YASKAWA

Machine Controller MP2000 Series

USER’'S MANUAL

for Motion Programming

Z’"W_"m”w""m R

e, 65 o [oea v ruB Bl BERS
PE=TRE—

INE: A -
1AC T e i

nc IR = S0

A0 15V 1000K FIEO0OK: “ TR | OO0 PR -
END:

EFFT T T T Tood] Ar‘

b o ST o R) L. B S T] |
2y, 1 oy | ETE _al

TR

MANUAL NO. SIEP C880700 38D

Overview “

Specifications n

Program Development Flow n
Motion Programs u

| 5

Sequence Programs
Variables (Registers) ﬂ

Programming
Command Reference ﬂ

Engineering Tool MPE720 n

Troubleshooting m
App

Appendices

Copyright © 2008 YASKAWA ELECTRIC CORPORATION

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, mechanical, electronic, photocopying, recording,
or otherwise, without the prior written permission of Yaskawa. No patent liability is assumed
with respect to the use of the information contained herein. Moreover, because Yaskawa is con-
stantly striving to improve its high-quality products, the information contained in this manual is
subject to change without notice. Every precaution has been taken in the preparation of this
manual. Nevertheless, Yaskawa assumes no responsibility for errors or omissions. Neither is
any liability assumed for damages resulting from the use of the information contained in this
publication.

About This Manual

B This manual provides information on motion commands for the MP2000 series Machine Control-
lers.
* Motion program overview
* Specifications
* Program development flow
* Motion programs and sequence programs
* Variables
* Programming
» Command reference
* Engineering tool MPE720
* Troubleshooting, etc.

B Read this manual carefully to ensure the proper use of the MP2000 series Machine Controller.
Also, keep this manual in a safe place so that it can be referred to whenever necessary.

Using This Manual

B Intended Audience
This manual is intended for the following users.

* Those responsible for designing the MP2000 series Machine Controller system

* Those responsible for writing MP2000 series Machine Controller motion programs and sequence pro-

grams
B Engineering Tool MPE720 Version Number

In this manual, the operation of MPE720 is described using screenshots of MPE720 version 6.

For this reason, the screenshots and some descriptions may differ from those for MPE720 version 5.
W Description of Abbreviation

In this manual, the following abbreviation is used.

* MP2000: Machine controller model including MP2100, MP2100M, MP2200, MP2300, MP2300S,
MP2310, MP2400, MP2500, MP2500M, MP2500D, and MP2500MD

Manuals for MP2000 Series

B The user’s manuals are prepared by classifying MP2000 series Machine Controller models into
MP2100, MP2100M, MP2200, MP2300, MP2300S, MP2310, MP2400, MP2500, MP2500M,
MP2500D, and MP2500MD.

Refer to Related Manuals on the next page as required.

Related Manuals

B The following table lists the related manuals. Refer to these manuals as required.

B Before using, be sure you understand the product conditions, including specifications and usage

restrictions.

Manual Name

Manual Number

Contents

Describes the functions, specifications, setup

Machine Controller MP2100/MP2100M User’s Manual SIEPC88070001 | procedures, and operating methods of the
MP2100/MP2100M.
Describes the functions, specifications, setup
Machine Controller MP2200 User’s Manual SIEPC88070014 | procedures, and operating methods of the
MP2200.
Describes the functions, specifications, setup
Machine Controller MP2300 Basic Module User’s Manual SIEPC88070003 | procedures, and operating methods of the
MP2300.
Describes the functions, specifications, setup
Machine Controller MP2300S Basic Module User’'s Manual | SIEPC88073200 | procedures, and operating methods of the
MP2300S.

. . Describes the functions, specifications, setup
Maci}lne Controller MP2310 Basic Module SIEPC88073201 | procedures, and operating methods of the
User’s Manual

MP2310.
Describes the functions, specifications, setup
Machine Controller MP2400 User’s Manual SIJPC88074200 | procedures, and operating methods of the
MP2400.
Machine Controller MP2500/MP2500M/MP2500D/ Describes the functions, specifications, setup
achine Controller .
MP2500MD User's Manual SIEPC88075200 | procedures, and operating methods of the
MP2500/MP2500M/MP2500D/MP2500MD.
Describes the functions, specifications, and
Machine Controller MP2000 series SVB/SVB-01 SIEPC88070033 application methods of the MP2000-series
Motion Module User's Manual Motion Module that is built into the SVB and
SVB-01 Module.

. . . Describes the functions, specifications, and

M:g?lsnlt\eAaC:unat:'oller MP2000 Series Motion Module SVA-01 SIEPC88070032 | operating methods of MP2000-series Motion
Module SVA-01.

. . . Describes the functions, specifications, and
Machine Controller MPZOOO Series Pulse Output Motion SIEPC88070028 | operating methods of MP2000-series Motion
Module PO-01 User’s Manual

Module PO-01.
Machine Controller MP2000 Series Communication Module Des?nb?s the functions, specifications, 'and

, SIEPC88070004 | application methods of the MP2000 series

User’s Manual .

Communication Modules.
Engineering Tool for Machine Controller MP2000 Series Describes the installation and operation of

9 9) , SIEPC88070030 | the programming software MPE720 for

MPE720 Version 6 User’s Manual .

MP2000 series.

. . Describes the installation and operation of
Machine Controller MP900/MP2000 Series MPE720

SIEPC88070005 | the programming software MPE720 for

Software for Programming Device User’s Manual

MP900/MP2000 series.

Machine Controller MP900/MP2000 Series User’s Manual,
Ladder Programming

SIEZ-C887-1.2

Describes the processing instructions used in
MP900/MP2000 series Machine Controller
ladder programs.

Machine Controller MP900/MP2000 Series
New Ladder Editor User’s Manual
Programming Manual

SIEZ-C887-13.1

Describes the programming instructions of
the New Ladder Editor, which assists
MP900/MP2000-series design and mainte-
nance.

Machine Controller MP900/MP2000 Series
New Ladder Editor User’s Manual
Operation

SIEZ-C887-13.2

Describes the operating methods of the New
Ladder Editor, which assists MP900/
MP2000-series design and maintenance.

Visual Aids

The following aids are used to indicate certain types of information for easier reference.

Indicates important information that should be memorized, including precautions such as alarm displays to

IMPORTANT | avoid damaging the devices.

<4 EXAMPLE P Indicates supplemental information.

INFO Indicates application examples.
%
Indicates definitions of difficult terms or terms that have not been previously explained in this manual.
TERMS '

Safety Information

The following conventions are used to indicate precautions in this manual. Information marked as shown

below is important for the safety of the user. Always read this information and heed the precautions that are
provided. The conventions are as follows:

Indicates precautions that, if not heeded, could possibly result in loss of life or serious in-
A\ WARNING | <P PossiblY

Indicates precautions that, if not heeded, could result in relatively serious or minor injury,

/N CAUTION or property damage.

If not heeded, even precautions classified under A CAUTION can lead to serious
results depending on circumstances.

Indicates prohibited actions. Specific prohibitions are indicated inside ®
O PROHIBITED

For example, @ indicates no fire or open flame.

Indicates mandatory actions. Specific actions are indicated inside . .
© VMANDATORY

For example, e indicates that grounding is required.

Safety Precautions

This section describes important precautions that apply to motion programming. Before programming,
always read this manual and all other attached documents to ensure correct programming.
Before using the equipment, familiarize yourself with equipment details, safety information, and all other

precautions.

B Application Precautions

/A CAUTION

» When programming the following axis move commands, check the path to make sure that there are no
tools or other obstacles in the way of the workpiece.

The axis move commands that must be checked are as follows:
* Positioning (MOV)

* Linear Interpolation (MVS)

* Circular Interpolation (MCC, MCW)

* Helical Interpolation (MCC, MCW)

+ Set Time Positioning (MVT)

* Linear Interpolation with Skip Function (SKP)

+ Zero Point Return (ZRN)

* External Positioning (EXM)

<4 EXAMPLE »

axis 3

Each axis is moved
independently at rapid N
traverse speed. End position

N >0
ﬁ Positioning

axis 3

axis 1
" Current position

axis 2

axis 1

axis 2

Example of Basic Path for Positioning (MOV)

Failure to carry out the above checks may result in damage to equipment, serious personal injury,

or even death.

/\ CAUTION

« If the following coordinate commands are designated incorrectly, the subsequent move operations will
be entirely different than those expected. Before starting operations, be sure to check that the settings

are designated correctly.

The coordinate commands that must be checked are as follows:
* Absolute Programming Mode (ABS)

* Incremental Programming Mode (INC)

* Current Position Set (POS)

* Move ON Machine Coordinates (MVM)

<4 EXAMPLE »
is 2
axs axis 2
(axis 1) : »
.. \ Current position
(axis 2)
! axis 1
(0.0) workpiece coordinate system
: axis 1
(0,0) Machine coordinate system

Example of Work Coordinate System Created with
Current Position Set (POS)

Failure to carry out the above checks may result in damage to equipment, serious personal injury, or even death.

B General Precautions

Observe the following general precautions
to ensure safe application.

* MP2000-series Machine Controller was not designed or manufactured for use in devices or systems directly
related to human life. Users who intend to use the product described in this manual for special purposes such as
devices or systems relating to transportation, medical, space aviation, atomic power control, or underwater use
must contact Yaskawa Electric Corporation beforehand.

* MP2000-series Machine Controller has been manufactured under strict quality control guidelines.
However, if this product is to be installed in any location in which a failure of MP2000-series Machine Control-
ler involves a life and death situation or in a facility where failure may cause a serious accident, safety devices
MUST be installed to minimize the likelihood of any accident.

* Drawings and photos in this manual show typical product examples that may differ somewhat from the product
delivered.

» We will update the data sheet number for the manual and issue revisions when changes are made. The edition
number of the revised manual appears on the back of the manual.

* Contact your Yaskawa representative and quote the data sheet number on the front page of the manual if you
need to replace a manual that was lost or destroyed.

* Contact your Yaskawa representative to order new nameplates whenever a nameplate becomes worn or dam-

aged.

Vii

viii

Warranty

(1) Details of Warranty
B Warranty Period

The warranty period for a product that was purchased (hereinafter called “delivered product”) is one year

from the time of delivery to the location specified by the customer or 18 months from the time of shipment

from the Yaskawa factory, whichever is sooner.

B Warranty Scope

Yaskawa shall replace or repair a defective product free of charge if a defect attributable to Yaskawa occurs

during the warranty period above. This warranty does not cover defects caused by the delivered product

reaching the end of its service life and replacement of parts that require replacement or that have a limited

service life.

This warranty does not cover failures that result from any of the following causes.

1.

[I VS I\

6.

Improper handling, abuse, or use in unsuitable conditions or in environments not described in product cat-
alogs or manuals, or in any separately agreed-upon specifications

. Causes not attributable to the delivered product itself
. Modifications or repairs not performed by Yaskawa
. Abuse of the delivered product in a manner in which it was not originally intended

. Causes that were not foreseeable with the scientific and technological understanding at the time of ship-

ment from Yaskawa

Events for which Yaskawa is not responsible, such as natural or human-made disasters

(2) Limitations of Liability

1.

Yaskawa shall in no event be responsible for any damage or loss of opportunity to the customer that arises
due to failure of the delivered product.

. Yaskawa shall not be responsible for any programs (including parameter settings) or the results of pro-

gram execution of the programs provided by the user or by a third party for use with programmable
Yaskawa products.

. The information described in product catalogs or manuals is provided for the purpose of the customer pur-

chasing the appropriate product for the intended application. The use thereof does not guarantee that there
are no infringements of intellectual property rights or other proprietary rights of Yaskawa or third parties,
nor does it construe a license.

. Yaskawa shall not be responsible for any damage arising from infringements of intellectual property

rights or other proprietary rights of third parties as a result of using the information described in catalogs
or manuals.

(3) Suitability for Use

1. It is the customer’s responsibility to confirm conformity with any standards, codes, or regulations that
apply if the Yaskawa product is used in combination with any other products.

2. The customer must confirm that the Yaskawa product is suitable for the systems, machines, and equip-
ment used by the customer.

3. Consult with Yaskawa to determine whether use in the following applications is acceptable. If use in the
application is acceptable, use the product with extra allowance in ratings and specifications, and provide
safety measures to minimize hazards in the event of failure.

* Outdoor use, use involving potential chemical contamination or electrical interference, or use in condi-
tions or environments not described in product catalogs or manuals

* Nuclear energy control systems, combustion systems, railroad systems, aviation systems, vehicle sys-
tems, medical equipment, amusement machines, and installations subject to separate industry or gov-
ernment regulations

+ Systems, machines, and equipment that may present a risk to life or property

 Systems that require a high degree of reliability, such as systems that supply gas, water, or electricity,
or systems that operate continuously 24 hours a day

* Other systems that require a similar high degree of safety

4. Never use the product for an application involving serious risk to life or property without first ensuring
that the system is designed to secure the required level of safety with risk warnings and redundancy, and
that the Yaskawa product is properly rated and installed.

5. The circuit examples and other application examples described in product catalogs and manuals are for
reference. Check the functionality and safety of the actual devices and equipment to be used before using
the product.

6. Read and understand all use prohibitions and precautions, and operate the Yaskawa product correctly to
prevent accidental harm to third parties.

(4) Specifications Change
The names, specifications, appearance, and accessories of products in product catalogs and manuals may be
changed at any time based on improvements and other reasons. The next editions of the revised catalogs or
manuals will be published with updated code numbers. Consult with your Yaskawa representative to confirm

the actual specifications before purchasing a product.

Contents

About This Manual - - - = = = = = = == m e oo e e e iii

Using ThisManual - - - - - === - - - - m oo oo iii

Manuals for MP2000 Series - - - === === - o m oo e e e iii

Related Manuals --------- - mmm e iv

Visual AidS- - - = = = = = = s o o e e e e e e e a o v

Safety Information - - - - - - - - mmm e \Y

Safety Precautions - - - - - === - - - m e Vi

Warranty - - - - - - - - s m o e o e e e oo viii

1 Overview

1.1 What is a Motion Program? - - = - = = = = = = o m e e e - 1-2
1.2 Motion Program Features - - - - - - === - - o m oo e 1-3
1.2.1 Execution Method- - - = = = = = = = s s o e e e e e e e e - 1-3
1.2.2 Motion Control in Full Synchronization with Sequence Control - - ----------unomomnon-- 1-3
1.2.3 Easy to Realize High-level Motion Control- - - - = = = = = = = s o e e e e 1-4
1.2.4 Easy-to-Understand Motion Language - -------- == - - oo 1-4
1.2.5 Arithmetic Operations - - = = = = = = = = s s oo oo e e e 1-4
1.2.6 Data Transfer from/to Ladder Program - - - = - = = = = = o o e m e e 1-5
1.2.7 Memory Usage Reduced by Use of Subprograms - - - === === = = o e e m e e e e - 1-5
1.2.8 Parallel Program Execution - - = = = = = = = = o o o oo e e e 1-6
1.2.9 Program Online Editing - - == = == = = == = 5 e s o e e e e e 1-6
1.2.10 Enriched Easy Programming Functions (MPE720 Ver.6.04 or later)- - - - - - = === == - o= - - - 1-7
1.3 Motion Program Execution Sequence------------=--“-“-“----------- 1-8
1.4 Motion Program Execution Registration - - - - === == = o oo e e e e e e oo 1-9
1.5 Motion Program Execution Timing - -------------------------~--~---- 1-10
1.6 GroUpPINg === === == s s e e e e e e e e e i o 1-11
1.7 Application Examples - - - - - == - - = - - oo oo 1-12
1.7.1 Example 1: Handling System - - - - = = = = - o o o e e e e e e 1-12
1.7.2 Example 2: Mechanical Parts Inserting Maching - - -------=----cnocmmm o 1-12
1.7.3 Example 3: Panel Processing Machine- - - - - = = === oo e e e 1-13
1.7.4 Example 4: Metal Sheet Bending Equipment- - - - = = = = = = - oo e m e e e 1-13
1.8 What is a Sequence Program? ---------------c-mommmmmmm oo 1-14
1.9 Sequence Program Features----------- - mmmmm e - 1-15
1.9.1 Execution Method- - = - = = = = = c m o e e e e e e - 1-15
1.9.2 Programming Language Commonly Used in Motion Programs - - - - = - == === === == === - - - 1-15
1.9.3 Data Transfer from/to Motion Program - - - - - = = = = = o o - e o e e 1-15
1.9.4 Memory Usage Reduced by Use of Subprograms - -------=-=--c-ccommmmmoon 1-16

1.9.5 Easy Programming Functions (MPE720 Ver.6.04 or later) ----------c-mmomommonn- 1-16

2 Specifications

2.1 MP2000 Series Machine Controller Specifications - - -----------=-------- 2-2
2.1.1 Applicable Machine Controller Models- = = = = = = = = = = = m m e e e e e 2-2
2.1.2 Applicable Motion Modules- - - = = = = = = = = & o m e e e oo 2-2
2.1.3 List of Machine Controller Specifications - - -------=-=----cccmm oo 2-3

2.2 Engineering Tool MPE720 Specifications - ----=--=----ccmommmmononon 2-5
2.2.1 Applicable Version Numbers of the Engineering Tool MPE720-----------=----=------ 2-5
2.2.2 List of Engineering Tool MPE720 Specifications - - - - - == == - == - o c o e e e e e oo 2-5

2.3 List of Motion Language Commands ---------------m-momommomoonon 2-6

3 Program Development Flow

3.1 Program Development Flow ----------cmmmmmm oo 3-2
3.2 Program Development Procedure - --------------mmmmmmooaa o 3-3
3.2.1 Hardware Configuration - - - = - - === = - oo oo e 3-3
3.2.2 Installing MPE720 Version 6-----------------oomm oo 3-3
3.2.3 Communication Settings ------------------- oo 3-3
3.24 System Setup ------- - - - e e e 3-3
3.2.5 Creating Project Files ---------ommmmmm e 3-4
3.2.6 Group Definitions ---------------ooo oo 3-5
3.2.7 Creating a Motion Program - -----------mmmm oo 3-6
3.2.8 Registering the Program Execution-------------------omommm o 3-7
3.2.9 Transferring the Motion Program- - - - - == === - - oo oo oo oo 3-10
3.2.10 Debugging the Program - - --------------mom oo 3-12
3.2.11 Saving the Programs in Flash Memory-------------oommmmmm oo 3-13
3.2.12 Executing the Programs - - - - - - - - - - - oo oo oo oo 3-14

4 Motion Programs

4.1 Types of Motion Programs- - - - - - == - - m oo e e e e e e oo - 4-2
4.2 Motion Programs For Each Axis Group---------=-=----c-c-momomoo-- 4-2
4.3 Running a Motion Program - - - - - - - - - oo -m oo mm oo 4-3
4.3.1 How to Run a Motion Program - - - - == == - = - - o m o e e e e 4-3
4.3.2 Registering the Program Execution--------- - ocmm oo 4-5
4.3.3 Work Registers - - - = - == - mm oo m o o e e e e 4-6
4.4 Advanced Programming - ------- === - - - e o 4-11
4.4.1 Indirect Designation of a Program Number Using a Register--------------cuuooon-- 4-11
4.4.2 Controlling the Motion Program Directly from an External Device- - ------------------ 4-12
4.4.3 Monitor the Motion Program Execution Information Using S Register----------------- 4-13

5 Sequence Programs

5.1 Sequence Program TypeS---------------------- e e oo oo - 5-2
5.2 How to Run a Sequence Program - --=----- = - oo mmm e e oo - 5-3
5.2.1 How to Run a Sequence Program- - - - - = = = = == o c m o s oo e e 5-3
5.2.2 Registering Program EXecution - - - - == - - o cmm oo i e 5-4
5.2.3 Work Register------ o= - o oo e e e e e 5-5

Xi

Xii

6 Variables (Registers)

B.1 OVeIVIEW - = = = = = - o e o oo o e o e e e e e m o 6-2
6.1.1 Variable Types - - = === == = m = s o e m e e e - 6-2
6.1.2 Global Variables and Local Variables - - - - - === ----ccc oo e e e e e 6-4

6.2 Using Variables ------- - oo mm i e e 6-7
6.2.1 System Variables (S Registers) - - - - - == - - oo m e e e 6-7
6.2.2 Data Variables (M Registers) - - - = - == == == m oo oo e e - 6-8
6.2.3 Input Variables (I Registers)- - - - - - == == oo s m oo e oo 6-9
6.2.4 Output Variables (O Registers) == - - - === ccm oo e a e o e 6-11
6.2.5 C Variables (CRegisters) - - - ------- - oo oo e 6-13
6.2.6 D Variables (D RegiSters) == - - === - - cmmmmmm e e e e 6-14

6.3 How to Use Subscriptsi, j----------=-=---““-““-“-““--“-“--------- 6-15

7 Programming

7.1 Motion Program Format - ------ - - - e oo e e 7-2
7.1.1 Motion Program Structure = - - = = = = = = = = s o e e e e 7-2
7.1.2 Block FOrmat - - = = = = = = = - m o e o m e e e 7-2
7.1.3 Using Constants and Variables - - - - === -ccmcmmm oo e 7-7

7.2 Motion Module Parameters - - - - - - - - - - - - oo oo 7-9
7.2.1 AXis Type Selection = - - === @ cm o m oo e e e e 7-9
7.2.2 Reference Unit- - - - - - - cmmm o i o m o e e e e 7-9
7.2.3 Electronic Gear - - - === == @ o c oo e e e e a - 7-10
7.2.4 Speed Reference - - - - - == - m s o m e e e e o o 7-12
7.2.5 Acceleration/Deceleration Setting- - - - === === = = = s mm i mm e 7-12

7.3 Group Definition - - = - === == - o e e e 7-13

7.4 Priority Levels of Operations - - ---------c-mmmmmm e e oo 7-15

7.5 Commands and Execution Scans -------------c-cmommm oo 7-17
7.5.1 Command TypPES - === = === = == s oo m o e e e e oaaoaao 7-17
7.5.2 List of Command Types--- - - === = cmm oo m o m oo a oo 7-18

7.6 Sequence Program Format-------------------------- - - 7-19

8 Command Reference

8.1 Axis Setting Commands -----------------““--“““--“--“aaa oo 8-3
8.1.1 Absolute Mode (ABS) - ---------mmom oo 8-3
8.1.2 Incremental Mode (INC) - - - - - - mmmmmm oo 8-7
8.1.3 Acceleration Time Change (ACC)---------------oommmm oo - 8-11
8.1.4 Deceleration Time Change (DCC) - ------------ommmm oo - 8-17
8.1.5 S-curve Time Constant Change (SCC)------------------------mmmoo - 8-23
8.1.6 Set Velocity (VEL)-- === - - oo o e o e oo e oo 8-29
8.1.7 Maximum Interpolation Feed Speed Setting (FMX) - ----------------------------- 8-35
8.1.8 Interpolation Feed Speed Ratio Setting (IFP)----------------mmmmmiiee - 8-37
8.1.9 Interpolation Acceleration Time Change (IAC)-------- === - - - - - 8-40
8.1.10 Interpolation Deceleration Time Change (IDC)---------------------mmuo----- 8-43
8.1.11 Set Interpolation Acceleration/Deceleration Mode (ACCMODE) -------------------- 8-46

8.2 AxisMove Commands ------=-=--= - e e oo e 8-60

8.2.1 Positioning (MOV) - = = = = = = o - o e e e e e e e e e e e e 8-60
8.2.2 Linear Interpolation (MVS) - = - = = == == - o s m e e e e 8-64
8.2.3 Clockwise/Counterclockwise Circular Interpolation with Center Position Designation

(MCW, MCC) === == == s m e o oo e e e e e oo e e e e oo oo 8-69

8.2.4 Clockwise/Counterclockwise Circular Interpolation with Radius Designation (MCW, MCC)- - 8-75
8.2.5 Clockwise/Counterclockwise Helical Interpolation with Center Position Designation

(MCW, MCC) - - - - - - - mmmm e e mmm o 8-79

8.2.6 Clockwise/Counterclockwise Helical Interpolation with Radius Designation (MCW, MCC) - - 8-82
8.2.7 Zero PointReturn (ZRN) - ---------mmmmmmm e 8-84
8.2.8 Linear Interpolation with Skip Function (SKP)--------------coomeeee - 8-86
8.2.9 Set Time Positioning (MVT) - - - - - - - - mc e e e 8-88
8.2.10 External Positioning (EXM)- - == - - --ccmmmm e 8-90
8.3 Axis Control Commands - ------------------------ - 8-92
8.3.1 Current Position Set (POS) -----------mmmmmm e e 8-92
8.3.2 Move On Machine Coordinates (MVM) --------commmo oo 8-94
8.3.3 Program Current Position Update (PLD) - -------------cmmmmmmmmmee o 8-95
8.3.4 In-Position Check (PFN) - ----- - 8-96
8.3.5 Set In-Position Range (INP) - - - - - - - --ccmmmm e e 8-98
8.3.6 Coordinate Plane Setting (PLN) - ------------------ oo 8-100
8.4 Program Control Commands - - - ----------=-----c--mooma - 8-101
8.4.1 Branching Commands (IF ELSEIEND)------------cmmmmmm e 8-101
8.4.2 Repeat (WHILEWEND) - - - - - - - - - - oo 8-103
8.4.3 Parallel Execution (PFORK, JOINTO, PJOINT)----------------mmmmmmmm e o - - 8-106
8.4.4 Selective Execution (SFORK, JOINTO, SJOINT) === --------mmmmmmmmmmmea oo - 8-109
8.4.5 Motion Subprogram Call MSEE) ----------------mmmmm oo 8-113
8.4.6 Sequence Subprogram Call (SSEE) -----------------“-------oo oo 8-114
8.4.7 User Function Call From Motion Program (UFC) - --------------------mo - 8-115
8.4.8 User Function Call from Sequence Program (FUNC) - - - - - - - - - - ommmmmmmm e oo 8-123
8.4.9 Program ENd (END) --------mmmmmm oo e m o e e 8-124
8.4.10 Subprogram ENd (RET) ------------mmmmmm e oo 8-125
8.4.11 Dwell Time (TIM) - - - - - - - - - - o e e e e e 8-126
8.4.12 1/0O Variable Wait (IOW) = - - - - - - - m oo 8-127
8.4.13 One Scan Wait (EOX) ---------mmmmmmmmm oo 8-129
8.4.14 Single-block Signal Disabled (SNGD)/Single-block Signal Enabled (SNGE) ---------- 8-130
8.5 Arithmetic Operations - - - - ------------------- - 8-131
8.5.1 Substitute (=) ---------- - oo 8-131
852 Add (+) - ----mmmm oo 8-132
8.5.3 Subtract (-) == ==--- - oo 8-133
8.5.4 MUIIply (*) === === - - m s mm oo oo 8-134
8.5.5 DiVide (/)= == === === - - - oo s s e 8-135
8.5.6 Remainder (MOD) ------------mmmmm i 8-136

Xiii

Xiv

8.6 Logic Operation - - - - = - === cm o e e 8-137

8.6.1 OR () === mmmmmmmmmmmm e m i oo 8-137
8.6.2 AND (&)= === === mmmm e 8-139
8.6.3 XOR (M) mmmmmmmmm oo oo oo 8-140
8.6.4 NOT (1) - mmmmmmmmmm e e e 8-141
8.7 Data Comparisons - - ------ == - - - - 8-142
8.7.1 Data Comparison Commands (==, <>, >, <, >, <) c - cm oo mmm e e e oo 8-142
8.8 Data Operations------------------ oo 8-144
8.8.1 Bit Right Shift (SFR) = = = = = = = = = = s e e 8-144
8.8.2 BitLeft Shift (SFL) - - - - - - - - m s e 8-145
8.8.3 Block Move (BLK)- - = = = = = = @ 2 o e m o e e e e e e e e e 8-146
8.84 Clear (CLR) - - - - - - - - s oo e o 8-147
8.8.5 ASCII Conversion 1 (ASCII)- = = = = = == s s mm e e e e o e e e s 8-148
8.9 BasicFunctions - ------------- - 8-150
8.9.1 SINE (SIN) = = = = = = m m e e o o 8-150
8.9.2 CoSiNE (COS)---- - - - - s oo oo oo e oo 8-152
8.9.3 Tangent (TAN) = - - = = = 5 o o m o e e e e e e e e e 8-153
8.9.4 Arc Sine (ASN)- - - - - - - oo 8-154
8.9.5 Arc Cosing (ACS) - - === === s - o m o e e e e e e 8-155
8.9.6 Arc Tangent (ATN) - - - - - - - s m oo m o oo oo 8-156
8.9.7 Square RoOt (SQT)- === == == mm s s o e e e e 8-157
8.9.8 BCDtoBinary (BIN) - - - - - - - m e e e e e e 8-159
8.9.9 Binary to BCD (BCD) - - - === === s s e oo oo o e e e e e oo - 8-160
8.9.10 Set Bit (S{})------- - mmm o 8-161
8.9.11 Reset Bit (R{}) - - === == m s s s m oo 8-162
8.9.12 Rising Pulse (PON)- - - - - - - m e e e e e e e e e e e e e e e 8-163
8.9.13 Falling Pulse (NON) - - - - - - - m o m e e e e e e e e m o - 8-165
8.9.14 ON-Delay Timer (TON): Counting unit: 0.01 second---------------ccnommoomo-- 8-168
8.9.15 OFF-Delay Timer (TOF): Counting unit: 0.01 second - - - - ------------mnomomoo-- 8-170
8.10 C-Language Control Commands ---------=-=--------“-“-------- 8-172
8.10.1 C-Language Task Control (CTSK) - === === - s mmmm e e e i e e e - - 8-172
8.10.2 C-Language Function Call (CFUNC)- - - - === === - - oo e e e e - 8-174

9 Engineering Tool MPE720

9.1 Motion Editor - - - - - = == - - - o e e e e e 9-2
9.1.1 OVEIVIBW = = = = = = = = = e oo e oo e e e e e e e emeioeaooa- 9-2
9.1.2 Names and Descriptions of Motion Editor Window Components - - - == == === == - o - - o - o - - - 9-4

9.2 Command Input Assistant Function - - --------- - mmm e 9-6
9.2, OVEIVIBW - = = = = = s o o e o o e e e e e o e 9-6
9.2.2 Motion Command Assist Dialog Box Details == - === === ccmmmmmm i ae o 9-8

9.3 Program Execution Registration Function--------------------------- 9-12
9.3.1 OVEIVIBW = = = = = = = = o e o o e oo e e e e e e e e mee oo 9-12
9.3.2 Program Execution Registry Screen Dialog Box Details - - - - - - - == -=--c-cnocommoon 9-13

9.4 Debug Function - - -------- oo oo 9-15

9.4.1 OVeIVIEW - - - - - - - oo o e e o e e e e e e e oo 9-15
9.4.2 Motion Editor Window during Debugging-------------------“----------------- 9-16
9.5 Motion Task Manager - - ----------------c--momm e oo oo 9-22
9.5.1 OVEIVIBW = = = = - = = m e m o e e e e e e e e e e e e e e oaaooas 9-22
9.5.2 Motion Task Manager Window Details - - - = - == == = = s e e e e 9-23
9.6 Drive Control Panel----------mmmmmm e e e 9-24
9.6.1 OVEIVIBW - = = = = = = - m o o oo e e e e e oo oo 9-24
9.6.2 Drive Control Panel Details- - = = = = = = = = = = = 2 e e e e e e e 9-26
9.7 Test Run Function---------------mmmm e e oo 9-28
9.7.1 OVEIVIBW = = = = = = = = m o e e o e e o e e e e e e emmoaaooen 9-28
9.7.2 Test Run Window Details - - = - = = == == = o m oo e o e e e 9-29
9.8 Axis Status and Alarm Monitor- - - - = = == == - - e m oo 9-31
9.8.1 OVEIVIBW - = = = = = - o mm o oo e m e oo oo 9-31
9.8.2 Monitor Window Details - - - - - == == - = m o e s e 9-33
10 Troubleshooting
10.1 Troubleshooting - ----------- - e 10-2
10.1.1 Basic Flow of Troubleshooting - -----= == oo e 10-2
10.2 Troubleshooting for Motion Programs - - - - == == = == == oo o oo m e oo - 10-3
10.2.1 Error Investigation FIOW = = = = = = = = = = o o e oo 10-3
10.2.2 Problem Starting a Motion Program - - = = = = = = = = = = ¢ e s oo e - 10-4
10.2.3 Confirmingthe Alarm Code - ------ - - - - e 10-9
10.2.4 Motion Program Alarm Codes-- === === === @ cc e oo e e - 10-15
10.3 Troubleshooting for Sequence Programs -------------«-=---------- 10-17
10.3.1 Error Investigation FIOW - - - = - = = = = - oo oo m e 10-17
10.3.2 Problem Starting a Sequence Program - - - - - = - === - m o m e 10-18
Appendices
A Motion Language Commands - ------- == - - - oo oo A-2
A.1 Axis Setting Commands - - = - == == = = 5 s m e e e e e e A-2
A.2 Axis Move Commands - - = = = = = = = = = s s oo m e e e e e e e oo A-3
A.3 Control Commands - - - - === == - s m o e e e e e e e a oo A-5
A.4 Program Control Commands = - - - === - - - mmm i m e e A-6
A.5 Arithmetic Operations- - - - = - = = == = o m m i e oo e A-8
A.6 Logical Operations- - - - = = = = = = = = oo s o e e e oo A-8
A.7 Data CompariSon- - - - = = = = = o - - o m e e e e e A-9
A.8 Data Operations - - == - === o - oo e e e e a - A-9
A.9 Basic FUNCHONS - - - = = = = = = m o m o e e e e e A-10
A.10 C-Language Control Commands - - = = = == = = = = = = = o e m oo m oo A-11

XV

XVi

B Sample Programs - - - - = = == - = - o s o e e e e e - A-12

B.1 Programs for Controlling Motion Program Execution - ---------cmcmmommmmm oo A-13
B.2 Parallel Processing - - - = = = = = = = = = o s s o e e e e e e e e m o A-15
B.3 Motion Program for Speed Control - - - = - = = = = = = o o e e o e e e A-16
B.4 Simple Synchronized Operation Using a Virtual AXiS - -------=--=-=--“--“--“-------~ A-17
B.5 Sequence Programs - - - ---------cmm o m e o - A-19

C Differences between MP900 Series and MP2000 Series Machine Controllers - - A-21

C.1 Motion Programs - - - - - - - - o mmm oo oo oo o e e oo A-21
C.2 Sequence Programs - - - = = = = = = = = = = o oo oo oo e oo A-21
C.3 Motion Programming Commands - = = = = = = = = = = = = = & o oo e oo A-22
C.4 Group Definitions - - - === - - m oo A-22
C.5 Debug Function ----------mmmmm oo A-23
C.6 Motion Program Alarms- - - - = = = = = c oo oo oo oo oo oo A-23
D Precautions - --------ccmmcmommccm e eme e cee e A-24
D.1 General Precautions - - = = - - - - - - - - oo oo A-24
D.2 Precautions on Motion Parameter Settings - - - --------=-----ccoommmmmo oo A-25

Revision History

Overview

This chapter introduces motion programs and describes their features for those who are unfa-
miliar with them.

