | Jog reference selection          | Jog Freq Ref     | All Modes  Closed: Jog frequency reference (d1-17) selected. Jog has priority over all other reference sources.                                                                                                                                                                                                                                                                                            | 286  |  |
| 7                                          | Accel/decel time selection 1     | Multi-Acc/Dec 1  | All Modes  Used to switch between accel/decel time 1 (set in C1-01, C1-02) and accel/decel time 2 (set in C1-03, C1-04).                                                                                                                                                                                                                                                                                   | 286  |  |
| 8                                          | Baseblock command (N.O.)         | Ext BaseBlk N.O. | All Modes Closed: No drive output                                                                                                                                                                                                                                                                                                                                                                          | 286  |  |
| 9                                          | Baseblock command (N.C.)         | Ext BaseBlk N.C. | All Modes Open: No drive output                                                                                                                                                                                                                                                                                                                                                                            | 286  |  |
| A                                          | Accel/decel ramp hold            | Acc/Dec RampHold | Open: Accel/decel is not held. Closed: The drive pauses during acceleration or deceleration and maintains the output frequency.                                                                                                                                                                                                                                                                            | 286  |  |
| В                                          | Drive overheat alarm (oH2)       | OH2 Alarm Signal | All Modes  Closed: An external device has triggered an oH2 alarm. Sets the Drive Overheat Pre-alarm Multi-Function Digital Output (H2-□□ = 20).                                                                                                                                                                                                                                                            | 287  |  |
| С                                          | Analog terminal input selection  | Term A2 Enable   | Open: Function assigned by H3-14 is disabled. Closed: Function assigned by H3-14 is enabled.                                                                                                                                                                                                                                                                                                               | 287  |  |
| D                                          | PG encoder disable               | PG Fdbk Disable  | OLV/PM AOLV/PM CLV/PM Open: Speed feedback for V/f Control with PG is enabled. Closed: Speed feedback disabled.                                                                                                                                                                                                                                                                                            | 287  |  |
| E                                          | ASR integral reset               | ASR Intgrl Reset | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Open: PI control Closed: Integral reset                                                                                                                                                                                                                                                                                                                         | 287  |  |
| F                                          | Through mode                     | Term Not Used    | Select this setting when the terminal is not used or when using the terminal in the pass-through mode. The terminal does not trigger a drive function, but can be used as digital input for the controller to which the drive is connected.                                                                                                                                                                | 287  |  |
| 10                                         | Up command                       | Up Command 1     | The drive accelerates when the Up command terminal closes, and decelerates when the Down command closes. When both terminals are closed or both are open, the drive holds the frequency reference. The Up and Down commands must always be used in conjunction with one another.                                                                                                                           | 287  |  |
| 11                                         | Down command                     | Down Command 1   | All Modes  The drive accelerates when the Up command terminal closes, and decelerates when the Down command closes. When both terminals are closed or both are open, the drive holds the frequency reference. The Up and Down commands must always be used in conjunction with one another.                                                                                                                | 287  |  |

|                  | H1 Multi-Function Digital Input Selections |                 |                                                                                                                                                                           |      |  |  |
|------------------|--------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|
| H1-□□<br>Setting | Function                                   | LCD Display     | Description                                                                                                                                                               | Page |  |  |
| 12               | Forward Jog                                | Forward Jog     | All Modes Closed: Runs forward at the Jog frequency d1-17.                                                                                                                | 288  |  |  |
| 13               | Reverse Jog                                | Reverse Jog     | All Modes Closed: Runs reverse at the Jog frequency d1-17.                                                                                                                | 288  |  |  |
| 14               | Fault reset                                | Fault Reset     | All Modes  Closed: Resets faults if the cause is cleared and the Run command is removed.                                                                                  | 288  |  |  |
| 15               | Fast Stop (N.O.)                           | Fast-Stop N.O.  | All Modes Closed: Decelerates at the Fast Stop time set to C1-09.                                                                                                         | 288  |  |  |
| 16               | Motor 2 selection                          | Motor 2 Select  | V/f         V/f w PG         OLV           OLV/PM         AOLV/PM         CLV/PM           Open: Motor 1 (E1-□□, E2-□□)         Closed: Motor 2 (E3-□□, E4-□□)            | 289  |  |  |
| 17               | Fast Stop (N.C.)                           | Fast-Stop N.C.  | All Modes  Open: Decelerates to stop at the Fast Stop time set to C1-09.                                                                                                  | 288  |  |  |
| 18               | Timer function input                       | Timer function  | All Modes  Triggers the timer set up by parameters b4-01 and b4-02. Must be set in conjunction with the timer function output ( $H2-\Box\Box=12$ ).                       | 290  |  |  |
| 19               | PID disable                                | PID Disable     | Open: PID control enabled<br>Closed: PID control disabled                                                                                                                 | 290  |  |  |
| 1A               | Accel/decel time selection 2               | Multi-Acc/Dec 2 | Used in conjunction with an input terminal set for "Accel/decel time selection 1" $(H1-\Box\Box = 7)$ , and allows the drive to switch between accel/decel times 3 and 4. | 290  |  |  |
| 1B               | Program lockout                            | Program Lockout | Open: Parameters cannot be edited (except for U1-01 if the reference source is assigned to the digital operator). Closed: Parameters can be edited and saved.             | 290  |  |  |
| 1E               | Reference sample hold                      | Ref Sample Hold | All Modes  Closed: Samples the analog frequency reference and operates the drive at that speed.                                                                           | 290  |  |  |

|                  | H1 Multi-Function Digital Input Selections |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |  |  |
|------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|
| H1-□□<br>Setting | Function                                   | LCD Display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Page |  |  |
| 20 to 2F         | External fault                             | 20: NO/Always Det, Ramp to Stop 21: NC/Always Det, Ramp to Stop 22: NO/During RUN, Ramp to Stop 23: NC/During RUN, ramp to Stop 24: NO/ Always Det, Coast to Stop 25: NC/Always Det, Coast to Stop 26: NO/During RUN, Coast to Stop 26: NO/During RUN, Coast to Stop 27: NC/During RUN, Coast to Stop 28: NO/Always Det, Fast-Stop 29: NC/Always Det, Fast-Stop 29: NC/During RUN, Fast-Stop 21: NC/During RUN, Fast-Stop 21: NC/During RUN, Fast-Stop 22: NO/Always Det, Alarm Only 25: NC/Always Det, Alarm Only 26: NO/During RUN, Alarm Only 27: NC/During RUN, Alarm Only 28: NC/During RUN, Alarm Only 29: NC/During RUN, Alarm Only | 20: N.O., Always detected, ramp to stop 21: N.C., Always detected, ramp to stop 22: N.O., During run, ramp to stop 23: N.C., During run, ramp to stop 24: N.O., Always detected, coast to stop 25: N.C., Always detected, coast to stop 26: N.O., During run, coast to stop 27: N.C., During run, coast to stop 28: N.O., Always detected, Fast Stop 29: N.C., Always detected, Fast Stop 29: N.C., During run, Fast Stop 28: N.O., During run, Fast Stop 20: N.O., Always detected, alarm only (continue running) 20: N.C., Always detected, alarm only (continue running) 21: N.C., During run, alarm only (continue running) 22: N.O., During run, alarm only (continue running) | 290  |  |  |
| 30               | PID integral reset                         | PID Intgrl Reset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | All Modes Closed: Resets the PID control integral value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 291  |  |  |
| 31               | PID integral hold                          | PID Intgrl Hold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Open: Performs integral operation. Closed: Maintains the current PID control integral value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 291  |  |  |
| 32               | Multi-Step Speed<br>Reference 4            | Multi-Step Ref 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Used in combination with input terminals set to Multi-Step Speed Reference 1, 2, and 3. Use parameters d1-09 to d1-16 to set reference values.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 291  |  |  |
| 34               | PID soft starter cancel                    | PID SFS Cancel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | All Modes  Open: PID soft starter is enabled. Closed: Disables the PID soft starter b5-17.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 291  |  |  |
| 35               | PID input level selection                  | PID Input Invert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | All Modes Closed: Inverts the PID input signal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 291  |  |  |
| 40               | Forward run command (2-Wire sequence)      | FwdRun 2Wire Seq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | All Modes Open: Stop Closed: Forward run Note: Cannot be set together with settings 42 or 43.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 291  |  |  |
| 41               | Reverse run command (2-Wire sequence)      | RevRun 2WireSeq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Open: Stop Closed: Reverse run Note: Cannot be set together with settings 42 or 43.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 291  |  |  |
| 42               | Run command (2-Wire sequence 2)            | Run/Stp 2WireSeq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | All Modes Open: Stop Closed: Run Note: Cannot be set together with settings 40 or 41.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 292  |  |  |

|                  | H1 Multi-Function Digital Input Selections |                  |                                                                                                                                                                        |      |  |  |
|------------------|--------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|
| H1-□□<br>Setting | Function                                   | LCD Display      | Description                                                                                                                                                            | Page |  |  |
| 43               | FWD/REV command (2-Wire sequence 2)        | FWD/REV 2WireSeq | All Modes Open: Forward Closed: Reverse  Note: Determines motor direction, but does not issue a Run command. Cannot be set together with settings 40 or 41.            | 292  |  |  |
| 44               | Offset frequency 1                         | Offset Freq 1    | All Modes  Closed: Adds d7-01 to the frequency reference.                                                                                                              | 292  |  |  |
| 45               | Offset frequency 2                         | Offset Freq 2    | All Modes Closed: Adds d7-02 to the frequency reference.                                                                                                               | 292  |  |  |
| 46               | Offset frequency 3                         | Offset Freq 3    | All Modes Closed: Adds d7-03 to the frequency reference.                                                                                                               | 292  |  |  |
| 47               | Node setup                                 | CanOpenNID Setup | All Modes Closed: Node setup for SI-S3 enabled.                                                                                                                        | 292  |  |  |
| 60               | DC Injection Braking command               | DCInj Activate   | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Closed: Triggers DC Injection Braking.                                                                                      | 292  |  |  |
| 61               | External Speed Search command 1            | Speed Search 1   | V/f V/f w PG OLV CLV  OLV/PM AOLV/PM CLV/PM  Closed: Activates Current Detection Speed Search from the maximum output frequency (E1-04).                               | 292  |  |  |
| 62               | External Speed Search command 2            | Speed Search 2   | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Closed: Activates Current Detection Speed Search from the frequency reference.                                              | 292  |  |  |
| 63               | Field weakening                            | Field Weak       | OLV/PM AOLV/PM CLV/PM Closed: The drive performs Field Weakening control as set for d6-01 and d6-02.                                                                   | 292  |  |  |
| 67               | Communications test mode                   | Comm Test Mode   | All Modes  Tests the MEMOBUS/Modbus RS-422/RS-485 interface. Displays "PASS" if the test completes successfully.                                                       | 293  |  |  |
| 6A               | Drive enabled                              | Drive Enable     | Open: Drive disabled. If this input is opened during run, the drive will stop as specified by b1-03. Closed: Ready for operation.                                      | 293  |  |  |
| 71               | Speed/Torque control<br>Sswitch            | Spd/Trq Ctl Chng | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Open: Speed Control Closed: Torque Control                                                                                  | 293  |  |  |
| 72               | Zero servo                                 | Zero Servo Cmd   | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Closed: Zero Servo enabled                                                                                                  | 293  |  |  |
| 75               | Up 2 command                               | Up Command 2     | Used to control the bias added to the frequency reference by the Up/Down 2 function. The Up 2 and Down 2 commands must always be used in conjunction with one another. | 293  |  |  |
| 76               | Down 2 command                             | Down Command 2   | Used to control the bias added to the frequency reference by the Up/Down 2 function. The Up 2 and Down 2 commands must always be used in conjunction with one another. | 293  |  |  |
| 77               | ASR gain switch                            | ASR Gain Switch  | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Open: ASR proportional gain 1 (C5-01) Closed: ASR proportional gain 2 (C5-03)                                               | 294  |  |  |

|                  |                                                                 | H1 Mul           | ti-Function Digital Input Selections                                                                         |      |
|------------------|-----------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------|------|
| H1-□□<br>Setting | Function                                                        | LCD Display      | Description                                                                                                  | Page |
| 78               | External torque reference polarity inversion                    | Tref Sign Change | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Open: Forward torque reference. Closed: Reverse polarity.         | 294  |
| 7E               | Forward/reverse detection (V/f Control with Simple PG feedback) | PG Rotate Rev    | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Direction of rotation detection (for V/f with Simple PG Feedback) | 294  |
| 7F               | PID Bi-Directional<br>Enable                                    | PID BiDir Enable | All Modes Reserved.                                                                                          | -    |
| 90 to 97         | DriveWorksEZ<br>digital inputs 1 to 8                           | _                | All Modes Reserved for DWEZ input functions                                                                  | 294  |
| 9F               | DriveWorksEZ disabled                                           | DWEZ Disable     | All Modes Open: DWEZ enabled Closed: DWEZ disabled                                                           | 294  |

# **→ H2: Multi-Function Digital Outputs**

| No.<br>(Addr.<br>Hex) | Name                                            | LCD Display      | Description                                                                                                                                                                                                                                                                        | Values                             | Page |
|-----------------------|-------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------|
| H2-01<br>(040B)       | Terminal M1-M2<br>function selection<br>(relay) | M1-M2 Func Sel   | All Modes  Refer to H2 Multi-Function Digital Output Settings on pages  553 to 555 for descriptions of setting values.                                                                                                                                                             | Default: 0<br>Range: 0 to 192      | 294  |
| H2-02<br>(040C)       | Terminal M3-M4<br>function selection<br>(relay) | P1/PC Func Sel   | 535 to 535 for descriptions of setting values.                                                                                                                                                                                                                                     | Default: 1<br>Range: 0 to 192      | 294  |
| H2-03<br>(040D)       | Terminal M5-M6 function selection (relay)       | P2/PC Func Sel   |                                                                                                                                                                                                                                                                                    | Default: 2<br>Range: 0 to 192      | 294  |
| H2-06<br>(0437)       | Power Consumption<br>Output Unit Selection      | Pwr Mon Unit Sel | All Modes  Sets the units for the output signal when Power Consumption Pulse Output or Regenerated Power Pulse Output are selected as the digital output (H2-01, H2-02, or H2-03 = 39 or 3A).  0: 0.1 kWh units  1: 1 kWh units 2: 10 kWh units 3: 100 kWh units 4: 1000 kWh units | Default: 1<br>Range: 0 to 4        | 305  |
| H2-07<br>(0B3A)       | MEMOBUS Register 1<br>Address Select            | MFDO Regs1 Addr  | All Modes  Sets the addresses of the MEMOBUS/Modbus registers from which data will be sent to contact outputs 62 and 162.                                                                                                                                                          | Default: 1<br>Range: 1 to<br>1FFFH | 305  |
| H2-08<br>(0B3B)       | MEMOBUS Register 1<br>Bit Select                | MFDO Regs1 Bit   | All Modes  Sets the bits for the MEMOBUS/Modbus registers from which data will be sent to contact outputs 62 and 162.                                                                                                                                                              | Default: 0<br>Range: 0 to<br>FFFFH | 305  |
| H2-09<br>(0B3C)       | MEMOBUS Register 2<br>Address Select            | MFDO Regs2 Addr  | All Modes  Sets the addresses of the MEMOBUS/Modbus registers from which data will be sent to contact outputs 63 and 163.                                                                                                                                                          | Default: 1<br>Range: 1 to<br>1FFFH | 305  |
| H2-10<br>(0B3D)       | MEMOBUS Register 2<br>Bit Select                | MFDO Regs2 Bit   | All Modes  Sets the bits for the MEMOBUS/Modbus registers from which data will be sent to contact outputs 63 and 163.                                                                                                                                                              | Default: 0<br>Range: 0 to<br>FFFFH | 305  |

<sup>&</sup>lt;1> Available in drive software versions PRG: 1015 and later.

| H2 Multi-Function Digital Output Settings |                                      |                  |                                                                                                                                                                                                                                                                                                |      |  |
|-------------------------------------------|--------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|
| H2-□□<br>Setting                          | Function                             | LCD Display      | Description                                                                                                                                                                                                                                                                                    | Page |  |
| 0                                         | During run                           | During RUN 1     | All Modes Closed: A Run command is active or voltage is output.                                                                                                                                                                                                                                | 295  |  |
| 1                                         | Zero speed                           | Zero Speed       | All Modes  Open: Output speed is greater than or equal to the value of E1-09 (Minimum Output Frequency) or b2-01 (DC Injection Braking Start Frequency).  Closed: Output frequency is less than the value of E1-09 (Minimum Output Frequency) or b2-01 (DC Injection Braking Start Frequency). |      |  |
| 2                                         | Speed agree 1                        | Fref/Fout Agree1 | All Modes  Closed: Output frequency equals the speed reference (plus or minus the hysteresis set to L4-02).                                                                                                                                                                                    | 296  |  |
| 3                                         | User-set speed agree 1               | Fref/Set Agree 1 | All Modes  Closed: Output frequency and speed reference equal L4-01 (plus or minus the hysteresis set to L4-02).                                                                                                                                                                               | 297  |  |
| 4                                         | Frequency detection 1                | Freq Detect 1    | All Modes  Closed: Output frequency is less than or equal to the value in L4-01 with hysteresis determined by L4-02.                                                                                                                                                                           | 297  |  |
| 5                                         | Frequency detection 2                | Freq Detect 2    | All Modes  Closed: Output frequency is greater than or equal to the value in L4-01 with hysteresis determined by L4-02.                                                                                                                                                                        | 297  |  |
| 6                                         | Drive ready                          | Drive Ready      | All Modes  Closed: Power up is complete and the drive is ready to accept a Run command.                                                                                                                                                                                                        | 298  |  |
| 7                                         | During Power Supply<br>Voltage Fault | Power Supply Err | All Modes  Closed: One of the following faults will occur: AUv (Power Supply Undervoltage), Uv (Undervoltage). or Fdv (Power Supply Frequency Fault).                                                                                                                                          | 298  |  |
| 8                                         | During baseblock (N.O.)              | BaseBlk 1        | All Modes  Closed: Drive has entered the baseblock state (no output voltage).                                                                                                                                                                                                                  | 298  |  |
| 9                                         | Frequency reference source           | Ref Source       | Open: External Reference 1 or 2 supplies the frequency reference (set in b1-01 or b1-15). Closed: Digital operator supplies the frequency reference.                                                                                                                                           | 298  |  |
| A                                         | Run command source                   | Run Cmd Source   | Open: External Reference 1 or 2 supplies the Run command (set in b1-02 or b1-16). Closed: Digital operator supplies the Run command.                                                                                                                                                           | 298  |  |
| В                                         | Torque detection 1 (N.O.)            | Trq Det 1 N.O.   | All Modes Closed: An overtorque or undertorque situation has been detected.                                                                                                                                                                                                                    | 299  |  |
| С                                         | Frequency reference loss             | Loss of Ref      | Closed: Analog frequency reference has been lost. Frequency reference loss is detected when the frequency reference drops below 10% of the reference within 400 ms.                                                                                                                            | 299  |  |
| Е                                         | Fault                                | Fault            | All Modes Closed: Fault occurred (this excludes CPF00 and CPF01).                                                                                                                                                                                                                              | 299  |  |
| F                                         | Through mode                         | Not Used         | All Modes Select this setting when the terminal is not used or when using the terminal in the pass-through mode.                                                                                                                                                                               | 299  |  |
| 10                                        | Minor fault                          | Minor Fault      | All Modes Closed: An alarm has been triggered.                                                                                                                                                                                                                                                 |      |  |
| 11                                        | Fault reset command active           | Reset Cmd Active | All Modes  Closed: The drive has received a reset command from the multi-function input terminals or from a serial network, or the RESET key on the digital operator has been pressed.                                                                                                         |      |  |
| 12                                        | Timer output                         | Timer Output     | All Modes Closed: Timer output.                                                                                                                                                                                                                                                                | 299  |  |

|                  | H2 Multi-Function Digital Output Settings |                   |                                                                                                                                                                                              |      |  |  |
|------------------|-------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|
| H2-□□<br>Setting | Function                                  | LCD Display       | Description                                                                                                                                                                                  | Page |  |  |
| 13               | Speed agree 2                             | Fref/Fout Agree2  | All Modes  Closed: When drive output frequency equals the frequency reference ±L4-04.                                                                                                        | 299  |  |  |
| 14               | User-set speed agree 2                    | Fref/Set Agree 2  | All Modes Closed: When the drive output frequency is equal to the value in L4-03 $\pm$ L4-04.                                                                                                | 300  |  |  |
| 15               | Frequency detection 3                     | Freq Detect 3     | All Modes  Closed: When the drive output frequency is less than or equal to the value in L4-03 ±L4-04.                                                                                       | 300  |  |  |
| 16               | Frequency detection 4                     | Freq Detect 4     | All Modes  Closed: When the output frequency is greater than or equal to the value in L4-03 ±L4-04.                                                                                          | 301  |  |  |
| 17               | Torque detection 1 (N.C.)                 | Trq Det 1 N.C.    | All Modes  Open: Overtorque or undertorque has been detected.                                                                                                                                | 299  |  |  |
| 18               | Torque detection 2 (N.O.)                 | Trq Det 2 N.O.    | All Modes  Closed: Overtorque or undertorque has been detected.                                                                                                                              | 2))  |  |  |
| 19               | Torque detection 2 (N.C.)                 | Trq Det 2 N.C.    | All Modes  Open: Overtorque or undertorque has been detected.                                                                                                                                | 299  |  |  |
| 1A               | During reverse                            | Reverse Dir       | All Modes  Closed: Drive is running in the reverse direction.                                                                                                                                | 301  |  |  |
| 1B               | During baseblock (N.C.)                   | BaseBlk 2         | All Modes  Open: Drive has entered the baseblock state (no output voltage).                                                                                                                  | 302  |  |  |
| 1C               | Motor 2 selection                         | Motor 2 Selected  | V/f     V/f w PG     OLV       OLV/PM     AOLV/PM     CLV/PM       Closed: Motor 2 is selected by a digital input (H1- $\Box\Box$ = 16).                                                     | 302  |  |  |
| 1D               | During regeneration                       | Regenerating      | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Closed: Motor is regenerating energy into the drive.                                                                                              | 302  |  |  |
| 1E               | Restart enabled                           | Dur Flt Restart   | All Modes Closed: An automatic restart is performed.                                                                                                                                         | 302  |  |  |
| 1F               | Motor overload alarm (oL1)                | Overload (OL1)    | All Modes  Closed: oL1 is at 90% of its trip point or greater. An oH3 situation also triggers this alarm.                                                                                    | 302  |  |  |
| 20               | Drive overheat pre-<br>alarm (oH)         | OH Prealarm       | All Modes  Closed: The heat sink temperature exceeds the L8-02 level (while L8-03 = 3 or 4), or an external device has triggered an oH2 alarm via multi-function input (H1- $\Box\Box$ = B). | 302  |  |  |
| 22               | Mechanical weakening detection            | MechFatigue (OL5) | All Modes  Closed: Mechanical weakening detected.                                                                                                                                            | 302  |  |  |
| 2F               | Maintenance period                        | Maintenance       | All Modes  Closed: Cooling fan, capacitor for the control power supply, or the soft charge bypass relay may require maintenance.                                                             | 302  |  |  |
| 30               | During torque limit                       | Torque Limit      | OLV/PM AOLV/PM CLV/PM Closed: When the torque limit has been reached.                                                                                                                        | 302  |  |  |
| 31               | During speed limit                        | Speed Limit       | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Closed: Speed limit has been reached.                                                                                                             | 303  |  |  |
| 32               | During speed limit in<br>Torque Control   | Spd Lim @ T Cont  | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Closed: Speed limit has been reached while using Torque Control.                                                                                  | 303  |  |  |

| H2 Multi-Function Digital Output Settings |                                                          |                  |                                                                                                                                                                           |      |  |
|-------------------------------------------|----------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|
| H2-□□<br>Setting                          | Function                                                 | LCD Display      | Description                                                                                                                                                               | Page |  |
| 33                                        | Zero Servo complete                                      | Zero Servo End   | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Closed: Zero Servo operation has finished.                                                                                     | 303  |  |
| 37                                        | During frequency output                                  | During RUN 2     | All Modes  Open: No frequency output from drive if stopped with baseblock or DC injection braking during initial excitation.  Closed: Drive is outputting a frequency.    | 303  |  |
| 38                                        | Drive enabled                                            | Drive Enable     | All Modes  Closed: Multi-function input set for "Drive enable" is closed (H1- $\square\square$ = 6A).                                                                     | 303  |  |
| 39                                        | Power Consumption<br>Pulse Output                        | Energy Pulse Out | Outputs a pulse to indicate the power consumption. Output units are determined by H2-06. Outputs a pulse every 200 ms to indicate the kWh count.                          | 303  |  |
| 3A                                        | Regenerated Power<br>Pulse Output                        | RegEn Pulse Out  | All Modes Outputs a pulse to indicate the regenerated power. Output units are determined by H2-06. Outputs a pulse every 200 ms to indicate the kWh count.                | 303  |  |
| 3C                                        | LOCAL/REMOTE status                                      | Local            | All Modes Open: REMOTE Closed: LOCAL                                                                                                                                      | 303  |  |
| 3D                                        | During speed search                                      | During SpdSrch   | All Modes Closed: Speed Search is being executed.                                                                                                                         | 304  |  |
| 3E                                        | PID feedback low                                         | PID Feedback Low | All Modes Closed: PID feedback level is too low.                                                                                                                          | 304  |  |
| 3F                                        | PID feedback high                                        | PID FeedbackHigh | All Modes Closed: The PID feedback level is too high.                                                                                                                     | 304  |  |
| 4C                                        | During fast stop                                         | During Fast Stop | All Modes  Closed: A Fast Stop command has been entered from the operator or input terminals.                                                                             | 304  |  |
| 4D                                        | oH Pre-alarm time limit                                  | OH Pre-Alarm     | All Modes  Closed: An oH pre-alarm is present after 10 output frequency reduction cycles have passed (L8-03 = 4).                                                         | 304  |  |
| 60                                        | Internal cooling fan alarm                               | Fan Alrm Det     | All Modes Closed: Internal cooling fan alarm                                                                                                                              | 304  |  |
| 61                                        | Rotor position detection completed                       | RotPosDetCmpIt   | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Closed: Drive has successfully detected the rotor position of the PM motor.                                                    | 304  |  |
| 62                                        | MEMOBUS Register 1<br>(Selected with H2-07<br>and H2-08) | Memobus Regs1    | All Modes  The contact output is closed when any of the bits specified by H2-08 for the MEMOBUS/Modbus register address set in H2-07 turn on.                             | 304  |  |
| 63                                        | MEMOBUS Register 2<br>(Selected with H2-09<br>and H2-10) | Memobus Regs2    | All Modes  The contact output is closed when any of the bits specified by H2-10 for the MEMOBUS/Modbus register address set in H2-09 turn on.                             | 304  |  |
| 64                                        | During Commercial<br>Power Operation                     | CommerclPwr Mode | V/f V/f w PG OLV CLV OLV/PM (AOLV/PM) CLV/PM Closed: Operating on commercial power.                                                                                       |      |  |
| 90 to 92                                  | DriveWorksEZ digital outputs 1 to 3                      | -                | All Modes Reserved for DWEZ digital output functions.                                                                                                                     | 304  |  |
| 100 to<br>192                             | Function 0 to 92 with inverse output                     | !Function        | All Modes  Inverts the output switching of the multi-function output functions.  Set the last two digits of 1 □ □ to reverse the output signal of that specific function. | 304  |  |

# **♦** H3: Multi-Function Analog Inputs

| No.<br>(Addr.<br>Hex)    | Name                                      | LCD Display                                                                                                                                                 | Description                                                                                                                                                                                                                                                                                                                                                                                                  | Values                                         | Page |
|--------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------|
| H3-01<br>(0410)          | Terminal A1 Signal<br>Level Selection     | Term A1 Level<br>0: 0-10V,<br>(LowLim=0)<br>1: 0-10V, (BipolRef)                                                                                            | All Modes 0: 0 to 10 V 1: -10 to 10 V                                                                                                                                                                                                                                                                                                                                                                        | Default: 0<br>Range: 0, 1                      | 305  |
| H3-02<br>(0434)          | Terminal A1 Function<br>Selection         | Term A1 FuncSel                                                                                                                                             | All Modes Sets the function of terminal A1.                                                                                                                                                                                                                                                                                                                                                                  | Default: 0<br>Range: 0 to 32                   | 306  |
| H3-03<br>(0411)<br>•◆RUN | Terminal A1 Gain<br>Setting               | Terminal A1 Gain                                                                                                                                            | All Modes Sets the level of the input value selected in H3-02 when 10 V is input at terminal A1.                                                                                                                                                                                                                                                                                                             | Default: 100.0%<br>Min.: -999.9<br>Max.: 999.9 | 306  |
| H3-04<br>(0412)          | Terminal A1 Bias<br>Setting               | Terminal A1 Bias                                                                                                                                            | All Modes  Sets the level of the input value selected in H3-02 when 0 V is input at terminal A1.                                                                                                                                                                                                                                                                                                             | Default: 0.0%<br>Min.: -999.9<br>Max.: 999.9   | 306  |
| H3-05<br>(0413)          | Terminal A3 Signal<br>Level Selection     | Term A3 Signal<br>0: 0-10V (LowLim=0)<br>1: 0-10V, (BipolRef)                                                                                               | All Modes 0: 0 to 10 V 1: -10 to 10 V                                                                                                                                                                                                                                                                                                                                                                        | Default: 0<br>Range: 0, 1                      | 307  |
| H3-06<br>(0414)          | Terminal A3 Function<br>Selection         | Terminal A3 Sel                                                                                                                                             | All Modes Sets the function of terminal A3.                                                                                                                                                                                                                                                                                                                                                                  | Default: 2<br>Range: 0 to 32                   | 307  |
| H3-07<br>(0415)<br>◆RUN  | Terminal A3 Gain<br>Setting               | Terminal A3 Gain                                                                                                                                            | All Modes Sets the level of the input value selected in H3-06 when 10 V is input at terminal A3.                                                                                                                                                                                                                                                                                                             | Default: 100.0%<br>Min.: -999.9<br>Max.: 999.9 | 307  |
| H3-08<br>(0416)<br>⊕RUN  | Terminal A3 Bias<br>Setting               | Terminal A3 Bias                                                                                                                                            | All Modes Sets the level of the input value selected in H3-06 when 0 V is input at terminal A3.                                                                                                                                                                                                                                                                                                              | Default: 0.0%<br>Min.: -999.9<br>Max.: 999.9   | 307  |
| H3-09<br>(0417)          | Terminal A2 Signal<br>Level Selection     | Term A2 Level                                                                                                                                               | All Modes  0: 0 to 10 V  1: -10 to 10 V  2: 4 to 20 mA  3: 0 to 20 mA  Note: Use DIP switch S1 to set input terminal A2 for a current or a voltage input signal.                                                                                                                                                                                                                                             | Default: 2<br>Range: 0 to 3                    | 307  |
| H3-10<br>(0418)          | Terminal A2 Function<br>Selection         | Term A2 FuncSel                                                                                                                                             | All Modes Sets the function of terminal A2.                                                                                                                                                                                                                                                                                                                                                                  | Default: 0<br>Range: 0 to 32                   | 307  |
| H3-11<br>(0419)<br>•⊕RUN | Terminal A2 Gain<br>Setting               | Terminal A2 Gain                                                                                                                                            | All Modes Sets the level of the input value selected in H3-10 when 10 V (20 mA) is input at terminal A2.                                                                                                                                                                                                                                                                                                     | Default: 100.0%<br>Min.: -999.9<br>Max.: 999.9 | 307  |
| H3-12<br>(041A)<br>•◆RUN | Terminal A2 Bias<br>Setting               | Terminal A2 Bias                                                                                                                                            | All Modes Sets the level of the input value selected in H3-10 when 0 V (0 or 4 mA) is input at terminal A2.                                                                                                                                                                                                                                                                                                  | Default: 0.0%<br>Min.: -999.9<br>Max.: 999.9   | 307  |
| H3-13<br>(041B)          | Analog Input Filter<br>Time Constant      | A1/A2 Filter T                                                                                                                                              | All Modes Sets a primary delay filter time constant for terminals A1, A2, and A3. Used for noise filtering.                                                                                                                                                                                                                                                                                                  | Default: 0.03 s<br>Min.: 0.00<br>Max.: 2.00    | 308  |
| H3-14<br>(041C)          | Analog Input Terminal<br>Enable Selection | A1/A2/A3 Sel<br>1: A1 Available<br>2: A2 Available<br>3: A1/A2 Available<br>4: A3 Available<br>5: A1/A3 Available<br>6: A2/A3 Available<br>7: All Available | All Modes  Determines which analog input terminals will be enabled or disabled when a digital input programmed for "Analog input enable" (H1-□□ = C) is activated.  The terminals not set as the target are not influenced by input signals.  1: Terminal A1 only 2: Terminal A2 only 3: Terminals A1 and A2 only 4: Terminal A3 only 5: Terminals A1 and A3 6: Terminals A2 and A3 7: All terminals enabled | Default: 7<br>Range: 1 to 7                    | 308  |

| No.<br>(Addr.<br>Hex) | Name               | LCD Display      | Description | Values                                | Page |
|-----------------------|--------------------|------------------|-------------|---------------------------------------|------|
| H3-16<br>(02F0)       | Terminal A1 Offset | TerminalA1Offset | All windes  | Default: 0<br>Min.: -500<br>Max.: 500 | 309  |
| H3-17<br>(02F1)       | Terminal A2 Offset | TerminalA2Offset | All Wiodes  | Default: 0<br>Min.: -500<br>Max.: 500 | 309  |
| H3-18<br>(02F2)       | Terminal A3 Offset | TerminalA3Offset | All windes  | Default: 0<br>Min.: -500<br>Max.: 500 | 309  |

|                  |                                    | H3 Mu            | ılti-Function Analog Input Settings                                                                                 |      |
|------------------|------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------|------|
| H3-□□<br>Setting | Function                           | LCD Display      | Description When Output Is 100%                                                                                     | Page |
| 0                | Frequency bias                     | Freq Ref Bias    | All Modes 10 V = E1-04 (maximum output frequency)                                                                   | 309  |
| 1                | Frequency gain                     | Freq Ref Gain    | All Modes  0 to 10 V signal allows a setting of 0 to 100%10 to 0 V signal allows a setting of -100 to 0%.           | 309  |
| 2                | Auxiliary frequency reference 1    | Aux Reference1   | All Modes 10 V = E1-04 (maximum output frequency)                                                                   | 309  |
| 3                | Auxiliary frequency reference 2    | Aux Reference2   | All Modes 10 V = E1-04 (maximum output frequency)                                                                   | 309  |
| 4                | Output voltage bias                | Voltage Bias     | V/f V/f w PG OLV CLV  OLV/PM AOLV/PM CLV/PM  10 V = E1-05 (motor rated voltage)                                     | 309  |
| 5                | Accel/decel time gain              | Acc/DecTime Gain | All Modes<br>10 V = 100%                                                                                            | 309  |
| 6                | DC Injection Braking current       | DC Brake Current | V/f V/f w PG OLV CLV  OLV/PM AOLV/PM CLV/PM  10 V = Drive rated current                                             | 309  |
| 7                | Torque detection level             | Torque Det Level | All Modes  10 V = Drive rated current (V/f, V/f w PG) 10 V = Motor rated torque (OLV, CLV, OLV/PM, AOLV/PM, CLV/PM) | 310  |
| 8                | Stall Prevention level during run  | Stall Prev Level | V/f V/f w PG OLV CLV  OLV/PM AOLV/PM CLV/PM  10 V = Drive rated current                                             | 310  |
| 9                | Output frequency lower limit level | Ref Lower Limit  | All Modes 10 V = E1-04 (maximum output frequency)                                                                   | 310  |
| В                | PID feedback                       | PID Feedback1    | All Modes<br>10 V = 100%                                                                                            | 310  |
| С                | PID setpoint                       | PID Set Point    | All Modes<br>10 V = 100%                                                                                            | 310  |
| D                | Frequency bias                     | Freq Ref Bias 2  | All Modes 10 V = E1-04 (maximum output frequency)                                                                   | 310  |
| Е                | Motor temperature (PTC input)      | Motor PTC        | All Modes<br>10 V = 100%                                                                                            | 310  |
| F                | Through mode                       | Not Used         | All Modes  Select this setting when the terminal is not used or when using the terminal in the pass-through mode.   | 310  |
| 10               | Forward torque limit               | Fwd Torque Limit | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 10 V = Motor rated torque                                                | 310  |

|                  | H3 Multi-Function Analog Input Settings                  |                  |                                                                                                                   |      |  |
|------------------|----------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------|------|--|
| H3-□□<br>Setting | Function                                                 | LCD Display      | Description When Output Is 100%                                                                                   | Page |  |
| 11               | Reverse torque limit                                     | Rev Torque Limit | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 10 V = Motor rated torque                                              | 310  |  |
| 12               | Regenerative torque limit                                | Regen Torq Limit | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 10 V = Motor rated torque                                              | 310  |  |
| 13               | Torque Limit Using<br>Torque Reference/<br>Speed Control | Torque Reference | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 10 V = Motor rated torque                                              | 311  |  |
| 14               | Torque compensation                                      | Torque Comp      | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 10 V = Motor rated torque                                              | 311  |  |
| 15               | General torque limit                                     | Torque Limit     | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 10 V = Motor rated torque                                              | 310  |  |
| 16               | Differential PID feedback                                | PID Feedback 2   | All Modes<br>10 V = 100%                                                                                          | 311  |  |
| 1F               | Through mode                                             | Not Used         | All Modes  Select this setting when the terminal is not used or when using the terminal in the pass-through mode. | 310  |  |
| 30 to 32         | DriveWorksEZ<br>analog input 1 to 3                      | _                | All Modes Output is determined by the function selected using DWEZ.                                               | 311  |  |

# ♦ H4: Analog Outputs

| No.<br>(Addr.<br>Hex)                | Name                                                             | LCD Display      | Description                                                                                                                                                                                          | Values                                         | Page |
|--------------------------------------|------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------|
| H4-01<br>(041D)                      | Multi-Function Analog<br>Output Terminal FM<br>Monitor Selection | Term FM FuncSel  | All Modes  Selects the data to be output through multi-function analog output terminal FM.  Set the desired monitor parameter to the digits available in U□-□□.  For example, enter "103" for U1-03. | Default: 102<br>Range: 000 to<br>999           | 311  |
| H4-02<br>(041E)<br><sup>®</sup> ⊕RUN | Multi-Function Analog<br>Output Terminal FM<br>Gain              | Terminal FM Gain | All Modes Sets the signal level at terminal FM that is equal to 100% of the selected monitor value.                                                                                                  | Default: 100.0%<br>Min.: -999.9<br>Max.: 999.9 | 311  |
| H4-03<br>(041F)                      | Multi-Function Analog<br>Output Terminal FM<br>Bias              | Terminal FM Bias | All Modes Sets the signal level at terminal FM that is equal to 0% of the selected monitor value.                                                                                                    | Default: 0.0%<br>Min.: -999.9<br>Max.: 999.9   | 311  |
| H4-04<br>(0420)                      | Multi-Function Analog<br>Output Terminal AM<br>Monitor Selection | Terminal AM Sel  | All Modes  Selects the data to be output through multi-function analog output terminal AM.  Set the desired monitor parameter to the digits available in U□-□□.  For example, enter "103" for U1-03. | Default: 103<br>Range: 000 to<br>999           | 311  |
| H4-05<br>(0421)                      | Multi-Function Analog<br>Output Terminal AM<br>Gain              | Terminal AM Gain | All Modes Sets the signal level at terminal AM that is equal to 100% of the selected monitor value.                                                                                                  | Default: 50.0%<br>Min.: -999.9<br>Max.: 999.9  | 311  |
| H4-06<br>(0422)                      | Multi-Function Analog<br>Output Terminal AM<br>Bias              | Terminal AM Bias | All Modes  Sets the signal level at terminal AM that is equal to 0% of the selected monitor value.                                                                                                   | Default: 0.0%<br>Min.: -999.9<br>Max.: 999.9   | 311  |

| No.<br>(Addr.<br>Hex) | Name                                                                  | LCD Display                                                    | Description                                         | Values                      | Page |
|-----------------------|-----------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|-----------------------------|------|
| H4-07<br>(0423)       | Multi-Function Analog<br>Output Terminal FM<br>Signal Level Selection | Term FM Lvl Sel<br>0: 0-10 VDC<br>1: -10 +10 VDC<br>2: 4-20 mA | All Modes 0: 0 to 10 V 1: -10 to 10 V 2: 4 to 20 mA | Default: 0<br>Range: 0 to 2 | 312  |
| H4-08<br>(0424)       | Multi-Function Analog<br>Output Terminal AM<br>Signal Level Selection | Term AM Lvl Sel<br>0: 0-10 VDC<br>1: -10 +10 VDC<br>2: 4-20 mA | All Modes 0: 0 to 10 V 1: -10 to 10 V 2: 4 to 20 mA | Default: 0<br>Range: 0 to 2 | 312  |

#### ♦ H5: MEMOBUS/Modbus Serial Communication

**Note:** Restart the drive to enable MEMOBUS/Modbus communication settings.

| No.<br>(Addr.<br>Hex)  | Name                                                   | LCD Display                                                                                                                                                   | Description                                                                                                                                                                    | Values                                    | Page |
|------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------|
| H5-01<br>(0425)<br><1> | Drive Node Address                                     | Serial Comm Adr                                                                                                                                               | All Modes  Selects drive station node number (address) for MEMOBUS/ Modbus terminals R+, R-, S+, S  Note: Cycle power for the setting to take effect.                          | Default: 1F (Hex)<br>Min.: 0<br>Max.: FFH | 633  |
| H5-02<br>(0426)        | Communication Speed Selection                          | Serial Baud Rate<br>0: 1200 bps<br>1: 2400 bps<br>2: 4800 bps<br>3: 9600 bps<br>4: 19.2 kbps<br>5: 38.4 kbps<br>6: 57.6 kbps<br>7: 76.8 kbps<br>8: 115.2 kbps | All Modes  0: 1200 bps 1: 2400 bps 2: 4800 bps 3: 9600 bps 4: 19200 bps 5: 38400 bps 6: 57600 bps 7: 76800 bps 8: 115200 bps Note: Cycle power for the setting to take effect. | Default: 3<br>Range: 0 to 8               | 633  |
| H5-03<br>(0427)        | Communication Parity<br>Selection                      | Serial Com Sel<br>0: No Parity<br>1: Even Parity<br>2: Odd Parity                                                                                             | All Modes  0: No parity 1: Even parity 2: Odd parity  Note: Cycle power for the setting to take effect.                                                                        | Default: 0<br>Range: 0 to 2               | 633  |
| H5-04<br>(0428)        | Stopping Method after<br>Communication Error<br>(CE)   | Serial Fault Sel<br>0: Ramp to Stop<br>1: Coast to Stop<br>2: Fast-Stop<br>3: Alarm Only                                                                      | All Modes  0: Ramp to stop 1: Coast to stop 2: Fast Stop 3: Alarm only                                                                                                         | Default: 3<br>Range: 0 to 3               | 633  |
| H5-05<br>(0429)        | Communication Fault<br>Detection Selection             | Serial Flt Dtct<br>0: Disabled<br>1: Enabled                                                                                                                  | 0: Disabled 1: Enabled. If communication is lost for more than two seconds, a CE fault will occur.                                                                             | Default: 1<br>Range: 0, 1                 | 634  |
| H5-06<br>(042A)        | Drive Transmit Wait<br>Time                            | Transmit WaitTIM                                                                                                                                              | Set the wait time between receiving and sending data.  Note: Cycle power for the setting to take effect.                                                                       | Default: 5 ms<br>Min.: 5<br>Max.: 65      | 634  |
| H5-07<br>(042B)        | RTS Control Selection                                  | RTS Control Sel<br>0: Disabled<br>1: Enabled                                                                                                                  | O: Disabled. RTS is always on. 1: Enabled. RTS turns on only when sending.  Note: Cycle power for the setting to take effect.                                                  | Default: 1<br>Range: 0, 1                 | 634  |
| H5-09<br>(0435)        | Communication Fault<br>Detection Time                  | CE Detect Time                                                                                                                                                | All Modes  Sets the time required to detect a communications error.  Adjustment may be needed when networking several drives.                                                  | Default: 2.0 s<br>Min.: 0.0<br>Max.: 10.0 | 634  |
| H5-10<br>(0436)        | Unit Selection for<br>MEMOBUS/Modbus<br>Register 0025H | CommReg 25h Unit<br>0: 0.1 V<br>1: 1 V                                                                                                                        | All Modes 0: 0.1 V units 1: 1 V units                                                                                                                                          | Default: 0<br>Range: 0, 1                 | 634  |

| No.<br>(Addr.<br>Hex) | Name                                                       | LCD Display                                                  | Description                                                                                                                                                                                                                                                                             | Values                                | Page |
|-----------------------|------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------|
| H5-11<br>(043C)       | Communications<br>ENTER Function<br>Selection              | Enter CommandSel<br>0: Enter Required<br>1: No EnterRequired | O: Drive requires an Enter command before accepting any changes to parameter settings.  1: Parameter changes are activated immediately without the Enter command (same as V7).                                                                                                          | Default: 0<br>Range: 0, 1             | 636  |
| H5-12<br>(043D)       | Run Command Method<br>Selection                            | Run CommandSel<br>0: FWD Run &REV<br>Run<br>1: Run & FWD/REV | All Modes 0: FWD/Stop, REV/Stop 1: Run/Stop, FWD/REV                                                                                                                                                                                                                                    | Default: 0<br>Range: 0, 1             | 636  |
| H5-17<br>(11A1)       | Operation Selection<br>when Unable to Write<br>into EEPROM | Busy Enter Sel<br>0: No ROM Enter<br>1: RAM Enter            | All Modes  Selects operation when an attempt is made to write data into EEPROM via MEMOBUS/Modbus communications and writing into EEPROM is not possible.  There is normally no need to change this parameter from the default value  0: Cannot write into EEPROM  1: Write in RAM only | Default: 0<br>Range: 0, 1             | 636  |
| H5-18<br>(11A2)       | Filter Time Constant for<br>Motor Speed Monitoring         | MtrSpd Monitor T                                             | All Modes  Sets the filter time constant for monitoring the motor speed from MEMOBUS/Modbus communications and communication options.  Applicable MEMOBUS/Modbus registers are: 3EH, 3FH, 44H, ACH, and ADH                                                                             | Default: 0 ms<br>Min.: 0<br>Max.: 100 | 636  |

<sup>&</sup>lt;1> If this parameter is set to 0, the drive will be unable to respond to MEMOBUS/Modbus commands.

# ♦ H6: Pulse Train Input/Output

| No.<br>(Addr.<br>Hex)                | Name                                                   | LCD Display                                                                       | Description                                                                                                                                                                                               | Values                                       | Page |
|--------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------|
| H6-01<br>(042C)                      | Pulse Train Input<br>Terminal RP Function<br>Selection | Term RP Func Sel 0: Frequency Ref 1: PID Feedback 2: PID Set Point 3: PG Feedback | All Modes  0: Frequency reference 1: PID feedback value 2: PID setpoint value 3: V/f Control with Simple PG feedback (possible only when using motor 1 in V/f Control)                                    | Default: 0<br>Range: 0 to 3                  | 313  |
| H6-02<br>(042D)<br>•◆RUN             | Pulse Train Input<br>Scaling                           | Term RP Scaling                                                                   | All Modes  Sets the terminal RP input signal frequency that is equal to 100% of the value selected in H6-01.                                                                                              | Default: 1440 Hz<br>Min.: 100<br>Max.: 32000 | 314  |
| H6-03<br>(042E)<br>•⊕RUN             | Pulse Train Input Gain                                 | Terminal RP Gain                                                                  | All Modes  Sets the level of the value selected in H6-01 when a frequency with the value set in H6-02 is input.                                                                                           | Default: 100.0%<br>Min.: 0.0<br>Max.: 1000.0 | 314  |
| H6-04<br>(042F)<br>•⊕RUN             | Pulse Train Input Bias                                 | Terminal RP Bias                                                                  | All Modes Sets the level of the value selected in H6-01 when 0 Hz is input.                                                                                                                               | Default: 0.0%<br>Min.: -100.0<br>Max.: 100.0 | 314  |
| H6-05<br>(0430)<br><sup>*</sup> ◆RUN | Pulse Train Input Filter<br>Time                       | Term RP Flt Time                                                                  | All Modes  Sets the pulse train input filter time constant.                                                                                                                                               | Default: 0.10 s<br>Min.: 0.00<br>Max.: 2.00  | 314  |
| H6-06<br>(0431)                      | Pulse Train Monitor<br>Selection                       | Term MP Func Sel                                                                  | All Modes  Select the pulse train monitor output function (value of the □-□□ part of U□-□□).  For example, enter "501" for U5-01.                                                                         | Default: 102<br>Range: 000 to 809            | 314  |
| H6-07<br>(0432)<br>◆RUN              | Pulse Train Monitor<br>Scaling                         | Term RP Scaling                                                                   | All Modes  Sets the terminal MP output signal frequency when the monitor value is 100%.  For example, to have the pulse train monitor output equal the output frequency, set H6-06 to 102 and H6-07 to 0. | Default: 1440 Hz<br>Min.: 0<br>Max.: 32000   | 314  |

| ė | d | i |  | i |
|---|---|---|--|---|
|   | Г |   |  | ٦ |
|   |   |   |  |   |

| No.<br>(Addr.<br>Hex) | Name                                   | LCD Display    | Description                                                                                                      | Values                                       | Page |
|-----------------------|----------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------|
| H6-08<br>(043F)       | Pulse Train Input<br>Minimum Frequency | MP Lower Limit | All Modes  Sets the minimum frequency for the pulse train input to be detected. Enabled when H6-01 = 0. 1, or 2. | Default: 0.5 Hz<br>Min.: 0.1<br>Max.: 1000.0 | 314  |

## **B.10 L: Protection Function**

L parameters provide protection to the drive and motor, including control during momentary power loss, stall prevention, frequency detection, fault restarts, overtorque and undertorque detection, and other types of hardware protection.

#### **◆** L1: Motor Protection

| No.<br>(Addr.<br>Hex) | Name                                                       | LCD Display                                                                                                            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                               | Values                                                                                                  | Page |
|-----------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------|
| L1-01<br>(0480)       | Motor Overload<br>Protection Selection                     | Mtr OL Charact 0: OL1 Disabled 1: VT Motor 2: CT Motor 3: Vector Motor 4: PM Motor 5: Constant Torque 6: 50Hz VT Motor | O: Disabled 1: General purpose motor (standard fan cooled) 2: Drive dedicated motor with a speed range of 1:10 3: Vector motor with a speed range of 1:100 4: PM motor with variable torque 5: PM motor with constant torque control 6: General purpose motor (50 Hz) The drive may not be able to provide protection when using multiple motors, even if overload is enabled in L1-01. Set L1-01 to 0 and install separate thermal relays to each motor. | Default: <1> Range: 0 to 6                                                                              | 316  |
| L1-02<br>(0481)       | Motor Overload<br>Protection Time                          | MOL Time Const                                                                                                         | All Modes Sets the motor thermal overload protection (oL1) time.                                                                                                                                                                                                                                                                                                                                                                                          | Default: 1.0 min<br>Min.: 0.1<br>Max.: 5.0                                                              | 318  |
| L1-03<br>(0482)       | Motor Overheat Alarm<br>Operation Selection<br>(PTC input) | Mtr OH Alarm Sel<br>0: Ramp to Stop<br>1: Coast to Stop<br>2: Fast-Stop<br>3: Alarm only                               | All Modes  Sets operation when the motor temperature analog input (H3-02, H3-10, or H3-06 = E) exceeds the oH3 alarm level.  0: Ramp to stop 1: Coast to stop 2: Fast Stop (decelerate to stop using the deceleration time in C1-09) 3: Alarm only ("oH3" will flash)                                                                                                                                                                                     | Default: 3<br>Range: 0 to 3                                                                             | 320  |
| L1-04<br>(0483)       | Motor Overheat Fault<br>Operation Selection<br>(PTC input) | Mtr OH Fault Sel<br>0 : Ramp to Stop<br>1: Coast to Stop<br>2: Fast-Stop                                               | All Modes  Sets stopping method when the motor temperature analog input (H3-02, H3-10, or H3-06 = E) exceeds the oH4 fault level.  0: Ramp to stop 1: Coast to stop 2: Fast Stop (decelerate to stop using the deceleration time in C1-09)                                                                                                                                                                                                                | Default: 1<br>Range: 0 to 2                                                                             | 320  |
| L1-05<br>(0484)       | Motor Temperature<br>Input Filter Time (PTC<br>input)      | Mtr Temp Filter                                                                                                        | All Modes Adjusts the filter for the motor temperature analog input (H3-02, H3-10, or H3-06 = E).                                                                                                                                                                                                                                                                                                                                                         | Default: 0.20 s<br>Min.: 0.00<br>Max.: 10.00                                                            | 320  |
| L1-08<br>(1103)       | oL1 Current Level                                          | OL1 current lvl1                                                                                                       | All Modes  Sets the reference current for motor thermal overload detection for motor 1 in amperes.                                                                                                                                                                                                                                                                                                                                                        | Default: 0.0 A Min.: 10% of drive rated current Max.: 150% of drive rated current <>>                   | 320  |
| L1-09<br>(1104)       | oL1 Current Level for<br>Motor 2                           | OL1 current lvl2                                                                                                       | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the reference current for motor thermal overload detection for motor 2 in amperes.                                                                                                                                                                                                                                                                                                                        | Default: 0.0 A<br>Min.: 10% of<br>drive rated<br>current<br>Max.: 150% of<br>drive rated<br>current <2> | 321  |
| L1-13<br>(046D)       | Continuous<br>Electrothermal<br>Operation Selection        | Mtr OL Mem Sel<br>0: Disabled<br>1: Enabled                                                                            | All Modes 0: Disabled 1: Enabled                                                                                                                                                                                                                                                                                                                                                                                                                          | Default: 1<br>Range: 0, 1                                                                               | 321  |

<sup>&</sup>lt;1> Default setting is determined by parameter A1-02, Control Method Selection.

<sup>&</sup>lt;2> Display is in the following units:

 $<sup>2\</sup>square 0028$ ,  $2\square 0042$ , and  $4\square 0011$  to  $4\square 0027$ : 0.01 A units  $2\square 0054$  to  $2\square 0248$  and  $4\square 0034$  to  $4\square 0930$ : 0.1 A units

# ◆ L2: Momentary Power Loss Ride-Thru

| No.<br>(Addr.<br>Hex) | Name                                                          | LCD Display                                                                | Description                                                                                                                                                                                                                                                                          | Values                                                  | Page |
|-----------------------|---------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------|
| L2-01<br>(0485)       | Momentary Power Loss<br>Operation Selection                   | PwrL Selection<br>0: Disabled<br>1: Enbl with Timer<br>2: Enbl whl CPU act | O: Disabled. Drive trips on Uv1 fault when power is lost. 1: Recover within the time set in L2-02. Uv1 will be detected if power loss is longer than L2-02. 2: Recover as long as CPU has power. Uv1 is not detected.                                                                | Default: 0<br>Range: 0 to 2                             | 321  |
| L2-02<br>(0486)       | Momentary Power Loss<br>Ride-Thru Time                        | PwrL Ridethru t                                                            | All Modes Sets the Power Loss Ride-Thru time. Enabled only when L2-01 = 1 or 3.                                                                                                                                                                                                      | Default: 0.5 s<br>Min.: 0.0<br>Max.: 2.5                | 322  |
| L2-03<br>(0487)       | Momentary Power Loss<br>Minimum Baseblock<br>Time             | PwrL Baseblock t                                                           | All Modes  Sets the minimum wait time for residual motor voltage decay before the drive output reenergizes after performing Power Loss Ride-Thru.  Increasing the time set to L2-03 may help if overcurrent or overvoltage occur during Speed Search or during DC Injection Braking. | Default: <1> Min.: 0.1 s Max.: 5.0 s                    | 322  |
| L2-04<br>(0488)       | Momentary Power Loss<br>Voltage Recovery Ramp<br>Time         | PwrL V/F Ramp t                                                            | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the time for the output voltage to return to the preset V/f pattern during Speed Search.                                                                                                                                             | Default: <1> Min.: 0.0 s Max.: 5.0 s                    | 322  |
| L2-07<br>(048B)       | Momentary Power Loss<br>Voltage Recovery<br>Acceleration Time | KEB Accel Time                                                             | All Modes  Sets the time to accelerate to the frequency reference when momentary power loss is over. If set to 0.0, the active acceleration time (C1-01, C1-03, C1-05, or C1-07) is used.                                                                                            | Default: 0.00 s<br>Min.: 0.00<br>Max.: 6000.0           | 322  |
| L2-13<br>(04CD)       | Input Power Frequency<br>Fault Detection Gain                 | FDV Detect Gain                                                            | All Modes Set the gain to use to detect power supply frequency fault (Fdv).                                                                                                                                                                                                          | Default: 1.0<br>Min.: 0.1<br>Max.: 2.0                  | 322  |
| L2-21<br>(04D5)       | Low Input Voltage<br>Detection Level                          | AVV Detect evel                                                            | All Modes Set the level at which to detect a low input voltage.                                                                                                                                                                                                                      | Default: 150 V<br>Min.: 100 V <3><br>Max.: 230 V<br><3> | 322  |
| L2-27<br>(04F7)       | Power Supply<br>Frequency Fault<br>Detection Width            | FDV Detect Width                                                           | All Modes Sets the frequency width to use to detect power supply frequency fault (Fdv).                                                                                                                                                                                              | Default: 6.0 Hz<br>Min.: 3.0 Hz<br>Max.: 20.0 Hz        | 323  |

- <1> Default setting is determined by parameters C6-01, Drive Duty Selection, and o2-04, Drive Model Selection.
- <2> Setting range value is dependent on parameter C1-10, Accel/Decel Time Setting Units. When C1-10 = 0 (units of 0.01 seconds), the setting range becomes 0.00 to 600.00 seconds.
- <3> Values shown are specific to 200 V class drives. Double the value for 400 V class drives.

#### ◆ L3: Stall Prevention

| No.<br>(Addr.<br>Hex) | Name                                                 | LCD Display                                                           | Description                                                                                                                                                                                                                                                                                                                                                                                       | Values                                     | Page |
|-----------------------|------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------|
| L3-01<br>(048F)       | Stall Prevention<br>Selection during<br>Acceleration | StallP Accel Sel<br>0: Disabled<br>1: General Purpose<br>3: iLim Mode | V/f V/f w PG OLV CLV  OLV/PM AOLV/PM CLV/PM  0: Disabled.  1: Enabled. General purpose. Acceleration is paused as long as the current is above the L3-02 setting.  3: Enabled (Current Limit). The acceleration rate is automatically adjusted while limiting the output current at the setting value of the stall prevention level (L3-02).  Note: Setting 3 is not available when using OLV/PM. | Default: 1<br>Range: 0, 1, 3               | 323  |
| L3-02<br>(0490)       | Stall Prevention Level<br>during Acceleration        | StallP Accel Lvl                                                      | V/f V/f w PG OLV CLV  OLV/PM AOLV/PM CLV/PM  Used when L3-01 = 1 or 3. 100% is equal to the drive rated current.                                                                                                                                                                                                                                                                                  | Default: <1><br>Min.: 0%<br>Max.: 150% <1> | 325  |

### **B.10 L: Protection Function**

| No.<br>(Addr.<br>Hex) | Name                                                                         | LCD Display                                                                     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                             | Values                                            | Page |
|-----------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------|
| L3-03<br>(0491)       | Stall Prevention Limit<br>during Acceleration/<br>Deceleration               | StallPAcc LowLim                                                                | V/f V/f w PG OLV CLV  OLV/PM AOLV/PM CLV/PM  Sets Stall Prevention lower limit during acceleration/deceleration when operating in the constant power range. Set as a percentage of drive rated current.                                                                                                                                                                                                                                                 | Default: 50%<br>Min.: 0<br>Max.: 100              | 325  |
| L3-04<br>(0492)       | Stall Prevention<br>Selection during<br>Deceleration                         | StallP Decel Sel 0: Disabled 1: General Purpose 4: High Flux Brake 6: iLim Mode | O: Disabled. Deceleration at the active deceleration rate. An oC fault may occur.  1: General purpose. Deceleration is paused when the output current exceeds the Stall Prevention level.  4: Overexcitation Deceleration. Decelerates while increasing the motor flux.  6: Enable (Current Limit). The deceleration rate is automatically adjusted while limiting the regeneration current at the setting value of the stall prevention level (L3-14). | Default: 1 Range: 0 to 6 <2>                      | 325  |
| L3-05<br>(0493)       | Stall Prevention<br>Selection during Run                                     | StallP Run Sel 0: Disabled 1: Decel Time 1 2: Decel Time 2                      | V/f V/f w PG OLV CLV  OLV/PM AOLV/PM CLV/PM  0: Disabled. Drive runs at a set frequency. A heavy load may cause stalling.  1: Decel time 1. Uses the deceleration time set to C1-02 while Stall Prevention is performed.  2: Decel time 2. Uses the deceleration time set to C1-04 while Stall Prevention is performed.                                                                                                                                 | Default: 1<br>Range: 0 to 2                       | 326  |
| L3-06<br>(0494)       | Stall Prevention Level<br>during Run                                         | StallP Run Level                                                                | V/f V/f w PG OLV CLV  OLV/PM AOLV/PM CLV/PM  Enabled when L3-05 is set to 1 or 2. 100% is equal to the drive rated current.                                                                                                                                                                                                                                                                                                                             | Default: <1><br>Min.: 30%<br>Max.: 150% <1>       | 327  |
| L3-14<br>(04E9)       | Stall Prevention Level during Deceleration                                   | StallP Decel Lvl                                                                | V/f V/f w PG OLV CLV  OLV/PM AOLV/PM CLV/PM  Used when L3-04 = 1 or 6. 100% is equal to the drive rated current.                                                                                                                                                                                                                                                                                                                                        | Default: <1><br>Min.: 80%<br>Max.: 200% <1>       | 325  |
| L3-22<br>(04F9)       | Deceleration Time at<br>Stall Prevention during<br>Acceleration              | PM Acc Stall P T                                                                | OLV/PM AOLV/PM CLV/PM Sets the deceleration time used for Stall Prevention during acceleration in OLV/PM.                                                                                                                                                                                                                                                                                                                                               | Default: 0.0 s<br>Min.: 0.0<br>Max.: 6000.0       | 327  |
| L3-23<br>(04FD)       | Automatic Reduction<br>Selection for Stall<br>Prevention during Run          | CHP Stall P Sel<br>0: Lv1 set in L3-06<br>1: Autom. Reduction                   | OLV/PM OLV CLV  OLV/PM AOLV/PM CLV/PM  0: Sets the Stall Prevention level set in L3-04 that is used throughout the entire frequency range.  1: Automatic Stall Prevention level reduction in the constant output range. The lower limit value is 40% of L3-06.                                                                                                                                                                                          | Default: 0<br>Range: 0, 1                         | 327  |
| L3-27<br>(0456)       | Stall Prevention<br>Detection Time                                           | Stl Prev DetTime                                                                | V/f V/f w PG OLV CLV  OLV/PM AOLV/PM CLV/PM  Sets the time the current must exceed the Stall Prevention level to activate Stall Prevention.                                                                                                                                                                                                                                                                                                             | Default: 50 ms<br>Min.: 0<br>Max.: 5000           | 327  |
| L3-36<br>(11D0)       | Vibration Suppression<br>Gain during<br>Acceleration (with<br>Current Limit) | ILim Acc Gain                                                                   | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Increase the setting value if oscillation occurs in the output current during acceleration.                                                                                                                                                                                                                                                                                                                  | Default: <3><br>Min.: 0.0<br>Max.: 100.0          | 327  |
| L3-39<br>(11D3)       | Current-limited Integral<br>Time Constant during<br>Acceleration             | ILim Acc I Time                                                                 | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the time constant for acceleration rate adjustment for current-limited acceleration.                                                                                                                                                                                                                                                                                                                    | Default: 100.0<br>ms<br>Min.: 1.0<br>Max.: 1000.0 | 328  |
| L3-40<br>(11D6)       | Current-limited<br>Maximum S-curve<br>Selection during<br>Acceleration       | ILimAcc S-Curve 0: Disable 1: Enable                                            | V/f V/f w PG OLV CLV  OLV/PM AOLV/PM CLV/PM  0: Disable 1: Enable                                                                                                                                                                                                                                                                                                                                                                                       | Default: 0<br>Range: 0, 1                         | 328  |

| S |
|---|
| ⋍ |
| 7 |
| ž |
| e |
| ᇣ |
| Ë |
| ۳ |
| _ |

| No.<br>(Addr.<br>Hex) | Name                                                                         | LCD Display                                | Description                                                                                                                            | Values                                            | Page |
|-----------------------|------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------|
| L3-41<br>(11D7)       | Vibration Suppression<br>Gain during<br>Deceleration (with<br>Current Limit) | ILim Dec Gain                              | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Increase the setting value if oscillation occurs in the output current during deceleration. | Default: <3> Min.: 1.0 Max.: 100.0                | 327  |
| L3-44<br>(11D8)       | Current-limited Integral<br>Time Constant during<br>Deceleration             | ILim Dec I Time                            | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the time constant for deceleration rate adjustment for current-limited deceleration.   | Default: 100.0<br>ms<br>Min.: 1.0<br>Max.: 1000.0 | 328  |
| L3-45<br>(11D9)       | Current-limited<br>Maximum S-curve<br>Selection during<br>Deceleration       | ILimDec S-Curve<br>0: Disable<br>1: Enable | V/f V/f w PG OLV CLV  OLV/PM AOLV/PM CLV/PM  0: Disable 1: Enable Available when L3-04 = 6.                                            | Default: 0<br>Range: 0, 1                         | 328  |

- <1> The default setting and upper limit are determined by C6-01, Drive Duty Selection, and L8-38, Frequency Reduction Selection.
- <2> The setting range is 0 and 1 in OLV/PM, AOLV/PM, and CLV/PM control modes.
- <3> Default setting is determined by parameter A1-02, Control Method Selection.
- <4> Default setting is determined by parameter A1-02, Control Method Selection. When A1-02 = 6 (AOLV/PM), default is 0.2 When A1-02 = 7 (CLV/PM), default is 0.02.

### L4: Speed Detection

| No.<br>(Addr.<br>Hex) | Name                                            | LCD Display                                                  | Description                                                                                                                    | Values                                         | Page |
|-----------------------|-------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------|
| L4-01<br>(0499)       | Speed Agree Detection<br>Level                  | Spd Agree Level                                              | All Modes L4-01 sets the frequency detection level for digital output functions $H2-\Box\Box=2,3,4,5$ .                        | Default: 0.0 Hz<br>Min.: 0.0<br>Max.: 400.0    | 328  |
| L4-02<br>(049A)       | Speed Agree Detection<br>Width                  | Spd Agree Width                                              | All Modes L4-02 sets the hysteresis or allowable margin for speed detection.                                                   | Default: <1><br>Min.: 0.0<br>Max.: 20.0        | 328  |
| L4-03<br>(049B)       | Speed Agree Detection<br>Level (+/-)            | Spd Agree Lvl+-                                              | All Modes L4-03 sets the frequency detection level for digital output functions $H2-\Box\Box=13, 14, 15, 16.$                  | Default: 0.0 Hz<br>Min.: -400.0<br>Max.: 400.0 | 328  |
| L4-04<br>(049C)       | Speed Agree Detection<br>Width (+/-)            | Spd Agree Wdth+-                                             | All Modes L4-04 sets the hysteresis or allowable margin for speed detection.                                                   | Default: <1><br>Min.: 0.0<br>Max.: 20.0        | 328  |
| L4-05<br>(049D)       | Frequency Reference<br>Loss Detection Selection | Ref Loss Sel<br>0: Stop<br>1:<br>Run@L4-06PrevRef            | All Modes  0: Operate following the frequency reference. 1: Continue operation with reduced frequency reference.               | Default: 0<br>Range: 0, 1                      | 328  |
| L4-06<br>(04C2)       | Frequency Reference at<br>Reference Loss        | Fref at Floss                                                | All Modes  Sets the percentage of the frequency reference that the drive should run with when the frequency reference is lost. | Default: 80.0%<br>Min.: 0.0<br>Max.: 100.0     | 329  |
| L4-07<br>(0470)       | Speed Agree Detection<br>Selection              | Freq Detect Sel<br>0: No Detection @BB<br>1: Always Detected | All Modes  0: No detection during baseblock. 1: Detection always enabled.                                                      | Default: 0<br>Range: 0, 1                      | 329  |

<sup>&</sup>lt;1> Default setting is determined by parameter A1-02, Control Method Selection.

#### ◆ L5: Fault Restart

| No.<br>(Addr.<br>Hex) | Name                                                | LCD Display                                               | Description                                                                                                                                                                                                                                          | Values                                      | Page |
|-----------------------|-----------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------|
| L5-01<br>(049E)       | Number of Auto Restart<br>Attempts                  | Num of Restarts                                           | All Modes  Sets the number of times the drive may attempt to restart after the following faults occur: GF, LF, oC, oH1, oL1, oL3, oL4, ov, Sto, Uv1.                                                                                                 | Default: 0<br>Min.: 0<br>Max.: 10           | 330  |
| L5-02<br>(049F)       | Auto Restart Fault<br>Output Operation<br>Selection | Restart Sel<br>0: Flt Outp Disabld<br>1: Flt Outp Enabled | All Modes  0: Fault output not active. 1: Fault output active during restart attempt.                                                                                                                                                                | Default: 0<br>Range: 0, 1                   | 330  |
| L5-04<br>(046C)       | Fault Reset Interval<br>Time                        | Flt Reset Wait T                                          | All Modes Sets the amount of time to wait between performing fault restarts.                                                                                                                                                                         | Default: 10.0 s<br>Min.: 0.5<br>Max.: 600.0 | 330  |
| L5-05<br>(0467)       | Fault Reset Operation<br>Selection                  | Fault Reset Sel 0: Continuous 1: Use L5-04 Time           | O: Continuously attempt to restart while incrementing restart counter only at a successful restart (same as F7 and G7).  1: Attempt to restart with the interval time set in L5-04 and increment the restart counter with each attempt (same as V7). | Default: 0<br>Range: 0, 1                   | 330  |

# ◆ L6: Torque Detection

| No.<br>(Addr.<br>Hex) | Name                            | LCD Display                                                                                                                                                                        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Values                                    | Page |
|-----------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------|
| L6-01<br>(04A1)       | Torque Detection<br>Selection 1 | Torq Det 1 Sel 0: Disabled 1: OL Alm at SpdAgr 2: OL Alm dur RUN 3: OL Flt at SpdAgr 4: OL Flt dur RUN 5: UL Alm at SpdAgr 6: UL Alm dur RUN 7: UL Flt at SpdAgr 8: UL Flt dur RUN | All Modes  0: Disabled 1: oL3 detection only active during speed agree, operation continues after detection 2: oL3 detection always active during run, operation continues after detection 3: oL3 detection only active during speed agree, output shuts down on an oL3 fault 4: oL3 detection always active during run, output shuts down on an oL3 fault 5: UL3 detection only active during speed agree, operation continues after detection 6: UL3 detection always active during run, operation continues after detection 7: UL3 detection only active during speed agree, output shuts down on a UL3 fault 8: UL3 detection always active during run, output shuts down on a UL3 fault | Default: 0<br>Range: 0 to 8               | 331  |
| L6-02<br>(04A2)       | Torque Detection<br>Level 1     | Torq Det 1 Lvl                                                                                                                                                                     | All Modes Sets the overtorque and undertorque detection level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Default: 150%<br>Min.: 0<br>Max.: 300     | 332  |
| L6-03<br>(04A3)       | Torque Detection<br>Time 1      | Torq Det 1 Time                                                                                                                                                                    | All Modes Sets the time an overtorque or undertorque condition must exist to trigger torque detection 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Default: 0.1 s<br>Min.: 0.0<br>Max.: 10.0 | 332  |

| No.<br>(Addr.<br>Hex) | Name                                          | LCD Display                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Values                                         | Page |
|-----------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------|
| L6-04<br>(04A4)       | Torque Detection<br>Selection 2               | Torq Det 2 Sel 0: Disabled 1: OL Alm at SpdAgr 2: OL Alm dur RUN 3: OL Flt at SpdAgr 4: OL Flt dur RUN 5: UL Alm at SpdAgr 6: UL Alm dur RUN 7: UL Flt at SpdAgr 8: UL Flt dur RUN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0: Disabled 1: oL4 detection only active during speed agree, operation continues after detection 2: oL4 detection always active during run, operation continues after detection 3: oL4 detection only active during speed agree, output shuts down on an oL4 fault 4: oL4 detection always active during run, output shuts down on an oL4 fault 5: UL4 detection only active during speed agree, operation continues after detection 6: UL4 detection always active during run, operation continues after detection 7: UL4 detection only active during speed agree, output shuts down on a UL4 fault 8: UL4 detection always active during run, output shuts down on a UL4 fault                                                                                                                                                                                                                                                                                                                                                            | Default: 0<br>Range: 0 to 8                    | 331  |
| L6-05<br>(04A5)       | Torque Detection<br>Level 2                   | Torq Det 2 Lvl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | All Modes Sets the overtorque and undertorque detection level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Default: 150%<br>Min.: 0<br>Max.: 300          | 332  |
| L6-06<br>(04A6)       | Torque Detection<br>Time 2                    | Torq Det 2 Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | All Modes  Sets the time an overtorque or undertorque condition must exist to trigger torque detection 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Default: 0.1 s<br>Min.: 0.0<br>Max.: 10.0      | 332  |
| L6-08<br>(0468)       | Mechanical Weakening<br>Detection Operation   | Mech Fatigue Sel 0: Disabled 1: Alm Spd>L6-09 2: Alm [Spd]>L6-09 3: Flt Spd>L6-09 4: Flt [Spd]>L6-09 5: Alm Spd <l6-09 6:="" 7:="" 8:="" [spd]<l6-09="" [spd]<l6-09<="" alm="" flt="" spd<l6-09="" td=""><td>This function can detect an overtorque or undertorque in a certain speed range as a result of machine fatigue. It is triggered by a specified operation time and uses the oL3/UL3 detection settings (L6-01, L6-02, and L6-03).  0: Mechanical Weakening Detection disabled.  1: Continue running (alarm only). Detected when the speed (signed) is greater than L6-09.  2: Continue running (alarm only). Detected when the speed (not signed) is greater than L6-09.  3: Interrupt drive output (fault). Detected when the speed (signed) is greater than L6-09.  4: Interrupt drive output (fault). Detected when the speed (not signed) is greater than L6-09.  5: Continue running (alarm only). Detected when the speed (signed) is less than L6-09.  6: Continue running (alarm only). Detected when the speed (not signed) is less than L6-09.  7: Interrupt drive output (fault). Detected when the speed (signed) is less than L6-09.  8: Interrupt drive output (fault). Detected when the speed (not signed) is less than L6-09.</td><td>Default: 0<br/>Range: 0 to 8</td><td>333</td></l6-09> | This function can detect an overtorque or undertorque in a certain speed range as a result of machine fatigue. It is triggered by a specified operation time and uses the oL3/UL3 detection settings (L6-01, L6-02, and L6-03).  0: Mechanical Weakening Detection disabled.  1: Continue running (alarm only). Detected when the speed (signed) is greater than L6-09.  2: Continue running (alarm only). Detected when the speed (not signed) is greater than L6-09.  3: Interrupt drive output (fault). Detected when the speed (signed) is greater than L6-09.  4: Interrupt drive output (fault). Detected when the speed (not signed) is greater than L6-09.  5: Continue running (alarm only). Detected when the speed (signed) is less than L6-09.  6: Continue running (alarm only). Detected when the speed (not signed) is less than L6-09.  7: Interrupt drive output (fault). Detected when the speed (signed) is less than L6-09.  8: Interrupt drive output (fault). Detected when the speed (not signed) is less than L6-09. | Default: 0<br>Range: 0 to 8                    | 333  |
| L6-09<br>(0469)       | Mechanical Weakening<br>Detection Speed Level | MechFat Det Spd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | All Modes  Sets the speed that triggers Mechanical Weakening Detection.  When L6-08 is set for an unsigned value, the absolute value is used if the setting is negative.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Default: 110.0%<br>Min.: -110.0<br>Max.: 110.0 | 333  |
| L6-10<br>(046A)       | Mechanical Weakening<br>Detection Time        | MechFat Det Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | All Modes  Sets the time mechanical weakening has to be detected before an alarm or fault is triggered.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Default: 0.1 s<br>Min.: 0.0<br>Max.: 10.0      | 333  |
| L6-11<br>(046B)       | Mechanical Weakening<br>Detection Start Time  | MechFat Det Hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | All Modes Sets the operation time (U4-01) required before Mechanical Weakening Detection is active.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Default: 0 h<br>Min.: 0<br>Max.: 65535         | 333  |

# **♦** L7: Torque Limit

| No.<br>(Addr.<br>Hex) | Name                                                           | LCD Display                                              | Description                                                                                                                                                                                                                                                                            | Values                                  | Page |
|-----------------------|----------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------|
| L7-01<br>(04A7)       | Forward Torque Limit                                           | Torq Limit Fwd                                           | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM                                                                                                                                                                                                                                             | Default: 200%<br>Min.: 0<br>Max.: 300   | 334  |
| L7-02<br>(04A8)       | Reverse Torque Limit                                           | Torq Limit Rev                                           | Sets the torque limit value as a percentage of the motor rated torque. Four individual quadrants can be set.  Output Torque                                                                                                                                                            | Default: 200%<br>Min.: 0<br>Max.: 300   | 334  |
| L7-03<br>(04A9)       | Forward Regenerative<br>Torque Limit                           | Torq Lmt Fwd Rgn                                         | L7-04 L7-01 Motor r/min                                                                                                                                                                                                                                                                | Default: 200%<br>Min.: 0<br>Max.: 300   | 334  |
| L7-04<br>(04AA)       | Reverse Regenerative<br>Torque Limit                           | Torq Lmt Rev Rgn                                         | Regeneration L7-03 Negative Torque                                                                                                                                                                                                                                                     | Default: 200%<br>Min.: 0<br>Max.: 300   | 334  |
| L7-06<br>(04AC)       | Torque Limit Integral<br>Time Constant                         | Trq Lim I Time                                           | OLV/PM AOLV/PM CLV/PM Sets the integral time constant for the torque limit.                                                                                                                                                                                                            | Default: 200 ms<br>Min: 5<br>Max: 10000 | 335  |
| L7-07<br>(04C9)       | Torque Limit Control<br>Method Selection during<br>Accel/Decel | Trq Lim d AccDec<br>P-ctrl @ Acc/Dec<br>I-ctrl @ Acc/Dec | OLV/PM AOLV/PM CLV/PM  0: Proportional control (changes to integral control at constant speed). Use this setting when acceleration to the desired speed should take precedence over the torque limit.  1: Integral control. Set L7-07 to 1 if the torque limit should take precedence. | Default: 0<br>Range: 0, 1               | 335  |
| L7-16<br>(0444D)      | Torque Limit Process at<br>Start                               | TLim DlyTime Sel<br>0: Disabled<br>1: Enabled            | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Disabled 1: Enabled                                                                                                                                                                                                                      | Default: 1<br>Range: 0, 1               | 335  |

### **◆** L8: Drive Protection

| No.<br>(Addr.<br>Hex) | Name                                       | LCD Display                                                                                    | Description                                                                                                                                                                                                                                                                                         | Values                             | Page |
|-----------------------|--------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------|
| L8-02<br>(04AE)       | Overheat Alarm Level                       | OH Pre-Alarm Lvl                                                                               | All Modes  An overheat alarm occurs when heatsink temperature exceeds the L8-02 level.                                                                                                                                                                                                              | Default:  Min.: 50 °C Max.: 150 °C | 335  |
| L8-03<br>(04AF)       | Overheat Pre-Alarm<br>Operation Selection  | OH Pre-Alarm Sel 0: Ramp to Stop 1: Coast to Stop 2: Fast-Stop 3: Alarm Only 4: Run@L8-19 Rate | All Modes  0: Ramp to stop. A fault is triggered. 1: Coast to stop. A fault is triggered. 2: Fast Stop. Decelerate to stop using the deceleration time in C1-09. A fault is triggered. 3: Continue operation. An alarm is triggered. 4: Continue operation at reduced speed as set in L8-19.        | Default: 3<br>Range: 0 to 4        | 335  |
| L8-07<br>(04B3)       | Output Phase Loss<br>Protection Selection  | Outp Ph Loss Det<br>0: Disabled<br>1: 1PH Loss Det<br>2: 2/3PH Loss Det                        | O: Disabled 1: Enabled (triggered by a single phase loss) 2: Enabled (triggered when two phases are lost)  Note: Output phase loss detection can mistakenly be triggered if the motor rated current is very small compared to the drive rated output current. Disable this parameter in such cases. | Default: 1<br>Range: 0 to 2        | 336  |
| L8-09<br>(04B5)       | Output Ground Fault<br>Detection Selection | Grnd Flt Det Sel<br>0: Disabled<br>1: Enabled                                                  | All Modes 0: Disabled 1: Enabled                                                                                                                                                                                                                                                                    | Default: 1<br>Range: 0, 1          | 337  |

| No.<br>(Addr.<br>Hex) | Name                                                     | LCD Display                                                                        | Description                                                                                                                                                                                                                                                                       | Values                                      | Page |
|-----------------------|----------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------|
| L8-10<br>(04B6)       | Heatsink Cooling Fan<br>Operation Selection              | Fan On/Off Sel<br>0: Dur Run (OffDly)<br>1: Always On                              | O: Run with timer (Fan operates only during run and for L8-11 seconds after stop.)  1: Run always (Cooling fan operates whenever the drive is powered up.)  Note: If a damping resistor overheat (doH) is detected, the cooling fan will turn on regardless of the setting value. | Default: 0<br>Range: 0, 1                   | 337  |
| L8-11<br>(04B7)       | Heatsink Cooling Fan<br>Off Delay Time                   | Fan Delay Time                                                                     | All Modes  Sets a delay time to shut off the cooling fan after the Run command is removed when L8-10 = 0.                                                                                                                                                                         | Default: 60 s<br>Min.: 0<br>Max.: 300       | 337  |
| L8-12<br>(04B8)       | Ambient Temperature<br>Setting                           | Ambient Temp                                                                       | All Modes  Enter the ambient temperature. This value adjusts the oL2 detection level.                                                                                                                                                                                             | Default: 40 °C<br>Min.: -10<br>Max.: 50     | 337  |
| L8-15<br>(04BB)       | oL2 Characteristics<br>Selection at Low Speeds           | OL2 Sel @ L-Spd<br>0: Disabled<br>1: Enabled                                       | O: No oL2 level reduction below 6 Hz. 1: oL2 level is reduced linearly below 6 Hz. It is reduced to 70% at 0 Hz.                                                                                                                                                                  | Default: 1<br>Range: 0, 1                   | 337  |
| L8-18<br>(04BE)       | Software Current Limit<br>Selection                      | Soft CLA Sel<br>0: Disabled<br>1: Enabled                                          | V/f V/f w PG OLV CLV  OLV/PM AOLV/PM CLV/PM  0: Disabled 1: Enabled  Note: For drives with software versions PRG: 1021 or later, the default setting is 1 (Software CLA Enabled) when in Open Loop Vector Control (A1-02 = 2).                                                    | Default: <sup>4</sup> >Range: 0, 1          | 338  |
| L8-19<br>(04BF)       | Frequency Reduction<br>Rate during Overheat<br>Pre-Alarm | Fc Red dur OHAlm                                                                   | All Modes Specifies the frequency reference reduction gain at overheat pre- alarm when L8-03 = 4.                                                                                                                                                                                 | Default: 0.8<br>Min.: 0.1<br>Max.: 0.9      | 338  |
| L8-27<br>(04DD)       | Overcurrent Detection<br>Gain                            | OC Level                                                                           | OLV/PM AOLV/PM CLV/PM Sets the gain for overcurrent detection as a percentage of the motor rated current. Overcurrent is detected using the lower value between the overcurrent level of the drive or the value set to L8-27.                                                     | Default: 300.0%<br>Min.: 0.0<br>Max.: 400.0 | 338  |
| L8-29<br>(04DF)       | Current Unbalance<br>Detection (LF2)                     | LF2 Flt Det Sel<br>0: Disabled<br>2: Current Det Type                              | V/f V/f w PG OLV CLV  OLV/PM AOLV/PM CLV/PM  0: Disabled 2: Enabled (current detection)                                                                                                                                                                                           | Default: 2<br>Range: 0, 2                   | 338  |
| L8-32<br>(04E2)       | Cooling Fan Failure<br>Selection                         | MC/FAN PS FltSel<br>0: Ramp to Stop<br>1: Coast to Stop<br>2: Fast-Stop            | All Modes  Determines drive response when a fault occurs with the internal cooling fan.  0: Ramp to stop  1: Coast to stop  2: Fast stop (Decelerate to stop using the deceleration time set to C1-09)                                                                            | Default: 1<br>Range: 0 to 2                 | 339  |
| L8-35<br>(04EC)       | Installation Method<br>Selection                         | Installation Sel<br>0: IP00/OpenChassis<br>2: IP20/UL Type 1<br>3: Finless/Fin Ext | All Modes  0: IP00/Open-Chassis enclosure 2: IP20/UL Type 1 enclosure 3: External heatsink installation                                                                                                                                                                           | Default: <2><br>Range: 0 to 3               | 339  |
| L8-38<br>(04EF)       | Carrier Frequency<br>Reduction                           | Fc Reduct dur OL<br>0: Disabled<br>1: Active below 6Hz<br>2: Active @ any Spd      | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Disabled 1: Enabled below 6 Hz 2: Enabled for the entire speed range                                                                                                                                                                | Default: <3> Range: 0 to 2                  | 339  |

#### **B.10 L: Protection Function**

| No.<br>(Addr.<br>Hex) | Name                                             | LCD Display                                   | Description                                                                                                                                                                                                                           | Values                                      | Page |
|-----------------------|--------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------|
| L8-40<br>(04F1)       | Carrier Frequency<br>Reduction Off Delay<br>Time | Fc Reduct Time                                | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the time that the drive continues running with reduced carrier frequency after the carrier reduction condition is gone. Setting 0.00 s disables the carrier frequency reduction time. | Default: Min.: 0.00 s<br>Max.: 2.00 s       | 340  |
| L8-41<br>(04F2)       | High Current Alarm<br>Selection                  | High Cur Alm Sel<br>0: Disabled<br>1: Enabled | All Modes 0: Disabled 1: Enabled. An alarm is triggered at output currents above 150% of drive rated current.                                                                                                                         | Default: 0<br>Range: 0, 1                   | 340  |
| L8-93<br>(073C)       | LSo Detection Time at<br>Low Speed               | LSO Det Time                                  | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the amount of time until baseblock is executed after detecting pull-out at low speed.                                                                                                 | Default: 1.0 s<br>Min.: 0.0<br>Max.: 10.0   | 340  |
| L8-94<br>(073D)       | LSo Detection Level at<br>Low Speed              | LSO Det Level                                 | OLV/PM CLV/PM  Determines the detection level of pull-out at low speed.                                                                                                                                                               | Default: 3%<br>Min.: 0<br>Max.: 10          | 340  |
| L8-95<br>(073F)       | Average LSo Frequency<br>at Low Speed            | Num of LSO Avg                                | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the average number of times pull-out can occur at low speed.                                                                                                                          | Default: 10<br>times<br>Min.: 1<br>Max.: 50 | 340  |

- <1> Default setting is determined by parameters C6-01, Drive Duty Selection, and o2-04, Drive Model Selection.
- <2> Default setting is determined by parameter o2-04, Drive Model Selection.
- <3> Default setting is determined by parameters A1-02, Control Method Selection, and o2-04, Drive Model Selection.
- <4> Default setting is determined by parameter A1-02, Control Method Selection.

#### ◆ L9: Drive Protection 2

| No.<br>(Addr.<br>Hex)  | Name                                              | LCD Display                                   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Values                    | Page |
|------------------------|---------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------|
| L9-03<br>(0819)        | Carrier Frequency<br>Reduction Level<br>Selection | Fc ReductLvl Sel<br>0: Disabled<br>1: Enabled | OLV/PM AOLV/PM CLV/PM Selects the level to start the reduction of the frequency or to clear the current frequency level for the automatic reduction of the carrier frequency.  There is normally no need to change this parameter from the default value.  0: Reduces the carrier frequency based on the drive rated current that is not derated.  1: Reduces the carrier frequency based on the drive rated current that is derated by the carrier frequency and the temperature selected for C6-02. | Default: 0<br>Range: 0, 1 | 340  |
| L9-12<br>(0B28)<br><1> | SoH Alarm Selection during bb                     | SoH ALM Sel<br>0: Fault<br>1: Alarm           | All Modes  Sets the SoH (Snubber Discharge Resistor Overheat) alarm to output a fault or a minor fault during baseblock (bb).  0: Outputs a fault for an SoH alarm during baseblock (bb).  1: Outputs a minor fault for an SoH alarm during baseblock (bb).                                                                                                                                                                                                                                           | Default: 0<br>Range: 0, 1 | 341  |

<sup>&</sup>lt;1> Available in drive software versions PRG: 1015 and later.