1.1 What is a Motion Program? - -------- - oo oo m e e o 1-2
1.2 Motion Program Features - ---------------------------------- 1-3
1.2.1 Execution Method - - - = - == = c - s o m e e e 1-3
1.2.2 Motion Control in Full Synchronization with Sequence Control - - - - - - = - === - == - -~ 1-3
1.2.3 Easy to Realize High-level Motion Control - ------- - -cmmmm e oo 1-4
1.2.4 Easy-to-Understand Motion Language - - - - - - - ------------------—---------- 1-4
1.2.5 Arithmetic Operations - ----- - - - m o m e 1-4
1.2.6 Data Transfer from/to Ladder Program - - - - - - - - - cmmmm o m e e e oo - 1-5
1.2.7 Memory Usage Reduced by Use of Subprograms - ----------cmomommomon 1-5
1.2.8 Parallel Program Execution --------cccmmmmm e 1-6
1.2.9 Program Online Editing -------- == - mmm e e 1-6
1.2.10 Enriched Easy Programming Functions (MPE720 Ver.6.04 or later) ------------- 1-7
1.3 Motion Program Execution Sequence - - - ------------------------ 1-8
1.4 Motion Program Execution Registration ------------------------- 1-9
1.5 Motion Program Execution Timing ---------------“-«----------- 1-10
1.6 GroupiNg ------ == mmm oo e e e o o 1-11
1.7 Application Examples - ---------- - o mm e 1-12
1.7.1 Example 1: Handling System - - - - - - - - mmm oo 1-12
1.7.2 Example 2: Mechanical Parts Inserting Maching - - - = - == == - = - e e e e e i oo o 1-12
1.7.3 Example 3: Panel Processing Machine -----------mmmmmmmmm e 1-13
1.7.4 Example 4: Metal Sheet Bending Equipment - -------- - oo 1-13
1.8 What is a Sequence Program? -----------cmommmmmm e 1-14
1.9 Sequence Program Features - -----------------“c-o-o 1-15
1.9.1 Execution Method - - - - - == - c - e o e e e e 1-15
1.9.2 Programming Language Commonly Used in Motion Programs - --------------- 1-15
1.9.3 Data Transfer from/to Motion Program - - - - - = = = - = - e o e e e e 1-15
1.9.4 Memory Usage Reduced by Use of Subprograms - ----------u-cmommomnnn 1-16
1.9.5 Easy Programming Functions (MPE720 Ver.6.04 or later) -------------------- 1-16

Overview

1-1

1-2

1 Overview

1.1 What is a Motion Program?

The motion program is a program written in motion language, Yaskawa’s unique textual language.
A motion program can be executed either by coding an MSEE command in a ladder program or by registering
the motion program in the program execution registry screen dialog box for the M-EXECUTOR Module.

Note: The M-EXECUTOR Module can not be used with the following modules and Machine Controllers:
MP2300, CPU-01, CPU-02

Apart from ladder programs, up to 256 motion programs can be created.

An example of a motion program is shown below.

FEngineering Manager - [Motion Editor MP2300 MP2300 Dffline Local[MF 11 =101 =]
| File Edit Wiew Debug ‘Window =181x]
DHS W e Bl ERREES|
|PTit:— cPU:— |

GroupT B EEE & eE Y EERE RS
noom "MPMO01"; =
00002 00000 OWSB03C=3; "AXIS X ZERO RETURN MODE (3: C PHASE]"

00003 ooom OW80BC=3; "AXIS Y ZERO RETURN MODE [3: C PHASE]"

0noo4 ooo02 VEL [X]1000 [Y]1000; "SPEED FOR POSING"

00005 00003 ACC [X]100 [¥]100; "ACCELERATION TIME"

00006 00004 DCC[<]100 [Y]100; "DECELERATION TIME"

00007 00005 OL803E=100; "AXI5 X APPROACH SPEED"

00008 00006 0L8040=50; "#X15 X CREEP SPEED"

00009 ooooy 0L8042=10000; "AXIS X ZERO RETURN TRAVEL DISTANCE"

00010 00008 0OL80BE=100; "AXIS Y APPROACH SPEED"

00011 00009 0L80C0=50; "AXI5 Y CREEP SPEED"

00012 ooo010 oLs0c2=10000; "AXIS Y ZERO RETURN TRAVEL DISTANCE"]
00013 00011 ZRN [£]00 [¥]00; "COMMAND FOR ZERO RETURN"

00014 00012 L
Line Block K1 y
[humber of CP steps:13 | I [|

1DBG |2A8BT |3 41N |5ovR [6SP |[7BP |8Go |3 ['BRK [IRGL [12 |
For Help, press F1 |— _m UM | i

The features of motion programs are described starting from the next page.

1.2 Motion Program Features

1.2 Motion Program Features
1.2.1 Execution Method

A motion program employs an execution method that differs from the ladder program.

With a ladder program, processing from the program start to an END command is completed within one scan.
With a motion program, the processing requested by one command normally requires more than one scan.

Also, the commands are executed sequentially, in the order they are coded.
In this manual, the execution method of ladder program is referred to as Scan Execution, and that of a motion

program as Sequential Execution.

~
Ladder program Motion program
(Scan execution) (Sequential execution)
One program 1BO0000 1BO00O1 0OB00000 At the completion of
is executed lexecution of one
in a fixed move command,
cycle. the next command will * MOV [X]1000 [Y]2000;
1B00002 DB000005 be executed.
+ MOV [X]-1000 [Y]-2000;
1800003 } MVS [X]2000 [Y]1000 F30000;
1B00004 DB000006 0OB00001
END
J

1.2.2 Motion Control in Full Synchronization with Sequence Control

The process written in a motion program is executed in full synchronization with high-speed scans of the
MP2000-series Machine Controller. The axis movement will start within one scan after the start request from the
ladder program, without any time lag to start the motion program.

Sequence Control

Ladder program (High-speed scan)

PROGRAM START

FROGRAM START ON PULSE START REQ:
e) MEOO0000 DB
4 .

PROGRAM HOLD

HOLD HOLD R
Booo: DE0O0N

PROGRAM STOP
STOP STOP REQH
BC0CY DBO000I2

ALARM RESET
ALARM RESET RESET REQ

Starts the motion
program

VEL [X]2000 [Y]2000;
ACC [X]100 [Y]100;
DCC [X]100 [Y]100;

Motion control in full
synchronization with
high-speed scans

()
Motion program

MPMO001

MOV [X]O [Y]O;
MVS [X]100.0 [Y]200.0;

)

Set motion
parameters

4 A
Motion Control
(Motion Module)

Fully
synchronized
control
@
% Position
1= control
o
@®©
[}
=
o Speed
o control
=
Torque
control
N
& J

Overview

1-3

1 Overview

1.2.3 Easy to Realize High-level Motion Control

1.2.3 Easy to Realize High-level Motion Control

In addition to basic motion control, motion control that involves complicated movements can be easily realized
by using motion programs.

Helical
interpolation

Positioning

Circular PR
interpolation

Linear

interpolation

1.2.4 Easy-to-Understand Motion Language

A motion program employs intuitive motion language commands such as VEL to set a velocity and MOV for
positioning.

M VEL [A1]1000 [B1]500;
MOV a0 811200

1.2.5 Arithmetic Operations

The motion language includes commands for arithmetic operations and logical operations.

These commands allow you to include various calculations, such as calculation of target position in a motion pro-
gram.

DLO00000 = DL00002 + DW00004;
DL00000 = DW00002 % DL00004;
MWO00000 = MW00000 & 00FFH;
MF00000 = SIN(30.0);

1.2 Motion Program Features

1.2.6 Data Transfer from/to Ladder Program

Data can be transferred between a ladder program and motion program.
Data registers (M registers) are used to transfer the data.
In this way, a value updated in a ladder program can be used in a motion program, and vice versa

Ladder program Motion program

—C @ E—

(RFTSeeA wowtser (RFToest WeRtson .

(nF1sres WMt Data reglster

Read Update (M register) Read Update MOV [A1] MLOOOOO,

— e =

[(WF]Srea WLMA0D (WF]Dest WLMAOD

———o

1.2.7 Memory Usage Reduced by Use of Subprograms

Subroutines (subprograms) can be created within a motion program.
The number of program steps can be minimized by creating a subprogram that includes a set of commands to
perform a repeated or regular task, thus reducing memory usage.

Main program Main program Main program

MPMO001 MPMO002 MPMO003

Calling Calling
(MSEE)

Calling
(MSEE)

Write common
processing in a
subprogram.

MPS010

Subprogram

Overview

1-5

1 Overview

1.2.8 Parallel Program Execution

1.2.8 Parallel Program Execution

With a single MP2000-series Machine Controller, up to 16 tasks can be simultaneously executed using motion
programs. With one motion program, up to four main programs can be simultaneously executed. Additionally, up
to two subprograms can be simultaneously executed by calling subprograms from the main program. Multiple
different movements can be simultaneously controlled by using such the parallel program execution function.

Simultaneous
execution of
up to 16 tasks

Task

Up to four main programs&

can be executed
| in parallel.

Task 1 \ v
Processing 1

D Subprogram

MP2000- Task 2

\ A

Processing 2 Processing 3 Processing 4

series
Machine \i

\
Processing
1-2

Controller = / Processing
1-1
L}
Up to two subprograms \

can be executed in
D parallel.

Task 16

1.2.9 Program Online Editing

Motion programs can be edited online in the same way as ladder programs.

Online editing refers to editing programs with the programming device logged on to the Machine Controller.

In online editing mode, the operation to save the edited program automatically transfers the saved program to the
Machine Controller. Thus, an operation to transfer to the Machine Controller is not required and program devel-
opment efficiency is improved.

Operation to transfer a program
to the Machine Controller

Offline editing // : e

—
\ | .
| Debuadi -7
Programming | ebugging 7
| ’
I | Pid
’

Online editing // .

INFO! Online editing is disabled while a motion program is running.

1.2 Motion Program Features

1.2.10 Enriched Easy Programming Functions (MPE720 Ver.6.04 or later)

The engineering tool MPE720 Ver.6 for MP2000-series Machine Controllers is provided with the following easy
programming functions.

@® Test Run Function

Control the axes onscreen.

® Command Input Assistant Function

Simply select a command and set data in the Motion
Command Assist dialog box to insert the command in
the editor.

T
[7 57t oo st = (531 « A
SeleciCommend [MOV FOSITENRG %] ot ||[(Cr#nl Axsanr) saos s 5
MOV [Axis1]- [AxisZ]- .; _ SewEabs em
hsermbai] X Updste [= ==
Sellothe opmerts Inserts the command &)
Brgument Axis [Segu. Une s Enckle Disable Maritar
|Azig1] Position |41 1000 ; ;
IAxis2] Poskion _|B1 2000 o)
Soeed iefesence 00
G #||@‘WPF“S‘@H [1000gdsestmin]
| The s opeeabes onky whils hold dovwn
Torvumd tnttarn or rmoseo adhon:.
. Comet "POSITIONING"
FOSTIaNING | MOV [41]1000 [B1]2000:;
[=
i END; +£3 B-
Fi d Farens
o | e | = -

@ Axis Operation Monitor Function @® Program Execution Registration Function

Easily register programs to be executed in the system.

View the motion status of each axis onscreen.

coutry sereen—]
MEECUTAR frafvdusl]
-] [P0
Execuion fype Spachication
[Mcter oo o =]
AROCH0N regithe
Allocefion DISADLE
o st =
Stahs [ey
Conrel signal 2|r [wmwon
e 001] LI g
List Didstn aK Cancel

® Debug Function
Debug a motion program.

The debug commands, including step-by-step execution
and break point setting, are provided.

@ Operation Control Panel Function
Start motion programs from the Motion
Editor window.

|

Program exec registy No.

Overview

HEM [0
roomnate W[HRESEHR S & wE ¥ AR
START ST&RT (O =i
PAUSE PAUSE) "POSITIONING"
Stopped stor ([) MOY [A1]1000 [B1]2000]
ALMRST ALMRST Q)
RUNKING RUNNING (O] "LINEAR INTERPOLATION"
PAUSING PAUSING O] MVS [A1]2000 [B1]3000;
STOPPED STOFFED) END;
ALAAM ALARM O
PRGNOERR PREGNDERF O
Display Dizplay |

1-7

1 Overview

1.3 Motion Program Execution Sequence

The motion programs created on the MPE720 Motion Editor window are transferred to the MP2000-series
Machine Controller. The transferred motion programs can be called by MSEE commands coded in the ladder

program, or from the execution registry screen dialog box of the M-EXECUTOR Module. Motion commands are
sent to the motion module via the motion parameters to move axes.

The following diagram illustrates how motion programs created using the MPE720 are executed.

Motion Editor Window

i Motion Editor MP2310 Deline Locall MPMO01] - .-J.I:I.l.’.q
[FTa; 7 CPUR: 1 — e |
Groupl | REFEP &g i LT
0001 i
w0002 ABS:

00003 H

10004 M T100000;

000 :

npunes MVE [CT]300 [D1]400 Frooo;

apoor

npuos END:

MPE720 Transfer the created programs

MP2000-series Machine Controller

Motion programs *

Ladder program
H MSEE command Pl < MPMO0 T
j VEL [X]2000 [Y]2000; <> SWR
Calling ACC [X]100 [Y]100; >
HO1 —>—(_ _ MSEE) P> | bCc (X100 [V]100: »
[W1Program No. 00001 MOV [X]0 [V]0; >
ool MVS [X]100.0 [Y]200.0;, >
H01.01 [4]Data MADDDOO o
I:t Ha00000
H01.02 <l Built-in

D || svB
HO02

M-EXECUTOR

Program Definition tab

Motion parameters

MPMO002 SVB-01
ABS;
regimer(regip . 'y
B Calling FMX T100000;
264 - Sw02321 P> | \ivs (11300 (114007 1000 >
END;
"
; - <> SVA-01
NNNNN n
Can call motion

programs without using
ladder program Can call up to
16 programs at once

Capable of storing
up to 256 programs

\

PO-01

A

1.4 Motion Program Execution Registration

1.4 Motion Program Execution Registration

Execution of motion programs can be registered in two ways.

® Calling a Motion Program from the Ladder Program

Code an MSEE command in an H drawing to call the motion program to run. An MSEE work register is used
to start/stop the called motion program. Motion programs can be called from any H drawing: parent drawing,
child drawing, or grandchild drawing.

Motion program

DWG.H MPMO001
i MSEE Z)- | Calls
[MProgram No. 00001 eefiint |NC:
00001 !
[A]Dsta MA00000
HADDD0D VEL [A1]100 [B1]200;

) MOV [A1]1000 [B1]2000;
Work register

Status END;

Control signal

Interpolation override

System work number

INFO In this manual, the high-speed processing drawing of a ladder program is referred to as H drawing.

B Registering Motion Programs in M-EXECUTOR

Register motion programs in the M-EXECUTOR program execution definition. A control register (I/O regis-
ter) is used to start or stop the registered motion program.

M-EXECUTOR Motion program
Program definition MPMO001
4o 8] Execution type I Setting I Program I Execution monitar registers register)
= | Sequence programiStart) Direct - =
1 21 Motion program ~ | Direct *| MPMOOT SWO03264 - SW03321 - ﬁcalls INC;
2 1 |Motion program > |Direct > | MPMOOZ SWO3322 - SWO3370 '
500 [E | Motion program ~|pirect =| MPMO03 SWO3380 - SWO3437 VEL [A1]100 [B1]200;
MOV [A1]1000 [B1]2000;
Control registers
END;
M-EXECUTOR
Mo, Iterm ;
Control register
|Program number MPROO1T
|status IOCO0
1 |Contral signal OWOCO1
| override OWOCH2

INFO M-EXECUTOR is a software module to execute motion programs and sequence programs.

Overview

1 Overview

1.5 Motion Program Execution Timing

Motion programs are executed in full synchronization with MP2000 high-speed scans. In every high-speed scan
cycle, I/0 services are performed first, and the motion program registered in M-EXECUTOR is executed.

Next, the motion program initiated in the MSEE command coded in the DWGH is executed at the timing of the
MSEE command execution.
The following diagram illustrates motion program execution timing.

High-speed scan

High-speed scan

High-speed scan

A

4
A

4
A

A

Empty

1/0 service
(Output)

1/0 service
(Input)

MP2000-series
CPU Module

External device

Batch

Input (1)

M-EXECUTOR

[¥]Program No.
[AlDats

oo
a0
MADL

register
Output (O)
L register |
register Batch
output
Motion program
M-EXECUTOR MPMO001 Subprogram
+_(MSSEOS . MPS101
Status
N MSEE g
Control signal '
Requests RET,
to execute | END;
DWG.H
- WSEE)]

Motion program

2
z
1000

MADD

1000

Status

Control signal

; Reports

MPMO002 Subprogram
. MPS102
MSEE -
END;

Requests
t

0 execute

1.6 Grouping

1.6 Grouping

The axes involved in related operations are organized into individual groups. Motion programs can be created for
each group. This allows one MP2000-series Machine Controller to independently control multiple machines
using group operation. Group operation can be single group operation or multiple group operation.

Definitions for axes to be grouped together are made under Group Definitions.

® Single Group Operation

MP2000 series
Machine Controller

B Multiple Group Operation

MP2000 series
Machine Controller

ol (o] ol ol
Ll a ajl: al . [al.
ol ol ol |o
R n| ! DD
L @D @D ® ;. @ |
Group1 Group3

program
roup

program
MPMO04
MPMO01

Groups are organized El |5 Main program
in a tree structure. MPMO0Z

= Cigr A

~[=1 [Main program

MPMO03

------ Sub program

Overview

1-11

1 Overview

1.7.1 Example 1: Handling System

1.7 Application Examples

Motion programs can be used for operations of various systems.
Some application examples are shown below.

1.7.1 Example 1: Handling System

Outline

* To stack a specified number of cardboard boxes on a pallet and
transport them to the next process

* The system operation includes three axes motion control for
the palletizing process and an automatic pallet feeding
sequence.

Control points

* Moves X1 and X2 axes in synchronization using
a virtual axis.

* Realizes smooth movements by using interpola-
tion.

* Palletizes by calculating the position data with the
motion program according to predefined condi-
tions (box dimensions, the number of boxes in a
horizontal row, the number of boxes in a vertical
row, and the number of boxes in a stack.

1.7.2 Example 2: Mechanical Parts Inserting Machine

Outline
* To insert parts, such as connectors, in a printed board.

* The handling robot takes out the parts and brings them to the
stand. The inserting robot inserts the parts in the specified posi-
tion and angle on the board.

Robot 1

Control points
» Two groups of axes are organized, and programs
are created for each group, so that each robot is
independently controlled.
* The tact time can be shortened by using two-axes
or three-axes linear interpolation.

Parts tray

1.7 Application Examples

1.7.3 Example 3: Panel Processing Machine

Outline

* To draw waveforms on a flat panel made of construction mate-
rial.

* More than ten cutters are mounted in series on the X axis, and
the width of the pattern can be easily changed.

Control points

* Moves X and Y axes in circular interpolation
to draw waveforms.

* Moves Y1 and Y2 axes in synchronization
using a vertical axis.

==

7
.'
|'
Wave forms e '
¢

1.7.4 Example 4: Metal Sheet Bending Equipment

Outline
« To bend a metal sheet

* A metal sheet can be bent into various shapes by changing the
adjusting axis while feeding a sheet using the rolling axis.

Workpiece
platform

Adjusting roller

Control points
Workpi . ; ; -
(m‘;’ta‘ffﬁget) ('?ontrols.tw.o a>'<es, a.llnear ax1§ and rota
tional axis, in linear interpolation.
* Switches the motion program to be called

Motor for according to the process.

adjusting roller

b~ Motor for
inserting workpieces

Motor for feeding roller

Overview

1-13

1 Overview

1.8 What is a Sequence Program?

The sequence program is a scan execution type program written in the language commonly used for the motion
program.
An application to cyclically check a status, such as an interlock, can be created by using a sequence program.

A sequence program can be executed by calling from the program execution registry screen dialog box of M-
EXECUTOR Module.

Note: The M-EXECUTOR Module can not be used with the following modules and Machine Controllers:
MP2300, CPU-01, CPU-02

A total of up to 256 sequence and motion programs can be created.
An example of a sequence program is shown below.

= Motion Editor MP2310 Online Local[SPM002] 10} =|
[PT#: 2 cPU#: 1 > I
| JBR= Hd‘-‘lﬁlg)—ITw[Elg&IDE%%!&PIIII@:
00001 "SPMO01'™ =]
00002 :

00003 00000 IF SBO00001==1; "1 SCAN ON AFTER H START"

00004 "CLEAR'™;

00005 00001 CLR DW00 W32;

00006 00002 IEND;

00007

00008 "ON PULSE;

00009 00003 IF DBO00002==1;

00010 "[&1 GROUP1] SERVO ON';

00011 00004 0B80000=1;

00012

00013 "[B1 GROUP1] SERYO ON';;

00014 00005 0B80800=1;

00015 00006 IEND;

00016

00017 00007 END;

Line Block Kl L|_I
| | Y

The features of sequence programs are described, starting from the next page.

1.9 Sequence Program Features

1.9 Sequence Program Features
1.9.1 Execution Method

A sequence program employs the same execution method as the ladder program.

A sequence program is a cyclically executed scan execution type program. Processing from the program start to
an END command is completed within one scan.
Sequence programs can be used by registering them in the program execution registry screen dialog box of M-
EXECUTOR Module.

cycle

Executed in
a constant

Ladder program

(Scan execution type)

1B00002

1B00003

1B0O0000 1BO0001

1B00004 DB000006

0OB00000

DB000005

0OB00001

END

Executed in
a constant
cycle

Sequence program
(Scan execution type)

0OB00000 = 1B00000 & 1B00001;

DB000005 = IB00002 | IB00003;
0OB00001 = PON(IB00004 DB000006);
END;

1.9.2 Programming Language Commonly Used in Motion Programs

1.9.3

A sequence program employs the same motion language as a motion program.

The motion language commands that can be used in sequence programs, however, are limited to sequence com-
mands, such as math commands. Commands for motion control, such as axis move commands, cannot be used.
The use of sequence programs allows you to create an application for sequence control without using a ladder

program.

Data Transfer from/to Motion Program

Data can be transferred between a sequence program and a motion program.
Data registers (M registers) are used to transfer the data.
In this way, data updated in the sequence program can be used in the motion program, and vice versa.

Sequence program

ML00000 =ML00002 + ML00004;
ML00000 =ML00000 *ML00006;
END;

Read Update

Data register
(M register)

Read Update

Motion program

MOV [A1] ML0O000O;

Overview

1-15

1 Overview

1.9.4 Memory Usage Reduced by Use of Subprograms

1.9.4 Memory Usage Reduced by Use of Subprograms

Subroutines (subprograms) can be created within a sequence program.

The number of program steps can be minimized by creating a subprogram that includes a set of commands to
perform a repeated or regular task, thus reducing memory usage.

Main program Main program Main program

SPMO001 SPM002 SPMO003

Call
(SSEE)

Write a repeated
or regular task in
a subprogram

SPS010

Subprogram

1.9.5 Easy Programming Functions (MPE720 Ver.6.04 or later)

The following easy programming functions can also be used for sequence programs.

@® Command Input Assistant Function @® Debug Function

Simply select a command and set data in the Motion Debug a sequence program. .
Command Assist dialog box to insert the command The debug commands, including step-by-step execution
in the editor. and break point setting, are provided.

73 iotion comenend annist_________ E
o R — | i Motion Editor MP2310 Online Local[MPMOD3] =10 x|
PT#: 2 CPUR: | I_
BLK Registar Register W,
e | == Group1 |@@Bﬂ#‘|ﬁ‘g}—|—us{|—|‘t
et 00001 00000 IF MBOODODD == 1; =
— P Inserts th mman 00002 00001 MWI]I]I]I]2 1]
e reron | o 00000 serts the command 00003 D0OD2 ELSE;
Desonaton regi. |~ WHVD0100 - 00004 DODD3 MW00001=1;
W Hurnber 1 b 100 00005 00004 IEND;
00006
00007
b 00008 00005 END;
DLOCE HEME = | BR= \ﬁIEV)—Iiwli\ il .
g “BLOCK MOVE" = Line Block 4 I»
gh’é.""w""""" MW00100 W100; GG T =
- | '
4

2

Specifications

This chapter describes the relevant specifications of motion program and engineering tool

MPE720.

2.1 MP2000 Series Machine Controller Specifications - ----------------- 2-2
2.1.1 Applicable Machine Controller Models - - - - - - - - === -m e e e e 2-2
2.1.2 Applicable Motion Modules - - === === === - e m e e e 2-2
2.1.3 List of Machine Controller Specifications - =----== - === ccmmmmmm i 2-3

2.2 Engineering Tool MPE720 Specifications ------------------------ 2-5
2.2.1 Applicable Version Numbers of the Engineering Tool MPE720 - - - - - - - - - - - - - ----- 2-5
2.2.2 List of Engineering Tool MPE720 Specifications ---------------------------- 2-5

2.3 List of Motion Language Commands - -------------------------- 2-6

Specifications

2-1

2-2

2 Specifications

2.1.1 Applicable Machine Controller Models

2.1 MP2000 Series Machine Controller Specifications
2.1.1 Applicable Machine Controller Models

Motion programs can be used with the following MP2000-series Machine Controller models.
+« MP2100
+ MP2100M
* MP2200/CPU-01
* MP2200/CPU-02
« MP2200/CPU-03
« MP2200/CPU-04
* MP2300
* MP2300S
* MP2310
« MP2400
* MP2500
* MP2500D
* MP2500M
* MP2500MD
+ MPU-01

INFO With the exception of MP2300, CPU-01 and CPU-02, both motion programs and sequence programs can be used.

If using the M-EXECUTOR module or sequence programs with MP2100 or MP2100M, the programming tools with fol-
lowing versions are required.

MP2000 Series Controller Applicable Version MPE720 Applicable Version
MP2100 Ver 2.66 or later MPE720 Ver 5 | MPE720 Ver 5.44 or later
MP2100M

MPE720 Ver 6 MPE720 Ver 6.10 or later
MPE720 Ver 6.10 Lite or later

2.1.2 Applicable Motion Modules

The following motion modules support motion programs.
The axes connected to the following motion modules can be controlled using motion programs.
¢ Built-in SVB (Built in MP2100, MP2100M, MP2300, MP2300S, MP2310, MP2400, and MP2500,
MP2500D, MP2500M, MP2500MD as a standard feature)
* SVR (Mounted on all models of MP2000-series Machine Controllers as standard)
SVA-01
SVB-01
* PO-01

2.1 MP2000 Series Machine Controller Specifications

2.1.3 List of Machine Controller Specifications

MP2200
/CPU-03
MP2100, MP2200 MP2200 ’
MP2100M MP2300 [MP2300S | MP2400 /CPU-01 MP2310 /CPU-02 MP2200 Remarks
/CPU-04,
MPU-01
Total user program
capacity including lad-
Program Capacity | 5.5 MB 7.5 MB 11.5 MB der programs, motion
programs, and
sequence programs.
Applicable N/A Applicable -
Start . 64 drawings max. -
g | Processing
g Interrupt .
8 . 64 drawings max. -
£ Processing
< | High-speed .
@ -
3 | Processing 200 drawings max.
@
4 -
Low spe.ed 500 drawings max. -
Processing
User function 500 drawings max. -
Applicable -
Number of Up t.o a total of 256
256 programs max. motion programs and
Programs
sequence program.
Number of Eicht erouns Up to 16 axes can be
Groups ght group set for one group.
Number of motion
Number of programs that can be
Tasks 16 tasks executed simulta-
neously.
Number of Parallel execution of
Parallel . four main programs X
Eigh llel
Processes ight parallel processes parallel execution of
(Per Task) two subprograms.
Execution * By writing an MSEE instruction in the ladder program
Method * By using an M-EXECUTOR Module (Excluding MP2300, CPU-01 and CPU-02)
g Starting The program starts running at the rising edge of control signal bit 0 B
5’ Method (Program start request).
‘:‘c— Override Can be set in the range from 0.01% to 327.67%. -
2 Operation Mode switching by
§ Mg de ABS (absolute) and INC (incremental) mode use of the exclusive
command (ABS/INC).
* Built-in SVB, SVB-01, and SVR Module:
1 deg, inch
Reference Unit puse, mm, deg, inch, -
* SVA-01 and PO-01 Module:
pulse, mm, deg, inch
* E pulse
Min. 1 B
Reference Unit | « mm, deg, inch, um
1,0.1,0.01, 0.001, 0.0001, 0.00001
Reference 2147483648 to +2147483647 (32-bit with sign) -
Range
Number of
Simultaneously
Controlled 16 axes max. -
Axes
(Per Task)

Specifications

2-3

2-4

2 Specifications

2.1.3 List of Machine Controller Specifications

(# register cannot be accessed from motion program and sequence program.)

MP2200
/CPU-03
MP2100, MP2200 MP2200 '
MP2100M MP2300 [MP2300S | MP2400 /CPU-01 MP2310 /CPU-02 MP2200 Remarks
/CPU-04,
MPU-01
Applicable | N/A | Applicable Na | Applica- || Applica- |
ble ble
Number of 256 programs max. Up to a total of 256
p (The execution timing can be selected from the start drawing, high-speed scan drawing, | motion programs and
rograms ¢
or low-speed scan drawing.) sequence.
Number of sequence
% Number of 16 tasks max. programs that can be
5| Tasks executed simulta-
o
o neously.
8 | Number of
S | Parallel
5}
% Processes None -
@ [(Per Task)
Execution .
Method By using the M-EXECUTOR Module -
Started by the system
by registering pro-
Start Method Started by the system. arams in the M-
EXECUTOR module.
M Register Accessible (65535 words) Memory backed up by
battery.
S Register Accessible (8192 word) Memory backed up by
battery.
g | Register Accessible (32768 words and motion monitoring parameters) -
% O Register Accessible (32768 words and motion setting parameters) -
ylcC Register Accessible (16384 words) -
g Internal register
a unique to each draw-
& | D Register Accessible (Can be specified in the range from 0 to 16384 words) ing. Can be used by
<c() only the correspond-
ing drawing.
Accessible only from ladder program (Can be specified in the range from 0 to 16384
Register words) -

2.2 Engineering Tool MPE720 Specifications

2.2 Engineering Tool MPE720 Specifications
2.2.1 Applicable Version Numbers of the Engineering Tool MPE720

Motions programs and/or sequence programs can be created or edited on the following engineering tool MPE720
versions.

* MPE720 Ver.5 (Compatible with MP2000-series Machine Controller models excluding MP2400)

* MPE720 Ver.6 (Compatible with all models of MP2000-series Machine Controllers)

* MPE720 Ver.6 Lite (Compatible only with MP2400)

INFO The above engineering tool software can be installed on one personal computer.

2.2.2 List of Engineering Tool MPE720 Specifications

MPE720 Ver.5 MPE720 Ver.6 | MPE720 Ver.6 Lite Remarks
(CPMC-MPE720) | (CPMC-MPE770) | (CPMC-MPE770L)

MP2100 Compatible Not compatible —
_ | MP2100M Compatible Not compatible -
% MP2200/CPU-01 Compatible Not compatible -
% MP2200/CPU-02 Compatible Not compatible -
% MP2200/CPU-03 Compatible Not compatible —
‘g MP2200/CPU-04 Compatible Not compatible -
(03) MP2300 Compatible Not compatible -
< MP2300S Compatible Not compatible -
& | MP2310 Compatible Not compatible —
= MP2400 Not compatible Compatible -

MPU-01 Compatible Not compatible -
g Ladder Program Supported Not supported -
g Motion Program Supported -
D% Sequence Program Supported -
gjﬂ?::d Input Assistant Not provided Provided (Ver.6.04 or later) -

. . Not supported b
o mion eoncion | o et | Pt v 608 st
CPU-02
Debug Function Provided -
Motion Task Manager Provided -
Drive Control Panel Provided Provided (Ver.6.04 or later) 11:14(;283115(503;%?0}/1,
(Ver.5.38 or later) CPU-02

Test Run Function Not provided Provided (Ver.6.04 or later) -
ﬁl)zfn?l?/lec::ittlgrnFMu(r)Igitg;/ Not provided Provided (Ver.6.04 or later) -

Specifications

2-5

2-6

2 Specifications

2.3 List of Motion Language Commands

Type Command Name Type| Commands Name
ABS Absolute Mode = Substitute
INC Incremental Mode oS + Add
2 ACC Acceleration Time Change g '-E - Subtract
= DCC Deceleration Time Change % = * Multiply
E SCC S-curve Time Constant Change <O / Divide
8 VEL Set Speed MOD Remainder
g FMX Maximum Interpolation Feed Speed | OR (Logical OR)
% IFP Interpolation Feed Speed Ratio Setting (—8 é & AND (Logical AND)
IAC Interpolation Acceleration Time Change .g) g A XOR (Logical exclusive
- 8 OR)
IDC Interpolation Deceleration Time Change ! NOT (Inversion)
MOV Positioning == Match
é MVS Linear Interpolation - <> Mismatch
g MCW Clockwise Circular/Helical Interpolation o é > Greater than
§ MCC I(Ifzzrrgz{gﬁ)cr]l(wwe Circular/Helical 8 % < Less than
g ZRN Zero Point Return < >= Greater than or equal to
E SKP Linear Interpolation with SKIP Function <= Less than or equal to
5 MVT Set Time Positioning 5 SFR Right Shift
EXM External Positioning © SFL Left Shift
Z POS Current Position Set §- BLK Block Move
G MVM Move On Machine Coordinates o CLR Clear
§ PLN Coordinate Plane Setting a ASCII ASCII Conversion 1
o PLD Program Current Position Update SIN Sine
.g PFN In-Position Check COsS Cosine
8 INP Set In-Position Check Width TAN Tangent
IF ELSE IEND | Branch ASN Arc Sine
WHILE WEND | Repeat ACS Arc Cosine
PFORK, g ATN Arc Tangent
JOINTO, Parallel Execution 3 SQT Square Root
PJOINT Ug_ BIN BCD to Binary
) SFORK, 2 BCD Binary to BCD
G JOINTO, Selective Execution @ S{} Set Bit
E SJOINT R{} Reset Bit
§ MSEE Subroutine (motion subprogram) Call PON Rising Pulse
% SSEE Subroutine (sequence subprogram) Call NON Falling Pulse
3 UFC User Function Call from Motion Program TON On-Delay Tlimer
g TOF Off-Delay Timer
ga FUNC User Function Call from Sequence Program o
a END Program End 2 CTSK € Language Task
0 ®© Control
RET Subprogram End g E
TIM Dwell Time = 8
(o) I/O Variable Wait g g CEUNG C Language Function
EOX One Scan Wait s Call
SNGD/SNGE | Disable/Enable Single Block ©

3

Program Development Flow

This chapter describes the procedures from system setup to operation start using the program-
ming tool MPE720 version 6.

3.1 Program Development Flow ------------------ooooo o 3-2
3.2 Program Development Procedure --------------ccc-oooommmmnon 3-3
3.2.1 Hardware Configuration -------------------oooo oo 3-3
3.2.2 Installing MPE720 Version 6 - - - - - - -------------ooom oo 3-3
3.2.3 Communication Settings - --------------"----"-------- - 3-3
3.24 System Setup - ------ - -m o e 3-3
3.2.5 Creating Project Files - -------------------oom oo 3-4
3.2.6 Group Definitions - ----------------- oo 3-5
3.2.7 Creating a Motion Program - - - ---------mmmmm oo 3-6
3.2.8 Registering the Program Execution - - ------------ooommmmmmo 3-7
3.2.9 Transferring the Motion Program - - - - - - - - - - - - - oo oo oo 3-10
3.2.10 Debugging the Program - - - - ---------mmmmmm o 3-12
3.2.11 Saving the Programs in Flash Memory - - - - - -------------commoo - 3-13
3.2.12 Executing the Programs - - -------------ommmmmm 3-14

Program Development Flow

3-1

3 Program Development Flow

3.1 Program Development Flow

In this chapter, motion program development procedures are described according to the following flowchart.

1. Preparation for Devices to be Connected

Connect the devices.
Install MPE720 in a personal computer.

Refer to the following sections: Reaqi ring the Program Ex ion
3.2.1 Hardware Configuration 6. €9 ste 9 L ogra ecutio
3.2.2 Installing MPE720 Version 6 Register the program in the system to execute
3.3.3 Communication Settings the program in high-speed scan.
Refer to the following section:
: ; 3.2.8 Registering the Program Execution

2. System Setup v

Execute the self-configuration function to set up the 7. Transferring the Program
system. .

Refer to the following section:
3.2.4 System Setup

Transfer the created program to the MP2000-series
Machine Controller.

v Refer to the following section:
3.2.9 Transferring the Motion Program

3. Creating Project Files v

Create a project in preparation for program

development. 8. Debugging the Program
Refer to the following section:
3.2.5 Creating Project Files

Debug the created program.

v Refer to the following section:
3.2.10 Debugging the Program

4. Settings for Group Definitions v
Organize the axes into individual groups according
to the machine configuration. 9. Saving the Program in Flash Memory

Refer to the following section:
3.2.6 Group Definitions

v Refer to the following section:
3.2.11 Saving the Programs in Flash Memory

5. Creating a Motion Program v

Code a motion program on the Motion Editor.

Save the debugged program in flash memory.

10. Executing the Programs

Refer to the following section:

3.2.7 Creating a Motion Program Execute the created program by using the register

list.

: ; Refer to the following section:

3.2.12 Executing the Programs

Note: 1. The development procedure for sequence programs is basically the same as that for motion programs.
For this reason, descriptions of the sequence program development flow are omitted.
2. The above flowchart shows an example of program development. To use programs for the actual system,
settings for the external devices are required.

EMotion Program to be Created

In this chapter, the following motion program is used to explain the program development flow. The motion
program contains only three lines for the simple operation of moving an axis 150,000 pulses from the current
position and then stopping.

INC; “INCREMENTAL MODE”
MOV [A1]150000 [B1]150000; “2 AXES 150000 PULSES POSITIONING”
END;

3.2 Program Development Procedure

3.2 Program Development Procedure

3.2.1

3.2.2

3.2.3

3.2.4

Hardware Configuration

The program development procedure is explained using the following system configuration.

Power MECHATROLINK cable
supply
SERVOPACK SERVOPACK
@"mgfggf Q s oiA1zA T oS oinzA
s MECHATROLINK Terminator
% cable :'J:E]
s liflir
o)
©) = O
Machine Controller
Power supply —»
PP cable Encoder cable Motor cable
Personal computer running MPE720 Servomotor Servomotor

Note: In the system configuration above, set the station numbers of the two SERVOPACKSs to 1 and 2.

Installing MPE720 Version 6
Install MPE720 Ver.6 in a personal computer.

For information on the installation procedure, refer to Engineering Tool for MP2000 Series Machine Controller
MPE?720 Version 6 User s Manual (manual no.: SIEPC88070030).

Communication Settings

Set the conditions for communications between the computer on which MPE720 Ver.6 is installed and the
MP2000-series Machine Controller.

For information on the communication settings, refer to Engineering Tool for MP2000 Series Machine Control-
ler MPE720 Version 6 User s Manual (manual no.: SIEPC88070030).

System Setup

Use the self-configuration function to setup the system. The self-configuration function automatically recognizes
the modules installed on the MP2000-series Machine Controller and the devices connected to the Machine Con-
troller through the MECHATROLINK connection. This function allows you to quickly and easily set up the sys-
tem. The self-configuration can be executed either when the power to the Machine Controller turns ON or by
using MPE720.

For information on how to execute self-configuration, refer to the user’s manual for the Machine Controller to be
used.

Program Development Flow

3-3

3 Program Development Flow

3.2.5 Creating Project Files

3.2.5 Creating Project Files

1. Double-click the MPE720 Ver.6 icon on the computer desktop to launch the MPE720 Ver. 6.

i
Alziey
MPE?20 Verk

2. Click New under Project.

Bndy AR MM

3. Specify the file name, file saving destination folder, and Machine Controller model. Then click the Create
button.

ed b

Create New Project

Save i ({3 MP2300 T) & =5 ER-
o~

destination folder.

Histom

Desklop
ey
w

My Documents

\' Select the file saving

/Select the file name. ‘

File name: (lM 2300 ;D | (Eleate)l
j Cancel |
Help |

Save as ype: I Praject File [rhw)

Contraller (rmPz300 ~))

Select the MP2000-series —
\ Machine Controller model.

3.2 Program Development Procedure

3.2.6 Group Definitions

Before creating a motion program, organize the axes into individual groups according to the machine configura-
tion.

1. Click the Motion tab to display Motion program in the subwindow.

TASKAWA ELELTRIL CORPORATION

Motion program hak Camiey
appears here.

History
HPZI00. VMW

(Bl G ermen) [
Ready

Chrl+C
T+

Refresh

ILaddar JMutiun lmﬁystEmJ

3. Click OK. For details on group definitions, refer to 7.3 Group Definition.

1! Group Definition 3 =l

—Group Lisk———————————————————— ~Auxis Specification[Groupl]
Ma. of Graup =i Contral fixis Mo, |3 _,::'

Axis | Circuit | Bxds No. | Logical Axis Name
[t 1 1 a1
i 1 2 Bl

1 3 [

(OF I) Cancel Help

Program Development Flow

3 Program Development Flow

3.2.7 Creating a Motion Program

3.2.7 Creating a Motion Program

Start the Motion Editor to create a motion program.

1. Programs are displayed under Motion program in the subwindow. Right-click Main program. Select
New from the drop-down menu.

B3

Program

E

Click to
open
the tree.

B paste Chry

Delete Delete

Compile

| =il addder | [E]mation | [TH5ystem| |

2. Click OK.
! Create New Program |
= Program Mo, MPMOO1
=
L
Program Name I
Configuration = File privilege 0,1
Detail definition Fiead 1}
wirite i
D register 32
—
" Zancel Help << Detail |
—— A

3. Enter the sample motion program provided in 3./ Program Development Flow.

[Motion Editor MP2300 MP2300 Offline Local[MPM001]

i =10lx]
PTi— CPUR:—

[
Group1 N R EsEd @ F A EH Y L EERNE N ERE0
00001 00000 INC;

"INCREMENTAL MODE"
"2 AXES 150000 PULSES POSITIONING"

ooooz2 ooo001
00003 00002

MOV [AT]150000 [B1]150000;
END;

Line Block 1 _»l_l
[Wumber of CP steps:3

I 4

4. Click the Save icon (E) on the toolbar of the Motion Editor window to start compiling. The motion
program will be automatically saved after compiling is completed.

IMPORTANT

Note that the motion program will not be automatically saved if the Error List dialog box appears during com-
piling.

3.2 Program Development Procedure

3.2.8 Registering the Program Execution

Call the created motion program from the H drawing using an MSEE command. For details, refer to 4.3.2 Regis-
tering the Program Execution.

1. Click the Ladder tab in the subwindow to display Ladder program.

BB MPETI0 Ver 6 - MPZI00 [MPZ300] - [Sart] B =0 x|
SITY B B vew Onine Comple Debug Window el - 8x
¥ASEAWA FLECTRIC CORPORATION

Communicalions Selling

Connection

) (B Start
B Irkerupt Ihzeannection

4 [E5 Functon

S s e
Resdy

2. Right-click High-speed under Ladder program in the subwindow. Select New from the drop-down
menu.

8 MPETPD Vior f - MPP300 [MP2300] - [Start]

P Bl @8 Yew Qnine Comphs [sbug Wndow Ll

Offline MP2300 C\Documents and Settings’ Administrator’, My Do erf

Programming Monitor

By gomr

B poe i

Lompls
Erushie Main Program
s Han Program
Conversion of CP dder
Impert
[Eileaser [Slheeken Moty
3. Click OK.
1!
Program Mo, HI
Program MName I Main Program
Canfiguration [= File privilege 0,1 .
Detail definition Read 1]
Wite 1
= Use register num... | 32,0,0
D register 32
‘whork register... | 0 po
register a _I
-

—
" Cancel Help | << Detail |

Program Development Flow

3 Program Development Flow

3.2.8 Registering the Program Execution

4. Create the ladder program shown below. After the ladder program has been created,

by pressing the F8 key on the keyboard or clicking the

0ooo
ML-1

0003
ML-1

0008
ML-1

00os
ML-1

o010
ML-1

ooz
ML-1

A" icon on the toolbar.

sample for motion program control

axis Al, B1 seno on

compile the program

Sv-0n Al~Serva ON
MBOOOO00 QB30000
JIF]
[Ly
B1~Sero ON
QBa0s00
i
R
program start
start on-pulse start
MBOO0001 DEO00040 DEOoo010
I% | & i
[_ A,
prograrm hold
hold hold
MBOOOOO2 DBEO00011
IT 1 Ty
[T
prograr abort
abort abort
MBO0O0O3 DBEO00012
J
[i
program and alarm reset
reset reset
MBOOOOO4 DBEO00015
ize] reEp]
£ et
motion program call
1005 MSEE i
[¥W]Program Mo, 00001
[AlData DA00000
run offtpulse stop
DEO0000O DBEO00041 DBEO00042
|] R | B
1 b, 4 e

0013
ML-1

mm —(__ F)

001e DEOO0042
ML-1
treatment after motion program stopped
WEy (— EMD_IF }
o7
ML-1
Wy —
oo1g
ML-1

U

INFO

» Make sure that bit 0 of motion monitoring parameter IWCICI00 (Operation Ready) is ON before turning ON the Servo
ON command MB000000.

* The Servo ON command will not be accepted if the Operation Ready bit is OFF.

3.2 Program Development Procedure

ﬁ
z
o
N

The motion programs can be registered to run by registering the programs in the M-EXECUTOR program execution defi-
nition, without creating the ladder program described on the previous page.

The procedure to register motion programs to the program definition of M-EXECUTOR is described below. Before using
this procedure, be sure to carry out the operation described in 3.2.9 Transferring the Motion Program.

1. Click the E icon on the toolbar in the Motion Editor window where the motion program is created.

= Motion Editor MP2310 Online Local[MPMDO1]

IF'T# JCPUE1 l I

[Groupt Hppesad 85 [«E ¥ I EENNE -m—.&(a)a\

00001 "INCREMENTAL MODE™ ;I
00002 00000 INC;

0ooo3 "POSITIONING"

00004 00001 MOV [A1]150000 [B1]150000;

00005 00002 END;

Line Block q Ll_l

| | 4

2. The Program execution registry screen dialog box will open. Click OK to register the program.

Program execution registry screel

M-EXECUTOR (indviduall

Program execution registiy number Program number
|1 'I IMPMDD‘I hd I
Execution type Specification
IMolion pragranm j IDirect LI

Allacation register
Allocation DISABLE

Pragram number I l—
Statuiz ﬂ i~ l—
Contral signal ﬂ i~ I—
Overide(1=0.01%] i~ l—

List Delete q oK p Cancel |

Program Development Flow

3 Program Development Flow

3.2.9 Transferring the Motion Program

3.2.9 Transferring the Motion Program

Transfer the motion program to the MP2000-series Machine Controller. If the program is created on a computer
using MPE720 Version 6 and the Machine Controller connected online, this operation will not be required.

1. Click Communications Setting in the following window.

BE MPE720 Ver.6 - MP2300 [MP2300] - [Start] e ~=lof x|
:fY Bl Edt Wiew Onlne Compie Debug Window Help - &%

Offline MPZ300 C:\Documents and Settings)Administrator\My Documents)MP2300.YMW YASKAWA ELECTRIC CORPORATION

Setup Programming Monitor Transfer Utility

tion

7~ Start |_H i Main Frogram

Program
E)[[1]MP2300 [MP2300]
- B Ladder pragram
-1 [High-speed
[H : Main Program

%1 [Lov-spesd oo
B Start Disconnection
[E] Interrupt
-i#1 B Function

History
MP2300.YMW
2310.YMW

MP2300. YMW

ILadder lMDtlurv lm]systam I

Ready CAP NUM SCRL

2. Select the communication port selected in 3.2.3 Communication Settings, and click the Connection but-
ton.

I Communications Setting |

Set the communication setting

@

Communication pork 1 Ethernet (1P

Setking

Cancel

3. Offline will change to Online. Select Transfer - Write into controller.

W MPE720 Ver.6 - MP2300 [MP2300] - [Start] e =l x|
:FT Ble Edt Wew Onine Comple Debug Window Help -Aax

Ladder
By =
Frogram
=11 MP2300 [MF2300]

2 [Ladder program
¥ [E] High-speed Communications Setting

-] Low-speed Connection [3:Ethemet IP192.168.1.1]

Interrupt Disconnection

-## [E] Function History

MP2300 YMW

“ElLadder lMDtmn ll]]]system I

Ready CAP NUM SCRL 4

3.2 Program Development Procedure

4. Click the Individual button, and then select the Program check box. Click the Start button.

Transfer Program - Write into Controller - -

Source Project File : MP2300

(MP2300., YR

% Batch

L] g0 Configuration
Program
[Register
|:| Comment

0%

Save ko flash after transferring to the controller,

Mation program
C language
Table data
Yariable

----- User Skruckure

o | »

Close I

4

Options |

* When Individual transfer is selected, the same file in the Machine Controller will be overwritten with the selected proj-
ect file data.

* When Batch transfer is selected, the MP2000-series Machine Controller’s RAM will be cleared before transfer, and all
project file data will be written in the RAM.

(N
&

5. Click the CPU STOP button to start transfer.

MPE720 Yer.6 x|
-

i Controller is running.

There is & possibility to cause the following problems when transfer during RN,

2
1. There is a possibility that the application miscalculation, E
2. It will kake more time while to complete transfer, —
c
Do wou want ko continue transfer? g
Q.
o
ves | crustor Cancel | T
>
]
[m)
IS
. . L . o
6. Click the Yes button in the following dialog box to restart the Machine Controller. o
a

MPE720 Yer.6 |

-
1 RUM the controller?
(fes ID Mo |

3-11

3 Program Development Flow

3.2.10 Debugging the Program

3.2.10 Debugging the Program

Debug the created program. For details on debugging, refer to 9.4 Debug Function.

1. Click the Register List 1 tab to display the register list. Specify register MB000000. Set MP000000 to
ON as follows to turn the servo ON.

Resgster | MUOOCG00 - % Bt T
D 1z (3 |4 |5 & [T |8 89 A [
m@mmr UFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
MUDOBOIO (OTT OFF OFF OFF OFF OFF OFF OFF OFF OIF OIF oo on
MBOOGOZ0 OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
MEDOBOD |OFF OFF OFF DFF OFF OFF OFF DFF OFF OFF OFF OFF OFF OFF
MEGUIMD |UFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF Ok
MUDOBOSD (OFF OFF OFF OFF OFF OFF OFF OFF OFF OIF OIF oo on
MBOOBOGO |OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
MEOOBOTO |OFF OFF OFF DFF OFF OFF OFF DFF OFF OFF OFF OFF OFF OFF
MEGUBOBD |UFF UFF OFF OFF OFF OFF OFF OFF OFF OFF I OFF OFF Ok
MUDDDOSO (OFf OFF OFF OFF OFF OFF OFF OFF OFF OFF OIF o on o
MBOOOLO0 OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
MBDOG1 10 OFF OFF DFF OFF OFF OFF DFF OFF OFF OFF OFF OFF OFF =

& When using the M-EXECUTOR as described in 3.2.8 Registering the Program Execution, directly set the motion setting
parameter to turn the servo ON.

2. Click the Debug Mode icon (g) on the toolbar.

FigEngineering Manager - [Motion Editor MP2300 Online Local[MPMOD1]] I SN [0l =]
| Fle Edit Miew Debug Window & x|
joE&(w :melps|uGsRe

[PTa:3 CPUR: 1 — PR [_n | R
o | BEBd &7 L0 wE@E)L EER N IE[5500

00001 00000 INC; "INCREMENTAL MODE" =
00002 00001 MOV [41]15000 [B1]15000; "POSITIONING"
00003 DODD2 END;

Line Block q _»lJ

1DBG |2ABT 3 41N SovR |6SP 7BP 8GO 9 10BRK [1TRGL [12
For Help, press F1 T T v T

3. The Motion Editor will enter debug mode.

FigEngineering Manager - [Motion Editor MP2300 Online Local[MPMDO1]] S =10l x]
| File Edit Wiew Debug ‘indow . [|
R =

|PTH: 3 CPU: 1

Groupl REEHP S
00001 00000 INC;

00002 00001
00003 00002

“POSITIONING"

MOV [A1]15000 [B1]15000;
END;

Line Block
[pebug Mode »>> Suspend [[[[[[
1DBG 2ZABT 3 4IN S0VR ESP 7BP 8GO0 El BRK [ITRGL |12
For Help, press F1 I I e

4. Click the Step In icon ('&) to execute the program line by line, and check the programmed movements.
For details on debugging, refer to 9.4 Debug Function.

Fi Engineering Manager - [Motion Editor MP2300 Online Local[MPMO01]] I S =01 x]
Tl File Edit View Debug Window (81|
[DES W s =@ @t h&Gs R s

[PT#: 3 CPUR: 1 > =
oot F|POSES S| L wE L DERAEPIE ERDE
00001 00000 INC; "INCREMENTAL MODE" =]
00002 00001 ¥ MOV [A1]15000 [B1]15000; "POSITIONING"

00003 00002 END;

Line Block B 12

[Debug Mode > Suspend [I I [I
1DBG [2ABT |3 1IN 50vyR_[6SP [7BP [8GOD |9 10BRK [1TRGL [12

For Help, press F1 T 1 Tl 15

5. Debug the program until the END command. When the debugging operation is completed, turn the servo
OFF.

3.2 Program Development Procedure

3.2.11 Saving the Programs in Flash Memory
Save the data in the MP2000-series Machine Controller’s RAM to the flash memory.

1. Select Transfer - Save to flash in the following window.

B MPE720 Yer.6 - MPZ300 [MP2300] - [Start] B =101 x|

n Eile Edit View Online Compile Debug Window Help - 8%

Online MP230i Ethernet IP192.168.1.1 CPU-RUN

Programming

all

By =

Pragram

=111 MP2300 [MP2300]

* [F B Ladder program
=) & High-speed Communications Setting

Connection [3:Ethemnet IP192.168.1_1]

[Low-speed
[E Start Disconnection
~# [E] Interrupt
-4 [Function

History
MP2300 YWW

2310, YMW

MP2300 YMwW

{@Ladder lMotlon l[msystem J

Ready CAP NUM SCRL

2. Click the Start button.

Transfer Program - Save to Flash : -

‘iriting target controller @ MP2300 (Ethernet IP192,168.1.1)

| 0%

Cptions | Close I

3. Click the CPU STOP button to start saving.

MPE720 Yer.b 3 x|

@ The conkraller is runming, so it may kake more time to save ko fAash,

Shiould the controller continue ko run during save ko Flash?

Yes I(D Cancel

4. Click the Yes button in the following dialog box to restart the Machine Controller.

MPE720 Yer.b =

@ RIIM the controller?

es Mo |

Program Development Flow

3 Program Development Flow

3.2.12 Executing the Programs

3.2.12 Executing the Programs

Execute the created programs to operate the actual machine. Turn the Program Start Request bit to ON using the
control signal to execute the motion program.

1. Click the Register List 1 tab to display the register list. Specify register MB000000. Set MB000000 to
ON to turn the servo ON.

Bt | MECOD00D 1% - BEod T
1 2 3 4 5 & T a 9 L)] c o E F EI
MBOO0O00 'EC(I Off OFF OFF OFf OFf OFF OFf OFf OFF OFf OFf OfFF OFF
MIBOOOO10 OFF (NF OfF OFF OFF OFF OFF OFF OiFF OFF O8F O OFF oer ong
MBOODOZD |OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF (FF OFF OFF OFF OFF
MEOOOO30 |OFF OFF (FF OFF OFF OFF OFF OFF (FF OFF OFF OFF OFF OFF OFF OFF
MEOOON4D | OFF OFF (FF OFF OFF OFF OFF OFF (FF OFF OFF OFF OFF OFF OFF 0OFF
MEBDOOOSO |OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
MBOOOOGO | OFf OFF OFF OFf OFf OFF OFf OFf OFF OFf OFf OfF OFf OFf OFF OfF
MBOOOOTD |OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
MEBODDOHD | OFF OFF (FF OFF OFF OFF OFF OFF (OFF OFF OFF OFF OFF OFF OFF OFF
MEOOOOG0 |OFF OFF (FF OFF OFF OFF OFF OFF (FF DOFF OFF OFF OFF OFF OFF OFF
MEBOOOIO0 | OFF OFF OFF OFF OFF OFF OFF OFF (FF OFF OFF OFF OFF OFF 0OFF 0OFF
OFF

OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF =|

g

2. Set MB000001 in the register list to ON to execute motion program MPMO0O01.

Set MB0000O to ON
to turn the servo ON.
sample for motion program control
axis A1, B1 semo on
sv-on Al~Zervo ON
MBOO000D QBs0000
|]
1l 7
0000
st MPMO01 starts running at the Bi~Gerva ON
rising edge of DB000010. SR
program start
start oh-pulse start
MBO00001 DBO00040 DEOOOO10
| | - —CO—A
0oo3 t -
ML-1
program hold
hold hold
MB000002 DBO00011
| | Ay
0006 L
HL-1
program abort
abort ahort
MBOO0003 DEOO0012
|]
[
0oos
ML-1
program and alarm reset
reset reset
MEOO0004 DEOOOO15
T
oo L3
WL
otioniptogratn.Cal MSEE work register
WMSEE =) DWO00000 Status flag
0o12 [“W]Program Mo, 00001 .
L1 [AlData DAQO000 DWO00001 Control signal
DW00002 Override for interpolation
run off-pulse
DBO00000 DB000041
| i) DWO00003 System work number
0013 bl p2
ML
IF
0018 DBO000042
ML
treatmeant after motion pragram stopped
I [ENDIF
o017
ML-1
0093 8 END }
0ote
ML

4

Motion Programs

This chapter describes motion program types and how to run them.

4.1 Types of Motion Programs - - - - - - ---------mmmmmmm oo 4-2
4.2 Motion Programs For Each Axis Group - ------------------------- 4-2
4.3 Running a Motion Program - ---------------co-mmmmm e 4-3
4.3.1 How to Run a Motion Program - ----------moommmm e e - 4-3
4.3.2 Registering the Program Execution - -----------cmmmmmommmm e 4-5
4.3.3Work Registers = -------ccmmm o e e 4-6
4.4 Advanced Programming ---------=--=--“=--““--c--c-------- 4-11
4.4 1 Indirect Designation of a Program Number Using a Register - - ---------------- 4-11
4.4.2 Controlling the Motion Program Directly from an External Device - - ------------- 4-12
4.4.3 Monitor the Motion Program Execution Information Using S Register ------------ 4-13

Motion Programs

4-1

4-2

4 Motion Programs

4.1 Types of Motion Programs

There are two motion program types, as listed below.

Designation

e Method

Features

No. of Programs

MpMOOO

Main Program
ain Frogra OO0- 1 to 256)

* Called from the M-EXECUTOR
program execution definition
* Called from DWG.H

MpsSOOO

Sub
ybprogram (OO0-= 1 to 256)

* Called from the main program

Up to 256 programs including following
programs can be created.

* Motion main program

* Motion subprogram

» Sequence main program

* Sequence subprogram

} B The program numbers of motion programs are managed in the same manner as the sequence program num-
bers. Assign a unique number for each program number.
* Program number of Motion program MPMOOO, MPSOOO
* Program number of Sequence program SPMOOO, SPSOOO
B The MP2000-series Machine Controllers can execute up to 16 motion programs simultaneously. An alarm (no
system work error) will occur if 17 or more programs are executed simultaneously.

* No system work error: Bit E of the leading word in the MSEE work registers

4.2 Motion Programs For Each Axis Group

With motion programs, the axes that have related operations are organized into individual groups, and programs
can be created for each group. This allows one MP2000-series Machine Controller to independently control mul-
tiple machines using group operation. Group operation can be single group operation or multiple group opera-
tion. Definitions for axes to be grouped together are made under Group Definitions.

For information on the group definition setting window, refer to 7.3 Group Definition.

W Single Group Operation

MP2000 Series
Machine Controller

SGDS
(@ scos]|

W Multiple Group Operation

MP2000 Series

Machine Controller

Group2 Group3

4.3 Running a Motion Program

4.3 Running a Motion Program

4.3.1 How to Run a Motion Program
To run the created motion programs, the user must register them in the system. The motion programs registered
in the system can be referenced in the high-speed scan cycle.
Motion programs can be run in two ways, depending on how they were registered in the system:
* Calling it from the ladder program using a MSEE command
* Registering it to the M-EXECUTOR program execution definition

Now, this section explains each way to run a motion program:

(1) Calling the Motion Program from the Ladder Program Using a MSEE command

After creating a motion program, embed an MSEE command (Motion Program Call command) in the H draw-
ings. Motion programs can be called from any parent, child, or grandchild drawing in an H drawing. The follow-
ing figure shows an example of motion program execution.

System programs are
started according to
execution conditions.

v

Parent Drawings Child Drawings Grandchild Drawings Motion Programs
DWG.H DWG.HO1 DWG.HO01.01 MPMO01
SEE SEE H01.01 —» VEL [a1]5000 [b1]..
HO1 <« FMX T10000000;
MSEE +——p IACT25;
MPMO01 IDC T30;
MOV [a1]300. [b1]..
MVS [a1]200. [b1]..
DEND
END
MPMO002
MSEE Grandchild
MPMO002
— DEND END
MPMO03 Subprogram
MSEE MPS101
MPMO003
MSEE
MPS101
DEND END RET

H drawing ladder commands are executed in hierarchical order i.e., parent drawings, child drawings, then grand-
child drawings in each high-speed scan cycle.

To start up the motion program, after the MSEE command is incorporated, use a control signal to turn ON the
request for the program operation startup.

Motion programs are also called in each scan cycle, but unlike ladder programs, all motion programs cannot be
executed in one scan. For this reason, motion programs are executed and controlled by special system’s motion
management function.

When running a motion program, pay attention to the followings:.

IMPORTANT

» The motion program registered in M-EXECUTOR cannot be executed using a MSEE command.

* Multiple motion programs with the same number cannot be executed using a MSEE command.

* A subroutine (MPSOOO) cannot be executed from a MSEE command in a ladder.

* It can only be referenced from a motion program (MPMOOO, MPSOOO).

» A sequence program (SPMODOMO, SPSOOMO) cannot be executed from a MSEE command in a ladder.

Motion Programs

4-4

4 Motion Programs

4.3.1 How to Run a Motion Program

(2) Registering it to the M-EXECUTOR Program Execution Definition

After creating a motion program, register it in the M-EXECUTOR program execution definition screen.

The programs registered in the M-EXECUTOR program execution definition screen are executed in ascending
numeric order.

The execution example is shown in the figure below.

Motion program

MPMO001
VEL [a1]5000 [b1]..
FMX T10000000;
IAC T25;
IDC T30;
MOV [a1]300. [b1]..
MVS [a1]200. [b1]..
M-EXECUTOR program execution definition END
o D Execution type Setting I Prograrm
- 1 Sequence programi>tart) Direct - MPMO002
1 1 Motion program ¥ |Direct | MPMOOT
2 21 Mation program > |Direct =, I'\-’IPI‘\-’IOIZJ2<—->
3 1 Motion program ¥ |Direct j MPMO03
END
MPMO003 Subprogram
MPS101
- MSEE
MPS101
END RET

To start up the motion program, after the motion program registration, use a control signal to turn ON the
request for the program operation startup.

The motion program registered in M-EXECUTOR is executed at a scan cycle, but similar to a ladder, the
whole program cannot be executed at a single scan. In case of the motion program, a motion management
function in the system carries out an execution control exclusive for the motion programs.

IMPORTANT When registering a motion program to M-EXECUTOR, pay attention to the followings:

* Multiple motion programs with the same number cannot be registered.

* Multiple motion programs with the same number cannot be referenced using an indirect designation.

4.3 Running a Motion Program

4.3.2 Registering the Program Execution

Programs can be registered in the two following ways.
The following examples shows when the motion program MPMO001 is registered.

(1) Embedding an MSEE command in the Ladder Program

Embed an MSEE command into the H drawing
Set the MSEE command so that it is
executed every scan.

|]
WSEE =H

[WIProzram No. 00001 @
0nonoi
[&]Data]

A MPM number

(2) Registering MPMO001 in the M-EXECUTOR

‘ Register MPMO0O1. ‘

- =10/x|
PT#: 2 CPUE: 1 [RACK#O1 [Slot#00 [0C00-0C3F

= M-EXECUTOR MP2310 Online Local

MEXECUTOR[ListY) Individusl display | Program flefinition number —— [8° v] =
Pragrarn defirition | Allocation Caontrol register I
o Dl Execution type I Setting I Prograrn I Execution monitor register(s register)
-] Sequence programistart) Direct - -
1 {01 Motion program ~|oirect =] mMPMOOT) SW03264 - SWO3521
2 |H|----- =
CO =] e ——— |
T | — -
N = — =
I] P— =
T —— E 7=
R = P —— =

Motion Programs

4-5

4-6

4 Motion Programs

4.3.3 Work Registers

4.3.3 Work Registers

When registering motion programs as described in 4.3.2 Registering the Program Execution, a work register to
control and monitor the program execution is assigned for each registered program. The work registers are used
to send instructions to the motion programs from the motion program control program, and to get the motion pro-

gram status.

(1) For a Motion Program Called from the Ladder Program Using an MSEE Command

Four words of the register (MAOO OO or DAOCOMO) that are specified for Data of the MSEE command are
used as the work register.

MEEE

bl

[MProzram No.

[4]Data

nono
nooni

Dannonn

Work Register | Rsosertlo, Contents /0
1st word DWO0O0000 | Status flag QOutput
2nd word DwWO00001 Control signal Input
3rd word DWO00002 | Override for interpolation Input
4th word DWO00003 System work number Input

(2) For a Motion Program Registered in an M-EXECUTOR Program Execution Definition
The M-EXECUTOR control registers are used as the work registers.

The M-EXECUTOR control registers are automatically defined by the system.

Program definition Allocation Control register |

M-EXECUTOR
Ma. Item !
Cantrol register
Program number MPMOOT
Status IWC o0
1 Caontral signal OWQCo1
Override OWOCo2

Work Registers Reaister N
(M-EXECUTOR | hegister No. Contents 110
Control Registers) | in the Example
Status IW0C00 Status flag Output
Control signal owoCo1 Control signal Input
Override owoCo02 Override for interpolation Input

The details of the work registers are described from the next page.

4.3 Running a Motion Program

(a) Status Flag

Bit No Status Description
This bit is ON while the motion program is running.
Bit 0 | Program running 0: The motion program is being stopped
1: The motion program is running
This bit is ON while the motion program is paused by Program Pause Request.
Bit 1 | Program paused 0: The program is not paused by Program Pause Request.
Oto3 1: The program is paused by Program Pause Request.
' Program stopped by This bit is ON whinle the motion program is stopped by Program Stop Request.
Bit 2 stop request 0: The program is not stopped by Program Stop Request.
1: The program is stopped by Program Stop Request.
Bit 3 | (Reserved) -
This bit is ON while a single program block operation is stopped during debug-
Bit 4 Single.program block ging.
operation stopped 0: Other than single block operation stop
4t07 1: Single block operation stop
Bit5 | (Reserved) -
Bit 6 [(Reserved) -
Bit 7 | (Reserved) -
This bit is ON while a program alarm is occurring.
When this bit turns ON, the details of the error are written in the error informa-
Bit 8 [Program alarm tion screen and S register.
0: No program alarm
1: A program alarm is occurring.
This bit is ON while the program is stopped during a break point during debug-
8toB . . ging.
Bit9 | Stopped by break point 0: Not stopped at break point
1: Stopped at break point
Bit A | (Reserved) -
This bit is ON while debugging the motion program.
BitB [In debug mode 0: Normal operation mode
1: Debug mode
Reports the running program type: Motion program or sequence program
Bit C | Program type 0: Motion program
1: Sequence program
. This bit turns ON when the Program Operation Start Request is ON.
. Start request signal .
Bit D history 0: Program Operation Start Request OFF
1: Program Operation Start Request ON
This bit turns ON when the system work required to execute the motion pro-
ram is not assigned, or when an MSEE command is embedded in a drawin
CloF| gig |Nosystem work error cthor than the Hgdrawing. ¢
Scanning error . .
0: No system work error is not occurring.
1: No system work error is occurring.
This bit turns ON when the specified motion program number is outside the
. Main program number range.
Bit F Motion program number range: 1 to 256
exceeded error o
0: Within the range
1: Outside the range

Motion Programs

4-7

4 Motion Programs

4.3.3 Work Registers

(b) Control Signal

— I—: Signals with this indication must be kept ON until they are accepted by the system.
—4—: Signals with this indication should be ON for one high-speed scan.

Bit No Status Description
) Request to start a motion program. When this bit status changes from OFF to ON, the
Bit 0) motion program will start running. However, this bit is disabled whenever an alarm is
Program operation L .
- - start request occurring in the motion program.
—_— 0: Program Operation Start Request OFF
1: Program Operation Start Request ON
Request to pause a motion program.
Bit1 | Program pause lilesett.ing.this bit to 0 azlfter pausing the motion program will restart the program from
request the point 1t was stopped.
0to3 = 0: Program Pause Request OFF (Cancel the pause request)
1: Program Pause Request ON
. Request to stop a running motion program.
Bit 2
rPerol?;asT stop Turning this bit ON while the axis is moving will cause a motion program alarm.
== q 0: Program Stop Request OFF, 1: Program Stop Request ON
P ingl Request for program single block mode.
Bit 3 bl':g;?:;;’;ng © Use this bit instead of the debugging operation
= | selection 0: Program Single Block Mode Selection OFF
1: Program Single Block Mode Selection ON
) Changing this bit status from OFF to ON will start the program single block operation
Bit 4 . (step-by-step operation). This bit is valid when the control signal bit 3 (Program single
Program single L
- - block start request block mode selection) is ON.
—_— q 0: Program Single Block Start Request OFF
1: Program Single Block Start Request ON
. Request to reset a motion program and a alarm.
Bit5 | Program reset and
4t07 0: Program reset and Alarm Reset Request OFF,
— — | alarm reset request
1: Program reset and Alarm Reset Request ON
Bit6 | Program Request to restart a program that has been stopped by a motion program alarm or the
- continuous Program Stop Request, from the point it was stopped.
operation start 0: Program Continuous Operation Start Request OFF
. request 1: Program Continuous Operation Start Request ON
Bit 7 | (Reserved) -
Turning this bit ON while moving the axis using an SKP command (when SS1 is
Bit 8 o . selected for the skip input signal) will decelerate the axis to a stop and cancel the mov-
Skip 1 information . .
— - ing amount that remains.
0: SS1 signal OFF, 1: SS1 signal ON
5 Turning this bit ON while moving the axis using an SKP command (when SS2 is
8to Bit 9 A . selected for the skip input signal) will decelerate the axis to a stop and cancel the mov-
Skip 2 information . .
— ing amount that remains.
0: SS2 signal OFF, 1: SS2 signal ON
Bit A [(Reserved) -
Bit B | (Reserved) -
Bit C | (Reserved) -
Bit D | System work Turn this bit ON to specify the system work number.
— = | number setting 0: Do not specify the system work number, 1: Specify the system work number
CtoF .)) Turn this bit ON to enable the interpolation override.
Bit E | Override setting for
. . 0: Disable the interpolation override.
— — | interpolation . . .
1: Enable the interpolation override.
Bit F | (Reserved) -

4.3 Running a Motion Program

(c) Interpolation Override

Set the override value for execution of an interpolation command MVS, MCW, MCC, or SKP.

Interpolation override refers to change the output ratio of the speed reference for axis movement executed by
an interpolation related command.

Interpolation override is enabled when the bit E (Override setting for interpolation) of the control signal is
ON.

+ Setting range of interpolation override: 0 to 32767
* Unit: 1 =0.01%

(d) System Work Number

When using an MSEE command to call a motion program from the ladder program, set the system work
number to call the motion program. The set system work number is valid when the bit D (System work num-
ber setting) is ON.

+ Setting range: 1 to 16

Note: 1. When using the M-EXECUTOR, the system work number cannot be set. A system work number that is
same as the definition number is used.
2. Do not specify the system work number for the M-EXECUTOR by the MSEE command when using both
the MSEE command and the M-EXECUTER. Doing so will cause a no system work error.
System work number for the M-EXECUTOR: 0 to the number set in Program definition number.

Motion Programs

4-9

4 Motion Programs

4.3.3 Work Registers

» Timing Chart for Motion Program Control Signals

The following figure shows an example of a timing chart for motion program control signals.