# **B.11 n: Special Adjustments**

The n parameters adjust more advanced performance characteristics such as Hunting Prevention, speed feedback detection, and Online Tuning for motor line-to-line resistance.

### n1: Hunting Prevention

| No.<br>(Addr.<br>Hex)  | Name                                     | LCD Display                                   | Description                                                                                                                                                                                                       | Values                                       | Page |
|------------------------|------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------|
| n1-01<br>(0580)        | Hunting Prevention<br>Selection          | Hunt Prev Select<br>0: Disabled<br>1: Enabled | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Disabled 1: Enabled                                                                                                                                                 | Default: 1<br>Range: 0, 1                    | 342  |
| n1-02<br>(0581)        | Hunting Prevention Gain<br>Setting       | Hunt Prev Gain                                | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM  If the motor vibrates while lightly loaded, increase the gain by 0.1 until vibration ceases. If the motor stalls, decrease the gain by 0.1 until the stalling ceases. | Default: 1.00<br>Min.: 0.00<br>Max.: 2.50    | 342  |
| n1-03<br>(0582)        | Hunting Prevention<br>Time Constant      | Hunt Prev Time                                | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the time constant used for Hunting Prevention.                                                                                                                    | Default:  Min.: 0 ms Max.: 500 ms            | 342  |
| n1-05<br>(0530)        | Hunting Prevention Gain while in Reverse | Hprev Gain @Rev                               | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the gain used for Hunting Prevention. If set to 0, the gain set to n1-02 is used for operation in reverse.                                                        | Default: 0.00<br>Min.: 0.00<br>Max.: 2.50    | 342  |
| n1-09<br>(0BAD)<br><2> | Vibration Suppression<br>Level           | Vib Suppress Lvl                              | Adjusts the responsiveness of the vibration suppression function. When using speed control, there is normally no need to adjust this parameter. When using torque control, set this parameter to 0.00.            | Default: 2.00<br>Min.: 0.00<br>Max.: 10.00   | 342  |
| n1-10<br>(0BAE)<br><2> | Suppression Frequency                    | Suppress Frq                                  | OLV/PM  There is normally no need to change this parameter from the default value.                                                                                                                                | Default: 10.0 Hz<br>Min.: 5.0<br>Max.: 100.0 | 343  |
| n1-11<br>(0BAF)<br><2> | Suppression Auxiliary<br>Frequency       | Suppress Sub-Frq                              | OLV/PM  There is normally no need to change this parameter from the default value.                                                                                                                                | Default: 20.0 Hz<br>Min.: 10.0<br>Max.: 50.0 | 343  |
| n1-12<br>(0B1B)        | Vibration Suppression<br>Time Constant   | VibSuppress-Time                              | All Modes  There is normally no need to change this parameter from the default value.                                                                                                                             | Default: 0 ms<br>Min.: 0<br>Max.: 1000       | 343  |

<sup>&</sup>lt;1> Default setting is determined by parameter o2-04, Drive Model Selection.

### ◆ n2: Speed Feedback Detection Control (AFR) Tuning

| No.<br>(Addr.<br>Hex) | Name                                                         | LCD Display | Description                                                                                                                                                                                                              | Values                                     | Page |
|-----------------------|--------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------|
| n2-01<br>(0584)       | Speed Feedback<br>Detection Control<br>(AFR) Gain            | AFR Gain    | OLV CLV OLV/PM AOLV/PM CLV/PM Sets the internal speed feedback detection control gain in the automatic frequency regulator (AFR). If hunting occurs, increase the set value. If response is low, decrease the set value. | Default: 1.00<br>Min.: 0.00<br>Max.: 10.00 | 343  |
| n2-02<br>(0585)       | Speed Feedback<br>Detection Control<br>(AFR) Time Constant 1 | AFR Time    | OLV CLV OLV/PM AOLV/PM CLV/PM Sets the time constant used for speed feedback detection control (AFR).                                                                                                                    | Default: 50 ms<br>Min.: 0<br>Max.: 2000    | 343  |

<sup>&</sup>lt;2> Available in drive software versions PRG: 1017 and later.

### n3: Overexcitation Braking

| No.<br>(Addr.<br>Hex) | Name                                | LCD Display      | Description                                                                                                                         | Values                                    | Page |
|-----------------------|-------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------|
| n3-13<br>(0531)       | Overexcitation<br>Deceleration Gain | Hflux Brake Gain | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the gain applied to the V/f pattern during Overexcitation Deceleration (L3-04 = 4). | Default: 1.10<br>Min.: 1.00<br>Max.: 2.00 | 344  |

#### ♦ n5: Feed Forward Control

| No.<br>(Addr.<br>Hex) | Name                              | LCD Display                                 | Description                                                                                                                             | Values                                        | Page |
|-----------------------|-----------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------|
| n5-01<br>(05B0)       | Feed Forward Control<br>Selection | Feedfoward Sel<br>0: Disabled<br>1: Enabled | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Disabled 1: Enabled                                                                       | Default: 0<br>Range: 0, 1                     | 345  |
| n5-02<br>(05B1)       | Motor Acceleration<br>Time        | Motor Accel Time                            | ACLV/PW CLV/PW                                                                                                                          | Default: <1> <2> Min.: 0.001 s Max.: 10.000 s | 345  |
| n5-03<br>(05B2)       | Feed Forward Control<br>Gain      | Feedfoward Gain                             | OLV/PM AOLV/PM CLV/PM Sets the ratio between motor and load inertia. Lower this setting if overshoot occurs at the end of acceleration. | Default: 1.00<br>Min.: 0.00<br>Max.: 100.00   | 346  |

<sup>&</sup>lt;1> Default setting is determined by parameter E5-01, Motor Code Selection.

# ◆ n6: Online Tuning

| No.<br>(Addr.<br>Hex) | Name                       | LCD Display     | Description                                                                                                                                                                 | Values                                  | Page |
|-----------------------|----------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------|
| n6-01<br>(0570)       | Online Tuning<br>Selection | Online Tune Sel | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Disabled 1: Line-to-line resistance tuning 2: Voltage correction. Setting not possible when Energy Saving is enabled (b8-01). | Default: 0<br>Range: 0 to 2             | 346  |
| n6-05<br>(05C7)       | Online Tuning Gain         | R1 Comp Gain    | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Decrease this setting for motors with a relatively large rotor time constant.                                                    | Default: 1.0<br>Min.: 0.1<br>Max.: 50.0 | 347  |

<sup>&</sup>lt;2> Default setting is determined by parameters C6-01, Drive Duty Selection, and o2-04, Drive Model Selection.

# ◆ n8: PM Motor Control Tuning

| No.<br>(Addr.<br>Hex) | Name                                          | LCD Display                                                                    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Values                                        | Page |
|-----------------------|-----------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------|
| n8-01<br>(540)        | Initial Rotor Position<br>Estimation Current  | InitRotPosDetCur                                                               | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the current used for initial rotor position estimation as a percentage of the motor rated current (E5-03). If the motor nameplate lists an "Si" value, that value should be entered here.                                                                                                                                                                                                                                                                                                                                                    | Default: 50%<br>Min.: 0<br>Max.: 100          | 347  |
| n8-02<br>(541)        | Pole Attraction Current                       | Pull-In Current                                                                | V/f V/f w PG OLV CLV  OLV/PM AOLV/PM AVAILABLE  Sets the current during initial polar attraction as a percentage of the motor rated current. Enter a high value when attempting to increase starting torque.  Note: Sets the current to detect the motor magnetic pole of the rotors used for Z Pulse Offset Tuning when in Closed Loop Vector Control for PM (A1-02 = 7). Usually it is not necessary to change this setting. If the motor does not track correctly when performing Z Pulse Offset Tuning, increase the setting value, and if the motor vibrates, reduce the setting value. | Default: 80%<br>Min.: 0<br>Max.: 150          | 347  |
| n8-03<br>(542H)       | Current Startup Time                          |                                                                                | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the current starting time to detect the motor magnetic pole of the rotors when performing Z Pulse Offset Tuning.                                                                                                                                                                                                                                                                                                                                                                                                                             | Default: 1.5 s<br>Min: 1.5 s<br>Max: 5.0 s    | 347  |
| n8-04<br>(543H)       | Pole Attraction Time                          |                                                                                | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the magnetic pole alignment time to detect the motor magnetic pole of the rotors when performing Z Pulse Offset Tuning.                                                                                                                                                                                                                                                                                                                                                                                                                      | Default: 1.5 s<br>Min: 1.5 s<br>Max: 5.0 s    | 347  |
| n8-11<br>(054A)       | Induction Voltage<br>Estimation Gain 2        | InducedVEstGain2                                                               | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the gain for estimating the speed. There is normally no need to change this parameter from the default value.                                                                                                                                                                                                                                                                                                                                                                                                                                | Default: <1> Min.: 0.0 Max.: 1000.0           | 347  |
| n8-14<br>(054D)       | Polarity Compensation<br>Gain 3               | PoleComp Gain 3                                                                | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the gain for estimating the speed. There is normally no need to change this parameter from the default value.                                                                                                                                                                                                                                                                                                                                                                                                                                | Default: 1.000<br>Min.: 0.000<br>Max.: 10.000 | 348  |
| n8-15<br>(054E)       | Polarity Compensation<br>Gain 4               | PoleComp Gain 4                                                                | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the gain for estimating the speed. There is normally no need to change this parameter from the default value.                                                                                                                                                                                                                                                                                                                                                                                                                                | Default: 0.500<br>Min.: 0.000<br>Max.: 10.000 | 348  |
| n8-21<br>(0554)       | Motor Ke Gain                                 | Back EMF Gain                                                                  | V/f V/f w PG OLV CLV  OLV/PM AOLV/PM CLV/PM  Sets the gain for estimating the speed.  There is normally no need to change this parameter from the default value.                                                                                                                                                                                                                                                                                                                                                                                                                             | Default: 0.90<br>Min.: 0.80<br>Max.: 1.00     | 348  |
| n8-35<br>(562)        | Initial Rotor Position<br>Detection Selection | Init Pole EstSel<br>0: Pull-In Method<br>1: Harm Inj Method<br>2: Pulse Method | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Pull-in 1: High frequency injection 2: Pulse injection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Default: 1<br>Range: 0 to 2                   | 348  |

### **B.11 n: Special Adjustments**

| No.<br>(Addr.<br>Hex) | Name                                                                | LCD Display      | Description                                                                                                                                                                                                                                                                                                                                 | Values                                       | Page |
|-----------------------|---------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------|
| n8-36<br>(0563)       | High Frequency<br>Injection Level                                   | PM Harm Inj Freq | V/f V/f w PG OLV CLV  OLV/PM AOLV/PM CLV/PM  Sets the frequency in Hz for the superimposed signal used for superimposed harmonics. Enabled when n8-57 = 1. In this case, perform High Frequency Injection Parameter Tuning after setting the motor parameters. Refer to T2-01: PM Motor Auto-Tuning Mode Selection on page 172 for details. | Default: 500 Hz<br>Min.: 200<br>Max.: 1000   | 348  |
| n8-37<br>(0564)       | High Frequency<br>Injection Amplitude                               | PM Harm Inj Amp  | V/f V/f w PG OLV CLV  OLV/PM AOLV/PM CLV/PM  Sets the amplitude of high-frequency injection as a percentage of the voltage class standard (200 V Class: 200 V, 400 V Class: 400 V).  There is normally no need to change this parameter from the default value.                                                                             | Default: 20.0%<br>Min.: 0.0<br>Max.: 50.0    | 348  |
| n8-39<br>(0566)       | Low Pass Filter Cutoff<br>Frequency for High<br>Frequency Injection | PM Harm LPF Freq | OLV/PM AOLV/PM CLV/PM Sets the cutoff frequency of a low pass filter for high frequency injection. There is normally no need to change this parameter from the default value.                                                                                                                                                               | Default: 50 Hz<br>Min.: 0<br>Max.: 1000      | 349  |
| n8-41<br>(568H)       | HFI Overlap Pole<br>Detection                                       | Harm Inj Gain    | V/f V/f w PG OLV CLV  OLV/PM AOLV/PM CLV/PM  Sets the speed estimation response for High Frequency Injection. Adjust this parameter when the motor vibrates in a low speed range.                                                                                                                                                           | Default: 2.50<br>Min: 0.01<br>Max: 10.0      | 349  |
| n8-45<br>(0538)       | Speed Feedback<br>Detection Control Gain<br>(for PM Motors)         | PM Spd Fdbk Gain | OLV/PM AOLV/PM CLV/PM  Increase this setting if hunting occurs. Decrease to lower the response.                                                                                                                                                                                                                                             | Default: 0.80<br>Min.: 0.00<br>Max.: 10.00   | 349  |
| n8-47<br>(053A)       | Pull-In Current<br>Compensation Time<br>Constant (for PM<br>Motors) | PM Pull-in I Tc  | V/f V/f w PG OLV CLV  OLV/PM AOLV/PM CLV/PM  Sets the time constant to make the pull-in current reference and actual current value agree. Decrease the value if the motor begins to oscillate, and increase the value if it takes too long for the current reference to equal the output current.                                           | Default: 5.0 s<br>Min.: 0.0<br>Max.: 100.0   | 349  |
| n8-48<br>(053B)       | Pull-In Current (for PM Motors)                                     | PM No-load Curr  | V/f V/f w PG OLV CLV  OLV/PM AOLV/PM CLV/PM  Defines the d-Axis current reference during no-load operation at a constant speed. Set as a percentage of the motor rated current. Increase this setting if hunting occurs while running at constant speed.                                                                                    | Default: 30%<br>Min.: 20<br>Max.: 200        | 349  |
| n8-49<br>(053C)       | d-Axis Current for High<br>Efficiency Control (for<br>PM Motors)    | EnergySav ID Lvl | OLV/PM AOLV/PM CLV/PM  Sets the d-Axis current reference when running a high load at constant speed. Set as a percentage of the motor rated current.                                                                                                                                                                                        | Default: <2><br>Min.: -200.0%<br>Max.: 0.0%  | 349  |
| n8-51<br>(053E)       | Acceleration/ Deceleration Pull-In Current (for PM Motors)          | PM Pull-in I@Acc | V/f V/f w PG OLV CLV  OLV/PM AOLV/PM CLV/PM  Sets the d-Axis current reference during acceleration/ deceleration as a percentage of the motor rated current. Set to a high value when more starting torque is needed.                                                                                                                       | Default: 50%<br>Min.: 0<br>Max.: 200         | 350  |
| n8-54<br>(056D)       | Voltage Error<br>Compensation Time<br>Constant                      | PM V Error CompT | OLV/PM AOLV/PM CLV/PM Adjusts the value when hunting occurs at low speed. If hunting occurs with sudden load changes, increase n8-54 in increments of 0.1. Reduce this setting if oscillation occurs at start.                                                                                                                              | Default: 1.00 s<br>Min.: 0.00<br>Max.: 10.00 | 350  |

| No.<br>(Addr.<br>Hex)  | Name                                                                      | LCD Display                                                                                      | Description                                                                                                                                                                                                                                                                                                                                                                                                                            | Values                                                  | Page |
|------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------|
| n8-55<br>(056E)        | Load Inertia                                                              | PMLoad wk2 Ratio<br>0: Less than 1:10<br>1: 1:10 to 1:30<br>2: 1:30 to 1:50<br>3: More than 1:50 | OLV/PM AOLV/PM CLV/PM  Sets the ratio between motor and machine inertia. 0: Below 1:10 1: Between 1:10 and 1:30 2: Between 1:30 and 1:50 3: Beyond 1:50                                                                                                                                                                                                                                                                                | Default: 0<br>Min.: 0<br>Max.: 3                        | 350  |
| n8-57<br>(0574)        | High Frequency<br>Injection                                               | PM Harm Inj Sel<br>0: Disabled<br>1: Enabled                                                     | OLV/PM AOLV/PM CLV/PM  O: Disabled. Disable when using an SPM motor.  1: Enabled. Use this setting to enhance the speed control range when using an IPM motor.  Note: When n8-57 is set to 1 (Enabled), perform High Frequency Injection Parameter Tuning after setting the motor parameters. High Frequency Injection cannot be used with an SPM motor.  Refer to T2-01: PM Motor Auto-Tuning Mode Selection on page 172 for details. | Default: 0<br>Range: 0, 1                               | 350  |
| n8-62<br>(057D)        | Output Voltage Limit (for PM Motors)                                      | PM Vout Limit                                                                                    | OLV/PM AOLV/PM CLV/PM Prevents output voltage saturation. Should be set just below the voltage provided by the input power supply.                                                                                                                                                                                                                                                                                                     | Default: 200.0<br>V <3><br>Min.: 0.0<br>Max.: 250.0 <3> | 351  |
| n8-63<br>(057E)        | Output Voltage Limit<br>Proportional Gain (for<br>PM Motors)              | PM Vout P Gain                                                                                   | V/f V/f w PG OLV CLV  OLV/PM AOLV/PM CLV/PM  Stabilizes constant output.  There is normally no need to change this parameter from the default value.                                                                                                                                                                                                                                                                                   | Default: 1.00<br>Min.: 0.00<br>Max.: 100.00             | 351  |
| n8-64<br>(057F)<br><4> | Output Voltage Limit<br>Integral Time (for PM<br>Motors)                  | PM Vout I Time                                                                                   | V/f V/f w PG OLV CLV  OLV/PM AOLV/PM CLV/PM  There is normally no need to change this parameter from the default value.                                                                                                                                                                                                                                                                                                                | Default: 0.040 s<br>Min.: 0.000<br>Max.: 5.000          | 351  |
| n8-66<br>(0235)        | Output Voltage Limit<br>Output Filter Time<br>Constant (for PM<br>Motors) | VlimFilterTime                                                                                   | OLV/PM AOLV/PM CLV/PM  There is normally no need to change this parameter from the default value.                                                                                                                                                                                                                                                                                                                                      | Default: 0.001 s<br>Min.: 0.000<br>Max.: 5.000          | 351  |
| n8-69<br>(065D)        | Speed Estimation Gain                                                     | SpdSrch Gain                                                                                     | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the proportional gain for PLL control of an extended observer. There is normally no need to change this parameter from the default value.                                                                                                                                                                                                                                              | Default: 1.00<br>Min.: 0.00<br>Max.: 20.00              | 351  |
| n8-72<br>(0655)        | Speed Estimation<br>Method Selection                                      | Spd Est method<br>0: Conventional<br>1: A1000 method                                             | V/f V/f w PG OLV CLV  OLV/PM AOLV/PM CLV/PM  Sets the method to be used for estimating the speed. 0: Conventional method 1: 1000-series method There is normally no need to change this parameter from the default value.                                                                                                                                                                                                              | Default: 1<br>Range: 0, 1                               | 351  |
| n8-84<br>(02D3)        | Initial Polarity<br>Estimation Timeout<br>Current                         | Polarity Det Curr                                                                                | OLV/PM AOLV/PM CLV/PM  Sets the current to determine polarity for the initial polarity calculation as a percentage of the motor rated current.  100% = Motor rated current  Note: If an "Si" value is listed on a Yaskawa motor nameplate, set n8-84 to "Si" value x 2 or more.                                                                                                                                                        | Default: 100%<br>Min.: 0<br>Max.: 150                   | 352  |

<sup>&</sup>lt;1> Default setting is determined by parameter n8-72, Speed Estimation Method Selection. When n8-72=0, default is 50.0 When n8-72=1, default is 150.0.

<sup>&</sup>lt;2> Default setting is determined by parameter E5-01, Motor Code Selection.

#### **B.11 n: Special Adjustments**

- <3> Values shown are specific to 200 V class drives. Double the value for 400 V class drives.
- <4> Available in drive software versions PRG: 1017 and later.

# **B.12 o: Operator-Related Settings**

The o parameters set up the digital operator displays.

### ◆ o1: Digital Operator Display Selection

| No.<br>(Addr.<br>Hex)                | Name                                      | LCD Display                                                                                   | Description                                                                                                                                                                                                                                                                                                                                                                                   | Values                                                     | Page |
|--------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------|
| 01-01<br>(0500)<br><sup>®</sup> ⊕RUN | Drive Mode Unit<br>Monitor Selection      | User Monitor Sel                                                                              | All Modes  Switches the display after the power has been turned on.  When using an LED operator, pressing the up arrow key will display the following data: frequency reference → rotational direction → output frequency → output current → output voltage → U1-□□.  Note: Enter the "1-□□" portion of "U1-□□" to view the monitor. Certain monitors are not available in all control modes. | Default: 106<br>(Monitor<br>U1-06)<br>Range: 104 to<br>914 | 353  |
| 01-02<br>(0501)<br>•⊕RUN             | User Monitor Selection<br>after Power Up  | Power-On Monitor 1: Frequency Ref 2: FWD/REV 3: Output Freq 4: Output Current 5: User Monitor | All Modes  Selects the information displayed on the digital operator when the power is turned on.  1: Frequency reference (U1-01)  2: Direction  3: Output frequency (U1-02)  4: Output current (U1-03)  5: User-selected monitor (set by o1-01)                                                                                                                                              | Default: 1<br>Range: 1 to 5                                | 353  |
| o1-03<br>(0502)                      | Digital Operator Display<br>Selection     | Display Unit Sel<br>0: 0.01 Hz<br>1: 0.01 %<br>2: r/min<br>3: User Units                      | All Modes  Sets the units the drive should use to display the frequency reference and motor speed monitors.  0: 0.01 Hz 1: 0.01% (100% = E1-04) 2: r/min (calculated using the number of motor poles setting in E2-04, E4-04, or E5-04) 3: User-selected units (set by o1-10 and o1-11)                                                                                                       | Default: <1> Range: 0 to 3                                 | 353  |
| o1-04<br>(0503)                      | V/f Pattern Display Unit                  | V/f Ptrn Unit<br>0: Hertz<br>1: RPM                                                           | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM 0: Hz 1: r/min                                                                                                                                                                                                                                                                                                                                     | Default: <1> Range: 0, 1                                   | 354  |
| 01-05<br>(0504)<br>•◆RUN             | LCD Contrast Control                      | LCD Contrast                                                                                  | All Modes Sets the contrast of the LCD operator.                                                                                                                                                                                                                                                                                                                                              | Default: 3<br>Min.: 0<br>Max.: 5                           | 354  |
| o1-10<br>(0520)                      | User-Set Display Units<br>Maximum Value   | UserDisp Scaling                                                                              | All Modes  These settings define the display values when o1-03 is set to 3. o1-10 sets the display value that is equal to the maximum output                                                                                                                                                                                                                                                  | Default: <2> Range: 1 to 60000                             | 354  |
| o1-11<br>(0521)                      | User-Set Display Units<br>Decimal Display | UserDisp Dec Sel                                                                              | frequency.<br>o1-11 sets the position of the decimal position.                                                                                                                                                                                                                                                                                                                                | Default: <2> Range: 0 to 3                                 | 354  |

<sup>&</sup>lt;1> Default setting is determined by parameter A1-02, Control Method Selection.

## o2: Digital Operator Keypad Functions

| No.<br>(Addr.<br>Hex) | Name                                   | LCD Display                                | Description                                                                                                | Values                    | Page |
|-----------------------|----------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------|------|
| o2-01<br>(0505)       | LOCAL/REMOTE Key<br>Function Selection | LO/RE Key<br>0: Disabled<br>1: Enabled     | All Modes 0: Disabled 1: Enabled. LO/RE key switches between LOCAL and REMOTE operation.                   | Default: 1<br>Range: 0, 1 | 354  |
| o2-02<br>(0506)       | STOP Key Function<br>Selection         | Oper STOP Key<br>0: Disabled<br>1: Enabled | All Modes  0: Disabled. STOP key is disabled in REMOTE operation.  1: Enabled. STOP key is always enabled. | Default: 1<br>Range: 0, 1 | 355  |

<sup>2&</sup>gt; Default setting is determined by parameter o1-03, Digital Operator Display Selection.

### **B.12 o: Operator-Related Settings**

| No.<br>(Addr.<br>Hex) | Name                                                            | LCD Display                                                                 | Description                                                                                                                                                                                               | Values                                      | Page |
|-----------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------|
| o2-03<br>(0507)       | User Parameter Default<br>Value                                 | User Default Sel<br>0: No Change<br>1: Save User Init<br>2: Clear User Init | All Modes  0: No change. 1: Set defaults. Saves parameter settings as default values for a User Initialization. 2: Clear all. Clears the default settings that have been saved for a User Initialization. | Default: 0<br>Range: 0 to 2                 | 355  |
| o2-04<br>(0508)       | Drive Model Selection                                           | Inverter Model #                                                            | All Modes  Enter the drive model. Setting required only if installing a new control board.                                                                                                                | Default:<br>Determined by<br>drive capacity | 355  |
| o2-05<br>(0509)       | Frequency Reference<br>Setting Method<br>Selection              | Oper Ref Method<br>0: Disabled<br>1: Enabled                                | O: ENTER key must be pressed to enter a frequency reference. 1: ENTER key is not required. The frequency reference can be adjusted using the up and down arrow keys only.                                 | Default: 0<br>Range: 0, 1                   | 355  |
| o2-06<br>(050A)       | Operation Selection<br>when Digital Operator is<br>Disconnected | Oper Discon Det<br>0: Disabled<br>1: Enabled                                | O: The drive continues operating if the digital operator is disconnected.  1: An oPr fault is triggered and the motor coasts to stop.                                                                     | Default: 1<br>Range: 0, 1                   | 356  |
| o2-07<br>(0527)       | Motor Direction at<br>Power Up when Using<br>Operator           | For/RevSel@PwrUp<br>0: Forward<br>1: Reverse                                | All Modes 0: Forward 1: Reverse This parameter requires assigning drive operation to the digital operator.                                                                                                | Default: 0<br>Range: 0, 1                   | 356  |
| o2-09<br>(050D)       | _                                                               | _                                                                           | Factory use.                                                                                                                                                                                              | -                                           | -    |
| o2-19<br>(061F)       | Selection of Parameter<br>Write during Uv                       | ParameterSet Sel<br>0: Disabled<br>1: Enabled                               | Selects whether parameter settings can be changed during a control circuit undervoltage condition. To be used with 24 V Power Supply Unit Built-in model.  0: Disabled 1: Enabled                         | Default: 0<br>Range: 0, 1                   | 356  |

# ♦ o3: Copy Function

| No.<br>(Addr.<br>Hex) | Name                    | LCD Display                                                                                | Description                                                                                                                                                                                                                                                                                                                                                                                     | Values                      | Page |
|-----------------------|-------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------|
| o3-01<br>(0515)       | Copy Function Selection | COPY SELECT<br>0: COPY SELECT<br>1: INV→OP READ<br>2: OP→INV WRITE<br>3: OP←→INV<br>VERIFY | 0: Copy select 1: INV → OP READ (Read parameters from the drive, saving them onto the digital operator). 2: OP → INV WRITE (Copy parameters from the digital operator, writing them to the drive). 3: OP → INV VERIFY (Verify that parameter settings match the data saved on the operator). To read the drive parameter settings into the digital operator, set o3-02 to 1 (to allow reading). | Default: 0<br>Range: 0 to 3 | 356  |
| o3-02<br>(0516)       | Copy Allowed Selection  | Read Allowable<br>0: Disabled<br>1: Enabled                                                | All Modes  Selects whether the read operation (o3-01 = 1) is enabled or disabled.  0: Read operation prohibited  1: Read operation allowed                                                                                                                                                                                                                                                      | Default: 0<br>Range: 0, 1   | 357  |

# ◆ o4: Maintenance Monitor Settings

| No.<br>(Addr.<br>Hex) | Name                                                | LCD Display                                            | Description                                                                                                                                                                                                         | Values                                          | Page |
|-----------------------|-----------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------|
| o4-01<br>(050B)       | Cumulative Operation<br>Time Setting                | DrvElapsTimeCnt                                        | All Modes  Sets the value for the cumulative operation time of the drive in units of 10 h.                                                                                                                          | Default: 0<br>Min.: 0<br>Max.: 9999             | 357  |
| o4-02<br>(050C)       | Cumulative Operation<br>Time Selection              | ElapsTimeCntSet<br>0: Power-On Time<br>1: Running Time | O: Logs power-on time 1: Logs operation time when the drive output is active (output operation time).                                                                                                               | Default: 0<br>Range: 0, 1                       | 357  |
| o4-03<br>(050E)       | Cooling Fan Operation<br>Time Setting               | FanElapsTimeCn                                         | All Modes  Sets the value of the fan operation time monitor U4-03 in units of 10 h.                                                                                                                                 | Default: 0<br>Min.: 0<br>Max.: 9999             | 357  |
| o4-05<br>(051D)       | Capacitor Maintenance<br>Setting                    | BusCap Maint Set                                       | Starts estimates for capacitor maintenance times from this setting value. See U4-05 to check when the capacitors may need to be replaced.                                                                           | Default: 0%<br>Min.: 0<br>Max.: 150             | 357  |
| o4-07<br>(0523)       | DC Bus Pre-Charge<br>Relay Maintenance<br>Setting   | ChrgCircMaintSet                                       | Starts estimates for soft charge bypass relay maintenance times from this setting value. See U4-06 to check when the bypass relay may need to be replaced.                                                          | Default: 0%<br>Min.: 0<br>Max.: 150             | 358  |
| o4-11<br>(0510)       | U2, U3 Initialization                               | Fault Data Init<br>0: Disabled<br>1: Enabled           | O: U2-□□ and U3-□□ monitor data is not reset when the drive is initialized using A1-03.  1: U2-□□ and U3-□□ monitor data is reset when the drive is initialized using A1-03. Parameter is automatically reset to 0. | Default: 0<br>Range: 0, 1                       | 358  |
| o4-12<br>(0512)       | kWh Monitor<br>Initialization                       | kWh Monitor Init<br>0: No Reset<br>1: Reset            | All Modes 0: No action 1: Reset kWh data                                                                                                                                                                            | Default: 0<br>Range: 0, 1                       | 358  |
| o4-13<br>(0528)       | Number of Run<br>Commands Counter<br>Initialization | Run Counter Init<br>0: No Reset<br>1: Reset            | O: U4-02 monitor data is not reset when the drive is initialized using A1-03.  1: U4-02 monitor data is reset when the drive is initialized using A1-03. Parameter is automatically reset to 0.                     | Default: 0<br>Range: 0, 1                       | 358  |
| o4-19<br>(113A)       | Power Unit Price                                    | Energy Price/kWh                                       | All Modes  Sets the price per 1 kWh to calculate the power rate displayed for total consumed power (U9-07 to U9-10) and total regenerated power (U9-11 to U9-14).                                                   | Default: 000.00<br>Min.: 000.00<br>Max.: 650.00 | 358  |

## **B.13 DriveWorksEZ Parameters**

# 

| No.<br>(Addr.<br>Hex)                  | Name                    | Description | Values                              | Page |
|----------------------------------------|-------------------------|-------------|-------------------------------------|------|
| q1-01 to<br>q6-07<br>(1600 to<br>1746) | DriveWorksEZ Parameters |             | Refer to Help in the DWEZ software. | 358  |

### ♦ r: DriveWorksEZ Connection Parameters

| No.<br>(Addr.<br>Hex)                  | Name                                                            | Description                                              | Values                              | Page |
|----------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|-------------------------------------|------|
| r1-01 to<br>r1-40<br>(1840 to<br>1867) | DriveWorksEZ Connection<br>Parameters 1 to 20 (upper/<br>lower) | DriveWorksEZ Connection Parameters 1 to 20 (upper/lower) | Default: 0<br>Min.: 0<br>Max.: FFFF | 359  |

# **B.14 T: Motor Tuning**

Enter data into the following parameters to tune the motor and drive for optimal performance.

# ◆ T1: Induction Motor Auto-Tuning

| No.<br>(Addr.<br>Hex)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Name                                  | LCD Display                                                                                                                                        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Values                                                                          | Page |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------|
| T1-00<br>(0700)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Motor 1/Motor 2<br>Selection          | Select Motor<br>1: 1st Motor<br>2: 2nd Motor                                                                                                       | V/f         V/f w PG         OLV         CLV           OLV/PM         AOLV/PM         CLV/PM           1: Motor 1 (sets E1-□□, E2-□□)         E2-□□)           2: Motor 2 (sets E3-□□, E4-□□)                                                                                                                                                                                                                                                                                                                                                                 | Default: 1<br>Range: 1, 2                                                       | 170  |
| T1-01<br>(0701)<br><td>Auto-Tuning Mode<br/>Selection</td> <td>Tuning Mode Sel 0: Standard Tuning 2: Term Resistance 3: V/f Engy Sav Tun 4: Tune-No Rotate2 5: Tune-No Rotate3 8: Inertia Tuning 9: Tune ASR gain</td> <td>Vif Vif wPG OLV CLV OLV/PM AOLV/PM CLV/PM O: Rotational Auto-Tuning 2: Stationary Auto-Tuning for Line-to-Line Resistance 3: Rotational Auto-Tuning for V/f Control (necessary for Energy Savings and Speed Estimation Speed Search) 4: Stationary Auto-Tuning 2 5: Stationary Auto-Tuning 3 8: Inertia Tuning (perform Rotational Auto-Tuning prior to Inertia Tuning) 9: ASR Gain Tuning (perform Rotational Auto-Tuning prior to ASR Gain Auto-Tuning) Note: Settings 8 and 9 may not be available when gears are between the machine and the motor shaft.</td> <td>Default: 0 &lt;2&gt; Range: 0; 2 to 5; 8, 9</td> <td>171</td> | Auto-Tuning Mode<br>Selection         | Tuning Mode Sel 0: Standard Tuning 2: Term Resistance 3: V/f Engy Sav Tun 4: Tune-No Rotate2 5: Tune-No Rotate3 8: Inertia Tuning 9: Tune ASR gain | Vif Vif wPG OLV CLV OLV/PM AOLV/PM CLV/PM O: Rotational Auto-Tuning 2: Stationary Auto-Tuning for Line-to-Line Resistance 3: Rotational Auto-Tuning for V/f Control (necessary for Energy Savings and Speed Estimation Speed Search) 4: Stationary Auto-Tuning 2 5: Stationary Auto-Tuning 3 8: Inertia Tuning (perform Rotational Auto-Tuning prior to Inertia Tuning) 9: ASR Gain Tuning (perform Rotational Auto-Tuning prior to ASR Gain Auto-Tuning) Note: Settings 8 and 9 may not be available when gears are between the machine and the motor shaft. | Default: 0 <2> Range: 0; 2 to 5; 8, 9                                           | 171  |
| T1-02<br>(0702)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Motor Rated Power                     | Mtr Rated Power                                                                                                                                    | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the motor rated power as specified on the motor nameplate.  Note: Use the following formula to convert horsepower into kilowatts:  1HP = 0.746 kW.                                                                                                                                                                                                                                                                                                                                                            | Default: <3><br>Min.: 0.00 kW<br>Max.: 650.00<br>kW                             | 171  |
| T1-03<br>(0703)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Motor Rated Voltage                   | Rated Voltage                                                                                                                                      | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the motor rated voltage as specified on the motor nameplate.                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Default: 200.0<br>V <sup>4</sup> ><br>Min: 0.0<br>Max: 255.0 <sup>4</sup> >     | 171  |
| T1-04<br>(0704)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Motor Rated Current                   | Rated Current                                                                                                                                      | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the motor rated current as specified on the motor nameplate.                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Default: <3> Min.: 10% of drive rated current Max.: 150% of drive rated current | 171  |
| T1-05<br>(0705)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Motor Base Frequency                  | Rated Frequency                                                                                                                                    | OLV/PM AOLV/PM CLV/PM Sets the rated frequency of the motor as specified on the motor nameplate.                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Default: 60.0<br>Hz<br>Min.: 0.0<br>Max.: 400.0                                 | 171  |
| T1-06<br>(0706)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Number of Motor Poles                 | Number of Poles                                                                                                                                    | OLV/PM AOLV/PM CLV/PM Sets the number of motor poles as specified on the motor nameplate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Default: 4<br>Min.: 2<br>Max.: 48                                               | 172  |
| T1-07<br>(0707)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Motor Base Speed                      | Rated Speed                                                                                                                                        | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the rated speed of the motor as specified on the motor nameplate.                                                                                                                                                                                                                                                                                                                                                                                                                                             | Default: 1750 r/<br>min<br>Min.: 0<br>Max.: 24000                               | 171  |
| T1-08<br>(0708)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PG Number of Pulses<br>Per Revolution | PG Pulses/Rev                                                                                                                                      | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the number of pulses per revolution for the PG being used (pulse generator or encoder).                                                                                                                                                                                                                                                                                                                                                                                                                       | Default: 1024<br>ppr<br>Min.: 1<br>Max.: 60000                                  | 171  |

#### **B.14 T: Motor Tuning**

| No.<br>(Addr.<br>Hex) | Name                                                  | LCD Display      | Description                                                                                                                                                                                                                                                                                                                            | Values                                        | Page |
|-----------------------|-------------------------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------|
| T1-09<br>(0709)       | Motor No-Load Current<br>(Stationary Auto-<br>Tuning) | No-Load Current  | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the no-load current for the motor. After setting the motor capacity to T1-02 and the motor rated current to T1-04, this parameter will automatically display the no-load current for a standard 4-pole Yaskawa motor. Enter the no-load current as indicated on the motor test report. | Default: –<br>Min.: 0 A<br>Max.: T1-04<br><5> | 172  |
| T1-10<br>(070A)       | Motor Rated Slip<br>(Stationary Auto-<br>Tuning)      | Motor Rated Slip | OLV/PM AOLV/PM CLV/PM  Sets the motor rated slip. After setting the motor capacity to T1-02, this parameter will automatically display the motor slip for a standard 4-pole Yaskawa motor. Enter the motor slip as indicated on the motor test report.                                                                                 | Default: –<br>Min.: 0.00 Hz<br>Max.: 20.00 Hz | 172  |
| T1-11<br>(070B)       | Motor Iron Loss                                       | Mtr Iron Loss(W) | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the iron loss for determining the Energy Saving coefficient. The value is set to E2-10 (motor iron loss) set when the power is cycled. If T1-02 is changed, a default value appropriate for the motor capacity that was entered will appear.                                           | Default: 14 W <6> Min.: 0 Max.: 65535         | 172  |

- <1> The availability of certain Auto-Tuning methods is determined by the control mode selected for the drive.
- <2> Default setting is determined by parameter A1-02, Control Method Setting.
- <3> Default setting is determined by parameter o2-04, Drive Model Selection.
- <4> Values shown are specific to 200 V class drives. Double the value for 400 V class drives.
- <5> Display is in the following units:  $2\square 0028$ ,  $2\square 0042$ , and  $4\square 0011$  to  $4\square 0027$ : 0.01 A units  $2\square 0054$  to  $2\square 0248$  and  $4\square 0034$  to  $4\square 0930$ : 0.1 A units
- <6> Default setting value differs depending on the motor code value and motor parameter settings.

# **★** T2: PM Motor Auto-Tuning

| No.<br>(Addr.<br>Hex) | Name                                   | LCD Display                                                                                                                                                                            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Values                                                                         | Page |
|-----------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------|
| T2-01<br>(0750)       | PM Motor Auto-Tuning<br>Mode Selection | PM Tuning Mode 0: Standard Tuning 1: Tune-No Rotate 2: Term Resistance 3: Z-Pulse Tuning 8: Inertia Tuning 9: Tune ASR gain 11: IndVoltConstTun 13: High Freq Tun 14: PM rotation tune | OLV/PM AOLV/PM CLV/PM  0: PM Motor Parameter Settings 1: PM Stationary Auto-Tuning 2: PM Stationary Auto-Tuning for Stator Resistance 3: Z Pulse Offset Tuning 8: Inertia Tuning 9: ASR Gain Auto-Tuning 11: Back EMF Constant Tuning 13: High Frequency Injection Parameter Tuning 14: PM Rotational Auto-Tuning  Note:  1. Settings 8 and 9 may not be available when gears are between the machine and the motor shaft.  2. For special-purpose motors, Yaskawa recommends Back EMF Constant Tuning after performing Stationary Auto-Tuning. Back EMF Constant Tuning rotates the motor to measure the actual induction voltage constants, and allows for more accurate control than Stationary Auto-Tuning alone.  3. Perform High Frequency Injection Parameter Tuning when using High Frequency Injection. High Frequency Injection cannot be used with an SPM motor. | Default: 0<br>Range: 0 to 3;<br>8, 9, 11, 13, 14                               | 172  |
| T2-02<br>(0751)       | PM Motor Code<br>Selection             | PM Mtr Code Sel                                                                                                                                                                        | OLV/PM AOLV/PM CLV/PM  Enter the motor code when using a Yaskawa PM motor. After entering the motor code, the drive automatically sets parameters T2-03 through T2-09. Set parameters T2-10 to T2-14 according the motor nameplate or the motor test report. When using a motor without a supported motor code or a non-Yaskawa motor, set FFFF and adjust the other T2 parameters according to the motor nameplate or the motor test report.                                                                                                                                                                                                                                                                                                                                                                                                                               | Min: 0000                                                                      | 173  |
| T2-03<br>(0752)       | PM Motor Type                          | PM Motor Type<br>0: IPM motor<br>1: SPM motor                                                                                                                                          | V/f V/f w PG OLV CLV  OLV/PM AOLV/PM CLV/PM  0: IPM motor 1: SPM motor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Default: 1<br>Range: 0, 1                                                      | 173  |
| T2-04<br>(0730)       | PM Motor Rated Power                   | Mtr Rated Power                                                                                                                                                                        | V/f V/f w PG OLV CLV  OLV/PM AOLV/PM CLV/PM  Sets the motor rated power.  Note: Use the following formula to convert horsepower into kilowatts:  1 HP = 0.746 kW.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Default: Min.: 0.00 kW Max.: 650.00 kW                                         |      |
| T2-05<br>(0732)       | PM Motor Rated<br>Voltage              | Rated Voltage                                                                                                                                                                          | OLV/PM AOLV/PM CLV/PM Enter the motor rated voltage as indicated on the motor nameplate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Default: 200.0<br>V <5><br>Min.: 0.0<br>Max.: 255.0 <5>                        | 173  |
| T2-06<br>(0733)       | PM Motor Rated Current                 | Rated Current                                                                                                                                                                          | V/f V/f w PG OLV CLV  OLV/PM AOLV/PM CLV/PM  Enter the motor rated current as indicated on the motor nameplate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Default: 4> Min.: 10% of drive rated current Max.: 150% of drive rated current | 174  |
| T2-07<br>(0753)       | PM Motor Base<br>Frequency             | Base Frequency                                                                                                                                                                         | V/f V/f w PG OLV CLV  OLV/PM AOLV/PM CLV/PM  Enter the motor base frequency as indicated on the motor nameplate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Default: 87.5<br>Hz<br>Min.: 0.0<br>Max.: 400.0                                | 174  |

#### **B.14 T: Motor Tuning**

| No.<br>(Addr.<br>Hex) | Name                                                         | LCD Display                                     | Description                                                                                                                                                                             | Values                                              | Page |
|-----------------------|--------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------|
| T2-08<br>(0734)       | Number of PM Motor<br>Poles                                  | Number of Poles                                 | OLV/PM AOLV/PM CLV/PM Enter the number of motor poles for the PM motor as indicated on the motor nameplate.                                                                             | Default: 6<br>Min.: 2<br>Max.: 48                   | 174  |
| T2-09<br>(0731)       | PM Motor Base Speed                                          | Rated Speed                                     | OLV/PM AOLV/PM CLV/PM Enter the base speed for the PM motor as indicated on the motor nameplate.                                                                                        | Default: 1750<br>r/min<br>Min.: 0<br>Max.: 24000    | 174  |
| T2-10<br>(0754)       | PM Motor Stator<br>Resistance                                | Arm Resistance                                  | OLV/PM AOLV/PM CLV/PM Enter the rotor resistance for the PM motor as indicated on the motor nameplate.                                                                                  | Default: <6><br>Min.: 0.000 Ω<br>Max.: 65.000 Ω     | 174  |
| T2-11<br>(0735)       | PM Motor d-Axis<br>Inductance                                | d-Axis Induct                                   | OLV/PM AOLV/PM CLV/PM Enter the d-axis inductance for the PM motor as indicated on the motor nameplate.                                                                                 | Default: 6 Min.: 0.00 mH Max.: 600.00 mH            | 174  |
| T2-12<br>(0736)       | PM Motor q-Axis<br>Inductance                                | q-Axis Induct                                   | OLV/PM AOLV/PM CLV/PM Enter the q-axis inductance for the PM motor as indicated on the motor nameplate.                                                                                 | Default: <6><br>Min.: 0.00 mH<br>Max.: 600.00<br>mH | 174  |
| T2-13<br>(0755)       | Induced Voltage<br>Constant Unit Selection                   | Iduct Volt Unit<br>0: mV/RPM<br>1: mV/(rad/sec) | OLV/PM AOLV/PM CLV/PM  0: mV/(r/min). E5-09 will automatically be set to 0.0, and E5-24 will be used.  1: mV/(rad/sec). E5-24 will automatically be set to 0.0, and E5-09 will be used. | Default: 1<br>Range: 0, 1                           | 174  |
| T2-14<br>(0737)       | PM Motor Induced<br>Voltage Constant (Ke)                    | Induct Volt Coef                                | OLV/PM AOLV/PM CLV/PM Enter the induced voltage coefficient for the PM motor as indicated on the motor nameplate.                                                                       | Default: <6><br>Min.: 0.0<br>Max.: 2000.0           | 175  |
| T2-15<br>(0756)       | Pull-In Current Level for<br>PM Motor Tuning                 | Pull-In I Lvl                                   | OLV/PM AOLV/PM CLV/PM  Sets the amount of pull-in current to use for Auto-Tuning as a percentage of the motor rated current. Increase this setting for high inertia loads.              | Default: 30%<br>Min.: 0<br>Max.: 120                | 175  |
| T2-16<br>(0738)       | PG Number of Pulses<br>Per Revolution for PM<br>Motor Tuning | PG Pulses/Rev                                   | V/f V/f w PG OLV CLV  OLV/PM AOLV/PM CLV/PM  Sets the number of pulses per revolution for the PG being used (pulse generator or encoder).                                               | Default: 1024<br>ppr<br>Min.: 1<br>Max.: 15000      | 175  |
| T2-17<br>(0757)       | Encoder Z-Pulse Offset $(\Delta\theta)$                      | Z-Pulse Offset                                  | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the offset between encoder offset and the rotor magnetic axis.                                                                          | Default: 0.0 deg<br>Min.: -180.0<br>Max.: 180.0     | 175  |

<sup>&</sup>lt;1> The availability of certain Auto-Tuning methods is determined by the control mode selected for the drive.

<sup>&</sup>lt;2> The setting range is determined by parameter A1-02, Control Method Selection.

<sup>&</sup>lt;3> Default setting is determined by parameters A1-02, Control Method Selection, and o2-04, Drive Model Selection.

<sup>&</sup>lt;4> Default setting is determined by parameter o2-04, Drive Model Selection.

<sup>&</sup>lt;5> Values shown are specific to 200 V class drives. Double the value for 400 V class drives.

<sup>&</sup>lt;6> Default setting is determined by parameter T2-02, PM Motor Code Selection, and the drive capacity.

## ◆ T3: ASR and Inertia Tuning

| No.<br>(Addr.<br>Hex)  | Name                                  | LCD Display      | Description                                                                                                                                                                                           | Values                                                                                   | Page |
|------------------------|---------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------|
| T3-01<br>(0760)        | Inertia Tuning<br>Frequency Reference | Test Signal Freq | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the frequency of the test signal used during Inertia Tuning and ASR Gain Auto-Tuning. Reduce this value if the inertia is large or if a fault occurs. | Default: 3.0 Hz<br>Min.: 0.1<br>Max.: 20.0                                               | 175  |
| T3-02<br>(0761)        | Inertia Tuning Reference<br>Amplitude | Test Signal Ampl | OLV OLV/PM AOLV/PM CLV/PM  Sets the amplitude of the test signal used during Inertia and ASR Gain Auto-Tuning. Reduce this value if the inertia is too large or if a fault occurs.                    | Default: 0.5 rad<br>Min.: 0.1<br>Max.: 10.0                                              | 176  |
| T3-03<br>(0762)        | Motor Inertia                         | Motor Inertia    | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Sets the motor inertia. Default setting is the inertia of a Yaskawa motor.                                                                                 | Default: <2> <3><br>Min.: 0.0001<br>kgm <sup>2</sup><br>Max.: 600.00<br>kgm <sup>2</sup> | 176  |
| T3-04<br>(0763)<br><1> | ASR Response<br>Frequency             | System Resp Freq | OLV/PM AOLV/PM CLV/PM Sets the response frequency of the mechanical system connected to the motor. Oscillation may result if set too high.                                                            | Default: 10.0 Hz<br>Min.: 0.1<br>Max.: 50.0                                              | 176  |

<sup>&</sup>lt;1> Displayed only when performing Inertia Tuning or ASR Gain Auto-Tuning (T1-01 = 8 or T2-01 = 9).

<sup>&</sup>lt;2> Default setting is determined by parameter E5-01, Motor Code Selection.

<sup>&</sup>lt;3> Default setting is determined by parameters C6-01, Drive Duty Selection, and o2-04, Drive Model Selection.

## **B.15 U: Monitors**

Monitor parameters allow the user to view drive status, fault information, and other data concerning drive operation.

### ♦ U1: Operation Status Monitors

| No.<br>(Addr.<br>Hex) | Name                        |                  | Description                                                                                                                                                                                                                                                                                                                                                        | Analog<br>Output Level                        | Unit    |
|-----------------------|-----------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------|
| U1-01<br>(0040)       | Frequency Reference         | Frequency Ref    | Monitors the frequency reference. Display units are determined by o1-03.                                                                                                                                                                                                                                                                                           | 10 V: Max<br>frequency<br>(-10 to +10 V)      | 0.01 Hz |
| U1-02<br>(0041)       | Output Frequency            | Output Freq      | Displays the output frequency. Display units are determined by o1-03.                                                                                                                                                                                                                                                                                              | 10 V: Max<br>frequency<br>(-10 to +10 V)      | 0.01 Hz |
| U1-03<br>(0042)       | Output Current              | Output Current   | All Modes Displays the output current.                                                                                                                                                                                                                                                                                                                             | 10 V: Drive rated current                     | <1> <2> |
| U1-04<br>(0043)       | Control Method              | Control Method   | All Modes  0: V/f Control 1: V/f Control with PG 2: Open Loop Vector Control 3: Closed Loop Vector Control                                                                                                                                                                                                                                                         | No signal output<br>available                 | -       |
| U1-05<br>(0044)       | Motor Speed                 | Motor Speed      | OLV/PM AOLV/PM CLV/PM Displays the motor speed feedback. Display units are determined by o1-03.                                                                                                                                                                                                                                                                    | 10 V: Max<br>frequency<br>(-10 to +10 V)      | 0.01 Hz |
| U1-06<br>(0045)       | Output Voltage<br>Reference | Output Voltage   | All Modes Displays the output voltage.                                                                                                                                                                                                                                                                                                                             | 10 V: 200 Vrms                                | 0.1 Vac |
| U1-07<br>(0046)       | Control Circuit Voltage     | DC Bus Voltage   | All Modes Displays the control circuit voltage.                                                                                                                                                                                                                                                                                                                    | 10 V: 400 V                                   | 1 Vdc   |
| U1-08<br>(0047)       | Output Power                | Output kWatts    | All Modes Displays the output power (this value is calculated internally).                                                                                                                                                                                                                                                                                         | 10 V: <4><br>(-10 to +10 V)                   | <5>     |
| U1-09<br>(0048)       | Torque Reference            | Torque Reference | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Monitors the internal torque reference.                                                                                                                                                                                                                                                                                 | 10 V: Motor<br>rated torque<br>(-10 to +10 V) | 0.1%    |
| U1-10<br>(0049)       | Input Terminal Status       | Input Term Sts   | Displays the input terminal status.  U1 - 10=0000000  U1 - 10=0000000  Digital input 1 (terminal S1 enabled)  1 Digital input 2 (terminal S2 enabled)  1 Digital input 4 (terminal S4 enabled)  1 Digital input 5 (terminal S5 enabled)  1 Digital input 6 (terminal S6 enabled)  1 Digital input 7 (terminal S7 enabled)  1 Digital input 8 (terminal S8 enabled) | No signal output<br>available                 | _       |

| No.<br>(Addr.<br>Hex) | Name                                   |                 | Description                                                                                                                                                                                                                                        | Analog<br>Output Level                   | Unit    |
|-----------------------|----------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------|
| U1-11<br>(004A)       | Output Terminal Status                 | Output Term Sts | Displays the output terminal status.  U1 - 11 = 0000000                                                                                                                                                                                            | No signal output<br>available            | I       |
| U1-12<br>(004B)       | Drive Status                           | Int Ctl Sts 1   | All Modes  Displays the drive operation status.  U1 - 12=0000000  U1 - 1 During run  1 During zero-speed  1 During REV  1 During fault reset signal input  1 During speed agree  1 Drive ready  1 During alarm detection  1 During fault detection | No signal output<br>available            | -       |
| U1-13<br>(004E)       | Terminal A1 Input Level                | Term A1 Level   | All Modes Displays the signal level to analog input terminal A1.                                                                                                                                                                                   | 10 V: 100%<br>(-10 to +10 V)             | 0.1%    |
| U1-14<br>(004F)       | Terminal A2 Input Level                | Term A2 Level   | All Modes Displays the signal level to analog input terminal A2.                                                                                                                                                                                   | 10 V: 100%<br>(-10 to +10 V)             | 0.1%    |
| U1-15<br>(0050)       | Terminal A3 Input Level                | Term A3 Level   | All Modes Displays the signal level to analog input terminal A3.                                                                                                                                                                                   | 10 V: 100%<br>(-10 to +10 V)             | 0.1%    |
| U1-16<br>(0053)       | Output Frequency after<br>Soft Starter | SFS Output      | All Modes Displays output frequency with ramp time and S-curves. Units determined by o1-03.                                                                                                                                                        | 10 V: Max<br>frequency<br>(-10 to +10 V) | 0.01 Hz |
| U1-17<br>(0058)       | DI-A3 Input Status                     | DI Opt Status   | All Modes  Displays the reference value input from the DI-A3 option card.  Display will appear in hexadecimal as determined by the digital card input selection in F3-01.  3FFFF: Set (1 bit) + sign (1 bit) + 16 bit                              | No signal output<br>available            | I       |
| U1-18<br>(0061)       | oPE Fault Parameter                    | OPE Error Code  | All Modes  Displays the parameter number that caused the oPE02 or oPE08 operation error.                                                                                                                                                           | No signal output available               | -       |
| U1-19<br>(0066)       | MEMOBUS/Modbus<br>Error Code           | Transmit Err    | All Modes  Displays the contents of a MEMOBUS/Modbus error.  U1 - 19=0000000  1 CRC Error 1 Data Length Error 0 Not Used 1 Parity Error 1 Overrun Error 1 Framing Error 1 Timed Out 0 Not Used                                                     | No signal output<br>available            | -       |

| No.<br>(Addr.<br>Hex) | Name                                         |                  | Description                                                                      | Analog<br>Output Level                                   | Unit   |
|-----------------------|----------------------------------------------|------------------|----------------------------------------------------------------------------------|----------------------------------------------------------|--------|
| U1-21<br>(0077)       | AI-A3 Terminal V1<br>Input Voltage Monitor   | AI Opt Ch1 Level | All Modes  Displays the input voltage to terminal V1 on analog input card AI-A3. | 10 V: 100%<br>(-10 to +10 V)                             | 0.1%   |
| U1-22<br>(072A)       | AI-A3 Terminal V2<br>Input Voltage Monitor   | AI Opt Ch2 Level | All Modes Displays the input voltage to terminal V2 on analog input card AI-A3.  | 10 V: 100%<br>(-10 to +10 V)                             | 0.1%   |
| U1-23<br>(072B)       | AI-A3 Terminal V3<br>Input Voltage Monitor   | AI Opt Ch3 Level | All Modes Displays the input voltage to terminal V3 on analog input card AI-A3.  | 10 V: 100%<br>(-10 to +10 V)                             | 0.1%   |
| U1-24<br>(007D)       | Input Pulse Monitor                          | Term RP Inp Freq | All Modes Displays the frequency to pulse train input terminal RP.               | Determined by H6-02                                      | 1 Hz   |
| U1-25<br>(004D)       | Software Number (Flash)                      | CPU 1 SW Number  | All Modes<br>FLASH ID                                                            | No signal output available                               | _      |
| U1-26<br>(005B)       | Software No. (ROM)                           | CPU 2 SW Number  | All Modes ROM ID                                                                 | No signal output available                               | _      |
| U1-54<br>(1083)       | Drive Input Power<br>Voltage Effective Value | PowerSupply Volt | All Modes Displays the effective value of the drive input power voltage.         | 200 V class<br>10 V: 400 V<br>400 V class<br>10 V: 800 V | 1 V    |
| U1-58<br>(1087)       | Power Supply<br>Frequency                    | PoweSupply Freq  | All Modes Displays the frequency of the drive input power supply.                | 10 V: Rated frequency                                    | 0.1 Hz |
| U1-72<br>(1095)       | Input Power Supply<br>Information            | Power Supply Sts | All Modes  Displays information on the input power supply.  U1 - 72 = 00000000   | No signal output<br>available                            | -      |

- <1> Display is in the following units:
  - $2\square 0028$ ,  $2\square 0042$ , and  $4\square 0011$  to  $4\square 0027$ : 0.01 A units
  - 2□0054 to 2□0248 and 4□0034 to 4□0720: 0.1 A units
  - 4□0900 and 4□0930: 1 A units
- The values of U1-03, U2-05, and U4-13 are displayed on the digital operator in units of amperes. When those monitors are checked using MEMOBUS/Modbus communications, the monitor values in MEMOBUS/Modbus communications are displayed as: numeric value / 8192 × drive rated current (A) from the condition "192 (maximum value) = drive rated current (A)"
- <3> Values shown are specific to 200 V class drives. Double the value for 400 V class drives.
- <4> The analog output level is determined by the control mode (A1–02).
  - A1–02 = 0,1: 10 V = rated output (A) x voltage class (V)
  - A1-02 = 2,3: 10 V = motor rated power (E2-11) (kW)
  - A1–02 = 5,6,7: 10 V = motor rated power for PM motors (E5–02) (kW)
- <5> Display is in the following units:
  - 2□0028, 2□0042, and 4□0011 to 4□0027: 0.01 kW units
  - $2\square 0054$  to  $2\square 0248$  and  $4\square 0034$  to  $4\square 0930$ : 0.1 kW units

## ♦ U2: Fault Trace

| No.<br>(Addr.<br>Hex) | Name                                                 | LCD Display      | Description                                                                                                              | Analog<br>Output Level        | Unit       |
|-----------------------|------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------|
| U2-01<br>(0080)       | Current Fault                                        | Current Fault    | All Modes Displays the current fault.                                                                                    | No signal output available    | -          |
| U2-02<br>(0081)       | Previous Fault                                       | Last Fault       | All Modes Displays the previous fault.                                                                                   | No signal output available    | _          |
| U2-03<br>(0082)       | Frequency Reference at<br>Previous Fault             | Frequency Ref    | All Modes Displays the frequency reference at the previous fault.                                                        | No signal output available    | 0.01 Hz    |
| U2-04<br>(0083)       | Output Frequency at<br>Previous Fault                | Output Freq      | All Modes Displays the output frequency at the previous fault.                                                           | No signal output<br>available | 0.01 Hz    |
| U2-05<br>(0084)       | Output Current at<br>Previous Fault                  | Output Current   | All Modes Displays the output current at the previous fault.                                                             | No signal output<br>available | <1><br><2> |
| U2-06<br>(0085)       | Motor Speed at Previous<br>Fault                     | Motor Speed      | OLV/PM AOLV/PM CLV/PM Displays the motor speed at the previous fault.                                                    | No signal output<br>available | 0.01 Hz    |
| U2-07<br>(0086)       | Output Voltage at<br>Previous Fault                  | Output Voltage   | All Modes Displays the output voltage at the previous fault.                                                             | No signal output available    | 0.1 Vac    |
| U2-08<br>(0087)       | Control Circuit DC<br>Voltage at Previous Fault      | DC Bus Voltage   | All Modes Displays the control circuit DC voltage at the previous fault.                                                 | No signal output available    | 1 Vdc      |
| U2-09<br>(0088)       | Output Power at<br>Previous Fault                    | Output kWatts    | All Modes Displays the output power at the previous fault.                                                               | No signal output available    | 0.1 kW     |
| U2-10<br>(0089)       | Torque Reference at<br>Previous Fault                | Torque Reference | OLV/PM AOLV/PM CLV/PM Displays the torque reference at the previous fault.                                               | No signal output<br>available | 0.1%       |
| U2-11<br>(008A)       | Input Terminal Status at<br>Previous Fault           | Input Term Sts   | All Modes Displays the input terminal status at the previous fault. Displayed as in U1-10.                               | No signal output<br>available | _          |
| U2-12<br>(008B)       | Output Terminal Status<br>at Previous Fault          | Output Term Sts  | All Modes Displays the output status at the previous fault. Displayed as in U1-11.                                       | No signal output<br>available | -          |
| U2-13<br>(008C)       | Drive Operation Status at<br>Previous Fault          | Inverter Status  | All Modes  Displays the operation status of the drive at the previous fault. Displayed as in U1-12.                      | No signal output available    | _          |
| U2-14<br>(008D)       | Cumulative Operation<br>Time at Previous Fault       | Elapsed time     | All Modes Displays the cumulative operation time at the previous fault.                                                  | No signal output<br>available | 1 h        |
| U2-15<br>(07E0)       | Run Speed after Soft<br>Starter at Previous<br>Fault | SFS Output       | All Modes  Displays the run speed after a soft start when a previous fault occurred. Displayed as in U1-16.              | No signal output<br>available | 0.01 Hz    |
| U2-16<br>(07E1)       | Motor q-Axis Current at<br>Previous Fault            | Motor Iq Current | OLV/PM AOLV/PM CLV/PM Displays the q-axis current for the motor at the previous fault. Displayed as in U6-01.            | No signal output<br>available | 0.1%       |
| U2-17<br>(07E2)       | Motor d-Axis Current at<br>Previous Fault            | Motor Id Current | OLV/PM AOLV/PM CLV/PM Displays the d-axis current for the motor at the previous fault. Displayed as in U6-02.            | No signal output<br>available | 0.1%       |
| U2-19<br>(07E4)       | Rotor Deviation at<br>Previous Fault                 | d-q Axis Dev Err | OLV/PM AOLV/PM CLV/PM Displays the degree of rotor deviation when the most recent fault occurred. Displayed as in U6-10. | No signal output<br>available | 0.1 deg    |

| No.<br>(Addr.<br>Hex) | Name                                           | LCD Display      | Description                                                                                                     | Analog<br>Output Level        | Unit   |
|-----------------------|------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------|--------|
| U2-20<br>(008E)       | Heatsink Temperature at<br>Previous Fault      | Actual Fin Temp  | All Modes  Displays the temperature of the heatsink when the most recent fault occurred. Displayed as in U4-08. | No signal output<br>available | 1 °C   |
| U2-50<br>(085C)       | Input Power Supply                             | Power Supply Sts | All Modes  Displays the input power supply information at the previous fault. Displayed as in U1-72.            | No signal output available    | _      |
| U2-54<br>(0843)       | Power Supply Voltage at<br>Previous Fault      | PowerSupply Volt | All Modes Displays the power supply voltage at the previous fault. Displayed as in U1-54.                       | No signal output<br>available | 1 V    |
| U2-58<br>(0847)       | Power Supply<br>Frequency at Previous<br>Fault | PowerSupply Freq | All Modes  Displays the power supply frequency at the previous fault.  Displayed as in U1-58.                   | No signal output<br>available | 0.1 Hz |

<sup>&</sup>lt;1> Display is in the following units:

2□0028, 2□0042, and 4□0011 to 4□0027: 0.01 A units

 $2\square 0054$  to  $2\square 0248$  and  $4\square 0034$  to  $4\square 0720$ : 0.1 A units

4□0900 and 4□0930: 1 A units

The values of U1-03, U2-05, and U4-13 are displayed on the digital operator in units of amperes. When those monitors are checked using MEMOBUS/Modbus communications, the monitor values in MEMOBUS/Modbus communications are displayed as: numeric value / 8192 × drive rated current (A) from the condition "192 (maximum value) = drive rated current (A)"

Note: Fault histories are not kept when CPF00, CPF01, CPF06, CPF24, oFA00, oFb00, oFC00, Uv1, Uv2, or Uv3 occur.

### U3: Fault History

| No.<br>(Addr.<br>Hex)                                       | Name                                                             | LCD Display     | Description                                                                                                                                                                                                                                                                        | Analog<br>Output Level        | Unit |
|-------------------------------------------------------------|------------------------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------|
| U3-01 to<br>U3-04<br>(0090 to<br>0093<br>(0800 to<br>0803)) | 1st to 4th Most Recent<br>Fault                                  | Fault Message □ | All Modes Displays the first to the fourth most recent faults.                                                                                                                                                                                                                     | No signal output<br>available | .1   |
| U3-05 to<br>U3-10<br>(0804 to<br>0809)                      | 5th to 10th Most Recent<br>Fault                                 | Fault Message □ | Displays the fifth to the tenth most recent faults.  After ten faults, data for the oldest fault is deleted. The most recent fault appears in U3-01, with the next most recent fault appearing in U3-02. The data is moved to the next monitor parameter each time a fault occurs. | No signal output<br>available | -    |
| U3-11 to<br>U3-14<br>(0094 to<br>0097<br>(080A to<br>080D)) | Cumulative Operation<br>Time at 1st to 4th Most<br>Recent Fault  | Elapsed Time □  | All Modes  Displays the cumulative operation time when the first to the fourth most recent faults occurred.                                                                                                                                                                        | No signal output<br>available | 1 h  |
| U3-15 to<br>U3-20<br>(080E to<br>0813)                      | Cumulative Operation<br>Time at 5th to 10th Most<br>Recent Fault | Elapsed Time □  | All Modes Displays the cumulative operation time when the fifth to the tenth most recent faults occurred.                                                                                                                                                                          | No signal output<br>available | 1 h  |

Note: Note: Fault histories are not kept when CPF00, CPF01, CPF06, CPF24, oFA00, oFb00, oFC00, Uv1, Uv2, or Uv3 occur.

## ◆ U4: Maintenance Monitors

| No.<br>(Addr.<br>Hex)  | Name                                    | LCD Display      | Description                                                                                                                                                                                                                                                                                                                                                                                                                            | Analog<br>Output Level        | Unit                     |
|------------------------|-----------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------|
| U4-01<br>(004C)<br><1> | Cumulative Operation<br>Time            | Drv Elapsed Time | All Modes  Displays the cumulative operation time of the drive. The value for the cumulative operation time counter can be reset in parameter o4-01. Use parameter o4-02 to determine if the operation time should start as soon as the power is switched on or only while the Run command is present. The default value is 0. The value counts up from 0. The maximum number displayed is 99999, after which the value is reset to 0. | No signal output<br>available | 1 h                      |
| U4-02<br>(0075)        | Number of Run<br>Commands               | RUN Cmd Counter  | Displays the number of times the Run command is entered. Reset the number of Run commands using parameter o4-13. The default value is 0. The value will reset to 0 and start counting again after reaching 65535.                                                                                                                                                                                                                      | No signal output<br>available | 1 Time                   |
| U4-03<br>(0067)<br><2> | Cooling Fan Operation<br>Time           | Fan Elapsed TIme | All Modes  Displays the cumulative operation time of the cooling fan. The default value for the fan operation time is reset in parameter o4-03. The default value is 0. The value will reset to 0 and start counting again after reaching 99999.                                                                                                                                                                                       | No signal output<br>available | 1 h                      |
| U4-04<br>(007E)        | Cooling Fan<br>Maintenance              | Fan Life Mon     | All Modes  Displays main cooling fan usage time as a percentage of its expected performance life. Parameter 04-03 can be used to reset this monitor.  Replace the fan when this monitor reaches 90%.  The default value is 0. The value counts up from 0.                                                                                                                                                                              | No signal output<br>available | 1%                       |
| U4-05<br>(007C)        | Capacitor Maintenance                   | Cap Life Mon     | Displays control circuit capacitor usage time as a percentage of their expected performance life. Parameter o4-05 can be used to reset this monitor.  Replace the capacitor when this monitor reaches 90%.  The default value is 0. The value counts up from 0.                                                                                                                                                                        | No signal output<br>available | 1%                       |
| U4-06<br>(07D6)        | Soft Charge Bypass<br>Relay Maintenance | ChgCirc Life Mon | All Modes  Displays the soft charge bypass relay maintenance time as a percentage of its estimated performance life. Parameter o4-07 can be used to reset this monitor.  Replace the soft charge bypass relay when this monitor reaches 90%.  The default value is 0. The value counts up from 0.                                                                                                                                      | No signal output<br>available | 1%                       |
| U4-08<br>(0068)        | Heatsink Temperature                    | Heatsink Temp    | All Modes Displays the heatsink temperature.                                                                                                                                                                                                                                                                                                                                                                                           | 10 V: 100 °C                  | 1 °C                     |
| U4-09<br>(005E)        | LED Check                               | LED Oper Check   | All Modes Lights all segments of the LED to verify that the display is working properly.                                                                                                                                                                                                                                                                                                                                               | No signal output<br>available | -                        |
| U4-13<br>(07CF)        | Peak Hold Current                       | Current PeakHold | All Modes  Displays the highest current value that occurred during run.                                                                                                                                                                                                                                                                                                                                                                | No signal output<br>available | 0.01 A<br><3> <4><br><5> |
| U4-14<br>(07D0)        | Peak Hold Output<br>Frequency           | Freq@ I PeakHold | All Modes  Displays the output frequency when the current value shown in U4-13 occurred.                                                                                                                                                                                                                                                                                                                                               | No signal output<br>available | 0.01 Hz                  |
| U4-16<br>(07D8)        | Motor Overload<br>Estimate (oL1)        | Motor OL1 Level  | All Modes  Shows the value of the motor overload detection accumulator. 100% is equal to the oL1 detection level.                                                                                                                                                                                                                                                                                                                      | 10 V: 100%                    | 0.1%                     |

| No.<br>(Addr.<br>Hex) | Name                                                 | LCD Display      | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Analog<br>Output Level        | Unit  |
|-----------------------|------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------|
| U4-18<br>(07DA)       | Frequency Reference<br>Source Selection              | Reference Source | All Modes  Displays the source for the frequency reference as XY-nn.  X: indicates which reference is used:  1 = Reference 1 (b1-01)  2 = Reference 2 (b1-15)  Y-nn: indicates the reference source  0-01 = Digital operator  1-00 = Analog  1-01 = Analog (terminal A1)  1-02 = Analog (terminal A2)  1-03 = Analog (terminal A3)  2-02 to 17 = Multi-step speed (d1-02 to 17)  3-01 = MEMOBUS/Modbus communications  4-01 = Communication option card  5-01 = Pulse input  7-01 = DWEZ  9-01 = Up/Down Command                                                                                                                                                                                                                                                                                                                                                                                                | No signal output<br>available | _     |
| U4-19<br>(07DB)       | Frequency Reference<br>from MEMOBUS/<br>Modbus Comm. | MEMOBUS Freq Ref | All Modes  Displays the frequency reference provided by MEMOBUS/ Modbus (decimal).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No signal output available    | 0.01% |
| U4-20<br>(07DC)       | Option Frequency<br>Reference                        | Option Freq Ref  | All Modes  Displays the frequency reference input by an option card (decimal).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No signal output available    | -     |
| U4-21<br>(07DD)       | Run Command Source<br>Selection                      | Run Cmd Source   | Displays the source for the Run command as XY-nn.  X: Indicates which Run source is used:  1 = Reference 1 (b1-02)  2 = Reference 2 (b1-16)  Y: Input power supply data  0 = Digital operator  1 = External terminals  3 = MEMOBUS/Modbus communications  4 = Communication option card  7 = DWEZ  nn: Run command limit status data  00: No limit status.  01: Run command was left on when stopped in the PRG mode  02: Run command was left on when switching from LOCAL to  REMOTE operation  03: Waiting for soft charge bypass contactor after power up (Uv  or Uv1 flashes after 10 s)  04: Waiting for "Run command prohibited" time period to end  05: Fast Stop (digital input, digital operator)  06: b1-17 (Run command given at power-up)  07: During baseblock while coast to stop with timer  08: Frequency reference is below minimal reference during baseblock  09: Waiting for Enter command | No signal output<br>available | _     |
| U4-22<br>(07DE)       | MEMOBUS/Modbus<br>Communications<br>Reference        | MEMOBUS Ref Reg  | Displays the drive control data set by MEMOBUS/Modbus communications register no. 0001H as a four-digit hexadecimal number.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No signal output<br>available | -     |
| U4-23<br>(07DF)       | Communication Option<br>Card Reference               | Option Ref Reg   | All Modes  Displays drive control data set by an option card as a four-digit hexadecimal number.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No signal output<br>available | _     |

<sup>&</sup>lt;1> The MEMOBUS/Modbus communications data is in 10 h units. If data in 1 h units are also required, refer to register number 0099H.

<sup>&</sup>lt;2> The MEMOBUS/Modbus communications data is in 10 h units. If data in 1 h units are also required, refer to register number 009BH.

<sup>&</sup>lt;3> Display is in the following units:

 $<sup>2\</sup>square 0028$ ,  $2\square 0042$ , and  $4\square 0011$  to  $4\square 0027$ : 0.01 A units

<sup>2□0054</sup> to 2□0248 and 4□0034 to 4□0720: 0.1 A units

<sup>4□0900</sup> and 4□0930: 1 A units

- <4> The values of U1-03, U2-05, and U4-13 are displayed on the digital operator in units of amperes. When those monitors are checked using MEMOBUS/Modbus communications, the monitor values in MEMOBUS/Modbus communications are displayed as: numeric value / 8192 × drive rated current (A) from the condition "192 (maximum value) = drive rated current (A)"
- <5> When reading the value of this monitor via MEMOBUS/Modbus a value of 8192 is equal to 100% of the drive rated output current.

#### U5: PID Monitors

| No.<br>(Addr.<br>Hex) | Name                                                                 | LCD Display     | Description                                                                                                                                                                    | Analog<br>Output Level        | Unit  |
|-----------------------|----------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------|
| U5-01<br>(0057)       | PID Feedback                                                         | PID Feedback 1  | All Modes Displays the PID feedback value.                                                                                                                                     | 10 V: 100%<br>(-10 to +10 V)  | 0.01% |
| U5-02<br>(0063)       | PID Input                                                            | PID Input       | All Modes  Displays the amount of PID input (deviation between PID setpoint and feedback).                                                                                     | 10 V: 100%<br>(-10 to +10 V)  | 0.01% |
| U5-03<br>(0064)       | PID Output                                                           | PID Output      | All Modes Displays PID control output.                                                                                                                                         | 10 V: 100%<br>(-10 to +10 V)  | 0.01% |
| U5-04<br>(0065)       | PID Setpoint                                                         | PID Setpoint    | All Modes Displays the PID setpoint.                                                                                                                                           | 10 V: 100%<br>(-10 to +10 V)  | 0.01% |
| U5-05<br>(07D2)       | PID Differential<br>Feedback                                         | PID Feedback 2  | All Modes  Displays the 2nd PID feedback value if differential feedback is used (H3- $\square$ = 16).                                                                          | 10 V: 100%<br>(-10 to +10 V)  | 0.01% |
| U5-06<br>(07D3)       | PID Adjusted Feedback                                                | PID Diff Fdbk   | Displays the difference of both feedback values if differential feedback is used (U5-01 - U5-05). If differential feedback is not used, then U5-01 and U5-06 will be the same. | 10 V: 100%<br>(-10 to +10 V)  | 0.01% |
| U5-21<br>(0872)       | Automatically<br>Calculated Energy<br>Saving Coefficient Ki<br>Value | Ki Auto Cal Val | OLV/PM AOLV/PM CLV/PM Displays the energy saving coefficient Ki value.                                                                                                         | No signal output<br>available | 0.01  |
| U5-22<br>(0873)       | Automatically<br>Calculated Energy<br>Saving Coefficient Kt<br>Value | Kt Auto Cal Val | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Displays the energy saving coefficient Kt value.                                                                                    | No signal output<br>available | 0.01  |

### ♦ U6: Operation Status Monitors

| No.<br>(Addr.<br>Hex) | Name                             | LCD Display      | Description                                                                                                                       | Analog<br>Output Level                                      | Unit    |
|-----------------------|----------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------|
| U6-01<br>(0051)       | Motor Secondary<br>Current (Iq)  | Mot SEC Current  | All Modes  Displays the value of the motor secondary current (Iq). Motor rated secondary current is 100%.                         | 10 V: Motor<br>secondary rated<br>current<br>(-10 to +10 V) | 0.1%    |
| U6-02<br>(0052)       | Motor Excitation<br>Current (Id) | Mot EXC Current  | OLV/PM AOLV/PM CLV/PM Displays the value calculated for the motor excitation current (Id). Motor rated secondary current is 100%. | 10 V: Motor<br>secondary rated<br>current<br>(-10 to +10 V) | 0.1%    |
| U6-03<br>(0054)       | ASR Input                        | ASR Input        | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM                                                                                        | 10 V: Max<br>frequency<br>(-10 to +10 V)                    |         |
| U6-04<br>(0055)       | ASR Output                       | ASR Output       | Displays the input and output values when using ASR control.                                                                      | 10 V: Motor<br>secondary rated<br>current<br>(-10 to +10 V) | 0.01%   |
| U6-05<br>(0059)       | Output Voltage<br>Reference (Vq) | Voltage Ref (Vq) | OLV/PM AOLV/PM CLV/PM Output voltage reference (Vq) for the q-Axis.                                                               | 10 V: 200 Vrms<br>(-10 to +10 V)                            | 0.1 Vac |

| No.<br>(Addr.<br>Hex) | Name                                                       | LCD Display      | Description                                                                                                                                                                                                                           | Analog<br>Output Level                                      | Unit    |
|-----------------------|------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------|
| U6-06<br>(005A)       | Output Voltage<br>Reference (Vd)                           | Voltage Ref (Vd) | OLV/PM AOLV/PM CLV/PM Output voltage reference (Vd) for the d-Axis.                                                                                                                                                                   | 10 V: 200 Vrms<br>(-10 to +10 V)                            | 0.1 Vac |
| U6-07<br>(005F)       | q-Axis ACR Output                                          | ACR(q) Output    | OLV/PM AOLV/PM CLV/PM Displays the output value for current control relative to motor secondary current (q-Axis).                                                                                                                     | 10 V: 200 Vrms<br>(-10 to +10 V)                            | 0.1%    |
| U6-08<br>(0060)       | d-Axis ACR Output                                          | ACR(d) Output    | OLV/PM AOLV/PM CLV/PM  Displays the output value for current control relative to motor secondary current (d-Axis).                                                                                                                    | 110 V: 200 Vrms<br>(-10 to +10 V)                           | 0.1%    |
| U6-09<br>(07C0)       | Advance Phase Compensation $(\Delta\theta)$                | d-q Axis Comp    |                                                                                                                                                                                                                                       | 10 V: 180 deg<br>-10 V: -180 deg<br>(-10 to +10 V)          | 0.1 deg |
| U6-10<br>(07C1)       | Control Axis Deviation $(\Delta\theta)$                    | d-q Axis Devt    |                                                                                                                                                                                                                                       | 10 V: 180 deg<br>-10 V: -180 deg<br>(-10 to +10 V)          | 0.1 deg |
| U6-13<br>(07CA)       | Flux Position Detection (sensor)                           | FluxPosition Fb  | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Monitors the value of the flux position detection (sensor).                                                                                                                                | 10 V: 180 deg<br>-10 V: -180 deg<br>(-10 to +10 V)          | 0.1 deg |
| U6-14<br>(07CB)       | Flux Position Estimation (observer)                        | FluxPosition Est | V/f V/f w PG OLV CLV OLV/PM AOLV/PM CLV/PM Monitors the value of the flux position estimation.                                                                                                                                        | 10 V: 180 deg<br>-10 V: -180 deg<br>(-10 to +10 V)          | 0.1 deg |
| U6-18<br>(07CD)       | Speed Detection PG1<br>Counter                             | PG1 CounterValue | All Modes  Monitors the number of pulses for speed detection (PG1).                                                                                                                                                                   | 10 V: 65536                                                 | 1 pulse |
| U6-19<br>(07E5)       | Speed Detection PG2<br>Counter                             | PG2 CounterValue | All Modes  Monitors the number of pulses for speed detection (PG2).                                                                                                                                                                   | 10 V: 65536                                                 | 1 pulse |
| U6-20<br>(07D4)       | Frequency Reference<br>Bias (Up/Down 2)                    | Up/Dn 2 Bias Val | All Modes  Displays the bias value used to adjust the frequency reference.                                                                                                                                                            | 10 V: Max<br>frequency                                      | 0.1%    |
| U6-21<br>(07D5)       | Offset Frequency                                           | Offset Frequency | All Modes  Displays the total value of the offset frequencies d7-01, d7-02 and d7-03 selected with digital inputs 44 to 46.                                                                                                           | 10 V: Max frequency                                         | 0.1%    |
| U6-22<br>(0062)       | Zero Servo Pulse<br>Movement                               | Zero Servo Pulse | OLV/PM AOLV/PM CLV/PM Displays how far the rotor has moved from its last position in PG pulses (multiplied by 4).                                                                                                                     | 10 V: No. of<br>pulses per<br>revolution<br>(-10 to +10 V)  | 1 pulse |
| U6-25<br>(006B)       | Feedback Control<br>Output                                 | ASR Out w/o Fil  | OLV/PM OLV CLV OLV/PM AOLV/PM CLV/PM Output monitor for the ASR speed loop.                                                                                                                                                           | 10 V: Motor<br>secondary rated<br>current<br>(-10 to +10 V) | 0.01%   |
| U6-26<br>(006C)       | Feed Forward Control<br>Output                             | FF Cont Output   | OLV/PM AOLV/PM CLV/PM Output monitor for Feed Forward control.                                                                                                                                                                        | 10 V: Motor<br>secondary rated<br>current<br>(-10 to +10 V) | 0.01%   |
| U6-57<br>(07C4)       | Integrated Current<br>Deviation during<br>Judging Polarity | PoleDis IdDifVal | OLV/PM AOLV/PM CLV/PM Displays the deviation from the integrated current when judging motor polarity. If this value is lower than 819, then increase the value set to n8-84. The value 8192 is equivalent to the motor rated current. |                                                             | 1       |

| No.<br>(Addr.<br>Hex)                   | Name              | LCD Display | Description                                                                     | Analog<br>Output Level       | Unit |
|-----------------------------------------|-------------------|-------------|---------------------------------------------------------------------------------|------------------------------|------|
| U6-80 to<br>U6-83<br>(07B0H<br>to 07B3) | Online IP Address | -           | All Modes  IP Address currently available; U6-80 is the most significant octet. | No signal output available   | 1    |
| U6-84 to<br>U6-87<br>(07B4 to<br>07B7)  | Online Subnet     | -           | All Modes Subnet currently available; U6-84 is the most significant octet.      | No signal output available   | 1    |
| U6-88 to<br>U6-91<br>(07B8 to<br>07F1)  | Online Gateway    | -           | All Modes Gateway currently available; U6-88 is the most significant octet.     | No signal output available   | 1    |
| U6-92<br>(07F2)                         | Online Speed      | -           | All Modes Link Speed                                                            | 10: 10 Mbps<br>100: 100 Mbps | 1    |
| U6-93<br>(07F3)                         | Online Duplex     | -           | All Modes Duplex Setting                                                        | 0: Half<br>1: Full           | 1    |
| U6-98<br>(07F8)                         | First Fault       | -           | All Modes First Option Fault                                                    | _                            | _    |
| U6-99<br>(07F9)                         | Current Fault     | -           | All Modes Current Option Fault                                                  | _                            | _    |

<sup>&</sup>lt;1> Values shown are specific to 200 V class drives. Double the values for 400 V class drives.

### **U8: DriveWorksEZ Monitors**

| No.<br>(Addr.<br>Hex) | Name                                           | LCD Display | Description                                           | Analog<br>Output Level        | Unit  |
|-----------------------|------------------------------------------------|-------------|-------------------------------------------------------|-------------------------------|-------|
|                       | DriveWorksEZ Custom<br>Monitor 1 to 10         | -           | All Modes DriveWorksEZ Custom Monitor 1 to 10         | 10 V: 100%                    | 0.01% |
|                       | DriveWorksEZ Version<br>Control Monitor 1 to 3 | -           | All Modes DriveWorksEZ Version Control Monitor 1 to 3 | No signal output<br>available | -     |

### **U9: Power Monitors**

| No.<br>(Addr.<br>Hex) | Name                     | LCD Display  | Description                                            | Analog<br>Output Level     | Unit  |
|-----------------------|--------------------------|--------------|--------------------------------------------------------|----------------------------|-------|
| U9-01<br>(0820)       | Electric Power (GWh)     | GWh Consumed | All Modes Shows the total amount of electric power.    | No signal output available | 1 GWh |
| U9-02<br>(0821)       | Electric Power (MWh)     | MWh Consumed |                                                        | No signal output available | 1 MWh |
| U9-03<br>(0822)       | Electric Power (kWh)     | kWh Consumed |                                                        | No signal output available | 1 kWh |
| U9-04<br>(0823)       | Regenerative Power (GWh) | GWh Produced | All Modes Shows the total amount of regenerated power. | No signal output available | 1 GWh |
| U9-05<br>(0824)       | Regenerative Power (MWh) | MWh Produced | 000 000 kWh                                            | No signal output available | 1 MWh |
| U9-06<br>(0825)       | Regenerative Power (kWh) | kWh Produced |                                                        | No signal output available | 1 kWh |

### **B.15 U: Monitors**

| No.<br>(Addr.<br>Hex)                  | Name                               | LCD Display     | Description                                                                                                                                                                                                                                                                              | Analog<br>Output Level        | Unit |
|----------------------------------------|------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------|
| U9-07 to<br>U9-10<br>(0826 to<br>0829) | Electric Power Rates 1 to 4        | Consumed □ (\$) | These parameters show the electric power rate in Power Unit Price (o4-19) that is calculated from the total electrical power consumptions in U9-01 to U9-03.  OOO OOO OOO U9-09  U9-09  U9-08  U9-07  The unit price is set in o4-19, and U9-07 to U9-10 are U9-01 to U9-03 x o4-19.     | No signal output<br>available | -    |
| U9-11 to<br>U9-14<br>(082A to<br>082D) | Regenerative Power<br>Rates 1 to 4 | Produced □ (\$) | These parameters show the regenerative power rate in Power Unit Price (o4-19) that is calculated from the total electrical power consumptions in U9-04 to U9-06.  OOO OOO OOO U9-14  U9-14  U9-12  U9-11  The unit price is set in o4-19, and U9-11 to U9-14 are U9-04 to U9-06 x o4-19. | No signal output<br>available | -    |

## **B.16 Control Mode Dependent Parameter Default Values**

The tables below list parameters that depend on the control mode selection (A1-02 for motor 1, E3-01 for motor 2). Changing the control mode initializes these parameters to the values shown here.