* Program Operation Start Request
Control signal: _l_l
Operation start request :

Status: Operating J |_

Distribution

* Pause Request

Control signal: —‘m

Operation start request

Control signal: Pause request

Status: Operating One scan

Status: Paused ,j_l«

Distribution N K

* Stop Request

Control signal:
Operation start request

Control signal: Stop request

Control signal: Alarm clear

Status: Operating —I |
Status: Stopped —_>, ~
Status: Alarm - ‘<_—

One scan
Distribution I

(Interpolation related commands)

Distribution I

(Positioning related commands)

Distribution (Zero point return) I

IMPORTANT » Turning ON the Stop Request while the axis is being moved by a motion command will cause an alarm.

* Turning ON the Stop Request while the axis is being moved by an interpolation related command will
immediately stop the axis.
Use the Pause Request to decelerate the axis to a stop.

* During execution of the Zero Point Return (ZRN) command, Pause Requests will not be accepted.
Use the Stop Request to stop the zero point return operation.

A program example for motion program control is given in B.I Programs for Controlling Motion Program Exe-
cution.

4.4 Advanced Programming

4.4 Advanced Programming

4.4.1 Indirect Designation of a Program Number Using a Register
This method calls the program (MPMODOO) that matches the value stored in the register.

(1) When Using a Motion Program called by a MSEE Command from
the Ladder Program

Specify a register (M or D register) to be used for the indirect designation in the Program No. of the MSEE com-

mand.

Store 3 in the
register
MW00200.

MWwW00200 = 3

Motion program call command

MPMO003

\d

Frogram MNo.
Data

Register n

umber

Ladder program

ABS;

MOVIX] _[Y] _
MVS[X] _[Y]_F
I0W MB0001
MOVIX] _[Y] _

Motion program

(2) For a Motion Program Registered in the M-EXECUTOR Program Execution Definition

Select Indirect under Setting. The register to be used for indirect designation will be assigned automatically by

the system.

Program defirition | Allocation Contraol register I

M-EXECUTOR Program Definition

i [=] DI Execution type I Setting I Program |
Stores 3 in the -] Sequence programistart) Direct -
register 1 1 Motion program 'lndirect 'l COADC 00 I<
OWO0CO00 2 [o -
OWO0C00 = 3 - —— E

4 |H|--—m———— a4

MPMO003

ABS;

MOVIX] _[Y] _
MVS[X] _[Y]_F
IOW MB0001
MOVIX] _[Y]_

Motion program

Motion Programs

4-11

4 Motion Programs

4.4.2 Controlling the Motion Program Directly from an External Device

4.4.2 Controlling the Motion Program Directly from an External Device

The M-EXECUTOR Module has a function used to allocate the M-EXECUTOR’s control register to a desired
register.

With this function, data can automatically be exchanged between the M-EXECUTOR’s control register and the I/
O register connected to an external device. Thus, this function allows an external device to directly control the

motion program.

The following diagram shows a setting example for this function.

M-EXECUTOR Register Allocation window

M-EXECUT QR Allocation : 5 Allocation Allocation
Ma. Itermn) 3 Direction ; :
Control register Disable register Contact interlock
Program number MP OG0T
Status IAOCO0 7 = OO0 00 IBOOO20
1 Contral sighal OO T | = Q000 IBOOO20
Override OWWOC02] <= lislsleR| IBOOO20

1L

Set desired registers for Allocation register and

Allocation Contact interlock.

External devices

* Host PLC

* Touch panel
* Switch

* LED, etc

Program number

Status
Allocated Control signal
interlock - - -
. Override for interpolation
Allocated registers contacts
m Signals from external device
™ * Program number References the
. * Program operation start M-EXECUTOR
——"——« Program pause control registers
* Program stop, etc. | = Leememeooodl
Data will be
exchanged
in high-speed
scan cycle.

Execution control by

motion management function

MPMO001

VEL [a1]5000 [b1]..
FMX T10000000;
IAC T25;

IDC T30;
MOV [a1] 300. [b1]..
MVS [a1] 200. [b1]..

END

Motion program

B The allocated interlock contact is used as an interlock for motion program execution. Always allocate an inter-

INFO lock contact in Allocation Contact interlock when allocating a register in Allocation register.

%

The following processes are executed according to the ON/OFF status of the allocated interlock contact.
» When the allocated interlock contact is ON, the allocated register exchanges data with the M-EXECUTOR control reg-

ister in a high-speed scan cycle, and motion program execution is enabled during the data exchange.

* When the allocated interlock contact is OFF, the allocated register does not exchange data with the M-EXECUTOR

control register, and motion program execution is disabled.

* When the Allocation Contact interlock is changed from ON to OFF while the motion program is running, the motion
program will stop running and the axes will stop moving. At this moment, the motion program alarm “1Bh: Emergency

Stop Command in Execution” will occur, and bit 8 (Program alarm occurring) of the status flag will turn ON.

Use the following procedure to restart the motion program.
1. Set the interlock contact from OFF to ON.
2. Set bit 5 (Program reset and alarm reset request) of the control signal to ON.
3. Confirm that bit 8 (Program alarm) of the status flag turns OFF.
4. Set bit 5 (Program reset and alarm reset request) of the control signal to OFF.

5. Set bit 0 (Program operation start request) of the control signal to ON.

4.4 Advanced Programming

4.4.3 Monitor the Motion Program Execution Information Using S Register

Using S register (SW03200 to SW04191) allows you to monitor the motion program execution information.

The way to monitor the execution information for a motion program registered in the M-EXECUTOR program
execution definition differs from that for a motion program referenced by an MSEE command from a ladder pro-
gram.

The way to monitor it in each case is shown as follows:

(1) A Motion Program Referenced by an MSEE Command from a Ladder Program

When a motion program is referenced by an MSEE command from a ladder program, the way differs, depending
on the “Bit D” setting (system work number setting) of the motion program control signal, as follows:

(a) The motion program control signal “Bit D, System Work Number Setting” = ON

The execution information is reported to “Program Information Using Work n” register (SW03264 to
SW04191). For example, when “System Work Number” = 1, the motion program execution information can
be monitored in SW03264 to SW03321 “Program Information Using Work 1.”

(b) The motion program control signal “Bit D, System Work Number Setting” = OFF

The used system work is automatically decided by system. Thus, to check which work is used, refer to “Run-
ning Program Number” (= SW03200 to SW03215). For example, when you want to monitor the motion pro-
gram MPMO0O01 and SW03202 = 1, as used the work number = 3, the execution information for the motion
program MPMO0O01 can be monitored in “Program Information Using Work 3” (= SW03380 to SW03437).

(2) A Motion Program Registered in the M-EXECUTOR Program Execution Definition

For motion programs registered in the Program definition tab page of the M-EXECUTOR, the system work
numbers to be used are the same as for the Program execution registry number registered in the M-EXECUTOR
Module.

For example, a motion program is registered as “Definition No.” = 3, the used system work number is “System
Work” = 3. In this case, the execution information for the motion program can be monitored in “Program Infor-
mation Using Work 3” (= SW03380 to SW03437).

For more information on the register area of the motion program execution information, refer to the subsequent
pages.

Motion Programs

4-13

4-14

4 Motion Programs

4.4.3 Monitor the Motion Program Execution Information Using S Register

(a) Register Areas for Motion Program Execution Information

swo3200 [_ T T S W03000
Executing program number SW03200
(No. of main program currently SW03201
executing) 16W
L\ SW03202
SW03216 Reserved by the system. 16W \
\ SW03203
SW03232 Executing Program Bit K
(Executing when corresponding NN SW03204
bit is ON) NN
1BW [Y
SW03248 - - prew N SW03205
eserved by the system. | VN SW03206
SW03264 - - \ PR
Program information used by \ Vo
work 1 58W | VN SW03207
1 “ ‘\
SW03222 Program information used by 58W ‘\‘ Y ‘\‘ SWo3208
work 2 | \ N SW03209
SWO3380 | program information used by s8W | L\ SW03210
work 3 | voN
SW03438 \ v SW03211
Program information used b \ X N
worﬁ 4 Y saw \ “\ Swo3212
\ *SW03213
SW03496 Program information used by 58W Y v \
work 5 Y SW03214
SW03554 [brogram information used by sawW \ SW03215',
work 6 \ \
\ \
SW03612 ' \
Program information used by 58W \ \
work 7 \ N
\ \
SW03670 Program information used by o, \ |
work 8 \ N
v
v
SW03728 Program information used by g,/ \ Swos232
work 9 " SW03233
SW03786 \
Program information used by 58W | SW03234
work 10 \
+ SW03235
SW03844 Program information used by \
work 11 58W “‘SW03236
SW03902 SW03237
Program information used by 580 v
work 12 SYV03233
SW03960 Program information used by 580 SWO3239
work 13 \
SW03240
SWwo4018 Program information used by 58 N
work 14 SW03241
SW04076 , , SW03242
Program information used by gg\y '
work 15 SW03243
W04134 .
SW0413 Program information used by 58W SW03244
work 16 \
SW03245
SW04192 v
Reserved by the system. 928W SW03246“‘
SW03247
SW05120 Reserved by the system. 64W

Motion program execution information

Executing program number

Program number used by work 1

Program number used by work 2

Program number used by work 3

Program number used by work 4

Program number used by work 5

Program number used by work 6

Program number used by work 7

Program number used by work 8

Program number used by work 9

Program number used by work 10

Program number used by work 11

Program number used by work 12

Program number used by work 13

Program number used by work 14

Program number used by work 15

Program number used by work 16

Executing program bit

MPLI016 (Bit15) to MPLI001 (Bit0)

MPLI032 (Bit15) to MPLI017 (Bit0)

MPLI048 (Bit15) to MPLI033 (Bit0)

MPLI054 (Bit15) to MPLI049 (Bit0)

MPLI080 (Bit15) to MPLI055 (Bit0)

MPLI096 (Bit15) to MPLI081 (Bit0)

MPO112 (Bit15) to MPLI097 (Bit0)

MP128 (Bit15) to MPLI113 (Bit0)

MP144 (Bit15) to MP129 (Bit0)

MPLI160 (Bit15) to MP145 (Bit0)

MPL176 (Bit15) to MPO161 (Bit0)

MPO192 (Bit15) to MPO177 (Bit0)

MPLI208 (Bit15) to MPLI193 (Bit0)

MPO224 (Bit15) to MPL209 (Bit0)

MPLI240 (Bit15) to MP225 (Bit0)

MPLI256 (Bit15) to MPLI241 (Bit0)

Note: O indicates M or S.

4.4 Advanced Programming

(b) Details of Program Information Used by Work n

Program information used by work n

+0
Program status

+1

Program control signal Executing program number
+2

Parallel 0 information 3w Executing block number
+5

Parallel 1 information 3w Alarm code
+8

Parallel 2 information 3w
+11

Parallel 3 information 3W
+14

Parallel 4 information 3w
+17

Parallel 5 information 3w
+20

Parallel 6 information 3w
+23

Parallel 7 information 3w
+26 . . "

Logical axis #1 program current position oy
+28 Logical axis #2 program current position 2w
+30 . . "

Logical axis #3 program current position 2W
+32 Logical axis #4 program current position 2W
+34 Logical axis #5 program current position 2W
+36 . . "

Logical axis #6 program current position 2W
+38 Logical axis #7 program current position 2w
+40 Logical axis #8 program current position 2y
+42 Logical axis #9 program current position oy
+44 . . .

Logical axis #10 program current position 2W
+46 Logical axis #11 program current position 2w
+48 Logical axis #12 program current position 2w
+50 Logical axis #13 program current position 2w
52 Logical axis #14 program current position 2w
o4 Logical axis #15 program current position 2w
+

%6 Logical axis #16 program current position 2W
INFO For a list of S registers, refer (2) Using S Register in 10.2.3 Confirming the Alarm Code.

Motion Programs

5

Sequence Programs

This chapter describes sequence program types and how to run them.

5.1 Sequence Program Types - ------=----------oommommo oo 5-2
5.2 How to Run a Sequence Program ------------oooommmmmmmoa o 5-3
5.2.1 How to Run a Sequence Program - - ---------------oomom oo 5-3
5.2.2 Registering Program Execution - -----------------ooooooo oo 5-4
5.2.3 Work Register - - - - - - - - - o oo oo e 5-5

Sequence Programs

5-1

5-2

5 Sequence Programs

5.1 Sequence Program Types

Sequence programs are of the following two types.

Designation
Category Method Features Number of Programs
Calling from the M-EXECU- Up to 256 programs of the following types
) SPMO0O0 . .
Main Program TOR program execution defini- can be created:
O00=1 to 256 . . .
tion * Main motion program
Subprogram SpSoon Calling from th i ‘ lf/?b R
prog O00= 1 to 256 alling from the main program ain sequence program

* Sub sequence program

S
INF
(e

The program numbers of sequence programs are managed in the same manner as the motion program num-
bers. Assign a different number for each program number.
* Motion program MPMODOMO: Program number of MPSOO O
* Sequence program SPMODOO: Program number of SPSOOO

5.2 How to Run a Sequence Program

5.2 How to Run a Sequence Program

5.2.1 How to Run a Sequence Program

A sequence program is executed by registering it in the Program definition tab page of the M-EXECUTOR.

Sequence program
SPMO001

IF MW000<32767;
MW000=MWO000+1;

ELSE;
Y MWOOO;
IEND;
M-EXECUTOR program execution definition END
[+l D Execution e Settin Program
ool e |_sesing 2 SPM002
= 1 Sequence program(Gtart) Direct SPMOO0T

1 ! Sequence program({H-scan)

SPMOO3

¥ |Direct
> |Direct

2 _l Sequence program({H-scan)

SPMOG2 4——’

END
SPM003 Sequence subprogram
SPS101
Qssee -
SPS101 «
END RET

When the execution type is set to Sequence Program (H scan) or Sequence Program (L scan), the program is
executed at the time the definition is saved. When the execution type is set to Sequence Program (Start), the
program is executed when the power supply is turned ON again next time.

An operation example of running a sequence program is shown below.

(1) M-EXECUTOR Program Definition Tab Page

MP2310 Online Loc.

P Engineering Manager - [M-EXECUTOR
=] File Miew ‘Window

=10l x|
=@ x|

al]

D& ¢ s e B% LEE RS

PT#: 2 CPU#: 1

|RACK#D1 [Slot #00

ocoo-0csF NI

M-EXECUTOR[List] Individual display | Program definition number

Program definition | Allocation Contral register I

o

1

o DI Execution type I Setting I Program I Execution monitor register(s register’

= | Sequence programistart) Direct SPMO0T =

1 I Sequence programil-scan) it Direct SPMO02Z =

2 | Sequence programiH-scan) | Direct SPMOO3 =

3 1 Maotion program i Direct j MPMOO4 SWOIZE0 - SW03437

4 I Sequence programiH-scan) [Direct SPMO0S = b
5 -

6 [

7 [

8 [

-

For Help, press F1

| | |
I 2 T

Sequence Programs

5 Sequence Programs

5.2.2 Registering Program Execution

(2) Execution Timing

The following diagram illustrates program execution timing.

As shown in the following diagram, the programs are executed in the order they are registered in the Program

definition tab page.

Start | SPM001|DWG.A

High-speed scan cycle

A 4

< <
< <

High-speed scan cycle

High-speed scan

Low-speed scan l

SPM003 SPM005(DWG.H SPMO003 mYIZYs[eZzy SPM0O05| DWG.H
Low-spged scan cycle
SPMO002 SPMO002| DWG.L

|

The shaded area is an interruption
from processing that has higher
priority.

5.2.2 Registering Program Execution

: Ladder program

processing

Register the programs to run as shown below. The following screenshot shows an example of registering the

sequence program SPMO0O1 to run in a high-speed scan cycle.

Register the program to run.

#iZEngineering Manager - [M-EXECUTOR MP2310 Online Local] E - — ol x|
| File Wiew ‘window =] |
oE@w »=e|@n uEs S|
[PT#: 2 CPUK: 1 [RACK 01 [Siot #00 [0COD-0C3F
H-EXE CUTOR [List] Individual dizplay | Program definition number 8 = =
Program definition | Allocation Control register |
o DI Execution type | Setting | ProJram | Execution monitor registeris register)
- | Sequence programistart) Direct -
1 _l(Sequence programil-scan) > |Direct SPMOOT)I -
2 I -
& I e -
I] I - w
T | | —— -
N e -
i 55— -
I |- -
| | _'I_I
[[[B
Far Help, press F1 r CApP W 5
INFO Only the direct designation is available for sequence programs. The indirect designation cannot be used.

5.2 How to Run a Sequence Program

5.2.3 Work Register

A status flag to monitor program status is assigned to the sequence program in 5.2.2 Registering Program Execu-

tion. The status flag of a sequence program can be obtained by the following equation.

IwOOOO + 4 x (Program definition number - 1)
M-EXECUTOR’s I/O start register number

* The /O start register number can be confirmed in the Module Configuration window.

T — s

FIE o)

1] 1/O start register number |

(1) Status Flag of Sequence Program

Bit No Status Description
Bit 0 | Program running This bit is ON while the sequenc.e program is running. . .
0: The sequence program is being stopped, 1: The sequence program is running.
0to 3 | Bit1 | (Reserved) -
Bit 2 | (Reserved) -
Bit 3 | (Reserved) -
Bit 4 | (Reserved) -
4t07 B?t 5 | (Reserved) -
Bit 6 | (Reserved) -
Bit 7 | (Reserved) -
This bit turns ON when any of the following errors occur while calling the sequence
program using an SSEE command. This bit turns OFF when the error is corrected.
* The called program is not registered.
Bit 8 Progra.m alarm is * The called program %s not a sequence program. . .
occurring * The called program is not a subprogram. (The main program is called.)
* The called program number exceeded the set range.
8to B * Over nested
0: No program alarm (Normal), 1: Program alarm occurring
Bit 9 Stopping.at This bit is ON when the program is stopped at a break point during debugging.
break point 0: Not stopped at break point, 1: Stopped at break point
Bit A | (Reserved) -
. This bit is ON while the program is running in debug mode.
BitB | In debug mode 0: Normal operation mode, 1: Debug mode
Bit C | Program type Reports t'he running program type: Motion program or sequence program
0: Motion program, 1: Sequence program
CtoF | Bit D | Start request history This bit is ON while the sequence program is running. .
0: Sequence program stopped, 1: Sequence program running
Bit E | (Reserved) -
Bit F | (Reserved) -

Sequence Programs

5-5

6

Variables (Registers)

This chapter describes the details of variables that can be used in both motion programs and
sequence programs.

B.1 OVeIVIEW == - - = - oo m o o e e e e e e o 6-2
6.1.1 Variable Types -------- - m o m e e e - 6-2
6.1.2 Global Variables and Local Variables - - - - = - === === - o ccc e e - 6-4

6.2 Using Variables ----------c - e 6-7
6.2.1 System Variables (S Registers) - - - - === - - - - - o e oo 6-7
6.2.2 Data Variables (M Registers) -------------mmmmmm oo 6-8
6.2.3 Input Variables (I Registers) ------------ommmmm oo 6-9
6.2.4 Output Variables (O Registers) --------------mmmmmi e 6-11
6.2.5 C Variables (CRegisters) - - - - - - - === - oo oo 6-13
6.2.6 D Variables (D Registers) - - - - - === - o cmmm i m e 6-14

6.3 How to Use Subscriptsi,j ---------------------------------- 6-15

Variables (Registers)

6-1

6-2

6 Variables (Registers)

6.1.1 Variable Types

6.1 Overview

6.1.1

This section summarizes the variables used in motion programs.

Variable Types

In a motion program and a sequence program, variables can be coded in place of numeric values. When variables
are used in actual operations, the numeric values stored in the variable area are retrieved.

(1) Types of Variable (Registers)

The seven types of register shown in the following table can be used as variables in a motion program and a
sequence program. S, M, I, O, and C registers are global variables that can be used by both motion programs and
sequence programs. D registers are local variables that are defined for each program and cannot be used by other

program or sequence program, a syntax error will occur when saving the program.

programs.
Table 6.1 Types of Variable
. . o Character-
Type Name Designation Method Range Description istic
Registers that can be referenced by the sys-
) SW00000 tem.
S | System Registers | SB,SW.SL,SFnnnnn to SW08191 Register number nnnn is a decimal expres-
sion.
Registers common to all programs.
MW00000 i
M | Data Registers MB,MW,ML,MFnnnnn Use(.i as interfaces bet\yeen programs.
to MW65534 | Register number nnnn is a decimal expres-
sion.
Registers used for input data.
TW0000 Register number hhhh is a hexadecimal
| Input Registers IB,IW,IL,IFhhhh [W7FFF expression. Common to
to The register numbers 8000 and onward are | programs
used as motion monitoring parameters.
Registers used for output data.
' OW0000 Reglste.r number hhhh is a hexadecimal
O | Output Registers | OB,0W,OL,0Fhhhh o OW7FEF expression.
© The register numbers 8000 and onward are
used as motion setting parameters.
Registers that can be referenced only by a
Constant CW00000 program.
C Registers CB,CW,CL,CFnnnnn to CW16383 | Register number nnnn is a decimal expres-
sion.
Internal registers unique to each program.
Can only be used by the corresponding pro-
. DW00000 gram. Unique t
D | D Registers DB,DW,DL,DFnnnnn DW16383 The actual range to be used is specified by n;gu:an(i 2
to the user on the MPE720. prog
Register number nnnn is a decimal expres-
sion.
IMPORTANT The # registers cannot be used in motion programs or sequence programs. If a # register is used in a motion

6.1 Overview

(2) Data Types

As shown in the following table, the data types are bit, integer, double integer, and real number data.
Use them as required.

Table 6.2 Data Types

Symbol Data Type Numeric Range Remarks
B Bit ON (1), OFF (0) Used. tp determine the relay sequence and the ON/OFF
condition.
W Integer -32768 to +32767 Used for arithmetic operations. The parentheses () show its
9 (8000H to 7FFFH) use in logic operations.

L Double -2147483648 to +2147483647 | Used for arithmetic operations. The parentheses () show its
Integer (80000000H to 7FFFFFFFH) use in logic operations.

F Real Number | + (1.175E-38 to 3.402E + 38) | Used for high-level arithmetic operations.

One digit to indicate bit 6 is added
to the register number 00100.
1

—| Data Type and Register Designation I

1
ﬁ [MB001006] <— Bit type
Integer type
F EDCBA98 7 6 543 210
1 1 1 T T T T T T T T T T 1
[MW00100]
I I I Yy Oy A [ML00100]
[MF00100]
T T T T T T T T T T T T T 1
[MW00101]
I I I Y Y I O I O A
1 1 1 T T T T T T T T T T 1
[MW00102]
I I I I Y [I O O A [ML00102
[MF00102]
1 1 1 T T T 1T T 1T T T T T 1
[MW00103] ﬁ
: I I I Yy O O A
' t) Double integer type
X [MBOOJ 03A]<—= Bit type and real number type
| | !
| : !
One word for each One digit to indicate bit A is One word for the next register number is
register number added to the register number included in the coded register number 00102.

00103. Therefore, the register number is increased by two.

a Variables (Registers)

6 Variables (Registers)

6.1.2 Global Variables and Local Variables

6.1.2 Global Variables and Local Variables
(1) Global Variables

Global variables can be used in common by ladder logic programs, user functions, and the drawings in motion
programs and sequence programs. In other words, the calculated results for a given ladder logic program can be
used by other user functions and motion programs. The global variable size is stored by the system for each vari-

able. (See the following illustration.)

Ladder programs | User functions Motion programs and
Sequence programs

\ 4 v v

Global variables

S registers M registers | registers O registers C registers
8192 words 65535 words 32768 words 32768 words 16384 words
+ +
Monitoring Setting
parameters parameters

Fig. 6.1 Global Variables

(2) Local Variables
Local variables are used locally by each program. They cannot be used by other programs. Local variables are

stored in the corresponding program memory.

Motion program #1 Sequence program #3
(MPMO01) (SPM003)
MSEE MPS002; > SSEE SPS004; P>
Subprogram Subprogram
(MPS002) (SPS004)
D register D register D register D register

6-4

6.1 Overview

The number of local variables (D registers) to be used in each program can be specified in the Program Prop-
erty window or Motion Program Configuration Definition window. Up to 16384 words can be used for one

drawing.

Program

=[] MP2310]
i [=1 [Mation program
=1 2 Main program

&
&
®

Cpen
ot Chris
Copy Chrl+C
Paste Chrl+y
Delete Delete
Rename

Zompile

Sef the Password

Canrel the Password

Property

File Edit Wiew Debug ‘Window

Mation Properties

Save & save inko flash memory

Save
Save Mew File

Chrl4+5

Irnpork
Expork

Print...
Prograrn Prink

Chrl+P

Exit

Program Property window

Program Property

Ly

Program MName: |

Prograrn Mo, MPMOO1

ConFiguration
Detail definition
Modified history

= File privilege 0.1
Read 0
Wwiite 1

D register 32

Help << Detail
4

Motion Program Configuration Definition window

Motion Program Configuration Definition

Canfiguration Defintion | Update Histary |

Contents

e ETATARTRE il

FiePrilege R [0 x M ‘:AP ;:;D” = o::olg

i m MP Byte 00344

MSFC Step 00001

ditrer | MC\:SESGCDo::\and ggzgg

e —
Tile |

& Trurcate 1MP2000 Series Standard Mote : Rounding requires more:

Float>Integer Conversion method
’V processing time.

" Round MPI00 Series Compatible.

Set Cancel

INFO # registers cannot be used in motion programs or sequence programs.

a Variables (Registers)

6-5

6-6

6 Variables (Registers)

6.1.2 Global Variables and Local Variables

IMPORTANT

B Precautions for Variable Operations

Storing data in a variable of a different data type will result in:

* Use a Substitute command (=).
Format » Write a destination register on the left and the operation on the right.
MWO00100 = MWO00101 + MW00102;
* When real number data is stored in an integer type variable.
MWO00100 = MF00200; The real number data is converted into integer
(00001) (1.234) data and stored in the destination register.
Note: Be careful to avoid a round-off error, caused when storing real number data
into an integer type variable.
Specify the round-off method when storing the real number in an integer
type variable in the Motion Program Configuration Definition window.
MWO00100 = MF00200 + MF00202;
(0124) (123.48) (0.02) The operation result will differ depending
Variable (0123) (123.49) (0.01) on the variable values to be calculated.
Operations » When real number data is stored in a double integer type variable.
MLO0100 = MF00200; The real number data is converted to integer
(65432) (65432.1) data and stored in the destination register.
* When double integer data is stored in an integer type variable.
MWO00100 = ML00200; The lower 16 bits of double integer data are
(-00001) (65535) stored in the destination register as they are.
* When integer data is stored in a double integer type variable.
ML00100 = MW00200; The integer data is converted to double integer
(0001234) (1234) data and stored in the destination register.
Operations that * When integer data is stored in a bit type variable,
Cause Syntax MB000100 = 123; => Syntax error
Errors MB000100 = MW00100; => Syntax error

6.2 Using Variables

6.2 Using Variables

This section explains how to use variables.

6.2.1 System Variables (S Registers)

(1) Overview

System variables (S registers) are provided by the MP2000-series Machine Controller system. They can be used
to read system error information, the operation status, and so on. S registers are global variables that can be used
in any motion program and sequence program. For details, refer to the user’s manual for the Machine Controller
to be used.

(2) Description

S registers are designated as follows:

SB000000 to SB0O8191F
SWO00000 to SW08191
SL00000 to SL08190
SF00000 to SF08190

The variable number is expressed as a decimal. When bits are specified, the bit number is expressed in hexadeci-
mal.

(3) Programming Examples

<4 EXAMPLE p»
* Bit Designation

| OB000010 = SB000402|SB000403; |

* Integer Designation

[MwW00100 = SW00041; |

* Double Integer Designation

[ML00100 = SL00062; |

IMPORTANT The system registers (S) are used exclusively for reading. If they are written to, system operations cannot be
guaranteed.

Variables (Registers)

6-7

6 Variables (Registers)
6.2.2 Data Variables (M Registers)

6.2.2 Data Variables (M Registers)
(1) Overview
M registers are general-purpose variables that can be used in ladder logic programs, user functions, motion pro-
grams, and sequence programs. These are global variables that can be used as interfaces between motion pro-
grams, sequence programs, and ladder logic programs.
(2) Description

M registers are designated as follows:

MBO000000 to MB65534F
MWO00000 to MW65534
MLO0000 to ML65533
MF00000 to MF65533

The M register can be used as a variable for each type of operation and substituted for the operation result, or
specified as the variable for the positioning coordinate value or the speed. The variable number is expressed as a
decimal.

(3) Programming Examples
(a) Specifying the Position and Speed in Axis Move Commands as Variables
<4 EXAMPLE p»

» Parameter Reference unit = mm
When decimal point position = 3
ML00100=100000;

ML00102=200000; - ;88888 mm
ML00104=300000; - . mm
— 300.000 mm

ML00106=500000;

500.000 mm/mi
MVS [X]ML00100 [Y]ML00102 [Z]MLO0104 FMLO0106; | mm/min

(b) Using Variables in Operations

<4 EXAMPLE p»
+ Bit Designation

[MB001001=1B00100 & 1B00201; |

* Integer Designation

[MWO00101=(MW00101 | MW00102) & FFOCH; |

* Double Integer Designation

[ML00200=((MI00202"ML00204) / ML00206)*3; |

* Real Number Designation

[MF00200=((MF00202"MF00204) / MF00206)*3.14; |

IMPORTANT When the travel distance coordinate values or speed is designated as a variable in the following motion com-
mands, double integer data must be used.
MOV, MVS, MCW/MCC, ZRN, SKP, MVT, EXM, POS, ACC, SCC, IAC, IDC, IFP, FMX, INP, VEL

6.2 Using Variables

6.2.3 Input Variables (I Registers)
(1) Overview
These variables are used by input data and the servo monitor parameters. Although servo parameters can also be
used for writing data, the values can not be guaranteed.
(2) Description

I registers are designated as follows:

IW0000 to IW7FFF: Input data
IW8000 to IWFFFF: Motion monitoring parameters

(a) Register Numbers of Input Data

Depends on the address specified in the module configuration definition.

(b) Register Numbers of Motion Monitor Parameter

The number of controlled axes depends on the module type. The following indicates the number of controlled
axes for each module and the maximum number of modules.

Table 6.3 Number of Axes Controlled by One Module

Max. Number of Modules That Can Be Mounted on One
Machine Controller
Number of Axes —~ o
Motion Module Controlled by One | S 2 S | 8 g 2| & g/ = 2
Module Slelf|g|a|R|3 |88 |8
S|e|s|s|L|s|slg|e]|g
= = S |2 | =
MP2000 Series *] B
Built-in SVB 16 max. Bl S L N L R B
MP2100M/MP2500M - B _ _ _ _ _ _
SVB-01 16 max. 1 1 1
Optional Module 1
SVB-01 16 max.
Optional Module 2 _ }j 16 2 1 3 _ _ _ 13’
SVA-01 *3 *3 *3
Optional Module 4
PO-01

* 1. The number of axes controlled by one built-in SVB or SVB-01 depends on the MECHATROLINK definitions.

* 2. With MP2100M and MP2500MD, an expansion rack is required to use optional modules (SVB-01, SVA-01,
and PO-01).

* 3. The maximum number of optional modules (SVB-01, SVA-01, and PO-01) that can be mounted on MP2100M,
MP2200, or MP2500MD with an expansion rack.

Variables (Registers)

6-9

6 Variables (Registers)

6.2.3 Input Variables (I Registers)

6-10

Table 6.4 Register Numbers of Motion Parameter

Module number offset

C’?‘sjimé_ Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 .o Axis 16
1 8000 to 807F | 8080 to SOFF | 8100 to 817F | 8180 to 8IFF | 8200 to 827F oo | 8780 to 87FF
2 8800 to 887F | 8880 to 88FF | 8900 t0 897F | 8980 to 89FF | 8A00 to SATF | e | 8F80 to SFFF
3 9000 to 907F | 9080 to 90FF | 9100 t0 917F | 9180 t0 91FF | 9200 to 9A7F | e | 9780 to 97FF
4 9800 to 987F | 9880 t0 98FF | 9900 t0 997F | 9980 to 99FF | 9A00 t0 997F | e | 9F80 to 9FFF
5 A000 to AOTF | A0S0 to AOFF | A100 to AI7F | A180 to AIFF | A200 to A27F | s | A780 to ATFF
6 A800 to ASTF | A880 to ASFF | A800 to AS7F | A980 to AOFF | AAOO to AATE | e | AFS0 to AFFF
7 B000 to BO7F | B0SO to BOFF | B100 to BI7F | B180 to BIFF | B200 to B27F | e | B780 to B7FF
8 B800 to BS7F | B880 to BSFF | B0 to BOTF | B98O to BOFF | BAOO to BATF | e | BFS0 to BFFF
9 C000 to COTF | C080 to COFF | C100to C17F | C180to CIFF | C200to C27F | se | C780 to C7FF
10 C800 to C87F | C880 to CSFF | C900 to C97F | C980 to COFF | CA00 to CATF | s | CF80 to CFFF
11 D000 to DO7F | D080 to DOFF | D100 to D17F | D180 to DIFF | D200 to D27F | e | D780 to D7FF
12 D800 to D87F | D880 to DSFF | D900 to DI7F | D980 to D9FF | DAOO to DATE | e+ | DFS0 to DFFF
13 E000 to EO7F | E080 to EOFF | E100 to EI7F | E180 to EIFF | E200 to E27F | se | E780 to E7FF
14 E800 to ESTF | ES80 to ESFF | E900 to E97F | E980 to EOFF | EAO0 to A97F | e | EFS0 to EFFF
15 F000 to FO7F | FO80 to FOFF | F100 to FI7F | F180 to FIFF | F200 to F27F ee | F780 to EFFF
16 F800 to F87F | F880 to FSFF | F900 to F97F | F980 to FOFF | F900 to FO7F e | FF80 to FFFF
T

N
(o]

The register numbers for each axis of the motion monitor parameters can be obtained by the following equation.
The register start number of the motion monitor parameter = IW8000 + (Circuit No. -1) x 800h + (Axis No. -1)
x 80h

(3) Programming Examples

The Input data and servo monitor parameters are read out and referenced.

< EXAMPLE p * Bit Designation
| MB01000 = 1B0010 & 1B00105; |

* Integer Designation

| MWO0100 = IW8008;

* Double Integer Designation

| ML0100 = IL8004;

6.2 Using Variables

6.2.4 Output Variables (O Registers)
(1) Overview

These variables are used for output data and servo setting parameters.

(2) Description

O registers are designated as follows:

OWO0000 to OWT7FFF: Output data
OW8000 to OWFFFF: Motion setting parameter

(a) Register Numbers of Output Data

Depends on the address specified in the module configuration definition.

(b) Register Numbers of Motion Setting Parameter

The number of controlled axes depends on the module type. The following indicates the number of controlled
axes for each module and the maximum number of modules.

Table 6.5 Number of Axes Controlled by One Module

Max. Number of Modules That Can Be Mounted on One
Machine Controller
Number of Axes —~ o
Motion Module Controlled by One | S 2 S | 8 % 2| & % = 2
Module S|lelf|g|a|R|3|g|8 |8
S2|s|s(g|s|s|a|e |
= = S = s
MP2000 Series *] B
Built-in SVB 16 max. Bl S L N L R B
MP2100M/MP2500M 1 B _ _ _ _ _ _
SVB-01 16 max. 1 1 1
Optional Module 1
SVB-01 16 max. ”
Optional Module ’ B }j 16 2 1 3 _ _ _)
SVA-01 . *3 3
Optional Module 4
PO-01

* 1. The number of axes controlled by one built-in SVB or SVB-01 depends on the MECHATROLINK definitions.

* 2. With MP2100M and MP2500MD, an expansion rack is required to use optional modules (SVB-01, SVA-01,
and PO-01).

* 3. The maximum number of optional modules (SVB-01, SVA-01, and PO-01) that can be mounted on MP2100M,
MP2200, or MP2500MD with an expansion rack.

Variables (Registers)

6-11

6 Variables (Registers)

6.2.4 Output Variables (O Registers)

6-12

Table 6.6 Register Numbers of Motion Parameter

Axis No.
Circuit No.

Axis 1

Axis 2

Axis 3

Axis 4

Axis 5

Axis 16

8000 to 807F

8080 to 8OFF

8100 to 817F

8180 to 81FF

8200 to 827F

8780 to 87FF

8800 to 887F

8880 to 88FF

8900 to 897F

8980 to 89FF

8A00 to 8A7F

8F80 to 8FFF

N
(o]

Module number offset

1
2
3 9000 to 907F 9080 to 90FF 9100 to 917F | 9180 to 91FF 9200 to 9A7F oo 9780 to 97FF
4 9800 to 987F 9880 to 98FF 9900 to 997F | 9980 to 99FF 9A00 to 997F oo 9F80 to 9FFF
5 A000 to AO7F | A080 to AOFF | A100to A17F | A180to A1FF | A200 to A27F oo A780 to ATFF
6 AB00 to AB7F | A880to ASFF | A800to A87F [A980to A9FF [AA00to AA7F oo AF80 to AFFF
7 B000 to BO7F B080 to BOFF | B100 to B17F | B180to BIFF | B200 to B27F oo B780 to B7FF
8 B800 to B87F B880 to BSFF | B900 to B97F | B980 to BOFF | BA0O to BA7F oo BF80 to BFFF
9 C000 to CO7F C080 to COFF | C100to C17F | C180to CIFF | C200 to C27F oo C780 to C7FF
10 C800 to C87F C880 to C8FF | C900 to C97F [C980to COFF | CAO00 to CA7F oo CF80 to CFFF
1 D000 to DO7F | D080 to DOFF | D100 to D17F | D180 to DIFF | D200 to D27F oo D780 to D7FF
12 D800 to D87F | D880 to DSFF | D900 to D97F | D980 to DOFF | DAOO to DA7F oo DF80 to DFFF
13 E000 to EO7F E080 to EOFF | E100to E17F | E180 to E1FF E200 to E27F oo E780 to E7FF
14 E800 to E87F E880 to ESFF | E900 to E97F | E980 to E9FF EA00 to A97F oo EF80 to EFFF
15 F000 to FO7F F080 to FOFF | F100to F17F | F180to F1FF F200 to F27F oo F780 to EFFF
16 F800 to F87F F880 to F8FF | F900 to F97F | F980 to FOFF F900 to F97F oo FF80 to FFFF
T

= OWB8000 + (Circuit No. -1) x 800h + (Axis No. -1) x 80h

The register numbers for each axis of motion setting parameters can be obtained by the following equation.

The register start number of the motion setting parameter

(3) Programming Examples

The output data and motion setting parameters are written in.

<4 EXAMPLE b

+ Bit Designation

| OB01000=MB001000 & IB00100; |

* Integer Designation

| Ows008=MW00100;

* Double Integer Designation

| OL8010=ML00100+ML00200;

6.2 Using Variables

6.2.5 C Variables (C Registers)
(1) Overview

C registers are variables to be referenced from programs. They cannot be used to write.

(2) Description
C registers are designated as follows:

| CWO00000 to CW16383 |

C registers cannot be written from programs.

(3) Programming Examples

<4 EXAMPLE »
Using Variables in Operations.

+ Bit Designation

| MB001000=CB001001;

* Integer Designation

| MW00100=CW00100;

* Double Integer Designation

| ML00100=CL00100;

* Real Number Designation

| MF00100=CF00100;

Variables (Registers)

6-13

6-14

6 Variables (Registers)

6.2.6 D Variables (D Registers)

6.2.6 D Variables (D Registers)
(1) Overview

D variables can be used only by the relevant program using specific internal registers for each motion program

and sequence program.

(2) Description

D registers are designated as follows:

| DW00000 to DW16383 (Maximum) |

The D register can be used as a variable for each type of operation and substituted for the operation result, or
specified as the variable for the positioning coordinate value or the speed. The variable number is expressed as a

decimal.

The size is specified in the program configuration definition (Motion Properties), and the default is 32words max.

(3) Programming Examples

(a) Specifying the Position and Speed in Axis Move Commands as Variables

<4 EXAMPLE »

» Parameter Reference unit = mm
When decimal point position = 3
DL00100=100000;
DL00102=200000;
DL00104=300000;
DL00106=500000;

MVS [A1]DL0O0100 [B1]DL00102 [C1]DLO0104 FDL0O0106;

(b) Using Variables in Operations

<4 EXAMPLE »
* Bit Designation

| DB001000=IB01001 & MB000101;

* Integer Designation

| DW00102= (CW00103 | DW00104) & DW00105;

* Double Integer Designation

| DL00106= (DL0O0108*ML00011) / MLO0200;

* Real Number Designation

| DF00200= (MF00202*DF00202)*3.14;

— 100.000 mm
— 200.000 mm
— 300.000 mm
— 500.000 mm/min

mands, double integer data must be used.

IMPORTANT When the travel distance coordinate value or speed is designated as a variable in the following motion com-

MOV, MVS, MCW/MCC, ZRN, SKP, MVT, EXM, POS, ACC, DCC, SCC, IAC, IDC, IFP, FMX, INP, VEL

6.3 How to Use Subscripts i, j

6.3 How to Use Subscripts i, j

Two type of registers (i, j) are available as dedicated registers to modify the relay and register numbers. Both i
and j have the same function. They are used when you want to handle a register number as a variable.
An example for each register data type is given as explanation.

(1) Bit Type Attached with a Subscript

1=2;
DB000000=MB000000i;

J=30;
DW00000=MWO00001j;

Equivalent

+—>

DB000000=MB000002;

(2) Integer Type Attached with a Subscript

The result is a register number added with i or j
value.

For example, MB000000i for i=2 is the same
as MB000002. Also, MB000000j for j=27 is
the same as MB00001B.

The result is a register number added with i

Equivalent

—>

DWO00000=MWO00031;

or j value.

For example, MW00010i for i=3 is the same
as MW00013. Also, MW00001j for j=30 is

the same as MWO00031.

(3) Long Integer or Real Type Attached with a Subscript

The result is a register number with an added i or j

Long integer type Upper word Lower word value.
MW 1 MW . . .
MLO0000I for | = 0: MLO000O | 0000 00000 For example, “ML00000j for j=1" is the same as
Jrory =5 ML00001. Also, “MF00000j for j=1" is the same as
MwWO00002 MWO00001 MF00001.
ML0000Q;j for j = 1: MLOO0O1 | | | For double integer registers and real number regis-
ters, one word of register number and one word of
Real t U — g one added register number are used. Be careful to
eal type pper wor ower wor
MW00001 MW00000 avoid Qverlappmg one w1j[h t}}:e o.tller when using
MF00000j for j = 0: MF00000 | subscrlpts: For M'LOOOOOJ when j =0 and
ML00000j when j = 1, for example, one word of
MW00002 MW00001 MWO00001 will be overlapped.
MF00000j for j = 1: MFO0001 | | |

Program example using subscript is as follows.

<4 EXAMPLE »

The left program uses a subscript j and calculates the
: total amount of 50 registers from ML00100 to
ML00200 =0 ; ML00198, and stores the total amount in ML00200.
J=0;
WHILE J <100;
ML00200 = ML00200 + ML00100;j ;
J=J+2;
WEND ;

Variables (Registers)

6-15

6-16

6 Variables (Registers)

N
INFO

* The following versions of system software and programming tool MPE720 are required to use subscripts i and j.

MP2000 Series

Machine Controller Required Version MPE720 Required Version
MPE720 Ver.5 Ver.5.41 or later
All model Ver.2.63 or later 6.
models MPE720 Ver.6 Ver.6.06 or. later
Ver.6.06 Lite or later

* Both upper and lower case letters can be used for subscripts i and j.

i=0;
1=0;
DWO00000 = MWO00000; ;
DWO00000 = MW00000] ;

v

Programming

This chapter describes the rules for creating motion programs and sequence programs.

7.1 Motion Program Format - ------------ - 7-2
7.1.1 Motion Program Structure = - === - === - o c oo e e 7-2
71.2Block Format - -------- oo e e - 7-2
7.1.3 Using Constants and Variables - - - - === = - c oo m o e e 7-7

7.2 Motion Module Parameters - ------------------cmoa oo 7-9
7.2.1 Axis Type Selection - - - - = - - - s m oo oo 7-9
7.22Reference Unit - -------m oo m oo 7-9
723 ElectronicGear ------------- oo 7-10
7.24 Speed Reference - ------- oo o mmmm oo 7-12
7.2.5 Acceleration/Deceleration Setting - ----------------------o 7-12

7.3 Group Definition - -------- - oo 7-13

7.4 Priority Levels of Operations ------------o-omommmm e - 7-15

7.5 Commands and Execution Scans - - --------------------------- 7-17
7.5.1 Command Types - - - - - - - - m o s o oo e e e e 7-17
7.5.2 Listof Command Types - -------- - oo m i o m e 7-18

7.6 Sequence Program Format - ----------------mmmmm oo 7-19

Programming

H

7-1

7-2

7 Programming

7.1.1 Motion Program Structure

7.1 Motion Program Format

7.1.1 Motion Program Structure

A motion program contains a program number, arbitrary comment, program body, and END command. The pro-
cess executed by a motion program is coded in the program body. The motion program basic structure is shown

below.
'g".j-.:jEngineering Manager = |EI|1|
File Edit Wiew Debug ‘Window
DES d s ea Rk LERE R R
= Motion Editor MP2310 Online Local[MPMOO1] - S
[PT#: 2 cPUE: 1 v
Group1 AW BEEd &g 2| ; 1 Program number and comment |
00001 MPMO01 "ANY COMMENT;
00002
00003
00004
00005 00000 LABEL: MVS[A1]20.0 [E1]30.0 [C1]40.0 F30000; "COMMENT"
00006
00007
00008 Program body
00009 00001 END;
1DBG [2ABT |3 |4IN |50vR |6SP |7BP 8GO |9 [ICBRK. ["RGL [1Z |
For Help, press F1 |" m [Nm S
INFO One line of program number and comment can be omitted.

7.1.2 Block Format

One block is one process execution unit. The program body consists of one or more than one block. The format

of one block is shown below. The details of each item are described from the next page.

LABEL: MVS [A1]20.0 [B1]30.0 [C1]40.0 F300000 ; "Comment"
(4) Coordinate word (7) Comment
(3) Logical axis name (6) End of block
(2) Motion language command
(1) Label (5) Specific character
No. ltems Description
(1) | Label Indicates the destination of PFROK and SFORK command.
Motion language . .
(2) command Specifies a motion program command.
(3) | Logical axis name Specifies a logical axis name set in the Group Definition window.
4) | Coordinate words Spem.ﬁes the axis coordinate value or the incremental travel amount
of axis.
(5) | Specific character Specifies supplemental data for the motion command.
(6) | End of block Specifies the end of a block.
(7) | Comment Describes the program comment.

7.1 Motion Program Format

(1) Label
A label consists of a character string containing from one to eight alphanumeric characters or symbols, a colon
[:], and a space or TAB.

LABEL : Type Available Characters
Space or TAB Letters AtoZ,atoz
Numbers 0to9
Colon Symbols _ (hyphen)
A character string Note: Numbers cannot be used at the heads
containing one to eight of labels
characters '

A label is required when using a Parallel Fork command (PFORK) or Selective Fork command (SFORK) com-
mand. If a PFORK or SFORK command is not used, the label description is not required.

<4 EXAMPLE p»
Label Coding Example

PFORK LAB1, LAB2;
LAB1: ZRN [A1]0 [B1]0 [C1]0;

JOINTO LABS;

LAB2: MVS [D1]100.0 [E1]200.0 [F1]300.0;
JOINTO LAB3;

LAB3: PJOINT:

(2) Motion Language Commands

Code a motion language command.
Refer to Chapter 8 Command Reference or Appendix A Motion Language Commands for information on motion

language commands.

(3) Logical Axis Name

Code a logical axis name set in the Group Definition window. The logical axis name must be enclosed in brack-

ets [].
MVS[A1]120.0; Type Available Characters
Letters AtoZ,atoz
Logical axis name NuUmbers 0109

(A character string
containing from one
to eight characters)

Programming

H

7-4

7 Programming

7.1.2 Block Format

(4) Coordinate Words

A coordinate word is a numerical value or a variable to be coded after an axis name. A coordinate word specifies
the reference position, speed, acceleration/deceleration rate, and other items.

» Using Numbers for a Coordinate Word

Write a numerical value after an axis name to directly specify the coordinate word.
Both integers and real numbers can be used for a numerical value. However, special care must be taken
when using integers.

When the reference unit is set to 0.001 mm and the reference position “1000 (integer numbers)” is written
in the coordinate word, for example, the Machine Controller interprets it as 1.000 mm. When writing
“1.000 (real numbers),” the Machine Controller interprets it as it is (1.000 mm).

<4 EXAMPLE p»
MVS [A1]1000; — 1.000 mm
or
MVS [A1]1.000; — 1.000 mm
or
MVS [A1]1.; — 1.000 mm

» Using a Variable for a Coordinate Word

Write a double integer type variable after an axis name to indirectly specify the coordinate word.

When the reference unit is set to 0.001 mm with indirect designation using a variable, and the register
value is set to 1000, the Machine Controller interprets the coordinate word as 1.000 mm in the same way
as for an integer value set in the above example.

<4 EXAMPLE »

ML00000 = 1000;
MVS [A1]ML00000; | —> 1.000 mm

IN FO The coordinate word unit depends on the command and motion module settings. Refer to 7.2.2 Reference Unit for informa-
Z tion on the coordinate word unit.

7.1 Motion Program Format

(5) Specific Characters

The meaning and application examples of each specific character are listed below. Refer to the Reference Section
indicated in the following table for details of each specific character.

Character Meaning Application Examples Reference Section
Interpolation MVS [A1]1000 [B1]2000 F3000000; . .
F 822L 1 I} MV
feed speed | MVS [A1]1000 [B1]2000 FML000OO: inear Interpolation (MVS)
i|\r/1ltae):‘-p0|ation FMX T30000000; 8.1.7 Maximum Interpolation Feed Speed
feed speed FMX TMLO00000; Setting (FMX)
TIM T100;
TIM TMWO00000; 8.4.11 Dwell Time (TIM)
MVT [A1]1000 [B1]2000 T100; 8.2.9 Set Time Positioning (MVT)
) . MVT [A1]1000 [B1]2000 T™MLO0000OC; 8.1.9 Interpolation Acceleration Time
T Sett
me Setings 1ac To00; Change (IAC)
T IAC TMLO00000; 8.1.10 Interpolation Deceleration Time
IDC T100; Change (IDC)
IDC TML00000;
8.2.3 Clockwise/Counterclockwise Circular
{‘L'j‘:r’gbfi: of MCW [A1]1000 [B1]2000 U500 V500 T2 F3000000; f”erg“;lg;’;’;}gg Center Position Designa-
ion]
circular ll\:Ai)\:)VOE)A()1()]1 000 [B1]2000 U500 V500 TMLO0000 8.2.4 Clockwise/Counterclockwise Circular
interpolation ’ Interpolation with Radius Designation
(MCW, MCC)
8.2.3 Clockwise/Counterclockwise Circular
Interpolation with Center Position Designa-
R Radius of circle MCW [A1]1000 [B1]2000 R500 F3000000; tion (MCW, MCC)
. MCW [A1]1000 [B1]2000 RML0O0000 F3000000; 8.2.4 Clockwise/Counterclockwise Circular
Interpolation with Radius Designation
(MCW, MCC)
. 8.2.3 Clockwise/Counterclockwise Circular
Circle center Intervolati ith Center Position Desi
point MCW [A1]1000 [B1]2000 U500 V500 T2 F3000000; t’? e’Z%V;"’L Vé’C) enter Fosition Lesigna-
u coordinate 1 | MCW [A1]1000 [B1]2000 UML00000 V500 T2 on - o
. 8.2.4 Clockwise/Counterclockwise Circular
(horizontal ax- | F3000000;
is) Interpolation with Radius Designation
(MCW, MCC)
8.2.3 Clockwise/Counterclockwise Circular
gc')ﬁ'f center | \cw [A1]1000 [B1]2000 U500 V500 T2 F3000000; f’;’:rgj’g;;”ﬂg’c’; Center Position Designa-
1 f
v coordinate 2 I;A?%\E)VO[(')AE)1(}_1 000 [B1]2000 U500 VML00000 T2 8.2.4 Clockwise/Counterclockwise Circular
(vertical axis) ’ Interpolation with Radius Designation
(MCW, MCC)
Interpolation
= feed speed IFP PS50; 8.1.8 Interpolation Feed Speed Ratio Set-
specified by IFP PML0O0O0OO; ting (IFP)
percentage
ss Skip signal SKP [A1]1000 [B1]2000 F3000000 SS1; 8.2.8 Linear Interpolation with Skip Func-
selection SKP [A1]1000 [B1]2000 F3000000 SS2; tion (SKP)
Movement
amount for EXM [A1]1000 D1000; L
D external EXM [A1]1000 DMLO000O:; 8.2.10 External Positioning (EXM)
positioning
N Number of SFR MB001000 N5 W10; 8.8.1 Bit Right Shift (SFR)
shifts SFR MB001000 NMW00000 W10; 8.8.2 Bit Left Shift (SFL)
8.8.1 Bit Right Shift (SFR)
W Bit width BLK MW00100 DW00100 W10; 8.8.2 Bit Left Shift (SFL)
BLK MW00100 DwW00100 WMWO00000; 8.8.3 Block Move (BLK)
8.8.4 Clear (CLR)

Programming

H

7-5

7 Programming

7.1.2 Block Format

Character Meaning Application Examples Reference Section

Motion
MPS subprogram MSEE MPS002; 8.4.5 Motion Subprogram Call (MSEE)

number

Sequence
SPS subprogram SSEE SPS002; 8.4.6 Sequence Subprogram Call (SSEE)

number

(6) End of Block
Insert a semi-colon at the end of block. There is no limitation on the number of lines in a block. Code the end of
a block to specify its end.
Always insert Line Feed after the end of a block.

4 EXAMPLE p End of Block Coding Example

Line Feed
MOV [A1]100(® “Moves Axis AT"

Block end code

Line Feed
MOV [A1]1000 “Moves Axis A1”
[B1]2000 “Moves Axis B1”
[C1]300 “Moves Axis C1”

Block end code

(7) Comments

Either of the following two formats can be used.
* Code a Character String Enclosed in Double Quotation Marks

A character string enclosed in double quotation marks is interpret as a comment.

“ Character string ”

4 EXAMPLE p Comment Coding Example 1

ZRN [A1]0 [B1]0 [C1]0; ” Zero point return of all axes ”
MVS [A1]100.0 [B1]200.0 [C1]300.0; ” 3-axis linear interpolation ”

» Code a Character String after One Double Quotation Mark

The characters from the double quotation mark to a Line Feed (until the Enter key is pressed) are interpret
as a comment.

Line Feed

“ Character string

<4 EXAMPLE p» Comment Coding Example 2

“ Zero point return of all axes
ZRN [A1]0 [B1]0 [C1]0;

“ 3-axis linear interpolation
MVS [A1]100.0 [B1]200.0 [C1]300.0;

7.1 Motion Program Format

7.1.3 Using Constants and Variables
(1) Constants

The constants that can be used in motion programs are listed below.

Classification Range Coding Examples
Decimal Integers -2147483648 to 2147483647 823, -2493, 123k, 123K
Hexadecimal Integers | 00000000H to FFFFFFFFH FFFABCDEH, 2345H, FH

-214748.3648 t0 214748.3647
Real Numbers Change according to the setting of the num- | 763.0, 824.2, 234.56, -321.12345
ber of digits below the decimal point

INFO * The — (minus) sign cannot be omitted, but the + (plus) sign can.
[A1]+123 = [A1]123

A1]-123 = [A1]-123

* A decimal integer value is multiplied by 1000 by adding K to the value. For a value such as position reference, adding a K
in place of three zeros makes it easy to read.

[AT123k = [A1]123000
[A1]123K = [A1]123000

(2) Variables
The variables that can be used in motion programs are listed below.
Classification Variable Type - Data Type - -
Bit Word Long Floating point
S register SB SW SL SF
M register MB MW ML MF
Global Variables I register IB W IL IF
O register OB ow OL OF
C register CB CcwW CL CF
Local Variables D register DB DW DL DF

Refer to Chapter 6 Variables (Registers) for details on variables.

<4 EXAMPLE p»

A variable coding example is shown below.

MB12345F
W T Bit position: Valid only with bit data

Variable number

Data type: B, W, L, or F
Variable type: S, M, I, O, C, or D

Programming

H

7-8

7 Programming

7.1.3 Using Constants and Variables

N
(o]

0 (zero) cannot be omitted in all constants and variables.

B Examples Where 0 (zero) Can be Omitted

[A1]00123 => [A1]123
[A1]MW00010 => [A1]MW10
[A1]100.000 => [A1]100.

B Examples Where 0 (zero) Cannot be Omitted

MPMO001;(Program number coded at the head of program)
MSEE MPS002;

7.2 Motion Module Parameters

7.2 Motion Module Parameters

Motion control using motion programs is determined according to the settings of the motion module parameters.
Set the motion module parameters referring to the connected machine before running motion programs.

This chapter describes the minimum settings of motion module parameters required for motion control using
motion programs.

7.2.1 Axis Type Selection

There are two types of position control: Finite length position control for return and other operations that are performed
only within a specified range, and infinite length position control, which is used for moving in one direction only.
Infinite length position control can reset the position to 0 after one rotation, e.g, belt conveyors, or move in one direc-
tion only, without resetting position after one rotation. The axis type selection sets which of these types of position con-
trol is to be used.

The details of the Axis Type Selection are listed in the following table.

Parameter Type FEIRIIECT I, Name Description DB
(Register No.) Value
Specify the position control method for the con-
trolled axis.
0: Finite Length Axis
Set a finite length axis if control is performed
Function Selec- within a limited length or for an axis that uses
No. 1, bit 0 tion Flag 1, Axis infinite length control in one moving direction 0
Motion Fixed Selection only without resetting the position every rotation.
Parameters 1: Infinite Length Axis
Set an infinite length axis for an axis that uses
infinite length control while resetting the position
every rotation.
Infinite Length Set the reset position of the position data when an
No. 10 Axis Reset Posi- | infinite length axis has been set for the axis type 360000
tion (POSMAX) | using the reference unit.

7.2.2 Reference Unit

The unit of position reference that is input from a motion program is called a reference unit, and is a pulse, mm,
deg, inch, or um. The reference unit is specified in Reference Unit Selection (motion fixed parameter 4).

The minimum reference unit that can be specified is determined by the setting of Number of Digits below Deci-
mal Point (motion fixed parameter 5).

Motion Fixed Parame- Motion Fixed Parameter 4: Reference Unit Selection

ti';lsavtl gg:i?;;f%?nl:s 0: pulse 1: mm 2: deg 3:inch 4: um
0: 0 digits 1 mm 1 deg 1 inch Ium]
1: 1 digits 0.1 mm 0.1 deg 0.1 inch 0.1 um
2: 2 digits 0.01 mm 0.01 deg 0.01 inch 0.01um Minimum
3: 3 digits I pulse® 0.00l mm | 0.001 deg | 0.001 inch | 0.001 um _Le:ifrence
4: 4 digits 0.0001 mm 0.0001 deg 0.0001 inch | 0.0001um
5: 5 digits 0.00001 mm | 0.00001 deg | 0.0001 inch | 0.00001um | _|

* When “pulse” is selected, the motion fixed parameter 5 (number of digits below decimal point) is invalid.

Programming

H

7-9

7 Programming

7.2.3 Electronic Gear

N The range of reference positions for an axis move command are as follows:
INFO ;

Motion Fixed Motion Fixed Parameter 4: Reference Unit Selection

Parameter 5: Num-

ber of Digits below 0: pulse 1: mm, 2: deg, 3: inch, 4um
Decimal Point

0: 0 digit -2147483648 to 2147483647 -2147483648 to 2147483647

1: 1 digit -2147483648 to 2147483647 -214748364.8 to 214748364.7

2: 2 digits -2147483648 to 2147483647 -21474836.48 to 21474836.47

3: 3 digits -2147483648 to 2147483647 -2147483.648 to 2147483.647

4: 4 digits -2147483648 to 2147483647 -214748.3648 to 214748.3647

5: 5 digits -2147483648 to 2147483647 -21474.83648 to 21474.83647

7.2.3 Electronic Gear

In contrast to the reference unit input to the Machine Controller, the moving unit in the mechanical system is
called the “output unit.” The electronic gear converts position or speed units from reference units to output units
for the mechanical system without going through an actual mechanism, such as a gear.

When the axis of the motor has rotated m times and the mechanical configuration allows the axis at the load to
rotate n times, this electronic gear function can be used to make the reference unit equal to the output unit.

The electronic gear function is enabled when the following settings are made:

* Fixed Parameter 6: Travel Distance per Machine Rotation
* Fixed Parameter 8: Servo Motor Gear Ratio
* Fixed Parameter 9: Machine Gear Ratio
Note: The electronic gear is disabled when the pulse is specified for the Reference Unit Selection.

The following setting example uses ball screw and rotating table workpieces.

(1) Parameter Setting Example Using Ball Screw
* Machine specifications: Ball screw axis rotates 5 times for every 7 rotations of the motor axis (Refer to the
following figure.)
+ Reference unit: 0.001 mm

Motor
m = 7 rotations

Workpiece

P (pitch) = 6 mm/rotation

n = 5 rotations

To move the workpiece 0.001 mm for 1 reference unit input under the conditions outlined above, i.e., 1 reference
unit = 1 output unit, set the fixed parameters 6, 8, and 9 as follows:

+ Fixed Parameter 6: Travel Distance per Machine Rotation = 6 mm/0.001 mm = 6000 (reference units)
* Fixed Parameter 8: Servo Motor Gear Ratio=m =7
+ Fixed Parameter 9: Machine Gear Ratio=n=15

Note: Set the SERVOPACK gear ratio to 1:1.

7-10

7.2 Motion Module Parameters

(2) Parameter Setting Example Using Rotating Table
» Machine specifications: Rotating table axis rotates 10 times for every 30 rotations of the motor axis (Refer
to the following figure.)
» Reference unit: 0.1°

Workpiece (Rotating table)

I I 360°/rotation
g

n = 10 rotations

m = 30 rotations

Motor

To rotate the table 0.1° for 1 reference unit input under the conditions outlined above, i.e., 1 reference unit = 1
output unit, set the fixed parameters 6, 8, and 9 as follows:
* Fixed Parameter 6: Travel Distance per Machine Rotation = 360%/0.1x = 3600 (reference units)
 Fixed Parameter 8: Servo Motor Gear Ratio =m = 30

* Fixed Parameter 9: Machine Gear Ratio=n= 10
Note: 1. The gear ratio for fixed parameters 8 and 9 (m/n) may be constant, e.g., m=3 andn=1.
2. Set the SERVOPACK gear ratio to 1:1.

Programming

H

7-11

7 Programming

7.2.4 Speed Reference

7.2.4 Speed Reference

The unit for the speed coded in a motion program can be selected: Reference unit/s, 10™ reference unit/min.,
0.01% of rated speed, or 0.0001% of rated speed. Use bits 0 to 3 (Speed unit selection) of the motion setting
parameter OWLILI03 to select the unit.

Motion Setting

Speed Unit Coordinate Word Designation Method
Parameter

0: Reference unit/s Designate a movement amount per second in reference units.

Designate a movement amount per minute in reference units.
When the reference unit is a pulse:

The designated value is multiplied by 1000.
Example: Reference unit = pulse
VEL [A1]1000;

OWIILI03, bits 0 . . Speed reference = 1,000,000 [pulses/min.].
0 3: 1: 10" reference unit/

Speed unit min. When the reference unit is not a pulse:

selection The designated value is handled as:
Example) Reference unit =mm

VEL [A1]1000;
Number of digits below decimal pointn =3

Speed reference = 1000 x 10° [0.001 mm/min]

2:0.01% Designates the speed in percentage of the rated speed in units of 0.01%.

3:0.0001% Designates the speed in percentage of the rated speed in units of 0.0001%.

7.2.5 Acceleration/Deceleration Setting

The unit for the acceleration/deceleration rate coded in a motion program can be selected: Reference unit/s® or
ms. Use bits 4 to 7 (Acceleration/deceleration degree unit selection) of the motion setting parameter OWLI[103
to select the unit.

Motion Setting Speed Unit Coordinate Word Designation Method
Parameter
ownmnos, bits 4 to 7 . Designates the acceleration/deceleration rate per second in units of refer-
. 0: Reference unit/s? .
Acceleration/deceler- ence unit/s”.
ation degree unit . . S
selection 1: ms Designates the acceleration/deceleration time in units of ms.

7.3 Group Definition

7.3 Group Definition

Axes to be grouped together are defined in the Group Definition window.

This section describes the components of the Group Definition window.

®

O]

I Group Definition

r—iaroup Lisk
Mo, of Graup

®

— fis Specification[Grp3]

Conkral Axis Mo,

Mo. Group Mame

v

Axis | Circuit |Axis Mo, |Logical Axis Mame

01 | Groupl
02 | Groupz
0z

01 1 1 A3
0z 1 2 B3
03 1 3

QK _I ancel | Help

® No. of Group

Set a number for operation as a group.

Set it to 1 for operation as one group.

Set it to the number of groups for operation with multiple groups.

® Group Name

Define a group name.

® Control Axis No.

Set the number of axes controlled in the group.

@ Circuit

Set a line number for the motion module used.
The line number can be checked in the module configuration definition.

Line number
lot Mumber 1 2 3' 4 5
Madule Type CPU |2 18IFA ¥ |SWE ¥ |SWR * |M-EXECUTOE «
Controller Number |- 01 01 % 01 -
Circuit Mumber = a1 1 oz -
170 Start Register ——— [s]s]0]s] 0800 ———- 0C00
10 End Register ——— O7FF QEFF ——— OC3F
Lisable Input ¥ |Enable * |Enable hd - -
Disable Qutput ~ |Enable * |Enable - o =
Mation Start Eegister |---- =z 8000 BEOOD -
Motion End Fegister |---- FEes 87FF 8FFF ———
Details MECHATE.OLIMK
Status Funning Running Eunning FEunning E.unning

Programming

H

7 Programming

® Axis No.

Set an axis number for the axis used.

The axis number can be checked in the detailed screen of the used motion module.

Axis number

iz 1 W] [SERVOPACK SGDS-1~ Wersion [1020 =] [erva Type [Fiotar

s | Setup Parameters | SERVEPACK | Moritar |

Mame Input Data | Double-click
ien = fction of operation modes Hormal aperation mode 7|
T [Function selection flag 1 0000 000D 0000 0000 o , 5 B 2 5 |
2 |Function selection flag 2 0000 000D 0000 0000 Thelb BE - z18rA B v TISUR ~ [M_EXECUTOR ~
4_|Reference unit selection pulse x| e - o1 o1 o1 =
5 |Number of digits below decimal paint 3 e] o1 o1 02 "
6 |Travel distance per machine rotation 10000 1/0 Srart Register - 0000 0800 Lot 0C00
1/0 End Register _[---- O7FF OBFF — 0C3F
Disable Input ~ |Enable > |Enable - - =l
Disable Qutput ~ |Enable > [Enable - - -
Motion Start Register |---- —--- 8000 8300 [
Motion End Register |-—-- —--- 87FF BFFF -
Details MECHATROLINK |
Status Runring Running Running Running Runring

® Logical Axis Name

Define a name for the specified axis number.
The name defined here is used when programming a motion program.

MVS [A1]1000 [B1]2000 [C1]3000 F1000;

t 4+ 3

|
Logical axis name

7.4 Priority Levels of Operations

7.4 Priority Levels of Operations

A priority level is assigned to each operator used in an operation written in motion language.
For an operation involving three or more items, specify the priority level by using ().

The priority levels of operators are shown below.

High P Low

Operator Priority Level
1 2 3 4

Parentheses 0
NOT !

AND &
OR |
XOR A
T
Arithmetic operation ;
/

* Arithmetic Operation Example

<4 EXAMPLE »

(N
INF
(nFo)

* Operation example

MWO00100 = 1 + 2;

MWO00100 = 1 + (2 * 3);

+ Example of operation involving three items or more

With this operation, 1 + 2 is calculated, and the result of 3 is stored in MW00100.

With this operation, 2 * 3 is calculated first, and 1 is added to the result of 6. The final result of 7 is then
stored in MWO00100.
Therefore, MW00100 = 7

W Precautions on operations involving three items or more

For example, with the operation below,

MWO00100 =1 + 2 = 3;

1 + 2 is calculated first according to the priority level shown above, and then the result of 3 is multiplied by 3. The final
result of 9 is then stored in MW00100. Therefore, MW00100 = 9.

Programming

H

7-15

7-16

7 Programming

* Logical Operation Example
<4 EXAMPLE »

* Operation example

MWO00100 = 0001H | 0002H;

With this operation, OR operation of 0001H and 0002H are executed, and the result is stored in MW00100.

» Example of operation involving three or more items

MWO00100 = (1111H | 2222H) & 00FFH:;

With this operation, OR operation of 1111H and 2222H are executed first, and the AND operation of the OR
result and O0FFH is calculated. The AND result is then stored in MW00100.
Therefore, MW00100 = 0033H

INFO B Precautions on operations involving three or more items

For example, with the following operation,

MWO00100 = 1111H | 2222H & 00FFH;

With this operation, the AND operation of 2222H and 00FFH is executed first. Then, the OR operation of the AND
result and 1111H is executed. The OR result is then stored in MW00100.
Therefore, MW00100 = 1133H

7.5 Commands and Execution Scans

7.5 Commands and Execution Scans

7.5.1

Command Types

There are three motion language command types. The number of scans required to execute a command will differ
depending on the command type. The following table shows the number of scans required to execute each type of
command.

Number of Scans Required
Command Type Command to Execute a Command
S type Operation commands One scan
M type Axis move commands
- More than one scan
T type Timer related commands

The details of each command type follow:

* S Type Commands

S type commands, including operation commands, are executed in one scan.
A program in which S type commands are continuously coded is executed within one scan.

* M Type Commands

M type commands, including axis move commands, are executed in more than one scan.
One scan is required to switch from the S type command to the M type command.

* T Type Commands

T type commands, including timer related commands, are executed in more than one scan.

The following diagram shows the number of scans required to execute each command type.

4 N
S type command
S type command Executed in one scan
S type command

Waits for one scan

M type command
Executed in more
M type command than one scan
When the command before an S type command is

an M type, the S type command is executed at
the last scan of the M type command.

S type command
S type command
S type command

T type command
Executed in more
than one scan

_ END; W,

Executed in one scan

Programming

H

7-17

7-18

7 Programming

The following table lists the command types.

7.5.2 List of Command Types

7.5.2 List of Command Types

Classification | Command | S Type | M Type | T Type | Classification [Command | S Type | M Type | T Type
ABS v = v
INC v " v
ACC v Arithmetic - v
DCC v Operation * v
: : SCC v / v
e Seted [VL 7 s |
FMX v | v
IFP v Logical & v
IAC v Operation A v
IDC v ! v
ACCMODE v == v
MOV v <> v
MVS v Data > v
MCW v Comparison < v
Axis Move MCC v >= v
Commands ZRN v <= v
SKP v SFR v
MVT v SFL v
EXM Y Op(lajrztt?ons BLK Y
POS 4 CLR v
MVM v ASCII v
Control PLN v SIN v
Commands PLD v Cos v
PFN v TAN v
INP v ASN v
IF
ELSE v ACS v
IEND
WHILE
WEND Y ATN Y
PFORK
JOINTO v Basic SQT v
PJOINT Functions
SFORK
JOINTO v BIN v
Program SJOINT
Control MSEE v BCD 7
Commands SSEE = s —
UFC v R{} v
FUNC v PON v
END v NON v
RET v TON v
M v TOF v
oW ’ c CTSK v
EOX v Language
Control
SS,\IL%%/ v Commands | CFUNC v

7.6 Sequence Program Format

7.6 Sequence Program Format

The format of a sequence program is the same as that for a motion program.
However, the motion language commands that can be used in a sequence program are limited. For the commands
that can be used in sequence programs, refer to Appendix A Motion Language Commands.