### ◆ A1-02 (Motor 1 Control Mode) Dependent Parameters

Table B.3 A1-02 (Motor 1 Control Mode) Dependent Parameters and Default Values

|       |                                                                                                                           |                  |            |         | Control Mo      | des (A1-02) |          |
|-------|---------------------------------------------------------------------------------------------------------------------------|------------------|------------|---------|-----------------|-------------|----------|
| No.   | Name                                                                                                                      | Setting Range    | Resolution | V/f (0) | V/f w/PG<br>(1) | OLV (2)     | CLV (3)  |
| b1-24 | Commercial Power Switching Selection                                                                                      | 0, 1             | -          | 0       | 0               | -           | _        |
| b2-01 | DC Injection Braking Start Frequency                                                                                      | 0.0 to 10.0      | 0.1 Hz     | 0.5     | 0.5             | 0.5         | 0.5      |
| b2-04 | DC Injection Braking Time at Stop                                                                                         | 0.00 to 10.00    | 0.01 s     | 0.50    | 0.50            | 0.50        | 0.50     |
| b3-01 | Speed Search Selection at Start                                                                                           | 0, 1             | -          | 0       | 1               | 0           | -        |
| b3-08 | Current Control Gain during Speed Search (Speed Estimation Type)                                                          | 0.00 to 6.00     | _          | <1>     | <1>             | <1>         | <1>      |
| b3-09 | Current Control Integral Time during Speed<br>Search (Speed Estimation Type)                                              | 0.0 to 1000.0 ms | 0.1 ms     | 2.0 ms  | 2.0 ms          | 2.0 ms      | 2.0 ms   |
| b3-14 | Bi-Directional Speed Search Selection<br>(Speed Estimation Type,<br>Speed Estimation 2 Type,<br>Current Detection 3 Type) | 0, 1             | 1          | 1       | 0               | 1           | -        |
| b3-24 | Speed Search Method Selection                                                                                             | 1 to 4           | _          | 2       | <6>             | 2           | _        |
| b5-15 | PID Sleep Function Start Level                                                                                            | 0.0 to 400.0     | 0.1        | 0.0 Hz  | 0.0 Hz          | 0.0 Hz      | 0.0 Hz   |
| b6-01 | Dwell Reference at Start                                                                                                  | 0.0 to 400.0     | 0.1        | 0.0 Hz  | 0.0 Hz          | 0.0 Hz      | 0.0 Hz   |
| b6-03 | Dwell Reference at Stop                                                                                                   | 0.0 to 400.0     | 0.1        | 0.0 Hz  | 0.0 Hz          | 0.0 Hz      | 0.0 Hz   |
| b8-01 | Energy Saving Control Selection                                                                                           | 0, 1             | -          | 0       | 0               | 0           | 0        |
| b8-02 | Energy Saving Gain                                                                                                        | 0.0 to 10.0      | 0.1        | -       | _               | 0.7         | 1.0      |
| b8-03 | Energy Saving Control Filter Time Constant                                                                                | 0.00 to 10.00    | 0.01 s     | -       | _               | 0.50 <2>    | 0.01 <2> |
| C1-11 | Accel/Decel Time Switching Frequency                                                                                      | 0.0 to 400.0     | 0.1        | 0.0 Hz  | 0.0 Hz          | 0.0 Hz      | 0.0 Hz   |
| C2-01 | S-Curve Time at Acceleration Start                                                                                        | 0.00 to 10.00    | 0.01 s     | 0.20    | 0.20            | 0.20        | 0.20     |
| C3-01 | Slip Compensation Gain                                                                                                    | 0.0 to 2.5       | 0.1        | 0.0     | _               | 1.0         | 1.0      |
| C3-02 | Slip Compensation Primary Delay Time                                                                                      | 0 to 10000       | 1 ms       | 2000    | _               | 200         | _        |
| C4-01 | Torque Compensation Gain                                                                                                  | 0.00 to 2.50     | 0.01       | 1.00    | 1.00            | 1.00        | _        |
| C4-02 | Torque Compensation Primary Delay Time                                                                                    | 0 to 10000       | 1 ms       | 200     | 200             | 20          | _        |
| C5-01 | ASR Proportional Gain 1                                                                                                   | 0.00 to 300.00   | 0.01       | -       | 0.20            | -           | 20.00    |
| C5-02 | ASR Integral Time 1                                                                                                       | 0.000 to 10.000  | 0.001 s    | _       | 0.200           | -           | 0.500    |
| C5-03 | ASR Proportional Gain 2                                                                                                   | 0.00 to 300.00   | 0.01       | -       | 0.02            | _           | 20.00    |
| C5-04 | ASR Integral Time 2                                                                                                       | 0.000 to 10.000  | 0.001 s    | -       | 0.050           | -           | 0.500    |
| C5-06 | ASR Primary Delay Time Constant                                                                                           | 0.000 to 0.500   | 0.001 s    | -       | -               | -           | 0.004    |
| C5-07 | ASR Gain Switching Frequency                                                                                              | 0.0 to 400.0     | 0.1        | -       | _               | _           | 0.0 Hz   |
| C6-02 | Carrier Frequency Selection                                                                                               | 0 to 4; F        | _          | 1 <1>   | 1 <1>           | 1 <1>       | 1 <1>    |
| C7-60 | Output Voltage Limit Mode Selection                                                                                       | 0 to 1           | _          | 0       | 0               | 0           | 0        |
| d3-01 | Jump Frequency 1                                                                                                          | 0.0 to 400.0     | 0.1        | 0.0 Hz  | 0.0 Hz          | 0.0 Hz      | 0.0 Hz   |
| d3-02 | Jump Frequency 2                                                                                                          | 0.0 to 400.0     | 0.1        | 0.0 Hz  | 0.0 Hz          | 0.0 Hz      | 0.0 Hz   |
| d3-03 | Jump Frequency 3                                                                                                          | 0.0 to 400.0     | 0.1        | 0.0 Hz  | 0.0 Hz          | 0.0 Hz      | 0.0 Hz   |
| d3-04 | Jump Frequency Width                                                                                                      | 0.0 to 20.0      | 0.1        | 1.0 Hz  | 1.0 Hz          | 1.0 Hz      | 1.0 Hz   |
| d5-02 | Torque Reference Delay Time                                                                                               | 0 to 1000        | 1 ms       | -       | _               | -           | 0        |
| E1-04 | Maximum Output Frequency                                                                                                  | 40.0 to 400.0    | 0.1 Hz     | 60.0    | 60.0            | 60.0        | 60.0     |
| E1-05 | Maximum Voltage                                                                                                           | 0.0 to 255.0 <4> | 0.1 V      | 230 <4> | 230 <4>         | 575         | 575      |
| E1-06 | Base Frequency                                                                                                            | 0.0 to 400.0     | 0.1 Hz     | 60.0    | 60.0            | 60.0        | 60.0     |
| E1-07 | Middle Output Frequency                                                                                                   | 0.0 to 400.0     | 0.1 Hz     | 3.0     | 3.0             | 3.0         | _        |
| E1-08 | Middle Output Frequency Voltage                                                                                           | 0.0 to 255.0 <4> | 0.1 V      | <5>     | <5>             | <5>         | _        |
| E1-09 | Minimum Output Frequency                                                                                                  | 0.0 to 400.0     | 0.1 Hz     | 1.5     | 1.5             | 0.5         | 0.0      |

#### **B.16 Control Mode Dependent Parameter Default Values**

|       |                                                                        |                  |            |         | Control Mo      | des (A1-02) |         |
|-------|------------------------------------------------------------------------|------------------|------------|---------|-----------------|-------------|---------|
| No.   | Name                                                                   | Setting Range    | Resolution | V/f (0) | V/f w/PG<br>(1) | OLV (2)     | CLV (3) |
| E1-10 | Minimum Output Frequency Voltage                                       | 0.0 to 255.0 <4> | 0.1 V      | <5>     | <5>             | <5>         | _       |
| F1-01 | PG 1 Pulses Per Revolution                                             | 0 to 60000       | 1 ppr      | -       | 1024            | -           | 1024    |
| F1-05 | PG 1 Rotation Selection                                                | 0, 1             | -          | -       | 0               | -           | 0       |
| F1-09 | Overspeed Detection Delay Time                                         | 0.0 to 2.0       | 0.1 s      | -       | 1.0             | -           | 0.0     |
| L1-01 | Motor Overload Protection Selection                                    | 0 to 6           | _          | 1       | 1               | 1           | 1       |
| L3-36 | Vibration Suppression Gain during<br>Acceleration (with Current Limit) | 0.0 to 100.0     | _          | 10.0    | 10.0            | 20.0        | _       |
| L3-41 | Vibration Suppression Gain during<br>Deceleration (with Current Limit) | 0.0 to 100.0     | _          | 10.0    | 10.0            | 20.0        | -       |
| L4-01 | Speed Agree Detection Level                                            | 0.0 to 400.0     | 0.1        | 0.0 Hz  | 0.0 Hz          | 0.0 Hz      | 0.0 Hz  |
| L4-02 | Speed Agree Detection Width                                            | 0.0 to 20.0      | 0.1 Hz     | 2.0     | 2.0             | 2.0         | 2.0     |
| L4-03 | Speed Agree Detection Level (+/-)                                      | -400.0 to 400.0  | 0.1        | 0.0 Hz  | 0.0 Hz          | 0.0 Hz      | 0.0 Hz  |
| L4-04 | Speed Agree Detection Width (+/-)                                      | 0.0 to 20.0      | 0.1 Hz     | 2.0     | 2.0             | 2.0         | 2.0     |
| L8-18 | Software Current Limit Selection                                       | 0, 1             | _          | <7>     | <7>             | 1           | 0       |
| L8-38 | Carrier Frequency Reduction Selection                                  | 0 to 2           | _          | <1>     | <1>             | <1>         | <1>     |
| L8-40 | Carrier Frequency Reduction Off Delay<br>Time                          | 0.00 to 2.00     | 0.01 s     | 0.50    | 0.50            | 0.50        | 0.50    |
| 01-03 | Digital Operator Display Selection                                     | 0 to 3           | _          | 0       | 0               | 0           | 0       |
| 01-04 | V/f Pattern Display Unit                                               | 0, 1             | _          | _       | _               | _           | 0       |

- <1> Default setting value is determined by parameter o2-04, Drive Model Selection.
- This setting value depends on rated output current in models 2\(\sigma 0248\) and 4\(\sigma 0165\) to 4\(\sigma 0414\): 2.00 in Open Loop Vector Control, 0.05 in Closed Loop Vector Control.
- <3> Default setting is dependent on parameter C6-01, Drive Duty Selection.
- <4> Values shown are specific to 200 V class drives. Double the values for 400 V class drives.
- <5> This setting value depends on rated output current and V/f pattern selection in parameter E1-03.
- <6> Default setting value is determined by the drive model (o2-04).
  - $2\square 0028$  to  $2\square 0248$  (o2-04 = 6A to 75),  $4\square 0011$  to  $4\square 0414$  (o2-04 = 95 to AA): 1
  - $4\Box 0477$  to  $4\Box 0930$  (o2-04 = AC to B0): 3
- <7> Default setting value is determined by the drive software version.

PRG: 1016 and earlier: 0 PRG: 1017 and later: 1

Table B.4 A1-02 (Motor 1 Control Mode) Dependent Parameters and Default Values

| No.   | Name                                                                                                                      | Cotting Dongs       | Resolution | Co         | ntrol Modes (A1- | 02)        |
|-------|---------------------------------------------------------------------------------------------------------------------------|---------------------|------------|------------|------------------|------------|
| NO.   | Name                                                                                                                      | Setting Range       | Resolution | OLV/PM (5) | AOLV/PM (6)      | CLV/PM (7) |
| b1-24 | Commercial Power Switching Selection                                                                                      | 0, 1                | ı          | -          | _                | П          |
| b2-01 | DC Injection Braking Start Frequency                                                                                      | 0.0 to 10.0         | 0.1 Hz     | 0.5 Hz     | 1.0% <1>         | 0.5% <1>   |
| b2-04 | DC Injection Braking Time at Stop                                                                                         | 0.00 to 10.00       | 0.01 s     | 0.00       | 0.00             | 0.00       |
| b3-01 | Speed Search Selection at Start                                                                                           | 0, 1                | 1          | 0          | 0                | -          |
| b3-08 | Current Control Gain during Speed Search (Speed Estimation Type)                                                          | 0.00 to 6.00        | I          | 0.3        | 0.3              | 0.3        |
| b3-09 | Current Control Integral Time during Speed<br>Search (Speed Estimation Type)                                              | 0.0 to 1000.0 ms    | 0.1 ms     | 4.0 ms     | 4.0 ms           | -          |
| b3-14 | Bi-Directional Speed Search Selection<br>(Speed Estimation Type,<br>Speed Estimation 2 Type,<br>Current Detection 3 Type) | 0, 1                | _          | _          | _                | -          |
| b3-24 | Speed Search Method Selection                                                                                             | 1 to 4              | _          | -          | _                | -          |
| b5-15 | PID Sleep Function Start Level                                                                                            | 0.0 to 400.0 Hz <2> | 0.1        | 0.0 Hz     | 0.0%             | 0.0%       |
| b6-01 | Dwell Reference at Start                                                                                                  | 0.0 to 400.0 Hz <2> | 0.1        | 0.0 Hz     | 0.0%             | 0.0%       |
| b6-03 | Dwell Reference at Stop                                                                                                   | 0.0 to 400.0 Hz <2> | 0.1        | 0.0 Hz     | 0.0%             | 0.0%       |
| b8-01 | Energy Saving Control Selection                                                                                           | 0, 1                | _          | -          | 1                | 1          |
| b8-02 | Energy Saving Gain                                                                                                        | 0.0 to 10.0         | 0.1        | _          | _                | _          |

| No.   | Name                                                                   | Setting Range       | Resolution |            | ntrol Modes (A1- | 02)       |
|-------|------------------------------------------------------------------------|---------------------|------------|------------|------------------|-----------|
| NO.   | Name                                                                   | Setting Kange       | Resolution | OLV/PM (5) | AOLV/PM (6)      | CLV/PM (7 |
| b8-03 | Energy Saving Control Filter Time Constant                             | 0.00 to 10.00       | 0.01 s     | -          | _                | -         |
| C1-11 | Accel/Decel Time Switching Frequency                                   | 0.0 to 400.0 Hz <2> | 0.1        | 0.0 Hz     | 0.0%             | 0.0%      |
| C2-01 | S-Curve Time at Acceleration Start                                     | 0.00 to 10.00       | 0.01 s     | 1.00       | 0.20             | 0.20      |
| C3-01 | Slip Compensation Gain                                                 | 0.0 to 2.5          | 0.1        | _          | _                | _         |
| C3-02 | Slip Compensation Primary Delay Time                                   | 0 to 10000          | 1 ms       | _          | _                | _         |
| C4-01 | Torque Compensation Gain                                               | 0.00 to 2.50        | 0.01       | 0.00       | _                | -         |
| C4-02 | Torque Compensation Primary Delay Time                                 | 0 to 10000          | 1 ms       | 100        | _                | =         |
| C5-01 | ASR Proportional Gain 1                                                | 0.00 to 300.00      | 0.01       | -          | 10.00            | 20.00     |
| C5-02 | ASR Integral Time 1                                                    | 0.000 to 10.000     | 0.001 s    | -          | 0.500            | 0.500     |
| C5-03 | ASR Proportional Gain 2                                                | 0.00 to 300.00      | 0.01       | -          | 10.00            | 20.00     |
| C5-04 | ASR Integral Time 2                                                    | 0.000 to 10.000     | 0.001 s    | -          | 0.500            | 0.500     |
| C5-06 | ASR Primary Delay Time Constant                                        | 0.000 to 0.500      | 0.001 s    | _          | 0.016            | 0.004     |
| C5-07 | ASR Gain Switching Frequency                                           | 0.0 to 400.0 Hz <2> | 0.1        | -          | 0.0%             | 0.0%      |
| C6-02 | Carrier Frequency Selection                                            | 0 to 4; F           | -          | 1 <3>      | 1 <3>            | 1 <3>     |
| 27-60 | Output Voltage Limit Mode Selection                                    | 0 to 1              |            | 0          | 0                | 0         |
| 13-01 | Jump Frequency 1                                                       | 0.0 to 400.0 Hz <2> | 0.1        | 0.0 Hz     | 0.0%             | 0.0%      |
| 13-02 | Jump Frequency 2                                                       | 0.0 to 400.0 Hz <2> | 0.1        | 0.0 Hz     | 0.0%             | 0.0%      |
| 13-03 | Jump Frequency 3                                                       | 0.0 to 400.0 Hz <2> | 0.1        | 0.0 Hz     | 0.0%             | 0.0%      |
| 13-04 | Jump Frequency Width                                                   | 0.0 to 20.0 <4>     | 0.1        | 1.0 Hz     | 1.0%             | 1.0%      |
| 15-02 | Torque Reference Delay Time                                            | 0 to 1000           | 1 ms       | _          | _                |           |
| E1-04 | Maximum Output Frequency                                               | 40.0 to 400.0       | 0.1 Hz     | <5>        | <5>              | <5>       |
| E1-05 | Maximum Voltage                                                        | 0.0 to 377.1 <6>    | 0.1 V      | <5>        | <5>              | <5>       |
| E1-06 | Base Frequency                                                         | 0.0 to 400.0        | 0.1 Hz     | <5>        | <5>              | <5>       |
| E1-07 | Middle Output Frequency                                                | 0.0 to 400.0        | 0.1 Hz     | _          | _                | _         |
| E1-08 | Middle Output Frequency Voltage                                        | 0.0 to 377.1 <6>    | 0.1 IZ     | _          | _                | _         |
|       |                                                                        |                     |            | <5>        | <5>              | <5>       |
| E1-09 | Minimum Output Frequency                                               | 0.0 to 400.0        | 0.1 Hz     |            |                  |           |
| E1-10 | Minimum Output Frequency Voltage                                       | 0.0 to 377.1 <6>    | 0.1 V      | _          | -                | -         |
| F1-01 | PG 1 Pulses Per Revolution                                             | 0 to 60000          | 1 ppr      | -          | _                | 1024      |
| F1-05 | PG 1 Rotation Selection                                                | 0, 1                | _          | -          | -                | 1         |
| F1-09 | Overspeed Detection Delay Time                                         | 0.0 to 2.0          | 0.1 s      | -          | 0.0              | 0.0       |
| L1-01 | Motor Overload Protection Selection                                    | 0 to 6              | _          | 4          | 4                | 5         |
| L3-36 | Vibration Suppression Gain during<br>Acceleration (with Current Limit) | 0.0 to 100.0        | _          | -          | _                | _         |
| L3-41 | Vibration Suppression Gain during<br>Deceleration (with Current Limit) | 0.0 to 100.0        | _          | -          | _                | -         |
| L4-01 | Speed Agree Detection Level                                            | 0.0 to 400.0 Hz <2> | 0.1        | 0.0 Hz     | 0.0%             | 0.0%      |
| L4-02 | Speed Agree Detection Width                                            | 0.0 to 20.0         | 0.1 Hz     | 2.0 Hz     | 4.0% <1>         | 4.0% <1>  |
| L4-03 | Speed Agree Detection Level (+/-)                                      | 0.0 to 400.0 Hz <7> | 0.1        | 0.0 Hz     | 0.0%             | 0.0%      |
| _4-04 | Speed Agree Detection Width (+/-)                                      | 0.0 to 20.0         | 0.1 Hz     | 2.0 Hz     | 4.0% <1>         | 4.0% <1>  |
| L8-18 | Software Current Limit Selection                                       | 0, 1                | -          | _          | _                | _         |
| L8-38 | Carrier Frequency Reduction Selection                                  | 0 to 2              | -          | 0          | -                | 0         |
| L8-40 | Carrier Frequency Reduction Off Delay<br>Time                          | 0.00 to 2.00        | 0.01 s     | 0.00       | -                | 0.00      |
| 01-03 | Digital Operator Display Selection                                     | 0 to 3              | -          | 0          | 1                | 1         |
| o1-04 | V/f Pattern Display Unit                                               | 0, 1                | _          | _          | 1                | 1         |

<sup>&</sup>lt;1> Value calculated as a percentage of the maximum output frequency.

<sup>&</sup>lt;2> In AOLV/PM and CLV/PM control modes, the setting units and range are expressed as a percentage (0.0 to 100.0%) instead of in Hz.

<sup>&</sup>lt;3> Default setting value is determined by parameter o2–04, Drive Model Selection.

<sup>&</sup>lt;4> In AOLV/PM and CLV/PM control modes, the setting units and range are expressed as a percentage (0.0 to 40.0%) instead of in Hz.

<sup>&</sup>lt;5> Default setting is dependent on parameter E5-01, Motor Code Selection.

### **B.16 Control Mode Dependent Parameter Default Values**

- <6> Values shown are specific to 200 V class drives. Double the values for 400 V class drives.
- <7> In AOLV/PM and CLV/PM control modes, the setting units and range are expressed as a percentage (-100.0 to 100.0%) instead of in Hz.

### ◆ E3-01 (Motor 2 Control Mode) Dependent Parameters

Table B.5 E3-01 (Motor 2 Control Mode) Dependent Parameters and Default Values

| Na    | Nome                                            | Catting Dance   | Desclution |                | Control Mod    | des (E3-01)    |                |
|-------|-------------------------------------------------|-----------------|------------|----------------|----------------|----------------|----------------|
| No.   | Name                                            | Setting Range   | Resolution | V/f (0)        | V/f w/PG (1)   | OLV (2)        | CLV (3)        |
| C3-21 | Motor 2 Slip Compensation Gain                  | 0.0 to 2.5      | 0.1        | 0.0            | _              | 1.0            | 1.0            |
| C3-22 | Motor 2 Slip Compensation Primary Delay<br>Time | 0 to 10000      | 1 ms       | 2000           | -              | 200            | -              |
| C5-21 | Motor 2 ASR Proportional Gain 1                 | 0.00 to 300.00  | 0.01       | _              | 0.20           | -              | 20.00          |
| C5-22 | Motor 2 ASR Integral Time 1                     | 0.000 to 10.000 | 0.001 s    | _              | 0.200          | -              | 0.500          |
| C5-23 | Motor 2 Proportional Gain 2                     | 0.00 to 300.00  | 0.01       | _              | 0.02           | =              | 20.00          |
| C5-24 | Motor 2 ASR Integral Time 2                     | 0.000 to 10.000 | 0.001 s    | _              | 0.050          | =              | 0.500          |
| C5-26 | Motor 2 Carrier Frequency Selection             | 1 to 4; F       | _          | 7 < <b>1</b> > |
| E3-04 | Motor 2 Maximum Output Frequency                | 40.0 to 400.0   | 0.1 Hz     | 60.0           | 60.0           | 60.0           | 60.0           |
| E3-05 | Motor 2 Maximum Output Voltage <2>              | 0.0 to 255.0    | 0.1 V      | 200.0          | 200.0          | 200.0          | 200.0          |
| E3-06 | Motor 2 Base Frequency                          | 0.0 to 400.0    | 0.1 Hz     | 60.0           | 60.0           | 60.0           | 60.0           |
| E3-07 | Motor 2 Mid Output Frequency                    | 0.0 to 400.0    | 0.1 Hz     | 3.0            | 3.0            | 3.0            | 0.0            |
| E3-08 | Motor 2 Mid Output Frequency Voltage <2>        | 0.0 to 255.0    | 0.1 V      | 15.0           | 15.0           | 11.0           | 0.0            |
| E3-09 | Motor 2 Minimum Output Frequency                | 0.0 to 400.0    | 0.1 Hz     | 1.5            | 1.5            | 0.5            | 0.0            |
| E3-10 | Motor 2 Minimum Output Voltage <2>              | 0.0 to 255.0    | 0.1 V      | 9.0            | 9.0            | 2.0            | 0.0            |

<sup>&</sup>lt;1> Default setting is determined by parameters o2-04, Drive Model Selection, and C6-01, Drive Duty Selection.

Values shown here are specific to 200 V class drives. Double the value for 400 V class drives.

### **B.17 V/f Pattern Default Values**

**Table B.6** to **Table B.8** show the V/f pattern setting default values depending on the control mode and V/f pattern selection (A1-02 and E1-03).

Table B.6 E1-03 V/f Pattern Settings for Drive Capacity: Models 4□0011 and 4□0014

| No.       | Unit |       |       |       |       |       |       |       | V/f C | ontrol |       |       |       |       |       |       |          |       |       |
|-----------|------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|----------|-------|-------|
| E1-03     |      | 0     | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8      | 9     | A     | В     | С     | D     | E     | F<br><1> | OLV   | CLV   |
| E1-04     | Hz   | 50.0  | 60.0  | 60.0  | 72.0  | 50.0  | 50.0  | 60.0  | 60.0  | 50.0   | 50.0  | 60.0  | 60.0  | 90.0  | 120.0 | 180.0 | 60.0     | 60.0  | 60.0  |
| E1-05 <2> | V    | 200.0 | 200.0 | 200.0 | 200.0 | 200.0 | 200.0 | 200.0 | 200.0 | 200.0  | 200.0 | 200.0 | 200.0 | 200.0 | 200.0 | 200.0 | 230.0    | 230.0 | 230.0 |
| E1-06     | Hz   | 50.0  | 60.0  | 50.0  | 60.0  | 50.0  | 50.0  | 60.0  | 60.0  | 50.0   | 50.0  | 60.0  | 60.0  | 60.0  | 60.0  | 60.0  | 60.0     | 60.0  | -     |
| E1-07     | Hz   | 2.5   | 3.0   | 3.0   | 3.0   | 25.0  | 25.0  | 30.0  | 30.0  | 2.5    | 2.5   | 3.0   | 3.0   | 3.0   | 3.0   | 3.0   | 3.0      | 3.0   | -     |
| E1-08 <2> | V    | 15.0  | 15.0  | 15.0  | 15.0  | 35.0  | 50.0  | 35.0  | 50.0  | 19.0   | 24.0  | 19.0  | 24.0  | 15.0  | 15.0  | 15.0  | 17.3     | 13.8  | -     |
| E1-09     | Hz   | 1.3   | 1.5   | 1.5   | 1.5   | 1.3   | 1.3   | 1.5   | 1.5   | 1.3    | 1.3   | 1.5   | 1.5   | 1.5   | 1.5   | 1.5   | 1.5      | 0.5   | -     |
| E1-10 <2> | V    | 9.0   | 9.0   | 9.0   | 9.0   | 8.0   | 9.0   | 8.0   | 9.0   | 11.0   | 13.0  | 11.0  | 15.0  | 9.0   | 9.0   | 9.0   | 10.2     | 2.9   | -     |

<sup>&</sup>lt;1> This value determines the default values for E1-04 through E1-10 (E3-04 through E3-10 for motor 2).

Table B.7 E1-03 V/f Pattern Settings for Drive Capacity: Models 2□0028 to 2□0192 and 4□0021 to 4□0124

| No.       | Unit |       |       |       |       |       |       |       | V/f C | ontrol |       |       |       |       |       |       |          |       |       |
|-----------|------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|----------|-------|-------|
| E1-03     | -    | 0     | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8      | 9     | Α     | В     | С     | D     | E     | F<br><1> | OLV   | CLV   |
| E1-04     | Hz   | 50.0  | 60.0  | 60.0  | 72.0  | 50.0  | 50.0  | 60.0  | 60.0  | 50.0   | 50.0  | 60.0  | 60.0  | 90.0  | 120.0 | 180.0 | 60.0     | 60.0  | 60.0  |
| E1-05 <2> | V    | 200.0 | 200.0 | 200.0 | 200.0 | 200.0 | 200.0 | 200.0 | 200.0 | 200.0  | 200.0 | 200.0 | 200.0 | 200.0 | 200.0 | 200.0 | 230.0    | 230.0 | 230.0 |
| E1-06     | Hz   | 50.0  | 60.0  | 50.0  | 60.0  | 50.0  | 50.0  | 60.0  | 60.0  | 50.0   | 50.0  | 60.0  | 60.0  | 60.0  | 60.0  | 60.0  | 60.0     | 60.0  | -     |
| E1-07     | Hz   | 2.5   | 3.0   | 3.0   | 3.0   | 25.0  | 25.0  | 30.0  | 30.0  | 2.5    | 2.5   | 3.0   | 3.0   | 3.0   | 3.0   | 3.0   | 3.0      | 3.0   | -     |
| E1-08 <2> | V    | 14.0  | 14.0  | 14.0  | 14.0  | 35.0  | 50.0  | 35.0  | 50.0  | 18.0   | 23.0  | 18.0  | 23.0  | 14.0  | 14.0  | 14.0  | 16.1     | 12.7  | -     |
| E1-09     | Hz   | 1.3   | 1.5   | 1.5   | 1.5   | 1.3   | 1.3   | 1.5   | 1.5   | 1.3    | 1.3   | 1.5   | 1.5   | 1.5   | 1.5   | 1.5   | 1.5      | 0.5   | -     |
| E1-10 <2> | V    | 7.0   | 7.0   | 7.0   | 7.0   | 6.0   | 7.0   | 6.0   | 7.0   | 9.0    | 11.0  | 9.0   | 13.0  | 7.0   | 7.0   | 7.0   | 8.1      | 2.3   | -     |

<sup>&</sup>lt;1> This value determines the default values for E1-04 through E1-10 (E3-04 through E3-10 for motor 2).

Table B.8 E1-03 V/f Pattern Settings for Drive Capacity: Models 2□0248 and 4□0156 to 4□0930

| No.       | Unit |       |       |       |       |       |       |       | V/f C | ontrol |       |       |       |       |       |       |          |       |       |
|-----------|------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|----------|-------|-------|
| E1-03     | -    | 0     | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8      | 9     | A     | В     | С     | D     | E     | F<br><1> | OLV   | CLV   |
| E1-04     | Hz   | 50.0  | 60.0  | 60.0  | 72.0  | 50.0  | 50.0  | 60.0  | 60.0  | 50.0   | 50.0  | 60.0  | 60.0  | 90.0  | 120.0 | 180.0 | 60.0     | 60.0  | 60.0  |
| E1-05 <2> | v    | 200.0 | 200.0 | 200.0 | 200.0 | 200.0 | 200.0 | 200.0 | 200.0 | 200.0  | 200.0 | 200.0 | 200.0 | 200.0 | 200.0 | 200.0 | 230.0    | 230.0 | 230.0 |
| E1-06     | Hz   | 50.0  | 60.0  | 50.0  | 60.0  | 50.0  | 50.0  | 60.0  | 60.0  | 50.0   | 50.0  | 60.0  | 60.0  | 60.0  | 60.0  | 60.0  | 60.0     | 60.0  | -     |
| E1-07     | Hz   | 2.5   | 3.0   | 3.0   | 3.0   | 25.0  | 25.0  | 30.0  | 30.0  | 2.5    | 2.5   | 3.0   | 3.0   | 3.0   | 3.0   | 3.0   | 3.0      | 3.0   | -     |
| E1-08 <2> | V    | 12.0  | 12.0  | 12.0  | 12.0  | 35.0  | 50.0  | 35.0  | 50.0  | 15.0   | 20.0  | 15.0  | 20.0  | 12.0  | 12.0  | 12.0  | 13.8     | 12.7  | -     |
| E1-09     | Hz   | 1.3   | 1.5   | 1.5   | 1.5   | 1.3   | 1.3   | 1.5   | 1.5   | 1.3    | 1.3   | 1.5   | 1.5   | 1.5   | 1.5   | 1.5   | 1.5      | 0.5   | -     |
| E1-10 <2> | V    | 6.0   | 6.0   | 6.0   | 6.0   | 5.0   | 6.0   | 5.0   | 6.0   | 7.0    | 9.0   | 7.0   | 11.0  | 6.0   | 6.0   | 6.0   | 6.9      | 2.3   | -     |

<sup>&</sup>lt;1> This value determines the default values for E1-04 through E1-10 (E3-04 through E3-10 for motor 2).

<sup>&</sup>lt;2> Values shown here are specific to 200 V class drives. Double the value for 400 V class drives.

<sup>&</sup>lt;2> Values shown here are specific to 200 V class drives. Double the value for 400 V class drives.

<sup>&</sup>lt;2> Values shown here are specific to 200 V class drives. Double the value for 400 V class drives.

## **B.18 Defaults by Drive Model and Duty Rating ND/HD**

The following tables show parameters and default settings that change with the drive model selection (o2-04) and drive duty selection (C6-01). Parameter numbers shown in parenthesis are valid for motor 2.

Table B.9 200 V Class Drives Default Settings by Drive Model Selection and ND/HD Settings

| No.              | Name                                                             | Unit             | 3         |          |          |         |         |         |         |           |  |  |
|------------------|------------------------------------------------------------------|------------------|-----------|----------|----------|---------|---------|---------|---------|-----------|--|--|
| -                | Drive Model                                                      | -                | 200       | 028      | 200      | 042     | 200     | 054     | 200     | 0068      |  |  |
| C6-01            | Drive Duty Selection                                             | _                | HD        | ND       | HD       | ND      | HD      | ND      | HD      | ND        |  |  |
| o2-04            | Drive Model Selection                                            | Hex.             | 6         | A        | 6        | В       | 6       | D       | 6       | E         |  |  |
| E2-11<br>(E4-11) | Motor Rated Output                                               | kW<br>(HP)       | 5.5 (7.5) | 7.5 (10) | 7.5 (10) | 11 (15) | 11 (15) | 15 (20) | 15 (20) | 18.5 (25) |  |  |
| b3-04            | V/f Gain during Speed Search                                     | %                | 100       | 100      | 100      | 100     | 100     | 100     | 100     | 100       |  |  |
| b3-06            | Output Current 1 during Speed Search                             | _                | 0.5       | 0.5      | 0.5      | 0.5     | 0.5     | 0.5     | 0.5     | 0.5       |  |  |
| b3-08            | Current Control Gain during Speed Search (Speed Estimation Type) | _                | 0.5       | 0.5      | 0.5      | 0.5     | 0.5     | 0.5     | 0.5     | 0.5       |  |  |
| b8-03            | Energy Saving Control Filter Time Constant                       | S                | 0.50      | 0.50     | 0.50     | 0.50    | 0.50    | 0.50    | 0.50    | 0.50      |  |  |
| b8-04            | Energy Saving Coefficient Value                                  | _                | 94.75     | 72.69    | 72.69    | 70.44   | 70.44   | 63.13   | 63.13   | 57.87     |  |  |
| C5-17 (C5-37)    | Motor Inertia                                                    | kgm <sup>2</sup> | 0.026     | 0.037    | 0.037    | 0.053   | 0.053   | 0.076   | 0.076   | 0.138     |  |  |
| C6-02            | Carrier Frequency Selection                                      | _                | 1         | 1        | 1        | 1       | 1       | 1       | 1       | 1         |  |  |
| E2-01 (E4-01)    | Motor Rated Current                                              | A                | 19.6      | 26.6     | 26.6     | 39.7    | 39.7    | 53      | 53      | 65.8      |  |  |
| E2-02 (E4-02)    | Motor Rated Slip                                                 | Hz               | 1.5       | 1.3      | 1.3      | 1.7     | 1.7     | 1.6     | 1.6     | 1.67      |  |  |
| E2-03 (E4-03)    | Motor No-Load Current                                            | A                | 5.1       | 8        | 8        | 11.2    | 11.2    | 15.2    | 15.2    | 15.7      |  |  |
| E2-05 (E4-05)    | Motor Line-to-Line Resistance                                    | Ω                | 0.399     | 0.288    | 0.288    | 0.23    | 0.23    | 0.138   | 0.138   | 0.101     |  |  |
| E2-06 (E4-06)    | Motor Leakage Inductance                                         | %                | 18.2      | 15.5     | 15.5     | 19.5    | 19.5    | 17.2    | 17.2    | 20.1      |  |  |
| E2-10 (E4-10)    | Motor Iron Loss for Torque Compensation                          | W                | 172       | 262      | 262      | 245     | 245     | 272     | 272     | 505       |  |  |
| E5-01            | Motor Code Selection (for PM Motors)                             | Hex.             | 120A      | 120A     | 120B     | 120B    | 120D    | 120D    | 120E    | 120E      |  |  |
| L2-02            | Momentary Power Loss Ride-Thru Time                              | S                | 0.7       | 0.8      | 0.8      | 0.9     | 0.9     | 1       | 1       | 1         |  |  |
| L2-03            | Momentary Power Loss Minimum<br>Baseblock Time                   | S                | 0.3       | 0.3      | 0.3      | 0.3     | 0.3     | 0.6     | 0.6     | 0.6       |  |  |
| L2-04            | Momentary Power Loss Voltage Recovery<br>Time                    | S                | 150       | 150      | 150      | 150     | 150     | 150     | 150     | 150       |  |  |
| L2-21            | Low Input Voltage Detection Level                                | V                | 150       | 150      | 150      | 150     | 150     | 150     | 150     | 150       |  |  |
| L8-02            | Overheat Alarm Level                                             | °C               | 130       | 130      | 130      | 130     | 130     | 130     | 130     | 130       |  |  |
| L8-35            | Installation Method Selection                                    | _                | 0         | 0        | 0        | 0       | 0       | 0       | 0       | 0         |  |  |
| L8-38            | Carrier Frequency Reduction Selection                            | _                | 1         | 1        | 1        | 1       | 1       | 1       | 1       | 1         |  |  |
| n1-03            | Hunting Prevention Time Constant                                 | ms               | 10        | 10       | 10       | 10      | 10      | 10      | 10      | 10        |  |  |
| n5-02            | Motor Acceleration Time                                          | S                | 0.168     | 0.175    | 0.175    | 0.265   | 0.265   | 0.244   | 0.244   | 0.317     |  |  |

Table B.10 200 V Class Drives Default Settings by Drive Model Selection and ND/HD Settings

| No.              | Name                                                             | Unit             |           |               |         | Default | Settings |         |         |         |
|------------------|------------------------------------------------------------------|------------------|-----------|---------------|---------|---------|----------|---------|---------|---------|
| -                | Drive Model                                                      | _                | 2□0       | 2□0081 2□0104 |         |         | 200      | 130     | 2□0154  |         |
| C6-01            | Drive Duty Selection                                             | _                | HD        | ND            | HD      | ND      | HD       | ND      | HD      | ND      |
| o2-04            | Drive Model Selection                                            | Hex.             | 6         | F             | 7       | 0       | 7        | 2       | 7       | 3       |
| E2-11<br>(E4-11) | Motor Rated Output                                               | kW<br>(HP)       | 18.5 (25) | 22 (30)       | 22 (30) | 30 (40) | 30 (40)  | 37 (50) | 37 (50) | 45 (60) |
| b3-04            | V/f Gain during Speed Search                                     | %                | 100       | 100           | 100     | 80      | 80       | 80      | 80      | 80      |
| b3-06            | Output Current 1 during Speed Search                             | _                | 0.5       | 0.5           | 0.5     | 0.5     | 0.5      | 0.5     | 0.5     | 0.5     |
| b3-08            | Current Control Gain during Speed Search (Speed Estimation Type) | _                | 0.5       | 0.5           | 0.5     | 0.5     | 0.5      | 0.5     | 0.5     | 0.5     |
| b8-03            | Energy Saving Control Filter Time Constant                       | S                | 0.50      | 0.50          | 0.50    | 0.50    | 0.50     | 0.50    | 0.50    | 0.50    |
| b8-04            | Energy Saving Coefficient Value                                  | _                | 57.87     | 51.79         | 51.79   | 46.27   | 46.27    | 38.16   | 38.16   | 35.78   |
| C5-17 (C5-37)    | Motor Inertia                                                    | kgm <sup>2</sup> | 0.138     | 0.165         | 0.165   | 0.220   | 0.220    | 0.273   | 0.273   | 0.333   |
| C6-02            | Carrier Frequency Selection                                      | _                | 1         | 1             | 1       | 1       | 1        | 1       | 1       | 1       |
| E2-01 (E4-01)    | Motor Rated Current                                              | A                | 65.8      | 77.2          | 77.2    | 105     | 105      | 131     | 131     | 160     |
| E2-02 (E4-02)    | Motor Rated Slip                                                 | Hz               | 1.67      | 1.7           | 1.7     | 1.8     | 1.8      | 1.33    | 1.33    | 1.6     |

| No.              | Name                                           | Unit       | Default Settings |         |         |         |         |         |         |         |  |
|------------------|------------------------------------------------|------------|------------------|---------|---------|---------|---------|---------|---------|---------|--|
| -                | Drive Model                                    | -          | 2□0              | 081     | 200     | 104     | 200     | 130     | 200     | 154     |  |
| C6-01            | Drive Duty Selection                           | -          | HD               | ND      | HD      | ND      | HD      | ND      | HD      | ND      |  |
| o2-04            | Drive Model Selection                          | Hex.       | 6                | F       | 7       | 0       | 72      |         | 73      |         |  |
| E2-11<br>(E4-11) | Motor Rated Output                             | kW<br>(HP) | 18.5 (25)        | 22 (30) | 22 (30) | 30 (40) | 30 (40) | 37 (50) | 37 (50) | 45 (60) |  |
| E2-03 (E4-03)    | Motor No-Load Current                          | Α          | 15.7             | 18.5    | 18.5    | 21.9    | 21.9    | 38.2    | 38.2    | 44      |  |
| E2-05 (E4-05)    | Motor Line-to-Line Resistance                  | Ω          | 0.101            | 0.079   | 0.079   | 0.064   | 0.064   | 0.039   | 0.039   | 0.03    |  |
| E2-06 (E4-06)    | Motor Leakage Inductance                       | %          | 20.1             | 19.5    | 19.5    | 20.8    | 20.8    | 18.8    | 18.8    | 20.2    |  |
| E2-10 (E4-10)    | Motor Iron Loss for Torque Compensation        | W          | 505              | 538     | 538     | 699     | 699     | 823     | 823     | 852     |  |
| E5-01            | Motor Code Selection (for PM Motors)           | Hex.       | 120F             | 120F    | 1210    | 1210    | 1212    | 1212    | 1213    | 1213    |  |
| L2-02            | Momentary Power Loss Ride-Thru Time            | s          | 1                | 1       | 1       | 1.1     | 1.1     | 1.1     | 1.1     | 1.2     |  |
| L2-03            | Momentary Power Loss Minimum<br>Baseblock Time | s          | 0.6              | 0.6     | 0.6     | 0.6     | 0.6     | 0.6     | 0.6     | 1       |  |
| L2-04            | Momentary Power Loss Voltage Recovery<br>Time  | s          | 150              | 150     | 150     | 150     | 150     | 150     | 150     | 150     |  |
| L2-21            | Low Input Voltage Detection Level              | V          | 150              | 150     | 150     | 150     | 150     | 150     | 150     | 150     |  |
| L8-02            | Overheat Alarm Level                           | °C         | 130              | 130     | 136     | 136     | 136     | 136     | 134     | 134     |  |
| L8-35            | Installation Method Selection                  | _          | 0                | 0       | 0       | 0       | 0       | 0       | 0       | 0       |  |
| L8-38            | Carrier Frequency Reduction Selection          | -          | 1                | 1       | 1       | 1       | 1       | 1       | 1       | 1       |  |
| n1-03            | Hunting Prevention Time Constant               | ms         | 10               | 10      | 10      | 10      | 10      | 10      | 10      | 10      |  |
| n5-02            | Motor Acceleration Time                        | s          | 0.317            | 0.355   | 0.355   | 0.323   | 0.323   | 0.32    | 0.32    | 0.387   |  |

Table B.11 200 V Class Drives Default Settings by Drive Model Selection and ND/HD Settings

| No.           | Name                                                                | Unit             | Default Settings |         |         |          |  |  |  |
|---------------|---------------------------------------------------------------------|------------------|------------------|---------|---------|----------|--|--|--|
| -             | Drive Model                                                         | _                | 2□0              | 0192    | 20      | 0248     |  |  |  |
| C6-01         | Drive Duty Selection                                                | _                | HD               | ND      | HD      | ND       |  |  |  |
| o2-04         | Drive Model Selection                                               | Hex.             | 7                | 74      | 1       | 75       |  |  |  |
| E2-11 (E4-11) | Motor Rated Output                                                  | kW (HP)          | 45 (60)          | 55 (75) | 55 (75) | 75 (100) |  |  |  |
| b3-04         | V/f Gain during Speed Search                                        | %                | 80               | 80      | 80      | 80       |  |  |  |
| b3-06         | Output Current 1 during Speed Search                                | _                | 0.5              | 0.5     | 0.5     | 0.7      |  |  |  |
| b3-08         | Current Control Gain during Speed Search<br>(Speed Estimation Type) | _                | 0.5              | 0.5     | 0.5     | 0.5      |  |  |  |
| b8-03         | Energy Saving Control Filter Time Constant                          | S                | 0.50             | 2.00    | 2.00    | 2.00     |  |  |  |
| b8-04         | Energy Saving Coefficient Value                                     | -                | 35.78            | 31.35   | 31.35   | 23.1     |  |  |  |
| C5-17 (C5-37) | Motor Inertia                                                       | kgm <sup>2</sup> | 0.333            | 0.490   | 0.490   | 0.900    |  |  |  |
| C6-02         | Carrier Frequency Selection                                         | _                | 1                | 1       | 1       | 1        |  |  |  |
| E2-01 (E4-01) | Motor Rated Current                                                 | A                | 160              | 190     | 190     | 260      |  |  |  |
| E2-02 (E4-02) | Motor Rated Slip                                                    | Hz               | 1.6              | 1.43    | 1.43    | 1.39     |  |  |  |
| E2-03 (E4-03) | Motor No-Load Current                                               | A                | 44               | 45.6    | 45.6    | 72       |  |  |  |
| E2-05 (E4-05) | Motor Line-to-Line Resistance                                       | Ω                | 0.03             | 0.022   | 0.022   | 0.023    |  |  |  |
| E2-06 (E4-06) | Motor Leakage Inductance                                            | %                | 20.2             | 20.5    | 20.5    | 20       |  |  |  |
| E2-10 (E4-10) | Motor Iron Loss for Torque Compensation                             | W                | 852              | 960     | 960     | 1200     |  |  |  |
| E5-01         | Motor Code Selection (for PM Motors)                                | Hex.             | 1214             | 1214    | 1215    | 1215     |  |  |  |
| L2-02         | Momentary Power Loss Ride-Thru Time                                 | S                | 1.2              | 1.3     | 1.3     | 1.5      |  |  |  |
| L2-03         | Momentary Power Loss Minimum Baseblock Time                         | S                | 1                | 1       | 1       | 1        |  |  |  |
| L2-04         | Momentary Power Loss Voltage Recovery Time                          | S                | 150              | 150     | 150     | 150      |  |  |  |
| L2-21         | Low Input Voltage Detection Level                                   | V                | 150              | 150     | 150     | 150      |  |  |  |
| L8-02         | Overheat Alarm Level                                                | °C               | 134              | 134     | 138     | 138      |  |  |  |
| L8-35         | Installation Method Selection                                       | _                | 0                | 0       | 0       | 0        |  |  |  |
| L8-38         | Carrier Frequency Reduction Selection                               | _                | 1                | 1       | 1       | 1        |  |  |  |
| n1-03         | Hunting Prevention Time Constant                                    | ms               | 10               | 10      | 10      | 10       |  |  |  |
| n5-02         | Motor Acceleration Time                                             | S                | 0.387            | 0.317   | 0.317   | 0.533    |  |  |  |

Table B.12 400 V Class Drives Default Settings by Drive Model Selection and ND/HD Settings

| No.              | Name                                                             | Unit             |         |           |           | Default  | Settings |         |         |         |
|------------------|------------------------------------------------------------------|------------------|---------|-----------|-----------|----------|----------|---------|---------|---------|
| _                | Drive Model                                                      | _                | 4□(     | 0011      | 4□0       | 014      | 4□0      | 0021    | 4□0     | 027     |
| C6-01            | Drive Duty Selection                                             | -                | HD      | ND        | HD        | ND       | HD       | ND      | HD      | ND      |
| o2-04            | Drive Model Selection                                            | Hex.             | 95      |           | 9         | 7        | 9        | 9       | 9A      |         |
| E2-11<br>(E4-11) | Motor Rated Output                                               | kW<br>(HP)       | 3.7 (5) | 5.5 (7.5) | 5.5 (7.5) | 7.5 (10) | 7.5 (10) | 11 (15) | 11 (15) | 15 (20) |
| b3-04            | V/f Gain during Speed Search                                     | %                | 100     | 100       | 100       | 100      | 100      | 100     | 100     | 100     |
| b3-06            | Output Current 1 during Speed Search                             | _                | 0.5     | 0.5       | 0.5       | 0.5      | 0.5      | 0.5     | 0.5     | 0.5     |
| b3-08            | Current Control Gain during Speed Search (Speed Estimation Type) | _                | 0.5     | 0.5       | 0.5       | 0.5      | 0.5      | 0.5     | 0.5     | 0.5     |
| b8-03            | Energy Saving Control Filter Time Constant                       | S                | 0.50    | 0.50      | 0.50      | 0.50     | 0.50     | 0.50    | 0.50    | 0.50    |
| b8-04            | Energy Saving Coefficient Value                                  | _                | 313.6   | 245.8     | 245.8     | 189.5    | 189.5    | 145.38  | 145.38  | 140.88  |
| C5-17 (C5-37)    | Motor Inertia                                                    | kgm <sup>2</sup> | 0.0088  | 0.0158    | 0.0158    | 0.0255   | 0.026    | 0.037   | 0.037   | 0.053   |
| C6-02            | Carrier Frequency Selection                                      | _                | 1       | 1         | 1         | 1        | 1        | 1       | 1       | 1       |
| E2-01 (E4-01)    | Motor Rated Current                                              | A                | 4.2     | 7         | 7         | 9.8      | 9.8      | 13.3    | 13.3    | 19.9    |
| E2-02 (E4-02)    | Motor Rated Slip                                                 | Hz               | 3       | 2.7       | 2.7       | 1.5      | 1.5      | 1.3     | 1.3     | 1.7     |
| E2-03 (E4-03)    | Motor No-Load Current                                            | A                | 1.5     | 2.3       | 2.3       | 2.6      | 2.6      | 4       | 4       | 5.6     |
| E2-05 (E4-05)    | Motor Line-to-Line Resistance                                    | Ω                | 6.495   | 3.333     | 3.333     | 1.595    | 1.595    | 1.152   | 1.152   | 0.922   |
| E2-06 (E4-06)    | Motor Leakage Inductance                                         | %                | 18.7    | 19.3      | 19.3      | 18.2     | 18.2     | 15.5    | 15.5    | 19.6    |
| E2-10 (E4-10)    | Motor Iron Loss for Torque Compensation                          | W                | 77      | 130       | 130       | 193      | 193      | 263     | 263     | 385     |
| E5-01            | Motor Code Selection (for PM Motors)                             | Hex.             | 1236    | 1236      | 1238      | 1238     | 123A     | 123A    | 123B    | 123B    |
| L2-02            | Momentary Power Loss Ride-Thru Time                              | S                | 0.5     | 0.6       | 0.6       | 0.7      | 0.7      | 0.8     | 0.8     | 0.9     |
| L2-03            | Momentary Power Loss Minimum<br>Baseblock Time                   | S                | 0.3     | 0.3       | 0.3       | 0.3      | 0.3      | 0.3     | 0.3     | 0.3     |
| L2-04            | Momentary Power Loss Voltage Recovery<br>Time                    | S                | 300     | 300       | 300       | 300      | 300      | 300     | 300     | 300     |
| L2-21            | Low Input Voltage Detection Level                                | V                | 300     | 300       | 300       | 300      | 300      | 300     | 300     | 300     |
| L8-02            | Overheat Alarm Level                                             | °C               | 130     | 130       | 130       | 130      | 130      | 130     | 130     | 130     |
| L8-35            | Installation Method Selection                                    |                  | 0       | 0         | 0         | 0        | 0        | 0       | 0       | 0       |
| L8-38            | Carrier Frequency Reduction Selection                            | _                | 1       | 1         | 1         | 1        | 1        | 1       | 1       | 1       |
| n1-03            | Hunting Prevention Time Constant                                 | ms               | 10      | 10        | 10        | 10       | 10       | 10      | 10      | 10      |
| n5-02            | Motor Acceleration Time                                          | S                | 0.145   | 0.154     | 0.154     | 0.168    | 0.168    | 0.175   | 0.175   | 0.265   |

Table B.13 400 V Class Drives Default Settings by Drive Model Selection and ND/HD Settings

|                  |                                                                  | Detault Settings by Drive model Selection and ND/HD Settings |         |           |           |         |          |         |         |         |
|------------------|------------------------------------------------------------------|--------------------------------------------------------------|---------|-----------|-----------|---------|----------|---------|---------|---------|
| No.              | Name                                                             | Unit                                                         |         |           |           | Default | Settings |         |         |         |
| _                | Drive Model                                                      | -                                                            | 4□(     | 0034      | 4□0       | 040     | 4□0      | 052     | 4□0     | 065     |
| C6-01            | Drive Duty Selection                                             | -                                                            | HD      | ND        | HD        | ND      | HD       | ND      | HD      | ND      |
| o2-04            | Drive Model Selection                                            | Hex.                                                         | 9       | 9C        |           | D       | 9        | E       | 9       | F       |
| E2-11<br>(E4-11) | Motor Rated Output                                               | kW<br>(HP)                                                   | 15 (20) | 18.5 (25) | 18.5 (25) | 22 (30) | 22 (30)  | 30 (40) | 30 (40) | 37 (50) |
| b3-04            | V/f Gain during Speed Search                                     | %                                                            | 100     | 100       | 100       | 100     | 100      | 100     | 100     | 100     |
| b3-06            | Output Current 1 during Speed Search                             | -                                                            | 0.5     | 0.5       | 0.5       | 0.5     | 0.5      | 0.5     | 0.5     | 0.5     |
| b3-08            | Current Control Gain during Speed Search (Speed Estimation Type) | _                                                            | 0.5     | 0.5       | 0.5       | 0.5     | 0.5      | 0.5     | 0.5     | 0.5     |
| b8-03            | Energy Saving Control Filter Time Constant                       | S                                                            | 0.50    | 0.50      | 0.50      | 0.50    | 0.50     | 0.50    | 0.50    | 0.50    |
| b8-04            | Energy Saving Coefficient Value                                  | _                                                            | 140.88  | 126.26    | 126.26    | 115.74  | 115.74   | 103.58  | 103.58  | 92.54   |
| C5-17 (C5-37)    | Motor Inertia                                                    | kgm <sup>2</sup>                                             | 0.053   | 0.076     | 0.076     | 0.138   | 0.138    | 0.165   | 0.165   | 0.220   |
| C6-02            | Carrier Frequency Selection                                      | _                                                            | 1       | 1         | 1         | 1       | 1        | 1       | 1       | 1       |
| E2-01 (E4-01)    | Motor Rated Current                                              | A                                                            | 19.9    | 26.5      | 26.5      | 32.9    | 32.9     | 38.6    | 38.6    | 52.3    |
| E2-02 (E4-02)    | Motor Rated Slip                                                 | Hz                                                           | 1.7     | 1.6       | 1.6       | 1.67    | 1.67     | 1.7     | 1.7     | 1.8     |
| E2-03 (E4-03)    | Motor No-Load Current                                            | A                                                            | 5.6     | 7.6       | 7.6       | 7.8     | 7.8      | 9.2     | 9.2     | 10.9    |
| E2-05 (E4-05)    | Motor Line-to-Line Resistance                                    | Ω                                                            | 0.922   | 0.55      | 0.55      | 0.403   | 0.403    | 0.316   | 0.316   | 0.269   |
| E2-06 (E4-06)    | Motor Leakage Inductance                                         | %                                                            | 19.6    | 17.2      | 17.2      | 20.1    | 20.1     | 23.5    | 23.5    | 20.7    |
| E2-10 (E4-10)    | Motor Iron Loss for Torque Compensation                          | W                                                            | 385     | 440       | 440       | 508     | 508      | 586     | 586     | 750     |

| No.              | Name                                           | Unit       |         |           |           | Default | Settings |         |         |         |
|------------------|------------------------------------------------|------------|---------|-----------|-----------|---------|----------|---------|---------|---------|
| -                | Drive Model                                    | -          | 4□(     | 4□0034    |           | 040     | 4□0      | 052     | 4□0065  |         |
| C6-01            | Drive Duty Selection                           | -          | HD      | ND        | HD        | ND      | HD       | ND      | HD      | ND      |
| o2-04            | Drive Model Selection                          | Hex.       | 9       | С         | 9         | D       | 9        | E       | 9       | F       |
| E2-11<br>(E4-11) | Motor Rated Output                             | kW<br>(HP) | 15 (20) | 18.5 (25) | 18.5 (25) | 22 (30) | 22 (30)  | 30 (40) | 30 (40) | 37 (50) |
| E5-01            | Motor Code Selection (for PM Motors)           | Hex.       | 123D    | 123D      | 123E      | 123E    | 123F     | 123F    | 1240    | 1240    |
| L2-02            | Momentary Power Loss Ride-Thru Time            | s          | 0.9     | 1         | 1         | 1       | 1        | 1       | 1       | 1.1     |
| L2-03            | Momentary Power Loss Minimum<br>Baseblock Time | S          | 0.3     | 0.6       | 0.6       | 0.6     | 0.6      | 0.6     | 0.6     | 0.6     |
| L2-04            | Momentary Power Loss Voltage Recovery<br>Time  | S          | 300     | 300       | 300       | 300     | 300      | 300     | 300     | 300     |
| L2-21            | Low Input Voltage Detection Level              | V          | 300     | 300       | 300       | 300     | 300      | 300     | 300     | 300     |
| L8-02            | Overheat Alarm Level                           | °C         | 130     | 130       | 130       | 130     | 130      | 130     | 130     | 130     |
| L8-35            | Installation Method Selection                  | _          | 0       | 0         | 0         | 0       | 0        | 0       | 0       | 0       |
| L8-38            | Carrier Frequency Reduction Selection          | _          | 1       | 1         | 1         | 1       | 1        | 1       | 1       | 1       |
| n1-03            | Hunting Prevention Time Constant               | ms         | 10      | 10        | 10        | 10      | 10       | 10      | 10      | 10      |
| n5-02            | Motor Acceleration Time                        | S          | 0.265   | 0.244     | 0.244     | 0.317   | 0.317    | 0.355   | 0.355   | 0.323   |

Table B.14 400 V Class Drives Default Settings by Drive Model Selection and ND/HD Settings

| No.              | Name                                                             | Unit             |         | .,      |         | Default |         |          |          |          |
|------------------|------------------------------------------------------------------|------------------|---------|---------|---------|---------|---------|----------|----------|----------|
| _                | Drive Model                                                      | _                | 4□0     | 077     | 4□0     |         |         | )124     | 4□0      | )156     |
| C6-01            | Drive Duty Selection                                             | _                | HD      | ND      | HD      | ND      | HD      | ND       | HD       | ND       |
| 02-04            | Drive Model Selection                                            | Hex.             | A1      |         | Α       | 2       | Α       | 3        | Α        | 4        |
| E2-11<br>(E4-11) | Motor Rated Output                                               | kW<br>(HP)       | 37 (50) | 45 (60) | 45 (60) | 55 (75) | 55 (75) | 75 (100) | 75 (100) | 90 (125) |
| b3-04            | V/f Gain during Speed Search                                     | %                | 100     | 100     | 100     | 100     | 100     | 80       | 80       | 60       |
| b3-06            | Output Current 1 during Speed Search                             | _                | 0.5     | 0.5     | 0.5     | 0.5     | 0.5     | 0.5      | 0.5      | 0.7      |
| b3-08            | Current Control Gain during Speed Search (Speed Estimation Type) | _                | 0.5     | 0.5     | 0.5     | 0.5     | 0.5     | 0.5      | 0.5      | 0.8      |
| b8-03            | Energy Saving Control Filter Time Constant                       | S                | 0.50    | 0.50    | 0.50    | 0.50    | 0.50    | 2.00     | 2.00     | 2.00     |
| b8-04            | Energy Saving Coefficient Value                                  | -                | 92.54   | 76.32   | 76.32   | 71.56   | 71.56   | 67.2     | 67.2     | 46.2     |
| C5-17 (C5-37)    | Motor Inertia                                                    | kgm <sup>2</sup> | 0.220   | 0.273   | 0.273   | 0.333   | 0.333   | 0.490    | 0.490    | 0.900    |
| C6-02            | Carrier Frequency Selection                                      | _                | 1       | 1       | 1       | 1       | 1       | 1        | 1        | 1        |
| E2-01 (E4-01)    | Motor Rated Current                                              | A                | 52.3    | 65.6    | 65.6    | 79.7    | 79.7    | 95       | 95       | 130      |
| E2-02 (E4-02)    | Motor Rated Slip                                                 | Hz               | 1.8     | 1.33    | 1.33    | 1.6     | 1.6     | 1.46     | 1.46     | 1.39     |
| E2-03 (E4-03)    | Motor No-Load Current                                            | A                | 10.9    | 19.1    | 19.1    | 22      | 22      | 24       | 24       | 36       |
| E2-05 (E4-05)    | Motor Line-to-Line Resistance                                    | Ω                | 0.269   | 0.155   | 0.155   | 0.122   | 0.122   | 0.088    | 0.088    | 0.092    |
| E2-06 (E4-06)    | Motor Leakage Inductance                                         | %                | 20.7    | 18.8    | 18.8    | 19.9    | 19.9    | 20       | 20       | 20       |
| E2-10 (E4-10)    | Motor Iron Loss for Torque Compensation                          | W                | 750     | 925     | 925     | 1125    | 1125    | 1260     | 1260     | 1600     |
| E5-01            | Motor Code Selection (for PM Motors)                             | Hex.             | 1242    | 1242    | 1243    | 1243    | 1244    | 1244     | 1245     | 1245     |
| L2-02            | Momentary Power Loss Ride-Thru Time                              | S                | 1.1     | 1.1     | 1.1     | 1.2     | 1.2     | 1.2      | 1.2      | 1.3      |
| L2-03            | Momentary Power Loss Minimum<br>Baseblock Time                   | S                | 0.6     | 0.6     | 0.6     | 0.6     | 0.6     | 1        | 1        | 1        |
| L2-04            | Momentary Power Loss Voltage Recovery<br>Time                    | S                | 300     | 300     | 300     | 300     | 300     | 300      | 300      | 300      |
| L2-21            | Low Input Voltage Detection Level                                | V                | 300     | 300     | 300     | 300     | 300     | 300      | 300      | 300      |
| L8-02            | Overheat Alarm Level                                             | °C               | 130     | 130     | 136     | 136     | 136     | 136      | 134      | 134      |
| L8-35            | Installation Method Selection                                    | -                | 0       | 0       | 0       | 0       | 0       | 0        | 0        | 0        |
| L8-38            | Carrier Frequency Reduction Selection                            | _                | 1       | 1       | 1       | 1       | 1       | 1        | 1        | 1        |
| n1-03            | Hunting Prevention Time Constant                                 | ms               | 10      | 10      | 10      | 10      | 10      | 10       | 30       | 30       |
| n5-02            | Motor Acceleration Time                                          | S                | 0.323   | 0.32    | 0.32    | 0.387   | 0.387   | 0.317    | 0.317    | 0.533    |

Table B.15 400 V Class Drives Default Settings by Drive Model Selection and ND/HD Settings

| No.              | Name                                                             | Unit             |          |              |              | Default      | Settings     |              |              |              |
|------------------|------------------------------------------------------------------|------------------|----------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| _                | Drive Model                                                      | _                | 4□0      | 180          | 4□0          | 216          | 4□0          | 240          | 4□0302       |              |
| C6-01            | Drive Duty Selection                                             | -                | HD       | ND           | HD           | ND           | HD           | ND           | HD           | ND           |
| o2-04            | Drive Model Selection                                            | Hex.             | A        | A5           |              | 6            | Α            | 7            | Δ.           | 8            |
| E2-11<br>(E4-11) | Motor Rated Output                                               | kW<br>(HP)       | 90 (125) | 110<br>(150) | 110<br>(150) | 132<br>(175) | 132<br>(175) | 150<br>(200) | 150<br>(200) | 185<br>(250) |
| b3-04            | V/f Gain during Speed Search                                     | %                | 60       | 60           | 60           | 60           | 60           | 60           | 60           | 60           |
| b3-06            | Output Current 1 during Speed Search                             | _                | 0.7      | 0.7          | 0.7          | 0.7          | 0.7          | 0.7          | 0.7          | 0.7          |
| b3-08            | Current Control Gain during Speed Search (Speed Estimation Type) | -                | 0.8      | 0.8          | 0.8          | 0.8          | 0.8          | 0.8          | 0.8          | 0.8          |
| b8-03            | Energy Saving Control Filter Time Constant                       | S                | 2.00     | 2.00         | 2.00         | 2.00         | 2.00         | 2.00         | 2.00         | 2.00         |
| b8-04            | Energy Saving Coefficient Value                                  | _                | 46.2     | 38.91        | 38.91        | 36.23        | 36.23        | 32.79        | 32.79        | 30.13        |
| C5-17 (C5-37)    | Motor Inertia                                                    | kgm <sup>2</sup> | 0.900    | 1.100        | 1.10         | 1.90         | 1.90         | 2.10         | 2.10         | 3.30         |
| C6-02            | Carrier Frequency Selection                                      | _                | 1        | 1            | 1            | 1            | 1            | 1            | 1            | 1            |
| E2-01 (E4-01)    | Motor Rated Current                                              | A                | 130      | 156          | 156          | 190          | 190          | 223          | 223          | 270          |
| E2-02 (E4-02)    | Motor Rated Slip                                                 | Hz               | 1.39     | 1.4          | 1.4          | 1.4          | 1.4          | 1.38         | 1.38         | 1.35         |
| E2-03 (E4-03)    | Motor No-Load Current                                            | A                | 36       | 40           | 40           | 49           | 49           | 58           | 58           | 70           |
| E2-05 (E4-05)    | Motor Line-to-Line Resistance                                    | Ω                | 0.092    | 0.056        | 0.056        | 0.046        | 0.046        | 0.035        | 0.035        | 0.029        |
| E2-06 (E4-06)    | Motor Leakage Inductance                                         | %                | 20       | 20           | 20           | 20           | 20           | 20           | 20           | 20           |
| E2-10 (E4-10)    | Motor Iron Loss for Torque Compensation                          | W                | 1600     | 1760         | 1760         | 2150         | 2150         | 2350         | 2350         | 2850         |
| E5-01            | Motor Code Selection (for PM Motors)                             | Hex.             | 1246     | 1246         | 1247         | 1247         | 1248         | 1248         | 1249         | 1249         |
| L2-02            | Momentary Power Loss Ride-Thru Time                              | S                | 1.3      | 1.5          | 1.5          | 1.7          | 1.7          | 1.7          | 1.7          | 1.8          |
| L2-03            | Momentary Power Loss Minimum<br>Baseblock Time                   | S                | 1        | 1            | 1            | 1            | 1            | 1            | 1            | 1            |
| L2-04            | Momentary Power Loss Voltage Recovery<br>Time                    | S                | 300      | 300          | 300          | 300          | 300          | 300          | 300          | 300          |
| L2-21            | Low Input Voltage Detection Level                                | V                | 300      | 300          | 300          | 300          | 300          | 300          | 300          | 300          |
| L8-02            | Overheat Alarm Level                                             | °C               | 134      | 134          | 138          | 138          | 138          | 138          | 130          | 130          |
| L8-35            | Installation Method Selection                                    | _                | 0        | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| L8-38            | Carrier Frequency Reduction Selection                            | _                | 1        | 1            | 1            | 1            | 1            | 1            | 1            | 1            |
| n1-03            | Hunting Prevention Time Constant                                 | ms               | 30       | 30           | 30           | 30           | 30           | 30           | 30           | 30           |
| n5-02            | Motor Acceleration Time                                          | S                | 0.533    | 0.592        | 0.592        | 0.646        | 0.646        | 0.673        | 0.673        | 0.777        |

Table B.16 400 V Class Drives Default Settings by Drive Model Selection and ND/HD Settings

|                  |                                                                  |                  | aut Settings by Drive Model Selection and ND/HD Settings |              |              |              |              |              |              |              |  |
|------------------|------------------------------------------------------------------|------------------|----------------------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--|
| No.              | Name                                                             | Unit             |                                                          |              |              | Default S    | Settings     |              |              |              |  |
| _                | Drive Model                                                      | -                | 4□0361 4□0414                                            |              |              | 4□0          | 477          | 4□0          | 590          |              |  |
| C6-01            | Drive Duty Selection                                             | -                | HD                                                       | ND           | HD           | ND           | HD           | ND           | HD           | ND           |  |
| o2-04            | Drive Model Selection                                            | Hex.             | А                                                        | .9           | А            | A            | Α            | С            | AD           |              |  |
| E2-11<br>(E4-11) | Motor Rated Output                                               | kW<br>(HP)       | 185<br>(250)                                             | 220<br>(300) | 220<br>(300) | 260<br>(350) | 260<br>(350) | 300<br>(400) | 300<br>(400) | 375<br>(500) |  |
| b3-04            | V/f Gain during Speed Search                                     | %                | 60                                                       | 60           | 60           | 60           | 60           | 60           | 60           | 60           |  |
| b3-06            | Output Current 1 during Speed Search                             | -                | 0.7                                                      | 0.7          | 0.7          | 0.7          | 0.7          | 0.7          | 0.7          | 0.7          |  |
| b3-08            | Current Control Gain during Speed Search (Speed Estimation Type) | _                | 0.8                                                      | 0.8          | 0.8          | 0.8          | 0.8          | 0.8          | 0.8          | 0.8          |  |
| b8-03            | Energy Saving Control Filter Time Constant                       | S                | 2.00                                                     | 2.00         | 2.00         | 2.00         | 2.00         | 2.00         | 2.00         | 2.00         |  |
| b8-04            | Energy Saving Coefficient Value                                  | _                | 30.13                                                    | 30.57        | 30.57        | 27.13        | 27.13        | 21.76        | 21.76        | 21.76        |  |
| C5-17 (C5-37)    | Motor Inertia                                                    | kgm <sup>2</sup> | 3.30                                                     | 3.60         | 3.60         | 4.10         | 4.10         | 6.50         | 6.50         | 11.00        |  |
| C6-02            | Carrier Frequency Selection                                      | _                | 1                                                        | 1            | 1            | 1            | 0            | 0            | 0            | 0            |  |
| E2-01 (E4-01)    | Motor Rated Current                                              | A                | 270                                                      | 310          | 310          | 370          | 370          | 500          | 500          | 500          |  |
| E2-02 (E4-02)    | Motor Rated Slip                                                 | Hz               | 1.35                                                     | 1.3          | 1.3          | 1.3          | 1.3          | 1.25         | 1.25         | 1.25         |  |
| E2-03 (E4-03)    | Motor No-Load Current                                            | A                | 70                                                       | 81           | 81           | 96           | 96           | 130          | 130          | 130          |  |
| E2-05 (E4-05)    | Motor Line-to-Line Resistance                                    | Ω                | 0.029                                                    | 0.025        | 0.025        | 0.02         | 0.02         | 0.014        | 0.014        | 0.014        |  |
| E2-06 (E4-06)    | Motor Leakage Inductance                                         | %                | 20                                                       | 20           | 20           | 20           | 20           | 20           | 20           | 20           |  |
| E2-10 (E4-10)    | Motor Iron Loss for Torque Compensation                          | W                | 2850                                                     | 3200         | 3200         | 3700         | 3700         | 4700         | 4700         | 4700         |  |

| No.              | Name                                           | Unit       |               |              |              | Default      | Settings     |              |              |              |
|------------------|------------------------------------------------|------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| -                | Drive Model                                    | -          | 4□0361 4□0414 |              |              | )414         | 4□0          | )477         | 4□0          | 590          |
| C6-01            | Drive Duty Selection                           | -          | HD            | ND           | HD           | ND           | HD           | ND           | HD           | ND           |
| o2-04            | Drive Model Selection                          | Hex.       | Α             | .9           | А            | A            | А            | С            | А            | D            |
| E2-11<br>(E4-11) | Motor Rated Output                             | kW<br>(HP) | 185<br>(250)  | 220<br>(300) | 220<br>(300) | 260<br>(350) | 260<br>(350) | 300<br>(400) | 300<br>(400) | 375<br>(500) |
| E5-01            | Motor Code Selection (for PM Motors)           | Hex.       | 124A          | 124A         | FFFF         | FFFF         | FFFF         | FFFF         | FFFF         | FFFF         |
| L2-02            | Momentary Power Loss Ride-Thru Time            | S          | 1.8           | 1.9          | 1.9          | 2            | 2            | 2.1          | 2.1          | 2.1          |
| L2-03            | Momentary Power Loss Minimum<br>Baseblock Time | s          | 1             | 1            | 1            | 1            | 1.8          | 2.0          | 2.0          | 2.0          |
| L2-04            | Momentary Power Loss Voltage Recovery<br>Time  | s          | 300           | 300          | 300          | 300          | 300          | 300          | 300          | 300          |
| L2-21            | Low Input Voltage Detection Level              | V          | 300           | 300          | 300          | 300          | 300          | 300          | 300          | 300          |
| L8-02            | Overheat Alarm Level                           | °C         | 130           | 130          | 130          | 130          | 130          | 130          | 130          | 130          |
| L8-35            | Installation Method Selection                  | _          | 0             | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| L8-38            | Carrier Frequency Reduction Selection          | _          | 1             | 1            | 1            | 1            | 1            | 1            | 1            | 1            |
| n1-03            | Hunting Prevention Time Constant               | ms         | 30            | 30           | 100          | 100          | 100          | 100          | 100          | 100          |
| n5-02            | Motor Acceleration Time                        | S          | 0.777         | 0.864        | 0.864        | 0.91         | 0.91         | 1.392        | 1.392        | 1.392        |

Table B.17 400 V Class Drives Default Settings by Drive Model Selection and ND/HD Settings

| No.           | Name                                                             | Unit             |           |           | Default   | Settings                  |                           |                          |
|---------------|------------------------------------------------------------------|------------------|-----------|-----------|-----------|---------------------------|---------------------------|--------------------------|
| -             | Drive Model                                                      | -                | 4□0       | 720       | 4□0       | 900                       | 4□0                       | 930                      |
| C6-01         | Drive Duty Selection                                             | -                | HD        | ND        | HD        | ND                        | HD                        | ND                       |
| o2-04         | Drive Model Selection                                            | Hex.             | А         | E         | А         | F                         | В                         | 0                        |
| E2-11 (E4-11) | Motor Rated Output                                               | kW<br>(HP)       | 300 (400) | 375 (500) | 375 (500) | 450 (600)                 | 450 (600)                 | 500                      |
| b3-04         | V/f Gain during Speed Search                                     | %                | 60        | 60        | 60        | 60                        | 60                        | 60                       |
| b3-06         | Output Current 1 during Speed Search                             | -                | 0.7       | 0.7       | 0.7       | 0.7                       | 0.7                       | 0.7                      |
| b3-08         | Current Control Gain during Speed Search (Speed Estimation Type) | -                | 0.8       | 0.8       | 0.8       | 0.8                       | 0.8                       | 0.8                      |
| b8-03         | Energy Saving Control Filter Time Constant                       | S                | 2         | 2         | 2         | 2                         | 2                         | 2                        |
| b8-04         | Energy Saving Coefficient Value                                  | -                | 21.76     | 23.84     | 23.84     | 21.4                      | 21.4                      | 20.26                    |
| C5-17 (C5-37) | Motor Inertia                                                    | kgm <sup>2</sup> | 11        | 12        | 12        | 13                        | 13                        | 14                       |
| C6-02         | Carrier Frequency Selection                                      | -                | 0         | 0         | 0         | 0                         | 0                         | 0                        |
| E2-01 (E4-01) | Motor Rated Current                                              | A                | 500       | 650       | 650       | 800                       | 800                       | 900                      |
| E2-02 (E4-02) | Motor Rated Slip                                                 | Hz               | 1.25      | 1         | 1         | 1                         | 1                         | 0.9                      |
| E2-03 (E4-03) | Motor No-Load Current                                            | A                | 130       | 130       | 130       | 160                       | 160                       | 180                      |
| E2-05 (E4-05) | Motor Line-to-Line Resistance                                    | Ω                | 0.014     | 0.012     | 12.000 mΩ | $10.000~\mathrm{m}\Omega$ | $10.000~\mathrm{m}\Omega$ | $9.000~\mathrm{m}\Omega$ |
| E2-06 (E4-06) | Motor Leakage Inductance                                         | %                | 20        | 20        | 20        | 20                        | 20                        | 20                       |
| E2-10 (E4-10) | Motor Iron Loss for Torque Compensation                          | W                | 4700      | 5560      | 5560      | 7060                      | 7060                      | 7833                     |
| E5-01         | Motor Code Selection (for PM Motors)                             | Hex.             | FFFF      | FFFF      | FFFF      | FFFF                      | FFFF                      | FFFF                     |
| L2-02         | Momentary Power Loss Ride-Thru Time                              | S                | 2.1       | 2.3       | 2.3       | 2.8                       | 2.8                       | 3.1                      |
| L2-03         | Momentary Power Loss Minimum Baseblock Time                      | S                | 2         | 2.2       | 2.2       | 2.6                       | 2.6                       | 3                        |
| L2-04         | Momentary Power Loss Voltage Recovery Time                       | S                | 300       | 300       | 300       | 300                       | 300                       | 300                      |
| L2-21         | Low Input Voltage Detection Level                                | V                | 300       | 300       | 300       | 300                       | 300                       | 300                      |
| L8-02         | Overheat Alarm Level                                             | °C               | 140       | 140       | 140       | 140                       | 140                       | 140                      |
| L8-35         | Installation Method Selection                                    | -                | 0         | 0         | 0         | 0                         | 0                         | 0                        |
| L8-38         | Carrier Frequency Reduction Selection                            | -                | 1         | 1         | 1         | 1                         | 1                         | 1                        |
| n1-03         | Hunting Prevention Time Constant                                 | ms               | 100       | 100       | 100       | 100                       | 100                       | 100                      |
| n5-02         | Motor Acceleration Time                                          | s                | 1.392     | 1.667     | 1.667     | 2                         | 2                         | 2.222                    |

## **B.19 Parameters Changed by Motor Code Selection (for PM Motors)**

The following tables show parameters and default settings that change with the motor code selection E5-01 when Open Loop Vector for PM motors is used.

### **♦** Yaskawa SMRA Series SPM Motor

Table B.18 200 V, 1800 r/min Type Yaskawa SMRA Series SPM Motor Settings

| No.   | Name                                                    | Unit             |        | Γ      | Default Setting | S      |        |
|-------|---------------------------------------------------------|------------------|--------|--------|-----------------|--------|--------|
|       | Motor Code Selection (for PM Motors)                    | -                | 0002   | 0003   | 0005            | 0006   | 0008   |
| E5-01 | Voltage Class                                           | V                | 200    | 200    | 200             | 200    | 200    |
| E3-01 | Rated Power                                             | kW               | 0.4    | 0.75   | 1.5             | 2.2    | 3.7    |
|       | Rated Speed                                             | r/min            | 1800   | 1800   | 1800            | 1800   | 1800   |
| E5-02 | Motor Rated Power (for PM Motors)                       | kW               | 0.4    | 0.75   | 1.5             | 2.2    | 3.7    |
| E5-03 | Motor Rated Current (for PM Motors)                     | A                | 2.1    | 4.0    | 6.9             | 10.8   | 17.4   |
| E5-04 | Number of Motor Poles (for PM Motors)                   | -                | 8      | 8      | 8               | 8      | 8      |
| E5-05 | Motor Stator Resistance (r1) (for PM Motors)            | Ω                | 2.47   | 1.02   | 0.679           | 0.291  | 0.169  |
| E5-06 | Motor d-Axis Inductance (Ld) (for PM Motors)            | mH               | 12.7   | 4.8    | 3.9             | 3.6    | 2.5    |
| E5-07 | Motor q-Axis Inductance (Lq) (for PM Motors)            | mH               | 12.7   | 4.8    | 3.9             | 3.6    | 2.5    |
| E5-09 | Motor Induction Voltage Constant 1 (Ke) (for PM Motors) | mVs<br>/rad      | 0      | 0      | 0               | 0      | 0      |
| E5-24 | Motor Induction Voltage Constant 2 (Ke) (for PM Motors) | mV/<br>(r/min)   | 62.0   | 64.1   | 73.4            | 69.6   | 72.2   |
| E1-04 | Maximum Output Frequency                                | Hz               | 120    | 120    | 120             | 120    | 120    |
| E1-05 | Maximum Voltage                                         | V                | 200.0  | 200.0  | 200.0           | 200.0  | 200.0  |
| E1-06 | Base Frequency                                          | Hz               | 120    | 120    | 120             | 120    | 120    |
| E1-09 | Minimum Output Frequency                                | Hz               | 6      | 6      | 6               | 6      | 6      |
| C5-17 | Motor Inertia                                           | kgm <sup>2</sup> | 0.0007 | 0.0014 | 0.0021          | 0.0032 | 0.0046 |
| n5-02 | Motor Acceleration Time                                 | S                | 0.064  | 0.066  | 0.049           | 0.051  | 0.044  |

Table B.19 200 V, 3600 r/min Type Yaskawa SMRA Series SPM Motor Settings

| No.   | Name                                                    | Unit             | Default Settings |        |        |        |  |  |  |  |  |
|-------|---------------------------------------------------------|------------------|------------------|--------|--------|--------|--|--|--|--|--|
|       | Motor Code Selection (for PM Motors)                    | _                | 0103             | 0105   | 0106   | 0108   |  |  |  |  |  |
| E5-01 | Voltage Class                                           | V                | 200              | 200    | 200    | 200    |  |  |  |  |  |
| E3-01 | Rated Power                                             | kW               | 0.75             | 1.5    | 2.2    | 3.7    |  |  |  |  |  |
|       | Rated Speed                                             | r/min            | 3600             | 3600   | 3600   | 3600   |  |  |  |  |  |
| E5-02 | Motor Rated Power (for PM Motors)                       | kW               | 0.75             | 1.5    | 2.2    | 3.7    |  |  |  |  |  |
| E5-03 | Motor Rated Current (for PM Motors)                     | A                | 4.1              | 8.0    | 10.5   | 16.5   |  |  |  |  |  |
| E5-04 | Number of Motor Poles (for PM Motors)                   | -                | 8                | 8      | 8      | 8      |  |  |  |  |  |
| E5-05 | Motor Stator Resistance (r1) (for PM Motors)            | Ω                | 0.538            | 0.20   | 0.15   | 0.097  |  |  |  |  |  |
| E5-06 | Motor d-Axis Inductance (Ld) (for PM Motors)            | mH               | 3.2              | 1.3    | 1.1    | 1.1    |  |  |  |  |  |
| E5-07 | Motor q-Axis Inductance (Lq) (for PM Motors)            | mH               | 3.2              | 1.3    | 1.1    | 1.1    |  |  |  |  |  |
| E5-09 | Motor Induction Voltage Constant 1 (Ke) (for PM Motors) | mVs<br>/rad      | 0                | 0      | 0      | 0      |  |  |  |  |  |
| E5-24 | Motor Induction Voltage Constant 2 (Ke) (for PM Motors) | mV/<br>(r/min)   | 32.4             | 32.7   | 36.7   | 39.7   |  |  |  |  |  |
| E1-04 | Maximum Output Frequency                                | Hz               | 240              | 240    | 240    | 240    |  |  |  |  |  |
| E1-05 | Maximum Voltage                                         | V                | 200.0            | 200.0  | 200.0  | 200.0  |  |  |  |  |  |
| E1-06 | Base Frequency                                          | Hz               | 240              | 240    | 240    | 240    |  |  |  |  |  |
| E1-09 | Minimum Output Frequency                                | Hz               | 12               | 12     | 12     | 12     |  |  |  |  |  |
| C5-17 | Motor Inertia                                           | kgm <sup>2</sup> | 0.0007           | 0.0014 | 0.0021 | 0.0032 |  |  |  |  |  |

### **B.19 Parameters Changed by Motor Code Selection (for PM Motors)**

| No.   | Name                    | Unit |       | Default Settings |       |       |  |  |  |  |
|-------|-------------------------|------|-------|------------------|-------|-------|--|--|--|--|
| n5-02 | Motor Acceleration Time | S    | 0.137 | 0.132            | 0.132 | 0.122 |  |  |  |  |

### **♦** Yaskawa SSR1 Series IPM Motor (For Derated Torque)

#### Table B.20 200 V, 1750 r/min Type Yaskawa SSR1 Series IPM Motor

| No.   | Name                                                          | Unit             | Default Settings |        |        |        |        |       |       |       |  |  |  |  |
|-------|---------------------------------------------------------------|------------------|------------------|--------|--------|--------|--------|-------|-------|-------|--|--|--|--|
|       | Motor Code Selection<br>(for PM Motors)                       | _                | 1202             | 1203   | 1205   | 1206   | 1208   | 120A  | 120B  | 120D  |  |  |  |  |
| E5-01 | Voltage Class                                                 | V                | 200              | 200    | 200    | 200    | 200    | 200   | 200   | 200   |  |  |  |  |
|       | Rated Power                                                   | kW               | 0.4              | 0.75   | 1.5    | 2.2    | 3.7    | 5.5   | 7.5   | 11    |  |  |  |  |
|       | Rated Speed                                                   | r/min            | 1750             | 1750   | 1750   | 1750   | 1750   | 1750  | 1750  | 1750  |  |  |  |  |
| E5-02 | Motor Rated Power (for PM Motors)                             | kW               | 0.4              | 0.75   | 1.5    | 2.2    | 3.7    | 5.5   | 7.5   | 11.0  |  |  |  |  |
| E5-03 | Motor Rated Current (for PM Motors)                           | A                | 1.77             | 3.13   | 5.73   | 8.44   | 13.96  | 20.63 | 28.13 | 41.4  |  |  |  |  |
| E5-04 | Number of Motor Poles<br>(for PM Motors)                      | -                | 6                | 6      | 6      | 6      | 6      | 6     | 6     | 6     |  |  |  |  |
| E5-05 | Motor Stator Resistance<br>(r1) (for PM Motors)               | Ω                | 8.233            | 2.284  | 1.470  | 0.827  | 0.455  | 0.246 | 0.198 | 0.094 |  |  |  |  |
| E5-06 | Motor d-Axis Inductance<br>(Ld) (for PM Motors)               | mH               | 54.84            | 23.02  | 17.22  | 8.61   | 7.20   | 4.86  | 4.15  | 3.40  |  |  |  |  |
| E5-07 | Motor q-Axis Inductance<br>(Lq) (for PM Motors)               | mН               | 64.10            | 29.89  | 20.41  | 13.50  | 10.02  | 7.43  | 5.91  | 3.91  |  |  |  |  |
| E5-09 | Motor Induction Voltage<br>Constant 1 (Ke) (for PM<br>Motors) | mVs<br>/rad      | 223.7            | 220.3  | 240.8  | 238.0  | 238.7  | 239.6 | 258.2 | 239.3 |  |  |  |  |
| E5-24 | Motor Induction Voltage<br>Constant 2 (Ke) (for PM<br>Motors) | mV/<br>(r/min)   | 0.0              | 0.0    | 0.0    | 0.0    | 0.0    | 0.0   | 0.0   | 0.0   |  |  |  |  |
| E1-04 | Maximum Output<br>Frequency                                   | Hz               | 87.5             | 87.5   | 87.5   | 87.5   | 87.5   | 87.5  | 87.5  | 87.5  |  |  |  |  |
| E1-05 | Maximum Voltage                                               | V                | 190.0            | 190.0  | 190.0  | 190.0  | 190.0  | 190.0 | 190.0 | 190.0 |  |  |  |  |
| E1-06 | Base Frequency                                                | Hz               | 87.5             | 87.5   | 87.5   | 87.5   | 87.5   | 87.5  | 87.5  | 87.5  |  |  |  |  |
| E1-09 | Minimum Output<br>Frequency                                   | Hz               | 4.4              | 4.4    | 4.4    | 4.4    | 4.4    | 4.4   | 4.4   | 4.4   |  |  |  |  |
| C5-17 | Motor Inertia                                                 | kgm <sup>2</sup> | 0.0011           | 0.0017 | 0.0023 | 0.0043 | 0.0083 | 0.014 | 0.017 | 0.027 |  |  |  |  |
| n5-02 | Motor Acceleration Time                                       | S                | 0.092            | 0.076  | 0.052  | 0.066  | 0.075  | 0.083 | 0.077 | 0.084 |  |  |  |  |

#### Table B.21 200 V, 1750 r/min Type Yaskawa SSR1 Series IPM Motor

|       | Name I de ty the many personal control in the contr |             |       |                  |       |       |       |       |       |       |  |  |  |  |  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------|------------------|-------|-------|-------|-------|-------|-------|--|--|--|--|--|
| No.   | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Unit        |       | Default Settings |       |       |       |       |       |       |  |  |  |  |  |
|       | Motor Code Selection<br>(for PM Motors)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -           | 120E  | 120F             | 1210  | 1212  | 1213  | 1214  | 1215  | 1216  |  |  |  |  |  |
| E5-01 | Voltage Class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V           | 200   | 200              | 200   | 200   | 200   | 200   | 200   | 200   |  |  |  |  |  |
|       | Rated Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | kW          | 15    | 18               | 22    | 30    | 37    | 45    | 55    | 75    |  |  |  |  |  |
|       | Rated Speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | r/min       | 1750  | 1750             | 1750  | 1750  | 1750  | 1750  | 1750  | 1750  |  |  |  |  |  |
| E5-02 | Motor Rated Power (for PM Motors)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | kW          | 15.0  | 18.00            | 22.00 | 30.00 | 37.00 | 45.00 | 55.00 | 75.00 |  |  |  |  |  |
| E5-03 | Motor Rated Current (for PM Motors)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A           | 55.4  | 68.2             | 80.6  | 105.2 | 131.3 | 153.1 | 185.4 | 257.3 |  |  |  |  |  |
| E5-04 | Number of Motor Poles<br>(for PM Motors)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | =           | 6     | 6                | 6     | 6     | 6     | 6     | 6     | 6     |  |  |  |  |  |
| E5-05 | Motor Stator Resistance<br>(r1) (for PM Motors)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ω           | 0.066 | 0.051            | 0.037 | 0.030 | 0.020 | 0.014 | 0.012 | 0.006 |  |  |  |  |  |
| E5-06 | Motor d-Axis Inductance<br>(Ld) (for PM Motors)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mH          | 2.45  | 2.18             | 1.71  | 1.35  | 0.99  | 0.83  | 0.79  | 0.44  |  |  |  |  |  |
| E5-07 | Motor q-Axis Inductance<br>(Lq) (for PM Motors)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mH          | 3.11  | 2.55             | 2.05  | 1.82  | 1.28  | 1.01  | 0.97  | 0.56  |  |  |  |  |  |
| E5-09 | Motor Induction Voltage<br>Constant 1 (Ke) (for PM<br>Motors)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mVs<br>/rad | 248.1 | 253.6            | 250.0 | 280.9 | 264.2 | 280.4 | 311.9 | 268.0 |  |  |  |  |  |

| No.   | Name                                                          | Unit             |       |       |       | Default | Settings |       |       |       |
|-------|---------------------------------------------------------------|------------------|-------|-------|-------|---------|----------|-------|-------|-------|
| E5-24 | Motor Induction Voltage<br>Constant 2 (Ke) (for PM<br>Motors) | mV/<br>(r/min)   | 0.0   | 0.0   | 0.0   | 0.0     | 0.0      | 0.0   | 0.0   | 0.0   |
| E1-04 | Maximum Output<br>Frequency                                   | Hz               | 87.5  | 87.5  | 87.5  | 87.5    | 87.5     | 87.5  | 87.5  | 87.5  |
| E1-05 | Maximum Voltage                                               | V                | 190.0 | 190.0 | 190.0 | 190.0   | 190.0    | 190.0 | 190.0 | 190.0 |
| E1-06 | Base Frequency                                                | Hz               | 87.5  | 87.5  | 87.5  | 87.5    | 87.5     | 87.5  | 87.5  | 87.5  |
| E1-09 | Minimum Output<br>Frequency                                   | Hz               | 4.4   | 4.4   | 4.4   | 4.4     | 4.4      | 4.4   | 4.4   | 4.4   |
| C5-17 | Motor Inertia                                                 | kgm <sup>2</sup> | 0.046 | 0.55  | 0.064 | 0.116   | 0.140    | 0.259 | 0.31  | 0.42  |
| n5-02 | Motor Acceleration Time                                       | S                | 0.102 | 0.101 | 0.098 | 0.130   | 0.127    | 0.193 | 0.191 | 0.187 |

#### Table B.22 400 V, 1750 r/min Type Yaskawa SSR1 Series IPM Motor

| No.   | Name                                                          | Unit             |        |        |        | Default S | Settings |       |       |       |
|-------|---------------------------------------------------------------|------------------|--------|--------|--------|-----------|----------|-------|-------|-------|
|       | Motor Code Selection (for PM Motors)                          | _                | 1232   | 1233   | 1235   | 1236      | 1238     | 123A  | 123B  | 123D  |
| E5-01 | Voltage Class                                                 | V                | 400    | 400    | 400    | 400       | 400      | 400   | 400   | 400   |
|       | Rated Power                                                   | kW               | 0.4    | 0.75   | 1.5    | 2.2       | 3.7      | 5.5   | 7.5   | 11    |
|       | Rated Speed                                                   | r/min            | 1750   | 1750   | 1750   | 1750      | 1750     | 1750  | 1750  | 1750  |
| E5-02 | Motor Rated Power (for PM Motors)                             | kW               | 0.4    | 0.75   | 1.5    | 2.2       | 3.7      | 5.5   | 7.5   | 11.0  |
| E5-03 | Motor Rated Current (for PM Motors)                           | A                | 0.89   | 1.56   | 2.81   | 4.27      | 7.08     | 10.31 | 13.65 | 20.7  |
| E5-04 | Number of Motor Poles (for PM Motors)                         | _                | 6      | 6      | 6      | 6         | 6        | 6     | 6     | 6     |
| E5-05 | Motor Stator Resistance (r1)<br>(for PM Motors)               | Ω                | 25.370 | 9.136  | 6.010  | 3.297     | 1.798    | 0.982 | 0.786 | 0.349 |
| E5-06 | Motor d-Axis Inductance<br>(Ld) (for PM Motors)               | mH               | 169.00 | 92.08  | 67.71  | 34.40     | 32.93    | 22.7  | 16.49 | 13.17 |
| E5-07 | Motor q-Axis Inductance<br>(Lq) (for PM Motors)               | mH               | 197.50 | 119.56 | 81.71  | 54.00     | 37.70    | 26.80 | 23.46 | 15.60 |
| E5-09 | Motor Induction Voltage<br>Constant 1 (Ke) (for PM<br>Motors) | mVs<br>/rad      | 392.6  | 440.6  | 478.3  | 466.3     | 478.8    | 478.1 | 520.0 | 481.5 |
| E5-24 | Motor Induction Voltage<br>Constant 2 (Ke) (for PM<br>Motors) | mV/<br>(r/min)   | 0.0    | 0.0    | 0.0    | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   |
| E1-04 | Maximum Output Frequency                                      | Hz               | 87.5   | 87.5   | 87.5   | 87.5      | 87.5     | 87.5  | 87.5  | 87.5  |
| E1-05 | Maximum Voltage                                               | V                | 380.0  | 380.0  | 380.0  | 380.0     | 380.0    | 380.0 | 380.0 | 380.0 |
| E1-06 | Base Frequency                                                | Hz               | 87.5   | 87.5   | 87.5   | 87.5      | 87.5     | 87.5  | 87.5  | 87.5  |
| E1-09 | Minimum Output Frequency                                      | Hz               | 4.4    | 4.4    | 4.4    | 4.4       | 4.4      | 4.4   | 4.4   | 4.4   |
| C5-17 | Motor Inertia                                                 | kgm <sup>2</sup> | 0.0011 | 0.0017 | 0.0023 | 0.0043    | 0.0083   | 0.014 | 0.017 | 0.027 |
| n5-02 | Motor Acceleration Time                                       | S                | 0.092  | 0.076  | 0.052  | 0.066     | 0.075    | 0.083 | 0.077 | 0.084 |

#### Table B.23 400 V, 1750 r/min Type Yaskawa SSR1 Series IPM Motor

| No.   | Name                                            | Unit  |       |       |       | Default \$ | Settings |       |       |       |
|-------|-------------------------------------------------|-------|-------|-------|-------|------------|----------|-------|-------|-------|
|       | Motor Code Selection (for PM Motors)            | -     | 123E  | 123F  | 1240  | 1242       | 1243     | 1244  | 1245  | 1246  |
| E5-01 | Voltage Class                                   | V     | 400   | 400   | 400   | 400        | 400      | 400   | 400   | 400   |
|       | Rated Power                                     | kW    | 15    | 18    | 22    | 30         | 37       | 45    | 55    | 75    |
|       | Rated Speed                                     | r/min | 1750  | 1750  | 1750  | 1750       | 1750     | 1750  | 1750  | 1750  |
| E5-02 | Motor Rated Power (for PM Motors)               | kW    | 15    | 18.50 | 22.00 | 30.00      | 37.00    | 45.00 | 55.00 | 75.00 |
| E5-03 | Motor Rated Current (for PM Motors)             | A     | 27.5  | 33.4  | 39.8  | 52.0       | 65.8     | 77.5  | 92.7  | 126.6 |
| E5-04 | Number of Motor Poles (for PM Motors)           | _     | 6     | 6     | 6     | 6          | 6        | 6     | 6     | 6     |
| E5-05 | Motor Stator Resistance (r1)<br>(for PM Motors) | Ω     | 0.272 | 0.207 | 0.148 | 0.235      | 0.079    | 0.054 | 0.049 | 0.029 |

### **B.19 Parameters Changed by Motor Code Selection (for PM Motors)**

| No.   | Name                                                          | Unit             | Default Settings |       |       |       |       |       |       |       |  |  |
|-------|---------------------------------------------------------------|------------------|------------------|-------|-------|-------|-------|-------|-------|-------|--|--|
| E5-06 | Motor d-Axis Inductance<br>(Ld) (for PM Motors)               | mН               | 10.30            | 8.72  | 6.81  | 5.4   | 4.08  | 3.36  | 3.16  | 2.12  |  |  |
| E5-07 | Motor q-Axis Inductance<br>(Lq) (for PM Motors)               | mН               | 12.77            | 11.22 | 8.47  | 7.26  | 5.12  | 3.94  | 3.88  | 2.61  |  |  |
| E5-09 | Motor Induction Voltage<br>Constant 1 (Ke) (for PM<br>Motors) | mVs<br>/rad      | 498.8            | 509.5 | 503.9 | 561.7 | 528.5 | 558.1 | 623.8 | 594.5 |  |  |
| E5-24 | Motor Induction Voltage<br>Constant 2 (Ke) (for PM<br>Motors) | mV/<br>(r/min)   | 0.0              | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |  |  |
| E1-04 | Maximum Output Frequency                                      | Hz               | 87.5             | 87.5  | 87.5  | 87.5  | 87.5  | 87.5  | 87.5  | 87.5  |  |  |
| E1-05 | Maximum Voltage                                               | V                | 380.0            | 380.0 | 380.0 | 380.0 | 380.0 | 380.0 | 380.0 | 380.0 |  |  |
| E1-06 | Base Frequency                                                | Hz               | 87.5             | 87.5  | 87.5  | 87.5  | 87.5  | 87.5  | 87.5  | 87.5  |  |  |
| E1-09 | Minimum Output Frequency                                      | Hz               | 4.4              | 4.4   | 4.4   | 4.4   | 4.4   | 4.4   | 4.4   | 4.4   |  |  |
| C5-17 | Motor Inertia                                                 | kgm <sup>2</sup> | 0.046            | 0.055 | 0.064 | 0.116 | 0.140 | 0.259 | 0.31  | 0.42  |  |  |
| n5-02 | Motor Acceleration Time                                       | S                | 0.102            | 0.101 | 0.098 | 0.130 | 0.127 | 0.193 | 0.191 | 0.187 |  |  |

#### Table B.24 400 V, 1750 r/min Type Yaskawa SSR1 Series IPM Motor

| No.   | Name                                                          | Unit             | , 1700 1711111 | 7.     |        | Default \$ |        |        |        |        |
|-------|---------------------------------------------------------------|------------------|----------------|--------|--------|------------|--------|--------|--------|--------|
|       | Motor Code Selection (for PM Motors)                          | _                | 1247           | 1248   | 1249   | 124A       | 1302   | 1303   | 1305   | 1306   |
| E5-01 | Voltage Class                                                 | V                | 400            | 400    | 400    | 400        | 200    | 200    | 200    | 200    |
|       | Rated Power                                                   | kW               | 90             | 110    | 132    | 160        | 0.4    | 0.75   | 1.5    | 2.2    |
|       | Rated Speed                                                   | r/min            | 1750           | 1750   | 1750   | 1750       | 1450   | 1450   | 1450   | 1450   |
| E5-02 | Motor Rated Power (for PM Motors)                             | kW               | 90.00          | 110.00 | 132.00 | 160.00     | 0.4    | 0.75   | 1.5    | 2.2    |
| E5-03 | Motor Rated Current (for PM Motors)                           | A                | 160.4          | 183.3  | 222.9  | 267.7      | 1.88   | 3.13   | 5.63   | 8.33   |
| E5-04 | Number of Motor Poles (for PM Motors)                         | _                | 6              | 6      | 6      | 6          | 6      | 6      | 6      | 6      |
| E5-05 | Motor Stator Resistance (r1)<br>(for PM Motors)               | Ω                | 0.019          | 0.017  | 0.012  | 0.008      | 3.190  | 1.940  | 1.206  | 0.665  |
| E5-06 | Motor d-Axis Inductance<br>(Ld) (for PM Motors)               | mH               | 1.54           | 1.44   | 1.21   | 0.97       | 32.15  | 26.12  | 14.72  | 12.27  |
| E5-07 | Motor q-Axis Inductance<br>(Lq) (for PM Motors)               | mH               | 2.06           | 2.21   | 1.46   | 1.28       | 41.74  | 34.30  | 20.15  | 14.77  |
| E5-09 | Motor Induction Voltage<br>Constant 1 (Ke) (for PM<br>Motors) | mVs<br>/rad      | 524.1          | 583.7  | 563.6  | 601.2      | 264.3  | 269.6  | 284.3  | 287.1  |
| E5-24 | Motor Induction Voltage<br>Constant 2 (Ke) (for PM<br>Motors) | mV/<br>(r/min)   | 0.0            | 0.0    | 0.0    | 0.0        | 0.0    | 0.0    | 0.0    | 0.0    |
| E1-04 | Maximum Output Frequency                                      | Hz               | 87.5           | 87.5   | 87.5   | 87.5       | 72.5   | 72.5   | 72.5   | 72.5   |
| E1-05 | Maximum Voltage                                               | V                | 380.0          | 380.0  | 380.0  | 380.0      | 190.0  | 190.0  | 190.0  | 190.0  |
| E1-06 | Base Frequency                                                | Hz               | 87.5           | 87.5   | 87.5   | 87.5       | 72.5   | 72.5   | 72.5   | 72.5   |
| E1-09 | Minimum Output Frequency                                      | Hz               | 4.4            | 4.4    | 4.4    | 4.4        | 3.6    | 3.6    | 3.6    | 3.6    |
| C5-17 | Motor Inertia                                                 | kgm <sup>2</sup> | 0.56           | 0.83   | 0.96   | 1.61       | 0.0017 | 0.0023 | 0.0043 | 0.0083 |
| n5-02 | Motor Acceleration Time                                       | S                | 0.208          | 0.254  | 0.243  | 0.338      | 0.098  | 0.071  | 0.066  | 0.087  |

#### Table B.25 200 V, 1450 r/min Type Yaskawa SSR1 Series IPM Motor

| No.   | Name                                 | Unit  |       | Default Settings |       |      |       |       |       |       |  |  |  |
|-------|--------------------------------------|-------|-------|------------------|-------|------|-------|-------|-------|-------|--|--|--|
|       | Motor Code Selection (for PM Motors) | _     | 1308  | 130A             | 130B  | 130D | 130E  | 130F  | 1310  | 1312  |  |  |  |
| E5-01 | Voltage Class                        | V     | 200   | 200              | 200   | 200  | 200   | 200   | 200   | 200   |  |  |  |
|       | Rated Power                          | kW    | 3.7   | 5.5              | 7.5   | 11   | 15    | 18    | 22    | 30    |  |  |  |
| -     | Rated Speed                          | r/min | 1450  | 1450             | 1450  | 1450 | 1450  | 1450  | 1450  | 1450  |  |  |  |
| E5-02 | Motor Rated Power (for PM Motors)    | kW    | 3.7   | 5.5              | 7.5   | 11.0 | 15.00 | 18.00 | 22.00 | 30.00 |  |  |  |
| E5-03 | Motor Rated Current (for PM Motors)  | A     | 14.17 | 20.63            | 27.71 | 39.6 | 55.5  | 65.6  | 75.1  | 105.2 |  |  |  |

| No.   | Name                                                          | Unit             |        |       |       | Default : | Settings |       |       |       |
|-------|---------------------------------------------------------------|------------------|--------|-------|-------|-----------|----------|-------|-------|-------|
| E5-04 | Number of Motor Poles (for PM Motors)                         | -                | 6      | 6     | 6     | 6         | 6        | 6     | 6     | 6     |
| E5-05 | Motor Stator Resistance (r1)<br>(for PM Motors)               | Ω                | 0.341  | 0.252 | 0.184 | 0.099     | 0.075    | 0.057 | 0.041 | 0.034 |
| E5-06 | Motor d-Axis Inductance (Ld) (for PM Motors)                  | mH               | 8.27   | 6.49  | 6.91  | 4.07      | 3.29     | 2.53  | 1.98  | 1.75  |
| E5-07 | Motor q-Axis Inductance (Lq) (for PM Motors)                  | mН               | 9.81   | 7.74  | 7.66  | 4.65      | 3.84     | 3.01  | 2.60  | 2.17  |
| E5-09 | Motor Induction Voltage<br>Constant 1 (Ke) (for PM<br>Motors) | mVs<br>/rad      | 284.5  | 298.0 | 335.0 | 303.9     | 311.2    | 300.9 | 327.7 | 354.2 |
| E5-24 | Motor Induction Voltage<br>Constant 2 (Ke) (for PM<br>Motors) | mV/<br>(r/min)   | 0.0    | 0.0   | 0.0   | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   |
| E1-04 | Maximum Output Frequency                                      | Hz               | 72.5   | 72.5  | 72.5  | 72.5      | 72.5     | 72.5  | 72.5  | 72.5  |
| E1-05 | Maximum Voltage                                               | V                | 190.0  | 190.0 | 190.0 | 190.0     | 190.0    | 190.0 | 190.0 | 190.0 |
| E1-06 | Base Frequency                                                | Hz               | 72.5   | 72.5  | 72.5  | 72.5      | 72.5     | 72.5  | 72.5  | 72.5  |
| E1-09 | Minimum Output Frequency                                      | Hz               | 3.6    | 3.6   | 3.6   | 3.6       | 3.6      | 3.6   | 3.6   | 3.6   |
| C5-17 | Motor Inertia                                                 | kgm <sup>2</sup> | 0.0136 | 0.017 | 0.027 | 0.046     | 0.055    | 0.064 | 0.116 | 0.140 |
| n5-02 | Motor Acceleration Time                                       | S                | 0.085  | 0.072 | 0.084 | 0.096     | 0.085    | 0.080 | 0.122 | 0.108 |

# Table B.26 200 V, 1450 r/min Type Yaskawa SSR1 Series IPM Motor

|       | Name B.20 200 V, 1430 I/IIIII Type Taskawa 33KT Series IF W Motor |                  |       |       |       |         |          |        |        |        |  |  |
|-------|-------------------------------------------------------------------|------------------|-------|-------|-------|---------|----------|--------|--------|--------|--|--|
| No.   | Name                                                              | Unit             |       |       |       | Default | Settings |        |        |        |  |  |
|       | Motor Code Selection (for PM Motors)                              | -                | 1313  | 1314  | 1315  | 1332    | 1333     | 1335   | 1336   | 1338   |  |  |
| E5-01 | Voltage Class                                                     | V                | 200   | 200   | 200   | 400     | 400      | 400    | 400    | 400    |  |  |
|       | Rated Power                                                       | kW               | 37    | 45    | 55    | 0.4     | 0.75     | 1.5    | 2.2    | 3.7    |  |  |
|       | Rated Speed                                                       | r/min            | 1450  | 1450  | 1450  | 1450    | 1450     | 1450   | 1450   | 1450   |  |  |
| E5-02 | Motor Rated Power (for PM Motors)                                 | kW               | 37.00 | 45.00 | 55.00 | 0.4     | 0.75     | 1.5    | 2.2    | 3.7    |  |  |
| E5-03 | Motor Rated Current (for PM Motors)                               | A                | 126.0 | 153.1 | 186.5 | 0.94    | 1.56     | 2.81   | 4.27   | 6.98   |  |  |
| E5-04 | Number of Motor Poles (for PM Motors)                             | _                | 6     | 6     | 6     | 6       | 6        | 6      | 6      | 6      |  |  |
| E5-05 | Motor Stator Resistance (r1)<br>(for PM Motors)                   | Ω                | 0.023 | 0.015 | 0.012 | 12.760  | 7.421    | 4.825  | 2.656  | 1.353  |  |  |
| E5-06 | Motor d-Axis Inductance (Ld) (for PM Motors)                      | mH               | 1.48  | 1.04  | 0.87  | 128.60  | 85.11    | 58.87  | 46.42  | 31.73  |  |  |
| E5-07 | Motor q-Axis Inductance (Lq) (for PM Motors)                      | mH               | 1.70  | 1.31  | 1.10  | 166.96  | 113.19   | 80.59  | 60.32  | 40.45  |  |  |
| E5-09 | Motor Induction Voltage<br>Constant 1 (Ke) (for PM<br>Motors)     | mVs<br>/rad      | 369.6 | 351.6 | 374.7 | 528.6   | 544.2    | 568.5  | 572.8  | 562.9  |  |  |
| E5-24 | Motor Induction Voltage<br>Constant 2 (Ke) (for PM<br>Motors)     | mV/<br>(r/min)   | 0.0   | 0.0   | 0.0   | 0.0     | 0.0      | 0.0    | 0.0    | 0.0    |  |  |
| E1-04 | Maximum Output Frequency                                          | Hz               | 72.5  | 72.5  | 72.5  | 72.5    | 72.5     | 72.5   | 72.5   | 72.5   |  |  |
| E1-05 | Maximum Voltage                                                   | V                | 190.0 | 190.0 | 190.0 | 380.0   | 380.0    | 380.0  | 380.0  | 380.0  |  |  |
| E1-06 | Base Frequency                                                    | Hz               | 72.5  | 72.5  | 72.5  | 72.5    | 72.5     | 72.5   | 72.5   | 72.5   |  |  |
| E1-09 | Minimum Output Frequency                                          | Hz               | 3.6   | 3.6   | 3.6   | 3.6     | 3.6      | 3.6    | 3.6    | 3.6    |  |  |
| C5-17 | Motor Inertia                                                     | kgm <sup>2</sup> | 0.259 | 0.312 | 0.42  | 0.0017  | 0.0023   | 0.0043 | 0.0083 | 0.0136 |  |  |
| n5-02 | Motor Acceleration Time                                           | S                | 0.161 | 0.160 | 0.175 | 0.098   | 0.071    | 0.066  | 0.087  | 0.085  |  |  |

# Table B.27 400 V, 1450 r/min Type Yaskawa SSR1 Series IPM Motor

| No.   | Name                                 | Unit  |      | Default Settings |      |      |      |      |      |      |  |  |  |
|-------|--------------------------------------|-------|------|------------------|------|------|------|------|------|------|--|--|--|
|       | Motor Code Selection (for PM Motors) | -     | 133A | 133B             | 133D | 133E | 133F | 1340 | 1342 | 1343 |  |  |  |
| E5-01 | Voltage Class                        | V     | 400  | 400              | 400  | 400  | 400  | 400  | 400  | 400  |  |  |  |
|       | Rated Power                          | kW    | 5.5  | 7.5              | 11   | 15   | 18   | 22   | 30   | 37   |  |  |  |
|       | Rated Speed                          | r/min | 1450 | 1450             | 1450 | 1450 | 1450 | 1450 | 1450 | 1450 |  |  |  |

# **B.19 Parameters Changed by Motor Code Selection (for PM Motors)**

| No.   | Name                                                          | Unit             | Default Settings |       |       |       |       |       |       |       |  |  |  |
|-------|---------------------------------------------------------------|------------------|------------------|-------|-------|-------|-------|-------|-------|-------|--|--|--|
| E5-02 | Motor Rated Power (for PM Motors)                             | kW               | 5.5              | 7.5   | 11.0  | 15    | 18.50 | 22.00 | 30.00 | 37.00 |  |  |  |
| E5-03 | Motor Rated Current (for PM Motors)                           | A                | 10.21            | 13.85 | 19.5  | 27.4  | 32.9  | 37.6  | 52.5  | 63.2  |  |  |  |
| E5-04 | Number of Motor Poles (for PM Motors)                         | -                | 6                | 6     | 6     | 6     | 6     | 6     | 6     | 6     |  |  |  |
| E5-05 | Motor Stator Resistance (r1)<br>(for PM Motors)               | Ω                | 0.999            | 0.713 | 0.393 | 0.295 | 0.223 | 0.164 | 0.137 | 0.093 |  |  |  |
| E5-06 | Motor d-Axis Inductance<br>(Ld) (for PM Motors)               | mH               | 26.20            | 27.06 | 15.51 | 12.65 | 9.87  | 7.90  | 7.01  | 5.93  |  |  |  |
| E5-07 | Motor q-Axis Inductance<br>(Lq) (for PM Motors)               | mH               | 30.94            | 33.45 | 19.63 | 15.87 | 12.40 | 10.38 | 8.68  | 6.79  |  |  |  |
| E5-09 | Motor Induction Voltage<br>Constant 1 (Ke) (for PM<br>Motors) | mVs<br>/rad      | 587.6            | 670.1 | 612.7 | 624.6 | 610.4 | 655.4 | 708.4 | 739.2 |  |  |  |
| E5-24 | Motor Induction Voltage<br>Constant 2 (Ke) (for PM<br>Motors) | mV/<br>(r/min)   | 0.0              | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |  |  |  |
| E1-04 | Maximum Output Frequency                                      | Hz               | 72.5             | 72.5  | 72.5  | 72.5  | 72.5  | 72.5  | 72.5  | 72.5  |  |  |  |
| E1-05 | Maximum Voltage                                               | V                | 380.0            | 380.0 | 380.0 | 380.0 | 380.0 | 380.0 | 380.0 | 380.0 |  |  |  |
| E1-06 | Base Frequency                                                | Hz               | 72.5             | 72.5  | 72.5  | 72.5  | 72.5  | 72.5  | 72.5  | 72.5  |  |  |  |
| E1-09 | Minimum Output Frequency                                      | Hz               | 3.6              | 3.6   | 3.6   | 3.6   | 3.6   | 3.6   | 3.6   | 3.6   |  |  |  |
| C5-17 | Motor Inertia                                                 | kgm <sup>2</sup> | 0.017            | 0.027 | 0.046 | 0.055 | 0.064 | 0.116 | 0.140 | 0.259 |  |  |  |
| n5-02 | Motor Acceleration Time                                       | S                | 0.072            | 0.084 | 0.096 | 0.085 | 0.080 | 0.122 | 0.108 | 0.161 |  |  |  |

# Table B.28 400 V, 1450 r/min Type Yaskawa SSR1 Series IPM Motor

| No.   | Name                                                          | Unit             | Unit Default Settings |       |       |       |        |        |        |        |  |  |  |
|-------|---------------------------------------------------------------|------------------|-----------------------|-------|-------|-------|--------|--------|--------|--------|--|--|--|
|       | Motor Code Selection (for PM Motors)                          | _                | 1344                  | 1345  | 1346  | 1347  | 1348   | 1349   | 1402   | 1403   |  |  |  |
| E5-01 | Voltage Class                                                 | V                | 400                   | 400   | 400   | 400   | 400    | 400    | 200    | 200    |  |  |  |
|       | Rated Power                                                   | kW               | 45                    | 55    | 75    | 90    | 110    | 132    | 0.4    | 0.75   |  |  |  |
|       | Rated Speed                                                   | r/min            | 1450                  | 1450  | 1450  | 1450  | 1450   | 1450   | 1150   | 1150   |  |  |  |
| E5-02 | Motor Rated Power (for PM Motors)                             | kW               | 45.00                 | 55.00 | 75.00 | 90.00 | 110.00 | 132.00 | 0.4    | 0.75   |  |  |  |
| E5-03 | Motor Rated Current (for PM Motors)                           | A                | 76.4                  | 96.1  | 124.0 | 153.1 | 186.5  | 226.0  | 1.88   | 3.02   |  |  |  |
| E5-04 | Number of Motor Poles (for PM Motors)                         | _                | 6                     | 6     | 6     | 6     | 6      | 6      | 6      | 6      |  |  |  |
| E5-05 | Motor Stator Resistance (r1)<br>(for PM Motors)               | Ω                | 0.059                 | 0.048 | 0.028 | 0.024 | 0.015  | 0.011  | 4.832  | 2.704  |  |  |  |
| E5-06 | Motor d-Axis Inductance<br>(Ld) (for PM Motors)               | mH               | 4.17                  | 3.11  | 2.32  | 2.20  | 1.45   | 1.23   | 48.68  | 32.31  |  |  |  |
| E5-07 | Motor q-Axis Inductance<br>(Lq) (for PM Motors)               | mН               | 5.22                  | 4.55  | 2.97  | 3.23  | 1.88   | 1.67   | 63.21  | 40.24  |  |  |  |
| E5-09 | Motor Induction Voltage<br>Constant 1 (Ke) (for PM<br>Motors) | mVs<br>/rad      | 703.0                 | 747.1 | 639.3 | 708.0 | 640.7  | 677.0  | 320.4  | 327.1  |  |  |  |
| E5-24 | Motor Induction Voltage<br>Constant 2 (Ke) (for PM<br>Motors) | mV/<br>(r/min)   | 0.0                   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0    | 0.0    |  |  |  |
| E1-04 | Maximum Output Frequency                                      | Hz               | 72.5                  | 72.5  | 72.5  | 72.5  | 72.5   | 72.5   | 57.5   | 57.5   |  |  |  |
| E1-05 | Maximum Voltage                                               | V                | 380.0                 | 380.0 | 380.0 | 380.0 | 380.0  | 380.0  | 190.0  | 190.0  |  |  |  |
| E1-06 | Base Frequency                                                | Hz               | 72.5                  | 72.5  | 72.5  | 72.5  | 72.5   | 72.5   | 57.5   | 57.5   |  |  |  |
| E1-09 | Minimum Output Frequency                                      | Hz               | 3.6                   | 3.6   | 3.6   | 3.6   | 3.6    | 3.6    | 2.9    | 2.9    |  |  |  |
| C5-17 | Motor Inertia                                                 | kgm <sup>2</sup> | 0.312                 | 0.42  | 0.56  | 0.83  | 0.96   | 1.61   | 0.0017 | 0.0023 |  |  |  |
| n5-02 | Motor Acceleration Time                                       | S                | 0.160                 | 0.175 | 0.171 | 0.213 | 0.201  | 0.281  | 0.062  | 0.044  |  |  |  |

Table B.29 200 V, 1150 r/min Type Yaskawa SSR1 Series IPM Motor

| No.   | Name                                                    | Unit             | Default Settings |        |        |       |       |       |       |       |  |  |
|-------|---------------------------------------------------------|------------------|------------------|--------|--------|-------|-------|-------|-------|-------|--|--|
|       | Motor Code Selection (for PM Motors)                    | _                | 1405             | 1406   | 1408   | 140A  | 140B  | 140D  | 140E  | 140F  |  |  |
| E5-01 | Voltage Class                                           | V                | 200              | 200    | 200    | 200   | 200   | 200   | 200   | 200   |  |  |
|       | Rated Power                                             | kW               | 1.5              | 2.2    | 3.7    | 5.5   | 7.5   | 11.0  | 15    | 18.00 |  |  |
|       | Rated Speed                                             | r/min            | 1150             | 1150   | 1150   | 1150  | 1150  | 1150  | 1150  | 1150  |  |  |
| E5-02 | Motor Rated Power (for PM Motors)                       | kW               | 1.5              | 2.2    | 3.7    | 5.5   | 7.5   | 11    | 15    | 18.5  |  |  |
| E5-03 | Motor Rated Current (for PM Motors)                     | A                | 6.00             | 8.85   | 14.27  | 20.21 | 26.67 | 39.9  | 55.6  | 63.5  |  |  |
| E5-04 | Number of Motor Poles (for PM Motors)                   | -                | 6                | 6      | 6      | 6     | 6     | 6     | 6     | 6     |  |  |
| E5-05 | Motor Stator Resistance (r1) (for PM Motors)            | Ω                | 1.114            | 0.511  | 0.412  | 0.303 | 0.165 | 0.113 | 0.084 | 0.066 |  |  |
| E5-06 | Motor d-Axis Inductance (Ld) (for PM Motors)            | mH               | 19.22            | 12.15  | 7.94   | 11.13 | 6.59  | 4.96  | 3.83  | 3.33  |  |  |
| E5-07 | Motor q-Axis Inductance (Lq) (for PM Motors)            | mН               | 24.38            | 15.35  | 11.86  | 14.06 | 8.55  | 6.12  | 4.65  | 4.5   |  |  |
| E5-09 | Motor Induction Voltage Constant 1 (Ke) (for PM Motors) | mVs<br>/rad      | 364.4            | 344.4  | 357.5  | 430.8 | 391.5 | 384.4 | 372.1 | 421.3 |  |  |
| E5-24 | Motor Induction Voltage Constant 2 (Ke) (for PM Motors) | mV/<br>(r/min)   | 0.0              | 0.0    | 0.0    | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |  |  |
| E1-04 | Maximum Output Frequency                                | Hz               | 57.5             | 57.5   | 57.5   | 57.5  | 57.5  | 57.5  | 57.5  | 57.5  |  |  |
| E1-05 | Maximum Voltage                                         | V                | 190.0            | 190.0  | 190.0  | 190.0 | 190.0 | 190.0 | 190.0 | 190.0 |  |  |
| E1-06 | Base Frequency                                          | Hz               | 57.5             | 57.5   | 57.5   | 57.5  | 57.5  | 57.5  | 57.5  | 57.5  |  |  |
| E1-09 | Minimum Output Frequency                                | Hz               | 2.9              | 2.9    | 2.9    | 2.9   | 2.9   | 2.9   | 2.9   | 2.9   |  |  |
| C5-17 | Motor Inertia                                           | kgm <sup>2</sup> | 0.0083           | 0.0136 | 0.0171 | 0.027 | 0.046 | 0.055 | 0.064 | 0.116 |  |  |
| n5-02 | Motor Acceleration Time                                 | S                | 0.080            | 0.090  | 0.067  | 0.072 | 0.088 | 0.073 | 0.062 | 0.091 |  |  |

#### Table B.30 200 V, 1150 r/min Type Yaskawa SSR1 Series IPM Motor

|       | Table B.30 2                                               |                  |       | JPO Tuesto |       | 001100 11 |          |        |        |        |
|-------|------------------------------------------------------------|------------------|-------|------------|-------|-----------|----------|--------|--------|--------|
| No.   | Name                                                       | Unit             |       |            |       | Default   | Settings |        |        |        |
|       | Motor Code Selection (for PM Motors)                       | _                | 1410  | 1412       | 1413  | 1414      | 1432     | 1433   | 1435   | 1436   |
| E5-01 | Voltage Class                                              | V                | 200   | 200        | 200   | 200       | 400      | 400    | 400    | 400    |
|       | Rated Power                                                | kW               | 22.00 | 30.00      | 37.00 | 45.00     | 0.4      | 0.75   | 1.5    | 2.2    |
|       | Rated Speed                                                | r/min            | 1150  | 1150       | 1150  | 1150      | 1150     | 1150   | 1150   | 1150   |
| E5-02 | Motor Rated Power (for PM Motors)                          | kW               | 22    | 30         | 37    | 45        | 0.4      | 0.75   | 1.5    | 2.2    |
| E5-03 | Motor Rated Current (for PM Motors)                        | A                | 74.4  | 104.2      | 129.6 | 154.2     | 0.94     | 1.51   | 3.00   | 4.43   |
| E5-04 | Number of Motor Poles (for PM Motors)                      | _                | 6     | 6          | 6     | 6         | 6        | 6      | 6      | 6      |
| E5-05 | Motor Stator Resistance (r1) (for PM Motors)               | Ω                | 0.048 | 0.035      | 0.023 | 0.016     | 19.320   | 10.800 | 4.456  | 2.044  |
| E5-06 | Motor d-Axis Inductance (Ld) (for PM Motors)               | mН               | 2.38  | 2.04       | 1.53  | 1.16      | 194.70   | 129.20 | 76.88  | 48.60  |
| E5-07 | Motor q-Axis Inductance (Lq) (for PM Motors)               | mH               | 3.15  | 2.86       | 2.27  | 1.54      | 252.84   | 160.90 | 97.52  | 61.40  |
| E5-09 | Motor Induction Voltage Constant 1<br>(Ke) (for PM Motors) | mVs<br>/rad      | 410.9 | 436.1      | 428.8 | 433.3     | 640.9    | 654.1  | 728.8  | 688.9  |
| E5-24 | Motor Induction Voltage Constant 2 (Ke) (for PM Motors)    | mV/<br>(r/min)   | 0.0   | 0.0        | 0.0   | 0.0       | 0.0      | 0.0    | 0.0    | 0.0    |
| E1-04 | Maximum Output Frequency                                   | Hz               | 57.5  | 57.5       | 57.5  | 57.5      | 57.5     | 57.5   | 57.5   | 57.5   |
| E1-05 | Maximum Voltage                                            | V                | 190.0 | 190.0      | 190.0 | 190.0     | 380.0    | 380.0  | 380.0  | 380.0  |
| E1-06 | Base Frequency                                             | Hz               | 57.5  | 57.5       | 57.5  | 57.5      | 57.5     | 57.5   | 57.5   | 57.5   |
| E1-09 | Minimum Output Frequency                                   | Hz               | 2.9   | 2.9        | 2.9   | 2.9       | 2.9      | 2.9    | 2.9    | 2.9    |
| C5-17 | Motor Inertia                                              | kgm <sup>2</sup> | 0.14  | 0.259      | 0.312 | 0.418     | 0.0017   | 0.0023 | 0.0083 | 0.0136 |
| n5-02 | Motor Acceleration Time                                    | S                | 0.092 | 0.125      | 0.122 | 0.135     | 0.062    | 0.044  | 0.080  | 0.090  |

Table B.31 400 V, 1150 r/min Type Yaskawa SSR1 Series IPM Motor

| No.   | Name                                                          | Unit             | Default Settings |       |       |       |       |       |       |       |  |  |
|-------|---------------------------------------------------------------|------------------|------------------|-------|-------|-------|-------|-------|-------|-------|--|--|
|       | Motor Code Selection (for PM Motors)                          | -                | 1438             | 143A  | 143B  | 143D  | 143E  | 143F  | 1440  | 1442  |  |  |
| E5-01 | Voltage Class                                                 | V                | 400              | 400   | 400   | 400   | 400   | 400   | 400   | 400   |  |  |
|       | Rated Power                                                   | kW               | 3.7              | 5.5   | 7.5   | 11    | 15    | 18    | 22    | 30    |  |  |
|       | Rated Speed                                                   | r/min            | 1150             | 1150  | 1150  | 1150  | 1150  | 1150  | 1150  | 1150  |  |  |
| E5-02 | Motor Rated Power (for PM Motors)                             | kW               | 3.7              | 5.5   | 7.5   | 11.0  | 15    | 18.50 | 22.00 | 30.00 |  |  |
| E5-03 | Motor Rated Current (for PM Motors)                           | A                | 7.08             | 10.10 | 13.33 | 19.9  | 27.8  | 31.8  | 37.2  | 52.1  |  |  |
| E5-04 | Number of Motor Poles (for PM Motors)                         | -                | 6                | 6     | 6     | 6     | 6     | 6     | 6     | 6     |  |  |
| E5-05 | Motor Stator Resistance (r1) (for PM Motors)                  | Ω                | 1.483            | 1.215 | 0.660 | 0.443 | 0.331 | 0.264 | 0.192 | 0.140 |  |  |
| E5-06 | Motor d-Axis Inductance (Ld) (for PM Motors)                  | mH               | 37.58            | 44.54 | 26.36 | 19.10 | 15.09 | 13.32 | 9.52  | 8.16  |  |  |
| E5-07 | Motor q-Axis Inductance (Lq) (for PM Motors)                  | mH               | 47.65            | 56.26 | 34.20 | 24.67 | 18.56 | 18.00 | 12.60 | 11.40 |  |  |
| E5-09 | Motor Induction Voltage<br>Constant 1 (Ke) (for PM<br>Motors) | mVs<br>/rad      | 702.0            | 861.5 | 783.0 | 762.2 | 749.6 | 842.7 | 821.8 | 872.3 |  |  |
| E5-24 | Motor Induction Voltage<br>Constant 2 (Ke) (for PM<br>Motors) | mV/<br>(r/min)   | 0.0              | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |  |  |
| E1-04 | Maximum Output Frequency                                      | Hz               | 57.5             | 57.5  | 57.5  | 57.5  | 57.5  | 57.5  | 57.5  | 57.5  |  |  |
| E1-05 | Maximum Voltage                                               | V                | 380.0            | 380.0 | 380.0 | 380.0 | 380.0 | 380.0 | 380.0 | 380.0 |  |  |
| E1-06 | Base Frequency                                                | Hz               | 57.5             | 57.5  | 57.5  | 57.5  | 57.5  | 57.5  | 57.5  | 57.5  |  |  |
| E1-09 | Minimum Output Frequency                                      | Hz               | 2.9              | 2.9   | 2.9   | 2.9   | 2.9   | 2.9   | 2.9   | 2.9   |  |  |
| C5-17 | Motor Inertia                                                 | kgm <sup>2</sup> | 0.0171           | 0.027 | 0.046 | 0.055 | 0.064 | 0.116 | 0.140 | 0.259 |  |  |
| n5-02 | Motor Acceleration Time                                       | S                | 0.067            | 0.072 | 0.088 | 0.073 | 0.062 | 0.091 | 0.092 | 0.125 |  |  |

Table B.32 400 V, 1150 r/min Type Yaskawa SSR1 Series IPM Motor

| No.   | Name                                                    | Unit             |       |       | Default | Settings |       |        |
|-------|---------------------------------------------------------|------------------|-------|-------|---------|----------|-------|--------|
|       | Motor Code Selection (for PM Motors)                    | -                | 1443  | 1444  | 1445    | 1446     | 1447  | 1448   |
| E5-01 | Voltage Class                                           | V                | 400   | 400   | 400     | 400      | 400   | 400    |
|       | Rated Power                                             | kW               | 37    | 45    | 55      | 75       | 90    | 110    |
|       | Rated Speed                                             | r/min            | 1150  | 1150  | 1150    | 1150     | 1150  | 1150   |
| E5-02 | Motor Rated Power (for PM Motors)                       | kW               | 37.00 | 45.00 | 55.00   | 75.00    | 90.00 | 110.00 |
| E5-03 | Motor Rated Current (for PM Motors)                     | A                | 64.8  | 76.6  | 92.0    | 127.1    | 150.5 | 185.4  |
| E5-04 | Number of Motor Poles (for PM Motors)                   | _                | 6     | 6     | 6       | 6        | 6     | 6      |
| E5-05 | Motor Stator Resistance (r1) (for PM Motors)            | Ω                | 0.093 | 0.063 | 0.051   | 0.033    | 0.027 | 0.015  |
| E5-06 | Motor d-Axis Inductance (Ld) (for PM Motors)            | mН               | 6.13  | 4.63  | 3.96    | 3.03     | 2.60  | 1.89   |
| E5-07 | Motor q-Axis Inductance (Lq) (for PM Motors)            | mH               | 9.10  | 6.15  | 5.00    | 5.14     | 3.28  | 2.33   |
| E5-09 | Motor Induction Voltage Constant 1 (Ke) (for PM Motors) | mVs<br>/rad      | 857.7 | 866.6 | 854.0   | 823.1    | 853.4 | 829.2  |
| E5-24 | Motor Induction Voltage Constant 2 (Ke) (for PM Motors) | mV/<br>(r/min)   | 0.0   | 0.0   | 0.0     | 0.0      | 0.0   | 0.0    |
| E1-04 | Maximum Output Frequency                                | Hz               | 57.5  | 57.5  | 57.5    | 57.5     | 57.5  | 57.5   |
| E1-05 | Maximum Voltage                                         | V                | 380.0 | 380.0 | 380.0   | 380.0    | 380.0 | 380.0  |
| E1-06 | Base Frequency                                          | Hz               | 57.5  | 57.5  | 57.5    | 57.5     | 57.5  | 57.5   |
| E1-09 | Minimum Output Frequency                                | Hz               | 2.9   | 2.9   | 2.9     | 2.9      | 2.9   | 2.9    |
| C5-17 | Motor Inertia                                           | kgm <sup>2</sup> | 0.312 | 0.418 | 0.56    | 0.83     | 0.96  | 1.61   |

| No.   | Name                    | Unit |       |       | Default | Settings |       |       |
|-------|-------------------------|------|-------|-------|---------|----------|-------|-------|
| n5-02 | Motor Acceleration Time | S    | 0.122 | 0.135 | 0.147   | 0.161    | 0.154 | 0.212 |

# ◆ Yaskawa SST4 Series IPM Motor (For Constant Torque)

# Table B.33 200 V, 1750 r/min Type Yaskawa SST4 Series IPM Motor

| No.   | Name                                                                      | Unit             |        |        |        | Default | Settings |       |       |       |
|-------|---------------------------------------------------------------------------|------------------|--------|--------|--------|---------|----------|-------|-------|-------|
|       | Motor Code Selection (for PM Motors)                                      | -                | 2202   | 2203   | 2205   | 2206    | 2208     | 220A  | 220B  | 220D  |
| E5-01 | Voltage Class                                                             | V                | 200    | 200    | 200    | 200     | 200      | 200   | 200   | 200   |
|       | Rated Power                                                               | kW               | 0.4    | 0.75   | 1.5    | 2.2     | 3.7      | 5.5   | 7.5   | 11    |
|       | Rated Speed                                                               | r/min            | 1750   | 1750   | 1750   | 1750    | 1750     | 1750  | 1750  | 1750  |
| E5-02 | Motor Rated Power (for PM Motors)                                         | kW               | 0.4    | 0.75   | 1.5    | 2.2     | 3.7      | 5.5   | 7.5   | 11.0  |
| E5-03 | Motor Rated Current (for PM Motors)                                       | A                | 1.77   | 3.54   | 6.56   | 8.96    | 14.79    | 20.94 | 29.58 | 41.1  |
| E5-04 | Number of Motor Poles (for PM Motors)                                     | -                | 6      | 6      | 6      | 6       | 6        | 6     | 6     | 6     |
| E5-05 | Motor Stator Resistance (r1) (for PM Motors)                              | Ω                | 2.247  | 1.132  | 0.774  | 0.479   | 0.242    | 0.275 | 0.161 | 0.111 |
| E5-06 | Motor d-Axis Inductance (Ld) (for PM Motors)                              | mH               | 22.32  | 12.38  | 8.90   | 7.39    | 5.06     | 5.82  | 3.86  | 3.59  |
| E5-07 | Motor q-Axis Inductance (Lq) (for PM Motors)                              | mH               | 32.50  | 15.72  | 11.96  | 9.63    | 6.42     | 6.74  | 4.66  | 4.32  |
| E5-09 | Motor Induction Voltage<br>Constant 1 (Ke) (for PM Motors)                | mVs<br>/rad      | 215.2  | 203.9  | 219.3  | 230.6   | 235.1    | 251.7 | 235.7 | 252.0 |
| E5-24 | Motor Induction Voltage<br>Constant 2 (Ke) (for PM Motors)                | mV/<br>(r/min)   | 0.0    | 0.0    | 0.0    | 0.0     | 0.0      | 0.0   | 0.0   | 0.0   |
| E1-04 | Maximum Output Frequency                                                  | Hz               | 87.5   | 87.5   | 87.5   | 87.5    | 87.5     | 87.5  | 87.5  | 87.5  |
| E1-05 | Maximum Voltage                                                           | V                | 190.0  | 190.0  | 190.0  | 190.0   | 190.0    | 190.0 | 190.0 | 190.0 |
| E1-06 | Base Frequency                                                            | Hz               | 87.5   | 87.5   | 87.5   | 87.5    | 87.5     | 87.5  | 87.5  | 87.5  |
| E1-09 | Minimum Output Frequency                                                  | Hz               | 4.4    | 4.4    | 4.4    | 4.4     | 4.4      | 4.4   | 4.4   | 4.4   |
| C5-17 | Motor Inertia                                                             | kgm <sup>2</sup> | 0.0016 | 0.0022 | 0.0042 | 0.0081  | 0.0133   | 0.013 | 0.017 | 0.027 |
| n5-02 | Motor Acceleration Time                                                   | s                | 0.134  | 0.099  | 0.094  | 0.124   | 0.121    | 0.081 | 0.075 | 0.082 |
| n8-49 | d-Axis Current for High<br>Efficiency Control (for PM<br>Motors) (OLV/PM) | %                | -9.3   | -6.4   | -10.0  | -9.9    | -9.7     | -8.4  | -11.5 | -13.1 |

#### Table B.34 200 V, 1750 r/min Type Yaskawa SST4 Series IPM Motor

|       | I able b.                                                  | )4 200 V,      | 17 30 1/11111 | i iype ia | Skawa 33 i | 4 Series ii | r IVI IVIOLOI |       |       |       |
|-------|------------------------------------------------------------|----------------|---------------|-----------|------------|-------------|---------------|-------|-------|-------|
| No.   | Name                                                       | Unit           |               |           |            | Default S   | Settings      |       |       |       |
|       | Motor Code Selection (for PM Motors)                       | -              | 220E          | 220F      | 2210       | 2212        | 2213          | 2214  | 2215  | 2216  |
| E5-01 | Voltage Class                                              | V              | 200           | 200       | 200        | 200         | 200           | 200   | 200   | 200   |
|       | Rated Power                                                | kW             | 15            | 18        | 22         | 30          | 37            | 45    | 55    | 75    |
|       | Rated Speed                                                | r/min          | 1750          | 1750      | 1750       | 1750        | 1750          | 1750  | 1750  | 1750  |
| E5-02 | Motor Rated Power (for PM<br>Motors)                       | kW             | 15            | 18.50     | 22.00      | 30.00       | 37.00         | 45.00 | 55.00 | 75.00 |
| E5-03 | Motor Rated Current (for PM Motors)                        | A              | 54.2          | 68.2      | 78.6       | 104.2       | 129.2         | 153.1 | 205.2 | 260.4 |
| E5-04 | Number of Motor Poles (for PM Motors)                      | _              | 6             | 6         | 6          | 6           | 6             | 6     | 6     | 6     |
| E5-05 | Motor Stator Resistance (r1) (for PM Motors)               | Ω              | 0.071         | 0.049     | 0.040      | 0.030       | 0.020         | 0.013 | 0.009 | 0.006 |
| E5-06 | Motor d-Axis Inductance (Ld) (for PM Motors)               | mH             | 2.67          | 1.98      | 1.69       | 1.31        | 0.88          | 0.77  | 0.55  | 0.40  |
| E5-07 | Motor q-Axis Inductance (Lq) (for PM Motors)               | mH             | 3.1           | 2.41      | 2.12       | 1.61        | 1.14          | 1.04  | 0.69  | 0.50  |
| E5-09 | Motor Induction Voltage Constant<br>1 (Ke) (for PM Motors) | mVs<br>/rad    | 253.7         | 244.6     | 256.3      | 283.1       | 266.3         | 260   | 261.5 | 259.3 |
| E5-24 | Motor Induction Voltage Constant 2 (Ke) (for PM Motors)    | mV/<br>(r/min) | 0.0           | 0.0       | 0.0        | 0.0         | 0.0           | 0.0   | 0.0   | 0.0   |

# **B.19 Parameters Changed by Motor Code Selection (for PM Motors)**

| No.   | Name                                                                      | Unit             |       |       |       | Default S | Settings |       |       |       |
|-------|---------------------------------------------------------------------------|------------------|-------|-------|-------|-----------|----------|-------|-------|-------|
| E1-04 | Maximum Output Frequency                                                  | Hz               | 87.5  | 87.5  | 87.5  | 87.5      | 87.5     | 87.5  | 87.5  | 87.5  |
| E1-05 | Maximum Voltage                                                           | V                | 190.0 | 190.0 | 190.0 | 190.0     | 190.0    | 190.0 | 190.0 | 190.0 |
| E1-06 | Base Frequency                                                            | Hz               | 87.5  | 87.5  | 87.5  | 87.5      | 87.5     | 87.5  | 87.5  | 87.5  |
| E1-09 | Minimum Output Frequency                                                  | Hz               | 4.4   | 4.4   | 4.4   | 4.4       | 4.4      | 4.4   | 4.4   | 4.4   |
| C5-17 | Motor Inertia                                                             | kgm <sup>2</sup> | 0.044 | 0.054 | 0.063 | 0.113     | 0.137    | 0.252 | 0.30  | 0.41  |
| n5-02 | Motor Acceleration Time                                                   | S                | 0.099 | 0.098 | 0.096 | 0.127     | 0.124    | 0.188 | 0.186 | 0.184 |
| n8-49 | d-Axis Current for High<br>Efficiency Control (for PM<br>Motors) (OLV/PM) | %                | -10.9 | -14.3 | -15.1 | -11.3     | -14.1    | -18.8 | -11.4 | -12.2 |

# Table B.35 400 V, 1750 r/min Type Yaskawa SST4 Series IPM Motor

| No.   | Name                                                                      | Unit             |        |        |        | Default | Settings |       |       |       |
|-------|---------------------------------------------------------------------------|------------------|--------|--------|--------|---------|----------|-------|-------|-------|
|       | Motor Code Selection (for PM Motors)                                      | -                | 2232   | 2233   | 2235   | 2236    | 2238     | 223A  | 223B  | 223D  |
| E5-01 | Voltage Class                                                             | V                | 400    | 400    | 400    | 400     | 400      | 400   | 400   | 400   |
|       | Rated Power                                                               | kW               | 0.4    | 0.75   | 1.5    | 2.2     | 3.7      | 5.5   | 7.5   | 11    |
|       | Rated Speed                                                               | r/min            | 1750   | 1750   | 1750   | 1750    | 1750     | 1750  | 1750  | 1750  |
| E5-02 | Motor Rated Power (for PM Motors)                                         | kW               | 0.4    | 0.75   | 1.5    | 2.2     | 3.7      | 5.5   | 7.5   | 11.0  |
| E5-03 | Motor Rated Current (for PM Motors)                                       | A                | 0.92   | 1.77   | 3.33   | 4.48    | 7.50     | 10.42 | 14.27 | 20.5  |
| E5-04 | Number of Motor Poles (for PM Motors)                                     | _                | 6      | 6      | 6      | 6       | 6        | 6     | 6     | 6     |
| E5-05 | Motor Stator Resistance (r1)<br>(for PM Motors)                           | Ω                | 8.935  | 4.570  | 3.096  | 1.906   | 0.972    | 1.103 | 0.630 | 0.429 |
| E5-06 | Motor d-Axis Inductance<br>(Ld) (for PM Motors)                           | mH               | 80.14  | 48.04  | 35.60  | 30.31   | 20.03    | 23.41 | 14.86 | 14.34 |
| E5-07 | Motor q-Axis Inductance<br>(Lq) (for PM Motors)                           | mH               | 110.76 | 64.88  | 47.84  | 38.36   | 24.97    | 28.70 | 17.25 | 17.25 |
| E5-09 | Motor Induction Voltage<br>Constant 1 (Ke) (for PM<br>Motors)             | mVs<br>/rad      | 416.5  | 399.4  | 438.5  | 475.5   | 463.7    | 485.8 | 470.4 | 513.4 |
| E5-24 | Motor Induction Voltage<br>Constant 2 (Ke) (for PM<br>Motors)             | mV/<br>(r/min)   | 0.0    | 0.0    | 0.0    | 0.0     | 0.0      | 0.0   | 0.0   | 0.0   |
| E1-04 | Maximum Output Frequency                                                  | Hz               | 87.5   | 87.5   | 87.5   | 87.5    | 87.5     | 87.5  | 87.5  | 87.5  |
| E1-05 | Maximum Voltage                                                           | V                | 380.0  | 380.0  | 380.0  | 380.0   | 380.0    | 380.0 | 380.0 | 380.0 |
| E1-06 | Base Frequency                                                            | Hz               | 87.5   | 87.5   | 87.5   | 87.5    | 87.5     | 87.5  | 87.5  | 87.5  |
| E1-09 | Minimum Output Frequency                                                  | Hz               | 4.4    | 4.4    | 4.4    | 4.4     | 4.4      | 4.4   | 4.4   | 4.4   |
| C5-17 | Motor Inertia                                                             | kgm <sup>2</sup> | 0.0016 | 0.0022 | 0.0042 | 0.0081  | 0.0133   | 0.013 | 0.017 | 0.027 |
| n5-02 | Motor Acceleration Time                                                   | S                | 0.134  | 0.099  | 0.094  | 0.124   | 0.121    | 0.081 | 0.075 | 0.082 |
| n8-49 | d-Axis Current for High<br>Efficiency Control (for PM<br>Motors) (OLV/PM) | %                | -7.5   | -8.5   | -9.8   | -8.2    | -9.1     | -13.1 | -9.2  | -12.4 |

# Table B.36 400 V, 1750 r/min Type Yaskawa SST4 Series IPM Motor

| No.   | Name                                         | Unit  |       |       |       | Default | Settings |       |       |       |
|-------|----------------------------------------------|-------|-------|-------|-------|---------|----------|-------|-------|-------|
|       | Motor Code Selection (for PM Motors)         | =     | 223E  | 223F  | 2240  | 2242    | 2243     | 2244  | 2245  | 2246  |
| E5-01 | Voltage Class                                | V     | 400   | 400   | 400   | 400     | 400      | 400   | 400   | 400   |
|       | Rated Power                                  | kW    | 15    | 18    | 22    | 30      | 37       | 45    | 55    | 75    |
|       | Rated Speed                                  | r/min | 1750  | 1750  | 1750  | 1750    | 1750     | 1750  | 1750  | 1750  |
| E5-02 | Motor Rated Power (for PM Motors)            | kW    | 15    | 18.50 | 22.00 | 30.00   | 37.00    | 45.00 | 55.00 | 75.00 |
| E5-03 | Motor Rated Current (for PM Motors)          | A     | 26.4  | 34.2  | 38.8  | 52.2    | 65.4     | 77.6  | 99.3  | 130.2 |
| E5-04 | Number of Motor Poles (for PM Motors)        | -     | 6     | 6     | 6     | 6       | 6        | 6     | 6     | 6     |
| E5-05 | Motor Stator Resistance (r1) (for PM Motors) | Ω     | 0.275 | 0.196 | 0.160 | 0.120   | 0.077    | 0.052 | 0.036 | 0.023 |

| No.   | Name                                                                      | Unit             |       |       |       | Default | Settings |       |       |       |
|-------|---------------------------------------------------------------------------|------------------|-------|-------|-------|---------|----------|-------|-------|-------|
| E5-06 | Motor d-Axis Inductance<br>(Ld) (for PM Motors)                           | mН               | 9.99  | 7.92  | 6.82  | 5.24    | 3.57     | 2.98  | 1.59  | 1.59  |
| E5-07 | Motor q-Axis Inductance<br>(Lq) (for PM Motors)                           | mН               | 12.37 | 9.64  | 8.51  | 6.44    | 4.65     | 3.75  | 2.78  | 1.97  |
| E5-09 | Motor Induction Voltage<br>Constant 1 (Ke) (for PM<br>Motors)             | mVs<br>/rad      | 505.3 | 489.2 | 509.5 | 566.2   | 531.6    | 530.6 | 515.2 | 515.2 |
| E5-24 | Motor Induction Voltage<br>Constant 2 (Ke) (for PM<br>Motors)             | mV/<br>(r/min)   | 0.0   | 0.0   | 0.0   | 0.0     | 0.0      | 0.0   | 0.0   | 0.0   |
| E1-04 | Maximum Output Frequency                                                  | Hz               | 87.5  | 87.5  | 87.5  | 87.5    | 87.5     | 87.5  | 87.5  | 87.5  |
| E1-05 | Maximum Voltage                                                           | V                | 380.0 | 380.0 | 380.0 | 380.0   | 380.0    | 380.0 | 380.0 | 380.0 |
| E1-06 | Base Frequency                                                            | Hz               | 87.5  | 87.5  | 87.5  | 87.5    | 87.5     | 87.5  | 87.5  | 87.5  |
| E1-09 | Minimum Output Frequency                                                  | Hz               | 4.4   | 4.4   | 4.4   | 4.4     | 4.4      | 4.4   | 4.4   | 4.4   |
| C5-17 | Motor Inertia                                                             | kgm <sup>2</sup> | 0.044 | 0.054 | 0.063 | 0.113   | 0.137    | 0.252 | 0.30  | 0.41  |
| n5-02 | Motor Acceleration Time                                                   | S                | 0.099 | 0.098 | 0.096 | 0.127   | 0.124    | 0.188 | 0.186 | 0.184 |
| n8-49 | d-Axis Current for High<br>Efficiency Control (for PM<br>Motors) (OLV/PM) | %                | -15.1 | -14.3 | -15.3 | -11.3   | -14.5    | -13.2 | -22.6 | -11.9 |

### Table B.37 400 V, 1750 r/min Type Yaskawa SST4 Series IPM Motor

| No.   | Name                                                                      | Unit             |       |        |        | Default | Settings |        |        |        |
|-------|---------------------------------------------------------------------------|------------------|-------|--------|--------|---------|----------|--------|--------|--------|
|       | Motor Code Selection (for PM Motors)                                      | -                | 2247  | 2248   | 2249   | 224A    | 224C     | 224D   | 224E   | 2302   |
| E5-01 | Voltage Class                                                             | V                | 400   | 400    | 400    | 400     | 400      | 400    | 400    | 200    |
|       | Rated Power                                                               | kW               | 90.00 | 110    | 132    | 160     | 200      | 220    | 300    | 0.4    |
|       | Rated Speed                                                               | r/min            | 1750  | 1750   | 1750   | 1750    | 1750     | 1750   | 1750   | 1450   |
| E5-02 | Motor Rated Power (for PM Motors)                                         | kW               | 90.00 | 110.00 | 132.00 | 160.00  | 200.00   | 250.00 | 300.00 | 0.4    |
| E5-03 | Motor Rated Current (for PM Motors)                                       | A                | 153.1 | 184.4  | 229.2  | 269.8   | 346.9    | 421.9  | 520.8  | 1.77   |
| E5-04 | Number of Motor Poles (for PM Motors)                                     | =                | 6     | 6      | 6      | 6       | 6        | 6      | 6      | 6      |
| E5-05 | Motor Stator Resistance (r1)<br>(for PM Motors)                           | Ω                | 0.019 | 0.017  | 0.012  | 0.008   | 0.005    | 0.004  | 0.002  | 3.154  |
| E5-06 | Motor d-Axis Inductance<br>(Ld) (for PM Motors)                           | mH               | 1.51  | 1.43   | 1.13   | 0.96    | 0.65     | 0.67   | 0.40   | 28.46  |
| E5-07 | Motor q-Axis Inductance<br>(Lq) (for PM Motors)                           | mH               | 1.76  | 1.92   | 1.54   | 1.26    | 0.88     | 0.74   | 0.52   | 39.29  |
| E5-09 | Motor Induction Voltage<br>Constant 1 (Ke) (for PM<br>Motors)             | mVs<br>/rad      | 538.3 | 590.9  | 548.2  | 603.9   | 556.8    | 593.1  | 495.4  | 268.8  |
| E5-24 | Motor Induction Voltage<br>Constant 2 (Ke) (for PM<br>Motors)             | mV/<br>(r/min)   | 0.0   | 0.0    | 0.0    | 0.0     | 0.0      | 0.0    | 0.0    | 0.0    |
| E1-04 | Maximum Output Frequency                                                  | Hz               | 87.5  | 87.5   | 87.5   | 87.5    | 87.5     | 87.5   | 87.5   | 72.5   |
| E1-05 | Maximum Voltage                                                           | V                | 380.0 | 380.0  | 380.0  | 380.0   | 380.0    | 380.0  | 380.0  | 190.0  |
| E1-06 | Base Frequency                                                            | Hz               | 87.5  | 87.5   | 87.5   | 87.5    | 87.5     | 87.5   | 87.5   | 72.5   |
| E1-09 | Minimum Output Frequency                                                  | Hz               | 4.4   | 4.4    | 4.4    | 4.4     | 4.4      | 4.4    | 4.4    | 3.6    |
| C5-17 | Motor Inertia                                                             | kgm <sup>2</sup> | 0.55  | 0.82   | 0.96   | 1.60    | 1.95     | 2.82   | 3.70   | 0.0016 |
| n5-02 | Motor Acceleration Time                                                   | S                | 0.205 | 0.250  | 0.244  | 0.336   | 0.327    | 0.379  | 0.414  | 0.092  |
| n8-49 | d-Axis Current for High<br>Efficiency Control (for PM<br>Motors) (OLV/PM) | %                | -8.6  | -14.8  | -17.5  | -12.5   | -14.7    | -5.1   | -16.3  | -7.5   |

Table B.38 200 V, 1450 r/min Type Yaskawa SST4 Series IPM Motor

| No.   | Name                                                                      | Unit             |        |        |        | Default S | Settings |       |       |       |
|-------|---------------------------------------------------------------------------|------------------|--------|--------|--------|-----------|----------|-------|-------|-------|
|       | Motor Code Selection (for PM Motors)                                      | _                | 2302   | 2303   | 2305   | 2306      | 2308     | 230A  | 230B  | 230D  |
| E5-01 | Voltage Class                                                             | V                | 200    | 200    | 200    | 200       | 200      | 200   | 200   | 200   |
|       | Rated Power                                                               | kW               | 0.4    | 0.75   | 1.5    | 2.2       | 3.7      | 5.5   | 7.5   | 11    |
|       | Rated Speed                                                               | r/min            | 1450   | 1450   | 1450   | 1450      | 1450     | 1450  | 1450  | 1450  |
| E5-02 | Motor Rated Power (for PM Motors)                                         | kW               | 0.4    | 0.75   | 1.5    | 2.2       | 3.7      | 5.5   | 7.5   | 11.0  |
| E5-03 | Motor Rated Current (for PM Motors)                                       | A                | 1.77   | 3.33   | 5.94   | 9.48      | 14.17    | 20.42 | 27.92 | 39.6  |
| E5-04 | Number of Motor Poles (for PM Motors)                                     | _                | 6      | 6      | 6      | 6         | 6        | 6     | 6     | 6     |
| E5-05 | Motor Stator Resistance (r1) (for PM Motors)                              | Ω                | 3.154  | 1.835  | 0.681  | 0.308     | 0.405    | 0.278 | 0.180 | 0.098 |
| E5-06 | Motor d-Axis Inductance (Ld) (for PM Motors)                              | mH               | 28.46  | 19.46  | 10.00  | 6.88      | 8.15     | 5.77  | 6.32  | 3.34  |
| E5-07 | Motor q-Axis Inductance (Lq) (for PM Motors)                              | mH               | 39.29  | 25.89  | 15.20  | 9.25      | 10.76    | 8.60  | 8.80  | 4.61  |
| E5-09 | Motor Induction Voltage<br>Constant 1 (Ke) (for PM Motors)                | mVs<br>/rad      | 268.8  | 256.9  | 271.9  | 260.2     | 286.8    | 314.9 | 300.8 | 292.3 |
| E5-24 | Motor Induction Voltage<br>Constant 2 (Ke) (for PM Motors)                | mV/<br>(r/min)   | 0.0    | 0.0    | 0.0    | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   |
| E1-04 | Maximum Output Frequency                                                  | Hz               | 72.5   | 72.5   | 72.5   | 72.5      | 72.5     | 72.5  | 72.5  | 72.5  |
| E1-05 | Maximum Voltage                                                           | V                | 190.0  | 190.0  | 190.0  | 190.0     | 190.0    | 190.0 | 190.0 | 190.0 |
| E1-06 | Base Frequency                                                            | Hz               | 72.5   | 72.5   | 72.5   | 72.5      | 72.5     | 72.5  | 72.5  | 72.5  |
| E1-09 | Minimum Output Frequency                                                  | Hz               | 3.6    | 3.6    | 3.6    | 3.6       | 3.6      | 3.6   | 3.6   | 3.6   |
| C5-17 | Motor Inertia                                                             | kgm <sup>2</sup> | 0.0016 | 0.0022 | 0.0081 | 0.0133    | 0.0133   | 0.017 | 0.027 | 0.044 |
| n5-02 | Motor Acceleration Time                                                   | S                | 0.092  | 0.068  | 0.125  | 0.139     | 0.083    | 0.070 | 0.082 | 0.092 |
| n8-49 | d-Axis Current for High<br>Efficiency Control (for PM<br>Motors) (OLV/PM) | %                | -7.5   | -9.4   | -13.9  | -10.0     | -15.0    | -17.9 | -22.7 | -20.5 |

# Table B.39 200 V, 1450 r/min Type Yaskawa SST4 Series IPM Motor

| No.   | Name                                                       | Unit           |       | _     |       | Default | Settings |       |       |       |
|-------|------------------------------------------------------------|----------------|-------|-------|-------|---------|----------|-------|-------|-------|
|       | Motor Code Selection (for PM Motors)                       | -              | 230E  | 230F  | 2310  | 2312    | 2313     | 2314  | 2315  | 2316  |
| E5-01 | Voltage Class                                              | V              | 200   | 200   | 200   | 200     | 200      | 200   | 200   | 200   |
|       | Rated Power                                                | kW             | 15    | 18    | 22    | 30      | 37       | 45    | 55    | 75    |
|       | Rated Speed                                                | r/min          | 1450  | 1450  | 1450  | 1450    | 1450     | 1450  | 1450  | 1450  |
| E5-02 | Motor Rated Power (for PM Motors)                          | kW             | 15.0  | 18.50 | 22.00 | 30.00   | 37.00    | 45.00 | 55.00 | 75.00 |
| E5-03 | Motor Rated Current (for PM Motors)                        | A              | 54.2  | 68.3  | 75.2  | 102.0   | 131.3    | 160.4 | 191.7 | 257.3 |
| E5-04 | Number of Motor Poles (for PM Motors)                      | -              | 6     | 6     | 6     | 6       | 6        | 6     | 6     | 6     |
| E5-05 | Motor Stator Resistance (r1) (for PM Motors)               | Ω              | 0.073 | 0.055 | 0.048 | 0.034   | 0.023    | 0.016 | 0.012 | 0.007 |
| E5-06 | Motor d-Axis Inductance (Ld) (for PM Motors)               | mH             | 2.94  | 2.23  | 2.08  | 1.67    | 1.39     | 0.94  | 0.82  | 0.56  |
| E5-07 | Motor q-Axis Inductance (Lq) (for PM Motors)               | mH             | 3.65  | 2.85  | 2.66  | 2.04    | 1.73     | 1.22  | 1.06  | 0.76  |
| E5-09 | Motor Induction Voltage<br>Constant 1 (Ke) (for PM Motors) | mVs<br>/rad    | 305.1 | 297.6 | 355.8 | 355.4   | 324.0    | 302.4 | 337.2 | 323.4 |
| E5-24 | Motor Induction Voltage<br>Constant 2 (Ke) (for PM Motors) | mV/<br>(r/min) | 0.0   | 0.0   | 0.0   | 0.0     | 0.0      | 0.0   | 0.0   | 0.0   |
| E1-04 | Maximum Output Frequency                                   | Hz             | 72.5  | 72.5  | 72.5  | 72.5    | 72.5     | 72.5  | 72.5  | 72.5  |
| E1-05 | Maximum Voltage                                            | V              | 190.0 | 190.0 | 190.0 | 190.0   | 190.0    | 190.0 | 190.0 | 190.0 |
| E1-06 | Base Frequency                                             | Hz             | 72.5  | 72.5  | 72.5  | 72.5    | 72.5     | 72.5  | 72.5  | 72.5  |
| E1-09 | Minimum Output Frequency                                   | Hz             | 3.6   | 3.6   | 3.6   | 3.6     | 3.6      | 3.6   | 3.6   | 3.6   |

#### Unit No. Name **Default Settings** C5-17 Motor Inertia 0.054 0.063 0.113 0.137 0.252 0.304 $kgm^2 \\$ 0.41 0.55 n5-02 0.083 0.079 0.105 Motor Acceleration Time S 0.118 0.157 0.1560.1720.169 d-Axis Current for High Efficiency Control (for PM Motors) (OLV/PM) n8-49 % -14.6 -16.4 -11.8 -10.5 -14.5 -17.4 -13.9 -17.5

#### Table B.40 400 V, 1450 r/min Type Yaskawa SST4 Series IPM Motor

| No.   | Name                                                                      | Unit             |        |        |        | Default S | Settings |       |       |       |
|-------|---------------------------------------------------------------------------|------------------|--------|--------|--------|-----------|----------|-------|-------|-------|
|       | Motor Code Selection (for PM Motors)                                      | -                | 2332   | 2333   | 2335   | 2336      | 2338     | 233A  | 233B  | 233D  |
| E5-01 | Voltage Class                                                             | V                | 400    | 400    | 400    | 400       | 400      | 400   | 400   | 400   |
|       | Rated Power                                                               | kW               | 0.4    | 0.75   | 1.5    | 2.2       | 3.7      | 5.5   | 7.5   | 11    |
|       | Rated Speed                                                               | r/min            | 1450   | 1450   | 1450   | 1450      | 1450     | 1450  | 1450  | 1450  |
| E5-02 | Motor Rated Power (for PM Motors)                                         | kW               | 0.4    | 0.75   | 1.5    | 2.2       | 3.7      | 5.5   | 7.5   | 11.0  |
| E5-03 | Motor Rated Current (for PM Motors)                                       | A                | 0.91   | 1.67   | 3.02   | 4.74      | 7.08     | 10.21 | 13.96 | 20.5  |
| E5-04 | Number of Motor Poles (for PM Motors)                                     | -                | 6      | 6      | 6      | 6         | 6        | 6     | 6     | 6     |
| E5-05 | Motor Stator Resistance (r1)<br>(for PM Motors)                           | Ω                | 12.616 | 7.340  | 2.724  | 1.232     | 1.509    | 1.112 | 0.720 | 0.393 |
| E5-06 | Motor d-Axis Inductance (Ld) (for PM Motors)                              | mH               | 113.84 | 77.84  | 40.00  | 27.52     | 31.73    | 23.09 | 25.28 | 13.36 |
| E5-07 | Motor q-Axis Inductance (Lq) (for PM Motors)                              | mH               | 157.16 | 103.56 | 60.80  | 37.00     | 40.88    | 34.39 | 35.20 | 18.44 |
| E5-09 | Motor Induction Voltage<br>Constant 1 (Ke) (for PM<br>Motors)             | mVs<br>/rad      | 490.8  | 513.8  | 543.7  | 520.3     | 580.8    | 602.7 | 601.5 | 584.6 |
| E5-24 | Motor Induction Voltage<br>Constant 2 (Ke) (for PM<br>Motors)             | mV/<br>(r/min)   | 0.0    | 0.0    | 0.0    | 0.0       | 0.0      | 0.0   | 0.0   | 0.0   |
| E1-04 | Maximum Output Frequency                                                  | Hz               | 72.5   | 72.5   | 72.5   | 72.5      | 72.5     | 72.5  | 72.5  | 72.5  |
| E1-05 | Maximum Voltage                                                           | V                | 380.0  | 380.0  | 380.0  | 380.0     | 380.0    | 380.0 | 380.0 | 380.0 |
| E1-06 | Base Frequency                                                            | Hz               | 72.5   | 72.5   | 72.5   | 72.5      | 72.5     | 72.5  | 72.5  | 72.5  |
| E1-09 | Minimum Output Frequency                                                  | Hz               | 3.6    | 3.6    | 3.6    | 3.6       | 3.6      | 3.6   | 3.6   | 3.6   |
| C5-17 | Motor Inertia                                                             | kgm <sup>2</sup> | 0.0016 | 0.0022 | 0.0081 | 0.0133    | 0.0133   | 0.017 | 0.027 | 0.044 |
| n5-02 | Motor Acceleration Time                                                   | s                | 0.092  | 0.068  | 0.125  | 0.139     | 0.083    | 0.070 | 0.082 | 0.092 |
| n8-49 | d-Axis Current for High<br>Efficiency Control (for PM<br>Motors) (OLV/PM) | %                | -9.5   | -9.4   | -13.7  | -10.0     | -12.9    | -19.9 | -22.8 | -19.8 |

#### Table B.41 400 V, 1450 r/min Type Yaskawa SST4 Series IPM Motor

| N-    | Nama                                            | 11!4  | Init Default Settings |       |       |         |         |       |       |       |
|-------|-------------------------------------------------|-------|-----------------------|-------|-------|---------|---------|-------|-------|-------|
| No.   | Name                                            | Unit  |                       |       |       | Detault | ettings |       |       |       |
|       | Motor Code Selection (for PM Motors)            | =     | 233E                  | 233F  | 2340  | 2342    | 2343    | 2344  | 2345  | 2346  |
| E5-01 | Voltage Class                                   | V     | 400                   | 400   | 400   | 400     | 400     | 400   | 400   | 400   |
|       | Rated Power                                     | kW    | 15                    | 18    | 22    | 30      | 37      | 45    | 55    | 75    |
|       | Rated Speed                                     | r/min | 1450                  | 1450  | 1450  | 1450    | 1450    | 1450  | 1450  | 1450  |
| E5-02 | Motor Rated Power (for PM Motors)               | kW    | 15                    | 18.50 | 22.00 | 30.00   | 37.00   | 45.00 | 55.00 | 75.00 |
| E5-03 | Motor Rated Current (for PM Motors)             | A     | 27.1                  | 34.2  | 37.6  | 50.9    | 65.4    | 80.2  | 96.1  | 129.2 |
| E5-04 | Number of Motor Poles (for PM Motors)           | -     | 6                     | 6     | 6     | 6       | 6       | 6     | 6     | 6     |
| E5-05 | Motor Stator Resistance (r1)<br>(for PM Motors) | Ω     | 0.291                 | 0.220 | 0.192 | 0.136   | 0.091   | 0.064 | 0.048 | 0.028 |
| E5-06 | Motor d-Axis Inductance (Ld) (for PM Motors)    | mH    | 11.77                 | 8.94  | 8.32  | 6.68    | 5.30    | 3.76  | 3.09  | 2.24  |
| E5-07 | Motor q-Axis Inductance (Lq) (for PM Motors)    | mH    | 14.60                 | 11.40 | 10.64 | 8.16    | 6.80    | 4.88  | 4.75  | 3.03  |

# **B.19 Parameters Changed by Motor Code Selection (for PM Motors)**

| No.   | Name                                                                      | Unit             |       |       |       | Default S | ettings |       |       |       |
|-------|---------------------------------------------------------------------------|------------------|-------|-------|-------|-----------|---------|-------|-------|-------|
| E5-09 | Motor Induction Voltage<br>Constant 1 (Ke) (for PM<br>Motors)             | mVs<br>/rad      | 610.3 | 595.2 | 711.6 | 710.8     | 652.7   | 604.8 | 669.1 | 646.8 |
| E5-24 | Motor Induction Voltage<br>Constant 2 (Ke) (for PM<br>Motors)             | mV/<br>(r/min)   | 0.0   | 0.0   | 0.0   | 0.0       | 0.0     | 0.0   | 0.0   | 0.0   |
| E1-04 | Maximum Output Frequency                                                  | Hz               | 72.5  | 72.5  | 72.5  | 72.5      | 72.5    | 72.5  | 72.5  | 72.5  |
| E1-05 | Maximum Voltage                                                           | V                | 380.0 | 380.0 | 380.0 | 380.0     | 380.0   | 380.0 | 380.0 | 380.0 |
| E1-06 | Base Frequency                                                            | Hz               | 72.5  | 72.5  | 72.5  | 72.5      | 72.5    | 72.5  | 72.5  | 72.5  |
| E1-09 | Minimum Output Frequency                                                  | Hz               | 3.6   | 3.6   | 3.6   | 3.6       | 3.6     | 3.6   | 3.6   | 3.6   |
| C5-17 | Motor Inertia                                                             | kgm <sup>2</sup> | 0.054 | 0.063 | 0.113 | 0.137     | 0.252   | 0.304 | 0.41  | 0.55  |
| n5-02 | Motor Acceleration Time                                                   | s                | 0.083 | 0.079 | 0.118 | 0.105     | 0.157   | 0.156 | 0.172 | 0.169 |
| n8-49 | d-Axis Current for High<br>Efficiency Control (for PM<br>Motors) (OLV/PM) | %                | -14.5 | -16.1 | -11.8 | -10.5     | -15.6   | -17.4 | -21.7 | -17.3 |

# Table B.42 400 V, 1450 r/min Type Yaskawa SST4 Series IPM Motor

| No.   | Name                                                                   | Unit             |       |        | Default S | Settings |        |        |
|-------|------------------------------------------------------------------------|------------------|-------|--------|-----------|----------|--------|--------|
|       | Motor Code Selection (for PM Motors)                                   | =                | 2347  | 2348   | 2349      | 234A     | 234C   | 234D   |
| E5-01 | Voltage Class                                                          | V                | 400   | 400    | 400       | 400      | 400    | 400    |
|       | Rated Power                                                            | kW               | 90    | 110    | 132       | 160      | 200    | 250    |
|       | Rated Speed                                                            | r/min            | 1450  | 1450   | 1450      | 1450     | 1450   | 1450   |
| E5-02 | Motor Rated Power (for PM Motors)                                      | kW               | 90.00 | 110.00 | 132.00    | 160.00   | 200.00 | 250.00 |
| E5-03 | Motor Rated Current (for PM Motors)                                    | A                | 153.1 | 191.7  | 226.0     | 268.8    | 331.3  | 422.9  |
| E5-04 | Number of Motor Poles (for PM Motors)                                  | =                | 6     | 6      | 6         | 6        | 6      | 6      |
| E5-05 | Motor Stator Resistance (r1) (for PM Motors)                           | Ω                | 0.024 | 0.015  | 0.011     | 0.007    | 0.006  | 0.003  |
| E5-06 | Motor d-Axis Inductance (Ld) (for PM Motors)                           | mH               | 2.20  | 1.34   | 1.23      | 0.92     | 0.84   | 0.61   |
| E5-07 | Motor q-Axis Inductance (Lq) (for PM Motors)                           | mH               | 3.23  | 2.16   | 1.67      | 1.30     | 1.25   | 0.89   |
| E5-09 | Motor Induction Voltage Constant 1 (Ke) (for PM Motors)                | mVs<br>/rad      | 708.0 | 637.8  | 677.0     | 661.7    | 687.1  | 655.9  |
| E5-24 | Motor Induction Voltage Constant 2 (Ke) (for PM Motors)                | mV/<br>(r/min)   | 0.0   | 0.0    | 0.0       | 0.0      | 0.0    | 0.0    |
| E1-04 | Maximum Output Frequency                                               | Hz               | 72.5  | 72.5   | 72.5      | 72.5     | 72.5   | 72.5   |
| E1-05 | Maximum Voltage                                                        | V                | 380.0 | 380.0  | 380.0     | 380.0    | 380.0  | 380.0  |
| E1-06 | Base Frequency                                                         | Hz               | 72.5  | 72.5   | 72.5      | 72.5     | 72.5   | 72.5   |
| E1-09 | Minimum Output Frequency                                               | Hz               | 3.6   | 3.6    | 3.6       | 3.6      | 3.6    | 3.6    |
| C5-17 | Motor Inertia                                                          | kgm <sup>2</sup> | 0.82  | 0.96   | 1.60      | 1.95     | 2.82   | 3.70   |
| n5-02 | Motor Acceleration Time                                                | S                | 0.210 | 0.201  | 0.279     | 0.281    | 0.325  | 0.341  |
| n8-49 | d-Axis Current for High Efficiency<br>Control (for PM Motors) (OLV/PM) | %                | -19.6 | -24.1  | -15.1     | -17.0    | -19.8  | -19.3  |

# Table B.43 200 V, 1150 r/min Type Yaskawa SST4 Series IPM Motor

| No.   | Name                                         | Unit  |       | Default Settings |       |       |       |       |       |       |
|-------|----------------------------------------------|-------|-------|------------------|-------|-------|-------|-------|-------|-------|
|       | Motor Code Selection (for PM Motors)         | _     | 2402  | 2403             | 2405  | 2406  | 2408  | 240A  | 240B  | 240D  |
| E5-01 | Voltage Class                                | V     | 200   | 200              | 200   | 200   | 200   | 200   | 200   | 200   |
| E3-01 | Rated Power                                  | kW    | 0.4   | 0.75             | 1.5   | 2.2   | 3.7   | 5.5   | 7.5   | 11    |
|       | Rated Speed                                  | r/min | 1150  | 1150             | 1150  | 1150  | 1150  | 1150  | 1150  | 1150  |
| E5-02 | Motor Rated Power (for PM Motors)            | kW    | 0.4   | 0.75             | 1.5   | 2.2   | 3.7   | 5.5   | 7.5   | 11.0  |
| E5-03 | Motor Rated Current (for PM Motors)          | A     | 1.77  | 3.44             | 5.94  | 9.17  | 14.79 | 20.21 | 27.40 | 39.0  |
| E5-04 | Number of Motor Poles (for PM Motors)        | -     | 6     | 6                | 6     | 6     | 6     | 6     | 6     | 6     |
| E5-05 | Motor Stator Resistance (r1) (for PM Motors) | Ω     | 2.680 | 1.520            | 1.071 | 0.542 | 0.362 | 0.295 | 0.162 | 0.115 |

#### Unit **Default Settings** No. Name Motor d-Axis Inductance (Ld) (for PM E5-06 30.55 15.29 17.48 11.98 9.54 5.31 mH 8.60 4.44 Motors) Motor q-Axis Inductance (Lq) (for PM E5-07 42.71 24.28 22.51 15.51 10.69 13.84 mΗ 8.26 5.68 Motors) Motor Induction Voltage Constant 1 mVs E5-09 345.3 342.9 313.1 313.1 363.8 384.3 379.9 370.2 (Ke) (for PM Motors) /rad Motor Induction Voltage Constant 2 mV/ E5-24 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 (Ke) (for PM Motors) (r/min) E1-04 Maximum Output Frequency Hz57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 E1-05 V 190.0 190.0 190.0 190.0 190.0 190.0 190.0 Maximum Voltage 190.0 E1-06 Base Frequency Hz 57.5 57.5 57.5 57.5 57.5 57.5 57.5 57.5 2.9 E1-09 2.9 2.9 2.9 2.9 2.9 2.9 2.9 Minimum Output Frequency Hz C5-17 $kgm^2 \\$ 0.0022 0.0042 0.0081 0.0133 0.0168 0.027 0.044 0.054 Motor Inertia n5-02 Motor Acceleration Time 0.080 0.081 0.078 0.088 0.066 0.070 0.085 0.071 d-Axis Current for High Efficiency Control (for PM Motors) (OLV/PM) n8-49 -11.0 -10.7 -10.7 -9.4 -22.5 -22.2 -16.7 -8.4

#### Table B.44 200 V, 1150 r/min Type Yaskawa SST4 Series IPM Motor

|       |                                                                        | <u> </u>         | /······ · <b>· ·</b> | , po . aona | 55.76 |           |         |       | Table B.44 200 V, 1150 I/IIIII Type Taskawa 3514 Series Iriwi Motor |       |  |  |  |  |  |  |  |  |
|-------|------------------------------------------------------------------------|------------------|----------------------|-------------|-------|-----------|---------|-------|---------------------------------------------------------------------|-------|--|--|--|--|--|--|--|--|
| No.   | Name                                                                   | Unit             |                      |             |       | Default S | ettings |       |                                                                     |       |  |  |  |  |  |  |  |  |
|       | Motor Code Selection (for PM Motors)                                   | _                | 240E                 | 240F        | 2410  | 2412      | 2413    | 2414  | 2415                                                                | 2416  |  |  |  |  |  |  |  |  |
| E5-01 | Voltage Class                                                          | V                | 200                  | 200         | 200   | 200       | 200     | 200   | 200                                                                 | 200   |  |  |  |  |  |  |  |  |
|       | Rated Power                                                            | kW               | 15                   | 18          | 22    | 30        | 37      | 45    | 55                                                                  | 75    |  |  |  |  |  |  |  |  |
|       | Rated Speed                                                            | r/min            | 1150                 | 1150        | 1150  | 1150      | 1150    | 1150  | 1150                                                                | 1150  |  |  |  |  |  |  |  |  |
| E5-02 | Motor Rated Power (for PM Motors)                                      | kW               | 15                   | 18.50       | 22.00 | 30.00     | 37.00   | 45.00 | 55.00                                                               | 75.00 |  |  |  |  |  |  |  |  |
| E5-03 | Motor Rated Current (for PM Motors)                                    | A                | 55.9                 | 65.4        | 77.0  | 103.5     | 126.0   | 153.1 | 188.5                                                               | 260.4 |  |  |  |  |  |  |  |  |
| E5-04 | Number of Motor Poles (for PM Motors)                                  | _                | 6                    | 6           | 6     | 6         | 6       | 6     | 6                                                                   | 6     |  |  |  |  |  |  |  |  |
| E5-05 | Motor Stator Resistance (r1) (for PM Motors)                           | Ω                | 0.083                | 0.065       | 0.052 | 0.035     | 0.026   | 0.019 | 0.013                                                               | 0.009 |  |  |  |  |  |  |  |  |
| E5-06 | Motor d-Axis Inductance (Ld) (for PM Motors)                           | mH               | 3.50                 | 2.92        | 2.55  | 2.03      | 1.59    | 1.24  | 0.98                                                                | 0.70  |  |  |  |  |  |  |  |  |
| E5-07 | Motor q-Axis Inductance (Lq) (for PM Motors)                           | mН               | 4.23                 | 3.79        | 3.22  | 2.46      | 1.92    | 1.64  | 1.37                                                                | 0.97  |  |  |  |  |  |  |  |  |
| E5-09 | Motor Induction Voltage Constant 1 (Ke) (for PM Motors)                | mVs<br>/rad      | 364.5                | 404.5       | 445.1 | 444.4     | 447.3   | 470.8 | 422.4                                                               | 418.3 |  |  |  |  |  |  |  |  |
| E5-24 | Motor Induction Voltage Constant 2<br>(Ke) (for PM Motors)             | mV/<br>(r/min)   | 0.0                  | 0.0         | 0.0   | 0.0       | 0.0     | 0.0   | 0.0                                                                 | 0.0   |  |  |  |  |  |  |  |  |
| E1-04 | Maximum Output Frequency                                               | Hz               | 57.5                 | 57.5        | 57.5  | 57.5      | 57.5    | 57.5  | 57.5                                                                | 57.5  |  |  |  |  |  |  |  |  |
| E1-05 | Maximum Voltage                                                        | V                | 190.0                | 190.0       | 190.0 | 190.0     | 190.0   | 190.0 | 190.0                                                               | 190.0 |  |  |  |  |  |  |  |  |
| E1-06 | Base Frequency                                                         | Hz               | 57.5                 | 57.5        | 57.5  | 57.5      | 57.5    | 57.5  | 57.5                                                                | 57.5  |  |  |  |  |  |  |  |  |
| E1-09 | Minimum Output Frequency                                               | Hz               | 2.9                  | 2.9         | 2.9   | 2.9       | 2.9     | 2.9   | 2.9                                                                 | 2.9   |  |  |  |  |  |  |  |  |
| C5-17 | Motor Inertia                                                          | kgm <sup>2</sup> | 0.063                | 0.113       | 0.137 | 0.252     | 0.304   | 0.410 | 0.55                                                                | 0.82  |  |  |  |  |  |  |  |  |
| n5-02 | Motor Acceleration Time                                                | S                | 0.061                | 0.089       | 0.090 | 0.122     | 0.119   | 0.132 | 0.145                                                               | 0.159 |  |  |  |  |  |  |  |  |
| n8-49 | d-Axis Current for High Efficiency<br>Control (for PM Motors) (OLV/PM) | %                | -13.7                | -15.2       | -10.9 | -9.8      | -9.3    | -11.5 | -17.7                                                               | -17.1 |  |  |  |  |  |  |  |  |

#### Table B.45 400 V, 1150 r/min Type Yaskawa SST4 Series IPM Motor

| No.   | Name                                 | Unit  | Default Settings |      |      |      |      |       |       |  |
|-------|--------------------------------------|-------|------------------|------|------|------|------|-------|-------|--|
| E5-01 | Motor Code Selection (for PM Motors) | -     | 2432             | 2433 | 2435 | 2436 | 2438 | 243A  | 243B  |  |
|       | Voltage Class                        | V     | 400              | 400  | 400  | 400  | 400  | 400   | 400   |  |
|       | Rated Power                          | kW    | 0.4              | 0.75 | 1.5  | 2.2  | 3.7  | 5.5   | 7.5   |  |
|       | Rated Speed                          | r/min | 1150             | 1150 | 1150 | 1150 | 1150 | 1150  | 1150  |  |
| E5-02 | Motor Rated Power (for PM Motors)    | kW    | 0.4              | 0.75 | 1.5  | 2.2  | 3.7  | 5.5   | 7.5   |  |
| E5-03 | Motor Rated Current (for PM Motors)  | A     | 0.89             | 1.72 | 3.02 | 4.58 | 7.40 | 10.21 | 13.75 |  |

# **B.19 Parameters Changed by Motor Code Selection (for PM Motors)**

| No.   | Name                                                                      | Unit             |        |        | Def    | ault Setting | ıs     |       |       |
|-------|---------------------------------------------------------------------------|------------------|--------|--------|--------|--------------|--------|-------|-------|
| E5-04 | Number of Motor Poles (for PM Motors)                                     | -                | 6      | 6      | 6      | 6            | 6      | 6     | 6     |
| E5-05 | Motor Stator Resistance (r1) (for PM Motors)                              | Ω                | 10.720 | 6.080  | 4.336  | 2.143        | 1.428  | 1.199 | 0.648 |
| E5-06 | Motor d-Axis Inductance (Ld) (for PM Motors)                              | mН               | 122.20 | 61.16  | 70.24  | 46.20        | 33.87  | 41.67 | 21.24 |
| E5-07 | Motor q-Axis Inductance (Lq) (for PM Motors)                              | mН               | 170.80 | 97.12  | 90.04  | 60.28        | 42.98  | 69.15 | 33.04 |
| E5-09 | Motor Induction Voltage<br>Constant 1 (Ke) (for PM Motors)                | mVs<br>/rad      | 626.1  | 626.1  | 703.1  | 727.6        | 699.0  | 861.5 | 759.7 |
| E5-24 | Motor Induction Voltage<br>Constant 2 (Ke) (for PM Motors)                | mV/<br>(r/min)   | 0.0    | 0.0    | 0.0    | 0.0          | 0.0    | 0.0   | 0.0   |
| E1-04 | Maximum Output Frequency                                                  | Hz               | 57.5   | 57.5   | 57.5   | 57.5         | 57.5   | 57.5  | 57.5  |
| E1-05 | Maximum Voltage                                                           | V                | 380.0  | 380.0  | 380.0  | 380.0        | 380.0  | 380.0 | 380.0 |
| E1-06 | Base Frequency                                                            | Hz               | 57.5   | 57.5   | 57.5   | 57.5         | 57.5   | 57.5  | 57.5  |
| E1-09 | Minimum Output Frequency                                                  | Hz               | 2.9    | 2.9    | 2.9    | 2.9          | 2.9    | 2.9   | 2.9   |
| C5-17 | Motor Inertia                                                             | kgm <sup>2</sup> | 0.0022 | 0.0042 | 0.0081 | 0.0133       | 0.0168 | 0.027 | 0.044 |
| n5-02 | Motor Acceleration Time                                                   | S                | 0.080  | 0.081  | 0.078  | 0.088        | 0.066  | 0.070 | 0.085 |
| n8-49 | d-Axis Current for High<br>Efficiency Control (for PM<br>Motors) (OLV/PM) | %                | -8.4   | -11.0  | -9.9   | -9.0         | -11.4  | -23.2 | -22.1 |

# Table B.46 400 V, 1150 r/min Type Yaskawa SST4 Series IPM Motor

| No.   | Name                                                                      | Unit             |       |       | De    | efault Settir | igs   |       |       |
|-------|---------------------------------------------------------------------------|------------------|-------|-------|-------|---------------|-------|-------|-------|
|       | Motor Code Selection (for PM Motors)                                      | -                | 243D  | 243E  | 243F  | 2440          | 2442  | 2443  | 2444  |
| E5-01 | Voltage Class                                                             | V                | 400   | 400   | 400   | 400           | 400   | 400   | 400   |
|       | Rated Power                                                               | kW               | 11    | 15    | 18    | 22            | 30    | 37    | 45    |
|       | Rated Speed                                                               | r/min            | 1150  | 1150  | 1150  | 1150          | 1150  | 1150  | 1150  |
| E5-02 | Motor Rated Power (for PM Motors)                                         | kW               | 11.0  | 15    | 18.50 | 22.00         | 30.00 | 37.00 | 45.00 |
| E5-03 | Motor Rated Current (for PM Motors)                                       | A                | 19.5  | 27.7  | 32.7  | 39.2          | 51.8  | 63.0  | 76.6  |
| E5-04 | Number of Motor Poles (for PM Motors)                                     | -                | 6     | 6     | 6     | 6             | 6     | 6     | 6     |
| E5-05 | Motor Stator Resistance (r1) (for PM Motors)                              | Ω                | 0.460 | 0.325 | 0.260 | 0.209         | 0.140 | 0.106 | 0.076 |
| E5-06 | Motor d-Axis Inductance (Ld) (for PM Motors)                              | mH               | 17.76 | 12.83 | 11.68 | 10.09         | 8.12  | 6.43  | 4.96  |
| E5-07 | Motor q-Axis Inductance (Lq) (for PM Motors)                              | mH               | 22.72 | 17.19 | 15.16 | 16.25         | 9.84  | 7.71  | 6.56  |
| E5-09 | Motor Induction Voltage Constant 1 (Ke) (for PM Motors)                   | mVs<br>/rad      | 740.4 | 716.6 | 809.1 | 786.2         | 888.8 | 857.7 | 941.6 |
| E5-24 | Motor Induction Voltage Constant 2 (Ke) (for PM Motors)                   | mV/<br>(r/min)   | 0.0   | 0.0   | 0.0   | 0.0           | 0.0   | 0.0   | 0.0   |
| E1-04 | Maximum Output Frequency                                                  | Hz               | 57.5  | 57.5  | 57.5  | 57.5          | 57.5  | 57.5  | 57.5  |
| E1-05 | Maximum Voltage                                                           | V                | 380.0 | 380.0 | 380.0 | 380.0         | 380.0 | 380.0 | 380.0 |
| E1-06 | Base Frequency                                                            | Hz               | 57.5  | 57.5  | 57.5  | 57.5          | 57.5  | 57.5  | 57.5  |
| E1-09 | Minimum Output Frequency                                                  | Hz               | 2.9   | 2.9   | 2.9   | 2.9           | 2.9   | 2.9   | 2.9   |
| C5-17 | Motor Inertia                                                             | kgm <sup>2</sup> | 0.054 | 0.063 | 0.113 | 0.137         | 0.252 | 0.304 | 0.410 |
| n5-02 | Motor Acceleration Time                                                   | S                | 0.071 | 0.061 | 0.089 | 0.090         | 0.122 | 0.119 | 0.132 |
| n8-49 | d-Axis Current for High<br>Efficiency Control (for PM<br>Motors) (OLV/PM) | %                | -16.7 | -20.2 | -15.2 | -27.7         | -9.8  | -10.2 | -11.5 |

Table B.47 400 V, 1150 r/min Type Yaskawa SST4 Series IPM Motor

| No.   | Name                                                                      | Unit             |       |       | De    | efault Settin | ıgs    |        |        |
|-------|---------------------------------------------------------------------------|------------------|-------|-------|-------|---------------|--------|--------|--------|
|       | Motor Code Selection (for PM Motors)                                      | -                | 2445  | 2446  | 2447  | 2448          | 2449   | 244A   | 244C   |
| E5-01 | Voltage Class                                                             | V                | 400   | 400   | 400   | 400           | 400    | 400    | 400    |
|       | Rated Power                                                               | kW               | 55    | 75    | 90k   | 110           | 132    | 160    | 200    |
|       | Rated Speed                                                               | r/min            | 1150  | 1150  | 1150  | 1150          | 1150   | 1150   | 1150   |
| E5-02 | Motor Rated Power (for PM Motors)                                         | kW               | 55.00 | 75.00 | 90.00 | 110.00        | 132.00 | 160.00 | 200.00 |
| E5-03 | Motor Rated Current (for PM Motors)                                       | A                | 93.1  | 128.1 | 153.1 | 186.5         | 221.9  | 269.8  | 336.5  |
| E5-04 | Number of Motor Poles (for PM Motors)                                     | _                | 6     | 6     | 6     | 6             | 6      | 6      | 6      |
| E5-05 | Motor Stator Resistance (r1) (for PM Motors)                              | Ω                | 0.051 | 0.032 | 0.026 | 0.015         | 0.012  | 0.009  | 0.007  |
| E5-06 | Motor d-Axis Inductance (Ld) (for PM Motors)                              | mH               | 3.99  | 2.97  | 2.44  | 1.87          | 1.49   | 1.41   | 1.22   |
| E5-07 | Motor q-Axis Inductance (Lq) (for PM Motors)                              | mН               | 5.39  | 3.90  | 3.23  | 2.46          | 2.08   | 1.88   | 1.51   |
| E5-09 | Motor Induction Voltage Constant<br>1 (Ke) (for PM Motors)                | mVs<br>/rad      | 853.8 | 829.6 | 835.6 | 833.4         | 848.6  | 889.1  | 915.0  |
| E5-24 | Motor Induction Voltage Constant 2 (Ke) (for PM Motors)                   | mV/<br>(r/min)   | 0.0   | 0.0   | 0.0   | 0.0           | 0.0    | 0.0    | 0.0    |
| E1-04 | Maximum Output Frequency                                                  | Hz               | 57.5  | 57.5  | 57.5  | 57.5          | 57.5   | 57.5   | 57.5   |
| E1-05 | Maximum Voltage                                                           | V                | 380.0 | 380.0 | 380.0 | 380.0         | 380.0  | 380.0  | 380.0  |
| E1-06 | Base Frequency                                                            | Hz               | 57.5  | 57.5  | 57.5  | 57.5          | 57.5   | 57.5   | 57.5   |
| E1-09 | Minimum Output Frequency                                                  | Hz               | 2.9   | 2.9   | 2.9   | 2.9           | 2.9    | 2.9    | 2.9    |
| C5-17 | Motor Inertia                                                             | kgm <sup>2</sup> | 0.55  | 0.82  | 0.96  | 1.60          | 1.95   | 2.82   | 3.70   |
| n5-02 | Motor Acceleration Time                                                   | S                | 0.145 | 0.159 | 0.155 | 0.211         | 0.214  | 0.256  | 0.268  |
| n8-49 | d-Axis Current for High<br>Efficiency Control (for PM<br>Motors) (OLV/PM) | %                | -16.0 | -15.7 | -15.7 | -14.7         | -16.5  | -14.1  | -10.4  |



# **Appendix: C**

# **MEMOBUS/Modbus Communications**

| C.1  | MEMOBUS/MODBUS CONFIGURATION       | 628 |
|------|------------------------------------|-----|
| C.2  | COMMUNICATION SPECIFICATIONS       | 629 |
| C.3  | CONNECTING TO A NETWORK            | 630 |
| C.4  | MEMOBUS/MODBUS SETUP PARAMETERS    | 633 |
| C.5  | DRIVE OPERATIONS BY MEMOBUS/MODBUS | 637 |
| C.6  | COMMUNICATIONS TIMING              | 638 |
| C.7  | MESSAGE FORMAT                     | 639 |
| C.8  | MESSAGE EXAMPLES                   | 641 |
| C.9  | MEMOBUS/MODBUS DATA TABLE          | 643 |
| C.10 | ENTER COMMAND                      | 659 |
| C.11 | COMMUNICATION ERRORS               | 660 |
| C.12 | SELF-DIAGNOSTICS                   | 661 |

# C.1 MEMOBUS/Modbus Configuration

Drives can be controlled from a PLC or other master device via serial communications using the MEMOBUS/Modbus protocol.