Programming

H

7-19

8

Command Reference

This chapter describes the motion language commands.

8.1 Axis Setting Commands - ------------- oo 8-3
8.1.1 Absolute Mode (ABS) = === - - mmm o e e e a o e 8-3
8.1.2 Incremental Mode (INC) = = = = = = = = s s s e e e e e e a o 8-7
8.1.3 Acceleration Time Change (ACC) - === == mmm s e e e e e e o - 8-11
8.1.4 Deceleration Time Change (DCC) == === = === s e s e e e e e e - 8-17
8.1.5 S-curve Time Constant Change (SCC) -------m--cmmmmmm i o - 8-23
8.1.6 Set Velocity (VEL) == == === s m o s e e e o e e e e e e s 8-29
8.1.7 Maximum Interpolation Feed Speed Setting (FMX) == === == =cmmmmmmommanno- 8-35
8.1.8 Interpolation Feed Speed Ratio Setting (IFP) - - === === ccmmmmmmmie oo 8-37
8.1.9 Interpolation Acceleration Time Change (IAC) - --=- === mommmmmmm e oo 8-40
8.1.10 Interpolation Deceleration Time Change (IDC) ------=---=cnommmommnoanno- 8-43
8.1.11 Set Interpolation Acceleration/Deceleration Mode (ACCMODE) --------------- 8-46

8.2 Axis Move Commands - ------------- oo - 8-60
8.2.1 Positioning (MOV) === - = - = m - s s e e e e e e - 8-60
8.2.2 Linear Interpolation (MVS) -------- - mmm e e e e e 8-64
8.2.3 Clockwise/Counterclockwise Circular Interpolation with Center Position

Designation (MCW, MCC) - == - === - - mm i e e e m e e e e e e oo - 8-69
8.2.4 Clockwise/Counterclockwise Circular Interpolation with Radius Designation

(MCW, MCC) = - - - - - mm s m s oo o e oo oo 8-75
8.2.5 Clockwise/Counterclockwise Helical Interpolation with Center Position

Designation (MCW, MCC) - - - - === - - o s i e e e e e e e e oo o - 8-79
8.2.6 Clockwise/Counterclockwise Helical Interpolation with Radius

Designation (MCW, MCC) - == - - === - mm s i e e e e e e e e e e oo - 8-82
8.2.7 Zero Point Return (ZRN) - - = - == - c - o e oo m e e e e - 8-84
8.2.8 Linear Interpolation with Skip Function (SKP) == - - == - - - - e m e e 8-86
8.2.9 Set Time Positioning (MVT) - --- - - - - mmmm e oo - 8-88
8.2.10 External Positioning (EXM) = - = = = = = = = cm e e e e e e - 8-90

8.3 Axis Control Commands -------------=------“--------------- 8-92
8.3.1 Current Position Set (POS) - ------cmmmm i e e 8-92
8.3.2 Move On Machine Coordinates (MVM) - - - - - - - - m o m o e e - 8-94
8.3.3 Program Current Position Update (PLD) ------------commmm i e oo - 8-95
8.3.4 In-Position Check (PFN) = === o s oo oo e 8-96
8.3.5 Set In-Position Range (INP) - - - - - - - o mm i e e e e 8-98
8.3.6 Coordinate Plane Setting (PLN) - - - - - - - o s mm oo e e o 8-100

Command Reference

8-1

8 Command Reference

8.4 Program Control Commands ------=--------m-mmmmommam - 8-101
8.4.1 Branching Commands (IF ELSE IEND) = = = === = == s s e e e e e e e - - 8-101
8.4.2 Repeat (WHILE WEND) - - === m s s e e e 8-103
8.4.3 Parallel Execution (PFORK, JOINTO, PJOINT) == -----cccmmmmmmmmmmeee o - 8-106
8.4.4 Selective Execution (SFORK, JOINTO, SJOINT) = === --cmmmmmmmmm i aee - 8-109
8.4.5 Motion Subprogram Call (MSEE) - - - === -cm s mmmm e e e oo - 8-113
8.4.6 Sequence Subprogram Call (SSEE) - === - === - - mmmmmmm e - 8-114
8.4.7 User Function Call From Motion Program (UFC) === --==nccmmommmnmaa oo 8-115
8.4.8 User Function Call from Sequence Program (FUNC) - - === ---mnommmommnoon-- 8-123
8.4.9 Program ENd (END) === === - m oo m o m e e e e e e e 8-124
8.4.10 Subprogram End (RET) === = == == = o m s e e e e e e e 8-125
8.4.11 DWell Time (TIM) = = = = = = m s e e e e e e e oo 8-126
8.4.12 1/0O Variable Wait (IOW) - - = = o s e e e e e 8-127
8.4.13 One Scan Wait (EOX) == === - o - mmmmm e e e e e - 8-129
8.4.14 Single-block Signal Disabled (SNGD)/Single-block Signal Enabled (SNGE) - - - - - - 8-130

8.5 Arithmetic Operations - -------- - -c e e e e 8-131
8.5.1 Substitute (Z) - - - - - - - - 8-131
8.5, 2 Add () = - - - - - m o mm e 8-132
8.5.38uUbtract (-) - === - - - - - e 8-133
8.5.4 MUtiply () === == mm s s mmm - 8-134
8.5.5DiVIde (/) —---- - - - m e 8-135
8.5.6 Remainder (MOD) ----------mmmmm oo oo 8-136

8.6 Logic Operation ----------m oo e 8-137
8.8 TOR (|) ==mmmmmmmmmmm e 8-137
8.6.2 AND (&) === == == = mmm oo 8-139
8.6.3 XOR () == mmmmm e mm e 8-140
8.6.4 NOT (1) =mmmmmmmmmmmm e 8-141

8.7 Data Comparisons - ------ == - - oo e e e - 8-142
8.7.1 Data Comparison Commands (==, <>, >, <, >= <=) = - - - mmmmmmmmmm i m oo 8-142

8.8 Data Operations - ----------------cc-mommm oo 8-144
8.8.1 Bit Right Shift (SFR) == == === == s s e 8-144
8.8.2 Bit Left Shift (SFL) === == == s s s s s 8-145
8.8.3 Block Move (BLK) - = = = = = = = s s e e e e e e e e 8-146
8.8.4 Clear (CLR) == == === m s s m s e e e e e 8-147
8.8.5 ASCII Conversion 1 (ASCII) = = = === = s m s e e e e e 8-148

8.9BasicFunctions - ------------- - 8-150
8.9.18IN€ (SIN) = - - - - mmm 8-150
8.9.2C08INE (COS) - - - - - - - - s s oo m o 8-152
89.3Tangent (TAN) ------mmmmmmm oo 8-153
8.9.4 Arc Sine (ASN) = - = = = = = s s e e e 8-154
8.95ArcCoSINE (ACS) ---------mmmmm o e 8-155
8.9.6 Arc Tangent (ATN) - - - - - - mm o m o e e 8-156
8.9.7 Square Root (SQT) -----------mmmm oo 8-157
8.9.8BCD toBinary (BIN) == === -mmmmm i oo 8-159
8.9.9Binaryto BCD (BCD) - - - - - 8-160
8.9.10SetBit (S{}) --------- - mm e 8-161
8.9 11 ResetBit (R{}) -------mmmmmmm i 8-162
8.9.12 Rising Pulse (PON) - - - - = - s m e e e e e e e e e e e e 8-163
8.9.13 Falling Pulse (NON) - - - - - mmmm oo 8-165
8.9.14 ON-Delay Timer (TON): Counting unit: 0.01 second - ---------------------- 8-168
8.9.15 OFF-Delay Timer (TOF): Counting unit: 0.01 second ---------------------- 8-170

8.10 C-Language Control Commands -------------=------------- 8-172
8.10.1 C-Language Task Control (CTSK) === === -mmmmm oo e e oo 8-172

8.10.2 C-Language Function Call (CFUNC) - - - == === - o s e e e e m e oo 8-174

8.1 Axis Setting Commands

8.1 Axis Setting Commands

This section describes the axis setting commands.

8.1.1 Absolute Mode (ABS)

Motion Programs

Sequence Programs

Available

Not Available

/N CAUTION

mand is specified correctly.

» The movement of a coordinate word designated in ABS mode is entirely different from that of the same coor-
dinate word designated in INC mode. Before starting operations, be sure to check that the ABS or INC com-

Failure to carry out this check may result in damage to equipment, serious personal injury, or even death.

(1) Overview

The Absolute Mode (ABS) command causes the coordinate words that control axis movement to be treated as a

target position.

Once ABS mode has been executed, it remains in effect until Incremental Mode (INC) is next executed. ABS

mode is the default mode when the program operation is started.

ABS;

MOV [Logical axis 2] Reference position 1 [Logical axis 2] Reference position 2;

Logical axis 2 Coordinate word
A

Reference |-------------oooooooeenes Target position
position 2

Program

current position

: — » Logical axis 1
Reference position 1

Fig. 8.1 Movement Mode: Absolute Mode (ABS)

In this manual, the coordinate word that follows the logical axis name for the axis move command is expressed as

“reference position” or “position reference value.”

B Program Current Position
TERMS' The position on the work coordinate system when an axis is started moving by execution of an axis move command. And,

the work coordinate system is the coordinate system used in motion programs.
For information on the work coordinate system, refer to 8.3.1 Current Position Set (POS).

Command Reference

8-3

8 Command Reference

8.1.1 Absolute Mode (ABS)

(2) Format

* To code an individual ABS command
ABS;

» To code an ABS command in the same block with an axis move command
ABS MOV [Logical axis name 1] — [Logical axis name 2] —;

(3) Programming Example

An ABS command programming example is given below.
<4 EXAMPLE »

ABS; "Absolute mode
MOV [A1]10000 [B1]40000; "Positioning
MOV [A1]50000 [B1]20000; "Positioning
END;

B1

Program current position

(50000, 20000)

20000

A1

v

0 10000 50000

Fig. 8.2 ABS Command Programming Example

(4) Supplemental Information on ABS Command
(a) Related Motion Parameters

Motion setting parameters and ABS commands have no relation.
The movement mode (ABS mode/INC mode) for axis move commands is control data exclusively reserved
for motion programs, and no motion setting parameter can be used to specify these modes.

N * Note that the movement mode (ABS mode/INC mode) for axis move commands is totally different from the position
INFO reference type specified by the motion setting parameter OWII09, bit 5.

+ When executing a motion program, set bit 5 (position reference type) of motion setting parameter OWI[J09 to 0
(incremental addition mode) regardless of the movement mode setting.

8-4

8.1 Axis Setting Commands

ﬁ
z
o
&

(b) Finite-length Axis and Infinite-length Axis

The position reference value of a coordinate word for a finite-length axis must be handled differently from

one for an i

nfinite-length axis.

The following table shows how to designate the position reference values for a finite-length axis and infinite-

length axis.

. Movement Mode for ” . :
Axis Type Axis Move Command Position Reference Value Designation Method
Finite- ABS Mode Designate the target position for the position reference value.
length Axis INC Mode Designate the relative movement amount for the position reference value.
Designate the target position in the range between 0 to POSMAX for the position
reference value.
Infinite- ABS Mode iy L - o
. The position reference value indicates the movement direction: Positive direction
length Axis . o R . .
with a positive value, and negative direction with a negative value.
INC Mode Designate the relative movement amount for the position reference value.

infinite-length axis.

Use bit 0 (Axis selection) of motion fixed parameter 1 (Function selection flag 1) to select a finite-length axis or

Select a finite-length axis or infinite-length axis according to the machine configuration. For details on how to set

motion parameters, refer to the manual for the motion module to be used.

* Use the motion fixed parameter 10 (Infinite length axis reset position) to set POSMAX.

The motions of the finite-length axis and infinite-length axis in ABS mode are shown below.
For the motions in INC mode, refer to 8.1.2 Incremental Mode (INC).

* When Selecting ABS Mode for a Finite-length Axis

Specify the target position for the position reference value.
The following diagrams illustrate the axis motions when specifying the position reference values 2000 and
-2000 from the current position (1000).

ABS;
MOV [A1]2000;
Current Positioning
position end position
O PO > A1
-2000 0 1000 2000
ABS;
MOV [A1] -2000;
Positioning Current
end position position
O > A1
-2000 0 1000 2000

Command Reference

8-5

8 Command Reference

8.1.1 Absolute Mode (ABS)

* When Selecting ABS Mode for an Infinite-length Axis

Specify the target position in the range between 0 to POSMAX for the position reference value.

The position reference value indicates the movement direction: Positive direction with a positive value, and
negative direction with a negative value.

The following diagrams illustrate the axis motions when specifying the position reference values 2700 and
-2700 from the current position 450 for the infinite-length axis, with POSMAX set to 3600.

ABS;
MOV [A1]2700;
0
Current A1
position A
450 ‘ 3600
Positioning (POSMAX)
end position S/ S - e f——d- 2700
Posit
2700 900 end position
oo - r--4f--4---#------1- 1800
—efem - F4f----4-/--------1- 900
Current position 0
1800 The axis moves in the positive direction
for positioning to 2700.
ABS;
MOV [A1] -2700;
0
Current A1
position A
450 3600
(POSMAX)
----- STSAAG F—---/-4-----f-F--1- 2700
2700 - 900 Fosnong
Positioning e L/ -_1_1800
end position
——foem oS - 4=/ -- - - —-1- 900
Current position 0
1800 The axis moves in the negative direction
for positioning to 2700.

% tive direction.
Specity the POSMAX value for the position reference value to move the axis in the positive direction.

« If the target position (the absolute value of the position reference value) exceeds the POSMAX value for an infinite-
length axis in ABS mode, an alarm will occur in the motion program.

|NFO » When the position reference value +0 is specified for an infinite-length axis in ABS mode, the axis moves in the nega-

8.1 Axis Setting Commands

8.1.2 Incremental Mode (INC)

Motion Programs Sequence Programs

Available Not Available

/A CAUTION

» The movement of a coordinate word designated in ABS mode is entirely different from that of the same coor-
dinate word designated in INC mode. Before starting operations, be sure to check that the ABS or INC com-
mand is specified correctly.

Failure to carry out this check may result in damage to equipment, serious personal injury, or even death.

(1) Overview

The Incremental Mode (INC) command causes the coordinate words that control axis movement to be treated as a relative
movement amount.

Once INC mode has been executed, it remains in effect until the next time the Absolute Mode (ABS) is executed.
ABS mode is the default mode when the program operation starts.

INC;
MOV [Logical axis 1] Reference position 1 [Logical axis 2] Reference position 2;

Logical axis 2 Coordinate words

Target position

Reference
pasition 2

Program
current positio '
P Reference

I position 1 ! » Logical axis 1

Fig. 8.3 Movement Mode of Incremental Mode (INC)

In this manual, the coordinate word that follows the logical axis name for the axis move command is expressed as
“reference position” or “position reference value.”

B Program Current Position
TERMS' The position on the work coordinate system when an axis is started moving by execution of an axis move command. And,
= the work coordinate system is the coordinate system used in motion programs.

For information on the work coordinate system, refer to 8.3.1 Current Position Set (POS).

Command Reference

8-7

8-8

8 Command Reference

8.1.2 Incremental Mode (INC)

(2) Format

* To code an individual INC command
INC;

» To code an INC command in the same block with an axis move command
INC MOV [Logical axis name 1]— | [Logical axis name 2]—;

(3) Programming Example
An INC command programming example is given below.

<4 EXAMPLE

INC; " Incremental mode
MOV [A1]20000 [B1]30000; " Positioning

MOV [A1]20000 [B1]10000; " Positioning

END;

30000

Program
current position

20000

A\

A1

Fig. 8.4 INC Command Programming Example

(4) Supplemental Information on INC Command
(a) Related Motion Parameters

Motion setting parameters and INC commands have no relation.

The movement mode (ABS mode/INC mode) for axis move commands is control data exclusively reserved
for motion programs, and no motion setting parameter can be used to specify these modes.

8.1 Axis Setting Commands

ﬁ
z
o
&

(b) Finite-length Axis and Infinite-length Axis

The position reference value of a coordinate word for a finite-length axis must be handled differently from
one for an infinite-length axis.

The following table shows how to designate the position reference values for a finite-length axis and infinite-
length axis.

. Movement Mode for ” . :
Axis Type Axis Move Command Position Reference Value Designation Method
Finite- ABS Mode Designate the target position for the position reference value.
length Axis INC Mode Designate the relative movement amount for the position reference value.
Designate the target position in the range between 0 to POSMAX for the position
reference value.
Infinite- ABS Mode iy L - o
. The position reference value indicates the movement direction: Positive direction
length Axis . o R . .
with a positive value, and negative direction with a negative value.
INC Mode Designate the relative movement amount for the position reference value.

Use bit 0 (Axis selection) of motion fixed parameter 1 (Function selection flag 1) to select a finite-length axis or
infinite-length axis.

Select a finite-length axis or infinite-length axis according to the machine configuration. For details on how to set
motion parameters, refer to the manual for the motion module to be used.

+ Use the motion fixed parameter 10 (Infinite length axis reset position) to set POSMAX.

The motions of the finite-length axis and infinite-length axis in INC mode are shown below.
For the motions in ABS mode, refer to 8.1.1 Absolute Mode (ABS).

* When Selecting INC Mode for a Finite-length Axis

Specify the relative movement amount for the position reference value.
The following diagrams illustrate the axis motions when specifying the position reference values 2000 and
-2000 from the current position (1000).

INC;
MOV [A1]2000;
Current Positioning
Position end position
O -0 > A1
-2000 0 1000 2000 3000
INC;
MOV [A1] -2000;
Positioning Current
end position Position
O« O > A1
-1000 0 1000 2000 3000

Command Reference

8-9

8 Command Reference

8.1.2 Incremental Mode (INC)

* When Selecting INC Mode for Infinite-length Axis

Specify the relative movement amount for the position reference value.
The following diagrams illustrate the axis motions when specifying the position reference values 2700 and
-2700 from the current position 450 for the infinite-length axis, with POSMAX set to 3600.

INC;
MOV [A1]2700;
0
Positioning Current A1
end position position A
3150 450 ‘ 3600
(POSMAX)
------- ----—f-]---1- 2700
2700 900
---------------- --H---f------14- 1800
—---H-#--------1- 900
Current position 0
1800
INC;
MOV [A1] -2700;
0
Current A1
position A
450 ‘ 3600
(POSMAX)
2700 900 A A e e
- -~ Positioning - - - —- L4/ _____1_- 1800
end positiol
jO1350 —————————————— Fof—=--q-/-------1- 900
Positioning Current position 0
1800 end position

« If the absolute value of the position reference value (coordinate word) exceeds the POSMAX value, the position refer-

ence value (coordinate word) is used for the relative movement amount to move the axis in INC mode.

&
T
o
N

INC;
MOV [A1]6300; "|6300[>3600(POSMAX)
o 0
Positioning Current A1
end position position A
3150 450 3600
r 4 (POSMAX)
Pgsitioning end position
ey - - - o - - -1- 2700
2700 900
—emefedee - - -1 --f - -|---1- 1800
—efoed - - - ff------—-1- 900
Current position
z 0
1800

8-10

8.1 Axis Setting Commands

8.1.3 Acceleration Time Change (ACC)

Motion Programs Sequence Programs

Applicable Not applicable

(1) Overview
The Acceleration Time Change command (ACC) changes the acceleration time or acceleration rate of the axis
for which one of the following axis move commands is executed.
* Positioning (MOV)
+ Set Time Positioning (MVT)
 External Positioning (EXM)
The acceleration time for up to 16 axes can be changed at once. The acceleration time of any axis unspecified in

the command block is not changed.
The acceleration time changed by the ACC command remains until it is reset by the next ACC command.

Speed (V) A

Time (t)

Before acceleration time change

4

Speed (V) A

—> Time (t)

After acceleration time change

Fig. 8.5 Acceleration Time Change (ACC)

(N » The Acceleration Time Change command (ACC) changes the acceleration time for positioning related commands
; MOV, EXM, and MVT. Use an IAC command to set the acceleration time for interpolation related commands, MVS,
MCW, MCC, and SKP.
* All motion modules, except the PO-01 module, support ACC, DCC, and SCC commands.
Use of these commands with the PO-01 module requires the following combination of MP2000-series Machine Con-
troller and PO-01 module versions.

MP2000 Series Version Number PO-01 Module Version Number
Ver.2.46 or later Ver.1.06 or later

Command Reference

8-11

8 Command Reference

8.1.3 Acceleration Time Change (ACC)

(2) Format

ACC [Logical axis name 1] Acceleration time [Logical axis name 2] Acceleration time [Logical axis name 3] Acceleration time . . . ;

Item Unit Data That Can Be Used
Acceleration | ms or reference unit/s? - Directly specified value
t'
(;’r“e Note: Use bits 4 to 7 of the motion setting| - PouPle integer register (Indirect designation)
acceleration parameter OWOI03
rate (Acceleration/deceleration degree
unit selection) to set the unit.

(3) Setting Items for ACC Command

Either acceleration time (ms) or acceleration rate (reference unit/s>) can be selected for the unit of set value for
ACC command.

Motion setting parameter OWLII03, bits 4 to 7 (Acceleration/deceleration degree unit selection)

Parameter Name Acceleration/Deceleration Unit
Function setting 1,

0: Reference unit/s?

Acceleration/deceleration degree unit 1 ms (default)

selection

* When bits 4 to 7 (Acceleration/deceleration degree unit selection) of OWLILI03 are set to
1 (ms)

Motion Image

Speed (V)
A

b) Rated speed

c) Positioning speed |- i
(VEL) >

< . > Time (t)

a) Linear acceleration time constant
(ACC)

a) Linear acceleration time constant

Set the linear acceleration time constant (the time required to reach the rated speed from 0) for the ACC
command. The reference range is as follows.

| 1032767 (ms) |

b) Rated speed

Set the rated speed of each axis using the motion fixed parameter 34 (Rated motor speed).
For details, refer to the manual for the motion module to be used.

8.1 Axis Setting Commands

¢) Positioning speed
The speed for positioning related commands MOV, MVT, or EXM.
Set the positioning speed of each axis using the Set Velocity command (VEL).

For the Set Time Positioning command (MVT), the positioning speed is not the reference value of the VEL command.
The Set Time Positioning command (MVT) changes the positioning speed according to the set positioning time and the
amount of movement.

ﬁ
z
o)
N

* When bits 4 to 7 (Acceleration/deceleration degree unit selection) of OWLIIO3 are set to
0 (reference unit/s?)

Motion Image

Speed (V)
A

b) Positioning speed | >
(VEL)

> Time (t)

a) Linear acceleration rate
(ACC)

a) Linear acceleration rate

Set the value of the linear acceleration rate for the ACC command.
The reference range is as follows.

| 1 to 23'-1 (reference unit/s?) |

b) Positioning speed
The speed of positioning related commands, MOV, MVT, or EXM.
Set the positioning speed of each axis using the Set Velocity command (VEL).

} For the Set Time Positioning command (MVT), the positioning speed is not the reference value of the VEL command.
INFO The Set Time Positioning command (MVT) changes the positioning speed according to the set positioning time and the
amount of movement.

Command Reference

8-13

8 Command Reference
8.1.3 Acceleration Time Change (ACC)

(4) Programming Examples
ACC command programming examples are shown below.

<4 EXAMPLE p»
* When bits 4 to 7 (Acceleration/deceleration degree unit selection) of OWLILI03 are set to

1 (ms)
The following example shows when the MOV command is executed to accelerate axis Al from static to the

rated speed in four seconds, and when the MOV command is executed to accelerate axis Al in eight seconds.

" Incremental mode

INC;
VEL [A1]10000; " Set Velocity [10#+n reference units/min.]
DCC [A1]8000; " Deceleration time change [ms]
ACC [A1]4000; " Acceleration time change [ms]
" Positioning

MOV [A1]5000000;
DL00000 = 8000;
ACC [A1]DL0O0000;
MOV [A1]5000000;
END;

" Acceleration time [ms]
" Acceleration time change [ms]

" Positioning

Speed (V)
[10" reference units/min]

A

20000 : :
Rated speed * // N y
10000 L > ; / > .
Positioning speed
- ACC ! ACC Time (t)
8s [s]

< P>
4s

* The unit of rated speed (min"") must be converted to the same unit used for positioning speed (10" refer-

ence units/min).
Fig. 8.6 Acceleration Time Change (ACC) Command Programming Example 1:

When Acceleration/Deceleration Degree Unit Selection is Set to 1 (ms)

8-14

8.1 Axis Setting Commands

4 EXAMPLE »

* When bits 4 to 7 of OWO03 (Acceleration/deceleration degree unit selection) are set to

0 (reference unit/s?

)

The following example shows when the MOV command is executed to accelerate the axis Al at the rate of
60.000 (mm/s?), and when the MOV command is executed to accelerate axis Al at the rate of 100.000
(mm/s?). In this example, one reference unit is set to 0.001 mm.

INC;

VEL [A1]18000;
DCC [A1]100000;
ACC [A1]60000;
MOV [A1]5000000;
DL00000 = 100000;
ACC [A1] DL0O0000;

" Incremental mode

" Set Velocity [10+xn reference units/min]

" Deceleration time change [reference unit /S*S]
" Acceleration rate change [reference unit/S*S]
" Positioning

" Acceleration rate [reference unit/S*S]

" Acceleration rate change [reference unit/S+S]

MOV [A1]5000000; " Positioning
END; END;
Speed (V)
[0.001 mm/s]
A
300000 3> > VEL

ACC
60.000 mm/s?

ACC
100.000 mm/s 2

18000 (mm/min)
= 300000 (0.001 mm/s)

|-
Ll

Time (t)
[s]

Fig. 8.7 Acceleration Time Change Command (ACC) Programming Example 2:
When Acceleration/Deceleration Degree Unit Selection is Set to 0 (Reference unit/s?)

Command Reference

8-15

8-16

8 Command Reference

8.1.3 Acceleration Time Change (ACC)

(5) Supplemental Information on ACC Command
(a) Related Motion Parameters

ACC changes the acceleration time of the following motion setting parameter.

Parameter Name

Register No.

Description

Straight Line Acceleration/
Acceleration Time Constant

oLadmnse

Sets the linear acceleration rate or linear acceleration time constant.

The acceleration time can be changed by directly changing the setting of the motion setting parameter
OLOO36 (Straight line acceleration time constant) instead of executing an ACC command. Refer to the fol-
lowing table for details on how to directly change the acceleration time setting.

Motion and setting procedure of acceleration time for positioning related commands are as follows.

Motion . .
Module Motion Setting Procedure
The axis moves according to the accelera-
SVA-01, S . . o . .
PO-01 tion time of motion setting parameter Set an acceleration time to motion setting parameter OLCI136
SVR ’ OL[O36 (Straight line acceleration/ (Straight line acceleration/acceleration time constant).
acceleration time constant).
SVB-01 Set an acceleration time using motion setting parameter
Buil t-' ’ The axis moves at the acceleration rate of | OLLIO36. Then, use bit 10 (ACC: Change acceleration time)
S{J/IB-m the SERVOPACK parameter. of motion setting parameter OWLIJ08 (Motion command) to
write the new acceleration time into the SERVOPACK.. *

* The built-in SVB and SVB-01 modules have a function that can automatically write the setting of motion setting
parameter OLOO36 (Straight line acceleration/acceleration time constant) into the SERVOPACK parameters.
When this automatic writing function is enabled, you do not need to use bit 10 (ACC: Change acceleration time)
of motion setting parameter OWLIJ08.
For the automatic writing function, refer to /1.6 Parameters That Are Automatically Updated in Machine Controller
MP2000 Series Built-in SVB/SVB-01 Motion Module User s Manual (manual number: SIEPC88070033).

(b) Setting Acceleration Time and Deceleration Time

With the following combination of motion module and SERVOPACK model, the acceleration time and
deceleration time cannot be set individually. If you set the acceleration time, the deceleration time will be
automatically set. With SERVOPACK models other than those listed below, the acceleration times and decel-
eration times can be set individually using ACC and DCC commands.

Motion SERVOPACK Description
Module Model
SGD-N » With a built-in SVB or SVB-01 module, the axis moves at the acceleration/decelera-
SVB-01, tion rate of the SERVOPACK parameter.
Built-in SVB SGDB-N * SGD-N and SGDB-N SERVOPACKSs uses same parameter to set both acceleration
time and deceleration time.

8.1 Axis Setting Commands

8.1.4 Deceleration Time Change (DCC)

Motion Programs Sequence Programs

Applicable Not applicable

(1) Overview

The Deceleration Time Change command (DCC) changes the deceleration time or deceleration rate of the axis
for which one of the following axis move commands is executed.

* Positioning (MOV)

 Set Time Positioning (MVT)

 External Positioning (EXM)
The deceleration time for up to 16 axes can be changed at once. The deceleration time of any axis unspecified in

the command block is not changed.
The deceleration time changed by the DCC command remains until it is reset by the next DCC command.

Speed (V) A

> Time (t)
Before deceleration time change
Speed (V) A
: Time (t)
After deceleration time change

Fig. 8.8 Deceleration Time Change (DCC)

(N The Deceleration Time Change command (DCC) changes the deceleration time for positioning related commands
; MOV, EXM, and MVT. Use the IDC command to set the interpolation related commands MVS, MCW, MCC, and SKP.
+ All motion modules, except the PO-01 module, support ACC, DCC, and SCC commands.
Use of these commands with the PO-01 module requires the following combination of MP2000-series Machine Con-
troller and PO-01 module versions.

MP2000 Series Version Number PO-01 Version Number
Ver.2.46 or later Ver.1.06 or later

Command Reference

8-17

8 Command Reference

8.1.4 Deceleration Time Change (DCC)

(2) Format

DCC [Logical axis name 1] Deceleration time [Logical axis name 2] Deceleration time [Logical axis name 3] Deceleration time _ _;

Item Unit Data That Can Be Used
Deceleration | ms or reference unit/s? - Directly specified value
time - Double integer register (Indirect designation)

or Note: Use bits 4 to 7 of the motion

. setting parameter OWO03
Deceleration (Acceleration/deceleration degree
rate unit selection) to set the unit.

(3) Setting Items for the DCC Command

Either deceleration time (ms) or deceleration rate (reference unit/s?) can be selected for the unit of set value for
the DCC command.

Motion setting parameter OWI03, bit 4 to 7 (Acceleration/deceleration degree unit selection)

Parameter Name Acceleration/Deceleration Unit

Function setting 1, .
J 0: Reference unit/s?

Acceleration/deceleration degree unit 1 ms (default)

selection

* When bits 4 to 7 (Acceleration/deceleration degree unit selection) of OWLII03 are set to
1 (ms)

Motion Image

Speed (V)
A

b) Rated speed ppmmrennareneaenees

c) Positioning speed
(VEL) >—

p % Time (t)

a) Linear deceleration time constant
(DCC)

a) Linear deceleration time constant

Set the linear deceleration time constant (the time required to decelerate to 0 from the rated speed) for
DCC command. The reference range is as follows.

| 11032767 (ms) |

b) Rated speed

Set the rated speed of each axis using motion fixed parameter 34 (Rated motor speed).
For details, refer to the manual for the motion module to be used.

8.1 Axis Setting Commands

¢) Positioning speed
The speed for positioning related commands MOV, MVT, or EXM.
Set the positioning speed of each axis using the Set Velocity command (VEL).

For the Set Time Positioning command (MVT), the positioning speed is not the reference value of the VEL command.
The Set Time Positioning command (MVT) changes the positioning speed according to the set positioning time and the
amount of movement.

ﬁ
z
o)
N

* When bits 4 to 7 (Acceleration/deceleration degree unit selection) of OWLIIO3 are set to
0 (reference unit/s?)

Motion Image

Speed (V)

b) Positioning speed | >
(VEL)

> Time ()

a) Linear deceleration rate
(DCC)

a) Linear deceleration rate

Set the linear acceleration rate value for the DCC command.
The reference range is as follows.

| 1 to 23!-1 (reference unit/s?) |

b) Positioning speed
The speed of positioning related value commands MOV, MVT, or EXM.
Set the positioning speed of each axis using the Set Velocity command (VEL).

} For the Set Time Positioning command (MVT), the positioning speed is not the reference value of the VEL command.
INFO The Set Time Positioning command (MVT) changes the positioning speed according to the set positioning time and the
amount of movement.

Command Reference

8-19

8-20

8 Command Reference

8.1.4 Deceleration Time Change (DCC)

(4) Programming Examples
DCC command programming examples are shown below.
<4 EXAMPLE »

* When bits 4 to 7 (Acceleration/deceleration degree unit selection) of OWLILI03 are set to
1 (ms).

The following example shows when the MOV command is executed to decelerate axis Al from the rated

speed to 0 in four seconds, and when the MOV command is executed to decelerate the axis from the rated
speed to 0 in eight seconds.

INC; " Incremental mode

VEL [A1]10000; " Set Velocity [10*xn reference units/min]
ACC [A1]8000; " Acceleration time change [ms]
DCC [A1]4000; " Deceleration time change [ms]
MOV [A1]5000000; " Positioning

DL00000 = 8000; " Deceleration time [ms]
DCC[A1]DL00000; " Deceleration time change [ms]
MOV [A1]5000000; " Positioning
END;

Speed (V)
[10" reference units/min]
A
20000 :
Rated speed *

10000 4 ~
Positioning speed

Y

Y

DcC, « 2CC b Time(y
4s 8s [s]

A

* The unit of rated speed (min™!) must be converted to the same unit used for positioning speed (10" refer-
ence units/min).

Fig. 8.9 Deceleration Time Change (DCC) Command Programming Example 1:
When Acceleration/Deceleration Degree Unit Selection is Set to 1 (ms).

8.1 Axis Setting Commands

4 EXAMPLE »

* When bits 4 to 7 (Acceleration/deceleration degree unit selection) of OWLII03 are set to

0 (reference unit/s?)

The following example shows when the MOV command is executed to decelerate axis Al at the rate of
60.000 (mm/s?) and when the MOV command is executed to decelerate the axis Al at the rate of 100.000
(mm/s?). In this example, one reference unit is 0.001 mm.

INC;

VEL [A1]18000;
ACC [A1]100000;
DCC [A1]60000;
MOV [A1]5000000;
DL00000 =100000;
DCC [A1] DL00000;

" Incremental mode

" Set Velocity [10+xn reference units/min]

" Acceleration rate change [reference unit//S*S]
" Deceleration rate change [reference unit/S*S]
" Positioning

" Deceleration rate [reference unit/S*S]

" Deceleration rate change [reference unit/S*S]

MOV [A1]5000000; " Positioning
END;
Speed (V)
[0.001 mm/s]
A
300000 > 3> VEL
18000 (mm/min)
= 300000 (0.001 mm/s)
DCC DCC
60.000 mm/s? 100.000 mm/s?
Time (t)
[s]

Fig. 8.10 Deceleration Time Change Command (DCC) Programming Example 2:
When Acceleration/Deceleration Degree Unit Selection is Set to 0 (Reference unit/s?)

Command Reference

8-21

8 Command Reference

8.1.4 Deceleration Time Change (DCC)

(5) Supplemental Information on DCC Command
(a) Related Motion Parameters

DCC changes the deceleration time of the following motion setting parameter.

Parameter Name Register No. Description

Straight L.me Deceleratlon/ oLO3S
Deceleration Time Constant

Sets the linear deceleration rate or linear deceleration time constant.

The deceleration time can be changed by directly changing the setting of the motion setting parameter
OLO38 (Straight line deceleration/deceleration time constant) instead of executing an DCC command.
Refer to the following table for details on how to directly change the deceleration time setting.

Motion and setting procedure of acceleration time for positioning related commands are as follows.

Motion . .
Module Motion Setting Procedure
The axis moves according to the decelera-
SVA-01, S . . Lo . .
PO-01 tion time of motion setting parameter Set a deceleration time to motion setting parameter OLCI[138
SVR ’ OL[O38 (Straight line deceleration/ (Straight line deceleration/deceleration time constant).
deceleration time constant).
VB-01 Set a deceleration time using motion setting parameter
S i _,0 ’ The axis moves at the deceleration rate of | OLOIO38. Then, use bit 11 (ACC: Change deceleration time)
Stj/lBt-m the SERVOPACK parameter. of motion setting parameter OWLIJ08 (Motion command) to
write the new acceleration time into the SERVOPACK.. *

* The built-in SVB and SVB-01 modules have a function that can automatically write the setting of motion setting
parameter OLOO38 (Straight line deceleration/deceleration time constant) into the SERVOPACK parameters.
When this automatic writing function is enabled, you do not need to use bit 11 (ACC: Change deceleration time)
of motion setting parameter OWLIJ08.