MEMOBUS/Modbus communications can be configured using one master (PLC) and up to 255 slaves. The drive has slave functionality only, and serial communication is normally initiated from the master and responded to by the slaves.

The master communicates with the specified slave drive. The address or node for each slave must be set prior so the master can communicate with the slave at that address. A slave that receives a command from the master will perform the specified function and send a response back to the master.

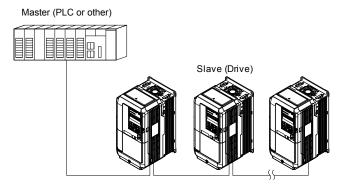



Figure C.1 Connecting Multiple Drives to a PLC

# **C.2** Communication Specifications

MEMOBUS/Modbus specifications appear in *Table C.1*:

Table C.1 MEMOBUS/Modbus Communications Specifications

| Item                     |                                       | Specifications                                         |  |  |  |  |  |
|--------------------------|---------------------------------------|--------------------------------------------------------|--|--|--|--|--|
| Interface                | RS-422, RS-485                        | RS-422, RS-485                                         |  |  |  |  |  |
| Communications Cycle     | Asynchronous (Start-stop synchronous) | ynchronous (Start-stop synchronization)                |  |  |  |  |  |
|                          | Communication Speeds<br>Available     | 1.2; 2.4; 4.8; 9.6; 19.2; 38.4; 57.6; 76.8; 115.2 kbps |  |  |  |  |  |
| Communication Parameters | Data length                           | 8-bit (fixed)                                          |  |  |  |  |  |
|                          | Parity                                | Select even, odd, or none                              |  |  |  |  |  |
|                          | Stop bit                              | 1-bit (fixed)                                          |  |  |  |  |  |
| Protocol                 | MEMOBUS/Modbus (using RTU mode only)  |                                                        |  |  |  |  |  |
| Maximum Number of Slaves | 31 drives (RS-485)                    |                                                        |  |  |  |  |  |

# C.3 Connecting to a Network

This section explains how to connect the drive to a MEMOBUS/Modbus network and the network termination required for a connection.

#### Network Cable Connection

Follow the instructions below to connect the drive to a MEMOBUS/Modbus network.

 With the power shut off, connect the communications cable to the drive and the master. Use terminals TB5 for MEMOBUS/Modbus.

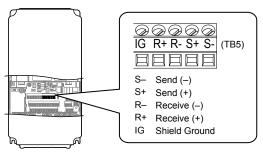



Figure C.2 Serial Communications Cable Connection Terminals (TB5)

**Note:** Separate the communications cables from the main circuit cables and other wiring and power cables. Use shielded cables for the communications cables, and properly shielded clamps to prevent problems with noise. When using RS-485 communications, connect S+ to R+, and S- to R- as shown in the diagram below.

- **2.** Check or set the termination resistor selection at all slaves. Use the description in **Network Termination** on page **632** for slaves that are U1000 drives.
- **3.** Switch the power on.
- **4.** Set the parameters needed for serial communications (H5-01 through H5-12) using the digital operator.
- 5. Shut the power off and wait until the display on the digital operator goes out completely.
- **6.** Turn the power back on.
- **7.** The drive is now ready to begin communicating with the master.

# **Wiring Diagram for Multiple Connections**

Figure C.3 and Figure C.4 explain the wiring diagrams for multiple connections using MEMOBUS/Modbus communication.

# RS-485 Interface

Note: The isolated ground (IG) connection is optional but strongly recommended to improve network immunity to electrical interference.

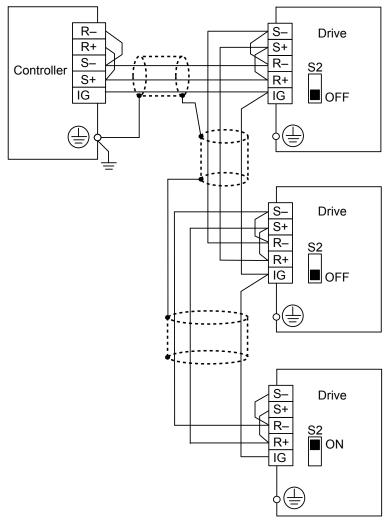



Figure C.3 RS-485 Interface

Note:

- 1. Set DIP switch S2 to the ON position on the drive located at the end of the network. Set DIP switch S2 to the OFF positions on all other slave devices.
- 2. Set H5-07 to 1 when using the RS-485 interface.

#### **■ RS-422 Interface**

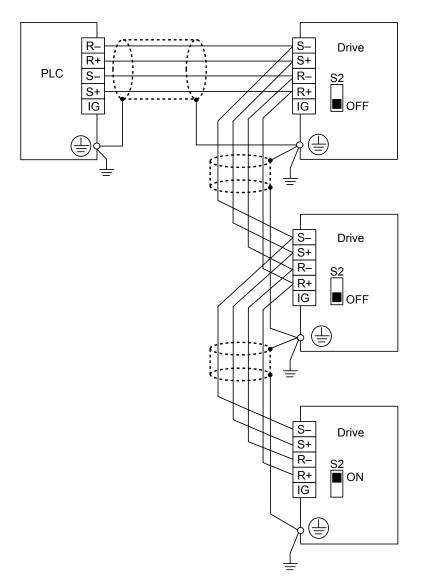



Figure C.4 RS-422 Interface

Note:

- 1. Set DIP switch S2 to the ON position on the drive located at the end of the network. Set DIP switch S2 to the OFF positions on all other slave devices.
- 2. Set H5-07 to 1 when using the RS-422 interface in a multi-drop circuit. Set H5-07 to 0 when using the RS-422 interface in a point-to-point circuit.

### Network Termination

The two ends of the MEMOBUS/Modbus network line have to be terminated. The drive has a built in termination resistor that can be enabled or disabled using DIP switch S2. If a drive is located at the end of a network line, enable the termination resistor by setting DIP switch S2 to the ON position. Disable the termination resistor on all slaves that are not located at the network line end.

# C.4 MEMOBUS/Modbus Setup Parameters

# **♦ MEMOBUS/Modbus Serial Communication**

Changes to MEMOBUS/Modbus communications settings become effective after restarting the drive.

#### ■ H5-01: Drive Slave Address

Sets the drive slave address used for communications.

**Note:** Cycle power for the setting to take effect.

| No.   | Name                | Setting Range | Default |
|-------|---------------------|---------------|---------|
| H5-01 | Drive Slave Address | 0 to FF <1>   | 1F      |

<sup>&</sup>lt;1> If the address is set to 0, no response will be provided during communications.

Each slave drive must be assigned a unique slave address for serial communications to work. Setting H5-01 to any value besides 0 assigns the drive its address in the network. Slave addresses do not need to be assigned in sequential order, but no two drives may share the same address.

# **■ H5-02: Communication Speed Selection**

Sets the MEMOBUS/Modbus communications speed.

**Note:** Cycle the power after changing this parameter to enable the new setting.

| No.   | Name                          | Setting Range | Default |
|-------|-------------------------------|---------------|---------|
| H5-02 | Communication Speed Selection | 0 to 8        | 3       |

Setting 0: 1200 bps Setting 1: 2400 bps

Setting 2: 4800 bps

Setting 3: 9600 bps

Setting 4: 19200 bps Setting 5: 38400 bps

Setting 6: 57600 bps

Setting 7: 76800 bps

Setting 8: 115200 bps

# ■ H5-03: Communication Parity Selection

Sets the parity used for communications.

**Note:** Cycle power for the setting to take effect.

| No.   | Name                           | Setting Range | Default |
|-------|--------------------------------|---------------|---------|
| H5-03 | Communication Parity Selection | 0 to 2        | 0       |

Setting 0: No parity Setting 1: Even parity Setting 2: Odd parity

# ■ H5-04: Stopping Method after Communication Error

Selects the stopping method after a MEMOBUS/Modbus communications error (CE) has occurred.

| No.   | Name                     | Setting Range | Default |
|-------|--------------------------|---------------|---------|
| H5-04 | Stopping Method after CE | 0 to 3        | 3       |

Setting 0: Ramp to stop (uses the deceleration time currently enabled)

**Setting 1: Coast to stop** 

**Setting 2: Fast Stop** 

**Setting 3: Alarm only (continue operation)** 

#### ■ H5-05: Communication Fault Detection Selection

Enables or disables the CE detection for communications.

| No.   | Name                                    | Setting Range | Default |
|-------|-----------------------------------------|---------------|---------|
| H5-05 | Communication Fault Detection Selection | 0 or 1        | 1       |

#### Setting 0: Disabled

No communication error detection. The drive continues operation.

#### Setting 1: Enabled

If the drive does not receive data from the master for longer than the time set to H5-09, then a CE fault will be triggered and the drive will operate as determined by parameter H5-04.

#### ■ H5-06: Drive Transmit Wait Time

Sets the time the drive waits after receiving data from a master until responding data.

**Note:** Cycle power for the setting to take effect.

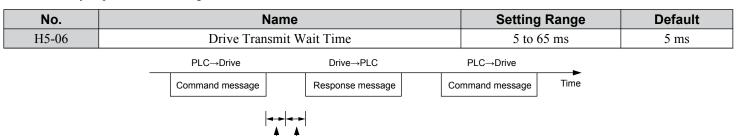



Figure C.5 Drive Transmit Wait Time Setting

#### ■ H5-07: RTS Control Selection

Enables or disables RTS control.

**Note:** Cycle power for the setting to take effect.

| No.   | Name                  | Setting Range | Default |
|-------|-----------------------|---------------|---------|
| H5-07 | RTS Control Selection | 0 or 1        | 1       |

#### Setting 0: Disabled. RTS is always on.

Use this setting with point-to-point RS-422 communications.

# Setting 1: Enabled. RTS switches while sending.

Use this setting with RS-485 communications or when using multi-drop RS-422 communications.

24 bit length H5-06 setting

#### **■** H5-09: Communications Fault Detection Time

Sets the time the communications must be lost before the drive triggers a CE fault.

| No.   | Name                                | Setting Range | Default |
|-------|-------------------------------------|---------------|---------|
| H5-09 | Communications Fault Detection Time | 0.0 to 10.0 s | 2.0 s   |

#### ■ H5-10: Unit Selection for MEMOBUS/Modbus Register 0025H

Sets the unit for the output voltage monitor value in MEMOBUS/Modbus register 0025H.

| No.   | Name                                             | Setting Range | Default |
|-------|--------------------------------------------------|---------------|---------|
| H5-10 | Unit Selection for MEMOBUS/Modbus Register 0025H | 0 or 1        | 0       |

#### ■ H5-11: Communications Enter Function Selection

Selects whether an Enter command is necessary to change parameter values via MEMOBUS/Modbus communications. *Refer to Enter Command on page 659*.

| No.   | Name                                    | Setting Range | Default |
|-------|-----------------------------------------|---------------|---------|
| H5-11 | Communications Enter Function Selection | 0 or 1        | 0       |

#### Setting 0: Enter command necessary

Parameter changes become effective after an Enter command. An Enter command must only be sent after the last parameter change, not for each single parameter.

#### Setting 1: Enter command not necessary

Parameter value changes become effective immediately without the need to send an Enter command.

#### ■ H5-12: Run Command Method Selection

Selects the type of sequence used when the Run command source is set to MEMOBUS/Modbus communications (b1-02, b1-16=2).

| No.   | Name                         | Setting Range | Default |
|-------|------------------------------|---------------|---------|
| H5-12 | Run Command Method Selection | 0 or 1        | 0       |

#### Setting 0: FWD/Stop, REV/Stop

Setting bit 0 of MEMOBUS/Modbus register 0001H will start and stop the drive in the forward direction. Setting bit 1 will start and stop the drive in reverse.

#### Setting 1: Run/Stop, FWD/REV

Setting bit 0 of MEMOBUS/Modbus register 0001H will start and stop the drive. Setting bit 1 changes the direction.

### ■ H5-17: Operation Selection when Unable to Write into EEPROM

Selects the operation to be carried out when attempting to write data into EEPROM by MEMOBUS/Modbus communications but writing into EEPROM is not enabled. There is normally no need to change this parameter from the default value.

| No.   | Name                                                 | Setting Range | Default |
|-------|------------------------------------------------------|---------------|---------|
| H5-17 | Operation Selection when Unable to Write into EEPROM | 0, 1          | 0       |

#### Setting 0: Cannot write into EEPROM

Setting 1: Write in RAM only

#### ■ H5-18: Filter Time Constant for Motor Speed Monitoring

Sets the filter time constant for monitoring the motor speed from MEMOBUS/Modbus communications and communication options. Applicable MEMOBUS/Modbus registers are: 3EH, 3FH, 44H, ACH, and ADH

| No.   | Name                                            | Setting Range | Default |
|-------|-------------------------------------------------|---------------|---------|
| H5-18 | Filter Time Constant for Motor Speed Monitoring | 0 to 100 ms   | 0 ms    |

# C.5 Drive Operations by MEMOBUS/Modbus

The drive operations that can be performed by MEMOBUS/Modbus communication depend on drive parameter settings. This section explains the functions that can be used and related parameter settings.

# Observing the Drive Operation

PLCs can perform the following actions with MEMOBUS/Modbus communications:

- observe drive status and drive control terminal status
- read and write parameters (not H5-□□)
- · reset faults
- set multi-function inputs

Note: Input settings from the input terminals (S1 to S8) and from MEMOBUS/Modbus communications are both linked by a logical OR operation.

# Controlling the Drive

Select an external reference and adjust the parameters in *Table C.2* accordingly to start and stop the drive or set the frequency reference using MEMOBUS/Modbus communications.

Table C.2 Setting Parameters for Drive Control from MEMOBUS/Modbus

| Reference Source     | Parameter | Name                            | Required Setting |
|----------------------|-----------|---------------------------------|------------------|
| External Reference 1 | b1-01     | Frequency Reference Selection 1 | 2                |
| External Reference 1 | b1-02     | Run Command Selection 1         | 2                |
| External Reference 2 | b1-15     | Frequency Reference Selection 2 | 2                |
| External Reference 2 | b1-16     | Run Command Selection 2         | 2                |

Refer to b1-01: Frequency Reference Selection 1 on page 193 and Refer to b1-02: Run Command Selection 1 on page 194 for details on external reference parameter selections. Refer to Setting 2: External Reference 1/2 Selection on page 286 for instructions on selecting external references 1 and 2.

# **C.6 Communications Timing**

To prevent a communications overrun in the slave drive, the master should wait a certain time between sending messages to the same drive. In the same way, the slave drive must wait before sending response messages to prevent an overrun in the master. This section explains the message timing.

# **♦** Command Messages from Master to Drive

The master must wait for a specified time between receiving a response and resending the same type of command to the same slave drive to prevent overrun and data loss. The minimum wait time depends on the command as shown in *Table C.3*.

| Table C.3 | Minimum Wait Time for Sending Messages |
|-----------|----------------------------------------|
|           |                                        |

| Command Type | Example                                                                                                             | Minimum<br>Wait Time                                                       |
|--------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| 1            | <ul><li>Control command (Run, Stop)</li><li>Set inputs/outputs</li><li>Read monitors and parameter values</li></ul> | 5 ms                                                                       |
| 2            | Write parameters                                                                                                    | H5-11 = 0: 50 ms<br>H5-11 = 1: 200 ms                                      |
| 3            | Save changes using an Enter command                                                                                 | 200 ms to 2 s, depending on the number of parameters that were changed <1> |
| 4            | Enter with storage to drive EEPROM after initialization                                                             | 5 s                                                                        |

<sup>&</sup>lt;1> If the drive receives command type 1 data during the minimum wait time, it will perform the command and then respond. However, if it receives a command type 2 or 3 during that time, either a communication error will result or the command will be ignored.

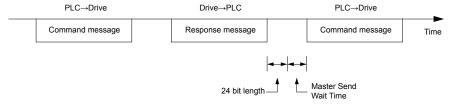



Figure C.6 Minimum Wait Time for Sending Messages

Set a timer in the master to check how long it takes for the slave drive(s) to respond to the master. If no response is received within a certain amount of time, the master should try resending the message.

# **♦** Response Messages from Drive to Master

If the drive receives a command from the master, it will process the data received and wait for the time set in H5-06 until it responds. Increase H5-06 if the drive response causes overrun in the master.

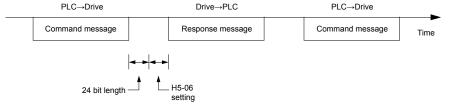



Figure C.7 Minimum Response Wait Time

C

# **Message Format**

# Message Content

In MEMOBUS/Modbus communications, the master sends commands to the slave, and the slave responds. The message format is configured for both sending and receiving as shown below, and the length of data packets depends on the command (function) content.

| SLAVE ADDRESS        |
|----------------------|
| <b>FUNCTION CODE</b> |
| DATA                 |
| ERROR CHECK          |

# Slave Address

The slave address in the message defines the note the message is sent to. Use addresses between 0 and FF (hex). If a message with slave address 0 is sent (broadcast), the command from the master will be received by all slaves. The slaves do not provide a response to a broadcast type message.

# **Function Code**

The three types of function codes are shown in the table below.

|               |                                            | Data Length (bytes) |         |          |         |  |
|---------------|--------------------------------------------|---------------------|---------|----------|---------|--|
| Function Code | Function Name                              | Command Message     |         | <u> </u> |         |  |
|               |                                            | Minimum             | Maximum | Minimum  | Maximum |  |
| 03H           | Read MEMOBUS/Modbus registers              | 8                   | 8       | 7        | 37      |  |
| 08H           | Loopback test                              | 8                   | 8       | 8        | 8       |  |
| 10H           | Write to multiple MEMOBUS/Modbus registers | 11                  | 41      | 8        | 8       |  |

# Data

Configure consecutive data by combining the MEMOBUS/Modbus register address (test code in case of a loopback test) and the data the register contains. The data length changes depending on the command details.

A drive MEMOBUS/Modbus register always has a data length of two bytes. Data written into drive registers must also always have a length of two bytes. Register data read out from the drive will always consist of two bytes.

# **Error Check**

The drive uses a CRC-16 (cyclic redundancy check, checksum method) for checking data validity. Use the procedure described below when calculating the CRC-16 checksum for command data or when verifying response data.

# Command Data

When the drive receives data, it calculates the CRC-16 checksum from the data and compares it to the CRC-16 value received within the message. Both must match before a command is processed.

An initial value of FFFFH (i.e., all 16 bits equal 1) must be used for CRC-16 calculations in the MEMOBUS/Modbus protocol.

Calculate the CRC-16 checksum using the following steps:

- **1.** The starting value is FFFFH.
- 2. Perform an XOR operation of this value and the slave address.
- Right shift the result.
- When the overflow bit of the shift operation becomes 1, perform an XOR operation of the result from step 3 above and the fix value A001H.
- Repeat steps 3 and 4 until eight shift operations have been performed.
- 6. After eight shift operations, perform an XOR operation with the result and the next data in the message (function code, register address, data). Continue with steps 3 to 5 until the last data has been processed.
- 7. The result of the last shift or XOR operation is the checksum.



# **C.7 Message Format**

The example in *Table C.4* shows the CRC-16 calculation of the slave address 02H and the function code 03H, yielding the result D140H.

Note: This example does not show the calculation for a complete MEMOBUS/Modbus command. Normally data would follow in the calculation.

Table C.4 CRC-16 Checksum Calculation Example

| Description           | Calculation                                       | Overflow | Description       | Calculation                 | Overflow |
|-----------------------|---------------------------------------------------|----------|-------------------|-----------------------------|----------|
| Initial Value (FFFFH) | 1111 1111 1111 1111                               |          | Function Code 03H | 0000 0000 0000 0011         |          |
| Address 02H           | 0000 0000 0000 0010                               |          | XOR w result      | 1000 0001 0011 1101         |          |
| XOR w initial value   | 1111 1111 1111 1101                               |          | Shift 1           | 0100 0000 1001 1110         | 1        |
| Shift 1               | 0111 1111 1111 1110                               | 1        | XOR w A001H       | 1010 0000 0000 0001         |          |
| XOR w A001H           | 1010 0000 0000 0001                               |          | XOR result        | 1110 0000 1001 1111         |          |
| XOR result            | 1101 1111 1111 1111                               |          | Shift 2           | 0111 0000 0100 1111         | 1        |
| Shift 2               | 0110 1111 1111 1111                               | 1        | XOR w A001H       | 1010 0000 0000 0001         |          |
| XOR w A001H           | 1010 0000 0000 0001                               |          | XOR result        | 1101 0000 0100 1110         |          |
| XOR result            | 1100 1111 1111 1110                               |          | Shift 3           | 0110 1000 0010 0111         | 0        |
| Shift 3               | 0110 0111 1111 1111                               | 0        | Shift 4           | 0011 0100 0001 0011         | 1        |
| Shift 4               | 0011 0011 1111 1111                               | 1        | XOR w A001H       | 1010 0000 0000 0001         |          |
| XOR w A001H           | 1010 0000 0000 0001                               |          | XOR result        | 1001 0100 0001 0010         |          |
| XOR result            | 1001 0011 1111 1110                               |          | Shift 5           | 0100 1010 0000 1001         | 0        |
| Shift 5               | 0100 1001 1111 1111                               | 0        | Shift 6           | 0010 0101 0000 0100         | 1        |
| Shift 6               | 0010 0100 1111 1111                               | 1        | XOR w A001H       | 1010 0000 0000 0001         |          |
| XOR w A001H           | 1010 0000 0000 0001                               |          | XOR result        | 1000 0101 0000 0101         |          |
| XOR result            | 1000 0100 1111 1110                               |          | Shift 7           | 0100 0010 1000 0010         | 1        |
| Shift 7               | 0100 0010 0111 1111                               | 0        | XOR w A001H       | 1010 0000 0000 0001         |          |
| Shift 8               | 0010 0001 0011 1111                               | 1        | XOR result        | 1110 0010 1000 0011         |          |
| XOR w A001H           | 1010 0000 0000 0001                               |          | Shift 8           | 0111 0001 0100 0001         | 1        |
| XOR result            | 1000 0001 0011 1110                               |          | XOR w A001H       | 1010 0000 0000 0001         |          |
|                       | •                                                 |          | XOR result        | 1101 0001 0100 0000         |          |
|                       |                                                   |          |                   | 1101 0001 0100 0000         |          |
| Perform operatio      | Perform operations with next data (function code) |          |                   | D 1 4 0<br>(Lower) (Upper)  |          |
|                       |                                                   |          | Continue          | e from here with next data. | 1        |

# ■ Response Data

Perform a CRC-16 calculation on the response message data as described above as a validation check. The result should match the CRC-16 checksum received within the response message.

# C.8 Message Examples

Below are some examples of command and response messages.

# ◆ Reading Drive MEMOBUS/Modbus Register Contents

Using the function code 03H (Read), a maximum of 16 MEMOBUS/Modbus registers can be read out at a time.

The following table shows message examples when reading status signals, error details, data link status, and frequency references from the slave 2 drive.

| Command Message   |          |               | Respo            | Response Message (normal) |               |               | Response Message (fault) |     |  |
|-------------------|----------|---------------|------------------|---------------------------|---------------|---------------|--------------------------|-----|--|
| Slave Address 02H |          | Slave Address | Slave Address 02 |                           | Slave Address | Slave Address |                          |     |  |
| Function Code     |          | 03H           | Function Code    | Function Code 03H         |               | Function Cod  | le                       | 83H |  |
| Ctantin a Na      | Upper    | 00H           | Data Quantity    |                           | 08H           | Error Code    |                          | 03H |  |
| Starting No.      | Lower    | 20H           | 1st storage      | Upper                     | 00H           | CD C 16       | Upper                    | F1H |  |
| Data Ossantita    | Upper    | 00H           | register         | Lower                     | 65H           | CRC-16        | Lower                    | 31H |  |
| Data Quantity     | Lower    | 04H           | Next storage     | Upper                     | 00H           |               |                          |     |  |
| CDC 16            | Upper    | 45H           | register         | Lower                     | 00H           |               |                          |     |  |
| CRC-16            | Lower    | F0H           | Next storage     | Upper                     | 00H           |               |                          |     |  |
|                   | <u>'</u> | '             | register         | Lower                     | 00H           |               |                          |     |  |
|                   |          |               | Next storage     | Upper                     | 01H           |               |                          |     |  |
|                   |          |               | register         | Lower                     | F4H           |               |                          |     |  |
|                   |          |               | CD C 16          | Upper                     | AFH           |               |                          |     |  |
|                   |          |               | CRC-16           | Lower                     | 82H           |               |                          |     |  |

# Loopback Test

Function code 08H performs a loopback test that returns a response message with exactly the same content as the command message. The response message can be used to check communications between the master and slave. User-defined test code and data values can also be set.

The following table shows a message example when performing a loopback test with the slave 1 drive.

|               | Command Message |     |               | Response Message |     |  |
|---------------|-----------------|-----|---------------|------------------|-----|--|
| Slave Address |                 | 01H | Slave Address | Slave Address    |     |  |
| Function Code |                 | 08H | Function Code |                  | 08H |  |
| T C. 1.       | Upper           | 00H | Test Code     | Upper            | 00H |  |
| Test Code     | Lower           | 00H | Test Code     | Lower            | 00H |  |
| Data          | Upper           | A5H | Dete          | Upper            | A5H |  |
| Data          | Lower           | 37H | Data          | Lower            | 37H |  |
| CRC-16        | Upper           | DAH | - CRC-16      | Upper            | DAH |  |
|               | Lower           | 8DH | CKC-10        | Lower            | 8DH |  |

# Writing to Multiple Registers

Function code 10H allows the user to write multiple drive MEMOBUS/Modbus registers with one message. This process works similar to reading registers, in that the address of the first register to be written and the data quantity are set in the command message. The data to be written must be consecutive so that the register addresses are in order, starting from the specified address in the command message. The data order must be high byte then lower byte.

The following table shows an example of a message where a forward operation has been set with a frequency reference of 60.00 Hz for the slave 1 drive.

If parameter values are changed using the Write command, an Enter command may be necessary to activate or save the data depending on the setting of H5-11. *Refer to H5-11: Communications Enter Function Selection on page 636* and *Refer to Enter Command on page 659* for detailed descriptions.

| Command Message |                   |     | Respons         | Response Message (normal) |     |               | Response Message (fault) |     |  |
|-----------------|-------------------|-----|-----------------|---------------------------|-----|---------------|--------------------------|-----|--|
| Slave Address   | Slave Address 01H |     | Slave Address   | Slave Address 01          |     | Slave Address | Slave Address            |     |  |
| Function Code   |                   | 10H | Function Code   | Function Code 10H         |     | Function Code | Function Code            |     |  |
| Starting No.    | Upper             | 00H | Starting No.    | Upper                     | 00H | Error Code    |                          | 02H |  |
| Starting No.    | Lower             | 01H | Starting No.    | Lower                     | 01H | CRC-16        | Upper                    | CDH |  |
| Data Ossantita  | Upper             | 00H | Data Ossantitus | Upper                     | 00H | CRC-16        | Lower                    | C1H |  |
| Data Quantity   | Lower             | 02H | Data Quantity   | Lower                     | 02H |               |                          |     |  |
| Number of Byte  | Number of Bytes   |     | CBC 16          | Upper                     | 10H |               |                          |     |  |
| Stanting Data   | Upper             |     | CRC-16          | Lower                     | 08H |               |                          |     |  |
| Starting Data   | Lower             | 01H |                 |                           | ·   | <u></u>       |                          |     |  |
| Nant Data       | Upper             | 17H |                 |                           |     |               |                          |     |  |
| Next Data       | Lower             | 70H |                 |                           |     |               |                          |     |  |
| CDC 16          | Upper             | 63H |                 |                           |     |               |                          |     |  |
| CRC-16          | Lower             | 39H |                 |                           |     |               |                          |     |  |

**Note:** Double the number of the data quantity for the number of bytes in the command message.

#### **C.9 MEMOBUS/Modbus Data Table**

The tables below list all MEMOBUS/Modbus data.

The MEMOBUS register hex addresses for parameters are listed beginning on page 504.

# **Command Data**

It is possible to both read and write command data.

- 1. Bits that are not used should be set to 0. Refrain from writing to reserved registers.
- 2. If a torque limit was set, it can be checked in Torque Reference (U1-09).

| Register No. |                                                             | Contents                                                                                                                                            |  |  |  |  |
|--------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 0000Н        | Reserved                                                    |                                                                                                                                                     |  |  |  |  |
|              | Operation Commands and Multi-function Inputs                |                                                                                                                                                     |  |  |  |  |
|              | bit 0                                                       | H5-12 = 0: Forward Run Command (0 = Stop, 1 = Forward Run)<br>H5-12 = 1: Run Command (0 = Stop, 1 = Run)                                            |  |  |  |  |
|              | bit 1                                                       | H5-12 = 0: Reverse Run Command (0 = Stop, 1 = Reverse Run)<br>H5-12 = 1: Forward/Reverse (0 = Forward, 1 = Reverse)                                 |  |  |  |  |
|              | bit 2                                                       | Option Card External Fault (EF0)                                                                                                                    |  |  |  |  |
|              | bit 3                                                       | Fault Reset                                                                                                                                         |  |  |  |  |
|              | bit 4                                                       | Multi-Function Input 1 Function is ComRef when H1-01 = 40 (Forward/Stop).  Note: When the bit at ComCtrl is turned on, commands from MEMOBUS/Modbus |  |  |  |  |
| 0001H        |                                                             | communications take control of the operation. However, when a communications option card is connected, that option card is given priority.          |  |  |  |  |
|              | bit 5                                                       | Multi-Function Input 2<br>Function is ComCtrl when H1-02 = 41 (Reverse/Stop).                                                                       |  |  |  |  |
|              | bit 6                                                       | Multi-Function Input 3                                                                                                                              |  |  |  |  |
|              | bit 7                                                       | Multi-Function Input 4                                                                                                                              |  |  |  |  |
|              | bit 8                                                       | Multi-Function Input 5                                                                                                                              |  |  |  |  |
|              | bit 9                                                       | Multi-Function Input 6                                                                                                                              |  |  |  |  |
|              | bit A                                                       | Multi-Function Input 7                                                                                                                              |  |  |  |  |
|              | bit B                                                       | Multi-Function Input 8                                                                                                                              |  |  |  |  |
|              | bit C to F                                                  | Reserved                                                                                                                                            |  |  |  |  |
| 0002H        | Frequency Reference                                         | Units are determined by parameter o1-03.                                                                                                            |  |  |  |  |
| 0003Н        | Output voltage gain/<br>Unit: 0.1%<br>Range: 20 (2.0%) to 2 | 000 (200.0%), Default when power on: 1000 (100.0%)                                                                                                  |  |  |  |  |
| 0004H        | Torque Reference/Tor                                        | que Limit, 0.1% units, signed (Usable only if Torque Control is enabled)                                                                            |  |  |  |  |
| 0005H        | Torque Compensation                                         | , 0.1% units, signed (Usable only if Torque Control is enabled)                                                                                     |  |  |  |  |
| 0006Н        | PID Target, 0.01% uni                                       | its, signed                                                                                                                                         |  |  |  |  |
| 0007H        | Analog Output Termir                                        | nal FM Setting (10 V / 4000 H)                                                                                                                      |  |  |  |  |
| 0008H        | Analog Output Termir                                        | nal AM Setting (10 V / 4000 H)                                                                                                                      |  |  |  |  |
|              | Settings for Multi-Fun                                      | ction Digital Outputs                                                                                                                               |  |  |  |  |
|              | bit 0                                                       | Multi-Function Contact Output 1 (terminal M1-M2)                                                                                                    |  |  |  |  |
|              | bit 1                                                       | Multi-Function Contact Output 2 (terminal M3-M4)                                                                                                    |  |  |  |  |
| 000011       | bit 2                                                       | Multi-Function Contact Output 3 (terminal M5-M6)                                                                                                    |  |  |  |  |
| 0009H        | bit 3 to 5                                                  | Reserved                                                                                                                                            |  |  |  |  |
|              | bit 6                                                       | Enables the function in bit 7                                                                                                                       |  |  |  |  |
|              | bit 7                                                       | Fault Contact Output (terminal MA/MB-MC)                                                                                                            |  |  |  |  |
|              | bit 8 to F                                                  | Reserved                                                                                                                                            |  |  |  |  |
| 000AH        |                                                             | MP Setting, 1 Hz units, Setting Range: 0 to 32000                                                                                                   |  |  |  |  |
| 0BH to 000EH | Reserved                                                    |                                                                                                                                                     |  |  |  |  |

# C.9 MEMOBUS/Modbus Data Table

| Register No.   |                                                           | Contents                                                                        |  |  |  |  |
|----------------|-----------------------------------------------------------|---------------------------------------------------------------------------------|--|--|--|--|
|                | Control Selection Set                                     | tting                                                                           |  |  |  |  |
|                | bit 0                                                     | Reserved                                                                        |  |  |  |  |
|                | bit 1                                                     | PID Setpoint Input                                                              |  |  |  |  |
|                | bit 2                                                     | Torque reference / torque limit input (enables the setting from MEMOBUS/Modbus) |  |  |  |  |
| 000EH          | bit 3                                                     | Torque compensation input (enables the setting from MEMOBUS/Modbus)             |  |  |  |  |
| 000FH          | bit 4 to B                                                | Reserved                                                                        |  |  |  |  |
|                | bit C                                                     | Enable Terminal S5 Input for Broadcast Data                                     |  |  |  |  |
|                | bit D                                                     | Enable Terminal S6 Input for Broadcast Data                                     |  |  |  |  |
|                | bit E                                                     | Enable Terminal S7 Input for Broadcast Data                                     |  |  |  |  |
|                | bit F                                                     | Enable Terminal S8 Input for Broadcast Data                                     |  |  |  |  |
| 0010H to 001AH | Reserved                                                  |                                                                                 |  |  |  |  |
| 001BH          | Analog Monitor Option AO-A3 Analog Output 1 (10 V/4000 H) |                                                                                 |  |  |  |  |
| 001CH          | Analog Monitor Option AO-A3 Analog Output 2 (10 V/4000 H) |                                                                                 |  |  |  |  |
| 001DH          | Digital Output Option DO-A3 Output (Binary)               |                                                                                 |  |  |  |  |
| 001EH to 001FH | Reserved                                                  |                                                                                 |  |  |  |  |

# **♦** Monitor Data

Monitor data can be read only.

| Register No. | Contents       |                                                  |  |  |  |
|--------------|----------------|--------------------------------------------------|--|--|--|
|              | Drive Status 1 |                                                  |  |  |  |
|              | bit 0          | During Run                                       |  |  |  |
|              | bit 1          | During Reverse                                   |  |  |  |
|              | bit 2          | Drive Ready                                      |  |  |  |
|              | bit 3          | Fault                                            |  |  |  |
| 0020Н        | bit 4          | Data Setting Error                               |  |  |  |
| 0020H        | bit 5          | Multi-Function Contact Output 1 (terminal M1-M2) |  |  |  |
|              | bit 6          | Multi-Function Contact Output 2 (terminal M3-M4) |  |  |  |
|              | bit 7          | Multi-Function Contact Output 3 (terminal M5-M6) |  |  |  |
|              | bit 8 to bit D | Reserved                                         |  |  |  |
|              | bit E          | When ComRef has been enabled                     |  |  |  |
|              | bit F          | When ComCtrl has been enabled                    |  |  |  |

| ဟ        |
|----------|
| nqp      |
| BUS/Modb |
| 3US      |
| ᄴ        |

| Register No. |                         | Contents                                                                                                                                                                                                         |
|--------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | Fault Contents 1        |                                                                                                                                                                                                                  |
|              | bit 0                   | Overcurrent (oC), Ground fault (GF)                                                                                                                                                                              |
|              | bit 1                   | Control Circuit Overvoltage (ov)                                                                                                                                                                                 |
|              | bit 2                   | Overload (oL2)                                                                                                                                                                                                   |
|              | bit 3                   | Overheat 1 (oH1), Heatsink Overheat Warning (oH2)                                                                                                                                                                |
|              | bit 4, 5                | Reserved                                                                                                                                                                                                         |
|              | bit 6                   | PID Feedback Loss/Excessive PID Feedback (FbL / FbH)                                                                                                                                                             |
|              | bit 7                   | EF to EF8: External Fault                                                                                                                                                                                        |
|              | bit 8                   | CPF□□: Hardware Fault (includes oFx)                                                                                                                                                                             |
| 0021H        | bit 9                   | Motor Overload (oL1), Overtorque Detection 1/2 (oL3/oL4), Undertorque Detection 1/2 (UL3/UL4)                                                                                                                    |
|              | bit A                   | PG Disconnect (PGo), PG Hardware Fault (PGoH), Overspeed (oS), Speed Deviation (dEv)                                                                                                                             |
|              | bit B                   | Control Circuit Undervoltage (Uv), Power Supply Undervoltage (AUv), Power Supply Frequency Fault (Fdv)                                                                                                           |
|              | bit C                   | Control Circuit Undervoltage Fault (Uv1), Control Power Supply Voltage Fault (Uv2), Undervoltage 3 (Uv3), Power Supply Frequency Fault (Fdv), Power Supply Undervoltage (AUv), Phase Order Detection Fault (SrC) |
|              | bit D                   | Output Phase Loss (LF)                                                                                                                                                                                           |
|              | bit E                   | MEMOBUS/Modbus Communication Error (CE), Option Communication Error (bUS)                                                                                                                                        |
|              | bit F                   | External Digital Operator Connection Fault (oPr)                                                                                                                                                                 |
|              | Data Link Status        | •                                                                                                                                                                                                                |
|              | bit 0                   | Writing data or switching motors                                                                                                                                                                                 |
|              | bit 1, 2                | Reserved                                                                                                                                                                                                         |
|              | bit 3                   | Upper or lower limit error                                                                                                                                                                                       |
| 0022H        | bit 4                   | Data conformity error                                                                                                                                                                                            |
|              | bit 5                   | Writing to EEPROM                                                                                                                                                                                                |
|              | bit 6                   | 0: Write into EEPROM. 1: Write in RAM only. Note: Enabled only when H5-17 = 1.                                                                                                                                   |
|              | bit 7 to bit F          | Reserved                                                                                                                                                                                                         |
| 0023H        | Frequency Reference <   | 1>                                                                                                                                                                                                               |
| 0024H        | Output Frequency <1>    |                                                                                                                                                                                                                  |
| 0025H        |                         | ice, 0.1 V units (units are determined by parameter H5-10)                                                                                                                                                       |
| 0026Н        | Output Current, 0.1 A u | nits <2>                                                                                                                                                                                                         |
| 0027H        | Output Power            |                                                                                                                                                                                                                  |
| 0028H        | Torque Reference        |                                                                                                                                                                                                                  |
|              | Fault Contents 2        |                                                                                                                                                                                                                  |
|              | bit 0                   | Reserved                                                                                                                                                                                                         |
|              | bit 1                   | Ground Fault (GF)                                                                                                                                                                                                |
| 002011       | bit 2                   | Reserved                                                                                                                                                                                                         |
| 0029Н        | bit 3                   | Output Phase Loss (LF)                                                                                                                                                                                           |
|              | bit 4, 5                | Reserved                                                                                                                                                                                                         |
|              | bit 6                   | Motor Overheat 2 (PTC input) (oH4)                                                                                                                                                                               |
|              | bit 7 to bit F          | Reserved                                                                                                                                                                                                         |

| Register No.        | D 1                                                                                                                                                                                                                                                                                                | Contents                                                                           |  |  |  |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--|--|--|
| 002EH               | Reserved                                                                                                                                                                                                                                                                                           |                                                                                    |  |  |  |
| 002FH               |                                                                                                                                                                                                                                                                                                    | from Up/Down 2 Function), 0.1% units                                               |  |  |  |
| 0030H               | Reserved                                                                                                                                                                                                                                                                                           |                                                                                    |  |  |  |
| 0031H               | Control Circuit Voltage, 1 V                                                                                                                                                                                                                                                                       |                                                                                    |  |  |  |
| 0032Н               | Torque Reference (U1-09), (                                                                                                                                                                                                                                                                        | 0.1% units                                                                         |  |  |  |
| 0033H               | Reserved                                                                                                                                                                                                                                                                                           |                                                                                    |  |  |  |
| 0034Н               | Product Code 1 [ASCII], Pro                                                                                                                                                                                                                                                                        | ** '                                                                               |  |  |  |
| 0035H               | Product Code 2 [ASCII], Re                                                                                                                                                                                                                                                                         | gion Code                                                                          |  |  |  |
| 0036Н, 0037Н        | Reserved                                                                                                                                                                                                                                                                                           |                                                                                    |  |  |  |
| 0038H               |                                                                                                                                                                                                                                                                                                    | insigned, 100% / max. output frequency                                             |  |  |  |
| 0039H               |                                                                                                                                                                                                                                                                                                    | d, 100% / max. output frequency                                                    |  |  |  |
| 003AH               |                                                                                                                                                                                                                                                                                                    | ned, 100% / max. output frequency                                                  |  |  |  |
| 003BH, 003CH        | Reserved                                                                                                                                                                                                                                                                                           |                                                                                    |  |  |  |
|                     | Communications Error Cont                                                                                                                                                                                                                                                                          | ents <3>                                                                           |  |  |  |
|                     | bit 0                                                                                                                                                                                                                                                                                              | CRC Error                                                                          |  |  |  |
|                     | bit 1                                                                                                                                                                                                                                                                                              | Data Length Error                                                                  |  |  |  |
|                     | bit 2                                                                                                                                                                                                                                                                                              | Reserved                                                                           |  |  |  |
| 003DH               | bit 3                                                                                                                                                                                                                                                                                              | Parity Error                                                                       |  |  |  |
|                     | bit 4                                                                                                                                                                                                                                                                                              | Overrun Error                                                                      |  |  |  |
|                     | bit 5                                                                                                                                                                                                                                                                                              | Framing Error                                                                      |  |  |  |
|                     | bit 6                                                                                                                                                                                                                                                                                              | Timeout                                                                            |  |  |  |
|                     | bit 7 to bit F                                                                                                                                                                                                                                                                                     | Reserved                                                                           |  |  |  |
| 003EH               |                                                                                                                                                                                                                                                                                                    | r/min <4>                                                                          |  |  |  |
| 003FH               | Output Frequency                                                                                                                                                                                                                                                                                   | 0.01% units                                                                        |  |  |  |
| 0040H to 004AH      | Used for various monitors U1-\(\sigma\). Refer to U: Monitors on page 586 for parameter details.                                                                                                                                                                                                   |                                                                                    |  |  |  |
| 00.011.00.00.11.111 | Drive status (U1-12)                                                                                                                                                                                                                                                                               |                                                                                    |  |  |  |
|                     | bit 0                                                                                                                                                                                                                                                                                              | During Run                                                                         |  |  |  |
|                     | bit 1                                                                                                                                                                                                                                                                                              | During Zero Speed                                                                  |  |  |  |
|                     | bit 2                                                                                                                                                                                                                                                                                              | During Reverse Run                                                                 |  |  |  |
|                     | bit 3                                                                                                                                                                                                                                                                                              | During Fault Reset Signal Input                                                    |  |  |  |
|                     | bit 4                                                                                                                                                                                                                                                                                              | During Speed Agree                                                                 |  |  |  |
|                     | bit 5                                                                                                                                                                                                                                                                                              | Drive Ready                                                                        |  |  |  |
| 004BH               | bit 6                                                                                                                                                                                                                                                                                              | Alarm                                                                              |  |  |  |
| 004BII              | bit 7                                                                                                                                                                                                                                                                                              | Fault                                                                              |  |  |  |
|                     | bit 8                                                                                                                                                                                                                                                                                              | During Operation Error (oPE□□)                                                     |  |  |  |
|                     | bit 9                                                                                                                                                                                                                                                                                              |                                                                                    |  |  |  |
|                     | bit A                                                                                                                                                                                                                                                                                              | During Momentary Power Loss  Motor 2 selected                                      |  |  |  |
|                     |                                                                                                                                                                                                                                                                                                    | Reserved                                                                           |  |  |  |
|                     | bit B                                                                                                                                                                                                                                                                                              |                                                                                    |  |  |  |
|                     | bit E                                                                                                                                                                                                                                                                                              | ComRef status, NetRef status                                                       |  |  |  |
|                     | bit F ComCtrl status, NetCtrl status                                                                                                                                                                                                                                                               |                                                                                    |  |  |  |
| 004CH to 007EH      | Used for monitors U1-\(\superatorname{\text{U1-}}\superatorname{\text{U4-}}\superatorname{\text{U4-}}\superatorname{\text{q}}\) and U6-\(\superatorname{\text{U6-}}\superatorname{\text{Refer to U2: Fault Trace on page 589}}\) and Refer to U3: Fault History on page 590 for parameter details. |                                                                                    |  |  |  |
| 007FH               | Minor Fault Code, Refer to Alarm Register Contents on page 658 for Minor Fault codes.                                                                                                                                                                                                              |                                                                                    |  |  |  |
| 0080H to 0097H      | Used for monitors U2-\(\sigma\), U3-\(\sigma\). <b>Refer to U: Monitors on page 586</b> for parameter details and <b>Refer to Fault Trace Contents on page 656</b> for register value descriptions.                                                                                                |                                                                                    |  |  |  |
| 0098Н, 0099Н        | U4-01 (Cumulative Operation Example: When U4-01 (Cum                                                                                                                                                                                                                                               | on Time) nulative Operation Time) is 12345 hours, then 0098H = 1234 and 0099H = 5. |  |  |  |
| 009AH, 009BH        | U4-03 (Cooling Fan Operation Time) Example: When U4-03 (Cooling Fan Operation Time) is 12345 hours, then 009AH = 1234 and 009BH = 5.                                                                                                                                                               |                                                                                    |  |  |  |
| 009CH to 00AAH      | Reserved                                                                                                                                                                                                                                                                                           |                                                                                    |  |  |  |
| 00ABH               | Drive Rated Current <2>                                                                                                                                                                                                                                                                            |                                                                                    |  |  |  |
|                     |                                                                                                                                                                                                                                                                                                    |                                                                                    |  |  |  |

| Register No.   | Contents                                                 |                                                                                                                                                                                                                                                                                                                                               |
|----------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 00ACH          | N. G. 1/7/1 05)                                          | r/min units <4>                                                                                                                                                                                                                                                                                                                               |
| 00ADH          | Motor Speed (U1-05)                                      | 0.01% units                                                                                                                                                                                                                                                                                                                                   |
| 00AEH, 00AFH   | Reserved                                                 |                                                                                                                                                                                                                                                                                                                                               |
| 00В0Н          | Option Code Connected to<br>CN5-A                        | Register contains ASCII code of the option card. AI-A3 = 0003H AO-A3 = 0004H DI-A3 = 0001H DO-A3 = 0002H PG-B3 = 0011H PG-RT3 = 0023H PG-X3 = 0012H SI-B3 = 1002H SI-B3 = 1002H SI-C3 = 5343H SI-EM3 = 1006H SI-ES3 = 1000H SI-ES3 = 1004H SI-ET3 = 1004H SI-N3 = 534EH SI-P3 = 5350H SI-S3 = 5353H SI-T3 = 5354H SI-T3 = 5354H SI-W3 = 1003H |
| 00B1H          | Reserved                                                 |                                                                                                                                                                                                                                                                                                                                               |
| 00B2H          | Option Code Connected to CN5-B                           |                                                                                                                                                                                                                                                                                                                                               |
| 00B3H          | Option Code Connected to CN5-C                           |                                                                                                                                                                                                                                                                                                                                               |
| 00B4H          | Reserved                                                 |                                                                                                                                                                                                                                                                                                                                               |
| 00B5H          | Frequency Reference After<br>Soft-starter (U1-16)        | r/min units <4>                                                                                                                                                                                                                                                                                                                               |
| 00B6H          |                                                          | 0.01% units                                                                                                                                                                                                                                                                                                                                   |
| 00B7H          | Frequency Reference                                      | r/min <4>                                                                                                                                                                                                                                                                                                                                     |
| 00B8H          |                                                          | 0.01% units                                                                                                                                                                                                                                                                                                                                   |
| 00B9H to 00BEH | Reserved                                                 |                                                                                                                                                                                                                                                                                                                                               |
| 00BFH          | Lists the last two digits of operation error code oPE□□. |                                                                                                                                                                                                                                                                                                                                               |
|                | Fault Contents 3                                         |                                                                                                                                                                                                                                                                                                                                               |
| 00С0Н          | bit 1                                                    | Control Circuit Undervoltage Fault (Uv1)                                                                                                                                                                                                                                                                                                      |
|                | bit 2                                                    | Control Power Supply Undervoltage Fault (Uv2)                                                                                                                                                                                                                                                                                                 |
|                | bit 3                                                    | Undervoltage 3 (Soft-Charge Bypass Circuit Fault) (Uv3)                                                                                                                                                                                                                                                                                       |
|                | bit 4                                                    | Reserved                                                                                                                                                                                                                                                                                                                                      |
|                | bit 5                                                    | Ground Fault (GF)                                                                                                                                                                                                                                                                                                                             |
|                | bit 6                                                    | Overcurrent (oC)                                                                                                                                                                                                                                                                                                                              |
|                | bit 7                                                    | Control Circuit Overvoltage (ov)                                                                                                                                                                                                                                                                                                              |
|                | bit 8                                                    | Heatsink Overheat (oH)                                                                                                                                                                                                                                                                                                                        |
|                | bit 9                                                    | Overheat 1 (oH1)                                                                                                                                                                                                                                                                                                                              |
|                | bit A                                                    | Motor Overload (oL1)                                                                                                                                                                                                                                                                                                                          |
|                | bit B                                                    | Overload (oL2)                                                                                                                                                                                                                                                                                                                                |
|                | bit C                                                    | Overtorque Detection 1 (oL3)                                                                                                                                                                                                                                                                                                                  |
|                | bit D                                                    | Overtorque Detection 2 (oL4)                                                                                                                                                                                                                                                                                                                  |
|                | bit E, F                                                 | Reserved                                                                                                                                                                                                                                                                                                                                      |

| 3        |    |
|----------|----|
| Ω        | S  |
| ≂        | Ë  |
| ~        | ≂  |
| $\simeq$ | .≃ |
| 2        | _  |
| - 5      | ú  |
| ທ        | ပ  |
| $\neg$   | =  |
| ≂        | =  |
| ᄦ        | =  |
| 0        | ⊱  |
| ~        | =  |
| -        | ⊏  |
| ш        | 0  |
| 5        | 73 |
|          |    |

| Register No. |                  | Contents                                         |
|--------------|------------------|--------------------------------------------------|
|              | Fault Contents 4 |                                                  |
|              | bit 0            | External Fault at input terminal S3 (EF3)        |
|              | bit 1            | External Fault at input terminal S4 (EF4)        |
|              | bit 2            | External Fault at input terminal S5 (EF5)        |
|              | bit 3            | External Fault at input terminal S6 (EF6)        |
|              | bit 4            | External Fault at input terminal S7 (EF7)        |
|              | bit 5            | External Fault at input terminal S8 (EF8)        |
|              | bit 6            | Fan Fault (FAn)                                  |
| 00C1H        | bit 7            | Overspeed (os)                                   |
|              | bit 8            | Excessive Speed Deviation (dEv)                  |
|              | bit 9            | PG Disconnect (PGo)                              |
|              | bit A            | Reserved                                         |
|              | bit B            | Output Phase Loss (LF)                           |
|              | bit C            | Motor Overheat (PTC input) (oH3)                 |
|              | bit D            | External Digital Operator Connection Fault (oPr) |
|              | bit E            | EEPROM Write Error (Err)                         |
|              | bit F            | Motor Overheat Fault (PTC input) (oH4)           |
|              | Fault Contents 5 |                                                  |
|              | bit 0            | MEMOBUS/Modbus Communication Error (CE)          |
|              | bit 1            | Option Communication Error (bUS)                 |
|              | bit 2, 3         | Reserved                                         |
|              | bit 4            | Control Fault (CF)                               |
| 000211       | bit 5            | Zero Servo Fault (SvE)                           |
| 00C2H        | bit 6            | Option Card External Fault (EF0)                 |
|              | bit 7            | PID Feedback Loss (FbL)                          |
|              | bit 8            | Undertorque Detection 1 (UL3)                    |
|              | bit 9            | Undertorque Detection 2 (UL4)                    |
|              | bit A to E       | Reserved                                         |
|              | bit F            | Hardware Fault (includes oFx)                    |
|              | Fault Contents 6 |                                                  |
|              | bit 0            | Reserved                                         |
|              | bit 1            | Z Pulse Fault (dv1)                              |
|              | bit 2            | Z Pulse Noise Fault Detection (dv2)              |
|              | bit 3            | Inversion Detection (dv3)                        |
|              | bit 4            | Inversion Prevention Detection (dv4)             |
| 00C3H        | bit 5            | Output Current Imbalance (LF2)                   |
|              | bit 6            | Pull-Out Detection (STo)                         |
|              | bit 7            | PG Hardware Fault (PGoH)                         |
|              | bit 8            | MECHATROLINK Watchdog Timer Error (E5)           |
|              | bit 9            | Reserved                                         |
|              | bit A            | Too Many Speed Search Restarts (SEr)             |
|              | bit B to F       | Reserved                                         |

| Register No.   | Contents         |                                               |
|----------------|------------------|-----------------------------------------------|
|                | Fault Contents 7 |                                               |
|                | bit 0            | PID Feedback Loss (FbH)                       |
|                | bit 1            | External Fault 1, input terminal S1 (EF1)     |
|                | bit 2            | External Fault 2, input terminal S2 (EF2)     |
|                | bit 3            | Mechanical Weakening Detection 1 (oL5)        |
| 00C4H          | bit 4            | Mechanical Weakening Detection 2 (UL5)        |
|                | bit 5            | Current Offset Fault (CoF)                    |
|                | bit 6, 7         | Reserved                                      |
|                | bit 8            | DriveWorksEZ Fault (dWFL)                     |
|                | bit 9 to F       | Reserved                                      |
|                | Fault Contents 8 |                                               |
|                | bit 0            | LSo Fault (LSo)                               |
|                | bit 1            | Node Setup Fault (nSE)                        |
| 00C5H          | bit 2 to 9       | Reserved                                      |
|                | bit A            | Initial Polarity Estimation Timeout (dv7)     |
|                | bit B to F       | Reserved                                      |
| 00C6H to 00C7H | Reserved         |                                               |
|                | Alarm Contents 2 |                                               |
|                | bit 0            | Control Circuit Undervoltage (Uv)             |
|                | bit 1            | Control Circuit Overvoltage (ov)              |
|                | bit 2            | Heatsink Overheat (oH)                        |
|                | bit 3            | Heatsink Overheat Warning (oH2)               |
|                | bit 4            | Overtorque Detection 1 (oL3)                  |
|                | bit 5            | Overtorque Detection 2 (oL4)                  |
|                | bit 6            | Forward/Reverse Run Commands Input Error (EF) |
| 00C8H          | bit 7            | Baseblock (bb)                                |
|                | bit 8            | External Fault 3, input terminal S3 (EF3)     |
|                | bit 9            | External Fault 4, input terminal S4 (EF4)     |
|                | bit A            | External Fault 5, input terminal S5 (EF5)     |
|                | bit B            | External Fault 6, input terminal S6 (EF6)     |
|                | bit C            | External Fault 7, input terminal S7 (EF7)     |
|                | bit D            | External Fault 8, input terminal S8 (EF8)     |
|                | bit E            | Fan Fault (FAn)                               |
|                | bit F            | Overspeed (oS)                                |

| Register No. |                  | Contents                                          |  |
|--------------|------------------|---------------------------------------------------|--|
|              | Alarm Contents 3 |                                                   |  |
|              | bit 0            | Speed Deviation (dEv)                             |  |
|              | bit 1            | PG Disconnect (PGo)                               |  |
|              | bit 2            | External Digital Operator Connection Fault (oPr)  |  |
|              | bit 3            | MEMOBUS/Modbus Communication Error (CE)           |  |
|              | bit 4            | Option Communication Error (bUS)                  |  |
|              | bit 5            | Serial Communication Transmission Error (CALL)    |  |
|              | bit 6            | Motor Overload (oL1)                              |  |
| 00C9H        | bit 7            | Overload (oL2)                                    |  |
|              | bit 8            | Reserved                                          |  |
|              | bit 9            | Option Card External fault (EF0)                  |  |
|              | bit A            | Motor Switch during Run (rUn)                     |  |
|              | bit B            | Reserved                                          |  |
|              | bit C            | Serial Communication Transmission Error (CALL)    |  |
|              | bit D            | Undertorque Detection 1 (UL3)                     |  |
|              | bit E            | Undertorque Detection 2 (UL4)                     |  |
|              | bit F            | MEMOBUS/Modbus Communication Test Mode Error (SE) |  |
|              | Alarm Contents 4 |                                                   |  |
|              | bit 0            | Reserved                                          |  |
|              | bit 1            | Motor Overheat Alarm (PTC Input) (oH3)            |  |
|              | bit 2 to 5       | Reserved                                          |  |
| 00CAH        | bit 6            | PID Feedback Loss (FbL)                           |  |
| 0001111      | bit 7            | Excessive PID Feedback (FbH)                      |  |
|              | bit 9            | Drive Disabled (dnE)                              |  |
|              | bit A            | PG Disconnect (PGo)                               |  |
|              | bit B to F       | Reserved                                          |  |
|              | Alarm Contents 5 | 10001104                                          |  |
|              | bit 0            | MECHATROLINK Watchdog Timer Error (E5)            |  |
|              | bit 1            | Station Address Setting Error (AEr)               |  |
|              | bit 2            | MECHATROLINK Comm. Cycle Setting Error (CyC)      |  |
|              | bit 3            | Current Alarm (HCA)                               |  |
|              | bit 4            | Cooling Fan Maintenance Time (LT-1)               |  |
|              | bit 5            | Maintenance Time (LT-2)                           |  |
|              | bit 6            | Damping Resistor Overheat (doH)                   |  |
| 00CBH        | bit 7            | SI-S EEPROM Error (EEP)                           |  |
|              | bit 8            | External Fault 1 (input terminal S1) (EF1)        |  |
|              | bit 9            | External Fault 2 (input terminal S2) (EF2)        |  |
|              | bit A            | Safe Disable Signal Input (HbbF)                  |  |
|              | bit B            | Safe Disable Signal Input (Hbb)                   |  |
|              | bit C            | Mechanical Weakening Detection 1 (oL5)            |  |
|              | bit D            | Mechanical Weakening Detection 2 (UL5)            |  |
|              | bit E, F         | Reserved                                          |  |
|              | Alarm Contents 6 | INCSCI YCU                                        |  |
|              | bit 0, 1         | Reserved                                          |  |
|              | bit 0, 1         | Capacitor Maintenance Time (LT-3)                 |  |
|              |                  | Reserved                                          |  |
| 00CCH        | I hit 4 to /     |                                                   |  |
| 00CCH        | bit 3 to 7 bit 8 | DriveWorksEZ Fault (dWAL)                         |  |

| Register No. |                  | Contents                                     |
|--------------|------------------|----------------------------------------------|
|              | Alarm Contents 7 |                                              |
| 00CDH        | bit 0            | Power Supply Frequency Fault Detection (Fdv) |
|              | bit 1            | Phase Order Detection Fault (SrC)            |
|              | bit 2            | Reserved                                     |
|              | bit 3            | Power Supply Undervoltage (AUv)              |
|              | bit 4 to F       | Reserved                                     |
|              | Alarm Contents 8 |                                              |
|              | bit 0 to D       | Reserved                                     |
| 00СЕН        | bit E            | Snubber Discharge Resistor Overheat (SoH)    |
|              | bit F            | Reserved                                     |
| 00CFH        | Reserved         |                                              |
|              | CPF Contents 1   |                                              |
|              | bit 0, 1         | Reserved                                     |
|              | bit 2            | Control Circuit Error (CPF02)                |
|              | bit 3            | Control Circuit Error (CPF03)                |
|              | bit 4, 5         | Reserved                                     |
|              | bit 6            | Control Circuit Error (CPF06)                |
| 00D0H        | bit 7            | Control Circuit Error (CPF07)                |
| 00D011       | bit 8            | Control Circuit Error (CPF08)                |
|              | bit 9, A         | Reserved                                     |
|              | bit B            | Control Circuit Error (CPF11)                |
|              | bit C            | Control Circuit Error (CPF12)                |
|              | bit D            | Control Circuit Error (CPF13)                |
|              | bit E            | Control Circuit Error (CPF14)                |
|              | bit F            | Reserved                                     |
|              | CPF Contents 2   |                                              |
|              | bit 0            | Control Circuit Error (CPF16)                |
|              | bit 1            | Control Circuit Error (CPF17)                |
|              | bit 2            | Control Circuit Error (CPF18)                |
|              | bit 3            | Control Circuit Error (CPF19)                |
|              | bit 4            | Control Circuit Error (CPF20)                |
|              | bit 5            | Control Circuit Error (CPF21)                |
|              | bit 6            | Control Circuit Error (CPF22)                |
| 00D1H        | bit 7            | Control Circuit Error (CPF23)                |
|              | bit 8            | Control Circuit Error (CPF24)                |
|              | bit 9            | Terminal Board not Connected (CPF25)         |
|              | bit A            | Control Circuit Error (CPF26)                |
|              | bit B            | Control Circuit Error (CPF27)                |
|              | bit C            | Control Circuit Error (CPF28)                |
|              | bit D            | Control Circuit Error (CPF29)                |
|              | bit E            | Control Circuit Error (CPF30)                |
|              | bit F            | Control Circuit Error (CPF31)                |

| Register No.   |                       | Contents                                          |
|----------------|-----------------------|---------------------------------------------------|
| -              | CPF Contents 3        |                                                   |
|                | bit 0                 | Control Circuit Error (CPF32)                     |
|                | bit 1                 | Control Circuit Error (CPF33)                     |
|                | bit 2                 | Control Circuit Error (CPF34)                     |
|                | bit 3                 | Control Circuit Error (CPF35)                     |
|                | bit 4 to 7            | Reserved                                          |
| 00D2H          | bit 8                 | Control Circuit Error (CPF40)                     |
|                | bit 9                 | Control Circuit Error (CPF41)                     |
|                | bit A                 | Control Circuit Error (CPF42)                     |
|                | bit B                 | Control Circuit Error (CPF43)                     |
|                | bit C                 | Control Circuit Error (CPF44)                     |
|                | bit D                 | Control Circuit Error (CPF45)                     |
|                | bit E, F              | Reserved                                          |
| 00D3H to 00D7H | Reserved              |                                                   |
|                | oFA0□ Contents (CN5-  | A)                                                |
|                | bit 0                 | Option Compatibility Error (oFA00)                |
|                | bit 1                 | Option not properly connected (oFA01)             |
| 00D8H          | bit 2 to 4            | Reserved                                          |
|                | bit 5                 | A/D Conversion Error (oFA05)                      |
|                | bit 6                 | Option Response Error (oFA06)                     |
|                | bit 7 to F            | Reserved                                          |
|                | oFA1□ Contents (CN5-  | A)                                                |
|                | bit 0                 | Option RAM Fault (oFA10)                          |
|                | bit 1                 | Option Operation Mode Fault (SLMOD) (oFA11)       |
|                | bit 2                 | Unit Receive CRC Error (oFA12)                    |
|                | bit 3                 | Unit Receive Frame Error (oFA13)                  |
| 00D9H          | bit 4                 | Unit Receive Abort Error (oFA14)                  |
|                | bit 5                 | Option Receive CRC Error (oFA15)                  |
|                | bit 6                 | Option Receive Frame Error (oFA16)                |
|                | bit 7                 | Option Receive Abort Error (oFA17)                |
|                | bit 8 to F            | Reserved                                          |
| 00DAH to 00DBH | Reserved              |                                                   |
|                | oFA3 Contents (CN5-A) |                                                   |
|                | bit 0                 | Comm. ID Error (oFA30)                            |
|                | bit 1                 | Model Code Error (oFA31)                          |
|                | bit 2                 | Sumcheck Error (oFA32)                            |
|                | bit 3                 | Comm. option timeout waiting for response (oFA33) |
|                | bit 4                 | MEMOBUS Timeout (oFA34)                           |
|                | bit 5                 | Unit timeout waiting for response (oFA35)         |
|                | bit 6                 | CI Check Error (oFA36)                            |
| 00DBH          | bit 7                 | Unit timeout waiting for response (oFA37)         |
|                | bit 8                 | Control Command Selection Error (oFA38)           |
|                | bit 9                 | Unit timeout waiting for response (oFA39)         |
|                | bit A                 | Control Response Selection 1 Error (oFA40)        |
|                | bit B                 | Unit timeout waiting for response (oFA41)         |
|                | bit C                 | Control Response Selection 2 Error (oFA42)        |
|                | bit D                 | Control Response Selection Error (oFA43)          |
|                | bit E, F              | Reserved                                          |
|                | 1 · · · · · · ·       |                                                   |

| Register No.   |                        | Contents                                           |
|----------------|------------------------|----------------------------------------------------|
|                | oFb0□ Contents (CN5-B) |                                                    |
|                | bit 0                  | Option compatibility error (oFb00)                 |
|                | bit 1                  | Option not properly connected (oFb01)              |
|                | bit 2                  | Same type of option card already connected (oFb02) |
| 00DCH          | bit 3, 4               | Reserved                                           |
|                | bit 5                  | A/D Conversion Fault (oFb05)                       |
|                | bit 6                  | Option Response Error (oFb06)                      |
|                | bit 7 to F             | Reserved                                           |
|                | oFb1□ Contents (C      | N5-B)                                              |
|                | bit 0                  | Option RAM Fault (oFb10)                           |
|                | bit 1                  | Option Operation Mode Fault (SLMOD) (oFb11)        |
|                | bit 2                  | Unit Receive CRC Error (oFb12)                     |
| 000011         | bit 3                  | Unit Receive Frame Error (oFb13)                   |
| 00DDH          | bit 4                  | Unit Receive Abort Error (oFb14)                   |
|                | bit 5                  | Option Receive CRC Error (oFb15)                   |
|                | bit 6                  | Option Receive Frame Error (oFb16)                 |
|                | bit 7                  | Option Receive Abort Error (oFb17)                 |
|                | bit 8 to F             | Reserved                                           |
| 00DEH to 00DFH | Reserved               |                                                    |
|                | oFb3□ Contents (C      | N5-B)                                              |
|                | bit 0                  | Comm. ID Error (oFb30)                             |
|                | bit 1                  | Model Code Error (oFb31)                           |
|                | bit 2                  | Sumcheck Error (oFb32)                             |
|                | bit 3                  | Comm. option timeout waiting for response (oFb33)  |
|                | bit 4                  | MEMOBUS Timeout (oFb34)                            |
|                | bit 5                  | Unit timeout waiting for response (oFb35)          |
| 00E0H          | bit 6                  | CI Check Error (oFb36)                             |
| UUEUH          | bit 7                  | Unit timeout waiting for response (oFb37)          |
|                | bit 8                  | Control Command Selection Error (oFb38)            |
|                | bit 9                  | Unit timeout waiting for response (oFb39)          |
|                | bit A                  | Control Response Selection 1 Error (oFb40)         |
|                | bit B                  | Unit timeout waiting for response (oFb41)          |
|                | bit C                  | Control Response Selection 2 Error (oFb42)         |
|                | bit D                  | Control Response Selection Error (oFb43)           |
|                | bit E, F               | Reserved                                           |
|                | oFC0□ Contents (C      |                                                    |
|                | bit 0                  | Option compatibility error (oFC00)                 |
|                | bit 1                  | Option not properly connected (oFC01)              |
| 00E1H          | bit 2                  | Same type of option card already connected (oFC02) |
| JUL 111        | bit 3, 4               | Reserved                                           |
|                | bit 5                  | A/D Conversion Fault (oFC05)                       |
|                | bit 6                  | Option Response Error (oFC06)                      |
|                | bit 7 to F             | Reserved                                           |

| S             |  |
|---------------|--|
| ä             |  |
| ە ق           |  |
| ᇴᇎ            |  |
| οō            |  |
| 2 2           |  |
| <u>ज</u> ₹    |  |
| တ် ပ          |  |
| $\supset \Xi$ |  |
| മട            |  |
| ᅐᄅ            |  |
| ¥ ⊑           |  |
| ≥ 5           |  |
| шо            |  |
| ΣŬ            |  |

| Register No.   | Contents               |                                             |
|----------------|------------------------|---------------------------------------------|
|                | oFC1□ Contents (CN5-C) |                                             |
|                | bit 0                  | Option RAM Fault (oFC10)                    |
|                | bit 1                  | Option Operation Mode Fault (SLMOD) (oFC11) |
|                | bit 2                  | Unit Receive CRC Error (oFC12)              |
| 00E2H          | bit 3                  | Unit Receive Frame Error (oFC13)            |
| 00E2FI         | bit 4                  | Unit Receive Abort Error (oFC14)            |
|                | bit 5                  | Option Receive CRC Error (oFC15)            |
|                | bit 6                  | Option Receive Frame Error (oFC16)          |
|                | bit 7                  | Option Receive Abort Error (oFC17)          |
|                | bit 8 to F             | Reserved                                    |
| 00E3H          | Reserved               |                                             |
|                | oFC5□ Contents (CN5-C) |                                             |
|                | bit 0                  | Encoder Option AD Conversion Error (oFC50)  |
|                | bit 1                  | Encoder Option Analog Circuit Error (oFC51) |
| 00E4H          | bit 2                  | Encoder Communication Timeout (oFC52)       |
| 00E4FI         | bit 3                  | Encoder Communication Data Error (oFC53)    |
|                | bit 4                  | Encoder Error (oFC54)                       |
|                | bit 5                  | Resolver Error (oFC55)                      |
|                | bit 6 to F             | Reserved                                    |
| 00E5H to 00E9H | Reserved               |                                             |
|                | Fault contents 11      |                                             |
|                | bit 0 to 6             | Reserved                                    |
|                | bit 7                  | Damping Resistor Overheat (doH)             |
| 00EAH          | bit 8                  | Snubber Discharge Resistor Overheat (SoH)   |
| UUEAΠ          | bit 9                  | Internal Resistance Fault (Srr)             |
|                | bit A to D             | Reserved                                    |
|                | bit E                  | Safety Circuit Fault (SCF)                  |
|                | bit F                  | Reserved                                    |
| 00EBH to 00FAH | Reserved               |                                             |
| 00FBH          | Output Current <2>     |                                             |

- <1> Parameter o1-03, Digital Operator Display Selection, determines the units.
- <2> Display is in the following units:
  - $2\square 0028$ ,  $2\square 0042$ , and  $4\square 0011$  to  $4\square 0027$ : 0.01 A units
  - $2\square 0054$  to  $2\square 0248$  and  $4\square 0034$  to  $4\square 0720$ : 0.1 A units
  - 4□0900 and 4□0930: 1 A units
- <3> Communication error contents are saved until the fault is reset.
- Set the number of motor poles to parameter E2-04 or E5-04 depending on the motor being used.

# Broadcast Messages

Data can be written from the master to all slave devices at the same time.

The slave address in a broadcast command message must be set to 00H. All slaves will receive the message, but will not respond.

| Register No. | Contents              |                                            |
|--------------|-----------------------|--------------------------------------------|
|              | Digital Input Command |                                            |
|              | bit 0                 | Forward Run (0: Stop 1: Run)               |
|              | bit 1                 | Direction Command (0: Forward, 1: Reverse) |
|              | bit 2, 3              | Reserved                                   |
|              | bit 4                 | External Fault                             |
| 0001H        | bit 5                 | Fault Reset                                |
|              | bit 6 to B            | Reserved                                   |
|              | bit C                 | Multi-Function Digital Input S5            |
|              | bit D                 | Multi-Function Digital Input S6            |
|              | bit E                 | Multi-Function Digital Input S7            |
|              | bit F                 | Multi-Function Digital Input S8            |
| 0002H        | Frequency Reference   | 30000/100%                                 |

# Fault Trace Contents

The table below shows the fault codes that can be read out by MEMOBUS/Modbus commands from the U2- $\Box\Box$  monitor parameters.

Table C.5 Fault Trace / History Register Contents

| Fault Code | Fault Name                                |
|------------|-------------------------------------------|
| 0002H      | Control Circuit Undervoltage Fault (Uv1)  |
| 0003H      | Control Power Supply Voltage Fault (Uv2)  |
| 0004H      | Undervoltage 3 (Uv3)                      |
| 0006Н      | Ground Fault (GF)                         |
| 0007H      | Overcurrent (oC)                          |
| H8000      | Control Circuit Overvoltage (ov)          |
| 0009Н      | Heatsink Overheat (oH)                    |
| 000AH      | Overheat 1 (oH1)                          |
| 000BH      | Motor Overload (oL1)                      |
| 000CH      | Overload (oL2)                            |
| 000DH      | Overtorque Detection 1 (oL3)              |
| 000EH      | Overtorque Detection 2 (oL4)              |
| 0011H      | External Fault at Input Terminal S3 (EF3) |
| 0012H      | External Fault at Input Terminal S4 (EF4) |
| 0013H      | External Fault at Input Terminal S5 (EF5) |
| 0014H      | External Fault at Input Terminal S6 (EF6) |
| 0015H      | External Fault at Input Terminal S7 (EF7) |
| 0016H      | External Fault at Input Terminal S8 (EF8) |
| 0017H      | Fan Fault (FAn)                           |
| 0018H      | Overspeed (oS)                            |
| 0019H      | Speed Deviation (dEv)                     |
| 001AH      | PG Disconnect (PGo)                       |
| 001CH      | Output Phase Loss (LF)                    |
| 001DH      | Motor Overheat Alarm (PTC input) (oH3)    |
| 001EH      | Digital Operator Connection Fault (oPr)   |
| 001FH      | EEPROM Write Error (Err)                  |
| 0020H      | Motor Overheat Fault (PTC input) (oH4)    |

| Fault Code | Fault Name                                   |
|------------|----------------------------------------------|
| 0021H      | MEMOBUS/Modbus Communication Error (CE)      |
| 0022H      | Option Communication Error (bUS)             |
| 0025H      | Control Fault (CF)                           |
| 0026H      | Zero-Servo Fault (SvE)                       |
| 0027H      | Option Card External Fault (EF0)             |
| 0028H      | PID Feedback Loss (FbL)                      |
| 0029H      | Undertorque Detection 1 (UL3)                |
| 002AH      | Undertorque Detection 2 (UL4)                |
| 0030H      | Hardware Fault (including oFx)               |
| 0032H      | Z Pulse Fault (dv1)                          |
| 0033H      | Z Pulse Noise Fault Detection (dv2)          |
| 0034H      | Inversion Detection (dv3)                    |
| 0035H      | Inversion Prevention Detection (dv4)         |
| 0036H      | Output Current Imbalance (LF2)               |
| 0037H      | Pull-Out Detection (Sto)                     |
| 0038H      | PG Hardware Fault (PGoH)                     |
| 0039H      | MECHATROLINK Watchdog Timer Error (E5)       |
| 003BH      | Too Many Speed Search Restarts (SEr)         |
| 0041H      | Excessive PID Feedback (FbH)                 |
| 0042H      | External Fault 1, Input Terminal S1 (EF1)    |
| 0043H      | External Fault 2, Input Terminal S2 (EF2)    |
| 0044H      | Mechanical Weakening Detection 1 (oL5)       |
| 0045H      | Mechanical Weakening Detection 2 (UL5)       |
| 0046H      | Current Offset Fault (CoF)                   |
| 0049H      | DriveWorksEZ Fault (dWFL)                    |
| 004AH      | EEPROM Memory DriveWorksEZ Data Error (dWF1) |

| Fault Code     | Fault Name                                   |  |  |  |  |  |
|----------------|----------------------------------------------|--|--|--|--|--|
| 0051H          | LSo Fault (LSo)                              |  |  |  |  |  |
| 0052H          | Node Setup Fault (nSE)                       |  |  |  |  |  |
| 005BH          | Initial Polarity Estimation Timeout (dv7)    |  |  |  |  |  |
| 005CH          | Ground Fault (GF)                            |  |  |  |  |  |
| 0066Н          | Power Supply Undervoltage (AUv)              |  |  |  |  |  |
| 0067Н          | Power Supply Overvoltage (Aov)               |  |  |  |  |  |
| 0068H          | Power Supply Frequency Fault Detection (Fdv) |  |  |  |  |  |
| 0069H          | Phase Order Detection Fault (SrC)            |  |  |  |  |  |
| 0081H          | Control Circuit Error (CPF00)                |  |  |  |  |  |
| 0082H          | Control Circuit Error (CPF01)                |  |  |  |  |  |
| 0083H          | Control Circuit Error (CPF02)                |  |  |  |  |  |
| 0084H          | Control Circuit Error (CPF03)                |  |  |  |  |  |
| 0084H          | Control Circuit Error (CPF06)                |  |  |  |  |  |
| 0087H          |                                              |  |  |  |  |  |
|                | Control Circuit Error (CPF07)                |  |  |  |  |  |
| 0089H<br>008CH | Control Circuit Error (CPF18)                |  |  |  |  |  |
|                | Control Circuit Error (CPF11)                |  |  |  |  |  |
| 008DH          | Control Circuit Error (CPF12)                |  |  |  |  |  |
| 008EH          | Control Circuit Error (CPF13)                |  |  |  |  |  |
| 008FH          | Control Circuit Error (CPF14)                |  |  |  |  |  |
| 0091H          | Control Circuit Error (CPF16)                |  |  |  |  |  |
| 0092H          | Control Circuit Error (CPF17)                |  |  |  |  |  |
| 0093H          | Control Circuit Error (CPF18)                |  |  |  |  |  |
| 0094H          | Control Circuit Error (CPF19)                |  |  |  |  |  |
| 0095H          | Control Circuit Error (CPF20)                |  |  |  |  |  |
| 0096Н          | Control Circuit Error (CPF21)                |  |  |  |  |  |
| 0097Н          | Control Circuit Error (CPF22)                |  |  |  |  |  |
| 0098H          | Control Circuit Error (CPF23)                |  |  |  |  |  |
| 0099Н          | Control Circuit Error (CPF24)                |  |  |  |  |  |
| 009AH          | Terminal Board not Connected (CPF25)         |  |  |  |  |  |
| 009BH          | Control Circuit Error (CPF26)                |  |  |  |  |  |
| 009CH          | Control Circuit Error (CPF27)                |  |  |  |  |  |
| 009DH          | Control Circuit Error (CPF28)                |  |  |  |  |  |
| 009EH          | Control Circuit Error (CPF29)                |  |  |  |  |  |
| 009FH          | Control Circuit Error (CPF30)                |  |  |  |  |  |
| 00A0H          | Control Circuit Error (CPF31)                |  |  |  |  |  |
| 00A1H          | Control Circuit Error (CPF32)                |  |  |  |  |  |
| 00A2H          | Control Circuit Error (CPF33)                |  |  |  |  |  |
| 00A3H          | Control Circuit Error (CPF34)                |  |  |  |  |  |
| 00A4H          | Control Circuit Error (CPF35)                |  |  |  |  |  |
| 00A9H          | Control Circuit Error (CPF40)                |  |  |  |  |  |
| 00AAH          | Control Circuit Error (CPF41)                |  |  |  |  |  |
| 00ABH          | Control Circuit Error (CPF42)                |  |  |  |  |  |
| 00ACH          | Control Circuit Error (CPF43)                |  |  |  |  |  |
| 00ADH          | Control Circuit Error (CPF44)                |  |  |  |  |  |
| 00AEH          | Control Circuit Error (CPF45)                |  |  |  |  |  |
| 0101H          | Option Compatibility Error (oFA00)           |  |  |  |  |  |
| 0102H          | Option Not Properly Connected (oFA01)        |  |  |  |  |  |
| 0106Н          | A/D Conversion Error (oFA05)                 |  |  |  |  |  |
| 0107H          | Option Response Error (oFA06)                |  |  |  |  |  |
| 0111H          | Option RAM Fault (oFA10)                     |  |  |  |  |  |
|                | . ,                                          |  |  |  |  |  |

| Fault Code | Fault Name                                         |  |  |  |  |  |  |
|------------|----------------------------------------------------|--|--|--|--|--|--|
| 0112H      | Option Operation Mode Fault (SLMOD) (oFA11)        |  |  |  |  |  |  |
| 0113H      | Unit Receive CRC Error (oFA12)                     |  |  |  |  |  |  |
| 0114H      | Unit Receive Frame Error (oFA13)                   |  |  |  |  |  |  |
| 0115H      | Unit Receive Abort Error (oFA14)                   |  |  |  |  |  |  |
| 0116Н      | Option Receive CRC Error (oFA15)                   |  |  |  |  |  |  |
| 0117H      | Option Receive Frame Error (oFA16)                 |  |  |  |  |  |  |
| 0118H      | Option Receive Abort Error (oFA17)                 |  |  |  |  |  |  |
| 0131H      | omm. ID Error (oFA30)                              |  |  |  |  |  |  |
| 0132H      | Model Code Error (oFA31)                           |  |  |  |  |  |  |
| 0133H      | Sumcheck Error (oFA32)                             |  |  |  |  |  |  |
| 0134H      | Comm. Option Timeout Waiting for Response (oFA33)  |  |  |  |  |  |  |
| 0135H      | MEMOBUS Timeout (oFA34)                            |  |  |  |  |  |  |
| 0136Н      | Unit Timeout Waiting for Response (oFA35)          |  |  |  |  |  |  |
| 0137H      | CI Check Error (oFA36)                             |  |  |  |  |  |  |
| 0138H      | Unit Timeout Waiting for Response (oFA37)          |  |  |  |  |  |  |
| 0139Н      | Control Command Selection Error (oFA38)            |  |  |  |  |  |  |
| 013AH      | Unit Timeout Waiting for Response (oFA39)          |  |  |  |  |  |  |
| 013BH      | Control Response Selection 1 Error (oFA40)         |  |  |  |  |  |  |
| 013CH      | Unit Timeout Waiting for Response (oFA41)          |  |  |  |  |  |  |
| 013DH      | Control Response Selection 2 Error (oFA42)         |  |  |  |  |  |  |
| 013EH      | Control Response Selection Error (oFA43)           |  |  |  |  |  |  |
| 0201H      | Option Compatibility Error (oFB00)                 |  |  |  |  |  |  |
| 0202H      | Option Connection Error (oFb01)                    |  |  |  |  |  |  |
| 0203Н      | Same Type of Option Card Already Connected (oFb02) |  |  |  |  |  |  |
| 0206Н      | A/D Conversion Error (oFb05)                       |  |  |  |  |  |  |
| 0207H      | Option Response Error (oFb06)                      |  |  |  |  |  |  |
| 0211H      | Option RAM Fault (oFb10)                           |  |  |  |  |  |  |
| 0212H      | Option Operation Mode Fault (SLMOD) (oFb11)        |  |  |  |  |  |  |
| 0213H      | Unit Receive CRC Error (oFb12)                     |  |  |  |  |  |  |
| 0214H      | Unit Receive Frame Error (oFb13)                   |  |  |  |  |  |  |
| 0215H      | Unit Receive Abort Error (oFb14)                   |  |  |  |  |  |  |
| 0216Н      | Option Receive CRC Error (oFb15)                   |  |  |  |  |  |  |
| 0217H      | Option Receive Frame Error (oFb16)                 |  |  |  |  |  |  |
| 0218H      | Option Receive Abort Error (oFb17)                 |  |  |  |  |  |  |
| 0232H      | Model Code Error (oFb31)                           |  |  |  |  |  |  |
| 0233H      | Sumcheck Error (oFb32)                             |  |  |  |  |  |  |
| 0234Н      | Comm. option Timeout Waiting for Response (oFb33)  |  |  |  |  |  |  |
| 0235H      | MEMOBUS Timeout (oFb34)                            |  |  |  |  |  |  |
| 0236Н      | Unit Timeout Waiting for Response (oFb35)          |  |  |  |  |  |  |
| 0237H      | CI Check Error (oFb36)                             |  |  |  |  |  |  |
| 0238H      | Unit Timeout Waiting for Response (oFb37)          |  |  |  |  |  |  |
| 0239Н      | Control Command Selection Error (oFb38)            |  |  |  |  |  |  |
| 023AH      | Unit Timeout Waiting for Response (oFb39)          |  |  |  |  |  |  |
| 023BH      | Control Response Selection 1 Error (oFb40)         |  |  |  |  |  |  |
| 023CH      | Unit Timeout Waiting for Response (oFb41)          |  |  |  |  |  |  |
| 023DH      | Control Response Selection 2 Error (oFb42)         |  |  |  |  |  |  |
| 023EH      | Control Response Selection Error (oFb43)           |  |  |  |  |  |  |
| 0301H      | Option Compatibility Error (oFC00)                 |  |  |  |  |  |  |
| 0303H      | Option Not Properly Connected (oFC01)              |  |  |  |  |  |  |
|            |                                                    |  |  |  |  |  |  |

| Fault Code | Fault Name                                         |
|------------|----------------------------------------------------|
| 0304Н      | Same Type of Option Card Already Connected (oFC02) |
| 0306Н      | A/D Conversion Error (oFC05)                       |
| 0307Н      | Option Response Error (oFC06)                      |
| 0311H      | Option RAM Fault (oFC10)                           |
| 0312H      | Option Operation Mode Fault (SLMOD) (oFC11)        |
| 0313H      | Unit Receive CRC Error (oFC12)                     |
| 0314H      | Unit Receive Frame Error (oFC13)                   |
| 0315H      | Unit Receive Abort Error (oFC14)                   |
| 0316Н      | Option Receive CRC Error (oFC15)                   |
| 0317H      | Option Receive Frame Error (oFC16)                 |

| Fault Code | Fault Name                                  |
|------------|---------------------------------------------|
| 0318H      | Option Receive Abort Error (oFC17)          |
| 0351H      | Encoder Option AD Conversion Error (oFC50)  |
| 0352H      | Encoder Option Analog Circuit Error (oFC51) |
| 0353Н      | Encoder Communication Timeout (oFC52)       |
| 0354Н      | Encoder Communication Data Error (oFC53)    |
| 0355H      | Encoder Error (oFC54)                       |
| 0356Н      | Resolver Error (oFC55)                      |
| 0408H      | Damping Resistor Overheat (doH)             |
| 0409H      | Snubber Discharge Resistor Overheat (SoH)   |
| 040AH      | Internal Resistance Fault (Srr)             |

# ◆ Alarm Register Contents

The table below shows the alarm codes that can be read out from MEMOBUS/Modbus register 007FH.

Table C.6 Alarm Register 007FH Contents

| Fault Code | Fault Name                                     |  |  |  |  |  |
|------------|------------------------------------------------|--|--|--|--|--|
| 0001H      | Control Circuit Undervoltage (Uv)              |  |  |  |  |  |
| 0002Н      | Control Circuit Overvoltage (ov)               |  |  |  |  |  |
| 0003H      | leatsink Overheat (oH)                         |  |  |  |  |  |
| 0004H      | Heatsink Overheat Warning (oH2)                |  |  |  |  |  |
| 0005H      | Overtorque 1 (oL3)                             |  |  |  |  |  |
| 0006Н      | Overtorque 2 (oL4)                             |  |  |  |  |  |
| 0007Н      | Forward/Reverse Run commands input error (EF)  |  |  |  |  |  |
| H8000      | Baseblock (bb)                                 |  |  |  |  |  |
| 0009Н      | External Fault 3, input terminal S3 (EF3)      |  |  |  |  |  |
| 000AH      | External Fault 4, input terminal S4 (EF4)      |  |  |  |  |  |
| 000BH      | External Fault 5, input terminal S5 (EF5)      |  |  |  |  |  |
| 000CH      | External Fault 6, input terminal S6 (EF6)      |  |  |  |  |  |
| 000DH      | External Fault 7, input terminal S7 (EF7)      |  |  |  |  |  |
| 000EH      | External Fault 8, input terminal S8 (EF8)      |  |  |  |  |  |
| 000FH      | Fan Fault (FAn)                                |  |  |  |  |  |
| 0010H      | Overspeed (oS)                                 |  |  |  |  |  |
| 0012H      | PG Disconnect (PGo)                            |  |  |  |  |  |
| 0014H      | MEMOBUS/Modbus Communication Error (CE)        |  |  |  |  |  |
| 0015H      | Option Communication Error (bUS)               |  |  |  |  |  |
| 0016Н      | Serial Communication Transmission Error (CALL) |  |  |  |  |  |
| 001AH      | Option Card External Fault (EF0)               |  |  |  |  |  |
| 001BH      | Motor Switch command input during run (rUn)    |  |  |  |  |  |
| 001DH      | Serial Communication Transmission Error (CALL) |  |  |  |  |  |
| 001EH      | Undertorque Detection 1 (UL3)                  |  |  |  |  |  |
| 001FH      | Undertorque Detection 2 (UL4)                  |  |  |  |  |  |

| Fault Code | Fault Name                                        |  |  |  |  |  |
|------------|---------------------------------------------------|--|--|--|--|--|
| 0020Н      | MEMOBUS/Modbus Communication Test Mode Error (SE) |  |  |  |  |  |
| 0022H      | Motor Overheat (oH3)                              |  |  |  |  |  |
| 0027H      | PID Feedback Loss (FbL)                           |  |  |  |  |  |
| 0028H      | Excessive PID Feedback (FbH)                      |  |  |  |  |  |
| 002AH      | Drive Disabled (dnE)                              |  |  |  |  |  |
| 002BH      | PG Disconnect (PGo)                               |  |  |  |  |  |
| 0031H      | MECHATROLINK Watchdog Timer Error (E5)            |  |  |  |  |  |
| 0032Н      | Station Address Setting Error (AEr)               |  |  |  |  |  |
| 0033Н      | MECHATROLINK Comm. Cycle Setting Error (CyC)      |  |  |  |  |  |
| 0034H      | Current Alarm (HCA)                               |  |  |  |  |  |
| 0035H      | Cooling Fan Maintenance Time (LT-1)               |  |  |  |  |  |
| 0036Н      | Capacitor Maintenance Time (LT-2)                 |  |  |  |  |  |
| 0037H      | Damping Resistor Overheat (doH)                   |  |  |  |  |  |
| 0038H      | SI-S EEPROM Error (EEP)                           |  |  |  |  |  |
| 0039Н      | External Fault (input terminal S1) (EF1)          |  |  |  |  |  |
| 003AH      | External Fault (input terminal S2) (EF2)          |  |  |  |  |  |
| 003BH      | Safe Disable Signal Input (HbbF)                  |  |  |  |  |  |
| 003CH      | Safe Disable Signal Input (Hbb)                   |  |  |  |  |  |
| 003DH      | Mechanical Weakening Detection 1 (oL5)            |  |  |  |  |  |
| 003EH      | Mechanical Weakening Detection 2 (UL5)            |  |  |  |  |  |
| 0043H      | Soft Charge Bypass Relay Maintenance Time (LT-3)  |  |  |  |  |  |
| 0049H      | DriveWorksEZ Fault (dWAL)                         |  |  |  |  |  |
| 0050H      | Power Supply Undervoltage (AUv)                   |  |  |  |  |  |

# **C.10 Enter Command**

When writing parameters to the drive from the PLC using MEMOBUS/Modbus communication, parameter H5-11 determines whether an Enter command must be issued to enable these parameters. This section describes the types and functions of the Enter commands.

# **Enter Command Types**

The drive supports two types of Enter commands as shown in *Table C.7*. An Enter command is enabled by writing 0 to register numbers 0900H or 0910H. It is only possible to write to these registers; attempting to read from these registers will cause an error.

**Table C.7 Enter Command Types** 

| Register No. | Description                                                                                                                                              |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | Simultaneously writes data into the EEPROM (non-volatile memory) of the drive and enables the data in RAM. Parameter changes remain after cycling power. |
| 0910H        | Writes data in the RAM only. Parameter changes are lost when the drive is shut off.                                                                      |

Note:

The EEPROM can only be written to 100,000 times, so it is recommended to limit the number of times writing to the EEPROM. The Enter command registers are write-only and if these registers are read, the register address will be invalid (Error code: 02H). An Enter command is not required when reference or broadcast data are sent to the drive.

# **C.11 Communication Errors**

#### MEMOBUS/Modbus Error Codes

A list of MEMOBUS/Modbus errors appears below.

When an error occurs, remove whatever caused the error and restart communications.

| Funan Cada | Error Name                                                                                                                                                                                                          |  |  |  |  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Error Code | Cause                                                                                                                                                                                                               |  |  |  |  |
| 01H        | Function Code Error                                                                                                                                                                                                 |  |  |  |  |
| VIII       | Attempted to set a function code from a PLC other than 03H, 08H, and 10H.                                                                                                                                           |  |  |  |  |
|            | Register Number Error                                                                                                                                                                                               |  |  |  |  |
| 02H        | A register number specified in the command message does not exist.                                                                                                                                                  |  |  |  |  |
|            | Attempted to send a broadcast message using other register numbers than 0001H or 0002H.                                                                                                                             |  |  |  |  |
|            | Bit Count Error                                                                                                                                                                                                     |  |  |  |  |
| 03H        | Read data or write data is greater than 16 bits. Invalid command message quantity.                                                                                                                                  |  |  |  |  |
| 0511       | • In a write message, the "Number of Data Items" contained within the message does not equal twice the amount of data words (i.e., the total of Data 1+ Data 2, etc.).                                              |  |  |  |  |
|            | Data Setting Error                                                                                                                                                                                                  |  |  |  |  |
| 21H        | Control data or parameter write data is outside the allowable setting range.                                                                                                                                        |  |  |  |  |
|            | Attempted to write a contradictory parameter setting.                                                                                                                                                               |  |  |  |  |
|            | Write Mode Error                                                                                                                                                                                                    |  |  |  |  |
|            | During run, the user attempted to write a parameter that cannot be written to during run.                                                                                                                           |  |  |  |  |
| 22Н        | • During a control circuit error (CPF06), the master attempted to write to a parameter other than A1-00 to A1-05, E1-03, or o2-04.                                                                                  |  |  |  |  |
|            | Attempted to write to read-only data.                                                                                                                                                                               |  |  |  |  |
|            | Power Supply Err Write Error                                                                                                                                                                                        |  |  |  |  |
| 23Н        | During an undervoltage situation, the master attempted to write to parameters that cannot be written to during undervoltage.                                                                                        |  |  |  |  |
| 24H        | Write Error During Parameter Process                                                                                                                                                                                |  |  |  |  |
| 24П        | Master attempted writing to the drive while the unit was processing parameter data.                                                                                                                                 |  |  |  |  |
|            | Writing into EEPROM Disabled                                                                                                                                                                                        |  |  |  |  |
| 25H        | An attempt was made to write data into EEPROM by MEMOBUS/Modbus communications when writing EEPROM is not possible. (When this error code occurs, an error message is displayed and the drive continues operation.) |  |  |  |  |

# Slave Not Responding

In the following situations, the slave drive will ignore the command message sent from the master, and not send a response message:

- When a communications error (overrun, framing, parity, or CRC-16) is detected in the command message.
- When the slave address in the command message and the slave address in the unit do not match (remember to set the slave address for the drive using H5-01).
- When the gap between two blocks (8-bit) of a message exceeds 24 bits.
- When the command message data length is invalid.

**Note:** If the slave address specified in the command message is 00H, all slaves execute the write function, but do not return response messages to the master.

# C.12 Self-Diagnostics

The drive has a built-in self-diagnosing function of the serial communication interface circuits. To perform the self-diagnosis function, use the following procedure.

**DANGER!** Electrical Shock Hazard. Do not connect or disconnect wiring while the power is on. Failure to comply will result in death or serious injury. Before servicing, disconnect all power to the equipment. The capacitor for the control power supply remains charged even after the power supply is turned off. The charge indicator LED will extinguish when the control power supply voltage is below 50 Vdc. To prevent electric shock, wait at least one minute after all indicators are OFF and measure the control power supply voltage level to confirm

- **1.** Turn on the power to the drive.
- 2. Note the present terminal S6 function selection setting (H1-06) and set it for the communications test mode (H1-06 = 67).
- **3.** Turn off the power to the drive.
- 4. With the power off, wire the drive as shown in Figure C.8, connecting terminals R+ and S+, R- and S-, and S6 and

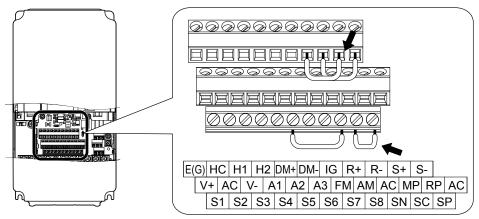



Figure C.8 Terminal Connections for Communication Self-Diagnostics

- **5.** Verify that terminals SC to SP are connected by wire jumper.
- **6.** Turn the power to the drive back on.
- 7. During normal operation, the drive will display "PASS" to indicate that the communications test mode is operating normally.
  - When a fault occurs, the drive will display "CE" on the keypad display.
- **8.** Turn off the power supply.
- 9. Remove the wire jumpers from terminal R+, R-, S+, S-, and S6-SN. Reset jumper SC to SP to its original position and set terminal S6 to its original function.
- **10.**Return to normal operation.

C.12 Self-Diagnostics

This Page Intentionally Blank

# **Appendix: D**

# **Standards Compliance**

This appendix explains the guidelines and criteria for maintaining CE and UL standards.

| D.2 EUROPEAN STANDARDS       | 664 |
|------------------------------|-----|
|                              | 366 |
| D.3 UL AND CSA STANDARDS     | 378 |
| D.4 CSA STANDARDS COMPLIANCE | 393 |
| D.5 SAFE DISABLE INPUT       | 394 |

# **D.1 Section Safety**

# **⚠** DANGER

#### **Electrical Shock Hazard**

#### Before servicing, disconnect all power to the equipment.

The capacitor for the control power supply remains charged even after the power supply is turned off. The charge indicator LED will extinguish when the control power supply voltage is below 50 Vdc. To prevent electric shock, wait for at least the time specified on the warning label, once all indicators are OFF, measure for unsafe voltages to confirm the drive is safe prior to servicing.

Failure to comply will result in death or serious injury.

## **WARNING**

#### **Electrical Shock Hazard**

#### Do not operate equipment with covers removed.

Failure to comply could result in death or serious injury.

The diagrams in this section may show drives without covers or safety shields to show details. Be sure to reinstall covers or shields before operating the drives and run the drives according to the instructions described in this manual.

#### Always ground the motor-side grounding terminal.

Improper equipment grounding could result in death or serious injury by contacting the motor case.

#### Do not touch any terminals before the capacitors have fully discharged.

Failure to comply could result in death or serious injury.

Before wiring terminals, disconnect all power to the equipment. The capacitor for the control power supply remains charged even after the power supply is turned off. After shutting off the power, wait for at least the amount of time specified on the drive before touching any components.

#### Do not allow unqualified personnel to perform work on the drive.

Failure to comply could result in death or serious injury.

Installation, maintenance, inspection, and service must be performed only by authorized personnel familiar installation, adjustment, and maintenance of drives.

#### Do not perform work on the drive while wearing loose clothing, jewelry or without eye protection.

Failure to comply could result in death or serious injury.

Remove all metal objects such as watches and rings, secure loose clothing, and wear eye protection before beginning work on the drive.

#### Do not remove covers or touch circuit boards while the power is on.

Failure to comply could result in death or serious injury.

#### Fire Hazard

#### Tighten all terminal screws to the specified tightening torque.

Loose electrical connections could result in death or serious injury by fire due to overheating of electrical connections.

#### Do not use an improper voltage source.

Failure to comply could result in death or serious injury by fire.

Verify that the rated voltage of the drive matches the voltage of the incoming power supply before applying power.

#### Do not use improper combustible materials for the drive and filter module.

Failure to comply could result in death or serious injury by fire.

Attach the drive and filter module to metal or other noncombustible material.

#### **NOTICE**

Observe proper electrostatic discharge procedures (ESD) when handling the drive and circuit boards.

Failure to comply may result in ESD damage to the drive circuitry.

Never connect or disconnect the motor from the drive while the drive is outputting voltage.

Improper equipment sequencing could result in damage to the drive.

#### Do not use unshielded wire for control wiring.

Failure to comply may cause electrical interference resulting in poor system performance. Use shielded twisted-pair wires and ground the shield to the ground terminal of the drive.

#### Do not modify the drive circuitry.

Failure to comply could result in damage to the drive and will void warranty.

Yaskawa is not responsible for modification of the product made by the user. This product must not be modified.

Check all the wiring to ensure that all connections are correct after installing the drive and connecting other devices. Failure to comply could result in damage to the drive.

If a fuse is blown or a Ground Fault Circuit Interrupter (GFCI) is tripped, check the wiring and the selection of the peripheral devices.

Contact Yaskawa or a Yaskawa representative if the cause cannot be identified after checking the above.

Do not restart the drive immediately operate the peripheral devices if a fuse is blown or a GFCI is tripped.

Check the wiring and the selection of peripheral devices to identify the cause. Contact Yaskawa or a Yaskawa representative before restarting the drive or the peripheral devices if the cause cannot be identified.

# D.2 European Standards



Figure D.1 CE Mark

The CE mark indicates that a product is in compliance with applicable European Directives for safety and environmental regulations. It is required for engaging in business and commerce in Europe.

The applicable European Directives for this product are as follows. We declared the CE marking based on the harmonized standards in *Table D.1*.

**Table D.1 European Directives** 

| Applicable European Directive      | Applicable Harmonized Standards                                                                                                             |  |  |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Low Voltage Directive (2014/35/EU) | IEC/EN 61800-5-1                                                                                                                            |  |  |
| EMC Guidelines (2014/30/EU)        | EN 61800-3: 2004/A1: 2012                                                                                                                   |  |  |
| Machinery Directive (2006/42/EC)   | EN ISO 13849-1/AC:2008 (PL e (Cat.3))     IEC 62061/A1:2012 (SIL CL 3)     EN 62061/A1:2013 (SIL CL 3)     IEC (FD) (1909 5 2, 2007 (FB) 2) |  |  |
| RoHS (2011/65/EU)                  | • IEC/EN 61800-5-2: 2007 (SIL3)<br>EN IEC 63000:2018                                                                                        |  |  |

The user(s) is solely responsible for ensuring that the end products used with this drive comply with all applicable European directives and with other national regulations (if required).

# EU declaration of Conformity

Go to www.yaskawa.com and search for "Declaration of Conformity" to get an original copy of the EU Declaration of Conformity.

Yaskawa declares that this product complies with the following directives and standards at our sole responsibility.

# **◆** CE Low Voltage Directive Compliance

This drive has been tested according to IEC/EN 61800-5-1, and it fully complies with the Low Voltage Directive.

To comply with the Low Voltage Directive, be sure to meet the following conditions when combining this drive with other devices:

#### Area of Use

Do not use drives in areas with pollution higher than degree 2 and overvoltage category 3 in accordance with IEC/EN 60664.

#### Grounding

The drive is designed to be used in T-N (grounded neutral point) networks. If installing the drive in other types of grounded systems, contact your Yaskawa representative for instructions. *Refer to Enable the Internal EMC Filter on page 124* for details.

## ■ Guarding Against Harmful Materials

When installing IP00/Open Type enclosure drives, use an enclosure that prevents foreign material from entering the drive from above or below.

# ■ Wiring Diagram

Refer to *Figure D.2* for an example of this product wired to comply with the CE Low Voltage Directive.

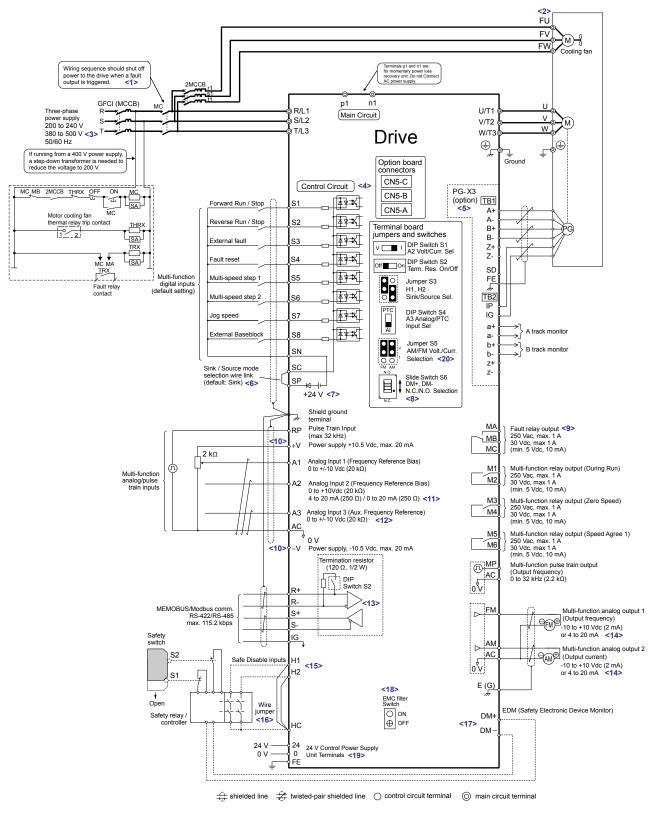
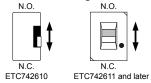




Figure D.2 Wiring Diagram for CE Low Voltage Directive Compliance (example: 200 V Class)

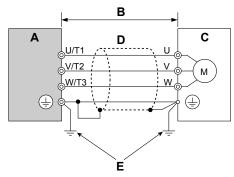
- <1> When setting L5-02 to 1 to trigger a fault output whenever the fault restart function is activated, a sequence to interrupt power when a fault occurs will turn off power to the drive as the drive attempts to restart. The default setting for L5-02 is 0 (Fault output not active during restart attempt).
- <2> Self-cooling motors do not require wiring that is necessary for motors using a cooling fan.
- <3> Use a three-phase power supply with a voltage of 380 to 480 V for drive models 4\(\sigma 0011\) to 4\(\sigma 0414\) (built-in EMC filter) and 4\(\sigma 0477\) to 4\(\sigma 0590\) (with stand-alone EMC filter).
- <4> Supplying power to the control circuit separately from the main circuit requires 24 V power supply (option).
- <5> PG option card wiring is not necessary for control modes that do not use a motor speed feedback signal.
- <6> This figure illustrates an example of a sequence input to S1 through S8 using a non-powered relay or an NPN transistor. Install the wire link between terminals SC-SP for Sink mode, between SC-SN for Source mode, or leave the link out for external power supply. Never short terminals SP and SN, as it will damage the drive. *Refer to Control I/O Connections on page 119* for details.
- <7> This voltage source supplies a maximum current of 150 mA when not using a digital input card DI-A3.
- <8> Slide switch S6 design differs based on PCB model number.



- <9> Wire the fault relay output separately from the main circuit power supply and other power lines.
- <10> The maximum output current capacity for the +V and -V terminals on the control circuit is 20 mA. Never short terminals +V, -V, and AC, as it can cause erroneous operation or damage the drive.
- <11> Set DIP switch S1 to select between a voltage or current input signal to terminal A2. The default setting is for current input.
- <12> Set DIP switch S4 to select between analog or PTC input for terminal A3.
- <13> Set DIP switch S2 to the ON position to enable the termination resistor in the last drive in a MEMOBUS/Modbus network.
- <14> Monitor outputs work with devices such as analog frequency meters, ammeters, voltmeters, and wattmeters. They are not intended for use as a feedback-type signal.
- <15> Use jumper S3 to select between Sink mode, Source mode, and external power supply for the Safe Disable inputs.
- <16> Disconnect the wire jumper between H1 HC and H2 HC when utilizing the Safe Disable input.
- <17> Slide switch S6 to select N.C. or N.O. as the state of the DM+ and DM- terminals for EDM output.
- <18> Models UU□E□□□□ and UU□W□□□□ have a built-in EMC filter switch. Use a stand-alone EMC filter for models 4□0477 to 4□0590, which do not have an EMC filter switch.
- <19> Models UU \(\text{UU}\) P \(\text{D}\) \(\text{D}\) and UU \(\text{D}\) \(\text{D}\) \(\text{D}\) have terminals 24, 0, and FE to provide board-level component voltages for the drive from an external, customer-supplied 24 Vdc source. These terminals also maintain drive control power and network communications when the main three-phase input power is removed.
- <20> Use jumper S5 to select between voltage or current output signals at terminals AM and FM. Set parameters H4-07 and H4-08 accordingly.

# ◆ EMC Guidelines Compliance for Models U□□E□□□□ and U□□W□□□□

Drives with internal EMC filters (CIMR-UDDEDDDD/UDDWDDD) are tested according to IEC/EN 61800-3:2004+A1:2012 and complies with EMC guidelines. Use a model with an internal EMC filter or install a stand-alone EMC filter on the input side of the drive to comply with the EMC guidelines.


Refer to Stand-Alone EMC Filter Installation on page 670 for EMC filter installation.

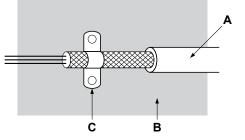
**Note:** Drives with customized specifications A and P are not compatible.

#### Internal EMC Filter Installation

#### **Installation Method**

- 1. Place the drive in the enclosure.
- 2. Use braided shield cable for the drive and motor wiring, or run the wiring through a metal conduit.
- 3. Keep wiring as short as possible. Ground the shield on both the drive side and the motor side.



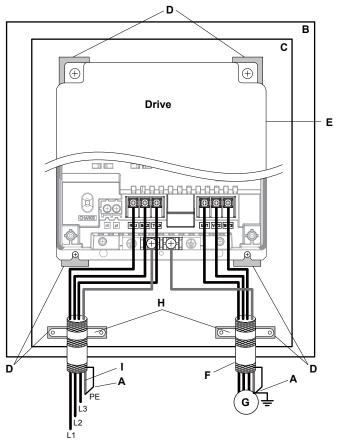

- A Drive
- B 10 m max cable length between drive and motor
- C Motor

- D Metal conduit
- E Ground wire should be as short as possible.

Figure D.3 Installation Method

**4.** Make sure the protective earthing conductor complies with technical standards and local safety regulations.

**WARNING!** Electrical Shock Hazard. Because the leakage current exceeds 3.5 mA in models 4 □0302 and larger, IEC/EN 61800-5-1 states that either the power supply must be automatically disconnected in case of discontinuity of the protective earthing conductor, or a protective earthing conductor with a cross-section of at least 10 mm² (Cu) or 16 mm² (Al) must be used. Failure to comply may result in death or serious injury.




- A Braided shield cable
- B Metal panel

C - Cable clamp (conductive)

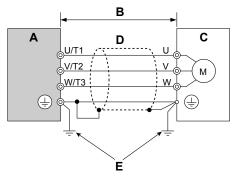
Figure D.4 Ground Area

#### Three-Phase 200 V / 400 V Class



- A Ground the cable shield
- B Enclosure panel
- C Metal plate
- D Grounding surface (remove any paint or sealant)
- E Drive

- F Motor cable (braided shield cable, max. 10 m)
- G Motor
- H Cable clamp
- I Ground plate (scrape off any visible paint)

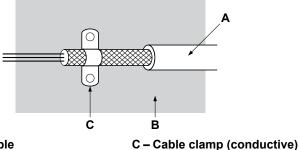

Figure D.5 Internal EMC Filter and Drive Installation for CE Compliance (Three-Phase 200 V / 400 V Class)

#### Stand-Alone EMC Filter Installation

The following conditions must be met to ensure continued compliance with European standards EN 61800-3:2004+A1:2012. Install an EMC noise filter to the input side specified by Yaskawa for compliance with European standards. *Refer to EMC Filters on page 672* for EMC filter selection.

#### **Installation Method**

- 1. Place the drive in the enclosure.
- 2. Use braided shield cable for the drive and motor wiring, or run the wiring through a metal conduit.
- 3. Keep wiring as short as possible. Ground the shield on both the drive side and the motor side.




- A Drive
- B 10 m max cable length between drive and motor
- C Motor

- D Metal conduit
- E Ground wire should be as short as possible.

Figure D.6 Installation Method

**4.** Make sure the protective earthing conductor complies with technical standards and local safety regulations.



- A Braided shield cable
- B Metal panel

Figure D.7 Ground Area

# **Wiring Diagram**

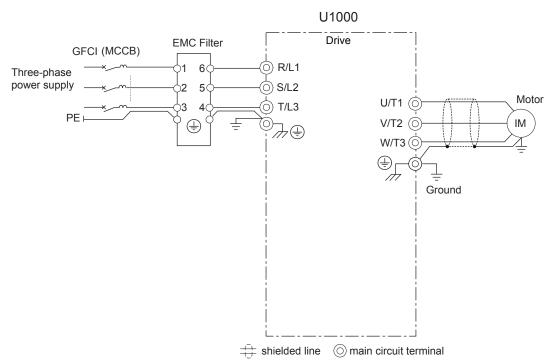



Figure D.8 Wiring Diagram for EMC (CIMR-U□2A0028 to 2A0248, 4A0011 to 4A0240, CIMR-U□2P0028 to 2P0248, 4P0011 to 4P0240)

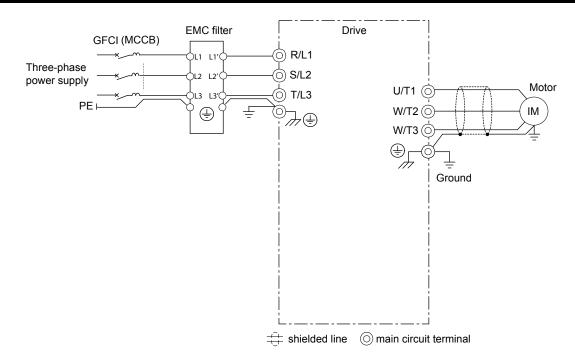



Figure D.9 Wiring Diagram for EMC (Models 4□0477 and 4□0590)

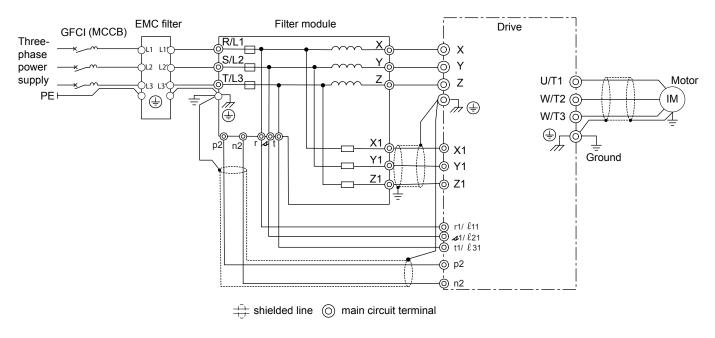



Figure D.10 Wiring Diagram for EMC (Models 4□0720 to 4□0930)

#### ■ EMC Filters

The drive should be installed with the EMC filters listed in *Table D.2* in order to comply with the EN 61800-3:2004+A1:2012 requirements.

Table D.2 EMC Filters

| Model            | Туре      | Manufacturer | Rated<br>Current (A) | Weight (kg) | Dimensions<br>[W × H × D]<br>(mm) | Y × X<br>(mm) | Figure      | Qty. |
|------------------|-----------|--------------|----------------------|-------------|-----------------------------------|---------------|-------------|------|
| 2A0028<br>2P0028 | RTEN-5030 |              | 30                   | 0.56        | 140 x 42 x 70                     | 60 x 130      | Figure D.16 | 1    |
| 2A0042<br>2P0042 | RTEN-5100 |              | 100                  | 4.2         | 267 x 85 x 161                    | 135 x 247     |             | 1    |
| 2A0054<br>2P0054 | RTEN-5100 |              | 100                  | 4.2         | 267 x 85 x 161                    | 135 x 247     | 1           | 1    |
| 2A0068<br>2P0068 | RTEN-5100 |              | 100                  | 4.2         | 267 x 85 x 161                    | 135 x 247     | Figure D.17 | 1    |
| 2A0081<br>2P0081 | RTEN-5100 |              | 100                  | 4.2         | 267 x 85 x 161                    | 135 x 247     |             | 1    |
| 2A0104<br>2P0104 | RTEN-5150 | TDK-Lambda   | 150                  | 6.5         | 290 x 88 x 190                    | 164 x 270     |             | 1    |
| 2A0130<br>2P0130 | RTEN-5150 |              | 150                  | 6.5         | 290 x 88 x 190                    | 164 x 270     | Figure D.14 | 1    |
| 2A0154<br>2P0154 | RTEN-5200 |              | 200                  | 9.2         | 390 x 103 x 195                   | 169 x 370     | Figure D.15 | 1    |
| 2A0192<br>2P0192 | RTEN-5200 |              | 200                  | 9.2         | 390 x 103 x 195                   | 169 x 370     |             | 1    |
| 2A0248<br>2P0248 | RTEN-5300 |              | 300                  | 8.3         | 390 x 103 x 195                   | 169 x 370     |             | 1    |
|                  |           | 1            | 1                    | 400 V Class |                                   |               | 1           |      |
| 4A0011<br>4P0011 | RTEN-5040 |              | 40                   | 1.1         | 170 x 54 x 90                     | 80 x 160      |             | 1    |
| 4A0014<br>4P0014 | RTEN-5040 |              | 40                   | 1.1         | 170 x 54 x 90                     | 80 x 160      | Figure D.12 | 1    |
| 4A0021<br>4P0021 | RTEN-5040 | -            | 40                   | 1.1         | 170 x 54 x 90                     | 80 x 160      |             | 1    |
| 4A0027<br>4P0027 | RTEN-5040 |              | 40                   | 1.1         | 170 x 54 x 90                     | 80 x 160      |             | 1    |
| 4A0034<br>4P0034 | RTEN-5040 |              | 40                   | 1.1         | 170 x 54 x 90                     | 80 x 160      |             | 1    |
| 4A0040<br>4P0040 | RTEN-5080 |              | 80                   | 3.9         | 267 x 85 x 161                    | 135 x 247     |             | 1    |
| 4A0052<br>4P0052 | RTEN-5080 |              | 80                   | 3.9         | 267 x 85 x 161                    | 135 x 247     |             | 1    |
| 4A0065<br>4P0065 | RTEN-5080 | TDK-Lambda   | 80                   | 3.9         | 267 x 85 x 161                    | 135 x 247     | Figure D.13 | 1    |
| 4A0077<br>4P0077 | RTEN-5080 |              | 80                   | 3.9         | 267 x 85 x 161                    | 135 x 247     |             | 1    |
| 4A0096<br>4P0096 | RTEN-5150 |              | 150                  | 6.5         | 290 x 88 x 190                    | 164 x 270     |             | 1    |
| 4A0124<br>4P0124 | RTEN-5150 |              | 150                  | 6.5         | 290 x 88 x 190                    | 164 x 270     | Figure D.14 | 1    |
| 4A0156<br>4P0156 | RTEN-5200 |              | 200                  | 9.2         | 390 x 103 x 195                   | 169 x 370     |             | 1    |
| 4A0180<br>4P0180 | RTEN-5200 |              | 200                  | 9.2         | 390 x 103 x 195                   | 169 x 370     | <b>1</b>    | 1    |
| 4A0216<br>4P0216 | RTEN-5250 |              | 250                  | 8.7         | 390 x 103 x 195                   | 169 x 370     | Figure D.15 | 1    |
| 4A0240<br>4P0240 | RTEN-5250 |              | 250                  | 8.7         | 390 x 103 x 195                   | 169 x 370     | ]           | 1    |

| Model            | Туре            | Manufacturer | Rated<br>Current (A) | Weight (kg) | Dimensions<br>[W × H × D]<br>(mm) | Y × X<br>(mm) | Figure      | Qty. |
|------------------|-----------------|--------------|----------------------|-------------|-----------------------------------|---------------|-------------|------|
| 4A0302<br>4P0302 | B84143B0400S080 |              | 400                  | 7.5         | 320 x 120 x 190                   | 165 x 170     |             | 1    |
| 4A0361<br>4P0361 | B84143B0400S080 | EPCOS        | 400                  | 7.5         | 320 x 120 x 190                   | 165 x 170     | Figure D.16 | 1    |
| 4A0414<br>4P0414 | B84143B0400S080 |              | 400                  | 7.5         | 320 x 120 x 190                   | 165 x 170     |             | 1    |
| 4A0477<br>4P0477 | B84143B1000S080 |              | 1000                 | 18.5        | 410 x 140 x 260                   | 235 x 240     | F: D.16     | 1    |
| 4A0590<br>4P0590 | B84143B1000S080 |              | 1000                 | 18.5        | 410 x 140 x 260                   | 235 x 240     | Figure D.16 | 1    |
| 4A0720<br>4P0720 | B84143B1600S080 |              | 1600                 | 24.5        | 490 x 140 x 260                   | 235 x 240     |             | 1    |
| 4A0900<br>4P0900 | B84143B1600S080 |              | 1600                 | 24.5        | 490 x 140 x 260                   | 235 x 240     | Figure D.17 | 1    |
| 4A0930<br>4P0930 | B84143B1600S080 |              | 1600                 | 24.5        | 490 x 140 x 260                   | 235 x 240     |             | 1    |

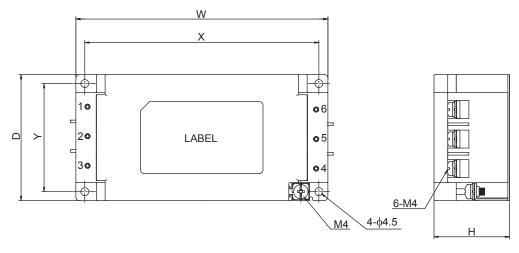
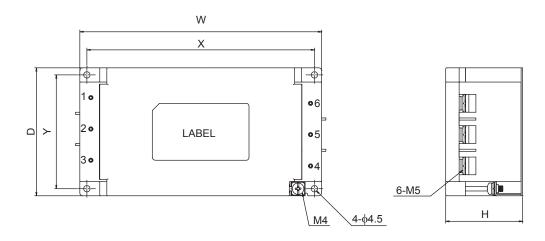






Figure D.11 EMC Filter Dimensions (RTEN-5030)



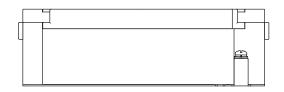
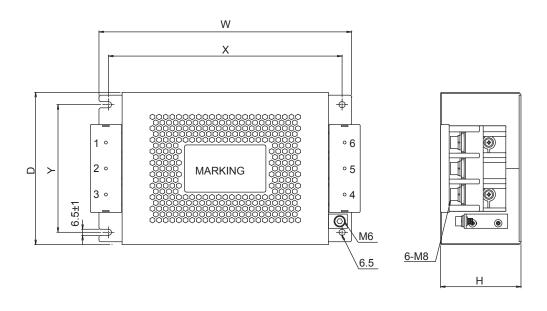




Figure D.12 EMC Filter Dimensions (RTEN-5040)



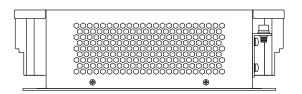



Figure D.13 EMC Filter Dimensions (RTEN-5080, RTEN-5100)

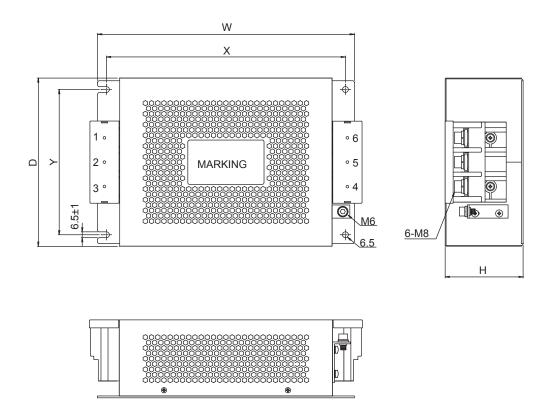



Figure D.14 EMC Filter Dimensions (RTEN-5150)

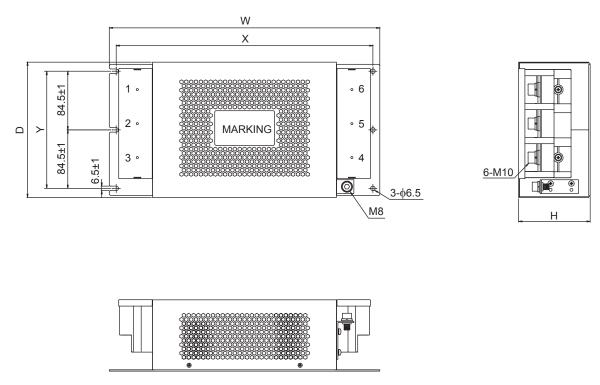



Figure D.15 EMC Filter Dimensions (RTEN-5200, RTEN-5250, RTEN-5300)

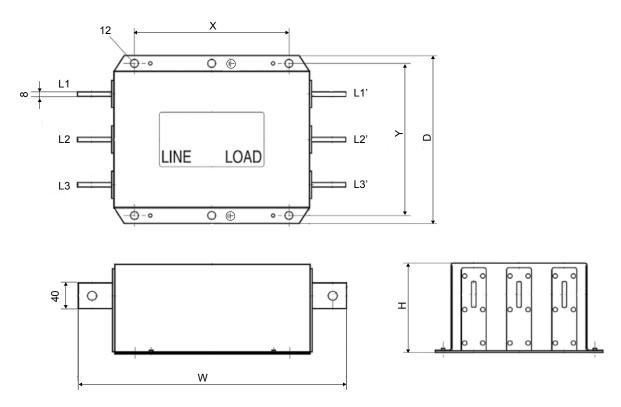



Figure D.16 EMC Filter Dimensions (B84143B1000S080)

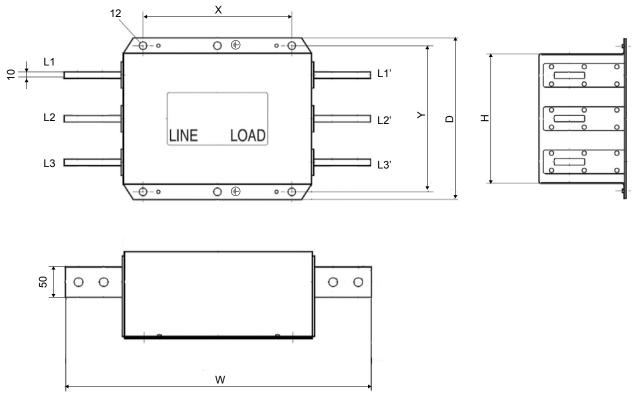



Figure D.17 EMC Filter Dimensions (B84143B1600S080)

# D.3 UL and CSA Standards

# UL Standards Compliance



Figure D.18 UL/cUL Mark

The UL/cUL mark applies to products in the United States and Canada. It indicates that UL has performed product testing and evaluation, and determined that their stringent standards for product safety have been met. For a product to receive UL certification, all components inside that product must also receive UL certification.

This drive is tested in accordance with UL standard UL 61800-5-1 and complies with UL requirements. The conditions described below must be met to maintain compliance when using this drive in combination with other equipment:

## ■ Conditions of Acceptability

• Install the Three-Phase Filter Module on the input side of drive models 4\(\sigma\)0720 to 4\(\sigma\)0930. Refer to *Table D.3* for details.

Table D.3 Correspondence of Filter Module and Drive Models 4□0720 to 4□0930

| Drive Model | Filter Module |
|-------------|---------------|
| 4□0720      | EUJ71180□.□   |
| 4□0900      | EUJ71181□.□   |
| 4□0930      | EUJ71182□.□   |

• Install the drive and peripherals in a suitable enclosure for end use.

#### Installation Area

Do not install the drive to an area greater than pollution degree 2 (UL standard).

#### ■ Ambient Temperature

IP00/Open Type Enclosure: -10 °C to +50 °C (14 °F to 122 °F) IP20/UL Type 1 Enclosure: -10 to +40 °C (14 °F to 104 °F)

Finless Type: IP20/IP00 Enclosure: -10 to +45 °C (14 °F to 113 °F)

## ■ Main Circuit Terminal Wiring

Yaskawa recommends using closed-loop crimp terminals on all drive models. Use only the tools recommended by the terminal manufacturer for crimping. *Refer to Closed-Loop Crimp Terminal Recommendations on page 685* for closed-loop crimp terminal recommendations.

The wire gauges listed in the following tables are Yaskawa recommendations. Refer to local codes for proper wire gauge selections.

The  $\oplus$  mark indicates the terminals for protective ground connection.

Grounding impedance: 200 V: 100  $\Omega$  or less 400 V: 10  $\Omega$  or less

Note:

## ■ Three-Phase 200 V Class Drives

Table D.4 Drive Wire Gauge and Torque Specifications (Three-Phase 200 V Class)

|                |                  | For USA ar                           | nd Canada                                               | For South                            |                                                          |               | Tightening                    |
|----------------|------------------|--------------------------------------|---------------------------------------------------------|--------------------------------------|----------------------------------------------------------|---------------|-------------------------------|
| Drive<br>Model | Terminal         | Recomm. Gauge<br>mm²<br>(AWG, kcmil) | Applicable<br>Gauge mm <sup>2</sup><br>(AWG, kcmil)     | Recomm. Gauge<br>mm²<br>(AWG, kcmil) | Applicable<br>Gauge mm <sup>2</sup><br>(AWG, kcmil)      | Screw<br>Size | Torque<br>N·m (lb.in.)        |
|                | R/L1, S/L2, T/L3 | 10<br>(8)                            | 6 to 10<br>(10 to 8)                                    | 4<br>(12)                            | 2.5 to 10<br>(14 to 8)                                   | M5            | 2.3 to 2.7                    |
| 250020         | U/T1, V/T2, W/T3 | 10<br>(8)                            | 6 to 10<br>(10 to 8)                                    | 4<br>(12)                            | 2.5 to 10<br>(14 to 8)                                   | M5            | (20.4 to 23.9)                |
| 2□0028         |                  | 10<br>(8)                            | 6 to 16<br>(10 to 6)                                    | 6<br>(10)                            | 6 to 16<br>(10 to 5)                                     | M6            | 3.9 to 4.9<br>(34.7 to 43.4)  |
|                | p1, n1           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                  | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                   | M4            | 1 to 1.4<br>(8.9 to 12.4)     |
|                | R/L1, S/L2, T/L3 | 16<br>(6)                            | 10 to 25 (8 to 3)                                       | 10<br>(8)                            | 6 to 25<br>(10 to 3)                                     | M6            | 4 to 6                        |
| 2□0042         | U/T1, V/T2, W/T3 | 16<br>(6)                            | 10 to 25 (8 to 3)                                       | 10<br>(8)                            | 6 to 25<br>(10 to 3)                                     | M6            | (35.4 to 53.1)                |
| 20042          |                  | 10<br>(8)                            | 6 to 25<br>(10 to 3)                                    | 10<br>(8)                            | 6 to 25<br>(10 to 3)                                     | M8            | 8.8 to 10.8<br>(78.1 to 95.5) |
|                | p1, n1           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                  | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                   | M4            | 1 to 1.4<br>(8.9 to 12.4)     |
|                | R/L1, S/L2, T/L3 | 25<br>(4)                            | 16 to 25 (6 to 3)                                       | 16<br>(5)                            | 10 to 25<br>(8 to 3)                                     | M6            | 4 to 6                        |
| 20054          | U/T1, V/T2, W/T3 | 25<br>(4)                            | 16 to 25 (6 to 3)                                       | 16<br>(5)                            | 10 to 25<br>(8 to 3)                                     | M6            | (35.4 to 53.1)                |
| 2□0054         | <b>(</b>         | 16<br>(6)                            | 10 to 25 (8 to 3)                                       | 10<br>(8)                            | 10 to 25<br>(8 to 3)                                     | M8            | 8.8 to 10.8<br>(78.1 to 95.5) |
|                | p1, n1           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                  | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                   | M4            | 1 to 1.4<br>(8.9 to 12.4)     |
|                | R/L1, S/L2, T/L3 | 25<br>(4)                            | 25<br>(4 to 3)                                          | 16<br>(5)                            | 16 to 25 (5 to 3)                                        | M6            | 4 to 6                        |
| 20060          | U/T1, V/T2, W/T3 | 25<br>(4)                            | 25<br>(4 to 3)                                          | 16<br>(5)                            | 16 to 25 (5 to 3)                                        | M6            | (35.4 to 53.1)                |
| 2□0068         |                  | 16<br>(6)                            | 16 to 25 (6 to 3)                                       | 16<br>(5)                            | 16 to 25 (5 to 3)                                        | M8            | 8.8 to 10.8<br>(78.1 to 95.5) |
|                | p1, n1           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                  | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                   | M4            | 1 to 1.4<br>(8.9 to 12.4)     |
|                | R/L1, S/L2, T/L3 | 16 × 2<br>(6 × 2P)                   | 16 to 25 × 2<br>(6 to 3 × 2P)                           | 25<br>(3)                            | 16 to 25<br>(5 to 3 × 2P)                                | M6            | 4 to 6                        |
| 200001         | U/T1, V/T2, W/T3 | 16 × 2<br>(6 × 2P)                   | 16 to 25 × 2<br>(6 to 3 × 2P)                           | 25<br>(3)                            | 16 to 25<br>(5 to 3 × 2P)                                | M6            | (35.4 to 53.1)                |
| 2□0081         |                  | 16<br>(6)                            | 16 to 25 (6 to 3)                                       | 16<br>(5)                            | 16 to 25 (5 to 3)                                        | M8            | 8.8 to 10.8<br>(78.1 to 95.5) |
|                | p1, n1           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                  | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                   | M4            | 1 to 1.4<br>(8.9 to 12.4)     |
|                | R/L1, S/L2, T/L3 | 35<br>(1)                            | $16 \text{ to } 50 \times 2$<br>(6 to $1/0 \times 2P$ ) | 35<br>(1)                            | $10 \text{ to } 50 \times 2P$<br>(8 to $1/0 \times 2P$ ) | M8            | 8 to 10                       |
| 250101         | U/T1, V/T2, W/T3 | 35<br>(1)                            | $16 \text{ to } 50 \times 2$<br>(6 to $1/0 \times 2P$ ) | 35<br>(1)                            | $10 \text{ to } 50 \times 2P$<br>(8 to $1/0 \times 2P$ ) | M8            | (70.8 to 88.5)                |
| 2□0104         |                  | 25<br>(4)                            | 25 to 35<br>(4 to 1)                                    | 25<br>(3)                            | 10 to 35<br>(8 to 1)                                     | M8            | 8.8 to 10.8<br>(78.1 to 95.5) |
|                | p1, n1           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                  | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                   | M4            | 1.2 to 2.0<br>(10.4 to 17.4)  |

D

|                |                  | For USA an                           | nd Canada                                               | For South                                                      | America                                                  |               | Timbéo min m                         |
|----------------|------------------|--------------------------------------|---------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|---------------|--------------------------------------|
| Drive<br>Model | Terminal         | Recomm. Gauge<br>mm²<br>(AWG, kcmil) | Applicable<br>Gauge mm <sup>2</sup><br>(AWG, kcmil)     | Recomm. Gauge<br>mm²<br>(AWG, kcmil)                           | Applicable<br>Gauge mm <sup>2</sup><br>(AWG, kcmil)      | Screw<br>Size | Tightening<br>Torque<br>N⋅m (lb.in.) |
|                | R/L1, S/L2, T/L3 | 25 × 2<br>(4 × 2P)                   | $16 \text{ to } 50 \times 2$<br>(6 to $1/0 \times 2P$ ) | $ \begin{array}{c} 16 \times 2P \\ (5 \times 2P) \end{array} $ | $10 \text{ to } 50 \times 2P$<br>(8 to $1/0 \times 2P$ ) | M8            | 8 to 10                              |
| 2□0130         | U/T1, V/T2, W/T3 | 25 × 2<br>(4 × 2P)                   | $16 \text{ to } 50 \times 2$<br>(6 to $1/0 \times 2P$ ) | 16 × 2P<br>(5 × 2P)                                            | $10 \text{ to } 50 \times 2P$<br>(8 to $1/0 \times 2P$ ) | M8            | (70.8 to 88.5)                       |
| 20130          |                  | 25<br>(4)                            | 25 to 35<br>(4 to 1)                                    | 16<br>(5)                                                      | 16 to 35<br>(5 to 1)                                     | M8            | 8.8 to 10.8<br>(78.1 to 95.5)        |
|                | p1, n1           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                  | 2.5<br>(14)                                                    | 2.5 to 4<br>(14 to 12)                                   | M4            | 1.2 to 2.0<br>(10.4 to 17.4)         |
|                | R/L1, S/L2, T/L3 | 25 × 2<br>(3 × 2P)                   | $25 \text{ to } 95 \times 2$<br>(4 to 4/0 × 2P)         | 25 × 2P<br>(3 × 2P)                                            | 16 to $95 \times 2P$<br>(5 to $4/0 \times 2P$ )          | M10           | 15 to 20                             |
| 20154          | U/T1, V/T2, W/T3 | 25 × 2<br>(3 × 2P)                   | 25 to 95 × 2<br>(4 to 4/0 × 2P)                         | 25 × 2P<br>(3 × 2P)                                            | $16 \text{ to } 95 \times 2P$<br>(5 to $4/0 \times 2P$ ) | M10           | (130 to 173)                         |
| 2□0154         |                  | 25<br>(4)                            | 25 to 70<br>(4 to 2/0)                                  | 25<br>(3)                                                      | 25 to 70<br>(3 to 2/0)                                   | M10           | 17.7 to 22.6<br>(156 to 200)         |
|                | p1, n1           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                  | 2.5<br>(14)                                                    | 2.5 to 4<br>(14 to 12)                                   | M4            | 1.2 to 2.0<br>(10.4 to 17.4)         |
|                | R/L1, S/L2, T/L3 | 35 × 2<br>(1 × 2P)                   | $25 \text{ to } 95 \times 2$<br>(3 to 4/0 × 2P)         | 35 × 2P<br>(1 × 2P)                                            | $25 \text{ to } 95 \times 2P$<br>(3 to 4/0 × 2P)         | M10           | 15 to 20                             |
| 250102         | U/T1, V/T2, W/T3 | 35 × 2<br>(1 × 2P)                   | $25 \text{ to } 95 \times 2$<br>(3 to 4/0 × 2P)         | 35 × 2P<br>(1 × 2P)                                            | $25 \text{ to } 95 \times 2P$<br>(3 to 4/0 × 2P)         | M10           | (130 to 173)                         |
| 2□0192         |                  | 25<br>(3)                            | 25 to 70<br>(4 to 2/0)                                  | 25<br>(3)                                                      | 25 to 70<br>(3 to 2/0)                                   | M10           | 17.7 to 22.6<br>(156 to 200)         |
|                | p1, n1           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                  | 2.5<br>(14)                                                    | 2.5 to 4<br>(14 to 12)                                   | M4            | 1.2 to 2.0<br>(10.4 to 17.4)         |
|                | R/L1, S/L2, T/L3 | $70 \times 2$ $(2/0 \times 2P)$      | 35 to $95 \times 2$ (1 to $4/0 \times 2P$ )             | $50 \times 2P$ $(1/0 \times 2P)$                               | 35 to $95 \times 2P$<br>(1 to $4/0 \times 2P$ )          | M10           | 15 to 20                             |
| <b>.</b>       | U/T1, V/T2, W/T3 | $70 \times 2$ $(2/0 \times 2P)$      | 35 to $95 \times 2$ (1 to $4/0 \times 2P$ )             | $50 \times 2P$ $(1/0 \times 2P)$                               | 35 to $95 \times 2P$<br>(1 to $4/0 \times 2P$ )          | M10           | (130 to 173)                         |
| 2□0248         |                  | 25<br>(3)                            | 25 to 95<br>(4 to 4/0)                                  | 35<br>(1)                                                      | 25 to 95<br>(3 to 4/0)                                   | M12           | 31.4 to 39.2<br>(278 to 347)         |
|                | p1, n1           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                  | 2.5<br>(14)                                                    | 2.5 to 4<br>(14 to 12)                                   | M4            | 1.2 to 2.0<br>(10.4 to 17.4)         |

# ■ Three-Phase 400 V Class Drives

### Table D.5 Drive Wire Gauge and Torque Specifications (Three-Phase 400 V Class)

|                 | Tubio B          | 5.5 Drive wire Gaug                  | <u> </u>                                            |                                      |                                                     |               |                              |
|-----------------|------------------|--------------------------------------|-----------------------------------------------------|--------------------------------------|-----------------------------------------------------|---------------|------------------------------|
|                 |                  | For USA and Canada                   |                                                     | For South                            | America                                             |               | Tightening                   |
| Drive<br>Model  | Terminal         | Recomm. Gauge<br>mm²<br>(AWG, kcmil) | Applicable<br>Gauge mm <sup>2</sup><br>(AWG, kcmil) | Recomm. Gauge<br>mm²<br>(AWG, kcmil) | Applicable<br>Gauge mm <sup>2</sup><br>(AWG, kcmil) | Screw<br>Size | Torque<br>N·m (lb.in.)       |
|                 | R/L1, S/L2, T/L3 | 2.5<br>(14)                          | 2.5 to 10 (14 to 8)                                 | 2.5<br>(14)                          | 2.5 to 10 (14 to 8)                                 | M5            | 2.3 to 2.7                   |
| 4 <b>□</b> 0011 | U/T1, V/T2, W/T3 | 2.5<br>(14)                          | 2.5 to 10 (14 to 8)                                 | 2.5<br>(14)                          | 2.5 to 10<br>(14 to 8)                              | M5            | (20.4 to 23.9)               |
| 4 <b>山</b> 0011 |                  | 6<br>(10)                            | 4 to 16<br>(12 to 6)                                | 2.5<br>(14)                          | 2.5 to 16<br>(14 to 5)                              | M6            | 3.9 to 4.9<br>(34.7 to 43.4) |
|                 | p1, n1           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | M4            | 1 to 1.4<br>(8.9 to 12.4)    |
|                 | R/L1, S/L2, T/L3 | 4<br>(12)                            | 2.5 to 10 (14 to 8)                                 | 2.5<br>(14)                          | 2.5 to 10<br>(14 to 8)                              | M5            | 2.3 to 2.7                   |
| 4□0014          | U/T1, V/T2, W/T3 | 4<br>(12)                            | 2.5 to 10 (14 to 8)                                 | 2.5<br>(14)                          | 2.5 to 10 (14 to 8)                                 | M5            | (20.4 to 23.9)               |
| 4⊔0014          |                  | 6<br>(10)                            | 4 to 16<br>(12 to 6)                                | 2.5<br>(14)                          | 2.5 to 16<br>(14 to 5)                              | M6            | 3.9 to 4.9<br>(34.7 to 43.4) |
|                 | p1, n1           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | M4            | 1 to 1.4<br>(8.9 to 12.4)    |

|                 |                  | For USA ar                           | For USA and Canada                                  |                                      | America                                             |               | Tightening                    |
|-----------------|------------------|--------------------------------------|-----------------------------------------------------|--------------------------------------|-----------------------------------------------------|---------------|-------------------------------|
| Drive<br>Model  | Terminal         | Recomm. Gauge<br>mm²<br>(AWG, kcmil) | Applicable<br>Gauge mm <sup>2</sup><br>(AWG, kcmil) | Recomm. Gauge<br>mm²<br>(AWG, kcmil) | Applicable<br>Gauge mm <sup>2</sup><br>(AWG, kcmil) | Screw<br>Size | Torque<br>N·m (lb.in.)        |
|                 | R/L1, S/L2, T/L3 | 6 (10)                               | 4 to 10<br>(12 to 8)                                | 2.5<br>(14)                          | 2.5 to 10<br>(14 to 8)                              | M5            | 2.3 to 2.7                    |
| 4□0021          | U/T1, V/T2, W/T3 | 6 (10)                               | 4 to 10<br>(12 to 8)                                | 2.5<br>(14)                          | 2.5 to 10<br>(14 to 8)                              | M5            | (20.4 to 23.9)                |
| 4 <b>山</b> 0021 | <b>(4)</b>       | 6<br>(10)                            | 4 to 16<br>(12 to 6)                                | 2.5<br>(14)                          | 2.5 to 16<br>(14 to 5)                              | M6            | 3.9 to 4.9<br>(34.7 to 43.4)  |
|                 | p1, n1           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | M4            | 1 to 1.4<br>(8.9 to 12.4)     |
|                 | R/L1, S/L2, T/L3 | 10<br>(8)                            | 6 to 10<br>(10 to 8)                                | 4 (12)                               | 2.5 to 10<br>(14 to 8)                              | M5            | 2.3 to 2.7                    |
| 450005          | U/T1, V/T2, W/T3 | 10 (8)                               | 6 to 10<br>(10 to 8)                                | 4 (12)                               | 2.5 to 10<br>(14 to 8)                              | M5            | (20.4 to 23.9)                |
| 4□0027          | <b>(4)</b>       | 10 (8)                               | 4 to 16<br>(12 to 6)                                | 4 (12)                               | 4 to 16<br>(12 to 5)                                | M6            | 3.9 to 4.9<br>(34.7 to 43.4)  |
|                 | p1, n1           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | M4            | 1 to 1.4<br>(8.9 to 12.4)     |
|                 | R/L1, S/L2, T/L3 | 10<br>(8)                            | 10<br>(8)                                           | 6<br>(10)                            | 4 to 10<br>(12 to 8)                                | M5            | 2.3 to 2.7                    |
| 450024          | U/T1, V/T2, W/T3 | 10 (8)                               | 10<br>(8)                                           | 6<br>(10)                            | 4 to 10<br>(12 to 8)                                | M5            | (20.4 to 23.9)                |
| 4□0034          | <b>(4)</b>       | 10<br>(8)                            | 6 to 16<br>(10 to 6)                                | 6<br>(10)                            | 6 to 16<br>(10 to 5)                                | M6            | 3.9 to 4.9<br>(34.7 to 43.4)  |
|                 | p1, n1           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | M4            | 1 to 1.4<br>(8.9 to 12.4)     |
|                 | R/L1, S/L2, T/L3 | 10 (8)                               | 10 to 25 (8 to 3)                                   | 10<br>(8)                            | 6 to 25<br>(10 to 3)                                | M6            | 4 to 6                        |
| 450040          | U/T1, V/T2, W/T3 | 10<br>(8)                            | 10 to 25 (8 to 3)                                   | 10<br>(8)                            | 6 to 25<br>(10 to 3)                                | M6            | (35.4 to 53.1)                |
| 4□0040          |                  | 10<br>(8)                            | 10 to 25<br>(10 to 3)                               | 10<br>(8)                            | 6 to 25<br>(10 to 3)                                | M8            | 8.8 to 10.8<br>(78.1 to 95.5) |
|                 | p1, n1           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | M4            | 1 to 1.4<br>(8.9 to 12.4)     |
|                 | R/L1, S/L2, T/L3 | 16<br>(6)                            | 10 to 25<br>(8 to 3)                                | 10<br>(8)                            | 10 to 25<br>(8 to 3)                                | M6            | 4 to 6                        |
| <b>4</b> □0052  | U/T1, V/T2, W/T3 | 16<br>(6)                            | 10 to 25<br>(8 to 3)                                | 10<br>(8)                            | 10 to 25<br>(8 to 3)                                | M6            | (35.4 to 53.1)                |
| 4□0052          |                  | 16<br>(6)                            | 10 to 25<br>(8 to 3)                                | 10<br>(8)                            | 10 to 25<br>(8 to 3)                                | M8            | 8.8 to 10.8<br>(78.1 to 95.5) |
|                 | p1, n1           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | M4            | 1 to 1.4<br>(8.9 to 12.4)     |
|                 | R/L1, S/L2, T/L3 | 25<br>(4)                            | 16 to 25 (6 to 3)                                   | 16<br>(5)                            | 10 to 25<br>(8 to 3)                                | M6            | 4 to 6                        |
| 450065          | U/T1, V/T2, W/T3 | 25<br>(4)                            | 16 to 25 (6 to 3)                                   | 16<br>(5)                            | 10 to 25<br>(8 to 3)                                | M6            | (35.4 to 53.1)                |
| 4□0065          | <b>(4)</b>       | 16<br>(6)                            | 16 to 25 (6 to 3)                                   | 16<br>(5)                            | 16 to 25 (5 to 3)                                   | M8            | 8.8 to 10.8<br>(78.1 to 95.5) |
|                 | p1, n1           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | M4            | 1 to 1.4<br>(8.9 to 12.4)     |
|                 | R/L1, S/L2, T/L3 | 25<br>(3)                            | 25<br>(4 to 3)                                      | 25<br>(3)                            | 16 to 25 (5 to 3)                                   | M6            | 4 to 6                        |
| 4 <b>D</b> 0077 | U/T1, V/T2, W/T3 | 25<br>(3)                            | 25<br>(4 to 3)                                      | 25<br>(3)                            | 16 to 25 (5 to 3)                                   | M6            | (35.4 to 53.1)                |
| 4□0077          | <b>=</b>         | 16 (6)                               | 16 to 25 (6 to 3)                                   | 16<br>(5)                            | 16 to 25 (5 to 3)                                   | M8            | 8.8 to 10.8<br>(78.1 to 95.5) |
|                 | p1, n1           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | M4            | 1 to 1.4<br>(8.9 to 12.4)     |

|                 |                                                                  | For USA and Canada                                            |                                                         | For South                                        | America                                             |               | Tightening                    |
|-----------------|------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|---------------|-------------------------------|
| Drive<br>Model  | Terminal                                                         | Recomm. Gauge<br>mm²<br>(AWG, kcmil)                          | Applicable<br>Gauge mm <sup>2</sup><br>(AWG, kcmil)     | Recomm. Gauge<br>mm <sup>2</sup><br>(AWG, kcmil) | Applicable<br>Gauge mm <sup>2</sup><br>(AWG, kcmil) | Screw<br>Size | Torque<br>N·m (lb.in.)        |
|                 | R/L1, S/L2, T/L3                                                 | 35<br>(1)                                                     | $10 \text{ to } 50$ (8 to $1/0 \times 2P$ )             | 35<br>(1)                                        | 10 to $50 \times 2P$<br>(8 to $1/0 \times 2P$ )     | M8            | 8 to 10                       |
| 450006          | U/T1, V/T2, W/T3                                                 | 35<br>(1)                                                     | 10 to 50<br>(8 to 1/0 × 2P)                             | 35<br>(1)                                        | $10 \text{ to } 50 \times 2P$<br>(8 to 1/0 × 2P)    | M8            | (70.8 to 88.5)                |
| 4□0096          | <b>(4)</b>                                                       | 25<br>(4)                                                     | 25 to 35<br>(4 to 1)                                    | 25<br>(3)                                        | 10 to 35<br>(8 to 1)                                | M8            | 8.8 to 10.8<br>(78.1 to 95.5) |
|                 | p1, n1                                                           | 2.5<br>(14)                                                   | 2.5 to 4<br>(14 to 12)                                  | 2.5<br>(14)                                      | 2.5 to 4<br>(14 to 12)                              | M4            | 1.2 to 2.0<br>(10.4 to 17.4)  |
|                 | R/L1, S/L2, T/L3                                                 | 25 × 2<br>(4 × 2P)                                            | $16 \text{ to } 50 \times 2$<br>(6 to $1/0 \times 2P$ ) | 16 × 2P<br>(5 × 2P)                              | $10 \text{ to } 50 \times 2P$<br>(8 to 1/0 × 2P)    | M8            | 8 to 10                       |
| 4□0124          | U/T1, V/T2, W/T3                                                 | 25 × 2<br>(4 × 2P)                                            | $16 \text{ to } 50 \times 2$<br>(6 to $1/0 \times 2P$ ) | 16 × 2P<br>(5 × 2P)                              | $10 \text{ to } 50 \times 2P$<br>(8 to 1/0 × 2P)    | M8            | (70.8 to 88.5)                |
| 4 <b>山</b> 0124 |                                                                  | 25<br>(4)                                                     | 25 to 35<br>(4 to 1)                                    | 16<br>(5)                                        | 16 to 35<br>(5 to 1)                                | M8            | 8.8 to 10.8<br>(78.1 to 95.5) |
|                 | p1, n1                                                           | 2.5<br>(14)                                                   | 2.5 to 4<br>(14 to 12)                                  | 2.5<br>(14)                                      | 2.5 to 4<br>(14 to 12)                              | M4            | 1.2 to 2.0<br>(10.4 to 17.4)  |
|                 | R/L1, S/L2, T/L3                                                 | $ \begin{array}{c} 25 \times 2 \\ (3 \times 2P) \end{array} $ | $25 \text{ to } 95 \times 2$<br>(4 to 4/0 × 2P)         | $25 \times 2P$ $(3 \times 2P)$                   | 16 to $95 \times 2P$<br>(5 to $4/0 \times 2P$ )     | M10           | 15 to 20                      |
| 4□0156          | U/T1, V/T2, W/T3                                                 | $ \begin{array}{c} 25 \times 2 \\ (3 \times 2P) \end{array} $ | $25 \text{ to } 95 \times 2$<br>(4 to 4/0 × 2P)         | $25 \times 2P$ $(3 \times 2P)$                   | 16 to $95 \times 2P$<br>(5 to $4/0 \times 2P$ )     | M10           | (130 to 173)                  |
| 40130           |                                                                  | 25<br>(4)                                                     | 25 to 70 (4 to 2/0)                                     | 25<br>(3)                                        | 25 to 70<br>(3 to 2/0)                              | M10           | 17.7 to 22.6<br>(156 to 200)  |
|                 | p1, n1                                                           | 2.5<br>(14)                                                   | 2.5 to 4<br>(14 to 12)                                  | 2.5<br>(14)                                      | 2.5 to 4<br>(14 to 12)                              | M4            | 1.2 to 2.0<br>(10.4 to 17.4)  |
|                 | R/L1, S/L2, T/L3                                                 | $35 \times 2$ $(2 \times 2P)$                                 | $25 \text{ to } 95 \times 2$<br>(3 to $4/0 \times 2P$ ) | $25 \times 2P \\ (3 \times 2P)$                  | $25 \text{ to } 95 \times 2P$<br>(3 to 4/0 × 2P)    | M10           | 15 to 20                      |
| 4□0180          | U/T1, V/T2, W/T3                                                 | $35 \times 2$ $(2 \times 2P)$                                 | $25 \text{ to } 95 \times 2$<br>(3 to $4/0 \times 2P$ ) | $25 \times 2P \\ (3 \times 2P)$                  | $25 \text{ to } 95 \times 2P$<br>(3 to 4/0 × 2P)    | M10           | (130 to 173)                  |
| 40180           | <b>=</b>                                                         | 25<br>(3)                                                     | 25 to 70 (4 to 2/0)                                     | 25<br>(3)                                        | 25 to 70<br>(3 to 2/0)                              | M10           | 17.7 to 22.6<br>(156 to 200)  |
|                 | p1, n1                                                           | 2.5<br>(14)                                                   | 2.5 to 4<br>(14 to 12)                                  | 2.5<br>(14)                                      | 2.5 to 4<br>(14 to 12)                              | M4            | 1.2 to 2.0<br>(10.4 to 17.4)  |
|                 | R/L1, S/L2, T/L3                                                 | $50 \times 2$ $(1/0 \times 2P)$                               | $35 \text{ to } 95 \times 2$<br>(2 to $4/0 \times 2P$ ) | $35 \times 2P$ $(1 \times 2P)$                   | $25 \text{ to } 95 \times 2P$<br>(3 to 4/0 × 2P)    | M10           | 15 to 20                      |
| 4□0216          | U/T1, V/T2, W/T3                                                 | $50 \times 2$ $(1/0 \times 2P)$                               | $35 \text{ to } 95 \times 2$<br>(2 to $4/0 \times 2P$ ) | $35 \times 2P$ $(1 \times 2P)$                   | $25 \text{ to } 95 \times 2P$<br>(3 to 4/0 × 2P)    | M10           | (130 to 173)                  |
| 40210           | <b>\( \begin{array}{c} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ </b> | 25<br>(3)                                                     | 25 to 95<br>(4 to 4/0)                                  | 35<br>(1)                                        | 25 to 95<br>(3 to 4/0)                              | M12           | 31.4 to 39.2<br>(278 to 347)  |
|                 | p1, n1                                                           | 2.5<br>(14)                                                   | 2.5 to 4<br>(14 to 12)                                  | 2.5<br>(14)                                      | 2.5 to 4<br>(14 to 12)                              | M4            | 1.2 to 2.0<br>(10.4 to 17.4)  |
|                 | R/L1, S/L2, T/L3                                                 | $50 \times 2$ $(1/0 \times 2P)$                               | $50 \text{ to } 95 \times 2$<br>(1/0 to 4/0 × 2P)       | $50 \times 2P$ $(1/0 \times 2P)$                 | 35 to $95 \times 2P$<br>(1 to $4/0 \times 2P$ )     | M10           | 15 to 20                      |
| 4□0240          | U/T1, V/T2, W/T3                                                 | $50 \times 2$ $(1/0 \times 2P)$                               | $50 \text{ to } 95 \times 2$<br>(1/0 to 4/0 × 2P)       | $50 \times 2P$ $(1/0 \times 2P)$                 | 35 to $95 \times 2P$<br>(1 to $4/0 \times 2P$ )     | M10           | (130 to 173)                  |
| 4 <b>0</b> 0240 | <b>(4)</b>                                                       | 35<br>(2)                                                     | 35 to 95<br>(2 to 4/0)                                  | 50<br>(1/0)                                      | 35 to 95<br>(1 to 4/0)                              | M12           | 31.4 to 39.2<br>(278 to 347)  |
|                 | p1, n1                                                           | 2.5<br>(14)                                                   | 2.5 to 4<br>(14 to 12)                                  | 2.5<br>(14)                                      | 2.5 to 4<br>(14 to 12)                              | M4            | 1.2 to 2.0<br>(10.4 to 17.4)  |
|                 | R/L1, S/L2, T/L3                                                 | $70 \times 2$ $(3/0 \times 2P)$                               | $50 \text{ to } 95 \times 2$<br>(1/0 to 4/0 × 2P)       | $70 \times 2P \\ (3/0 \times 2P)$                | $50 \text{ to } 95 \times 2P$<br>(1/0 to 4/0 × 2P)  | M10           | 15 to 20                      |
| 4□0302          | U/T1, V/T2, W/T3                                                 | $70 \times 2$ $(3/0 \times 2P)$                               | $50 \text{ to } 95 \times 2$<br>(1/0 to 4/0 × 2P)       | $70 \times 2P \\ (3/0 \times 2P)$                | $50 \text{ to } 95 \times 2P$<br>(1/0 to 4/0 × 2P)  | M10           | (130 to 173)                  |
| <1>             | <b>\( \begin{array}{c} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ </b> | 35<br>(1)                                                     | 35 to 150<br>(1 to 300)                                 | 70<br>(3/0)                                      | 35 to 150<br>(1 to 300)                             | M12           | 31.4 to 39.2<br>(278 to 347)  |
|                 | p1, n1                                                           | 2.5<br>(14)                                                   | 2.5 to 4<br>(14 to 12)                                  | 2.5<br>(14)                                      | 2.5 to 4<br>(14 to 12)                              | M4            | 1.2 to 2.0<br>(10.4 to 17.4)  |

|                |                                        | For USA ar                                       | nd Canada                                                                                                  | For South                                        | America                                                                                                                                   |               |                                      |
|----------------|----------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------|
| Drive<br>Model | Terminal                               | Recomm. Gauge<br>mm <sup>2</sup><br>(AWG, kcmil) | Applicable<br>Gauge mm <sup>2</sup><br>(AWG, kcmil)                                                        | Recomm. Gauge<br>mm <sup>2</sup><br>(AWG, kcmil) | Applicable<br>Gauge mm <sup>2</sup><br>(AWG, kcmil)                                                                                       | Screw<br>Size | Tightening<br>Torque<br>N⋅m (lb.in.) |
|                | R/L1, S/L2, T/L3                       | 95 × 2<br>(4/0 × 2P)                             | 70 to $95 \times 2$<br>(3/0 to 4/0 × 2P)                                                                   | $95 \times 2P$ $(4/0 \times 2P)$                 | 70 to $95 \times 2P$<br>(3/0 to 4/0 × 2P)                                                                                                 | M10           | 15 to 20                             |
| 4□0361         | U/T1, V/T2, W/T3                       | 95 × 2<br>(4/0 × 2P)                             | 70 to $95 \times 2$ (3/0 to 4/0 × 2P)                                                                      | 95 × 2P<br>(4/0 × 2P)                            | $70 \text{ to } 95 \times 2P$<br>(3/0 to 4/0 × 2P)                                                                                        | M10           | (130 to 173)                         |
| <1>            |                                        | 50<br>(1/0)                                      | 50 to 150<br>(1/0 to 300)                                                                                  | 95<br>(4/0)                                      | 70 to 150 (3/0 to 300)                                                                                                                    | M12           | 31.4 to 39.2<br>(278 to 347)         |
|                | p1, n1                                 | 2.5<br>(14)                                      | 2.5 to 4<br>(14 to 12)                                                                                     | 2.5<br>(14)                                      | 2.5 to 4<br>(14 to 12)                                                                                                                    | M4            | 1.2 to 2.0<br>(10.4 to 17.4)         |
|                | R/L1, S/L2, T/L3                       | $150 \times 2$ $(300 \times 2P)$                 | 95 to 150 × 2<br>(4/0 to 300 × 2P)                                                                         | $95 \times 2P$ $(4/0 \times 2P)$                 | 95 to 150 × 2P<br>(4/0 to 300 × 2P)                                                                                                       | M12           | 25 to 35                             |
| 4□0414         | U/T1, V/T2, W/T3                       | $150 \times 2$ $(300 \times 2P)$                 | 95 to $150 \times 2$ (4/0 to $300 \times 2P$ )                                                             | $95 \times 2P \\ (4/0 \times 2P)$                | $95 \text{ to } 150 \times 2P$<br>(4/0 to $300 \times 2P$ )                                                                               | M12           | (217 to 304)                         |
| <1>            | <b>\(\begin{array}{c}\end{array}\)</b> | 50<br>(1/0)                                      | 50 to 240<br>(1/0 to 400)                                                                                  | 95<br>(4/0)                                      | 70 to 240 (3/0 to 400)                                                                                                                    | M12           | 31.4 to 39.2<br>(278 to 347)         |
|                | p1, n1                                 | 2.5<br>(14)                                      | 2.5 to 4<br>(14 to 12)                                                                                     | 2.5<br>(14)                                      | 2.5 to 4<br>(14 to 12)                                                                                                                    | M4            | 1.2 to 2.0<br>(10.4 to 17.4)         |
|                | R/L1, S/L2, T/L3                       | $95 \times 4P$ $(3/0 \times 4P)$                 | $150 \times 2P$<br>$70 \text{ to } 150 \times 4P$<br>$(300 \times 2P$<br>$2/0 \text{ to } 300 \times 4P)$  | 120 × 2P<br>(250 × 2P)                           | 95 to 150 × 2P<br>(4/0 to 300 × 2P)                                                                                                       | M12           | 31.4 to 39.2<br>(278 to 347)         |
| 4□0477<br><1>  | U/T1, V/T2, W/T3                       | 95 × 4P<br>(3/0 × 4P)                            | $150 \times 2P$<br>$70 \text{ to } 150 \times 4P$<br>$(300 \times 2P)$<br>$2/0 \text{ to } 300 \times 4P)$ | 120 × 2P<br>(250 × 2P)                           | 95 to 150 × 2P<br>(4/0 to 300 × 2P)                                                                                                       | M12           | 31.4 to 39.2<br>(278 to 347)         |
|                | <b>(4)</b>                             | 50<br>(1/0)                                      | 50 to 150<br>(1/0 to 300)                                                                                  | 120<br>(250)                                     | 95 to 150<br>(4/0 to 300)                                                                                                                 | M12           | 31.4 to 39.2<br>(278 to 347)         |
|                | p1, n1                                 | 2.5<br>(14)                                      | 2.5 to 4<br>(14 to 12)                                                                                     | 2.5<br>(14)                                      | 2.5 to 4<br>(14 to 12)                                                                                                                    | M4            | 1.2 to 2.0<br>(10.4 to 17.4)         |
|                | R/L1, S/L2, T/L3                       | 120 × 4P<br>(250 × 4P)                           | 95 to 150 × 4P<br>(3/0 to 300 × 4P)                                                                        | 95 × 4P<br>(4/0 × 4P)                            | $120 \text{ to } 150 \times 2P$<br>$70 \text{ to } 150 \times 4P$<br>$(250 \text{ to } 300 \times 2P$<br>$2/0 \text{ to } 300 \times 4P)$ | M12           | 31.4 to 39.2<br>(278 to 347)         |
| 4□0590<br>     | U/T1, V/T2, W/T3                       | 120 × 4P<br>(250 × 4P)                           | 95 to 150 × 4P<br>(3/0 to 300 × 4P)                                                                        | 95 × 4P<br>(4/0 × 4P)                            | 120 to 150 × 2P<br>70 to 150 × 4P<br>(250 to 300 × 2P<br>2/0 to 300 × 4P)                                                                 | M12           | 31.4 to 39.2<br>(278 to 347)         |
|                |                                        | 70<br>(2/0)                                      | 70 to 150<br>(2/0 to 300)                                                                                  | 95 × 2P<br>(4/0 × 2P)                            | 120 to 150<br>95 to 150 × 2P<br>(250 to 300<br>4/0 to 300 × 2P)                                                                           | M12           | 31.4 to 39.2<br>(278 to 347)         |
|                | p1, n1                                 | 2.5<br>(14)                                      | 2.5 to 4<br>(14 to 12)                                                                                     | 2.5<br>(14)                                      | 2.5 to 4<br>(14 to 12)                                                                                                                    | M4            | 1.2 to 2.0<br>(10.4 to 17.4)         |
|                | X, Y, Z                                | 150 × 4P<br>(300 × 4P)                           | 120 to 150 × 4P<br>(250 to 300 × 4P)                                                                       | 120 × 4P<br>(250 × 4P)                           | 95 to 150 × 4P<br>(4/0 to 300 × 4P)                                                                                                       | M12           | 31.4 to 39.2<br>(278 to 347)         |
|                | X1, Y1, Z1                             | 50<br>(1/0)                                      | 50 to 70<br>(1/0 to 2/0)                                                                                   | 35<br>(1)                                        | 35 to 50<br>(1 to 1/0)                                                                                                                    | M8            | 5.4 to 6.0<br>(47.8 to 53.0)         |
| 4□0720<br><1>  | U/T1, V/T2, W/T3                       | 150 × 4P<br>(300 × 4P)                           | 120 to 150 × 4P<br>(250 to 300 × 4P)                                                                       | 120 × 4P<br>(250 × 4P)                           | 95 to 150 × 4P<br>(4/0 to 300 × 4P)                                                                                                       | M12           | 31.4 to 39.2<br>(278 to 347)         |
|                |                                        | 95<br>(3/0)                                      | 95 to 150<br>(3/0 to 300)                                                                                  | 120 × 2P<br>(250 × 2P)                           | 95 to 150 × 2P<br>(4/0 to 300 × 2P)                                                                                                       | M12           | 31.4 to 39.2<br>(278 to 347)         |
|                | r1, s1, t1                             | 2.5<br>(14)                                      | 2.5 to 4<br>(14 to 12)                                                                                     | 2.5<br>(14)                                      | 2.5 to 4<br>(14 to 12)                                                                                                                    | M4            | 1.2 to 2.0<br>(10.4 to 17.4)         |
|                | p1, n1                                 | 2.5<br>(14)                                      | 2.5 to 16<br>(14 to 6)                                                                                     | 2.5<br>(14)                                      | 2.5 to 16<br>(14 to 6)                                                                                                                    | M5            | 2.0 to 2.5<br>(17.4 to 21.7)         |
|                | p2, n2                                 | 2.5<br>(14)                                      | 2.5 to 4<br>(14 to 12)                                                                                     | 2.5<br>(14)                                      | 2.5 to 4<br>(14 to 12)                                                                                                                    | M4            | 1.2 to 2.0<br>(10.4 to 17.4)         |

D

|                |                  | For USA ar                           | nd Canada                                                                                                  | For South                            | America                                             |               | Tightening<br>Torque<br>N·m (lb.in.) |
|----------------|------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------|---------------|--------------------------------------|
| Drive<br>Model | Terminal         | Recomm. Gauge<br>mm²<br>(AWG, kcmil) | Applicable<br>Gauge mm <sup>2</sup><br>(AWG, kcmil)                                                        | Recomm. Gauge<br>mm²<br>(AWG, kcmil) | Applicable<br>Gauge mm <sup>2</sup><br>(AWG, kcmil) | Screw<br>Size |                                      |
|                | X, Y, Z          | 95 × 8P<br>(4/0 × 8P)                | $150 \times 4P$<br>$70 \text{ to } 150 \times 8P$<br>$(300 \times 4P)$<br>$2/0 \text{ to } 300 \times 8P)$ | 150 × 4P<br>(300 × 4P)               | 120 to 150 × 4P<br>(250 to 300 × 4P)                | M12           | 31.4 to 39.2<br>(278 to 347)         |
|                | X1, Y1, Z1       | 50<br>(1/0)                          | 50 to 70 (1/0 to 2/0)                                                                                      | 35<br>(1)                            | 35 to 50<br>(1 to 1/0)                              | M8            | 5.4 to 6.0<br>(47.8 to 53.0)         |
| 4□0900<br>     | U/T1, V/T2, W/T3 | 95 × 8P<br>(4/0 × 8P)                | $150 \times 4P$<br>$70 \text{ to } 150 \times 8P$<br>$(300 \times 4P)$<br>$2/0 \text{ to } 300 \times 8P)$ | 150 × 4P<br>(300 × 4P)               | 120 to 150 × 4P<br>(250 to 300 × 4P)                | M12           | 31.4 to 39.2<br>(278 to 347)         |
|                |                  | 95<br>(4/0)                          | 95 to 150<br>(4/0 to 300)                                                                                  | 150 × 2P<br>(300 × 2P)               | 120 to 150 × 2P<br>(250 to 300 × 2P)                | M12           | 31.4 to 39.2<br>(278 to 347)         |
|                | r1, s1, t1       | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                                                                     | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | M4            | 1.2 to 2.0<br>(10.4 to 17.4)         |
|                | p1, n1           | 2.5<br>(14)                          | 2.5 to 16 (14 to 6)                                                                                        | 2.5<br>(14)                          | 2.5 to 16<br>(14 to 6)                              | M5            | 2.0 to 2.5<br>(17.4 to 21.7)         |
|                | p2, n2           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                                                                     | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | M4            | 1.2 to 2.0<br>(10.4 to 17.4)         |
|                | X, Y, Z          | $95 \times 8P$ $(4/0 \times 8P)$     | 95 to 150 × 8P<br>(4/0 to 300 × 8P)                                                                        | 150 × 4P<br>(300× 4P)                | $150 \times 4P \\ (300 \times 4P)$                  | M12           | 31.4 to 39.2<br>(278 to 347)         |
|                | X1, Y1, Z1       | 50<br>(1/0)                          | 50 to 70 (1/0 to 2/0)                                                                                      | 35<br>(1)                            | 35 to 50 (1 to 1/0)                                 | M8            | 5.4 to 6.0<br>(47.8 to 53.0)         |
|                | U/T1, V/T2, W/T3 | 95 × 8P<br>(4/0 × 8P)                | 95 to 150 × 8P<br>(4/0 to 300 × 8P)                                                                        | $150 \times 4P$ $(300 \times 4P)$    | $150 \times 4P$ $(300 \times 4P)$                   | M12           | 31.4 to 39.2 (278 to 347)            |
| 4□0930<br><1>  |                  | 95<br>(4/0)                          | 95 to 150<br>(4/0 to 300)                                                                                  | 150 × 2P<br>(300 × 2P)               | 150 × 2P<br>(300 × 2P)                              | M12           | 31.4 to 39.2<br>(278 to 347)         |
|                | r1, s1, t1       | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                                                                     | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | M4            | 1.2 to 2.0<br>(10.4 to 17.4)         |
|                | p1, n1           | 2.5<br>(14)                          | 2.5 to 16<br>(14 to 6)                                                                                     | 2.5<br>(14)                          | 2.5 to 16<br>(14 to 6)                              | M5            | 2.0 to 2.5<br>(17.4 to 21.7)         |
|                | p2, n2           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                                                                     | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | M4            | 1.2 to 2.0<br>(10.4 to 17.4)         |

<sup>&</sup>lt;1> Take additional measures in accordance with IEC/EN 61800-5-1 when wiring an EMC filter is installed. *Refer to Internal EMC Filter Installation on page 668* for details.