For the automatic writing function, refer to /1.6 Parameters That Are Automatically Updated in Machine Controller
MP2000 Series Built-in SVB/SVB-01 Motion Module User s Manual (manual number: SIEPC88070033).

(b) Setting Acceleration Time and Deceleration Time

With the following combination of motion module and SERVOPACK model, the acceleration time and
deceleration time cannot be set individually. If you set the acceleration time, the deceleration time will be
automatically set. With SERVOPACK models other than those listed below, the acceleration times and decel-
eration times can be set individually using ACC and DCC commands.

Motion SERVOPACK Description
Module Model
SGD-N » With a built-in SVB or SVB-01 module, the axis moves at the acceleration/decelera-
SVB-01, tion rate of the SERVOPACK parameter.
Built-in SVB SGDB-N * SGD-N and SGDB-N SERVOPACKSs uses same parameter to set both acceleration
time and deceleration time.

8-22

8.1 Axis Setting Commands

8.1.5 S-curve Time Constant Change (SCC)

Motion Programs Sequence Programs

Applicable Not applicable

(1) Overview

ﬁ
Z
o)
&

The S-curve Time Constant Change command (SCC) changes the S-curve time constant of each axis for which
an axis move command is executed.

The S-curve time constant is the parameter for the S-curve acceleration/deceleration function that suppresses
mechanical vibration during acceleration/deceleration.

The S-curve time constant for up to 16 axes can be changed at once. The S-curve time constant of any axis
unspecified in the command block is not changed.

The S-curve time constant changed by the SCC command remains until it is reset by the next SCC command.

Speed (V) A

Before S-curve time constant change

Speed (V) 4

After S-curve time constant change

Fig. 8.11 S-curve Time Constant Change

All motion modules, except the PO-01 module, support ACC, DCC, and SCC commands.
Use of these commands with PO-01 module requires the following combination of Machine Controller and PO-01 module
version numbers.

MP2000 Series Version Number PO-01 Version Number
Ver.2.46 or later Ver.1.06 or later

(2) Format

SCC [Logical axis name 1] S-curve time constant [Logical axis name 2] S-curve time constant .. .;

Iltem Unit Data That Can Be Used
S-curve time ms - Directly designated value
constant . . _— . .
- Double integer register (indirect designation)

Command Reference

8-23

8 Command Reference

8.1.5 S-curve Time Constant Change (SCC)

(3) Setting Items for SCC Command

Motion Image

Speed (V)
4 When the acceleration/deceleration filter is disabled

VI

| > Time (t)
* /

S-curve time constant (SCC)

Specify a numerical value or register for the S-curve time constant of each axis using an SCC command.
The reference range of the S-curve time constant depends on the motion module to be used:

* For SVA-01, PO-01, and SVR modules, the reference range is specified by motion setting parameter
OWOO3A (Filter time constant).

* For built-in SVB and SVB-01 modules, the reference range is specified by the SERVOPACK parameter
Average Movement Time.

The following table shows the reference range of S-curve time constants for each motion module model.

Motion Module SIS el Remarks
Reference Range (ms)
SVA-01 0 to 6553 -
010510 With the SGD-N, SGDB-N, SGDH+NS110/NS115, SGDS, SGDX, or
SVB-01 SGDV SERVOPACK
Built-in S\,/B With the SGDJ SERVOPACK, the S-curve acceleration/deceleration can-
- not be used since the SERVOPACK does not have a parameter for Aver-

age Movement Time.
PO-01 0 to 6553 —
SVR 0 to 6553 -

+ If a reference value of more than 6553 ms is input, a motion program alarm will occur regardless of the motion module
model.

&)
T
o
&

+ Ifareference value exceeds the upper limit (511 to 6553 ms) when using a built-in SVB or SVB-01 module, bit 1 of
motion monitoring parameter ILCICIO02 is set to 1 (Set parameter error), and the upper limit (510 ms) is set for the Aver-
age Movement Time of the SERVOPACK parameter.

8-24

8.1 Axis Setting Commands

(4) Programming Examples

<4 EXAMPLE p
An SCC command programming example is given below.
The following example shows when a MOV command with an S-curve time constant of 250 ms and a MOV
command with an S-curve time constant of 500 ms are executed.
The parameters are set as follows for execution of this program.
* Motion setting parameter OWI03, bits 0 to 3 (Speed unit selection) = 0 (reference unit/s)
» Motion setting parameter OWLI[I03, bits 4 to 7 (Acceleration/deceleration degree unit selection) = 0
(reference unit/s?)

INC; " Incremental mode
VEL [A1]10000; " Set Velocity [reference unit/S]
ACC [A1]20000; " Acceleration rate change [reference unit/S=S]
DCC [A1]20000; " Deceleration rate change [reference unit/S+S]
SCC [A1]250; " S-curve time constant change [ms]
MOV [A1]20000; " Positioning
DL00000 = 500; " S-curve time constant [ms]
SCC [A1]DL00000; " S-curve time constant change [ms]
MOV [A1]20000; " Positioning
END;
Speed (V)
A

' : : : >
; > . Time (t)
250 ms 250 ms 500 ms 500 ms [ms]
(SCC) (SCC) (SCC) (SCC)

Fig. 8.12 S-curve Time Change Command Programming Example

Command Reference

8-25

8-26

8 Command Reference

8.1.5 S-curve Time Constant Change (SCC)

(5) Supplemental Information on SCC Command
(a) Related Motion Parameters

SCC command changes the S-curve time constant of the following motion setting parameter.

Parameter Name Register No.

Description

Sets the acceleration/deceleration filter time constant (1 = 0.1 ms).
* Change the filter time constant after confirming that bit 0 of motion moni-
Filter time constant ownOaOsA toring parameter IWOIIOC is set to 1 (discharging completed).
* Change the filter time constant after selecting a filter type using bits 8 to B
of motion setting parameter OWII03 (Filter type selection).

The S-curve time constant can be changed by directly changing the motion setting parameter OWI[I3A
(filter time constant) instead of executing an SCC command. Refer to the following table for information on

how to directly change the S-curve time constant.

Motion and setting procedure of S-curve time constant are as follows.

Motion . .
Module Motion Setting Procedure
When S-curve acceleration/deceleration is
SVA-01, enabled, the axis moves according to the . . .
. . . Set the S-curve time constant to motion setting parameter
PO-01, S-curve time constant set in motion set- OWIICI3A (filter time constant)
SVR ting parameter OWOI3A (Filter time '
constant).
hen th leration/decel Set the S-curve time constant using the motion setting parame-
SVB-01 W en the Sl-curvlf acce eration/dece era- | ter OWOO3A (filter time constant). Then, execute 12 (change
Built-i R S\’/B UOILIS enabled, the axis mOYTS accprdlng filter time constant) of motion setting parameter OWCI[I08
uiit-in to the Average Movement Filter Time (Motion command) to write the set S-curve time constant into
Constant of the SERVOPACK parameter. *
the SERVOPACK.

* The built-in SVB and SVB-01 modules can automatically write the setting of motion setting parameter
OWDOO3A into Average Movement Filter Time Constant of the SERVOPACK parameter.
When this automatic writing function is enabled, you do not need to execute 12 of motion setting parameter

ownanos.

For the automatic writing function, refer to 11.6 Parameters That Are Automatically Updated in Machine Controller
MP2000 Series Built-in SVB/SVB-01 Motion Module User s Manual (manual number: SIEPC88070033).

8.1 Axis Setting Commands

(b) Movement Path by Interpolation Command and S-Curve Acceleration/Deceleration

The S-curve acceleration/deceleration influences the movement path by using the interpolation related com-

mand MVS. MCW, MCC, or SKP.

 To achieve the same motion path as when the S-curve acceleration/deceleration is disabled for linear inter-
polation, set the same S-curve time constant for all the axes involved in interpolation.

* When the S-curve acceleration/deceleration is enabled for circular interpolation, the motion path will not

be the same as when the S-curve acceleration/deceleration is disabled.

+ Axis Movement Path by Linear Interpolation

<4 EXAMPLE p»

When the acceleration/deceleration
filter is disabled.

When the S-curve acceleration/
deceleration is enabled,

and the S-curve time constants
are matched.

When the S-curve acceleration/
deceleration is enabled, and
the S-curve time constants are
unmatched.

v14
End position

Start position

\J

v1 4
End position

Start position

v1 4 End position

S-curve time constant]
X1>Y1

Start position

X1

\J

X1

+ Axis Movement Path by Circular Interpolation

4 EXAMPLE »

\J

X1

When the acceleration/deceleration
filter is disabled.

When the S-curve acceleration/
deceleration is enabled, and the
S-curve time constants are

When the S-curve acceleration/
deceleration is enabled, and the
S-curve time constants are

matched. unmatched.
v14 v1 4 vi b
End position End position End position
S-curve time constant
X1>Y1
Start position Start position Start position
X1 X1 X1

Command Reference

8-27

8 Command Reference

8.1.5 S-curve Time Constant Change (SCC)

(c) Filter Type Selection

Before enabling the S-curve acceleration/deceleration, set the filter type of each axis by setting bit 8 to B (Fil-
ter type selection) of OWOIO03 to 2: (Moving Average Filter).

Parameter Name Register No. Filter Type
0: No filter (default
Function setting 1, owamoos, on er(. efault) . .
. . . 1: Exponential acceleration/deceleration filter
Filter type selection bit 8 to B

2: Moving average filter

When a built-in SVB or SVB-01 module is used and the function for automatically writing the parameters
into the SERVOPACK is disabled, execute 13 (change filter type) of the motion setting parameter OWI08
(Motion commands) to write the set filter type into the SERVOPACK.
An example of programming to change the filter type using a motion program is shown below.
Note: When using an SVA-01, PO-01, or SVR module, the following program is not necessary.
When using an SVB or SVB-01 module, the following program can be omitted by enabling the func-
tion to write parameters into the SERVOPACK.

" Verify if changing the filter type is allowed
IOW IW8008 == 0; " Wait for response No motion command in execution
IOW IB800CO == 1; " Wait for response Discharging completed

" Select the filter type Moving Average Filter
DWO00000 = OW8003 & FOFFH; " Holds information other than Filter Type Selection
OWB8003 = DWO00000 | 0200H; " Filter type = Moving average filter

" Write the filter type from the built-in SVB/SVB-01 module into the SERVOPACK

Oows8008 = 13; " Request to change filter type

IOW IW8008 == 13; " Wait for response Processing SCC

IOW IB80098 == 1; " Wait for response Command execution completed
OW8008 = 0; " Clears the request

IOW IW8008 == 0; " Wait for response No motion command in execution

; Motion Module User’s Manual (manual number: SIEPC88070033) for information on the built-in SVB/SVB-01 module

function for automatically writing parameters into the SERVOPACK.

INE O Refer to 11.6 Parameters That Are Automatically Updated in Machine Controller MP2000 Series Built-in SVB/SVB-01

8-28

8.1 Axis Setting Commands

8.1.6 Set Velocity (VEL)

Motion Programs

Sequence Programs

Not applicable

(1) Overview

The Set Velocity command (VEL) changes the feed speed of each axis for the following axis move commands.

* Positioning (MOV)
 External positioning (EXM)

In this manual, the above axis move commands and the Set Time Positioning command (MVT) are referred to as
positioning related commands, and the feed speed of positioning related commands is referred to as positioning

speed.

The positioning speed for up to 16 axes can be changed at once. The positioning speed of an axis unspecified in

the VEL command block is not changed.

The axis positioning speed changed by a VEL command remains until it is reset by the next VEL command or it

is changed by executing the Set Time Positioning command.

Speed (V) A

¢/ \

[

Before set velocity

4

Speed (V) A

-

Time (t)

-

After set velocity

Fig. 8.13 Set Velocity (VEL)

Time (t)

(N
&

The Set Velocity command (VEL) sets the positioning speed for positioning related commands (MOV and EXM). Use F
designation or IFP command to set the feed speed for interpolation related commands (MVS, MCW, MCC, and SKP).

(2) Format

VEL [Logical axis name 1] Positioning speed [Logical axis name 2] Positioning speed - + - ;

ltem Unit

Usable Data

Positioning 10" reference unit/min,

speed Reference unit/s,

0.01% (percentage of rated speed), or
0.0001% (percentage of rated speed)

Note: Use bits 0 to 3 (Speed unit selection) of
motion setting parameter OWOO03 to
select a setting unit.

- Directly specified value
- Double integer register (Indirect designation)

Command Reference

8-29

8 Command Reference

8.1.6 Set Velocity (VEL)

(3) Setting Items for VEL Command

Motion Image

Speed (V)

[c) Speed unit]
A

a) Rated speed
d) Positioning speed >
(VEL)
»
— ‘) 7 Time (t)
' b) Acceleration time b) Deceleration time
(ACC) (bcc)
a) Rated speed

Use motion fixed parameter 34 (Rated motor speed) to set the rated speed of each axis.
For details, refer to the manual for the motion module to be used.

b) Acceleration time/Deceleration time

Use the Acceleration Time Change (ACC)/Deceleration Time Change (DCC) command to set the accelera-
tion/deceleration time for each axis.
The time set by executing ACC command is the time required to reach the rated speed.

¢) Speed unit
Use bits 0 to 3 (Speed unit selection) of motion setting parameter OWLII03 to set the speed unit for each
axis. The default is 10" reference units/min.

Parameter Name Register No. Speed Unit Reference Range

0: Reference units/s 0 to 23!-1 (reference units/s)

1:10" reference units/min 0 to 23'-1 (10" reference units/min)
Function setting 1, OWI:II:IO3, 2:0.01% (percentage of ; ; 010
Speed unit selection bit0to3 rated speed) to 32767 (0.01%)

. V)
3:0.0001% (percentage of 0 to 3276700 (0.0001%)
rated speed)

INE O The setting unit for VEL command when 10" reference units/min is selected for the speed unit is determined by the

% motion fixed parameter 4: Reference unit selection.
Motion Fixed Parameter Speed Unit:
4: Reference Unit 10" reference units/ Remarks
Selection min
pulse 1 =1000 pulses/min
mm 1 =1 mm/min * When pulse is selecte-:d for reference un-it: n=3
deg =1 deg/min * When a .reference unit other than pulse is se%ef:ted:
- - - n = Motion fixed parameter 5: Number of digits below
inch 1 =1 inches/min decimal point
um 1 = lum/min

d) Positioning speed

Specify a numerical value or register using a VEL command.

8-30

8.1 Axis Setting Commands

(4) Programming Examples

A VEL command programming example is shown below.
This example shows execution of a MOV command with the positioning speed specified as 40% of rated speed
and a MOV command with the positioning speed specified as 20% of rated speed.

< EXAMPLE p
INC; " Incremental mode
ACC [A1]5000; " Acceleration time change [ms]
DCC [A1]5000; " Deceleration time change [ms]
VEL [A1]4000; " Set Velocity [0.01%)]
MOV [A1]3000000; " Positioning
VEL [A1]2000; " Set Velocity [0.01%]
MOV [A1]3000000; " Positioning
END;

[A1] Speed (V)

[0.01%]
L . R e R T Rated speed
4000 |-------- 4 > O VO VEL 40% of rated speed
2000 // \\/ > \ ————— VEL 20% of rated speed
>
Time (t)

Fig. 8.14 Set Velocity Command (VEL) Programming Example
Speed unit: Percentage of rated speed in unit of 0.01%

(5) Supplemental Information on VEL Command
(a) Related Motion Parameters

VEL command changes the positioning speed of the following motion setting parameter.

Parameter Name

Register No.

Description

Speed reference setting

oLOdn1o

Sets the speed reference value.

The positioning speed can be changed by directly changing the setting of motion setting parameter OLI110
(Speed reference setting) instead of executing the VEL command.

Command Reference

8-31

8 Command Reference

8.1.6 Set Velocity (VEL)

(b) Override

Motion setting parameter OWLI[118 (Override) can be used to specify a percentage of positioning speed

specified by a VEL command to be output (output ratio).
The default setting of motion setting parameter OWOO 18 is 10000 (100.00%).

VEL command
reference value

VEL command

Override
0to 327.67%

= Positioning speed

reference value

Y

Override (OWOI18)

Y

Positioning speed

B Override

=

Override often means “to invalidate.” In this manual, however, it should be taken to mean “changing” the set value.

&
T
o
&

8-32

Motion setting parameter OWO[I18 (Override) can be changed while an axis is moving.

Speed (V)
A

VEL command 100% of VEL

reference value

\ 50% of VEL

150% of VEL

One positioning related command block
Time (t)
Override
ownaod18
A 150.00%
100.00%
50.00%
Time (t)

Fig. 8.15 OwOO18 (Override) and Positioning Related Command

* The SVR module does not have motion setting parameter OWOO 18 (Override).
 For the Set Time Positioning command (MVT), the positioning speed used for override is not the VEL command refer-
ence value. The positioning speed changed by executing the Set Time Positioning command (MVT) is used for over-

ride.

* When using an override for the Set Time Positioning command (MVT), the positioning will not complete within the

specified time.

The MP2000 system calculates the positioning speed at execution of the Set Time Positioning command (MVT) assum-

ing the override to be 100%.

+ The speed unit of the rated speed specified by the motion fixed parameter is different from the speed unit used for VEL

command coded in a motion program.

Speed

Speed Unit

Motion fixed parameter 34: Rated
motor speed

rotations/min

Set Velocity command (VEL)

reference units/s, 10™ reference units/min, 0.01%, 0.0001%

Refer to (¢) Motor Speed Specifications to calculate the rated speed according to the speed unit for the Set Velocity

command (VEL).

8.1 Axis Setting Commands

(c) Motor Speed Specifications

In addition to the VEL command reference range, the motor rated speed and max. speed must be taken into
consideration to decide the set value for the VEL command. To avoid causing an overspeed, check the speed
specifications of your motor before setting a value for the VEL command.

.\ For rotational motors, the speed specifications are expressed in unit of rotations per specified time of period.

INFO The rated speed when the speed unit is 10" reference units/min is calculated according to the motion fixed parameter set-
tings.
» Parameter Setting Example: When Electronic Gear is Enabled

Note: When motion fixed parameter 4 (Reference unit selection) is set to a unit other than pulse, the elec-
tronic gear is valid.

Motion fixed parameters

* No. 4: Reference unit selection = mm

* No. 5: Number of digits below decimal point = 3

* No. 6: Travel distance per machine rotation = 10000 reference units
* No. 8: Servo motor gear ratio: 3

* No. 9: Machine gear ratio = 2

* No. 34: Rated motor speed = 3000 rotations/min

Motor The machine shaft rotates two times when
the motor is rotated three times (gear ratio)

Workpiece

Ball screw

-

<+—>

The table moves 10 mm for each rotation of the
machine shaft
(Travel amount per one machine rotation)

When the electronic gear is enabled, n of the speed unit 10" reference units/min is the number of digits below the decimal
point. Therefore, the speed unit is:

10" reference units/min = 103+ 0.001mm/min = [mm/min]

The machine shaft rotation speed when the motor rotates at the rated speed:
Rated speed [rotations/min] x Gear ratio
= 3000 x (2/3) = 2000 [rotations/min]

To convert the number of rotations of the machine shaft into a reference unit (0.001 mm),
Travel distance per machine rotation [0.001 mm/rotation] x 2000 [rotation/min]

= 10000 x 2000 = 20000000 [0.001mm/min]

Because the speed unit is [mm/min],
20000000[0.001mm/min] = 20000[mm/min]

- Continues to the next page -

Command Reference

8-33

8 Command Reference

8.1.6 Set Velocity (VEL)

- Continued from the previous page -

» Parameter Setting Example: When the Electronic Gear is Disabled and an SVA-01 Module is Used
Note: When motion fixed parameter 4 (Reference unit selection) is set to pulse, the electronic gear is
invalid.

Motion Fixed Parameters

* No. 4: Reference unit selection = pulse

* No. 22: Pulse counting mode selection = A/B x 4 (x 4)

* No. 34: Rated motor speed = 3000 rotations per min

* No. 36: Number of pulses per motor rotation (before multiplication) = 16384
pulses/rotation

When the electronic gear is disabled, n of the speed unit 10" reference units/min is 3. Therefore, the speed unit is:

[10" reference units/min] = ['IO3 pulse/min] = [1000 pulses/min]

To convert the motor rated speed into pulses,
Rated motor speed [rotations/min] x (Number of pulses per motor rotation [pulse/rotation] x multiplier)
= 3000 x (16384 x 4) = 196608000 [pulses/min]

Because the speed unit is 1000 pulses/min,
196608000 [pulses/min] = 196608 [1000 pulses/min]

» Parameter Setting Example: When the Electronic Gear is Disabled and a Built-in SVB, SVB-01, PO-01, or
SVR Module is Used
Note: When motion fixed parameter 4 (Reference unit selection) is set to pulse, the electronic gear is
invalid.

Motion Fixed parameters

* No. 4: Reference unit selection = pulse

* No. 34: Rated motor speed = 3000 rotations/min

* No. 36: Number of pulses per motor rotation = 65536 pulses/rotation

When the electronic gear is disabled, n of the speed unit 10" reference units/min is 3. Therefore, the speed unit is:

[10" reference units/min] = ['IO3 pulses/min] = [1000 pulses/min]

To convert the motor rated speed into pulses,
Rated motor speed [rotations/min] x Number of pulses per motor rotation [pulses/rotation]
= 3000 x 65536 = 196608000 [pulses/min]

Because the speed unit is 1000 pulses/min,
196608000 [pulses/min] = 196608 [1000pulses/min]

Motion fixed parameters other than those mentioned in the examples may be required to be correctly set for the correct
axis motions.

For details on each parameter and information on how to set them in accordance with the connected machine, refer to the
relevant motion module manual.

8-34

8.1 Axis Setting Commands

8.1.7 Maximum Interpolation Feed Speed Setting (FMX)

Motion Programs Sequence Programs

Applicable Not applicable

(1) Overview

The Maximum Interpolation Feed Speed Setting command (FMX) sets the maximum feed speed for interpolation
related commands MVS, MCW, MCC, and SKP. The maximum speed set by FMX command execution remains
in effect until it is reset by the next FMX command.

The maximum feed speed for interpolation is not yet set at the moment the program operation starts. It is neces-
sary to execute an FMX command before executing any of the following interpolation related commands.

Linear Interpolation command (MVS)

Circular Interpolation command (MCW, MCC)

Helical Interpolation command (MCW, MCC)

SKP command (Linear interpolation with skip function) (SKP)
Interpolation Feed Speed Ratio Setting command (IFP)
Interpolation Acceleration Time Change command (IAC)
Interpolation Deceleration Time Change command (IDC)

Speed (V)
A

Max. feed speed
for interpolation

Feed speed | S RS
for interpolation / ' ' \
. i i \ >
> > Time (t)
Interpolation Interpolation
acceleration time deceleration time

Fig. 8.16 Maximum Interpolation Feed Speed Setting Command (FMX)

INFO » Execution of any interpolation related command is subject to the preset maximum feed speed for interpolation. For
%

example, the Interpolation Acceleration Time Change command (IAC) and the Interpolation Deceleration Time Change
(IDC) set the time required to reach the maximum feed speed for interpolation from the speed of 0.

Executing an interpolation related command MVS, MCW, MCC, SKP, IFP, IAC, or IDC without first having executed
an FMX command will cause an alarm in the motion program.

(2) Format

FMX T Interpolation max. feed speed ;

Item Unit Usable Data
Max. feed ... |- Directly designated value
speed for Reference units/min))]])
interpolation - Double integer type register (Indirect designation)

Command Reference

8-35

8 Command Reference

8.1.7 Maximum Interpolation Feed Speed Setting (FMX)

(3) Setting Items for FMX Command

Motion Image

Speed (V)
A

a) Max. feed speed
for interpolation
(FMX)

(Composite speed)

Feed speed

for interpolation

(F designation or IFP)
(Composite speed)

Y

> Time (t)

A4

Interpolation D Interpolation
acceleration time deceleration time
(IAC) (IDC)

a) Max. feed speed for interpolation

Specify a numerical value or register following to character T in the FMX command block. The maximum
feed speed reference range is as follows.

| 1 to 23!-1 (reference units/min) |

The maximum feed speed for interpolation is the control data used for all interpolation related commands.
Therefore, an FMX command must be coded at the beginning of the motion program when using an interpo-
lation command MVS, MCW, MCC, or SKP.

(4) Programming Examples

An FMX command programming example is shown below.

<4 EXAMPLE b
INC; " Incremental mode
FMX T300000; " Maximum interpolation feed speed
IAC T4000; " Interpolation acceleration time change [ms]
IDC T4000; " Interpolation deceleration time change [ms]
IFP P75; " Interpolation feed speed ratio setting [%]
MVS [A1]30000 [B1]30000; " Linear interpolation
MVS [A1]30000 [B1]30000 F150000; " Linear interpolation (F command)
END;

Composite speed (V)
[reference unit/min]

300000 f--------=---=----- T GEEE e FMX
525000 ' ‘
(75%) - \ N
150000 [-----=mmgffm e N - » o N F command
(50%) \/ \ of MVS
Y >
4s d s d Time (t)
IAC IDC [s]

Fig. 8.17 Maximum Interpolation Feed Speed Command Programming Example

(5) Supplemental Information on FMX Command
(a) Related Motion Parameters

There are no motion setting parameters related to the FMX command.
The maximum feed speed for interpolation specified by executing an FMX command is the control data
exclusively reserved for motion programs, and cannot be specified by using a motion setting parameter.

8-36

8.1 Axis Setting Commands

8.1.8

Interpolation Feed Speed Ratio Setting (IFP)

Motion Programs Sequence Programs

Applicable Not applicable

(1) Overview

ﬁ
z
o
N/

The Interpolation Feed Speed Ratio Setting command (IFP) sets the feed speed for the following axis move com-
mands as a percentage of the maximum feed speed for interpolation.

* Linear Interpolation command (MVS)

+ Circular Interpolation command (MCW, MCC)

* Helical Interpolation command (MCW, MCC)

* SKP command (Linear interpolation with skip function) (SKP)
In this manual, the above axis move commands are referred to as Interpolation Related Commands, and the feed
speed of Interpolation Related Commands is referred to as the Interpolation Feed Speed. The interpolation feed
speed set by IFP command execution remains in effect until it is reset by the next [FP command.
The interpolation feed speed is not set when the program operation starts. It is necessary to set an interpolation
feed speed by executing the Interpolation Feed Speed Ratio Setting (IFP) or F designation before executing any
interpolation related commands.

Speed (V) 4

[%] 100% = Max. interpolation feed speed
100|-------------~ R

Interpolation //

feed speed |------- .
ratio / \

\

Time (t)

Fig. 8.18 Interpolation Feed Speed Ratio Setting Command (IFP)

Specify the maximum feed speed for interpolation by executing the Maximum Interpolation Feed Speed Setting com-
mand (FMX) before executing the IFP command. Executing the [FP command without first having specified the maxi-
mum feed speed will cause an alarm in the motion program.

* F designations can be used to specify the interpolation feed speed by writing a numerical value or register following to
a character F for interpolation related commands. Specify the interpolation feed speed in reference units/min.

+ Ifan IFP command is executed after F designation, the interpolation feed speed specified by the F designation will be
cancelled. If an F designation is executed after [IFP command execution, the interpolation feed speed specified by the
IFP command will be cancelled as well.

» Executing an interpolation related command without first having specified the interpolation feed speed will cause an

alarm in the motion program.

The Interpolation Feed Speed Ratio Setting command (IFP) sets the feed speed for interpolation related commands
MVS, MCW, MCC, and SKP. Use the VEL command to set the feed speed for positioning related commands MOV and
EXM.

Command Reference

8-37

8 Command Reference

8.1.8 Interpolation Feed Speed Ratio Setting (IFP)

(2) Format

IFP P Interpolation feed speed ratio;

ltem Unit Usable Data
Interpolation % - Directly designated value
feed speed
ratio - Double integer type register (Indirect designation)
INFO! IFP command cannot be coded in the same block used for an interpolation command MVS, MCW, MCC, or SKP.

(3) Setting Items for IFP Command

Motion Image

Speed (V)
[%]

: | | ' Max. feed speed

L0 e e e N for interpolation
A ~ ' (FMX)

(Composite speed)

a) Interpolation feed

speed ratio ,
(IFP)
: : T Time (1)
Interpolation : : Interpolation
acceleration time deceleration time
(IAC) (IDC)

a) Interpolation feed speed ratio

Specify a numerical value or register following to character P in the I[FP command block.
The IFP command sets a percentage of the maximum interpolation feed speed (FMX) as the interpolation

feed speed.
The interpolation feed speed is a composite speed of all the axes specified for an interpolation related com-

mand MVS, MCW, MCC, or SKP.
The interpolation feed speed ratio reference range is as follows.

1 to 100 (%)

You can select whether or not to apply an interpolation override to the interpolation feed speed.
Refer to 4.3.3 Work Registers for information on how to use the interpolation override.

* When not using an interpolation override

IFP reference value

FMX reference value x 110 100% = Interpolation feed speed
FMX .| IFP .| Interpolation
reference value "| reference value "] feed speed

8-38

8.1 Axis Setting Commands

* When using an interpolation override

FMX reference value x 'FP referen%e value . Interpolation override _ |nterpolation feed speed
110 100% 0 to 327.67%
FMX »| IFP .| Interpolation .| Interpolation
reference value | reference value | override "] feed speed

INFO + The interpolation feed speed can be specified by using either an IFP command or F designation.
% Refer to b) Interpolation feed speed in (3) Setting Items for MVS Command in 8.2.2 Linear Interpolation (MVS) for
details.

+ If a value higher than 100 (%) is specified for the IFP reference value (%), an alarm will occur in the motion program.
« If an interpolation override applied interpolation feed speed exceeds the FMX reference value, the actual output value
of the interpolation feed speed will be reset to the FMX reference value.

(4) Programming Examples

An IFP command programming example is shown below.

<4 EXAMPLE »>
INC; " Incremental mode
FMX T300000; " Maximum interpolation feed speed setting [reference unit/min]
IAC T4000; " Interpolation acceleration time change [ms]
IDC T4000; " Interpolation deceleration time change [ms]
IFP P75; " Interpolation feed speed ratio setting [%]
MVS [A1]30000 [B1]30000; " Linear interpolation
DL00000 = 50; " Interpolation feed speed ratio [%]
IFP PDL0000O; " Interpolation feed speed ratio setting [%]
MVS [A1]30000 [B1]30000; " Linear interpolation
END;

Composite speed (V)

A 100% = Max. feed speed for interpolation
100 fr--mmmrmmmmmmmmo g T e emmmmmme e 300000 (reference units/min)

e y . 7777777777777777777777777 ‘3;\, ,,,,,,,,,,,, 225000 (reference units/min)
5 / \ K \ 150000 (reference units/min)

AT

Time (t)

Fig. 8.19 Interpolation Feed Speed Ratio Setting Command (IFP)

Command Reference

(5) Supplemental Information on IFP Command
(a) Related Motion Parameters

There is no motion setting parameter related to the IFP command.
The interpolation feed speed ratio specified by executing an IFP command is the control data exclusively
reserved for motion programs, and cannot be specified by using a motion setting parameter.

8-39

8 Command Reference

8.1.9 Interpolation Acceleration Time Change (IAC)

8.1.9 Interpolation Acceleration Time Change (IAC)

Motion Programs Sequence Programs
Applicable Not applicable

(1) Overview

The Interpolation Acceleration Time Change command (IAC) changes the acceleration time for the following
axis move commands.

* Linear Interpolation command (MVS)

+ Circular Interpolation command (MCW, MCC)

* Helical Interpolation command (MCW, MCC)

* SKP command (Linear interpolation with skip function) (SKP)
In this manual, the above axis move commands are referred to as interpolation related commands.
The Maximum Interpolation Feed Speed Setting command (FMX) must be executed before executing the IAC
command. The acceleration time changed by the IAC command remains until it is reset by the next IAC com-
mand.
The interpolation acceleration time is 0 ms when the program starts running.

Speed (V) A
Max. feed speed
for interpolation [T T .
Feed speed | ___ . S
for interpolation / ' \
TN Time (t)

Before interpolation acceleration time change

Speed (V) y l

Max. feed speed
for interpolation

Feed speed
for interpolation
Time (t)

After interpolation acceleration time change

Fig. 8.20 Interpolation Acceleration Time Change Command (IAC)

INFO The Interpolation Acceleration Time Change command (IAC) changes the acceleration time for interpolation related com-
&’ mands MVS, MCW, MCC, and SKP.
Use ACC command to set the acceleration time for positioning related commands MOV, EXM, and MVT.

(2) Format

IAC T Interpolation acceleration time;

Item Unit Usable Data
Interpolation ms - Directly designated value
tair(;]ceeleratlon - Double integer type register (Indirect designation)

8-40

8.1 Axis Setting Commands

(3) Setting Items for IAC Command

Motion Image

Speed (V)
A

Max. feed speed
for interpolation
(FMX)

(Composite speed)

Feed speed for
interpolation = >
(F designation or IFP)
(Composite speed)

| -
a) Interpolation
acceleration time (IAC)

a) Interpolation acceleration time

Specify a numerical value or register following to character T in the IAC command block.

The time set by executing an IAC command is the time required to reach the maximum feed speed from the
speed of 0.

The interpolation acceleration time reference range is as follows.

| 01032767 (ms) |

(4) Programming Examples

An TAC command programming example is shown below.

<4 EXAMPLE »
INC; " Incremental mode
FMX T300000; " Maximum interpolation feed speed setting [reference unit/min]
IDC T4000; " Interpolation deceleration time change [ms]
IAC T2000; " Interpolation acceleration time change [ms]
MVS [A1]30000 [B1]30000 F150000; " Linear interpolation
DLO0000 = 4000; " Interpolation acceleration time [ms]
IAC TDLO00000; " Interpolation acceleration time change [ms]
MVS [A1]30000 [B1]30000; " Linear interpolation
END;

Composite speed (V)
[reference unit/min]

A
1010101 S S— S — SRS S —— S R FMX
150000 F----+---72 > IS S— > RS F command of
=// \/ \ MVS
: . >
IAC i ac i ,
e N : ! Time (t)
2s 4s [s]

Fig. 8.21 Interpolation Acceleration Time Change Command Programming Example

Command Reference

8-41

8 Command Reference

8.1.9 Interpolation Acceleration Time Change (IAC)

(5) Supplemental Information on IAC Command
(a) Related Motion Parameters

There is no motion setting parameter related to the IAC command.
The interpolation acceleration time specified by executing the IAC command is the control data exclusively
reserved for motion programs, and cannot be specified by using a motion setting parameter.

8-42

8.1 Axis Setting Commands

8.1.10 Interpolation Deceleration Time Change (IDC)

(1) Overview

Motion Programs Sequence Programs

Applicable Not applicable

The Interpolation Deceleration Time Change command (IDC) changes the deceleration time for the following

axis move commands.

* Linear Interpolation command (MVS)

* Circular Interpolation command (MCW, MCC)

* Helical Interpolation command (MCW, MCC)

* SKP command (Linear interpolation with skip function) (SKP)

In this manual, the above axis move commands are referred to as interpolation related commands.
The Maximum Interpolation Feed Speed Setting command (FMX) must be executed before executing the IDC
command. The deceleration time changed by the IDC command remains until it is reset by the next IDC com-

mand.

The interpolation deceleration time is 0 ms when the program starts running.

Speed (V) y

Max. feed speed
for interpolation

Feed speed for
interpolation

Speed (V) y

Max. feed speed
for interpolation

Feed speed for
interpolation

DC i Time (t)
Before interpolation deceleration time change
A

After interpolation deceleration time change

Fig. 8.22 Interpolation Deceleration Time Change Command (IDC)

(N

INFO

mands MVS, MCW, MCC, and SKP.