### ■ Filter Modules

Table D.6 Filter Module Wire Gauge and Torque Specifications for Models 4□0720 to 4□0930

|             |                  | For USA a                            | nd Canada                                           | For South                            | America                                             | Screw<br>Size | Tightening<br>Torque<br>N⋅m (lb.in.) |
|-------------|------------------|--------------------------------------|-----------------------------------------------------|--------------------------------------|-----------------------------------------------------|---------------|--------------------------------------|
| Model       | Terminal         | Recomm. Gauge<br>mm²<br>(AWG, kcmil) | Applicable<br>Gauge mm <sup>2</sup><br>(AWG, kcmil) | Recomm. Gauge<br>mm²<br>(AWG, kcmil) | Applicable<br>Gauge mm <sup>2</sup><br>(AWG, kcmil) |               |                                      |
|             | R/L1, S/L2, T/L3 | 150 × 4P<br>(300 × 4P)               | 120 to 150 × 4P<br>(250 to 300 × 4P)                | $120 \times 4P$ $(250 \times 4P)$    | 95 to 150 × 4P<br>(4/0 to 300 × 2P)                 | M12           | 31.4 to 39.2<br>(278 to 347)         |
|             | X, Y, Z          | 150 × 4P<br>(300 × 4P)               | 120 to 150 × 4P<br>(250 to 300 × 4P)                | 120 × 4P<br>(250 × 4P)               | 95 to 150 × 4P<br>(4/0 to 300 × 2P)                 | M12           | 31.4 to 39.2<br>(278 to 347)         |
| EUJ71180□.□ | X1, Y1, Z1       | 50<br>(1/0)                          | 50 to 70<br>(1/0 to 2/0)                            | 35<br>(1)                            | 35 to 50<br>(1 to 1/0)                              | M8            | 5.4 to 6.0<br>(47.8 to 53.0)         |
| <1>         |                  | 95<br>(3/0)                          | 95 to 150<br>(3/0 to 300)                           | 120 × 2P<br>(250 × 2P)               | 95 to 150 × 2P<br>(4/0 to 300)                      | M12           | 31.4 to 39.2<br>(278 to 347)         |
|             | r1, s1, t1       | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | M4            | 1.2 to 2.0<br>(10.4 to 17.4)         |
|             | p2, n2           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | M4            | 1.2 to 2.0<br>(10.4 to 17.4)         |

| 4 |       |
|---|-------|
|   | ce    |
|   | lian  |
|   | dwc   |
|   | ŏ     |
|   | ards  |
|   | Stand |
|   | St    |
|   |       |

|                    |                  | For USA a                            | nd Canada                                                                                                  | For South                            | America                                             |               | Tightening                   |  |
|--------------------|------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------|---------------|------------------------------|--|
| Model              | Terminal         | Recomm. Gauge<br>mm²<br>(AWG, kcmil) | Applicable<br>Gauge mm <sup>2</sup><br>(AWG, kcmil)                                                        | Recomm. Gauge<br>mm²<br>(AWG, kcmil) | Applicable<br>Gauge mm <sup>2</sup><br>(AWG, kcmil) | Screw<br>Size | Torque<br>N·m (lb.in.)       |  |
|                    | R/L1, S/L2, T/L3 | 95 × 8P<br>(4/0 × 8P)                | $150 \times 4P$<br>$70 \text{ to } 150 \times 8P$<br>$(300 \times 4P)$<br>$2/0 \text{ to } 300 \times 8P)$ | $150 \times 4P$ $(300 \times 4P)$    | 120 to 150 × 4P<br>(250 to 300 × 4P)                | M12           | 31.4 to 39.2<br>(278 to 347) |  |
|                    | X, Y, Z          | 95 × 8P<br>(4/0 × 8P)                | $150 \times 4P \ 70 \ to \ 150 \\ \times 8P \\ (300 \times 4P \\ 2/0 \ to \ 300 \times 8P)$                | 150 × 4P<br>(300 × 4P)               | 120 to 150 × 4P<br>(250 to 300 × 4P)                | M12           | 31.4 to 39.2<br>(278 to 347) |  |
| EUJ71181□.□<br><1> | X1, Y1, Z1       | 50<br>(1/0)                          | 50 to 70<br>(1/0 to 2/0)                                                                                   | 35<br>(1)                            | 35 to 50<br>(1 to 1/0)                              | M8            | 5.4 to 6.0<br>(47.8 to 53.0) |  |
|                    |                  | 95<br>(4/0)                          | 95 to 150 (4/0 to 300)                                                                                     | $150 \times 2P$ $(300 \times 2P)$    | 120 to 150 × 2P<br>(250 to 300 × 2P)                | M12           | 31.4 to 39.2<br>(278 to 347) |  |
|                    | r1, s1, t1       | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                                                                     | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | M4            | 1.2 to 2.0<br>(10.4 to 17.4) |  |
|                    | p2, n2           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                                                                     | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | M4            | 1.2 to 2.0<br>(10.4 to 17.4) |  |
|                    | R/L1, S/L2, T/L3 | $95 \times 8P$ $(4/0 \times 8P)$     | 95 to 150 × 8P<br>(4/0 to 300 × 8P)                                                                        | $150 \times 4P$ $(300 \times 4P)$    | $150 \times 4P \\ (300 \times 4P)$                  | M12           | 31.4 to 39.2<br>(278 to 347) |  |
|                    | X, Y, Z          | 95 × 8P<br>(4/0 × 8P)                | 95 to 150 × 8P<br>(4/0 to 300 × 8P)                                                                        | $150 \times 4P$ $(300 \times 4P)$    | $150 \times 4P$ $(300 \times 4P)$                   | M12           | 31.4 to 39.2<br>(278 to 347) |  |
| EUJ71182□.□        | X1, Y1, Z1       | 50<br>(1/0)                          | 50 to 70<br>(1/0 to 2/0)                                                                                   | 35<br>(1)                            | 35 to 50<br>(1 to 1/0)                              | M8            | 5.4 to 6.0<br>(47.8 to 53.0) |  |
| <1>                |                  | 95<br>(4/0)                          | 95 to 150 (4/0 to 300)                                                                                     | $150 \times 2P$ $(300 \times 2P)$    | $150 \times 2P \\ (300 \times 2P)$                  | M12           | 31.4 to 39.2<br>(278 to 347) |  |
|                    | r1, s1, t1       | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                                                                     | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | M4            | 1.2 to 2.0<br>(10.4 to 17.4) |  |
|                    | p2, n2           | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                                                                                     | 2.5<br>(14)                          | 2.5 to 4<br>(14 to 12)                              | M4            | 1.2 to 2.0<br>(10.4 to 17.4) |  |

Take additional measures in accordance with IEC/EN 61800-5-1 when wiring an EMC filter is installed. *Refer to Internal EMC Filter Installation on page 668* for details.

#### ■ Closed-Loop Crimp Terminal Recommendations

To maintain UL/cUL approval, UL Listed closed-loop crimp terminals are specifically required when wiring the drive main circuit terminals on models  $2\square0068$  to  $2\square0248$  and  $4\square0052$  to  $4\square0930$ . Use only the tools recommended by the terminal manufacturer for crimping. Yaskawa recommends UL Listed crimp terminals made by JST and Tokyo DIP (or equivalent) for the insulation cap. *Table D.7* to *Table D.9* match the wire gauges and terminal screw sizes with Yaskawa-recommended crimp terminals, tools, and insulation caps. Refer to the appropriate Wire Gauge and Torque Specifications table for the wire gauge and screw size for your drive model.

#### Drive Models 2□0028 to 2□0248 and 4□0011 to 4□0590

#### Table D.7 Closed-Loop Crimp Terminal Size

| Drive Model | Wire Gauge<br>(AWG, kcmil)           | Screw | Crimp Terminal | Tool        |         | Insulation Cap |             |  |
|-------------|--------------------------------------|-------|----------------|-------------|---------|----------------|-------------|--|
| Drive Model | R/L1, S/L2, T/L3<br>U/T1, V/T2, W/T3 | Size  | Model Number   | Machine No. | Die Jaw | Model No.      | Code <1>    |  |
| 200 V Class |                                      |       |                |             |         |                |             |  |
| 250020      | 10                                   | 245   | R5.5-5         | 37.4.4      | AD-900  | TP-005         | 100-054-030 |  |
| 2□0028      | 8 <2>                                | M5    | R8-5           | YA-4        | AD-901  | TP-008         | 100-054-032 |  |
|             | 8                                    |       | R8-6           | YA-4        | AD-901  | TP-008         | 100-065-184 |  |
| 2□0042      | 6 <2>                                | M6    | R14-6          |             | AD-902  | TP-014         | 100-051-261 |  |
| 20042       | 4                                    | IVIO  | R22-6          | YA-5        | AD-953  | TP-022         | 100 051 262 |  |
|             | 3                                    |       | R22-6          | 1 A-3       | AD-933  | 1P-022         | 100-051-262 |  |
|             | 6                                    |       | R14-6          |             | AD-952  | TP-014         | 100-051-261 |  |
| 2□0054      | 4 <2>                                | M6    | R22-6          | YA-5        | AD 053  | TP 022         | 100-051-262 |  |
|             | 3                                    |       | K22-6          |             | AD-953  | TP-022         | 100-031-202 |  |

|             | Wire Gauge<br>(AWG, kcmil)           | Screw  | Crimp Terminal Too |                   | ol               | Insulation Cap |              |
|-------------|--------------------------------------|--------|--------------------|-------------------|------------------|----------------|--------------|
| Drive Model | R/L1, S/L2, T/L3<br>U/T1, V/T2, W/T3 | Size   | Model Number       | Machine No.       | Die Jaw          | Model No.      | Code <1>     |
| 2□0068      | 3                                    | - M6   | R22-6              | YA-5              | AD-953           | TP-022         | 100-051-262  |
|             | 6 <2>                                |        | R14-6              |                   | AD-952           | TP-014         | 100-051-261  |
| 2□0081      | 4                                    | M6     | R22-6              | YA-5              | AD-953           | TP-022         | 100-051-262  |
|             | 3                                    |        |                    |                   |                  |                |              |
|             | 6 4                                  | 1      | R14-8              | YA-4              | AD-902           | TP-014         | 100-054-035  |
| 2□0104      | 3                                    | - M8   | R22-8              |                   | AD-953           | TP-022         | 100-051-263  |
| 20104       | 2 1 <2>                              | - 1016 | R38-8              | YA-5              | AD-954           | TP-038         | 100-051-264  |
|             | 1/0                                  |        | R60-8              |                   | AD-955           | TP-060         | 100-051-265  |
|             | 6                                    |        | R14-8              |                   | AD-952           | TP-014         | 100-054-035  |
| 2□0130      | 3                                    | - M8   | R22-8              | YA-5              | AD-953           | TP-022         | 100-051-263  |
| 20130       | 2                                    | - 1/16 | R38-8              | 1A-3              | AD-954           | TP-038         | 100-051-264  |
|             | 1/0                                  | 1      | R60-8              |                   | AD-955           | TP-060         | 100-0051-265 |
|             | 3 <2>                                |        | R22-10             |                   | AD-953           | TP-022         | 100-061-113  |
|             | 2                                    | -      | R38-10             | YA-5              | AD-954           | TP-038         | 100-061-114  |
| 2□0154      | 1/0                                  | M10    | R60-10             |                   | AD-955           | TP-060         | 100-051-266  |
|             | 2/0                                  |        | 70-10              | YF-1<br>YET-300-1 | TD-322<br>TD-311 | TP-080         | 100-064-251  |
|             | 3/0                                  |        | 80-10              |                   | TD-323<br>TD-312 | 11-080         | 100-051-267  |
|             | 4/0                                  |        | R100-10            | YF-1              | TD-324           | TP-100         | 100-051-269  |
|             | 3                                    | 1      | R22-10             | YA-5              | AD-953           | TP-022         | 100-061-113  |
|             | 2 1 <2>                              |        | R38-10             |                   | AD-954           | TP-038         | 100-061-114  |
|             | 1/0                                  |        | R60-10             |                   | AD-955           | TP-060         | 100-051-266  |
| 2□0192      | 2/0                                  | M10    | 70-10              |                   | TD-322<br>TD-311 | TP-080         | 100-064-251  |
|             | 3/0                                  |        | 80-10              | YF-1<br>YET-300-1 | TD-323<br>TD-312 | 11-000         | 100-051-267  |
|             | 4/0                                  |        | R100-10            |                   | TD-324<br>TD-312 | TP-100         | 100-051-269  |
|             | 1                                    |        | R38-10             | YA-5              | AD-954           | TP-038         | 100-061-114  |
|             | 1/0                                  |        | R60-10             |                   | TD-321<br>TD-311 | TP-060         | 100-051-266  |
| 2□0248      | 2/0 <2>                              | M10    | 70-10              | YF-1              | TD-322<br>TD-311 | TP-080         | 100-064-251  |
|             | 3/0                                  |        | 80-10              | YET-300-1         | TD-323<br>TD-312 |                | 100-051-267  |
|             | 4/0                                  |        | R100-10            |                   | TD-324<br>TD-312 | TP-100         | 100-051-269  |
|             |                                      |        |                    | V Class           |                  |                |              |
|             | 14 <2>                               | 1      | R2-5               |                   | AD 222           | TP-003         | 100-123-030  |
| 4□0011      | 12                                   | M5     | R5.5-5             | YA-4              | AD-900           | TP-005         | 100-054-030  |
|             | 8                                    |        | R8-5               |                   | AD-901           | TP-008         | 100-054-032  |

| Compliance |
|------------|
| Standards  |

D

| B.S. W. J.J. | Wire Gauge<br>(AWG, kcmil)           | Screw | w Crimp Terminal |                   | ool              | Insulation Cap |             |
|--------------|--------------------------------------|-------|------------------|-------------------|------------------|----------------|-------------|
| Drive Model  | R/L1, S/L2, T/L3<br>U/T1, V/T2, W/T3 | Size  | Model Number     | Machine No.       | Die Jaw          | Model No.      | Code <1>    |
|              | 14                                   |       | R2-5             |                   |                  | TP-003         | 100-123-030 |
| 4□0014       | 12 <2>                               | M5    | R5.5-5           | YA-4              | AD-900           | TP-005         | 100-054-030 |
| 40014        | 10                                   | IVIS  |                  | 111-4             |                  |                |             |
|              | 8                                    |       | R8-5             |                   | AD-901           | TP-008         | 100-054-032 |
| 4□0021       | 12<br>10 <2>                         | M5    | R5.5-5           | YA-4              | AD-900           | TP-005         | 100-054-030 |
|              | 8                                    |       | R8-5             |                   | AD-901           | TP-008         | 100-054-032 |
| 4□0027       | 10                                   | M5    | R5.5-5           | YA-4              | AD-900           | TP-005         | 100-054-030 |
| 40027        | 8 <2>                                | IVIS  | R8-5             | I A-4             | AD-901           | TP-008         | 100-054-032 |
| 4□0034       | 8 <2>                                | M5    | R8-5             | YA-4              | AD-901           | TP-008         | 100-054-032 |
|              | 8 <2>                                |       | R8-6             | YA-4              | AD-901           | TP-008         | 100-065-184 |
| 4□0040       | 6                                    | M6    | R14-6            | 1 A-4             | AD-902           | TP-014         | 100-051-261 |
| 40040        | 3                                    | IVIO  | R22-6            | YA-5              | AD-953           | TP-022         | 100-051-262 |
|              | 8                                    |       | R8-6             |                   | AD-901           | TP-008         | 100-065-184 |
| 450050       | 6 <2>                                |       | R14-6            | YA-4              | AD-902           | TP-014         | 100-051-261 |
| 4□0052       | 4 3                                  | M6    | R22-6            | YA-5              | AD-953           | TP-022         | 100-051-262 |
|              | 6                                    |       | R14-6            |                   | AD-952           | TP-014         | 100-051-261 |
| 4□0065       | 4 <2>                                | M6    | R22-6            | YA-5              | AD-953           | TP-022         | 100-051-262 |
|              | 4                                    |       |                  |                   |                  |                |             |
| 4□0077       | 3 <2>                                | M6    | R22-6            | YA-5              | AD-953           | TP-022         | 100-051-262 |
|              | 8                                    |       | R8-8             | YA-4              | AD-901           | TP-008         | 100-601-111 |
|              | 6                                    |       | R14-8            |                   | AD-902           | TP-014         | 100-054-035 |
| 4□0096       | 4 3                                  | M8    | R22-8            | YA-5              | AD-953           | TP-022         | 100-051-263 |
|              | 2                                    |       | R38-8            |                   | AD-954           | TP-038         | 100-051-264 |
|              | 1/0                                  |       | R60-8            |                   | AD-955           | TP-060         | 100-051-265 |
|              | 6                                    |       | R14-8            |                   | AD-952           | TP-014         | 100-054-035 |
| _            | 4 <2>                                |       | R22-8            |                   | AD-953           | TP-022         | 100-051-263 |
| 4□0124       | 2                                    | M8    | R38-8            | YA-5              | AD-954           | TP-038         | 100-051-264 |
|              | 1/0                                  |       | R60-8            |                   | AD-955           | TP-060         | 100-051-265 |
|              | 4                                    |       | R22-10           |                   | AD-953           | TP-022         | 100-061-113 |
|              | 3 <2>                                |       |                  | V A 5             |                  |                |             |
|              | 2                                    |       | R38-10           | YA-5              | AD-954           | TP-038         | 100-061-114 |
| 40156        | 1/0                                  | M10   | R60-10           |                   | AD-955           | TP-060         | 100-051-266 |
| 4□0156       | 2/0                                  | M10   | 70-10            |                   | TD-322<br>TD-311 |                | 100-064-251 |
|              | 3/0                                  |       | 80-10            | YF-1<br>YET-300-1 | TD-323<br>TD-312 | TP-080         | 100-051-267 |
|              | 4/0                                  |       | R100-10          |                   | TD-324<br>TD-312 | TP-100         | 100-051-269 |

| D.C. M. J.I     | Wire Gauge<br>(AWG, kcmil)           | Screw | Crimp Terminal                 | Tool inal         |                  | Insulation Cap | 0-4-<1>     |
|-----------------|--------------------------------------|-------|--------------------------------|-------------------|------------------|----------------|-------------|
| Drive Model     | R/L1, S/L2, T/L3<br>U/T1, V/T2, W/T3 | Size  | Crimp Terminal<br>Model Number | Machine No.       | Die Jaw          | Model No.      | Code <1>    |
|                 | 3                                    |       | R22-10                         |                   | AD-953           | TP-022         | 100-061-113 |
|                 | 2 <2>                                | _     | R38-10                         | YA-5              | AD-954           | TP-038         | 100-061-114 |
|                 | 1/0                                  |       | R60-10                         |                   | AD-955           | TP-060         | 100-051-266 |
| 4□0180          | 2/0                                  | M10   | 70-10                          |                   | TD-322<br>TD-311 | TD 000         | 100-064-251 |
|                 | 3/0                                  |       | 80-10                          | YF-1<br>YET-300-1 | TD-323<br>TD-312 | TP-080         | 100-051-267 |
|                 | 4/0                                  |       | R100-10                        |                   | TD-324<br>TD-312 | TP-100         | 100-051-269 |
|                 | 2                                    | _     | R38-10                         | YA-5              | AD-954           | TP-038         | 100-061-114 |
|                 | 1/0 <2>                              | -     | R60-10                         |                   | TD-321<br>TD-311 | TP-060         | 100-051-266 |
| 4□0216          | 2/0                                  | M10   | 70-10                          | YF-1              | TD-322<br>TD-311 | TD 000         | 100-064-251 |
|                 | 3/0                                  |       | 80-10                          | YET-300-1         | TD-323<br>TD-312 | TP-080         | 100-051-267 |
|                 | 4/0                                  |       | R100-10                        |                   | TD-324<br>TD-312 | TP-100         | 100-051-269 |
|                 | 1/0 <2>                              |       | R60-10                         | YF-1<br>YET-300-1 | TD-321<br>TD-311 | TP-060         | 100-051-266 |
| 4□0240          | 2/0                                  | M10   | 70-10                          |                   | TD-322<br>TD-311 | TP-080         | 100-064-251 |
| 7 <b>2</b> 0270 | 3/0                                  | WITO  | 80-10                          |                   | TD-323<br>TD-312 | 11 -000        | 100-051-267 |
|                 | 4/0                                  |       | R100-10                        |                   | TD-324<br>TD-312 | TP-100         | 100-051-269 |
|                 | 1/0                                  |       | R60-10                         |                   | TD-321<br>TD-311 | TP-060         | 100-051-266 |
| 4□0302          | 2/0                                  | M10   | 70-10                          | YF-1              | TD-322<br>TD-311 | TP-080         | 100-064-251 |
| 4L10302         | 3/0 <2>                              | WITO  | 80-10                          | YET-300-1         | TD-323<br>TD-312 | 11-000         | 100-051-267 |
|                 | 4/0                                  |       | R100-10                        |                   | TD-324<br>TD-312 | TP-100         | 100-051-269 |
| 4□0361          | 3/0                                  | M10   | 80-10                          | YF-1              | TD-323<br>TD-312 | TP-080         | 100-051-267 |
| 4 <b>2</b> 0301 | 4/0 <2>                              | WITO  | R100-10                        | YET-300-1         | TD-324<br>TD-312 | TP-100         | 100-051-269 |
| 4-044           | 4/0                                  |       | R100-12                        | YF-1              | TD-324<br>TD-312 | TP-100         | 100-051-270 |
| 4□0414          | 250<br>300 <2>                       | M12   | R150-12                        | YET-300-1         | TD-325<br>TD-313 | TP-150         | 100-051-273 |
|                 | 2/0                                  |       | 70-12                          |                   | TD-322<br>TD-311 | TP-080         | 100-054-036 |
|                 | 3/0 <2>                              | ,     | 80-12                          | YF-1              | TD-323<br>TD-312 | TP-080         | 100-051-268 |
| 4□0477          | 4/0                                  | M12   | R100-12                        | YET-300-1         | TD-324<br>TD-312 | TP-100         | 100-051-270 |
|                 | 250                                  |       | R150-12                        |                   | TD-325           | TP-150         | 100-051-273 |
|                 | 300                                  |       | R150-12                        |                   | TD-313           | TP-150         | 100-051-273 |

| _         |
|-----------|
| ≂         |
| . <u></u> |
| =         |
| Ω         |
| Ε         |
| ٥         |
| ŭ         |
| S         |
| ĕ         |
| ā         |
| ъ         |
| ⊆         |
| Sta       |
| ᅏ         |
| U)        |
|           |
|           |
|           |

| Drive Model | Wire Gauge<br>(AWG, kcmil)           | Screw | Crimp Terminal | Tool              |                  | Insulation Cap | Code <1>    |
|-------------|--------------------------------------|-------|----------------|-------------------|------------------|----------------|-------------|
| Drive Woder | R/L1, S/L2, T/L3<br>U/T1, V/T2, W/T3 | Size  | Model Number   | Machine No.       | Die Jaw          | Model No.      | Code        |
|             | 3/0                                  |       | 80-12          | YF-1<br>YET-300-1 | TD-323<br>TD-312 | TP-080         | 100-051-268 |
| 4□0590      | 4/0                                  | M12   | R100-12        |                   | TD-324<br>TD-312 | TP-100         | 100-051-270 |
|             | 250 <2>                              |       | R150-12        |                   | TD-325           | TP-150         | 100-051-273 |
|             | 300                                  |       | R150-12        |                   | TD-313           | TP-150         | 100-051-273 |

Codes refer to a set of three crimp terminals and three insulation caps. Prepare input and output wiring using two sets for each connection.

Use crimp insulated terminals or insulated shrink tubing for wiring connections. Wires should have a continuous maximum allowable temperature of 75 °C (167 °F) 600 Vac UL-approved vinyl-sheathed insulation.

#### **Drive Models 4**□0720 to 4□0930

**Table D.8 Closed-Loop Crimp Terminal Size** 

| Drive Model | Wire Gauge<br>(AWG, kcmil)  | Screw | Crimp Terminal | То                | ool              | Insulation Cap | Code <1>    |
|-------------|-----------------------------|-------|----------------|-------------------|------------------|----------------|-------------|
| Drive Woder | X, Y, Z<br>U/T1, V/T2, W/T3 | Size  | Model Number   | Machine No.       | Die Jaw          | Model No.      | Code **     |
|             | 1/0                         |       | R60-12         |                   | TD-321<br>TD-311 | TP-060         | 100-066-160 |
|             | 2/0                         |       | 70-12          | YF-1              | TD-322<br>TD-311 | TP-080         | 100-054-036 |
| 4□0720      | 4/0                         | M12   | R100-12        | YET-300-1         | TD-324<br>TD-312 | TP-100         | 100-051-270 |
|             | 250                         |       | R150-12        |                   | TD-325           | TP-150         | 100-051-273 |
|             | 300 <2>                     |       | R150-12        |                   | TD-313           | TP-150         | 100-051-273 |
|             | 1/0                         |       | R60-12         | YF-1<br>YET-300-1 | TD-321<br>TD-311 | TP-060         | 100-066-160 |
|             | 2/0                         |       | 70-12          |                   | TD-322<br>TD-311 | TP-080         | 100-054-036 |
| 4□0900      | 3/0                         | M12   | 80-12          |                   | TD-323<br>TD-312 | TP-080         | 100-051-268 |
|             | 4/0 <2>                     |       | R100-12        |                   | TD-324<br>TD-312 | TP-100         | 100-051-270 |
|             | 250                         |       | R150-12        |                   | TD-325           | TP-150         | 100-051-273 |
|             | 300                         |       | R150-12        |                   | TD-313           | TP-150         | 100-051-273 |
|             | 1/0                         |       | R60-12         |                   | TD-321<br>TD-311 | TP-060         | 100-066-160 |
|             | 2/0                         |       | 70-12          | YF-1              | TD-322<br>TD-311 | TP-080         | 100-054-036 |
| 4□0930      | 4/0 <2>                     | M12   | R100-12        | YET-300-1         | TD-324<br>TD-312 | TP-100         | 100-051-270 |
|             | 250                         |       | R150-12        |                   | TD-325           | TP-150         | 100-051-273 |
|             | 300                         |       | R150-12        |                   | TD-313           | TP-150         | 100-051-273 |

Codes refer to a set of three crimp terminals and three insulation caps. Prepare input and output wiring using two sets for each connection.

Use crimp insulated terminals or insulated shrink tubing for wiring connections. Wires should have a continuous maximum allowable Note: temperature of 75 °C (167 °F) 600 Vac UL-approved vinyl-sheathed insulation.

Recommended wire gauges. Refer to local codes for proper selections.

Recommended wire gauges. Refer to local codes for proper selections.

#### **Filter Modules**

Table D.9 Filter Module Closed-Loop Crimp Terminal Size

| Drive Model | Wire Gauge<br>(AWG, kcmil)  | Screw | Crimp Terminal | То                | ool              | Insulation Cap | Code <1>    |
|-------------|-----------------------------|-------|----------------|-------------------|------------------|----------------|-------------|
| Drive Wodei | R/L1, S/L2, T/L3<br>X, Y, Z | Size  | Model Number   | Machine No.       | Die Jaw          | Model No.      | Code ***    |
|             | 1/0                         |       | R60-12         |                   | TD-321<br>TD-311 | TP-060         | 100-066-160 |
|             | 2/0                         |       | 70-12          | YF-1              | TD-322<br>TD-311 | TP-080         | 100-054-036 |
| EUJ71180□.□ | 4/0                         | M12   | R100-12        | YET-300-1         | TD-324<br>TD-312 | TP-100         | 100-051-270 |
|             | 250                         |       | R150-12        |                   | TD-325           | TP-150         | 100-051-273 |
|             | 300 <2>                     |       | R150-12        |                   | TD-313           | TP-150         | 100-051-273 |
|             | 1/0                         |       | R60-12         |                   | TD-321<br>TD-311 | TP-060         | 100-066-160 |
|             | 2/0                         |       | 70-12          | YF-1<br>YET-300-1 | TD-322<br>TD-311 | TP-080         | 100-054-036 |
| EUJ71181□.□ | 3/0                         | M12   | 80-12          |                   | TD-323<br>TD-312 | TP-080         | 100-051-268 |
|             | 4/0 <2>                     |       | R100-12        |                   | TD-324<br>TD-312 | TP-100         | 100-051-270 |
|             | 250                         |       | R150-12        |                   | TD-325           | TP-150         | 100-051-273 |
|             | 300                         |       | R150-12        |                   | TD-313           | TP-150         | 100-051-273 |
|             | 1/0                         |       | R60-12         |                   | TD-321<br>TD-311 | TP-060         | 100-066-160 |
|             | 2/0                         |       | 70-12          | YF-1              | TD-322<br>TD-311 | TP-080         | 100-054-036 |
| EUJ71182□.□ | 4/0 <2>                     | M12   | R100-12        | YET-300-1         | TD-324<br>TD-312 | TP-100         | 100-051-270 |
|             | 250                         |       | R150-12        |                   | TD-325           | TP-150         | 100-051-273 |
|             | 30                          |       | R150-12        |                   | TD-313           | TP-150         | 100-051-273 |

<sup>&</sup>lt;1> Codes refer to a set of three crimp terminals and three insulation caps. Prepare input and output wiring using two sets for each connection.

**Note:** Use crimp insulated terminals or insulated shrink tubing for wiring connections. Wires should have a continuous maximum allowable temperature of 75 °C (167 °F) 600 Vac UL-approved vinyl-sheathed insulation.

#### ■ Low Voltage Wiring for Control Circuit Terminals

Wire low voltage wires with NEC Class 1 circuit conductors. Refer to national state or local codes for wiring. The external power supply shall be a UL Listed Class 2 power supply source or equivalent only.

**Table D.10 Control Circuit Terminal Power Supply** 

| Input / Output           | Terminal Signal                  | Power Supply Specifications                                |
|--------------------------|----------------------------------|------------------------------------------------------------|
| Open Collector Outputs   | DM+, DM-                         | Requires class 2 power supply                              |
| Digital Inputs / Outputs | S1 to S8, SN, SC, SP, HC, H1, H2 | Use the internal LVLC power supply of the drive. Use class |
| Analog Inputs / Outputs  |                                  | 2 for external power supply.                               |

#### ■ Drive Short Circuit Rating

The drive is suitable for use on a circuit capable of delivering not more than 100,000 RMS symmetrical Amperes, 240 Vac maximum (200 V Class) and 480 Vac maximum (400 V class:  $4E\square\square\square\square$  and  $4W\square\square\square\square$ ), and 500 Vac maximum (400 V class:  $4A\square\square\square\square$  and  $4P\square\square\square\square$ ) with built-in fuses manufactured by Hinode Electric Co., Ltd. and Mersen (or equivalent).

#### ■ Branch Circuit Protection

For installation in the United States, branch circuit protection must be provided in accordance with the National Electrical Code (NEC) and any applicable local codes.

For installation in Canada, branch circuit protection must be provided in accordance with the Canadian Electrical Code and any applicable provincial codes.

<sup>&</sup>lt;2> Recommended wire gauges. Refer to local codes for proper selections.

#### Drive Motor Overload Protection

Set parameter E2-01 (motor rated current) to the appropriate value to enable motor overload protection. The internal motor overload protection is UL Listed and in accordance with the NEC and CEC.

#### **■** E2-01: Motor Rated Current

Setting Range: 10% to 150% of the drive rated current

Default Setting: Model-dependent

Parameter E2-01 protects the motor when parameter L1-01 is not set to 0. The default for L1-01 is 1, which enables protection for standard induction motors.

If Auto-Tuning has been performed successfully, the motor data entered to T1-04 and T2-06 are automatically written to parameter E2-01. If Auto-Tuning has not been performed, manually enter the correct motor rated current to parameter E2-01.

#### ■ L1-01: Motor Overload Protection Selection

The drive has an electronic overload protection function (oL1) based on time, output current, and output frequency that protects the motor from overheating. The electronic thermal overload function is UL-recognized, so it does not require an external thermal relay for single motor operation.

This parameter selects the motor overload curve used according to the type of motor applied.

**Table D.11 Overload Protection Settings** 

| Setting |                                             | Description                                                                                                                                                                                                                                           |
|---------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0       | Disabled                                    | Disabled the internal motor overload protection of the drive.                                                                                                                                                                                         |
| 1       | Standard fan-cooled motor (default)         | Selects protection characteristics for a standard self-cooled motor with limited cooling capabilities when running below the rated speed. The motor overload detection level (oL1) is automatically reduced when running below the motor rated speed. |
| 2       | Drive duty motor with a speed range of 1:10 | Selects protection characteristics for a motor with self-cooling capability within a speed range of 10:1. The motor overload detection level (oL1) is automatically reduced when running below 1/10 of the motor rated speed.                         |
| 3       | Vector motor with a speed range of 1:100    | Selects protection characteristics for a motor capable of cooling itself at any speed including zero speed (externally cooled motor). The motor overload detection level (oL1) is constant over the entire speed range.                               |
| 4       | Permanent Magnet motor with variable torque | Selects protection characteristics for a variable torque PM motor. The motor overload detection level (oL1) is automatically reduced when running below the motor rated speed.                                                                        |
| 5       | Permanent Magnet motor with constant torque | Selects protection characteristics for a constant torque PM motor. The motor overload detection level (oL1) is constant over the whole speed range.                                                                                                   |
| 6       | Standard fan-cooled motor (50 Hz)           | Selects protection characteristics for a standard self-cooled motor with limited cooling capabilities when running below the rated speed. The motor overload detection level (oL1) is automatically reduced when running below the motor rated speed. |

When connecting the drive to more than one motor for simultaneous operation, disable the electronic overload protection (L1-01=0) and wire each motor with its own motor thermal overload relay.

Enable motor overload protection (L1-01 = 1 to 6) when connecting the drive to a single motor, unless another motor overload preventing device is installed. The drive electronic thermal overload function causes an oL1 fault, which shuts off the output of the drive and prevents additional overheating of the motor. The motor temperature is continually calculated while the drive is powered up.

#### ■ L1-02: Motor Overload Protection Time

Setting Range: 0.1 to 5.0 min Factory Default: 1.0 min

Parameter L1-02 determines how long the motor is allowed to operate before the oL1 fault occurs when the drive is running a hot motor at 60 Hz and at 150% of the full load amp rating (E2-01) of the motor. Adjusting the value of L1-02 can shift the set of oL1 curves up the y axis of the diagram below, but will not change the shape of the curves.

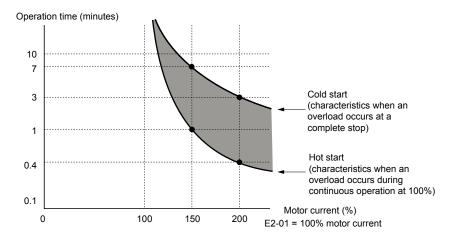



Figure D.19 Motor Overload Protection Time

#### ■ L1-03: Motor Overheat Alarm Operation Selection (PTC input)

Sets the drive operation when the PTC input signal reaches the motor overheat alarm level (oH3).

| No.   | Name                                                 | Setting Range | Default |
|-------|------------------------------------------------------|---------------|---------|
| L1-03 | Motor Overheat Alarm Operation Selection (PTC input) | 0 to 3        | 3       |

#### Setting 0: Ramp to Stop

The drive stops the motor using the deceleration time 1 set in parameter C1-02.

#### **Setting 1: Coast to Stop**

The drive output is switched off and the motor coasts to stop.

#### **Setting 2: Fast Stop**

The drive stops the motor using the Fast Stop time set in parameter C1-09.

#### **Setting 3: Alarm Only**

The operation is continued and an oH3 alarm is displayed on the digital operator.

#### ■ L1-04: Motor Overheat Fault Operation Selection (PTC input)

Sets the drive operation when the PTC input signal reaches the motor overheat fault level (oH4).

| No.   | Name                                                 | Setting Range | Default |
|-------|------------------------------------------------------|---------------|---------|
| L1-04 | Motor Overheat Fault Operation Selection (PTC input) | 0 to 2        | 1       |

#### Setting 0: Ramp to Stop

The drive stops the motor using the deceleration time 1 set in parameter C1-02.

#### **Setting 1: Coast to Stop**

The drive output is switched off and the motor coasts to stop.

#### **Setting 2: Fast Stop**

The drive stops the motor using the Fast Stop time set in parameter C1-09.

# Standards Compliance

D

## **D.4 CSA Standards Compliance**

#### Conditions of Acceptability

Refer to Conditions of Acceptability on page 678 for details.

#### Branch Circuit Protection

For installation in Canada, branch circuit protection must be provided in accordance with the Canadian Electrical Code and any applicable provincial codes.

#### ◆ Main Circuit Terminal Wiring

Yaskawa recommends using closed-loop crimp terminals on all drive models. To maintain CSA approval, CSA Certified closed-loop crimp terminals are specifically required when wiring the drive main circuit terminals on models  $2\square 0028$  to  $2\square 0248$  and  $4\square 0011$  to  $4\square 0930$ . Use only the tools recommended by the terminal manufacturer for crimping.

**Refer to Closed-Loop Crimp Terminal Recommendations on page 685** for closed-loop crimp terminal recommendations. The wire gauges listed in the following tables are Yaskawa recommendations. Refer to local codes for proper wire gauge selections.

The external power supply shall be a CSA certified or cUL Listed Class 2 power source only or equivalent. Refer to *Table D.10* for details.

#### CSA for Industrial Control Equipment



Figure D.20 CSA Mark

The drive is CSA certified as Industrial Control Equipment Class 3211.

Specifically, the drive is certified to: CAN/CSA C22.2 No.0-10 and CAN/CSA C22.2 No.14-13.

## D.5 Safe Disable Input

#### Safe Disable Input Function

This section explains the Safe Disable function. Contact Yaskawa or a Yaskawa representative if more information is required.

#### Safety Standards

The TUV mark indicates compliance with safety standards.



Figure D.21 TUV Mark

Table D.12 Safety Standards and Applicable Harmonized Standards

| Safety Standards                         | Applicable Harmonized Standards        |  |
|------------------------------------------|----------------------------------------|--|
|                                          | IEC/EN 61508 series: 2010 (SIL3)       |  |
|                                          | IEC 62061/A1: 2012 (SIL CL 3)          |  |
| Functional Safety                        | EN 62061/A1: 2013 (SIL CL 3)           |  |
|                                          | IEC 61800-5-2: 2007 (SIL3)             |  |
|                                          | EN 61800-5-2: 2007 (SIL3)              |  |
| Safety of Machinery                      | EN ISO 13849-1/AC: 2008 (PL e (Cat.3)) |  |
| EMC IEC/EN 61326-3-1: 2008 (EMC-related) |                                        |  |

The Safe Disable function is in compliance with these standards.

#### Specifications

The Safe Disable inputs provide a stop function in compliance with "Safe Torque Off" as defined in the IEC/EN 61800-5-2. Safe Disable inputs have been designed to meet the requirements of the EN ISO 13849-1 and IEC/EN 61508.

A Safe Disable Status Monitor for error detection in the safety circuit is also provided.

**Table D.13 Specifications for Safe Disable Function** 

|                                                                |                 | 2.10 Opcomodicito for Guio Biodolo i anoticii                                                                                                                                                                            |
|----------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inputs/Outputs                                                 |                 | <ul> <li>Input signal specifications Signal ON level: 18 to 28 Vdc Signal OFF level: -4 to 4 Vdc</li> <li>Inputs: 2 Safe Disable inputs H1, H2</li> <li>Outputs: 1 Safe Disable Monitor output EDM (DM+, DM-)</li> </ul> |
| Response Time from Input Open to Drive<br>Output Stop          |                 | Shorter than 3 ms                                                                                                                                                                                                        |
| Response Time from Input Open of H1 and H2<br>Terminals to EDM |                 | Shorter than 4 ms                                                                                                                                                                                                        |
|                                                                | Demand Rate Low | $PFD = 11.04E^{-6}$                                                                                                                                                                                                      |
| Failure Probability Demand Rate High/<br>Continuous            |                 | $PFH = 2.67E^{-9}$                                                                                                                                                                                                       |
| Performance Level                                              |                 | The Safe Disable inputs satisfy the following requirements (DC from EDM considered) Performance Level (PL) e according to EN ISO 13849-1                                                                                 |
| HFT (Hardware Fault Tolerance)                                 |                 | N = 1                                                                                                                                                                                                                    |
| Classification                                                 | of Subsystem    | Type B                                                                                                                                                                                                                   |

D

#### **Precautions**

**DANGER!** Sudden Movement Hazard. Improper use of the Safe Disable function can result in serious injury or even death. Make sure the whole system or machinery in which the Safe Disable function is used complies with safety requirements. When implementing the Safe Disable function into the safety system of a machine, perform a thorough risk assessment for the entire system to assure compliance with relevant safety norms.

**DANGER!** Sudden Movement Hazard. When using a PM motor, even if the drive output is shut off by the Safe Disable function, a breakdown of two output transistors can cause current to flow through the motor winding, resulting in a rotor movement for a maximum angle of 180 degrees (electrically). Make sure such a situation would have no effect on the safety of the application when using the Safe Disable function.

**DANGER!** Electrical Shock Hazard. The Safe Disable function can switch off the drive output, but does not cut the drive power supply and cannot electrically isolate the drive output from the input. Always shut off the drive power supply when performing maintenance or installations on the drive input side as well as the drive output side.

**DANGER!** Sudden Movement Hazard. The motor will move when an external gravitational force in the vertical axis is applied even if the Safe Disable function is in operation. Failure to comply may result in serious injury or death.

**DANGER!** Sudden Movement Hazard. Connect the Safe Disable inputs to the devices in compliance with safety requirements. Failure to comply will result in death or serious injury.

**WARNING!** Sudden Movement Hazard. When using the Safe Disable inputs, make sure to remove the wire links between terminals H1, H2, and HC that were installed prior to shipment. Failing to do so will keep the Safe Disable circuit from operating properly and can cause injury or even death.

**NOTICE:** All safety features (including Safe Disable) should be inspected daily and periodically. If the system is not operating normally, there is a risk of serious personal injury.

**NOTICE:** Only a qualified technician with a thorough understanding of the drive, the instruction manual, and safety standards should be permitted to wire, inspect, and maintain the Safe Disable input.

**NOTICE:** From the moment terminal inputs H1 and H2 have opened, it takes up to 2 ms for drive output to shut off completely. The sequence set up to trigger terminals H1 and H2 should make sure that both terminals remain open for at least 2 ms in order to properly interrupt drive output.

**NOTICE:** The Safe Disable Monitor (output terminals DM+ and DM-) should not be used for any other purpose than to monitor the Safe Disable status or to discover a malfunction in the Safe Disable inputs. The monitor output is not considered a safe output.

NOTICE: When utilizing the Safe Disable function, an EMC filter must be used.

#### Using the Safe Disable Function

The Safe Disable inputs provide a stop function in compliance with "Safe Torque Off" as defined in the IEC/EN 61800-5-2. Safe Disable inputs have been designed to meet the requirements of the EN ISO 13849-1, Category 3 PLe, and IEC/EN 61508, SII.3.

A Safe Disable Status Monitor for error detection in the safety circuit is also provided.

#### ■ Safe Disable Circuit

The Safe Disable circuit consists of two independent input channels that can block the output transistors (terminals H1 and H2). The input can use either the drive internal power supply or an external power supply. Use jumper S3 on the terminal board to select between Sink or Source mode with either internal or external power supply.

A photocoupler output is available to monitor the status of Safe Disable terminals DM+ and DM-. *Refer to Output Terminals on page 112* for signal specifications when using this output.

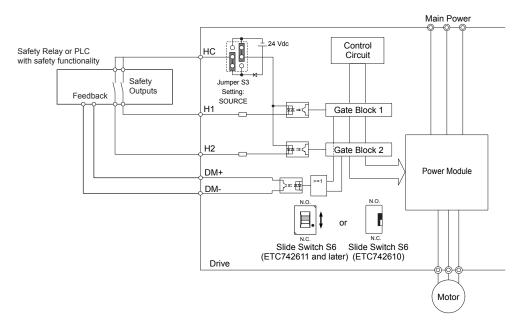



Figure D.22 Safe Disable Function Wiring Example (Source Mode)

#### Disabling and Enabling the Drive Output ("Safe Torque Off")

*Figure D.23* illustrates the Safe Disable input operation.

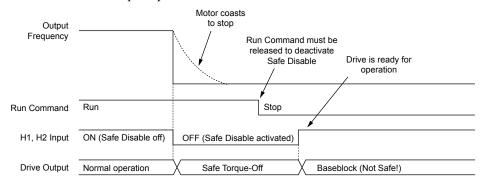



Figure D.23 Safe Disable Operation

#### **Entering the "Safe Torque Off" State**

When one or both Safe Disable inputs are open, the motor torque is shut off by switching off the drive output. If the motor was running before the Safe Disable inputs opened, then the motor will coast to stop regardless of the stopping method set in parameter b1-03.

The "Safe Torque Off" state can only be achieved using the Safe Disable function. Removing the Run command stops the drive and shuts the output off (baseblock), but does not create a "Safe Torque Off" status.

**Note:** To avoid an uncontrolled stop during normal operation, make sure that the Safe Disable inputs are opened first when the motor has completely stopped.

#### **Returning to Normal Operation after Safe Disable**

The Safe Disable function can only be deactivated when a Run command is not active.

If Safe Disable was activated during stop, turn on both Safe Disable inputs by deactivating "Safe Torque Off" to resume normal operation.

If Safe Disable was activated during run, remove the Run command then turn on the Safe Disable inputs before restarting the drive.

#### ■ Safe Disable Monitor Output Function and Digital Operator Display

**Table D.14** explains the drive output and Safe Disable monitor state depending on the Safe Disable inputs.

Table D.14 Safety Input and EDM Terminal Status

| Safe Disable Input Status |                | Safe Disable Status Monitor,<br>(DM+, DM-) |     | Drive Output Status                   | Digital Operator |  |
|---------------------------|----------------|--------------------------------------------|-----|---------------------------------------|------------------|--|
| Input 1, H1-HC            | Input 2, H2-HC | S6 Switch = "N.O."   S6 Switch = "N.C."    |     | •                                     | Display          |  |
| OFF                       | OFF            | OFF                                        | ON  | Safely disabled,<br>"Safe Torque Off" | Hbb (flashes)    |  |
| ON                        | OFF            | ON                                         | OFF | Safely disabled,<br>"Safe Torque Off" | HbbF (flashes)   |  |
| OFF                       | ON             | ON                                         | OFF | Safely disabled,<br>"Safe Torque Off" | HbbF (flashes)   |  |
| ON                        | ON             | ON                                         | OFF | Baseblock, ready for operation        | Normal display   |  |

#### Safe Disable Status Monitor

Slide Switch S6 controls the polarity of this signal. Refer to *Table D.14* for functionality.

With the Safe Disable monitor output (terminals DM+ and DM-), the drive provides a safety status feedback signal. This signal should be read by the device that controls the Safe Disable inputs (PLC or a safety relay) in order to prohibit leaving the "Safe Torque Off" status in case the safety circuit malfunctions. Refer to the instruction manual of the safety device for details on this function.

#### **Digital Operator Display**

When both Safe Disable inputs are open, "Hbb" will flash in the digital operator display.

If one Safe Disable channel is on while the other is off, "HbbF" will flash in the display to indicate that there is a problem in the safety circuit or in the drive. This display should not appear under normal conditions if the Safe Disable circuit is utilized

Refer to Alarm Codes, Causes, and Possible Solutions on page 394 for details.

If a fault in the safety circuit of the drive is detected, "SCF" will be displayed in the LCD operator. This indicates damage to the drive.

Refer to Fault Displays, Causes, and Possible Solutions on page 377 for details.

#### Validating Safe Disable Function

Always perform the following validation test on the safe disable inputs after completing the wiring after start-up, when replacing parts, or when conducting maintenance. Maintain check results as a record of tests performed.

- When the H1 and H2 signals turn OFF, confirm that "Hbb" is displayed on the LCD operator, and that the motor is not in operation.
- Monitor the ON/OFF status of the H1 and H2 signals and confirm the EDM signal according to Table D.14.

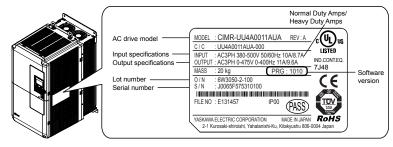
If the ON/OFF status of the signals do not match the display, it is possible that there is an error in the external device, the external wiring is disconnected, there is a short circuit in the external wiring, or a failure in the drive. Find the cause and correct the problem.

• In normal operation, confirm the EDM signal according to *Table D.14*.

**D.5 Safe Disable Input** 

This Page Intentionally Blank

# Appendix: E


## **Quick Reference Sheet**

This section provides tables to keep record of the drive specifications, motor specifications, and drive settings. Fill in the table data after commissioning the application and have them ready when contacting Yaskawa or a Yaskawa representative for technical assistance.

| E.1 | DRIVE AND MOTOR SPECIFICATIONS | 700 |
|-----|--------------------------------|-----|
| E.2 | BASIC PARAMETER SETTINGS       | 702 |
| E.3 | USER SETTING TABLE             | 704 |

## E.1 Drive and Motor Specifications

## ◆ Drive Specifications



| Items                  | Description |
|------------------------|-------------|
| Model                  | CIMR-UU     |
| Serial Number          |             |
| Software Version (PRG) |             |
| <b>Options Used</b>    |             |
| Date of Usage          |             |

## ♦ Motor Specifications

#### **■** Induction Motor

| Items                          | Description |    | Items                            | Description |       |
|--------------------------------|-------------|----|----------------------------------|-------------|-------|
| Manufacturer                   |             |    | Motor Rated Current (T1-04)      |             | A     |
| Model                          |             |    | Motor Base<br>Frequency (T1-05)  |             | Hz    |
| Motor Rated Power (T1-02)      |             | HP | Number of Motor<br>Poles (T1-06) |             |       |
| Motor Rated Voltage<br>(T1-03) |             | V  | Motor Base Speed<br>(T1-07)      |             | r/min |

**Note:** These values must be entered as part of the Auto-Tuning process.

#### ■ Permanent Magnet Motor

| Items                                | Description |    | Items                                    | Description |            |
|--------------------------------------|-------------|----|------------------------------------------|-------------|------------|
| Manufacturer                         |             |    | Induction<br>Voltage<br>Constant         |             | mVs/rad    |
| Model                                |             |    | Induction<br>Voltage<br>Constant         |             | mV/(r/min) |
| PM Motor<br>Rated Power<br>(T2-04)   |             | kW | PM Motor<br>Rated Current<br>(T2-06)     |             | A          |
| PM Motor<br>Rated Voltage<br>(T2-05) |             | V  | PM Motor<br>Base<br>Frequency<br>(T2-07) |             | Hz         |
| q-Axis<br>Inductance                 |             | mН | Number of PM<br>Motor Poles<br>(T2-08)   |             |            |

| Items                | Description | Items                             | Description |       |
|----------------------|-------------|-----------------------------------|-------------|-------|
| x-Axis<br>Inductance |             | PM Motor<br>Base Speed<br>(T2-09) |             | r/min |

**Note:** These values must be entered as part of the Auto-Tuning process.

#### ■ Motor Speed Encoder (if used)

| Items        | Description | Items      | Description |
|--------------|-------------|------------|-------------|
| Manufacturer |             | Resolution |             |
| Interface    |             |            |             |

## **E.2** Basic Parameter Settings

Use the following tables to keep records of important parameters. Have this data available when contacting Yaskawa technical support.

#### ◆ Basic Setup

| Item                        | Setting Value | Memo |
|-----------------------------|---------------|------|
| Control Mode                | A1-02 =       |      |
| Normal/Heavy Duty Selection | C6-01 =       |      |
| Frequency Reference Source  | b1-01 =       |      |
| Run Command Source          | b1-02 =       |      |

## ♦ V/f Pattern Setup

| Item                        | Setting Value | Memo |
|-----------------------------|---------------|------|
| V/f Pattern Selection       | E1-03 =       |      |
| Max. Output Frequency       | E1-04 =       |      |
| Max. Voltage                | E1-05 =       |      |
| Base Frequency              | E1-06 =       |      |
| Mid. Output Frequency       | E1-07 =       |      |
| Mid. Output Frequency Volt. | E1-08 =       |      |
| Min. Output Frequency       | E1-09 =       |      |
| Min. Output Frequency Volt. | E1-10 =       |      |

## **♦** Motor Setup

| <b>Motor Type</b> | Item                           | Setting Value | Memo |
|-------------------|--------------------------------|---------------|------|
|                   | Motor Rated Current            | E2-01 =       |      |
|                   | Motor Rated Slip               | E2-02 =       |      |
|                   | Motor No-Load Current          | E2-03 =       |      |
| Induction         | No. of Motor Poles             | E2-04 =       |      |
|                   | Line-to-Line Resistance        | E2-05 =       |      |
|                   | Motor Leakage<br>Inductance    | E2-06 =       |      |
|                   | <b>Motor Code Selection</b>    | E5-01 =       |      |
|                   | Motor Rated Power              | E5-02 =       |      |
|                   | Motor Rated Current            | E5-03 =       |      |
|                   | No. of Motor Poles             | E5-04 =       |      |
| Permanent         | <b>Motor Stator Resistance</b> | E5-05 =       |      |
| Magnet            | Motor d-Axis Inductance        | E5-06 =       |      |
|                   | Motor q-Axis Inductance        | E5-07 =       |      |
|                   | Induction Volt. Const. 1       | E5-09 =       |      |
|                   | Encoder Z-pulse Offset         | E5-11 =       |      |
|                   | Induction Volt. Const. 2       | E5-24 =       |      |

## ◆ Multi-Function Digital Inputs

| Terminal | Input Used | Setting Value and Function Name | Memo |
|----------|------------|---------------------------------|------|
| S1       |            | H1-01 =                         |      |
| S2       |            | H1-02 =                         |      |
| S3       |            | H1-03 =                         |      |
| S4       |            | H1-04 =                         |      |
| S5       |            | H1-05 =                         |      |
| S6       |            | H1-06 =                         |      |
| S7       |            | H1-07 =                         |      |
| S8       |            | H1-08 =                         |      |

## ◆ Pulse Train Input/Analog Inputs

| Terminal | Input Used | Setting Value and Function Name | Memo |
|----------|------------|---------------------------------|------|
| RP       |            | H6-01 =                         |      |
| A1       |            | H3-02 =                         |      |
| A2       |            | H3-10 =                         |      |
| A3       |            | H3-06 =                         |      |

## **♦** Multi-Function Digital Outputs

| Terminal | Output Used | Setting Value and Function Name | Memo |
|----------|-------------|---------------------------------|------|
| M1-M2    |             | H2-01 =                         |      |
| M3-M4    |             | H2-02 =                         |      |
| M5-M6    |             | H2-03 =                         |      |

## **♦** Monitor Outputs

| Terminal | Output Used | Setting Value and Function Name | Memo |
|----------|-------------|---------------------------------|------|
| FM       |             | H4-01 =                         |      |
| AM       |             | H4-04 =                         |      |
| MP       |             | H6-06 =                         |      |

Use the Verify Menu to determine which parameters have been changed from their original default settings

below the parameter number indicates that the parameter setting can be changed during run.

Parameter names in **bold face type** are included in the Setup Group of parameters, which can be set by A1-06 = 0.

| No.               | Name                                                                 | User<br>Setting |
|-------------------|----------------------------------------------------------------------|-----------------|
| A1-00             | Language Selection                                                   |                 |
| A1-01             | Access Level Selection                                               |                 |
| A1-02             | Control Method Selection                                             |                 |
| A1-03             | Initialize Parameters                                                |                 |
| A1-04             | Password                                                             |                 |
| A1-05             | Password Setting                                                     |                 |
| A1-06             | Application Preset                                                   |                 |
| A1-07             | DriveWorksEZ Function Selection                                      |                 |
| A2-01 to<br>A2-32 | User Parameters, 1 to 32                                             |                 |
| A2-33             | User Parameter Automatic Selection                                   |                 |
| b1-01             | Frequency Reference Selection 1                                      |                 |
| b1-02             | Run Command Selection 1                                              |                 |
| b1-03             | <b>Stopping Method Selection</b>                                     |                 |
| b1-04             | Reverse Operation Selection                                          |                 |
| b1-05             | Action Selection below Minimum Output Frequency                      |                 |
| b1-06             | Digital Input Reading                                                |                 |
| b1-07             | LOCAL/REMOTE Run Selection                                           |                 |
| b1-08             | Run Command Selection while in Programming Mode                      |                 |
| b1-14             | Phase Order Selection                                                |                 |
| b1-15             | Frequency Reference Selection 2                                      |                 |
| b1-16             | Run Command Selection 2                                              |                 |
| b1-17             | Run Command at Power Up                                              |                 |
| b1-21             | Start Condition Selection at Closed Loop Vector Control              |                 |
| b1-24             | Commercial Power Switching Selection                                 |                 |
| b1-25             | Commercial Power Switching Output Frequency<br>Non-coincidence Level |                 |
| b1-26             | Commercial Power Switching Output Frequency<br>Coincidence Level     |                 |
| b1-36             | Auto-Tuning Error Detection                                          |                 |
| b2-01             | DC Injection Braking Start Frequency                                 |                 |
| b2-02             | DC Injection Braking Current                                         |                 |
| b2-03             | DC Injection Braking Time at Start                                   |                 |
| b2-04             | DC Injection Braking Time at Stop                                    |                 |
| b2-08             | Magnetic Flux Compensation Value                                     |                 |
| b3-01             | Speed Search Selection at Start                                      |                 |
| b3-03             | Speed Search Deceleration Time                                       |                 |

| No.   | Name                                                                                                             | User<br>Setting |
|-------|------------------------------------------------------------------------------------------------------------------|-----------------|
| b3-04 | V/f Gain during Speed Search (Speed Estimation Type)                                                             |                 |
| b3-05 | Speed Search Delay Time                                                                                          |                 |
| b3-06 | Output Current 1 during Speed Search (Speed Estimation Type)                                                     |                 |
| b3-08 | Current Control Gain during Speed Search (Speed Estimation Type)                                                 |                 |
| b3-09 | Current Control Integral Time during Speed Search (Speed Estimation Type)                                        |                 |
| b3-10 | Speed Search Detection Compensation Gain (Speed Estimation Type)                                                 |                 |
| b3-14 | Bi-Directional Speed Search Selection (Speed Estimation Type, Speed Estimation 2 Type, Current Detection 3 Type) |                 |
| b3-17 | Speed Search Restart Current Level (Speed Estimation Type)                                                       |                 |
| b3-18 | Speed Search Restart Detection Time (Speed Estimation Type)                                                      |                 |
| b3-19 | Number of Speed Search Restarts (Speed Estimation Type)                                                          |                 |
| b3-24 | Speed Search Method Selection                                                                                    |                 |
| b3-25 | Speed Search Wait Time (Speed Estimation Type)                                                                   |                 |
| b3-27 | Start Speed Search Select                                                                                        |                 |
| b3-29 | Speed Search Induced Voltage Level                                                                               |                 |
| b3-31 | Speed Search Operation Current Level 1 (Current Detection Type 2)                                                |                 |
| b3-32 | Speed Search Operation Current Level 2 (Current Detection 2)                                                     |                 |
| b3-33 | Speed Search Selection when Run Command is Given during Uv                                                       |                 |
| b3-50 | Backspin Search Direction Judgment Time 1                                                                        |                 |
| b3-51 | Backspin Search Direction Judgment Time 2                                                                        |                 |
| b3-52 | Backspin Search Deceleration Time 1                                                                              |                 |
| b3-53 | Backspin Search Deceleration Time 2                                                                              |                 |
| b3-59 | PM Speed Search DC Injection Braking Time at Low Speed                                                           |                 |
| b4-01 | Timer Function On-Delay Time                                                                                     |                 |
| b4-02 | Timer Function Off-Delay Time                                                                                    |                 |
| b4-03 | H2-01 ON Delay Time                                                                                              |                 |
| b4-04 | H2-01 OFF Delay Time                                                                                             |                 |
| b4-05 | H2-02 ON Delay Time                                                                                              |                 |
| b4-06 | H2-03 OFF Delay Time                                                                                             |                 |
| b4-07 | H2-03 ON Delay Time                                                                                              |                 |
| b4-08 | H2-03 OFF Delay Time                                                                                             |                 |
| b5-01 | PID Function Setting                                                                                             |                 |

| No.            | Name                                           | User<br>Setting |
|----------------|------------------------------------------------|-----------------|
| b5-02<br>•◆RUN | Proportional Gain Setting (P)                  |                 |
| b5-03<br>•◆RUN | Integral Time Setting (I)                      |                 |
| b5-04<br>•◆RUN | Integral Limit Setting                         |                 |
| b5-05<br>◆ RUN | Derivative Time (D)                            |                 |
| b5-06<br>◆ RUN | PID Output Limit                               |                 |
| b5-07<br>◆RUN  | PID Offset Adjustment                          |                 |
| b5-08<br>◆RUN  | PID Primary Delay Time Constant                |                 |
| b5-09          | PID Output Level Selection                     |                 |
| b5-10<br>•◆RUN | PID Output Gain Setting                        |                 |
| b5-11          | PID Output Reverse Selection                   |                 |
| b5-12          | PID Feedback Loss Detection Selection          |                 |
| b5-13          | PID Feedback Loss Detection Level              |                 |
| b5-14          | PID Feedback Loss Detection Time               |                 |
| b5-15          | PID Sleep Function Start Level                 |                 |
| b5-16          | PID Sleep Delay Time                           |                 |
| b5-17          | PID Accel/Decel Time                           |                 |
| b5-18          | PID Setpoint Selection                         |                 |
| b5-19<br>•◆RUN | PID Setpoint Value                             |                 |
| b5-20          | PID Setpoint Scaling                           |                 |
| b5-34<br>•◆RUN | PID Output Lower Limit                         |                 |
| b5-35<br>◆ RUN | PID Input Limit                                |                 |
| b5-36          | PID Feedback High Detection Level              |                 |
| b5-37          | PID Feedback High Detection Time               |                 |
| b5-38          | PID Setpoint User Display                      |                 |
| b5-39          | PID Setpoint Display Digits                    |                 |
| b5-40          | Frequency Reference Monitor Content during PID |                 |
| b5-47          | PID Output Reverse Selection 2                 |                 |
| b6-01          | Dwell Reference at Start                       |                 |
| b6-02          | Dwell Time at Start                            |                 |
| b6-03          | Dwell Reference at Stop                        |                 |
| b6-04          | Dwell Time at Stop                             |                 |
| b7-01<br>•⊕RUN | Droop Control Gain                             |                 |
| b7-02<br>◆RUN  | Droop Control Delay Time                       |                 |

| No.            | Name                                                                 | User<br>Setting |
|----------------|----------------------------------------------------------------------|-----------------|
| b7-03          | Droop Control Limit Selection                                        |                 |
| b8-01          | Energy Saving Control Selection                                      |                 |
| b8-02<br>◆ RUN | Energy Saving Gain                                                   |                 |
| b8-03<br>◆ RUN | Energy Saving Control Filter Time Constant                           |                 |
| b8-04          | Energy Saving Coefficient Value                                      |                 |
| b8-05          | Power Detection Filter Time                                          |                 |
| b8-06          | Search Operation Voltage Limit                                       |                 |
| b8-16          | Energy Saving Parameter (Ki) for PM Motors                           |                 |
| b8-17          | Energy Saving Parameter (Kt) for PM Motors                           |                 |
| b8-27          | q-Axis Current Compensation Method when Output<br>Voltage Is Limited |                 |
| b9-01          | Zero Servo Gain                                                      |                 |
| b9-02          | Zero Servo Completion Width                                          |                 |
| C1-01          | Acceleration Time 1                                                  |                 |
| C1-02<br>•◆RUN | Deceleration Time 1                                                  |                 |
| C1-03          | Acceleration Time 2                                                  |                 |
| C1-04<br>*⊕RUN | Deceleration Time 2                                                  |                 |
| C1-05          | Acceleration Time 3 (Motor 2 Accel Time 1)                           |                 |
| C1-06<br>*◆RUN | Deceleration Time 3 (Motor 2 Decel Time 1)                           |                 |
| C1-07          | Acceleration Time 4 (Motor 2 Accel Time 2)                           |                 |
| C1-08          | Deceleration Time 4 (Motor 2 Decel Time 2)                           |                 |
| C1-09          | Fast-Stop Time                                                       |                 |
| C1-10          | Accel/Decel Time Setting Units                                       |                 |
| C1-11          | Accel/Decel Time Switching Frequency                                 |                 |
| C2-01          | S-Curve Characteristic at Accel Start                                |                 |
| C2-02          | S-Curve Characteristic at Accel End                                  |                 |
| C2-03          | S-Curve Characteristic at Decel Start                                |                 |
| C2-04          | S-Curve Characteristic at Decel End                                  |                 |
| C3-01<br>•◆RUN | Slip Compensation Gain                                               |                 |
| C3-02          | Slip Compensation Primary Delay Time                                 |                 |
| C3-03          | Slip Compensation Limit                                              |                 |
| C3-04          | Slip Compensation Selection during Regeneration                      |                 |
| C3-05          | Output Voltage Limit Operation Selection                             |                 |

| No.                        | Name                                                    | User<br>Setting |
|----------------------------|---------------------------------------------------------|-----------------|
| C3-21                      | Motor 2 Slip Compensation Gain                          |                 |
| C3-22<br>◆ RUN             | Motor 2 Slip Compensation Primary Delay Time            |                 |
| C3-23                      | Motor 2 Slip Compensation Limit                         |                 |
| C3-24                      | Motor 2 Slip Compensation Selection during Regeneration |                 |
| C4-01<br>♠ RUN             | Torque Compensation Gain                                |                 |
| C4-02<br>◆ RUN             | Torque Compensation Primary Delay Time                  |                 |
| C4-03                      | Torque Compensation at Forward Start                    |                 |
| C4-04                      | Torque Compensation at Reverse Start                    |                 |
| C4-05                      | Torque Compensation Time Constant                       |                 |
| C4-07<br>◆ RUN             | Motor 2 Torque Compensation Gain                        |                 |
| C5-01<br>◆ RUN             | ASR Proportional Gain 1                                 |                 |
| C5-02<br>⊕RUN              | ASR Integral Time 1                                     |                 |
| C5-03<br>⊕RUN              | ASR Proportional Gain 2                                 |                 |
| C5-04<br><sup>*</sup> ◆RUN | ASR Integral Time 2                                     |                 |
| C5-05                      | ASR Limit                                               |                 |
| C5-06                      | ASR Primary Delay Time Constant                         |                 |
| C5-07                      | ASR Gain Switching Frequency                            |                 |
| C5-08                      | ASR Integral Limit                                      |                 |
| C5-12                      | Integral Operation during Accel/Decel                   |                 |
| C5-17                      | Motor Inertia                                           |                 |
| C5-18                      | Load Inertia Ratio                                      |                 |
| C5-21<br>◆ RUN             | Motor 2 ASR Proportional Gain 1                         |                 |
| C5-22<br>◆ RUN             | Motor 2 ASR Integral Time 1                             |                 |
| C5-23<br>◆ RUN             | Motor 2 ASR Proportional Gain 2                         |                 |
| C5-24<br>→ RUN             | Motor 2 ASR Integral Time 2                             |                 |
| C5-25                      | Motor 2 ASR Limit                                       |                 |
| C5-26                      | Motor 2 ASR Primary Delay Time Constant                 |                 |
| C5-27                      | Motor 2 ASR Gain Switching Frequency                    |                 |
| C5-28                      | Motor 2 ASR Integral Limit                              |                 |
| C5-32                      | Integral Operation during Accel/Decel for Motor 2       |                 |
| C5-37                      | Motor 2 Inertia                                         |                 |
| C5-38                      | Motor 2 Load Inertia Ratio                              |                 |

| No.                        | Name                                            | User<br>Setting |
|----------------------------|-------------------------------------------------|-----------------|
| C6-01                      | Drive Duty Selection                            |                 |
| C6-02                      | Carrier Frequency Selection                     |                 |
| C6-03                      | Carrier Frequency Upper Limit                   |                 |
| C6-04                      | Carrier Frequency Lower Limit                   |                 |
| C6-05                      | Carrier Frequency Proportional Gain             |                 |
| C6-09                      | Carrier Frequency during Rotational Auto-Tuning |                 |
| C7-43                      | Input Voltage Offset Adjustment                 |                 |
| C7-56                      | Power Factor Control Selection                  |                 |
| C7-60                      | Output Voltage Limit Mode Selection             |                 |
| d1-01<br>◆ RUN             | Frequency Reference 1                           |                 |
| d1-02<br>◆RUN              | Frequency Reference 2                           |                 |
| d1-03<br>◆RUN              | Frequency Reference 3                           |                 |
| d1-04<br>●◆RUN             | Frequency Reference 4                           |                 |
| d1-05<br>●◆RUN             | Frequency Reference 5                           |                 |
| d1-06<br>◆ RUN             | Frequency Reference 6                           |                 |
| d1-07  ◆ RUN               | Frequency Reference 7                           |                 |
| d1-08<br>◆RUN              | Frequency Reference 8                           |                 |
| d1-09<br>◆RUN              | Frequency Reference 9                           |                 |
| d1-10<br><sup>®</sup> ◆RUN | Frequency Reference 10                          |                 |
| d1-11  → RUN               | Frequency Reference 11                          |                 |
| d1-12<br>•◆RUN             | Frequency Reference 12                          |                 |
| d1-13  ◆ RUN               | Frequency Reference 13                          |                 |
| d1-14<br>◆ RUN             | Frequency Reference 14                          |                 |
| d1-15  ◆ RUN               | Frequency Reference 15                          |                 |
| d1-16<br>◆RUN              | Frequency Reference 16                          |                 |
| d1-17  ◆ RUN               | Jog Frequency Reference                         |                 |
| d2-01                      | Frequency Reference Upper Limit                 |                 |
| d2-02                      | Frequency Reference Lower Limit                 |                 |
| d2-03                      | Master Speed Reference Lower Limit              |                 |
| d3-01                      | Jump Frequency 1                                |                 |

| No.            | Name                                                          | User<br>Setting |
|----------------|---------------------------------------------------------------|-----------------|
| d3-02          | Jump Frequency 2                                              |                 |
| d3-03          | Jump Frequency 3                                              |                 |
| d3-04          | Jump Frequency Width                                          |                 |
| d4-01          | Frequency Reference Hold Function Selection                   |                 |
| d4-03<br>◆ RUN | Frequency Reference Bias Step (Up/Down 2)                     |                 |
| d4-04<br>◆ RUN | Frequency Reference Bias Accel/Decel (Up/Down 2)              |                 |
| d4-05<br>◆RUN  | Frequency Reference Bias Operation Mode Selection (Up/Down 2) |                 |
| d4-06          | Frequency Reference Bias (Up/Down 2)                          |                 |
| d4-07  ◆ RUN   | Analog Frequency Reference Fluctuation Limit (Up/Down 2)      |                 |
| d4-08<br>◆RUN  | Frequency Reference Bias Upper Limit (Up/Down 2)              |                 |
| d4-09<br>◆RUN  | Frequency Reference Bias Lower Limit (Up/Down 2)              |                 |
| d4-10          | Up/Down Frequency Reference Limit Selection                   |                 |
| d5-01          | Torque Control Selection                                      |                 |
| d5-02          | Torque Reference Delay Time                                   |                 |
| d5-03          | Speed Limit Selection                                         |                 |
| d5-04          | Speed Limit                                                   |                 |
| d5-05          | Speed Limit Bias                                              |                 |
| d5-06          | Speed/Torque Control Switchover Time                          |                 |
| d5-08          | Unidirectional Speed Limit Bias                               |                 |
| d6-01          | Field Weakening Level                                         |                 |
| d6-02          | Field Weakening Frequency Limit                               |                 |
| d6-03          | Field Forcing Selection                                       |                 |
| d6-06          | Field Forcing Limit                                           |                 |
| d7-01<br>•⊕RUN | Offset Frequency 1                                            |                 |
| d7-02  ◆RUN    | Offset Frequency 2                                            |                 |
| d7-03<br>◆ RUN | Offset Frequency 3                                            |                 |
| E1-03          | V/f Pattern Selection                                         |                 |
| E1-04          | Maximum Output Frequency                                      |                 |
| E1-05          | Maximum Voltage                                               |                 |
| E1-06          | Base Frequency                                                |                 |
| E1-07          | Middle Output Frequency                                       |                 |
| E1-08          | Middle Output Frequency Voltage                               |                 |
| E1-09          | Minimum Output Frequency                                      |                 |
| E1-10          | Minimum Output Frequency Voltage                              |                 |
| E1-11          | Middle Output Frequency 2                                     |                 |
| E1-12          | Middle Output Frequency Voltage 2                             |                 |
| E1-13          | Base Voltage                                                  |                 |

| No.   | Name                                               | User<br>Setting |
|-------|----------------------------------------------------|-----------------|
| E1-22 | Input Voltage Setting                              |                 |
| E2-01 | Motor Rated Current                                |                 |
| E2-02 | Motor Rated Slip                                   |                 |
| E2-03 | Motor No-Load Current                              |                 |
| E2-04 | Number of Motor Poles                              |                 |
| E2-05 | Motor Line-to-Line Resistance                      |                 |
| E2-06 | Motor Leakage Inductance                           |                 |
| E2-07 | Motor Iron-Core Saturation Coefficient 1           |                 |
| E2-08 | Motor Iron-Core Saturation Coefficient 2           |                 |
| E2-09 | Motor Mechanical Loss                              |                 |
| E2-10 | Motor Iron Loss for Torque Compensation            |                 |
| E2-11 | Motor Rated Power                                  |                 |
| E3-01 | Motor 2 Control Mode Selection                     |                 |
| E3-04 | Motor 2 Maximum Output Frequency                   |                 |
| E3-05 | Motor 2 Maximum Voltage                            |                 |
| E3-06 | Motor 2 Base Frequency                             |                 |
| E3-07 | Motor 2 Mid Output Frequency                       |                 |
| E3-08 | Motor 2 Mid Output Frequency Voltage               |                 |
| E3-09 | Motor 2 Minimum Output Frequency                   |                 |
| E3-10 | Motor 2 Minimum Output Frequency Voltage           |                 |
| E3-11 | Motor 2 Mid Output Frequency 2                     |                 |
| E3-12 | Motor 2 Mid Output Frequency Voltage 2             |                 |
| E3-13 | Motor 2 Base Voltage                               |                 |
| E4-01 | Motor 2 Rated Current                              |                 |
| E4-02 | Motor 2 Rated Slip                                 |                 |
| E4-03 | Motor 2 Rated No-Load Current                      |                 |
| E4-04 | Motor 2 Motor Poles                                |                 |
| E4-05 | Motor 2 Line-to-Line Resistance                    |                 |
| E4-06 | Motor 2 Leakage Inductance                         |                 |
| E4-07 | Motor 2 Motor Iron-Core Saturation Coefficient 1   |                 |
| E4-08 | Motor 2 Motor Iron-Core Saturation Coefficient 2   |                 |
| E4-09 | Motor 2 Mechanical Loss                            |                 |
| E4-10 | Motor 2 Iron Loss                                  |                 |
| E4-11 | Motor 2 Rated Power                                |                 |
| E5-01 | Motor Code Selection (for PM Motors)               |                 |
| E5-02 | Motor Rated Power (for PM Motors)                  |                 |
| E5-03 | Motor Rated Current (for PM Motors)                |                 |
| E5-04 | Number of Motor Poles (for PM Motors)              |                 |
| E5-05 | Motor Stator Resistance (for PM Motors)            |                 |
| E5-06 | Motor d-Axis Inductance (for PM Motors)            |                 |
| E5-07 | Motor q-Axis Inductance (for PM Motors)            |                 |
| E5-09 | Motor Induction Voltage Constant 1 (for PM Motors) |                 |
| E5-11 | Encoder Z-pulse Offset (for PM Motors)             |                 |
| E5-24 | Motor Induction Voltage Constant 2 (for PM Motors) |                 |

| No.            | Name                                                                    | User<br>Setting |
|----------------|-------------------------------------------------------------------------|-----------------|
| E5-25          | Polarity Switch for Initial Polarity Estimation Timeout (for PM Motors) |                 |
| F1-01          | PG 1 Pulses Per Revolution                                              |                 |
| F1-02          | Operation Selection at PG Open Circuit (PGo)                            |                 |
| F1-03          | Operation Selection at Overspeed (oS)                                   |                 |
| F1-04          | Operation Selection at Deviation                                        |                 |
| F1-05          | PG 1 Rotation Selection                                                 |                 |
| F1-06          | PG 1 Division Rate for PG Pulse Monitor                                 |                 |
| F1-08          | Overspeed Detection Level                                               |                 |
| F1-09          | Overspeed Detection Delay Time                                          |                 |
| F1-10          | Excessive Speed Deviation Detection Level                               |                 |
| F1-11          | Excessive Speed Deviation Detection Delay Time                          |                 |
| F1-12          | PG 1 Gear Teeth 1                                                       |                 |
| F1-13          | PG 1 Gear Teeth 2                                                       |                 |
| F1-14          | PG Open-Circuit Detection Time                                          |                 |
| F1-18          | dv3 Detection Selection                                                 |                 |
| F1-19          | dv4 Detection Selection                                                 |                 |
| F1-20          | PG Option Card Disconnect Detection 1                                   |                 |
| F1-21          | PG 1 Signal Selection                                                   |                 |
| F1-30          | PG Option Card Port for Motor 2 Selection                               |                 |
| F1-31          | PG 2 Pulses Per Revolution                                              |                 |
| F1-32          | PG 2 Rotation Selection                                                 |                 |
| F1-33          | PG 2 Gear Teeth 1                                                       |                 |
| F1-34          | PG 2 Gear Teeth 2                                                       |                 |
| F1-35          | PG 2 Division Rate for PG Pulse Monitor                                 |                 |
| F1-36          | PG Option Card Disconnect Detection 2                                   |                 |
| F1-37          | PG2 Signal Selection                                                    |                 |
| F1-50          | Encoder Selection                                                       |                 |
| F1-51          | PGoH Detection Level                                                    |                 |
| F1-52          | Communication Speed of Serial Encoder Selection                         |                 |
| F2-01          | Analog Input Option Card Operation Selection                            |                 |
| F2-02<br>◆ RUN | Analog Input Option Card Gain                                           |                 |
| F2-03          | Analog Input Option Card Bias                                           |                 |
| F3-01          | Digital Input Option Card Input Selection                               |                 |
| F3-03          | Digital Input Option DI-A3 Data Length Selection                        |                 |
| F4-01          | Terminal V1 Monitor Selection                                           |                 |
| F4-02<br>♠ RUN | Terminal V1 Monitor Gain                                                |                 |
| F4-03          | Terminal V2 Monitor Selection                                           |                 |
| F4-04          | Terminal V2 Monitor Gain                                                |                 |
| F4-05          | Terminal V1 Monitor Bias                                                |                 |

| No.            | Name                                                                     | User<br>Setting |
|----------------|--------------------------------------------------------------------------|-----------------|
| F4-06<br>◆ RUN | Terminal V2 Monitor Bias                                                 |                 |
| F4-07          | Terminal V1 Signal Level                                                 |                 |
| F4-08          | Terminal V2 Signal Level                                                 |                 |
| F5-01          | Terminal M1-M2 Output Selection                                          |                 |
| F5-02          | Terminal M3-M4 Output Selection                                          |                 |
| F5-03          | Terminal P1-PC Output Selection                                          |                 |
| F5-04          | Terminal P2-PC Output Selection                                          |                 |
| F5-05          | Terminal P3-PC Output Selection                                          |                 |
| F5-06          | Terminal P4-PC Output Selection                                          |                 |
| F5-07          | Terminal P5-PC Output Selection                                          |                 |
| F5-08          | Terminal P6-PC Output Selection                                          |                 |
| F5-09          | DO-A3 Output Mode Selection                                              |                 |
| F6-01          | Communications Error Operation Selection                                 |                 |
| F6-02          | External Fault from Comm. Option Detection<br>Selection                  |                 |
| F6-03          | External Fault from Comm. Option Operation Selection                     |                 |
| F6-04          | bUS Error Detection Time                                                 |                 |
| F6-06          | Torque Reference/Torque Limit Selection from Comm. Option                |                 |
| F6-07          | Multi-Step Speed Enable/Disable Selection when NefRef/ComRef is Selected |                 |
| F6-08          | Reset Communication Parameters                                           |                 |
| F6-10          | CC-Link Node Address                                                     |                 |
| F6-11          | CC-Link Communications Speed                                             |                 |
| F6-14          | CC-Link bUS Error Auto Reset                                             |                 |
| F6-20          | MECHATROLINK Station Address                                             |                 |
| F6-21          | MECHATROLINK Frame Size                                                  |                 |
| F6-22          | MECHATROLINK Link Speed                                                  |                 |
| F6-23          | MECHATROLINK Monitor Selection (E)                                       |                 |
| F6-24          | MECHATROLINK Monitor Selection (F)                                       |                 |
| F6-25          | Operation Selection at MECHATROLINK Watchdog<br>Timer Error (E5)         |                 |
| F6-26          | MECHATROLINK bUS Errors Detected                                         |                 |
| F6-30          | PROFIBUS-DP Node Address                                                 |                 |
| F6-31          | PROFIBUS-DP Clear Mode Selection                                         |                 |
| F6-32          | PROFIBUS-DP Data Format Selection                                        |                 |
| F6-35          | CANopen Node ID Selection                                                |                 |
| F6-36          | CANopen Communication Speed                                              |                 |
| F6-45          | BACnet Node Address                                                      |                 |
| F6-46          | BACnet Baud Rate                                                         |                 |
| F6-47          | Rx to Tx Wait Time                                                       |                 |
| F6-48          | BACnet Device Object Identifier 0                                        |                 |
| F6-49          | BACnet Device Object Identifier 1                                        |                 |
| F6-50          | DeviceNet MAC Address                                                    |                 |
| F6-51          | DeviceNet Communication Speed                                            |                 |

| No.               | Name                                                        | User<br>Setting |
|-------------------|-------------------------------------------------------------|-----------------|
| F6-52             | DeviceNet PCA Setting                                       |                 |
| F6-53             | DeviceNet PPA Setting                                       |                 |
| F6-54             | DeviceNet Idle Mode Fault Detection                         |                 |
| F6-55             | DeviceNet Baud Rate Monitor                                 |                 |
| F6-56             | DeviceNet Speed Scaling                                     |                 |
| F6-57             | DeviceNet Current Scaling                                   |                 |
| F6-58             | DeviceNet Torque Scaling                                    |                 |
| F6-59             | DeviceNet Power Scaling                                     |                 |
| F6-60             | DeviceNet Voltage Scaling                                   |                 |
| F6-61             | DeviceNet Time Scaling                                      |                 |
| F6-62             | DeviceNet Heartbeat Interval                                |                 |
| F6-63             | DeviceNet Network MAC ID                                    |                 |
| F6-64 to<br>F6-71 | Reserved                                                    | •               |
| F6-72             | PowerLink Node Address                                      |                 |
| F7-01             | IP Address 1                                                |                 |
| F7-02             | IP Address 2                                                |                 |
| F7-03             | IP Address 3                                                |                 |
| F7-04             | IP Address 4                                                |                 |
| F7-05             | Subnet Mask 1                                               |                 |
| F7-06             | Subnet Mask 2                                               |                 |
| F7-07             | Subnet Mask 3                                               |                 |
| F7-08             | Subnet Mask 4                                               |                 |
| F7-09             | Gateway Address 1                                           |                 |
| F7-10             | Gateway Address 2                                           |                 |
| F7-11             | Gateway Address 3                                           |                 |
| F7-12             | Gateway Address 4                                           |                 |
| F7-13             | Address Mode at Startup                                     |                 |
| F7-14             | Duplex Mode Selection                                       |                 |
| F7-15             | Communication Speed Selection                               |                 |
| F7-16             | Communication Loss Timeout                                  |                 |
| F7-17             | EtherNet/IP Speed Scaling Factor                            |                 |
| F7-18             | EtherNet/IP Current Scaling Factor                          |                 |
| F7-19             | EtherNet/IP Torque Scaling Factor                           |                 |
| F7-20             | EtherNet/IP Power Scaling Factor                            |                 |
| F7-21             | EtherNet/IP Voltage Scaling Factor                          |                 |
| F7-22             | EtherNet/IP Time Scaling                                    |                 |
| F7-23 to<br>F7-32 | Dynamic Output Assembly Parameters                          |                 |
| F7-33 to<br>F7-42 | Dynamic Input Assembly Parameters                           |                 |
| H1-01             | Multi-Function Digital Input Terminal S1 Function Selection |                 |
| H1-02             | Multi-Function Digital Input Terminal S2 Function Selection |                 |
| H1-03             | Multi-Function Digital Input Terminal S3 Function Selection |                 |

| No.                        | Name                                                               | User<br>Setting |
|----------------------------|--------------------------------------------------------------------|-----------------|
| H1-04                      | Multi-Function Digital Input Terminal S4 Function<br>Selection     |                 |
| H1-05                      | Multi-Function Digital Input Terminal S5 Function<br>Selection     |                 |
| H1-06                      | Multi-Function Digital Input Terminal S6 Function Selection        |                 |
| H1-07                      | Multi-Function Digital Input Terminal S7 Function Selection        |                 |
| H1-08                      | Multi-Function Digital Input Terminal S8 Function Selection        |                 |
| H2-01                      | Multi-Function Contact Output (terminal M1-M2)                     |                 |
| H2-02                      | Multi-Function Contact Output 2 (terminal M3-M4)                   |                 |
| H2-03                      | Multi-Function Contact Output 3 (terminal M5-M6)                   |                 |
| H2-06                      | Power Consumption Output Unit Selection                            |                 |
| H2-07                      | MEMOBUS Register 1 Address Select                                  |                 |
| H2-08                      | MEMOBUS Register 1 Bit Select                                      |                 |
| H2-09                      | MEMOBUS Register 2 Address Select                                  |                 |
| H2-10                      | MEMOBUS Register 2 Bit Select                                      |                 |
| H3-01                      | Terminal A1 Signal Level Selection                                 |                 |
| H3-02                      | Terminal A1 Function Selection                                     |                 |
| H3-03<br>•⊕RUN             | Terminal A1 Gain Setting                                           |                 |
| H3-04<br>♣ RUN             | Terminal A1 Bias Setting                                           |                 |
| H3-05                      | Terminal A3 Signal Level Selection                                 |                 |
| H3-06                      | Terminal A3 Function Selection                                     |                 |
| H3-07<br><sup>®</sup> ◆RUN | Terminal A3 Gain Setting                                           |                 |
| H3-08<br><sup>®</sup> ◆RUN | Terminal A3 Bias Setting                                           |                 |
| H3-09                      | Terminal A2 Signal Level Selection                                 |                 |
| H3-10                      | Terminal A2 Signal Evvel Selection  Terminal A2 Function Selection |                 |
| H3-11<br><sup>*</sup> ◆RUN | Terminal A2 Gain Setting                                           |                 |
| H3-12<br>•◆RUN             | Terminal A2 Bias Setting                                           |                 |
| Н3-13                      | Analog Input Filter Time Constant                                  |                 |
| H3-14                      | Analog Input Terminal Enable Selection                             |                 |
| H3-16                      | Terminal A1 Offset                                                 |                 |
| H3-17                      | Terminal A2 Offset                                                 |                 |
| H3-18                      | Terminal A3 Offset                                                 |                 |
| H4-01                      | Multi-Function Analog Output Terminal FM Monitor Selection         |                 |
| H4-02<br>◆ RUN             | Multi-Function Analog Output Terminal FM Gain                      |                 |
| H4-03<br>◆RUN              | Multi-Function Analog Output Terminal FM Bias                      |                 |

| No.            | Name                                                               | User<br>Setting |
|----------------|--------------------------------------------------------------------|-----------------|
| H4-04          | Multi-Function Analog Output Terminal AM Monitor Selection         |                 |
| H4-05<br>◆ RUN | Multi-Function Analog Output Terminal AM Gain                      |                 |
| H4-06<br>◆ RUN | Multi-Function Analog Output Terminal AM Bias                      |                 |
| H4-07          | Multi-Function Analog Output Terminal FM Signal<br>Level Selection |                 |
| H4-08          | Multi-Function Analog Output Terminal AM Signal<br>Level Selection |                 |
| H5-01          | Drive Node Address                                                 |                 |
| H5-02          | Communication Speed Selection                                      |                 |
| H5-03          | Communication Parity Selection                                     |                 |
| H5-04          | Stopping Method After Communication Error (CE)                     |                 |
| H5-05          | Communication Fault Detection Selection                            |                 |
| H5-06          | Drive Transmit Wait Time                                           |                 |
| H5-07          | RTS Control Selection                                              |                 |
| H5-09          | CE Detection Time                                                  |                 |
| H5-10          | Unit Selection for MEMOBUS/Modbus Register 0025H                   |                 |
| H5-11          | Communications ENTER Function Selection                            |                 |
| H5-12          | Run Command Method Selection                                       |                 |
| H5-17          | Operation Selection when Unable to Write into EEPROM               |                 |
| H5-18          | Filter Time Constant for Motor Speed Monitoring                    |                 |
| H6-01          | Pulse Train Input Terminal RP Function Selection                   |                 |
| H6-02<br>◆RUN  | Pulse Train Input Scaling                                          |                 |
| H6-03          | Pulse Train Input Gain                                             |                 |
| H6-04<br>◆ RUN | Pulse Train Input Bias                                             |                 |
| H6-05<br>◆RUN  | Pulse Train Input Filter Time                                      |                 |
| H6-06<br>◆ RUN | Pulse Train Monitor Selection                                      |                 |
| H6-07          | Pulse Train Monitor Scaling                                        |                 |
| H6-08          | Pulse Train Input Minimum Frequency                                |                 |
| L1-01          | <b>Motor Overload Protection Selection</b>                         |                 |
| L1-02          | Motor Overload Protection Time                                     |                 |
| L1-03          | Motor Overheat Alarm Operation Selection (PTC input)               |                 |
| L1-04          | Motor Overheat Fault Operation Selection (PTC input)               |                 |
| L1-05          | Motor Temperature Input Filter Time (PTC input)                    |                 |
| L1-08          | oL1 Current Level                                                  |                 |
| L1-09          | oL1 Current Level for Motor 2                                      |                 |

| No.   | Name                                                                | User<br>Setting |
|-------|---------------------------------------------------------------------|-----------------|
| L1-13 | Continuous Electrothermal Operation Selection                       |                 |
| L2-01 | Momentary Power Loss Operation Selection                            |                 |
| L2-02 | Momentary Power Loss Ride-Thru Time                                 |                 |
| L2-03 | Momentary Power Loss Minimum Baseblock Time                         |                 |
| L2-04 | Momentary Power Loss Voltage Recovery Ramp<br>Time                  |                 |
| L2-07 | KEB Acceleration Time                                               |                 |
| L2-13 | Input Power Frequency Fault Detection Gain                          |                 |
| L2-21 | Low Input Voltage Detection Level                                   |                 |
| L2-27 | Input Power Frequency Fault Detection Width                         |                 |
| L3-01 | Stall Prevention Selection during Acceleration                      |                 |
| L3-02 | Stall Prevention Level during Acceleration                          |                 |
| L3-03 | Stall Prevention Limit during Acceleration                          |                 |
| L3-04 | Stall Prevention Selection during Deceleration                      |                 |
| L3-05 | Stall Prevention Selection during Run                               |                 |
| L3-06 | Stall Prevention Level during Run                                   |                 |
| L3-14 | Stall Prevention Level during Deceleration                          |                 |
| L3-22 | Deceleration Time at Stall Prevention during<br>Acceleration        |                 |
| L3-23 | Automatic Reduction Selection for Stall Prevention during Run       |                 |
| L3-27 | Stall Prevention Detection Time                                     |                 |
| L3-36 | Vibration Suppression Gain during Acceleration (with Current Limit) |                 |
| L3-39 | Current-limited Integral Time Constant during Acceleration          |                 |
| L3-40 | Current-limited Maximum S-curve Selection during Acceleration       |                 |
| L3-41 | Vibration Suppression Gain during Deceleration (with Current Limit) |                 |
| L3-44 | Current-limited Integral Time Constant during Deceleration          |                 |
| L3-45 | Current-limited Maximum S-curve Selection during Deceleration       |                 |
| L4-01 | Speed Agree Detection Level                                         |                 |
| L4-02 | Speed Agree Detection Width                                         |                 |
| L4-03 | Speed Agree Detection Level (+/-)                                   |                 |
| L4-04 | Speed Agree Detection Width (+/-)                                   |                 |
| L4-05 | Frequency Reference Loss Detection Selection                        |                 |
| L4-06 | Frequency Reference at Reference Loss                               |                 |
| L4-07 | Speed Agree Detection Selection                                     |                 |
| L5-01 | Number of Auto Restart Attempts                                     |                 |
| L5-02 | Auto Restart Fault Output Operation Selection                       |                 |
| L5-04 | Fault Reset Interval Time                                           |                 |
| L5-05 | Fault Reset Operation Selection                                     |                 |
| L6-01 | Torque Detection Selection 1                                        |                 |
| L6-02 | Torque Detection Level 1                                            |                 |
| L6-03 | Torque Detection Time 1                                             |                 |

| No.   | Name                                                         | User<br>Setting |
|-------|--------------------------------------------------------------|-----------------|
| L6-04 | Torque Detection Selection 2                                 |                 |
| L6-05 | Torque Detection Level 2                                     |                 |
| L6-06 | Torque Detection Time 2                                      |                 |
| L6-08 | Mechanical Weakening Detection Operation                     |                 |
| L6-09 | Mechanical Weakening Detection Speed Level                   |                 |
| L6-10 | Mechanical Weakening Detection Time                          |                 |
| L6-11 | Mechanical Weakening Detection Start Time                    |                 |
| L7-01 | Forward Torque Limit                                         |                 |
| L7-02 | Reverse Torque Limit                                         |                 |
| L7-03 | Forward Regenerative Torque Limit                            |                 |
| L7-04 | Reverse Regenerative Torque Limit                            |                 |
| L7-06 | Torque Limit Integral Time Constant                          |                 |
| L7-07 | Torque Limit Control Method Selection during Accel/<br>Decel |                 |
| L7-16 | Torque Limit Process at Start                                |                 |
| L8-02 | Overheat Alarm Level                                         |                 |
| L8-03 | Overheat Pre-Alarm Operation Selection                       |                 |
| L8-07 | Output Phase Loss Protection                                 |                 |
| L8-09 | Output Ground Fault Detection Selection                      |                 |
| L8-10 | Heatsink Cooling Fan Operation Selection                     |                 |
| L8-11 | Heatsink Cooling Fan Off Delay Time                          |                 |
| L8-12 | Ambient Temperature Setting                                  |                 |
| L8-15 | oL2 Characteristics Selection at Low Speeds                  |                 |
| L8-18 | Software Current Limit Selection                             |                 |
| L8-19 | Frequency Reduction Rate during Overheat<br>Pre-Alarm        |                 |
| L8-27 | Overcurrent Detection Gain                                   |                 |
| L8-29 | Current Unbalance Detection (LF2)                            |                 |
| L8-32 | Cooling Fan Failure Selection                                |                 |
| L8-35 | Installation Method Selection                                |                 |
| L8-38 | Carrier Frequency Reduction Selection                        |                 |
| L8-40 | Carrier Frequency Reduction Off-Delay Time                   |                 |
| L8-41 | High Current Alarm Selection                                 |                 |
| L8-93 | LSo Detection Time at Low Speed                              |                 |
| L8-94 | LSo Detection Level at Low Speed                             |                 |
| L8-95 | Average LSo Frequency at Low Speed                           |                 |
| L9-03 | Carrier Frequency Reduction Level Selection                  |                 |
| L9-12 | SoH Alarm Selection during bb                                |                 |
| n1-01 | Hunting Prevention Selection                                 |                 |
| n1-02 | Hunting Prevention Gain Setting                              |                 |
| n1-03 | Hunting Prevention Time Constant                             |                 |
| n1-05 | Hunting Prevention Gain while in Reverse                     |                 |
| n1-09 | Vibration Suppression Level                                  |                 |
| n1-10 | Suppression Frequency                                        |                 |
| n1-11 | Suppression Auxiliary Frequency                              |                 |

| No.           | Name                                                             | User<br>Setting |
|---------------|------------------------------------------------------------------|-----------------|
| n1-12         | Vibration Suppression Time Constant                              |                 |
| n2-01         | Speed Feedback Detection Control (AFR) Gain                      |                 |
| n2-02         | Speed Feedback Detection Control (AFR) Time<br>Constant 1        |                 |
| n3-13         | Overexcitation Deceleration Gain                                 |                 |
| n5-01         | Feed Forward Control Selection                                   |                 |
| n5-02         | Motor Acceleration Time                                          |                 |
| n5-03         | Feed Forward Control Gain                                        |                 |
| n6-01         | Online Tuning Selection                                          |                 |
| n6-05         | Online Tuning Gain                                               |                 |
| n8-01         | Initial Rotor Position Estimation Current                        |                 |
| n8-02         | Pole Attraction Current                                          |                 |
| n8-03         | Current Startup Time                                             |                 |
| n8-04         | Pole Attraction Time                                             |                 |
| n8-11         | Induction Voltage Estimation Gain 2                              |                 |
| n8-14         | Polarity Compensation Gain 3                                     |                 |
| n8-15         | Polarity Compensation Gain 4                                     |                 |
| n8-21         | Motor Ke Gain                                                    |                 |
| n8-35         | Initial Rotor Position Detection Selection                       |                 |
| n8-36         | High Frequency Injection Level                                   |                 |
| n8-37         | High Frequency Injection Amplitude                               |                 |
| n8-39         | Low Pass Filter Cutoff Frequency for High Frequency Injection    |                 |
| n8-41         | HFI Overlap Pole Detection Pgain                                 |                 |
| n8-45         | Speed Feedback Detection Control Gain (for PM Motors)            |                 |
| n8-47         | Pull-In Current Compensation Time Constant (for PM Motors)       |                 |
| n8-48         | Pull-In Current (for PM Motors)                                  |                 |
| n8-49         | d-Axis Current for High Efficiency Control (for PM Motors)       |                 |
| n8-51         | Acceleration/Deceleration Pull-In Current (for PM Motors)        |                 |
| n8-54         | Voltage Error Compensation Time Constant                         |                 |
| n8-55         | Load Inertia                                                     |                 |
| n8-57         | High Frequency Injection                                         |                 |
| n8-62         | Output Voltage Limit (for PM Motors)                             |                 |
| n8-63         | Output Voltage Limit Proportional Gain (for PM Motors)           |                 |
| n8-64         | Output Voltage Limit Integral Time (for PM Motors)               |                 |
| n8-66         | Output Voltage Limit Output Filter Time Constant (for PM Motors) |                 |
| n8-69         | Speed Calculation Gain                                           |                 |
| n8-72         | Speed Estimation Method Selection                                |                 |
| n8-84         | Initial Polarity Estimation Timeout Current                      |                 |
| 01-01<br>◆RUN | Drive Mode Unit Monitor Selection                                |                 |

| No.               | Name                                                      | User<br>Setting |
|-------------------|-----------------------------------------------------------|-----------------|
| 01-02<br>◆ RUN    | User Monitor Selection After Power Up                     |                 |
| 01-03             | Digital Operator Display Selection                        |                 |
| 01-04             | V/f Pattern Display Unit                                  |                 |
| 01-05<br>◆RUN     | LCD Contrast Control                                      |                 |
| o1-10             | User-Set Display Units Maximum Value                      |                 |
| o1-11             | User-Set Display Units Decimal Display                    |                 |
| o2-01             | LO/RE Key Function Selection                              |                 |
| 02-02             | STOP Key Function Selection                               |                 |
| 02-03             | User Parameter Default Value                              |                 |
| 02-04             | Drive Model Selection                                     |                 |
| 02-05             | Frequency Reference Setting Method Selection              |                 |
| o2-06             | Operation Selection when Digital Operator is Disconnected |                 |
| o2-07             | Motor Direction at Power Up when Using Operator           |                 |
| o3-01             | Copy Function Selection                                   |                 |
| 03-02             | Copy Allowed Selection                                    |                 |
| o4-01             | Cumulative Operation Time Setting                         |                 |
| 04-02             | Cumulative Operation Time Selection                       |                 |
| 04-03             | Cooling Fan Maintenance Operation Time Setting            |                 |
| 04-05             | Capacitor Maintenance Setting                             |                 |
| 04-07             | DC Bus Pre-charge Relay Maintenance Setting               |                 |
| 04-11             | U2, U3 Initialize Selection                               |                 |
| 04-12             | kWh Monitor Initialization                                |                 |
| o4-13             | Number of Run Commands Counter Initialization             |                 |
| o4-19             | Power Unit Price                                          |                 |
| q1-01 to<br>q6-07 | DriveWorksEZ Parameters                                   |                 |
| r1-01 to<br>r1-40 | DWEZ Connection Parameter 1 to 20 (upper/lower)           |                 |
| T1-00             | Motor 1/Motor 2 Selection                                 |                 |
| T1-01             | Auto-Tuning Mode Selection                                |                 |

| No.   | Name                                                   | User<br>Setting |
|-------|--------------------------------------------------------|-----------------|
| T1-02 | Motor Rated Power                                      |                 |
| T1-03 | Motor Rated Voltage                                    |                 |
| T1-04 | Motor Rated Current                                    |                 |
| T1-05 | Motor Base Frequency                                   |                 |
| T1-06 | Number of Motor Poles                                  |                 |
| T1-07 | Motor Base Speed                                       |                 |
| T1-08 | PG Number of Pulses Per Revolution                     |                 |
| T1-09 | Motor No-Load Current (Stationary Auto-Tuning)         |                 |
| T1-10 | Motor Rated Slip (Stationary Auto-Tuning)              |                 |
| T1-11 | Motor Iron Loss                                        |                 |
| T2-01 | PM Motor Auto-Tuning Mode Selection                    |                 |
| T2-02 | PM Motor Code Selection                                |                 |
| T2-03 | PM Motor Type                                          |                 |
| T2-04 | PM Motor Rated Power                                   |                 |
| T2-05 | PM Motor Rated Voltage                                 |                 |
| T2-06 | PM Motor Rated Current                                 |                 |
| T2-07 | PM Motor Base Frequency                                |                 |
| T2-08 | Number of PM Motor Poles                               |                 |
| T2-09 | PM Motor Base Speed                                    |                 |
| T2-10 | PM Motor Stator Resistance                             |                 |
| T2-11 | PM Motor d-Axis Inductance                             |                 |
| T2-12 | PM Motor q-Axis Inductance                             |                 |
| T2-13 | Induced Voltage Constant Unit Selection                |                 |
| T2-14 | PM Motor Induced Voltage Constant                      |                 |
| T2-15 | Pull-In Current Level for PM Motor Tuning              |                 |
| T2-16 | PG Number of Pulses Per Revolution for PM Motor Tuning |                 |
| T2-17 | Encoder Z Pulse Offset                                 |                 |
| T3-01 | Test Signal Frequency                                  |                 |
| T3-02 | Test Signal Amplitude                                  |                 |
| T3-03 | Motor Inertia                                          |                 |
|       |                                                        |                 |

System Response Frequency

T3-04

| +                                                         |     | Analog Input Option Card Bias                      | 275 |
|-----------------------------------------------------------|-----|----------------------------------------------------|-----|
| +V, -V                                                    | 112 | Analog Input Option Card Gain                      | 275 |
|                                                           |     | Analog Input Option Card Operation Selection       |     |
| Numerics                                                  |     | Analog Inputs / Pulse Train Input                  | 112 |
| 24 V Control Power Supply Unit Specifications             |     | Analog Input Terminal Enable Selection             |     |
| 2-Wire Initialization                                     |     |                                                    |     |
| 3-Wire Initialization                                     | 187 | AO-A3                                              | 470 |
| 3-Wire Sequence                                           | 285 | AO-A3 Settings                                     | 276 |
| 5th Most Recent Fault.                                    | 590 | Aov                                                | 377 |
| A                                                         |     | Application Presets                                |     |
| A: Initialization Parameters                              | 504 | Application Selection                              |     |
| A1                                                        | 112 | ASR                                                |     |
| A1-02 (Motor 1 Control Mode) Dependent Parameters         |     | ASR Gain Auto-Tuning.                              |     |
| A1-03                                                     |     | ASR Gain Switching Frequency                       |     |
| A1-04, A1-05: Password and Password Setting               |     | ASR Integral Limit                                 |     |
| A2                                                        |     | ASR Integral Time.                                 |     |
| A3                                                        |     | ASR Limit                                          |     |
| AC                                                        |     | ASR Primary Delay Time Constant                    |     |
| Accel/Decel Time.                                         |     | ASR Proportional Gain                              |     |
| Accel/Decel Time Setting Units                            |     | ASR Response Frequency                             |     |
| Accel/Decel Time Switching Frequency                      |     | Attaching the Protective Cover                     |     |
| Acceleration/Deceleration Pull-In Current (for PM Motors) |     | Attachment for External Heatsink                   |     |
| Acceleration Error                                        |     | Automatic Reduction for Stall Prevention during Ru |     |
| Acceleration Time                                         |     | Automatic Speed Regulator                          |     |
| Acceleration Time Pull-In Current (for PM Motors)         |     | Auto Restart Fault Output Operation Selection      |     |
| Access Level Selection.                                   |     | Auto Restart Operation Selection                   |     |
| Action Selection below Minimum Output Frequency           |     | Auto-Tuning                                        |     |
| Adjusted Slip Calculation Error                           |     | Auto-Tuning Codes                                  |     |
| Adjusting the ASR Parameters.                             |     | Auto-Tuning Error Detection                        |     |
| AEr                                                       |     | Auto-Tuning Errors.                                |     |
| AI-A3                                                     |     | Auto-Tuning Fault Codes                            | 168 |
| AI-A3 Settings                                            |     | Auto-Tuning Fault Detection.                       | 408 |
| Air Compressor Application                                |     | Auto-Tuning Fault Solutions                        |     |
| Alarm Outputs for Maintenance Monitors                    |     | Auto-Tuning for Induction Motors                   |     |
| Alarm Register 007FH Contents                             |     | Auto-Tuning for Permanent Magnet Motors            |     |
| Alarms and Errors                                         |     | Auto-Tuning Input Data                             |     |
| ALM LED Light                                             |     | Auto-Tuning Interruption and Fault Codes           |     |
| Altitude                                                  |     | Auto-Tuning Mode Selection                         |     |
| AM                                                        | -   | AUv                                                | 377 |
| Ambient Temperature                                       |     | В                                                  |     |
| Ambient Temperature and Installation Method Derating      |     | Backing Up Parameter Values                        | 190 |
| Ambient Temperature Setting                               |     | Backspin Search Direction Judgment Time 1/2        |     |
| Analog Frequency Reference Fluctuation Limit              |     | Baseblock                                          |     |
| Analog Frequency Reference Sample/Hold                    |     | Base Frequency                                     |     |
| Analog Input Card Settings                                |     |                                                    |     |
| Analog Input Filter Time Constant                         |     |                                                    |     |
| ,                                                         |     |                                                    |     |

| bb                                                 | 394                                   | Connecting a Surge Absorber                        | 485      |
|----------------------------------------------------|---------------------------------------|----------------------------------------------------|----------|
| Bi-Directional Speed Search Selection              | 208                                   | Connecting Peripheral Devices                      |          |
| Bottom cover                                       | 49, 50, 51, 52, 53                    | Connecting to a PC (USB)                           | 123      |
| Braking Torque                                     | 494                                   | Connection of a Motor PTC                          | 319      |
| Broadcast Messages                                 | 656                                   | Continuous Electrothermal Operation Selection      | 321, 562 |
| bUS                                                | 377, 394                              | Control Circuit DC Voltage at Previous Fault       | 589      |
|                                                    |                                       | Control Circuit Error                              |          |
|                                                    |                                       | Control Circuit Input Terminals                    |          |
| bUSy                                               |                                       |                                                    |          |
| •                                                  |                                       | Control Circuit Overvoltage                        |          |
| C                                                  |                                       | Control Circuit Terminal Block Functions           |          |
| Cable Length Between Drive and Motor               | 109                                   | Control Circuit Undervoltage Fault                 |          |
| CALL                                               | 395                                   | Control Circuit Voltage                            |          |
| Cannot Reset                                       | 396                                   | Control Fault                                      |          |
| CANopen Communication Speed                        | 281                                   | Control Method Selection                           |          |
| CANopen Node ID Selection                          | 281                                   | Control Method Selection Error                     |          |
| CANopen Parameters                                 | 281                                   | Control Mode                                       |          |
| Capacitor Maintenance                              | 591                                   |                                                    |          |
| Capacitor Maintenance Setting                      |                                       | Control Mode Dependent Parameter Default Values    |          |
| Capacitor Maintenance Time                         | · ·                                   | Control Mode Mismatch                              |          |
| Carrier Frequency and Current Derating             |                                       | Control Modes and Features                         |          |
| Carrier Frequency Derating                         |                                       | Control Mode Selection.                            |          |
| Carrier Frequency during Rotational Auto-Tuning    |                                       | Control Power Supply Voltage Fault                 |          |
| Carrier Frequency Lower Limit                      |                                       | Conveyor Application                               |          |
| Carrier Frequency Proportional Gain                |                                       | Cooling fan                                        |          |
| Carrier Frequency Proportional Gain                |                                       | Cooling Fan Maintenance                            |          |
| * *                                                |                                       | Cooling Fan Maintenance Setting (Operation Time)   |          |
| Carrier Frequency Reduction Off-Delay Time         |                                       | Cooling Fan Maintenance Time                       | 398      |
| Carrier Frequency Reduction Selection              |                                       | Cooling Fan Operation Time                         |          |
| Carrier Frequency Selection                        |                                       | Cooling Fan Operation Time Setting.                | 357      |
| Carrier Frequency Setting Error                    |                                       | CoPy                                               | 414      |
| Carrier Frequency Upper Limit                      |                                       | Copy Allowed Selection                             | 357      |
| CC-Link Communication Speed                        |                                       | Copy Function                                      | 181      |
| CC-Link Node Address                               |                                       | Copy Function Errors                               | 372      |
| CC-Link Parameters                                 |                                       | Copy Function Selection.                           | 356      |
| CE                                                 | · · · · · · · · · · · · · · · · · · · | Copy Unit Error                                    |          |
| CE Detection Time                                  |                                       | CopyUnitManager                                    |          |
| CE Low Voltage Directive Compliance                |                                       | CPEr.                                              |          |
| CF                                                 |                                       | CPF25                                              |          |
| Changing Parameter Settings or Values              |                                       | CPyE                                               |          |
| Closed-Loop Crimp Terminal Size                    | 685                                   | CRC-16                                             |          |
| Closed Loop Vector control                         | 33                                    | CRC-16 Checksum Calculation Example                |          |
| Closed Loop Vector Control for PM Motors           | 33                                    | CrST                                               |          |
| CoF                                                | 378                                   | CSEr                                               |          |
| Comm. option card connection error (CN5-A)         | 385                                   | Cumulative Operation Time                          |          |
| Command Messages from Master to Drive              | 638                                   | Cumulative Operation Time at 5th Most Recent Fault |          |
| Commercial Power Supply Operation Cancellation Lev |                                       |                                                    |          |
|                                                    | -                                     | Cumulative Operation Time at Most Recent Fault     |          |
| Commercial Power Switching Selection               | 201                                   | Cumulative Operation Time at Previous Fault        |          |
| Communication Error                                |                                       | Cumulative Operation Time Selection                |          |
| Communication Fault Detection Selection            |                                       | Cumulative Operation Time Setting                  |          |
| Communication Option Card                          |                                       | Current Alarm                                      |          |
| Communication Option Card Reference                |                                       | Current Detection Error                            |          |
| Communication Parity Selection                     |                                       | Current Fault                                      |          |
| Communications Enter Function Selection            |                                       | Current Offset Fault                               |          |
| Communications Error Operation Selection           |                                       | Current Startup Time                               |          |
| Communication Speed of Serial Encoder Selection    |                                       | Current Unbalance Detection (LF2)                  |          |
| Communication Speed Selection                      |                                       | Cyc                                                |          |
| Communications Timing                              |                                       | Cyclic Redundancy Check.                           | 639      |
| Comparing Parameter Settings.                      |                                       | D                                                  |          |
|                                                    |                                       | Daily Inspection.                                  | 420      |
| Component rames                                    | 43                                    | Daily Inspection.                                  | 430      |

| Damping Resistor Overheat                                   | 379      | Drive Cooling Fans                                | 382            |
|-------------------------------------------------------------|----------|---------------------------------------------------|----------------|
| d-Axis ACR Output                                           | 594      | Drive cover                                       | 45, 46, 51     |
| d-Axis Current for High Efficiency Control (for PM Motors). | 349, 574 | Drive cover 1                                     | 47, 48, 52, 53 |
| DC Bus Pre-Charge Relay Maintenance Setting                 |          |                                                   |                |
| DC Injection Braking Current.                               | 203      | Drive cover 3                                     | 48             |
| DC Injection Braking Input Timing Diagram                   | 292      | Drive Derating Data                               | 498            |
| DC Injection Braking Start Frequency                        | 195      | Drive Disabled                                    | 396            |
| DC Injection Braking Time at Start                          | 196      | Drive Duty Mode Selection                         | 239            |
| DC Injection Braking Time at Stop                           | 203      | Drive Mode                                        | 146, 147       |
| D Control                                                   | 213      | Drive Model Mismatch                              | 414            |
| Deceleration Time                                           | 228      | Drive Models and Types                            | 69             |
| Deceleration Time at Stall Prevention during Acceleration   | 324, 564 | Drive Model Selection                             | 355            |
| Defaults by Drive Model Selection (o2-04) and ND/HD (C6-04) | 01) 168  | Drive Mode Unit Monitor Selection                 | 353, 577       |
| Derivative Time (D)                                         | 216      | Drive Operation Status at Previous Fault          | 589            |
| DeviceNet Baud Rate Monitor                                 | 282      | Drive Overload                                    | 389            |
| DeviceNet Communication Speed.                              | 282      | Drive Protection 2                                | 340            |
| DeviceNet Heartbeat Interval                                | 283      | Drive Replacement                                 | 464            |
| DeviceNet Idle Mode Fault Detection                         | 282      | Drive Slave Address                               | 633            |
| DeviceNet MAC Address                                       | 281      | Drive Specifications                              | 494            |
| DeviceNet Network MAC ID                                    | 283      | Drive Status                                      | 587            |
| DeviceNet Parameters.                                       | 281      | Drive Transmit Wait Time                          | 634            |
| DeviceNet PCA Setting                                       | 282      | Drive Watt Loss Data                              | 496            |
| DeviceNet PPA Setting                                       | 282      | DriveWizard Industrial                            | 181, 471       |
| DeviceNet Scaling Factors                                   |          |                                                   |                |
| dFPS                                                        |          |                                                   |                |
| DI-A3                                                       |          |                                                   |                |
| DI-A3 Settings                                              |          |                                                   |                |
| Diagnosing and Resetting Faults                             |          |                                                   |                |
| Digital Input Card Settings                                 |          |                                                   |                |
| Digital Input Option Card Input Selection                   |          |                                                   |                |
| Digital Input Option DI-A3 Data Length Selection            |          |                                                   |                |
| Digital Input Reading                                       |          |                                                   |                |
| Digital Operator                                            |          | •                                                 |                |
| Digital operator                                            |          | *                                                 |                |
| Digital Operator Dimensions.                                |          |                                                   |                |
| Digital Operator Display Selection.                         |          |                                                   |                |
| Digital Operator Installation Methods and Required Tools    |          |                                                   |                |
| Digital Operator Keypad Functions                           |          |                                                   |                |
| Digital Operator Keys and Displays                          |          |                                                   |                |
| Digital Operator Menu and Screen Structure                  |          |                                                   |                |
| Digital Operator Remote Installation                        |          |                                                   |                |
| digital operator remote usage                               |          |                                                   |                |
| Digital Output Card Settings                                |          |                                                   |                |
| Digital Output Option Card Terminal Function Selection      |          |                                                   |                |
| Dimensions for IP00 Enclosure: 200 V Class.                 |          |                                                   |                |
| Dimensions for IP00 Enclosure: 400 V Class                  |          |                                                   |                |
| Dimensions for IP00 Enclosure: Harmonic Filter Module       |          |                                                   |                |
| Dimensions for IP20/UL Type 1 Enclosure: 200 V Class        |          |                                                   |                |
| Dimensions for IP20/UL Type 1 Enclosure: 400 V Class        |          |                                                   |                |
| DIP Switch S1 Settings                                      |          |                                                   |                |
| DIP Switch S4 Settings                                      |          |                                                   |                |
| DM                                                          |          |                                                   |                |
| DM+                                                         |          | E                                                 |                |
| dnE                                                         |          | E (G)                                             | 112            |
| DO-A3.                                                      |          | E2-03                                             | 409            |
| DO-A3 Output Mode Selection                                 |          | E3-01 (Motor 2 Control Mode) Dependent Parameters | 601            |
| DO-A3 Settings                                              |          | E5                                                | 381            |
| doH                                                         |          | EDM Switch Settings                               |                |
| Down Arrow Key                                              |          | EEPROM Memory DriveWorksEZ Data Error             | 380            |
| Drive/kVA Selection                                         |          | EEPROM Write Error                                |                |
| IZITYO/BY/A DOLOCHUII                                       |          |                                                   |                |

|                                                     |          | Error Reading Data                                   |                  |
|-----------------------------------------------------|----------|------------------------------------------------------|------------------|
|                                                     |          | Errors and Displays When Using the Copy Function     |                  |
|                                                     |          | Error Writing Data                                   |                  |
|                                                     | ·        | EU Declaration of Conformity                         |                  |
|                                                     |          | European Standards                                   |                  |
|                                                     |          | Excessive PID Feedback                               | ,                |
|                                                     | •        | Excessive V/f Setting.                               |                  |
|                                                     |          | Exhaust Fan Application.                             |                  |
| EF7                                                 | 381, 397 | Exterior and Mounting Dimensions                     | 69               |
| EF8                                                 | 381, 397 | External Digital Operator Connection Fault           | 390              |
| Electromotive Force Parameter Tuning                | 164      | External Fault                                       | 381, 397         |
| EMC Filter and Drive Installation for CE Compliance | 670      | External Fault from Comm. Option Detection Selection | 278              |
| EMC Filter Installation.                            | 107      | External Fault from Comm. Option Operation Selection | 278              |
|                                                     |          | External Interlock                                   |                  |
| *                                                   |          | Eye bolt                                             |                  |
| Encoder Selection.                                  |          | -                                                    | , , ,            |
| Encoder Z-Pulse Offset                              |          | F                                                    |                  |
| Encoder Z-Pulse Offset (for PM Motors)              |          | Fan fault                                            |                  |
| End.                                                |          | Fast Stop Sequence                                   | 289              |
| End1                                                |          | Fast Stop Time                                       | 229              |
| End2                                                |          | Fault Causes and Solutions                           | 377              |
| End3                                                |          | Fault Detection                                      | 377              |
| End4                                                |          | Fault Displays                                       | 377              |
| End5                                                |          | Fault History                                        |                  |
| End6                                                |          | Fault Relay Output                                   |                  |
|                                                     |          | Fault Reset Interval Time.                           |                  |
| End7                                                |          | Fault Reset Methods.                                 |                  |
| EnDat Encoder                                       |          | Fault Reset Operation Selection                      |                  |
| Energy Saving                                       |          | Fault Restart                                        |                  |
| Energy Saving Coefficient Value                     |          | Faults                                               |                  |
| Energy Saving Control Filter Time Constant          |          | Fault Trace                                          |                  |
| Energy Saving Control Selection                     |          | FbH                                                  | -                |
| Energy Saving Gain                                  |          | FbL                                                  |                  |
| Energy Savings Constants Error                      |          | Fdv                                                  |                  |
| Enter Command                                       |          |                                                      |                  |
| Enter command necessary                             |          | Feed Forward Control                                 |                  |
| Enter command not necessary                         |          | Feed Forward Control Diagram.                        |                  |
| Enter Command Types                                 |          | Feed Forward Control Gain                            |                  |
| Enter Data from the Motor Nameplate                 | 169      | Feed Forward Control Selection                       |                  |
| ENTER Key                                           | 141      | Ferrule Dimensions                                   |                  |
| Er-01                                               | 409      | Ferrule Terminal Types and Sizes                     |                  |
| Er-02                                               |          | Ferrule-Type Wire Terminals                          |                  |
| Er-03                                               |          | Field Forcing                                        |                  |
| Er-04.                                              |          | Field Forcing Limit                                  |                  |
| Er-05                                               |          | Field Forcing Selection                              |                  |
| Er-08                                               |          | Field Weakening                                      |                  |
| Er-09                                               |          | Field Weakening Frequency Limit                      | 256              |
| Er-10.                                              |          | Field Weakening Level                                |                  |
| Er-11                                               |          | Filter Module                                        | 7, 438, 459, 684 |
| Er-12.                                              |          | Filter Module cover 1                                | 54               |
| Er-13.                                              |          | Filter Module cover 2                                | 54               |
| Er-14                                               |          | Fine-Tuning Advanced Open Loop Vector Control for PM | Motors 370       |
|                                                     |          | Fine-Tuning Closed Loop Vector Control               |                  |
| Er-15                                               |          | Fine-Tuning Closed Loop Vector Control for PM Motors |                  |
| Er-16                                               |          | Fine-Tuning Open Loop Vector Control for PM Motors   |                  |
| Er-17                                               |          | Fine-Tuning V/f Control and V/f Control with PG      |                  |
| Er-18                                               |          | FJOG/RJOG Operation                                  |                  |
| Er-19                                               |          | FM                                                   |                  |
| Er-20                                               |          | Forward/Reverse Run Command Input Error              |                  |
| Er-21                                               |          | Forward Regenerative Torque Limit                    |                  |
| Er-25                                               |          | •                                                    |                  |
| Err                                                 | 381      | Forward Torque Limit.                                | 334, 368         |

| Frequency Accuracy (Temperature Fluctuation)              | 494      | Heatsink Overheat                                       | 387, 399 |
|-----------------------------------------------------------|----------|---------------------------------------------------------|----------|
| Frequency Control Range                                   |          |                                                         |          |
| Frequency Detection 1 Time Chart                          |          |                                                         |          |
| Frequency Detection 2 Time Chart                          |          | •                                                       |          |
| Frequency Detection 3 Example with a Positive L3-04 Value | 301      | Heavy Duty Ratings                                      | 239      |
| Frequency Detection 4 Example with Positive L3-04 Value   | 301      | HFI Overlap Pole Pgain                                  | 349      |
| Frequency Reduction Rate during Overheat Pre-Alarm        | 338, 569 | High Current Alarm Selection                            | 340      |
| Frequency Reference                                       | 243, 586 | High Frequency Injection                                | 350      |
| Frequency Reference at Previous Fault                     | 589      | High Frequency Injection Amplitude                      | 34       |
| Frequency Reference at Reference Loss                     | 329, 565 | High Frequency Injection Level                          | 34       |
| Frequency Reference Bias                                  | 249      | High Frequency Injection Parameter Tuning               | 164      |
| Frequency Reference Bias (Up/Down 2)                      | 594      | High Frequency Injection Parameter Tuning Error         | 41       |
| Frequency Reference Bias Accel/Decel                      | 250      | High Performance Operation Using OLV or CLV             |          |
| Frequency Reference Bias Lower Limit                      | 249      | Humidity                                                | 60, 6    |
| Frequency Reference Bias Operation Mode Selection         | 250      | Hunting Prevention                                      | 342      |
| Frequency Reference Bias Step                             |          |                                                         |          |
| Frequency Reference Bias Upper Limit                      | 249      | Hunting Prevention Gain while in Reverse                | 342, 57  |
| Frequency Reference from MEMOBUS/Modbus Comm              | 592      | Hunting Prevention Selection                            | 342, 57  |
| Frequency Reference Hold Function Selection               | 247      | Hunting Prevention Time Constant                        | 342, 57  |
| Frequency Reference Loss Detection Selection              | 299, 565 | HVAC Fan Application                                    | 162      |
| Frequency Reference Lower Limit                           | 245      | I                                                       |          |
| Frequency Reference Monitor Content During PID            |          | I/O Compostions                                         | 0        |
| Frequency Reference Selection                             |          | I/O Connections                                         |          |
| Frequency Reference Selection 1                           |          | iFEr                                                    |          |
| Frequency Reference Selection 2                           |          | IG                                                      |          |
| Frequency Reference Setting / Decimal Display             |          | Incorrect Input Voltage Adjustment.                     |          |
| Frequency Reference Setting and User-Set Display          |          | Induced Voltage Constant Unit Selection                 |          |
| Frequency Reference Setting Hierarchy                     |          | Induction Voltage Estimation Gain 2                     |          |
| Frequency Reference Setting Method Selection              |          | Inertia Tuning                                          |          |
| Frequency Reference Source Selection                      |          | Inertia Tuning                                          |          |
| Frequency Reference Upper Limit                           |          | Inertia Tuning Reference Amplitude                      |          |
| Frequency Setting Resolution                              |          | Initialization                                          |          |
| Frequency Setting Signal                                  |          | Initialization Required                                 |          |
| Front cover                                               |          | Initialize Parameters                                   |          |
| Function Code                                             |          | Initial Operation.                                      | -        |
| Functions for Terminals S1 to S8                          | 284      | Initial Polarity Estimation Timeout                     |          |
| Watt Loss Filter Modules                                  | 497      | Initial Rotor Position Detection Selection.             |          |
|                                                           |          | Initial Rotor Position Estimation Current               |          |
| G                                                         |          | Input Pulse Monitor                                     |          |
| GF                                                        |          | Input Terminals                                         |          |
| Ground Fault                                              |          | Input Terminal Status                                   |          |
| Ground Wiring                                             | 110      | Input Terminal Status at Previous Fault                 |          |
| Н                                                         |          | Inrush Prevention Relay Maintenance Setting             |          |
| <br>H1                                                    | 111      | Inspection                                              |          |
| H1 Multi-Function Digital Input Selections                |          | Installation Area                                       |          |
| H2                                                        |          | Installation Environment.                               | -        |
| H3-02                                                     |          | Installation Method Selection                           |          |
| H3 Multi-Function Analog Input Settings.                  |          | Installation Orientation.                               |          |
| Hanging bracket                                           |          | Installation Spacing.                                   |          |
| Harmonic Filter Module                                    |          | Installing a GFCI                                       |          |
| Harmonic Filter Module Models and Types                   |          | Installing a Magnetic Contactor                         |          |
| Harmonic Filter Module Watt Loss                          |          | Installing a Molded Case Circuit Breaker (MCCB)         |          |
| HC                                                        |          | Installing a Motor Thermal Overload (oL) Relay on the D |          |
| HCA                                                       |          | Installing Peripheral Devices.                          | -        |
| HD                                                        |          | Installing the Cooling Fan                              |          |
| Heatsink                                                  |          | Integral Limit Setting.                                 |          |
| Heatsink Cooling Fan Off-Delay Time                       |          | Integral Operation during Accel/Decel                   |          |
| Heatsink Cooling Fan Operation Delay Time                 |          | Integral Operation during Accel/Decel for Motor 2       |          |
| Heatsink Cooling Fan Operation Selection.                 |          | Integral Time Setting (I)                               |          |

| Interlock Circuit Example                                      | 135        | Main Circuit Terminal Functions                         |               | 99    |
|----------------------------------------------------------------|------------|---------------------------------------------------------|---------------|-------|
| Internal Resistance Fault                                      |            |                                                         |               |       |
| Inversion Detection                                            | 379        | Main Circuit Wiring                                     |               | 99    |
| Inversion Prevention Detection                                 | 380        | Maintenance                                             |               | 302   |
| IP00/Open Type Enclosures                                      | 41         | Maintenance Alarms                                      |               | 434   |
| IP20/UL Type 1 Enclosures                                      |            |                                                         |               |       |
| T                                                              |            | Maintenance Monitor Settings                            |               |       |
| J                                                              |            | Master Speed Reference Lower Limit                      |               |       |
| Jog Frequency Reference                                        | 243        | Maximum Output Frequency.                               |               |       |
| Jump Frequency Width                                           | 246        | Maximum Voltage                                         |               |       |
| K                                                              |            | MB                                                      |               |       |
| kWh Monitor Initialization                                     | 259 570    | MC                                                      |               |       |
| k wn Montor muanzadon                                          | . 338, 379 | Mechanical Weakening Detection                          |               |       |
| L                                                              |            | Mechanical Weakening Detection 1                        |               |       |
| L3-02                                                          | 424        | Mechanical Weakening Detection 2                        |               |       |
| L8-12                                                          |            | Mechanical Weakening Detection Operation                |               |       |
| L8-35                                                          |            | Mechanical Weakening Detection Speed Level              |               |       |
| Language Selection                                             |            |                                                         |               |       |
| LCD Contrast Control                                           |            | 8                                                       |               |       |
| LCD Display                                                    |            | Mechanical Weakening Detection Time.                    |               |       |
|                                                                |            |                                                         |               |       |
| Leakage Inductance Alarm                                       | 412        | MECHATROLINK Comm. Cycle Setting Error                  | • • • • • • • | 396   |
| Leakage Inductance Error                                       |            |                                                         |               |       |
| LED Check                                                      | 591        | MECHATROLINK Link Speed                                 |               | 280   |
| LED Operator                                                   |            |                                                         |               |       |
| LF                                                             |            |                                                         |               |       |
| LF2                                                            | 383        | MEMOBUS/Modbus Comm. Test Mode Complete                 |               | 401   |
| Line-to-Line Motor Resistance Online Tuning                    | 572        | MEMOBUS/Modbus Communication Error                      | 378,          | 395   |
| Line-to-Line Resistance Error.                                 | 409        | MEMOBUS/Modbus Communications Reference                 |               | 592   |
| LO/RE                                                          |            |                                                         |               |       |
| LO/RE (LOCAL/REMOTE) Key Function Selection                    | 200        | MEMOBUS/Modbus Data Table                               |               | 643   |
| LO/RE LED                                                      | 143        | MEMOBUS/Modbus Error Code                               |               | 587   |
| LO/RE Light                                                    |            |                                                         |               |       |
| LO/RE Selection Key                                            | 141        | MEMOBUS/Modbus Setup Parameters                         |               | 633   |
| Load Inertia                                                   | . 350, 575 | MEMORUS/Modbus Specifications                           |               | 629   |
| Load Inertia Ratio                                             | 238        | MEMOBUS/Modbus Switch Settings                          |               |       |
| LOCAL                                                          |            | Menu Structure for Digital Operator                     |               |       |
| LOCAL/REMOTE Key Function Selection                            |            | Message Format                                          |               |       |
| LOCAL/REMOTE Run Selection                                     |            |                                                         |               |       |
| Loopback Test.                                                 | 6/1        | Middle Output Frequency                                 |               | 201   |
| Logs of Deference Eurotion                                     | 220        | Mills O and Frances V. Italy                            | • • • • • • • | 201   |
| Loss of Reference Function                                     | 240        | Middle Output Frequency Voltage                         |               | 261   |
| Low Pass Filter Cutoff Frequency for High Frequency Injection. | 349        | Middle Output Frequency Voltage 2                       |               | 261   |
| Low Voltage Wiring for Control Circuit Terminals               |            |                                                         |               |       |
| LSo                                                            |            | Minimum Output Frequency Voltage                        |               |       |
| LSo Fault                                                      |            | 88                                                      |               |       |
| LT-1                                                           |            | Minor Fault                                             |               |       |
| LT-2                                                           |            | Minor Fault and Alarm Displays                          |               |       |
| LT-3                                                           | 399        | Minor Faults and Alarms                                 |               |       |
| M                                                              |            | Model, Voltage Class, Capacity Mismatch                 |               | 415   |
|                                                                | 112        | Model Number and Nameplate Check                        |               | 36    |
| M1                                                             |            | Modes                                                   |               | 146   |
| M2                                                             |            | Momentary Overcurrent Protection                        |               | 495   |
| M3                                                             |            | Momentary Power Loss Minimum Baseblock Time             |               |       |
| M4                                                             |            | Momentary Power Loss Operation Selection                |               |       |
| M5                                                             |            | Momentary Power Loss Ride-Thru                          |               |       |
| M6                                                             |            | Momentary Power Loss Ride-Thru Time                     |               |       |
| MA                                                             |            | Momentary Power Loss Voltage Recovery Acceleration Time |               |       |
| Magnetic Flux Compensation Value                               |            | Momentary Power Loss Voltage Recovery Ramp Time         |               |       |
| Main Circuit Connection Diagram                                |            | Monitor Output                                          |               |       |
| Main Circuit Terminal                                          | 55, 56     | *                                                       |               |       |
| Main Circuit Terminal and Motor Wiring                         | 109        | Monitor Parameters.                                     | -             |       |
|                                                                |            | Most Recent Fault                                       |               | . 590 |

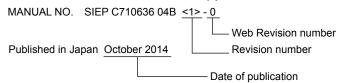
| Motor 1/Motor 2 Selection                               | 170      | Motor Line-to-Line Resistance                                    | 263    |
|---------------------------------------------------------|----------|------------------------------------------------------------------|--------|
|                                                         |          | Motor Mechanical Loss                                            |        |
|                                                         |          | Motor No-Load Current. 172                                       |        |
|                                                         |          |                                                                  |        |
|                                                         |          | Motor Overheat                                                   |        |
|                                                         |          |                                                                  |        |
|                                                         |          | Motor Overheat Alarm Operation Selection                         |        |
|                                                         |          | Motor Overheat Fault (PTC Input)                                 |        |
|                                                         |          | Motor Overheat Fault Operation Selection                         |        |
|                                                         |          | Motor Overload                                                   |        |
|                                                         |          | Motor Overload Estimate (oL1)                                    |        |
|                                                         |          | Motor Overload Protection Selection                              |        |
|                                                         |          | Motor Overload Protection Time                                   |        |
|                                                         |          | Motor Performance Fine-Tuning                                    |        |
| <del>-</del>                                            |          | Motor PG Feedback Line Driver Interface                          |        |
|                                                         |          | Motor PG Feedback Open Collector Interface                       |        |
|                                                         |          | Motor Protection                                                 |        |
|                                                         |          | Motor Protection Using a PTC Thermistor                          |        |
|                                                         |          | Motor PTC Characteristics                                        |        |
|                                                         |          | Motor q-Axis Current at Previous Fault                           |        |
|                                                         |          | Motor q-Axis Inductance (for PM Motors)                          |        |
|                                                         |          | Motor Rated Current                                              |        |
| Motor 2 Mid Output Frequency Voltage                    | 265      | Motor Rated Current (for PM Motors)                              | 269    |
|                                                         |          | Motor Rated Power                                                |        |
| Motor 2 Minimum Output Frequency                        | 265      | Motor Rated Power (for PM Motors)                                | 269    |
| Motor 2 Minimum Output Frequency Voltage                | 265      | Motor Rated Slip. 172                                            | 2, 262 |
| Motor 2 Motor Iron-Core Saturation Coefficient 1        | 267      | Motor Rated Voltage                                              | 1, 581 |
| Motor 2 Motor Iron-Core Saturation Coefficient 2        | 267      | Motor Rotates in One Direction Only                              | 420    |
| Motor 2 Motor Poles                                     | 267      | Motor Secondary Current (Iq)                                     | 593    |
| Motor 2 Parameters                                      | 266      | Motor Selection                                                  | 289    |
| Motor 2 Rated Current                                   | 266      | Motor Selection 1/2                                              | 581    |
| Motor 2 Rated No-Load Current                           | 266      | Motor Speed                                                      | 586    |
| Motor 2 Rated Power                                     | 268      | Motor Speed at Previous Fault                                    | 589    |
| Motor 2 Rated Slip                                      | 266      | Motor Speed Error 2.                                             | 412    |
| Motor 2 Slip Compensation Gain                          | 232      | Motor Stator Resistance (for PM Motors)                          | 269    |
| Motor 2 Slip Compensation Limit                         | 232      | Motor Switch during Run                                          | 401    |
| Motor 2 Slip Compensation Primary Delay Time            | 232      | Motor Temperature Input Filter Time                              | 0, 562 |
| Motor 2 Slip Compensation Selection during Regeneration | 232      | Motor Wiring                                                     | 109    |
| Motor 2 Torque Compensation Gain                        | 234      | MP                                                               | 112    |
| Motor Acceleration Time                                 | 345      | Multi-Function Analog Input Selection Error.                     | 404    |
| Motor Base Frequency                                    | 171, 581 | Multi-Function Analog Input Terminal Settings                    | 308    |
| Motor Base Speed                                        | 172, 581 | Multi-Function Analog Outputs                                    | 234    |
| -                                                       |          | Multi-Function Analog Output Terminal AM Bias                    |        |
|                                                         |          | Multi-Function Analog Output Terminal AM Gain                    |        |
|                                                         |          | Multi-Function Analog Output Terminal AM Monitor Selection       |        |
|                                                         |          | Multi-Function Analog Output Terminal AM Signal Level Selection  |        |
|                                                         |          | Multi-Function Analog Output Terminal FM Bias                    |        |
| · · · · · · · · · · · · · · · · · · ·                   |          | Multi-Function Analog Output Terminal FM Gain                    |        |
|                                                         |          | Multi-Function Analog Output Terminal FM Monitor Selection       |        |
|                                                         |          | Multi-Function Analog Output Terminal FM Signal Level Selection. |        |
|                                                         |          | Multi-Function Digital Inputs                                    |        |
|                                                         |          | Multi-Function Digital Input Terminal Settings                   |        |
| — · · · · · · · · · · · · · · · · · · ·                 |          | Multi-Function Digital Output                                    |        |
|                                                         |          | Multi-Function Digital Output Terminal Settings                  |        |
|                                                         |          | Multi-Function Input Selection Error                             |        |
|                                                         |          | Multiple Drive Wiring                                            |        |
|                                                         |          | Multi-Step Speed Selection.                                      |        |
| Motor Iron Loss                                         |          | • •                                                              |        |
| Motor Iron Loss for Torque Compensation                 | 264      | N                                                                |        |
| Motor Ke Gain                                           | 348      | n1                                                               |        |
| Motor Leakage Inductance                                | 263      | n299                                                             | 9, 100 |

| Nameplate                                        | 36            | oPE02                                                     |      | 403 |
|--------------------------------------------------|---------------|-----------------------------------------------------------|------|-----|
| ND                                               | 239           | oPE03                                                     |      | 403 |
| ndAT                                             | 415           | oPE04                                                     |      | 404 |
|                                                  |               | oPE05                                                     |      |     |
|                                                  |               | oPE06                                                     |      |     |
|                                                  |               | oPE07                                                     |      |     |
|                                                  |               | oPE08                                                     |      |     |
|                                                  |               | oPE09                                                     |      |     |
|                                                  |               | oPE10                                                     |      |     |
| •                                                |               | oPE11                                                     |      |     |
| , .                                              |               | oPE13                                                     |      |     |
| Notes on Inertia Tuning and ASR Gain Auto-Tuning | 168           | oPE15                                                     |      | 406 |
| Notes on Rotational Auto-Tuning                  | 167           | oPE16                                                     |      | 406 |
| Notes on Stationary Auto-Tuning                  | 167           | oPE18                                                     |      | 406 |
| nSE                                              | 384           | oPE20                                                     |      | 406 |
| Number of Auto Restart Attempts                  | 330, 566      | oPE30                                                     |      | 406 |
| Number of Motor Poles                            | 172, 263, 581 | oPE Fault Parameter                                       |      | 587 |
| Number of Motor Poles (for PM Motors)            | 269           | Open Loop Vector Control                                  |      | 33  |
| Number of PM Motor Poles                         | 174           | Open Loop Vector Control for IPM Motors                   |      | 33  |
| Number of Run Commands                           | 591           | Open Loop Vector Control for PM Motors                    |      | 33  |
| Number of Run Commands Counter Initialization    | 358           | Open Loop Vector Control Mode Tuning                      |      | 367 |
| Number of Speed Search Restarts                  | 208           | Open Loop Vector Control Mode Tuning Parameters           | 369, | 370 |
| 0                                                |               | Operating with the Load Connected                         |      | 179 |
|                                                  | 100           | Operation Errors                                          | 372, | 376 |
| 02-03                                            |               | Operation Ready                                           |      | 135 |
| oFA00                                            |               | Operation Selection at Overspeed (oS)                     |      | 271 |
| oFA01                                            |               | Operation Selection at PG Open Circuit (PGo)              |      | 271 |
| oFA03 to oFA06                                   |               | Operation Selection at Watchdog Error (E5)                |      | 280 |
| oFA10                                            |               | Operation Selection when Digital Operator is Disconnected | 356, | 578 |
| oFA11                                            |               | Operation Status Monitors                                 |      | 360 |
| oFA12 to oFA17                                   |               | Operation with Permanent Magnet Motors                    |      | 157 |
| oFA30 to oFA43                                   |               | Operator Programming Errors                               |      | 403 |
| oFb00                                            |               | Operator Related Settings.                                |      | 353 |
| oFb01                                            |               | oPr                                                       |      |     |
| oFb02                                            |               | Option card connection error (CN5-A)                      |      | 385 |
| oFb03 to oFb11                                   |               | Option Card Connection Error at Option Port CN5-A         |      | 385 |
| oFb12 to oFb17                                   |               | Option Card Connection Error at Option Port CN5-C         |      | 386 |
| oFC00                                            |               | Option card error occurred at option port CN5-A           |      | 385 |
| oFC01                                            |               | Option card error occurred at option port CN5-B           |      | 386 |
| oFC02                                            |               | Option card error occurred at option port CN5-C           |      | 387 |
| oFC03 to oFC11                                   |               | Option Card External Fault.                               | 381, | 396 |
| oFC12 to oFC17                                   |               | Option Card Fault at Option Port CN5-A                    |      | 385 |
| oFC50 to oFC55                                   |               | Option Card Fault at Option Port CN5-B                    |      |     |
| Offset Frequency                                 |               | Option Card Fault at Option Port CN5-C                    |      | 386 |
| oH                                               | ·             | Option Communication Error                                |      |     |
| oH1                                              |               | Option Frequency Reference                                |      | 592 |
| oH2                                              |               | Option Installation                                       |      |     |
| oH3                                              | · ·           | Option Settings                                           |      |     |
| oH4                                              |               | oS                                                        |      |     |
| oL1                                              |               | Oscillation or Hunting.                                   |      | 423 |
| oL1 Current Level                                |               | Output Current                                            |      |     |
| oL1 Current Level for Motor 2                    |               | Output Current 1 during Speed Search                      |      |     |
| oL2                                              |               | Output Current at Previous Fault                          |      |     |
| oL2 Characteristics Selection at Low Speeds      |               | Output Current Imbalance                                  |      |     |
| oL3                                              |               | Output Frequency                                          |      |     |
| oL4                                              |               | Output Frequency after Soft Start                         |      |     |
| oL5                                              |               | Output Frequency at Previous Fault.                       |      |     |
| Online Tuning Gain                               |               | Output Frequency Reduction During Overheat Alarm          |      |     |
| Online Tuning Selection                          |               | Output Frequency Resolution                               |      |     |
| oPE01                                            | 403           | Output Ground Fault Detection Selection                   |      |     |
|                                                  |               | *                                                         |      | -   |

| Output of speed control (ASR) (for Simple V/f PG)         | 593      | PG 2 Gear Teeth 1                                            | 273 |
|-----------------------------------------------------------|----------|--------------------------------------------------------------|-----|
|                                                           |          | PG 2 Gear Teeth 2                                            |     |
|                                                           |          | PG 2 Pulses Per Revolution                                   |     |
| •                                                         |          | PG 2 Rotation Selection                                      |     |
| •                                                         |          | PG 2 Signal Selection                                        |     |
| •                                                         |          | PG-B3                                                        |     |
| •                                                         |          | PG Disconnect (for any control modes using a PG option card) |     |
| *                                                         |          | PG Disconnect (for Control Mode with PG)                     |     |
|                                                           |          | PG-F3                                                        |     |
|                                                           |          | PG-F3 Setting Error                                          |     |
|                                                           |          | PG Hardware Fault (detected when using a PG-X3 option card). |     |
|                                                           |          | PG Number of Pulses Per Revolution                           |     |
|                                                           |          | PG Number of Pulses Per Revolution for PM Motor Tuning       |     |
|                                                           |          | PGo                                                          |     |
|                                                           |          | PGoH                                                         |     |
|                                                           |          | PGoH Detection Level                                         | -   |
|                                                           |          |                                                              |     |
|                                                           |          | PG Open-Circuit Detection Time                               |     |
|                                                           |          | PG Option Card Disconnection Detection 2                     |     |
|                                                           |          | PG Option Card Port for Motor 2 Selection                    |     |
|                                                           |          | PG-RT3                                                       |     |
|                                                           |          |                                                              |     |
|                                                           |          | PG-X3                                                        |     |
| ,                                                         |          |                                                              |     |
|                                                           | -        | Phase Order Selection                                        |     |
| *                                                         | -        | PID Accel/Decel Time                                         |     |
|                                                           |          | PID Block Diagram PID Control                                |     |
| •                                                         | -        |                                                              |     |
| · · · · · · · · · · · · · · · · · · ·                     |          | PID Feedback                                                 |     |
|                                                           |          | PID Feedback High Detection Level                            |     |
|                                                           |          | PID Feedback Input Methods                                   |     |
|                                                           |          | PID Feedback Loss                                            |     |
|                                                           |          | PID Feedback Loss Detection Selection.                       |     |
|                                                           |          | PID Feedback Low Detection Level                             |     |
|                                                           |          | PID Feedback Low Detection Time                              |     |
| · ·                                                       | 493      | PID Fine Tuning                                              |     |
| P                                                         |          | PID Fine Funding                                             |     |
| Parameter Access Level                                    | 180      | PID Input (feedback)                                         |     |
| Parameter Range Setting Error                             | 403      | PID Input Limit                                              |     |
| Parameters Changed with Motor Code Selection (PM Motors). | 609      | PID Monitors                                                 |     |
| Parameter Selection Error                                 | 405      | PID Offset Adjustment.                                       |     |
| Parameter Settings                                        | 147      | PID Output.                                                  |     |
| PASS                                                      | 401      | PID Output Gain Setting.                                     |     |
| Password                                                  | 181, 188 | PID Output Level Selection                                   |     |
| Password Setting.                                         | 188      | PID Output Limit                                             |     |
| Password Settings.                                        | 181      | PID Output Lower Limit.                                      |     |
| Peak Hold Current                                         |          | PID Output Reverse Selection                                 |     |
| Peak Hold Output Frequency                                | 591      | PID Output Reverse Selection 2                               |     |
| Performance Life                                          | ,        | PID Primary Delay Time Constant                              |     |
| Performance Life Monitors Maintenance Monitors            |          | PID Setpoint                                                 |     |
| Periodic Inspection                                       |          | PID Setpoint Display Digits                                  |     |
| Periodic Maintenance                                      |          | PID Setpoint Input Methods                                   |     |
| Permanent Magnet Motor Control.                           |          | PID Setpoint Scaling                                         |     |
| PG 1 Division Rate for PG Pulse Monitor                   |          | PID Setpoint Selection                                       |     |
| PG 1 Gear Teeth 1                                         |          | PID Setpoint User Display                                    |     |
| PG 1 Gear Teeth 2                                         |          | PID Setpoint Value                                           |     |
| PG 1 Pulses Per Revolution                                |          | PID Sleep                                                    |     |
| PG 1 Rotation Selection                                   |          | PID Sleep Delay Time                                         | 219 |
| PG 1 Signal Selection                                     |          | PID Sleep Function Start Level                               | 219 |
| PG 2 Division Rate for PG Pulse Monitor                   | 272      | PM Inductance Error                                          | 413 |

| PM Motor Auto-Tuning Mode Selection                      | 172 | Pulse Train Input Scaling                             | 314              |
|----------------------------------------------------------|-----|-------------------------------------------------------|------------------|
| PM Motor Base Frequency                                  |     |                                                       |                  |
| PM Motor Base Speed                                      |     | e e e e e e e e e e e e e e e e e e e                 |                  |
| PM Motor Code                                            | 269 | Pulse Train Monitor Selection                         | 314              |
| PM Motor Code Selection                                  |     | Q                                                     |                  |
| PM Motor Control Tuning                                  | 347 | A CD O                                                | 504              |
| PM Motor d-Axis Inductance                               | 174 | q-Axis ACR Output                                     |                  |
| PM Motor Induced Voltage Constant                        | 175 | q-Axis Current Compensation Method when Output Voltag | ge Is Limited226 |
| PM Motor Parameter Settings                              | 164 | R                                                     |                  |
| PM Motor q-Axis Inductance                               | 174 | R                                                     | 112              |
| PM Motor Rated Current                                   | 174 | R/L1                                                  |                  |
| PM Motor Rated Voltage                                   | 173 | R+                                                    |                  |
| PM Motor Settings                                        | 173 | r1/l11                                                |                  |
| PM Motor Stator Resistance                               | 174 | Rated Current Depending on Carrier Frequency          |                  |
| PM Motor Type                                            | 173 | Rated Current Setting Alarm                           |                  |
| PM Rotational Auto-Tuning                                | 165 | Rated Slip Error                                      |                  |
| PM Speed Search DC Injection Braling Time at Low Speed   | 212 | rdEr                                                  |                  |
| PM Stationary Auto-Tuning                                |     | READ                                                  |                  |
| PM Stationary Auto-Tuning for Stator Resistance          |     | rEAd                                                  |                  |
| Polarity Compensation Gain 3                             |     | Reading Drive MEMOBUS/Modbus Register Contents        |                  |
| Polarity Compensation Gain 4                             |     | Reading Parameter Settings                            |                  |
| Polarity Switch for Initial Polarity Estimation Timeout  |     | Reattaching the Digital Operator                      |                  |
| Pole Attraction Current                                  |     |                                                       |                  |
| Pole Attraction Time                                     |     | Reattaching the Front Cover                           |                  |
| Power Consumption Output Unit Selection                  |     | Reattaching the Terminal Cover                        |                  |
| Power Detection Filter Time                              |     | REMOTE                                                |                  |
| Power Factor Control Selection.                          |     | Removing the Cooling Fan                              |                  |
| Powering Up the Drive.                                   |     | Removing the Digital Operator                         |                  |
| Power Ratings (Three-Phase 200 V Class)                  |     | Removing the Front Cover                              |                  |
| Power Ratings (Three-Phase 400 V Class)                  |     | Removing the Protective Cover                         |                  |
| Power Supply and Control Circuit.                        |     | Removing the Terminal Cover                           |                  |
| Power Supply Frequency Fault                             |     | Replacement Parts                                     |                  |
| Power Supply Overvoltage                                 |     | Replacing the Drive                                   |                  |
| Power Supply Terminal Block TB1 Wiring                   |     | Reset Communication Parameters                        |                  |
| Power Supply Undervoltage                                |     | RESET Key                                             |                  |
| Power Unit Price                                         |     | Resistance Tuning Error                               |                  |
| Predefined V/f Patterns                                  |     | Response Messages from Drive to Master                |                  |
| Preparing the Ends of Shielded Cables                    |     | Reverse Direction Output Example Time Chart           |                  |
| Preset Reference Timing Diagram                          |     | Reverse Operation Selection                           |                  |
|                                                          |     | Reverse Prohibited Error.                             |                  |
| Previous Fault                                           |     | Reverse Regenerative Torque Limit                     |                  |
|                                                          |     | Reverse Torque Limit                                  |                  |
| PROFIBUS-DP Data Format Selection                        |     | Rotational Auto-Tuning                                |                  |
| PROFIBUS-DP Node Address                                 |     | Rotational Auto-Tuning for V/f Control                |                  |
| PROFIBUS-DP Parameters                                   |     | RP                                                    |                  |
| Programming Mode                                         |     | RS-422 Interface                                      |                  |
| Proportional Gain Setting (P)                            |     | RS-485 Interface                                      |                  |
| Protection Functions                                     |     | RTS Control Selection                                 |                  |
| PTC                                                      |     | rUn                                                   |                  |
| Pull-In Current (for PM Motors)                          |     | Run Command/Frequency Reference Source Selection Erro |                  |
| Pull-In Current Compensation Time Constant (for PM Motor |     | Run Command at Power Up                               |                  |
| Pull-In Current Level for PM Motor Tuning                |     | Run Command Method Selection                          |                  |
| Pull-Out Detection                                       |     | Run Command Selection 1                               | ,                |
| Pulse Monitor Selection Error                            |     | Run Command Selection 2                               |                  |
| Pulse Output Connection Using External Voltage Supply    |     | Run command selection while in Programming Mode       |                  |
| Pulse Output Connection Using Internal Voltage Supply    |     | Run Command Source Selection                          |                  |
| Pulse Train Input/Output                                 |     | RUN Key                                               |                  |
| Pulse Train Input Bias                                   |     | RUN LED.                                              |                  |
| Pulse Train Input Filter Time                            |     | RUN Light                                             |                  |
| Pulse Train Input Gain                                   |     | Run Speed after Soft Starter at Previous Fault        | 589              |
| Pulse Train Input Minimum Frequency                      | 314 |                                                       |                  |

| S                                                             |          | Speed Agree Detection Selection                           | 329  | 565 |
|---------------------------------------------------------------|----------|-----------------------------------------------------------|------|-----|
|                                                               | 112      | Speed Agree Detection Width                               |      |     |
| S                                                             |          | Speed Agree Detection Width (+/-)                         |      |     |
| S+                                                            |          | Speed Control Accuracy                                    |      |     |
| S1                                                            |          | Speed Control Integral Time 1                             |      |     |
| s1/l21                                                        |          | Speed Control Loop Auto-Tuning                            |      | 166 |
| S2                                                            |          | Speed Control Proportional Gain 1                         |      |     |
| 83                                                            |          | Speed Control Range                                       |      | 494 |
| S4                                                            |          | Speed Deviation                                           | 272, | 379 |
| S5                                                            |          | Speed Feedback Detection Control (AFR) Gain               | 343, | 571 |
| S6                                                            |          | Speed Feedback Detection Control (AFR) Time Constant 1    | 343, | 571 |
| S7                                                            |          | Speed Feedback Detection Control Gain (for PM Motors)     | 349, | 574 |
| S8                                                            |          | Speed Limit                                               |      | 255 |
| Safe Disable Circuit                                          |          | Speed Limitation                                          |      | 253 |
| Safe Disable Input Function                                   |          | Speed Limit Bias                                          | 253, | 255 |
| Safe Disable Inputs                                           |          | Speed Limit Selection                                     |      | 255 |
| Safe Disable Monitor Output Function and Digital Operator Dis |          | Speed Response                                            |      | 494 |
| Safety Circuit Fault                                          |          | Speed Search Deceleration Time                            |      | 207 |
| Safety Monitor Output                                         |          | Speed Search Delay Time                                   |      | 207 |
| SC                                                            |          | Speed Search Detection Compensation Gain                  |      | 208 |
| SCF                                                           |          | Speed Search Induced Voltage Level                        |      |     |
| SE                                                            |          | Speed Search Method Selection                             |      |     |
| Search Operation Voltage Limit                                |          | Speed Search Restart Current Level.                       |      | 208 |
| Self-Diagnostics.                                             |          | Speed Search Restart Detection Time.                      |      | 208 |
| SEr                                                           |          | Speed Search Selection at Start                           |      |     |
| Serial Communications Cable Connection Terminals (TB5)        |          | Speed Search Selection when Run Command Is Given during U |      |     |
| Serial Communication Terminals.                               |          | Speed Search Wait Time.                                   |      | 209 |
| Serial Communication Transmission Error                       |          | SrC                                                       |      |     |
| Serviceable Parts                                             |          | Srr                                                       |      | 391 |
| Setup Group                                                   |          | SSR1 Series IPM Motor Settings                            |      | 610 |
| Setup Group Parameters                                        |          | SST4 Series IPM Motor Settings                            |      |     |
| Setup Mode                                                    |          | Stall Prevention                                          |      |     |
| Shielded Twisted-Pair Cables                                  |          | Stall Prevention Detection Time.                          |      | 327 |
| Simple Motor Setup Using V/f Control                          |          | Stall Prevention Level during Acceleration/Deceleration   |      |     |
| Simplified Setup Using the Setup Group                        |          | Stall Prevention Level during Run                         |      |     |
| Sinking/Sourcing Mode for Digital Inputs                      |          | Stall Prevention Limit during Acceleration/Deceleration   |      |     |
| Slave Address                                                 |          | Stall Prevention Selection during Acceleration            |      |     |
| Slip Compensation                                             | 230      | Stall Prevention Selection during Deceleration            |      |     |
| Slip Compensation Gain                                        | 230      | Stall Prevention Selection during Run                     |      |     |
| Slip Compensation Limit                                       |          | Standard Connection Diagram                               |      |     |
| Slip Compensation Primary Delay Time                          |          | Standards                                                 |      |     |
| Slip Compensation Selection during Regeneration               |          | Start Condition Selection at Closed Loop Vector Control   |      |     |
| SMRA Series SPM Motor Settings                                |          | Starting Torque.                                          |      |     |
| SN                                                            |          | Start Speed Search Select                                 |      |     |
| Snubber Discharge Resistor Overheat                           | 391      | Start-Up Flowcharts                                       |      |     |
| Soft Charge Bypass Relay Maintenance                          | 591      | Station Address Setting Error                             |      |     |
| Soft Charge Bypass Relay Maintenance Time                     | 399      | Stationary Auto-Tuning                                    |      |     |
| Soft CLA Selection                                            | 569      | Stationary Auto-Tuning 2                                  |      |     |
| Software Current Limit Selection                              | 338      | Stationary Auto-Tuning 3                                  |      |     |
| Software No. (Flash)                                          | 588      | Stationary Auto-Tuning for Line-to-Line Resistance        |      |     |
| Software No. (ROM)                                            |          | Stator Resistance Error                                   |      |     |
| Software version                                              |          | STo                                                       |      |     |
| SoH                                                           | 391      | STOP button Input                                         |      |     |
| SoH Alarm Selection during bb                                 |          | STOP Key                                                  |      |     |
| Speed/Torque Control Switchover Time                          | 256      | STOP Key Function Selection                               |      |     |
| Speed Agree 1 Time Chart                                      | 296      | Stopping Method after Communication Error                 |      |     |
| Speed Agree 2 Time Chart                                      | 300      | Stopping Method Selection                                 |      |     |
| Speed Agree Detection Level                                   | 328, 565 | Storage                                                   |      |     |
| Speed Agree Detection Level (+/-)                             | 328, 565 | Storage Guidelines                                        |      |     |
|                                                               |          | Storage Location                                          |      | 432 |


| Storage Temperature                                   | 60, 61             | Torque Compensation at Reverse Start                      | 233      |
|-------------------------------------------------------|--------------------|-----------------------------------------------------------|----------|
| Suppression Auxiliary Frequency                       | 343                | Torque Compensation Gain                                  | 233      |
| Suppression Frequency                                 | 343                | Torque Compensation Primary Delay Time                    | 233      |
| Surrounding Area                                      | 60, 61             | Torque Compensation Time Constant                         | 234      |
|                                                       |                    | Torque Control                                            |          |
| Switching Between LOCAL and REMOTE                    | 151                | Torque Control Block Diagram                              | 252      |
| Switching Between Torque and Speed Control            | 254                | Torque Control Input Value Selection                      | 252      |
| Γ                                                     |                    | Torque Control Reference Sources                          | 252      |
|                                                       | 00.400             | Torque Control Selection                                  | 255      |
| Γ/L3                                                  | •                  | Torque Control Setting Error                              | 406      |
| 1/131                                                 |                    | Torque Control Signal Polarity                            | 253      |
| Γask Complete                                         |                    | Torque Detection                                          | 299      |
| Γemperature Derating                                  |                    | Torque Detection Level 1                                  | 332, 566 |
| Ferminal A1 Bias Setting                              |                    | Torque Detection Level 2                                  | 332, 567 |
| Terminal A1 Function Selection                        |                    | Torque Detection Selection 1                              | 331, 566 |
| Terminal A1 Gain Setting                              |                    | Torque Detection Selection 2                              | 331, 567 |
| Γerminal A1 Signal Level Selection                    |                    | Torque Detection Time 1                                   | 332, 566 |
| Γerminal A2 Bias Setting                              |                    | Torque Detection Time 2                                   |          |
| Γerminal A2 Function Selection                        |                    | Torque Limit                                              |          |
| Γerminal A2 Gain Setting                              |                    | Torque Limit Control Method Selection during Accel/Decel  |          |
| Γerminal A2 Signal Level Selection                    |                    | Torque Limit Integral Time Constant                       |          |
| Γerminal A3 Bias Setting                              | 307                | Torque Limit Process at Start                             |          |
| Γerminal A3 Function Selection                        |                    | Torque Reference                                          |          |
| Γerminal A3 Gain Setting                              |                    | Torque Reference/Torque Limit Selection from Comm. Option |          |
| Γerminal A3 Signal Level Selection                    |                    | Torque Reference at Previous Fault                        |          |
| Terminal Block Configuration                          |                    | Torque Reference Delay Time                               |          |
| Terminal Board                                        | 55, 464            | Torque Specifications, Harmonic Filter Modules            |          |
| Ferminal Board Not Connected                          | 379                | Torque Specifications, Three Phase 200 V Class            |          |
| Terminal Connections for Communication Self-Diagnosti |                    | Torque Specifications, Three Phase 400 V Class            |          |
| Ferminal Cover                                        | 92                 | Troubleshooting without Fault Display                     |          |
| Γerminal cover                                        | 50, 51, 52, 53, 54 | Tuning Errors.                                            |          |
| Γerminal DM+ and DM- Output Signal Selection          | 122                | Types of Alarms, Faults, and Errors                       |          |
| Terminal M1-M2 Function Selection                     | 295                | Types of Auto-Tuning for Induction Motors                 |          |
| Terminal M1-M2 Output Selection                       | 277                | Types of Auto-Tuning for induction Motors                 | 103      |
| Terminal M3-M4 Output Selection                       | 277                | U                                                         |          |
| Terminal p1                                           | 99                 | U/T1                                                      | 99       |
| Terminal P1-PC Output Selection                       | 277                | U1000 Models                                              | 33       |
| Гerminal p2                                           | 99, 100            | U1-09                                                     | 419      |
| Terminal P2-PC Output Selection                       | 277                | U2, U3 Initialization.                                    | 358      |
| Ferminal P3-PC Output Selection                       | 277                | U2, U3 Initial Value Selection                            | 579      |
| Terminal P4-PC Output Selection                       | 277                | UL3                                                       | 392, 402 |
| Terminal P5-PC Output Selection                       | 277                | UL4                                                       | 392, 402 |
| Terminal P6-PC Output Selection                       | 277                | UL5                                                       | 392      |
| Ferminal V1 Monitor Bias                              | 276                | UL and CSA Standards                                      | 678      |
|                                                       |                    | UL Standards Compliance                                   |          |
|                                                       |                    | UL Type 1 Kit.                                            |          |
|                                                       |                    | Undertorque Detection 1                                   |          |
| <del>-</del>                                          |                    | Undertorque Detection 2                                   |          |
|                                                       |                    | Undertorque Detection Operation                           |          |
|                                                       |                    | Undervoltage Protection                                   |          |
|                                                       |                    | Unexpected Noise from Connected Machinery                 |          |
| <del>-</del>                                          |                    | Unidirectional Speed Limit Bias.                          |          |
|                                                       |                    | Unit Capacity Setting Fault.                              |          |
|                                                       |                    | Unit Code                                                 |          |
|                                                       |                    | Unit Selection for MEMOBUS/Modbus Register 0025H          |          |
|                                                       |                    | Up/Down 2 Operations                                      |          |
|                                                       |                    | Up/Down Command Operation                                 |          |
|                                                       |                    | Up/Down Frequency Reference Limit Selection               |          |
| * *                                                   |                    | Up Arrow Key                                              |          |
|                                                       |                    | USB Copy Unit                                             |          |
| rorque compensation at i orward bart                  |                    | COD Copy Ont                                              | 101, 7/1 |

| User Defaults                                              | 180 |
|------------------------------------------------------------|-----|
| User Monitor Selection after Power Up                      | 577 |
| User Parameter Automatic Selection                         | 505 |
| User Parameter Default Value                               | 578 |
| User Parameters 1 to 32                                    | 505 |
| User-Set Display Units Decimal Display                     | 354 |
| User-Set Display Units Maximum Value                       | 354 |
| User Set Speed Agree 1 Time Chart                          | 297 |
| User Set Speed Agree 2 Example with a Positive L3-04 Value | 300 |
| Using the Pulse Train Output                               |     |
| Using the Safe Disable Function.                           | 695 |
| Uv                                                         |     |
| Uv1                                                        |     |
| Uv2                                                        |     |
| Uv3                                                        |     |
|                                                            |     |
| V                                                          |     |
| V/f Characteristics                                        |     |
| V/f Control.                                               |     |
| V/f Control Mode Tuning                                    |     |
| V/f Control Mode Tuning Parameters                         |     |
| V/f control using motor speed feedback                     |     |
| V/f Control with Simple Speed Feedback                     |     |
| V/f Data Setting Error.                                    |     |
| V/f Gain during Speed Search                               |     |
| V/f Pattern Defaults                                       | 602 |
| V/f Pattern Display Unit                                   | 354 |
| V/f Pattern for Motor 2.                                   | 265 |
| V/f Pattern Selection                                      | 258 |
| V/T2                                                       | 99  |
| vAEr                                                       | 415 |
| VERIFY                                                     | 357 |
| Verifying Parameter Changes                                | 149 |
| Verify Menu                                                |     |
| vFyE                                                       |     |
| Vibration Suppression Level                                |     |
| Vibration Suppression Time Constant                        |     |
| Voltage Class, Capacity Mismatch                           |     |
| Voltage drop calculation formula.                          |     |
| Voltage Error Compensation Time Constant                   |     |
| vrFy                                                       |     |
|                                                            |     |
| W                                                          |     |
| W/T3                                                       |     |
| Warranty Information                                       |     |
| Water Supply Pump Application                              |     |
| Watt Hour Output Example                                   |     |
| Watt Loss 200 V Class Three Phase Models                   |     |
| Watt Loss 400 V Class Three Phase Models                   |     |
| Wire Gauge, Harmonic Filter Modules                        |     |
| Wire Gauge, Three Phase 200 V Class                        |     |
| Wire Gauge, Three Phase 400 V Class                        |     |
| Wire Gauges                                                |     |
| Wiring Checklist                                           |     |
| Wiring Diagram for 2-Wire Sequence                         |     |
| Wiring Distance                                            | 240 |
| Wiring the Control Circuit Terminal                        | 114 |
| WRITE                                                      | 357 |
| Writing Parameter Settings                                 | 414 |
| Writing to Multiple Registers                              | 642 |

| Z                             |     |
|-------------------------------|-----|
| Zero Servo                    |     |
| Zero Servo Completion Width   |     |
| Zero Servo Fault              | 392 |
| Zero Servo Gain               |     |
| Zero-Speed Time Chart         | 296 |
| Z Pulse Correction Error      |     |
| Z Pulse Fault                 | 379 |
| Z Pulse Noise Fault Detection | 379 |
| Z Pulse Offset Tuning         |     |
|                               |     |

#### **Revision History**

The revision dates and the numbers of the revised manuals appear on the bottom of the back cover.



| Date of<br>Publication | Revision<br>Number | Web<br>Revision<br>Number | Section                   | Revised Content   |                                                                                                                                                       |
|------------------------|--------------------|---------------------------|---------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| June 2023              | <4>                | 0                         | All                       | Revision:         | Reviewed and corrected entire documentation.                                                                                                          |
|                        |                    |                           | Back Cover                | Revision:         | Address                                                                                                                                               |
| April 2016             |                    | 0                         | Front Cover               | Revision:         | Format                                                                                                                                                |
|                        | <3>                |                           | All                       | Revision:         | Upgraded the software version to PRG: 1016 to 1017 Reviewed and corrected documentation                                                               |
|                        |                    |                           |                           | Addition:         | Larger drive capacities added along with corresponding data Three-phase 400 V: 4□0477 to 4□0930 Filter Module: EUJ71180□.□, EUJ71181.□.□, EUJ71182□.□ |
|                        |                    |                           | Appendix D                | Addition:         | EMC Guidelines Compliance for Models 4□0477 to 4□0930 CSA Standards Compliance                                                                        |
|                        |                    |                           | Back Cover                | Revision:         | Address, Format                                                                                                                                       |
| January 2015           | <2>                | 0                         | Front Cover               | Revision:         | Models                                                                                                                                                |
|                        |                    |                           | Chapter 1                 | Revision:         | Reference Motor Capacity kW (HP) values<br>Figure 1.2                                                                                                 |
|                        |                    |                           | Appendix A                | Revision:         | Power Ratings<br>Drive Watt Loss Data                                                                                                                 |
|                        |                    |                           | Appendix B                | Revision:         | Defaults by Drive Model and Duty Rating ND/HD                                                                                                         |
|                        |                    |                           | Back Cover                | Revision:         | Address                                                                                                                                               |
| October 2014           | < >                | 0                         | All                       | Revision:         | Upgraded the software version to PRG: 1015                                                                                                            |
|                        |                    |                           | Front Cover<br>Back Cover | Revision:         | Title                                                                                                                                                 |
|                        |                    |                           | Preface                   | Revision:         | Applicable Documentation                                                                                                                              |
|                        |                    |                           | Chapter 3                 | Revision:         | EMC filter switch for models 2E0248, 2W0248, 4EU0216, 4W0216, 4E0240, and 4W0240                                                                      |
|                        |                    |                           | Chapter 5<br>Appendix B   | Addition:         | H2-06 = 0 (0.1 kWh units)                                                                                                                             |
| August 2014            | _                  | _                         | _                         | First<br>Edition. | This manual supports drive software version PRG: 1014.                                                                                                |

## Low Harmonic Regenerative Drive for Industrial Applications

# U1000 Industrial MATRIX Drive Technical Manual

YASKAWA AMERICA, INC. 2121, Norman Drive South, Waukegan, IL 60085, U.S.A. Phone: +1-800-YASKAWA (927-5292) or +1-847-887-7000 Fax: +1-847-887-7310 www.vaskawa.com

#### **DRIVE CENTER (INVERTER PLANT)**

2-13-1, Nishimiyaichi, Yukuhashi, Fukuoka, 824-8511, Japan Phone: +81-930-25-2548 Fax: +81-930-25-3431 www.yaskawa.co.jp

YASKAWA ELECTRIC CORPORATION
New Pier Takeshiba South Tower, 1-16-1, Kaigan, Minatoku, Tokyo, 105-6891, Japan Phone: +81-3-5402-4502 Fax: +81-3-5402-4580 www.yaskawa.co.jp

#### YASKAWA ELÉTRICO DO BRASIL LTDA.

777, Avenida Piraporinha, Diadema, São Paulo, 09950-000, Brasil Phone: +55-11-3585-1100 Fax: +55-11-3585-1187 www.yaskawa.com.br

#### YASKAWA EUROPE GmbH

Philipp-Reis-Str. 6, 65795 Hattersheim am Main, Germany Phone: +49-6196-569-300 Fax: +49-6196-569-398 www.yaskawa.eu.com E-mail: info@yaskawa.eu.com

#### YASKAWA ELECTRIC KOREA CORPORATION

6F, 112, LS-ro, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Phone: +82-31-8015-4224 Fax: +82-31-8015-5034 www.yaskawa.co.kr

YASKAWA ASIA PACIFIC PTE. LTD. 30A, Kallang Place, #06-01, 339213, Singapore Phone: +65-6282-3003 Fax: +65-6289-3003 www.yaskawa.com.sq

#### YASKAWA ELECTRIC (THAILAND) CO., LTD.

59, 1F-5F, Flourish Building, Soi Ratchadapisek 18, Ratchadapisek Road, Huaykwang, Bangkok, 10310, Thailand Phone: +66-2-017-0099 Fax: +66-2-017-0799

#### YASKAWA ELECTRIC (CHINA) CO., LTD.

22F, Link Square 1, No.222, Hubin Road, Shanghai, 200021, China Phone: +86-21-5385-2200 Fax: +86-21-5385-3299 www.vaskawa.com.cn

YASKAWA ELECTRIC (CHINA) CO., LTD. BEIJING OFFICE Room 1011, Tower W3 Oriental Plaza, No. 1, East Chang An Avenue, Dong Cheng District, Beijing, 100738, China Phone: +86-10-8518-4086 Fax: +86-10-8518-4082

#### YASKAWA ELECTRIC TAIWAN CORPORATION

12F, No. 207, Section 3, Beishin Road, Shindian District, New Taipei City 23143, Taiwan Phone: +886-2-8913-1333 Fax: +886-2-8913-1513 or +886-2-8913-1519 www.yaskawa.com.tw

#### YASKAWA INDIA PRIVATE LIMITED

#17/A, Electronics City, Hosur Road, Bengaluru, 560 100 (Karnataka), India Phone: +91-80-4244-1900 Fax: +91-80-4244-1901 www.yaskawaindia.in

#### YASKAWA

YASKAWA ELECTRIC CORPORATION

In the event that the end user of this product is to be the military and said product is to be employed in any weapons systems or the manufacture thereof, the export will fall under the relevant regulations as stipulated in the Foreign Exchange and Foreign Trade Regulations. Therefore, be sure to follow all procedures and submit all relevant documentation according to any and all rules, regulations and laws that may apply.

Specifications are subject to change without notice for ongoing product modifications and

© 2014 YASKAWA ELECTRIC CORPORATION



MANUAL NO. SIEP C710636 04E <4>-YAI Published in Japan March 2024 23-2-25\_YAI Original instructions