The Interpolation Deceleration Time Change command (IDC) sets the deceleration time for interpolation related com-

Use the DCC command to set the deceleration time for positioning related commands MOV, EXM, and MVT.

Command Reference

8-43

8 Command Reference

8.1.10 Interpolation Deceleration Time Change (IDC)

8-44

(2) Format

IDC T Interpolation deceleration time ;

Item

Unit

Usable Data

deceleration
time

Interpolation ms

- Directly designated value
- Double integer type register (Indirect designation)

(3) Setting Items for IDC Command

Motion Image

A

Max. feed speed
for interpolation

Speed (V)

(FMX)
(Composite speed)

Feed speed for
interpolation

(F designation or IFP)
(Composite speed)

| -
P Time (t)

é) Interpolation deceleration
time (IDC)

a) Interpolation deceleration time

Specify a numerical value or register following to T in the IDC command block.
The time set by executing the IDC command is the time to decelerate from the maximum feed speed for

interpolation to the speed of 0.
The interpolation deceleration time reference range is as follows.

0to 32767 (ms)

8.1 Axis Setting Commands

(4) Programming Examples

<4 EXAMPLE p»>
An IDC command programming example is shown below.

INC; " Incremental mode
FMX T300000; " Maximum interpolation feed speed setting [reference unit/min]
IAC T4000; " Interpolation acceleration time change [ms]
IDC T2000; " Interpolation deceleration time change [ms]
MVS [A1]30000 [B1]30000 F150000; " Linear interpolation
DLO0000 = 4000; " Interpolation deceleration time [ms]
IDC TDL0000O; " Interpolation deceleration time change [ms]
MVS [A1]30000 [B1]30000; " Linear interpolation
END;

Composite speed (V)
[reference unit/min]

A
71111 PR— e — o SR SRR—— L FMX
TT510/0 00— > KN S > RN—— L F command of
/ \/ \ MVS
: f >
©IDC ! : IDC : .
i« > e : Time (1)
i 2s | ! 4s : [s]

Fig. 8.23 Interpolation Deceleration Time Change Command Programming Example

(5) Supplemental Information on IDC Command
(a) Related Motion Parameters

There is no motion setting parameter related to the IDC command.
The interpolation deceleration time set by executing the IDC command is the control data exclusively
reserved for motion programs, and cannot be set by using a motion setting parameter.

Command Reference

8-45

8 Command Reference

8.1.11 Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

8.1.11 Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

Motion Programs Sequence Programs

Applicable Not applicable

(1) Overview

The Set Interpolation Acceleration/Deceleration Mode (ACCMODE) command sets the acceleration/decelera-
tion mode for the following interpolation commands. You can use the Set Interpolation Acceleration/Decelera-
tion Mode (ACCMODE) command to connect the speeds between continuous interpolation commands.

* Linear Interpolation command (MVS)

* Circular Interpolation command (MCW, MCC)

* Helical Interpolation command (MCW, MCC)

+ SKP command (Linear interpolation with skip function) (SKP)

The interpolation acceleration/deceleration mode set by the ACCMODE command remains in effect until it is
changed by another ACCMODE command.

The interpolation acceleration/deceleration mode is set to the default mode (interpolation acceleration/decelera-
tion mode 0) when program operation starts.

N FO 1. The interpolation acceleration/deceleration mode cannot be changed between continuous interpolation blocks.
% Change the interpolation acceleration/deceleration mode only after the axes decelerate to a stop.

2. Ifthe interpolation acceleration/deceleration mode is set out of range, the operation depends on the version of the CPU

Module.
Software Version MPE720 Version 6.36 or Later MPE720 Version 6.35 or Earlier
CPU Module Ver- A motion program alarm (3.1 hex: A motlon program alarm (31 hgx: Not
. Address M out of range) will occur when | registered) will occur when an interpola-
sion 2.86 or Later
an interpolation command is executed. tion command is executed.
CPU Module Ver- | An alarm will not occur even when an interpolation command is executed.
sion 2.85 or Earlier | The current interpolation acceleration/deceleration mode will be retained.

3. When the PFORK command is used, the interpolation acceleration/deceleration mode setting before branching to the
forks is inherited by all of the forks. After branching, you can set the interpolation acceleration/deceleration mode for
each fork independently.

8-46

8.1 Axis Setting Commands

Speed (V)
A
>
Time (t)
Before the Interpolation Acceleration/Deceleration Mode Is Set
Speed (V)
A
>
>
Time (t)
After the Interpolation Acceleration/Deceleration Mode Is Set
Fig. 8.24 Set Interpolation Acceleration/Deceleration Mode
(2) Format

The format of the ACCMODE command is as follows:
ACCMODE Minterpolation_acceleration_deceleration_mode;

Item Unit Usable Data

Interpolation acceleration/
deceleration mode

- Directly designated value (0 to 4)

(3) Setting Items for ACCMODE Command
This section describes the settings for the ACCMODE command.

The interpolation acceleration/deceleration mode is set by specifying a numerical value after the character “M” in
the ACCMODE command.

There are five interpolation acceleration/deceleration modes.

Interpolation acceleration/deceleration mode 0 (default mode)

Interpolation acceleration/deceleration mode 1 (acceleration/deceleration mode with continuous process
control signal monitoring)

Interpolation acceleration/deceleration mode 2 (acceleration/deceleration mode with interpolation over-
lapping)

Interpolation acceleration/deceleration mode 3 with continuous deceleration for minute blocks (accelera-
tion/deceleration mode with continuous process control signal monitoring)

Interpolation acceleration/deceleration mode 4 (acceleration/deceleration mode with next block speed
specification)

Command Reference

8-47

8 Command Reference

8.1.11 Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

(4) ACCMODE Details
This section describes the five interpolation acceleration/deceleration modes of the ACCMODE command.
(a) Interpolation Acceleration/Deceleration Mode 0 (Default Mode) Details

In this mode, acceleration and deceleration are performed according to the acceleration/deceleration times set
with the IAC and IDC commands.
This is the default mode when program operation starts.

Speed (V)

Acceleration and deceleration according IAC=IDC=0
to the IAC and IDC commands

VARV AV RN,

Time (t)

4

m Format

Use the following code format to select interpolation acceleration/deceleration mode 0.
ACCMODE MO0;

(b) Interpolation Acceleration/Deceleration Mode 1 (Acceleration/Deceleration Mode with
Continuous Process Control Signal Monitoring) Details

This mode monitors a continuous process control signal and performs continuous processing between con-
secutive interpolation blocks when the specified conditions are satisfied.

This mode can be used only when the same axes are used for all consecutive interpolation blocks.

Speed (V)
Acceleration and deceleration Speed maintained.
according to the IAC and IDC commands \
> > > >
/ \/ E \ \\ \ »
| i i Time (t)
Continuous process Condition satisfied. \' ' / Condition not satisfied.

control signal

8-48

8.1 Axis Setting Commands

m Format

Use the following format to select interpolation acceleration/deceleration mode 1.

ACCMODE MI;

MVS [Logical axis_name_1] Reference_position Finterpolation feed speed TWcontinuous_process_con-

trol_signal,
Or
ACCMODE M1,

MVS [Logical axis_name_1] Reference_position Finterpolation_feed speed FW continuous _process_con-

trol_signal,

Item

Unit

Usable Data

Continuous process con-
trol signal

- All bit data registers (excluding #, C, and D registers)

Note: The format is the same for the MCC, MCW, and SKP commands.

If the characters “TW” or “FW” are added to the interpolation command, continuous process control signal mon-
itoring is performed. The bit data register specified with the characters “TW” or “FW” is used as the continuous

process control signal.

If the characters “TW” or “FW” are not added to the interpolation command, or if the conditions are not satisfied,
the continuous process control signal is not monitored and acceleration/deceleration is performed according to
the acceleration/deceleration times set with the IAC and IDC commands.

INFO The characters “TW” and “FW” are valid only for interpolation acceleration/deceleration modes 1 and 3 (acceleration/
% deceleration modes with continuous process control signal monitoring). In other modes, the operation depends on the soft-
ware version of the CPU Module.

Software Version

MPE720 Version 6.36 or Later

MPE720 Version 6.35 or Earlier

CPU Module Ver-
sion 2.86 or Later

A motion program alarm (32 hex: Speci-
fied address error) will occur when an
interpolation command is executed.

A motion program alarm (32 hex: Not
registered) will occur when an interpola-
tion command is executed.

CPU Module Ver-
sion 2.85 or Earlier

An alarm will not occur even when an interpolation command is executed.
The TW or FW address is ignored and the interpolation command is executed.

The characters “TW” designate monitoring the continuous process control signal with positive logic.

Continuous Process
Control Signal

Operation Summary

ON

The deceleration time specified with the IDC command is ignored. The current speed is
maintained and pulse distribution is completed with a deceleration time of 0 ms.

OFF

The axis decelerates to a stop according to the deceleration time specified with the IDC

command.

The characters “FW” designate monitoring the continuous process control signal with negative logic.

Continuous Process
Control Signal

Operation Summary

The axis decelerates to a stop according to the deceleration time specified with the IDC

ON
command.
OFF The deceleration time specified with the IDC command is ignored. The current speed is
maintained and distribution is completed with a deceleration time of 0 ms.
IMPORTANT If you specify a travel distance that is insufficient to perform continuous processing with the set

deceleration time, unexpected operation may occur. Also specify a sufficient travel distance.

Command Reference

8-49

8-50

8 Command Reference

8.1.11 Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

m Programming Examples

The following example programming uses interpolation acceleration/deceleration mode 1 (acceleration/
deceleration mode with continuous process control signal monitoring).

FMX T30000000;

ABS;

IAC T1000;

IDC T1000;

ACCMODE MT;
MVS [A1]4000 F50000 TWMB000001; ‘@”
IOW MB000001=1; “‘@”

MVS [A1]8000; ‘®@”

END;

The following examples show how to combine the MVS command and interpolation acceleration/deceleration
mode 1.

* When the Continuous Process Control Signal Turns ON after Distribution for MVS Com-

mand @ Is Completed

The next block is executed after the axis decelerates to a stop for the MVS command @.
For the MVS command ®), acceleration begins when the speed is 0 (reference units/min).

Speed (V)
A

IOW @

Time (t)

MB000001

* When the Continuous Process Control Signal Turns ON during Distribution for MVS ©

(before Deceleration)
MVS @ is executed at the same speed from MVS @ without decelerating.
Speed (V)

A IOW @
(Do not wait if the conditions are already satisfied.)

¥

IR

Time (t)

MB000001

8.1 Axis Setting Commands

* When the Continuous Process Control Signal Turns ON during Distribution for MVS @
(during Deceleration)

MVS @ is executed with the same speed as when the continuous process signal turned ON.

Speed (V)
A IOW @
(Do not wait if the conditions are already satisfied.)
0] ©)
|2.N >
Time (1)
MB000001

(N 1. If the reference speed for MVS @ is higher than for MVS @, the end speed of @ is used for the start speed of ®. The
INFO(. .
% axis then accelerates to the specified speed.

2. If the reference speed for MVS @ is lower than for MVS @, the end speed of @ is used for the start speed of ®. The
axis then decelerates to the specified speed.

3. If the travel distance for MVS @ is shorter than the deceleration distance, distribution is finished during the decelera-
tion of ®.

m Additional Information

Refer to the following additional information for details on operation in the acceleration/deceleration mode with
continuous process control signal monitoring.

* Request Temporary Stop Operation

Temporary Stop Request before the Interpolation Distribution for the Next Block Begins
The axis decelerates according to the interpolation deceleration time specified with the IDC command.
No continuous processing to the next interpolation block is performed.

Temporary Stop Request after the Interpolation Distribution for the Next Block Begins

The axis decelerates according to interpolation deceleration time specified with the IDC command for both
the previous block and the next block.

After the temporary stop request is removed, distribution of the remaining distance is performed for both the
previous block and the next block.

* Request Stop Operation
The interpolation block for the axis in motion stops immediately.
* Program Single-block Mode Operation
No continuous processing to the next interpolation block is performed.

* Debug Mode Operation

No continuous processing to the next interpolation block is performed.

» Operation When the Next Block Is Not an Interpolation Command Block

Command Reference

No continuous processing to the next block is performed.

Acceleration begins from a speed of 0 for the next block.

* Operation When the Interpolation Deceleration Time (IDC) Is Set to 0 ms

Continuous processing to the next interpolation block is performed, regardless of the status of the continuous
process control signal.

+ Continuous Operation during Parallel Execution (PFORK)

Continuous processing is not performed across a PFORK command.

Set the commands so that processing for this mode ends during each fork.

8-51

8 Command Reference

8.1.11 Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

(c) Interpolation Acceleration/Deceleration Mode 2 (Acceleration/Deceleration Mode with
Interpolation Overlapping) Details

In this mode, the distribution for each interpolation block is made to overlap by starting acceleration for the next
interpolation block during the deceleration for the current interpolation block for continuous processing between
consecutive interpolation blocks.

Each block accelerates and decelerates according to the acceleration times and deceleration times that are set
with the IAC and IDC commands.

This mode is valid for the MVS, MCW, and MCC commands.

Speed (V)
IAC = IDC IAC > IDC IAC <IDC

;r/;r/;
» »
\ 4
)z

N :

Time (t)
m Format
ACCMODE M2;
MVS [Logical axis_name_1] Reference_position Finterpolation_feed speed Dinterpolation_overlap dis-
tance;
Item Unit Usable Data

Interpolation overlap dis-
tance

. * Directly designated value
Reference units

* Indirect designation with a double-length integer register

Note: The interpolation overlap distance can be omitted.
The format is the same for the MCC and MCW commands.

In this mode, you can add the character “D” to an interpolation command to specify the maximum distance for
the interpolation distribution to overlap.

When the character “D” is added to an interpolation command in this mode, distribution for the next interpolation
block begins when the remaining travel distance for the current interpolation block falls below the interpolation
overlap distance. If 0 (reference units) is specified for the interpolation overlap distance, distribution for the next
interpolation block begins when the current interpolation block begins deceleration.

If the character “D” is not specified for the interpolation command, the last interpolation overlap distance speci-
fied in the motion program is used.

The interpolation overlap distance is set to 0 (reference units) when program operation starts.

A compiling error will occur if the character “D” is used with MPE720 version 6. MPE720 version 6 does not
support character “D.”

IMPORTANT

The character “D” is valid only in interpolation acceleration/deceleration mode 2.
In other interpolation acceleration/deceleration modes, the operation depends on the software version of the CPU Mod-
ule.

(N 1.
(o]

8-52

Software Version

MPE720 Version 7.24 or Later

MPE720 Version 7.23 or Earlier

CPU Module Ver-

A motion program alarm (32 hex: Speci-

fied address error) will occur when an

sion 2.86 or Later . . .
interpolation command is executed.

A motion program alarm (32 hex: Not
registered) will occur when an interpola-
tion command is executed.

CPU Module Ver-
sion 2.85 or Earlier

An alarm will not occur even when an interpolation command is executed.
The D address is ignored and the interpolation command is executed.

2. The valid range for the interpolation overlap distance is 0 to 2,147,483,647 (reference units).

If a negative value is specified, the absolute value is used.

3. Interpolation acceleration/deceleration mode 2 can be used only with the following versions.

* CPU Module version: Version 2.84 or later
* MPE720 version: Version 7.10 or later

8.1 Axis Setting Commands

m Conditions to Begin Distribution for the Next Interpolation Block

Distribution for the next interpolation block begins when all of the following conditions are satisfied.

No. Condition
1 Not in Program Single-block Mode.
2 Control signal bit 1 (Request Temporary Stop) is OFF.
3 No PFN commands have been added to the interpolation commands.
4 The interpolation block must have started deceleration. (Refer to the timing of @ in the following figure.)
5 The remaining distance for the interpolation block is less than the interpolation overlap distance that was specified
after the character “D.” (Refer to the timing of @ in the following figure.)
6 The remaining deceleration time of the current interpolation block is less than the acceleration time of the next

interpolation block. (Refer to the timing of @ in the following figure.)

Current Interpolation
Block Speed Waveform

Next Interpolation Next block

Speed | The distance specified after the character “D.” |

— Dl® | Acceleration time for the next block| Time

/

Speed Distribution started
for the next block. | @

Block Speed Waveform Y
[Tim:
L 1l
Speed
Composite Speed
Waveform
Timz

m Programming Examples

A programming example for the acceleration/deceleration mode with interpolation overlapping is given below.
FMX T300000;
INC;
IAC T1000;
IDC T2000;

ACCMODE M2;

MWO00010 = 30;

MVS[A1]20000 [B1]10000 F200000; “Linear interpolation ®”
MWO00010 = 20;

MVS[A1]10000 [B1]-20000 D100; “Linear interpolation @”
MWO00010 = 10;

MVS[A1]20000 [B1]10000; “Linear interpolation ®”
MWO00010 = 0;

END;

Command Reference

8-53

8 Command Reference

8.1.11 Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

In processing for ACCMODE2, execution moves to the next execution block in the program when deceleration
occurs for the interpolation block or when the interpolation overlap distance becomes equal to or less than the

specified interpolation overlap distance.
S-type commands (e.g., operation commands) that occur during continuous processing for interpolation blocks

are executed when program execution moves to the next block.

The speed waveform for the programming example is given below.

Composite speed (V)
(reference units/min)

Region where the
interpolation

Region where the
interpolation

A distribution overlaps distribution overlaps
300000 [------ i NG A e
200000 f------ ’ P ; D ; D
Linear Linear \ Linear
interpolation ® a2 interpolation @ interpolation ®
! N S »
/ Ll
— Time (t)[s]
Interpolation distribution for linear Interpolation distribution for linear interpolation
interpolation @ starts during the ® starts when the remaining distance for linear
deceleration of linear interpolation @. interpolation @ falls below the interpolation
overlap distance.
30
T ———
MWO00010 0
10 —mm e
0 _____________________________________

The interpolated path for the above programming example is given below.

As shown in the figure below, some interpolation block end points (i.e., the start point for the next interpolation
block) do not pass through the movement path because the distribution for the next interpolation block starts

during deceleration of the current interpolation block.

Axis B1
A | Linear interpolation ® |

| Linear interpolation @ |

| Linear interpolation @

Interpolation overlap distance |

P> Axis A1

8-54

8.1 Axis Setting Commands

m Additional Information

Refer to the following additional information for details on operation in the acceleration/deceleration mode with
interpolation overlapping.

* Request Temporary Stop Operation

Before distribution for the next interpolation block begins, the interpolation block for axes currently in
motion decelerates in the deceleration time specified with the IDC command.

However, no continuous processing to the next interpolation block is performed.
After distribution for the next interpolation block begins, each interpolation block decelerates in the deceler-
ation time specified with the IDC command.

* Request Stop Operation
Each interpolation block stops immediately.
* Program Single-block Mode Operation

No continuous processing to the next interpolation block is performed.

* Debug Mode Operation

No continuous processing to the next interpolation block is performed.

» Operation When the Next Block Is Not an Interpolation Command Block

No continuous processing to the next block is performed.

Acceleration begins from a speed of 0 for the next block.

» Continuous Operation during Parallel Execution (PFORK)

This mode cannot be used across a PFORK command.

Adjust the timing of pulse distribution for the interpolation block with the PFN command so that processing
(i.e., pulse distribution) for this mode is completed within each fork.

» Operation for Execution of T-type Commands

If a T-type command (e.g., a timer command) is executed in continuous processing for an interpolation block,
the distribution timing in the next interpolation block will be changed.

(d) Interpolation Acceleration/Deceleration Mode 3 (Acceleration/Deceleration Mode with
Continuous Process Control Signal Monitoring) Details

In the same way as in interpolation acceleration/deceleration mode 1 (acceleration/deceleration mode with con-
tinuous process control signal monitoring), interpolation acceleration/deceleration mode 3 (acceleration/deceler-
ation mode with continuous process control signal monitoring) monitors a continuous process control signal and
performs continuous processing between consecutive interpolation blocks when the specified conditions are sat-
isfied.

However, opposed to interpolation acceleration/deceleration mode 1 (acceleration/deceleration mode with con-
tinuous process control signal monitoring), when continuous processing is performed for a minute block with a
minute travel distance, deceleration is performed as much as possible to the specified speed in continuous pro-
cessing between consecutive interpolation blocks.

Command Reference

(N A minute block is an interpolation bock with a travel distance that is too small for the distance required to decelerate to a
INFO(J
O stop at the specified deceleration rate from the speed for continuous processing operation.

8-55

8 Command Reference

8.1.11 Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

8-56

m Format

Use the following format when interpolation acceleration/deceleration mode 3 (acceleration/deceleration mode
with continuous process control signal monitoring) is set. Refer to (b) Interpolation Acceleration/Deceleration
Mode 1 (Acceleration/Deceleration Mode with Continuous Process Control Signal Monitoring) Details for
details on continuous processing control signals.

ACCMODE M3
MVS [Logical_axis_name_1] Reference_position ... Finterpolation_feed_speed TWcontinuous_process._-
control_signal,

Or

ACCMODE M3
MVS [Logical_axis_name_1] Reference_position ... Finterpolation_feed_speed FWcontinuous_process_-
control_signal,

Note: The format is the same for the MCC, MCW, and SKP commands.

N FO The characters “TW?” and “FW” are valid only for this mode and for interpolation acceleration/deceleration mode 1 (accel-
% eration/deceleration mode with continuous process control signal monitoring). In other modes, the operation when the
characters “TW” or “FW” are specified depends on the software version of the CPU Module.

Software Version MPE720 Version 6.36 or Later MPE720 Version 6.35 or Earlier
CPU Module Version 2.86 An alarrp (32 hex: Spemﬁ;d addres§ An alarm (32 h.ex: No reglstered) will .
error) will occur when an interpolation occur when an interpolation command is
or Later .
command is executed. executed.
CPU Module Version 2.85 An alarm will not occur even when an interpolation command is executed.
or Earlier The TW or FW address is ignored and the interpolation command is executed.

m Programming Examples

The difference between interpolation acceleration/deceleration modes 1 and 2 for the MVS command is
described below.

INC;

FMX T1000000;

IAC T5000;

IDC T5000;

MB1000=1; /I Continuous control signal bit

/lInterpolation acceleration/deceleration mode (ACCMODE M1 or ACCMODE M3 executed.)
ACCMODE M1; // ACCMODE M1 or ACCMODE M3

MVS [A1]100000 F600000 TWMB1000; // Linear interpolation @

MVS [A1]5000 F300000 TWMB1000; /l Linear interpolation (minute block) @

MVS [A1]100000 F300000 FWMB1000; // Linear interpolation ®

END;

8.1 Axis Setting Commands

The speed waveform for the programming example is given below.

* Operation in Interpolation Acceleration/Deceleration Mode

Linear Interpolation (Minute Block) @

When it is determined that deceleration to the specified
speed, 300,000 reference units/min, is not possible for
the minute block, the current speed is maintained and
continuous processing is performed.

Speed (V)
(reference units/min)

600000
Linear
interpolation ®

300000

Linear interpolation ®

Time t (s)
* Operation in Interpolation Acceleration/Deceleration Mode

Linear Interpolation (Minute Block) @
Speed (V) Even in the minute block, deceleration is performed as
(reference units/min) close as possible to the specified speed, 300,000
I reference units/min, and continuous processing is

/ performed.

600000 \(
Linear

300000 interpolation @

Linear interpolation @

Time t (s)
m Additional Information

Additional information on interpolation acceleration/deceleration mode 3 (acceleration/deceleration mode with
continuous process control signal monitoring) is the same as the additional information for interpolation acceler-
ation/deceleration mode 1.

(e) Interpolation Acceleration/Deceleration Mode 4 (Acceleration/Deceleration Mode with
Next Block Speed Specification) Details

In interpolation acceleration/deceleration mode 4 (acceleration/deceleration mode with next block speed specifi-
cation), the final speed is specified for each interpolation block and continuous processing to the next interpola-
tion block is performed at the specified speed.

This mode can be used only when the same axes are used for all consecutive interpolation blocks.

Time
m Format
Use the following format to select interpolation acceleration/deceleration mode 4.
ACCMODE M4
MVS [Logical_axis_name_1] Reference_position ... Finterpolation_feed_speed FEfinal_interpolation_-
feed_speed,
Iltem Unit Usable Data
* Indirect designati ith a double-length int ist
Final interpolation feed speed Reference units/min n. ree es1g nation with a double-iengti integer register
* Directly designated value

Command Reference

8-57

8-58

8 Command Reference

8.1.11 Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

Note: The final interpolation feed speed can be omitted. The format is the same for the MCC, MCW, and SKP com-
mands.

In this mode, you can add the characters “FE” to an interpolation command to specify the final speed for the
interpolation block.

If you add the characters “FE” to an interpolation command, pulse distribution is adjusted so that the interpola-
tion block ends at the specified final interpolation feed speed.

If the specified final interpolation feed speed is 0 (speed units), continuous processing is not performed and the
axes decelerate to a stop.

If the characters “FE” are not specified for the interpolation command, the final interpolation feed speed that was
last specified in the motion program is used.

The final interpolation feed speed is 0 (speed units) when program operation starts.

IMPORTANT 1. The characters “FE” are valid only for this mode. In other interpolation acceleration/deceleration modes, a

motion program alarm will occur.

2. The valid range for the final interpolation feed speed is 0 to 2,147,483,647 (speed units). A compiler error
will occur if a negative number is specified.

This mode can be used with the following or later versions.
* CPU Module version: Version 2.86
* MPE720 version: Version 6.36

m Programming Example

FMX T6000000;

IAC T1000;

IDC T1000;

INC;

ACCMODE M4;

MVS [A1]300000 F6000000 FE4000000; “Linear interpolation @”
MVS [A1]300000 F3000000 FE6000000; “Linear interpolation @”
MVS [A1]300000 F6000000 FEO; “Linear interpolation ®”

END;

The speed waveform for the programming is given below.

Linear Interpolation ©

The block is ended at a final interpolation feed
speed of 4,000,000 (reference units/min) and
continuous processing is performed.

Speed (V) Linear Interpolation @
(reference units/min) The block is ended at a final interpolation
b feed speed of 6,000,000 (reference units/min)
and continuous processing is performed.

6000000
/ \ Linear Interpolation ®
4000000 The block is ended at a final
3000000 / / \ interpolation f_eed _speed of 0
(reference units/min).
Linear Linear Linear
interpolation ® | interpolation @ interpolation ®

Time t (s)

8.1 Axis Setting Commands

m Additional Information

Refer to the following additional information for details on operation in the acceleration/deceleration mode with
next block speed specification.

Request Temporary Stop Operation

If a temporary stop is requested, the axes decelerate to a stop at the set deceleration rates. If the travel dis-
tance is insufficient, a quick stop is performed at the target position.

Request Stop Operation
The interpolation block stops immediately.
Operation When Final Interpolation Feed Speed Is Not Reached

Acceleration or deceleration to the final interpolation feed speed is continued and an immediate stop is per-
formed when the travel distance is reached.

If the next block is an interpolation command, continuous processing is performed when the immediate stop
occurs.

Program Single-block Mode Operation

No continuous processing to the next interpolation block is performed.

Debug Mode Operation

No continuous processing to the next interpolation block is performed.

Operation When the Next Block Is Not an Interpolation Command Block

No continuous processing to the next block is performed.

Acceleration begins from a speed of 0 for the next block.

Continuous Operation during Parallel Execution (PFORK)

Continuous processing is not performed across a PFORK command.

Set the commands so that processing for this mode ends during each fork.

Command Reference

8-59

8 Command Reference

8.2.1 Positioning (MOV)

8.2 Axis Move Commands

This chapter described axis move commands.

8.2.1 Positioning (MOV)

Motion Programs Sequence Programs

Applicable Not Applicable

(1) Overview
The Positioning (MOV) command independently moves each axis from the current position to the end position at
positioning speed.
Up tol6 axes can be moved simultaneously. Any axis not specified in the command will not be moved.

The path of movement with the MOV command is different from the linear travel.

Logical axis 3
A

Each axis moves at the Positioning
individually specified speed. end position

/v Positioning

» Logical axis 1

Program
current position

Logical axis 2

Fig. 8.25 Movement Path with MOV Command

/\ CAUTION

» The path of movement with the Positioning (MOV) command is not always a straight line. When program-
ming, be sure to check the path to make sure that there are no tools or other obstacles in the way of the
workpiece.

Failure to carry out this check may result in damage to equipment, serious personal injury, or even death.

(2) Format

MOV [Logical axis name 1] Reference position [Logical axis name 2] Reference position [Logical axis name 3] Reference position _ ;

ltem Unit Usable Data
Reference Reference unit | - Directly designated value
position - Double integer type register (Indirect designation)

8-60

8.2 Axis Move Commands

(3) Setting Items for MOV Command

Motion Image

Speed (V)

A

b) Rated speed |...

c) Acceleration/
deceleration type

Positioning -

speed i
(VEL)

a) Moving

amount

—

Acceleration time
(ACC)

> Time (t)

Deceleration time
(DCC)

a) Moving amount

The moving amount of each axis differs depending on the movement mode, ABS mode or INC mode.

* Moving amount in ABS mode

The difference between the program current position and the reference position.

* Moving amount in INC mode

The reference position is used as the moving amount.

vy’

INFO

!

Refer to 7.2.2 Reference Unit for information on the moving amount unit.

b) Rated speed

Use motion fixed parameter 34 (Rated motor speed) to set the rated speed of each axis.

For details, refer to the relevant motion module manual.

¢) Acceleration/deceleration type

The acceleration/deceleration for a MOV command can be selected from the following three types.
It can be selected according to the combination of the following settings:

Motion setting parameter OWDOI03, bit 4 to 7: Acceleration/deceleration degree unit selection
Motion setting parameter OWI03, bit 8 to B: Filter type selection

Command Reference

8-61

8-62

8 Command Reference

8.2.1 Positioning (MOV)

&
T
o
N

(a) No acceleration/deceleration

Movement with both the acceleration time and deceleration time set to 0

Setting Method
« OWOJ03, bit 4 to 7: Acceleration/deceleration degree unit selection = 1
(ms)
« OWOJ03, bit 8 to B: Filter type selection = 0 (No filter)
* Set the ACC command to 0.
* Set the DCC command to 0.

Movement Path

(b) Single-step linear acceleration/deceleration

Movement with a constant acceleration/deceleration speed

Setting Method Movement Path

« OWOOO03, bit 4 to 7: Acceleration/deceleration degree unit selection = 1
(ms)

« OWLIOO03, bit 8 to B: Filter type selection = 0 (No filter)

* Set the ACC command to a value other than 0.

* Set the DCC command to a value other than 0.

(c) S-curve acceleration/deceleration

Movement at S-curved acceleration/deceleration speed

Setting Method
« OWOJ03, bit 4 to 7: Acceleration/deceleration degree unit selection = 1
(ms)
+ OWLO03, bit 8 to B: Filter type selection = 2 (Moving average filter)
* Set the ACC command to a value other than 0.
* Set the DCC command to a value other than 0.
* Set the SCC command to a value other than 0.

Movement Path

For axis movement with a MOV command, an in-position check is executed to verify that the axis enters the positioning
completion range. After the in-position check, the next move command block will be executed.
The following diagram illustrates the in-position execution.

The feedback position is within

Distribution completed the positioning completion width.

Speed (V) 4
Positioning command block

The next command block
»

Motion monitor parameter
IwOOOC, Bit1 Positioning Completed

In-position check

The value that is set in the motion setting parameter
OoLOO1E: Width of positioning completion.

Fig. 8.26 Execution of In-position Check

8.2 Axis Move Commands

(4) Programming Examples
A programming example for a MOV command in ABS mode is shown below.
<4 EXAMPLE »

ABS;

ACC [A1]1000 [B1]1000 [C1]1000;
DCC [A1]1000 [B1]1000 [C1]1000;
VEL [A1]2000 [B1]2000 [C1]2000;
MOV [A1]4000 [B1]3000 [C1]2000;

END;
C1
A
2000

I,:'. IIEnd
! i position
iProgram
i current Y
iposmon 4000

3000 | __i’,"l

B1

Fig. 8.27 MOV Command Programming Example

Command Reference

8-63

8-64

8 Command Reference

8.2.2 Linear Interpolation (MVS)

8.2.2 Linear Interpolation (MVS)

Motion Programs Sequence Programs

Applicable Not applicable

(1) Overview

The Linear Interpolation command (MVS) moves each axis on a straight line from the program current position
to the end position at the specified interpolation feed speed. Up to 16 axes can be moved simultaneously. Any
axis not specified in the command will not be moved.

Logical axis 3
A

End position
Interpolation
feed speed
(Composite
speed)

» Logical axis 1

[Logical axis 3]

/_ [Logical axis 1]

-
Logical axis 2 Program ,” [Logical axis 2]
current position

~ - =

Fig. 8.28 Movement Path with MVS Command

/A CAUTION

+ Linear Interpolation (MVS) can be executed for either linear axes or rotary axes. If rotary axes are included,
however, the linear interpolation path will not be in straight line. When programming, be sure to check the
path to make sure that there are no tools or other obstacles in the way of the workpiece.

Failure to carry out this check may result in damage to equipment, serious personal injury, or even death.

N FO For axis movement with the MVS command, an in-position check is not automatically executed. Use the PFN command to
% execute an in-position check if required.

(2) Format

MVS [Logical axis name 1] Reference position [Logical axis name 2] Reference position [Logical axis name 3] Reference position ...

F Interpolation feed speed ;

Item Unit Usable Data
Reference position Reference unit - Directly designated value
Interpolation feed speed | Reference units/min - Double integer type register (Indirect designation)

Note: The interpolation feed speed can be omitted.

8.2 Axis Move Commands

(3) Setting Items for MVS Command

Motion Image

Speed (V)
A

Max. feed speed

for interpolation
(FMX)

b) Interpolation feed

speed
(F designation or
IFP)

»
»

a) Composite
moving
amount

c) Acceleration/deceleration type

Acceleration time

(IAC)

T Time (t)
|

Deceleration time

(IDC)

a) Composite moving amount

The composite moving amount differs depending on the movement mode: ABS mode or INC mode.

» Composite moving amount in ABS mode

The difference between the program current position and the reference position

+ Composite movement amount in ABS mode

The reference position is used as the moving amount.

INC command block: INC MVS[A1]1200 [B1]900;

Composite
moving =
amount

4

B1

/12002 + 9002 = 1500 (reference unit)

1500 reference units

\

o/

1200 reference units

900 reference units

v

A1

N)) .)
|NFO Refer to 7.2.2 Reference Unit for information on the moving amount unit.

Command Reference

8-65

8-66

8 Command Reference

8.2.2 Linear Interpolation (MVS)

b) Interpolation feed speed (F command or IFP)

Specify a numerical value or register following to character F in the MVS command block (F designation).
The specified interpolation feed speed is treated as a composite speed for all the specified axes.
The reference range is between 1 reference unit/min and the maximum feed speed for interpolation (FMX)
[reference units/min].
For the INC command block INC MVS[A1]1200 [B1]900 F500;
B14

Interpolation feed speed
500 reference units/min

W

900
reference units

A
v

1200 reference units

The feed speed of each axis is calculated using the following formula.

£
T
@)
&

The feed speed of each axis [reference units/min]

moving amount of each axis [reference units]
= - . ; X interpolation feed speed [reference units/min]
composite moving amount [reference units]

For example, the feed speed of each axis in above condition is calculated as following.

Interpolation feed speed (the value of F) = 500 [reference units/min]

Composite moving amount = ’ 1200%+900% = 1500 [reference units]

1200
1500

900
1500

* The feed speed of Al axis = X 500 = 400 [reference units/min]

* The feed speed of B1 axis = X 500 = 300 [reference units/min]

You can select whether or not to apply an interpolation override to the F designation.
Refer to 4.3.3 Work Registers for information on how to use an interpolation override.

* When not using an interpolation override

F designation = Interpolation feed speed
; ; o Interpolation
F designation feed speed

* When using an interpolation override

Interpolation override _

0 to 327 67% Interpolation feed speed
(0] . (]

F designation X

Interpolation Interpolation
override feed speed

\ 4

F designation [

The interpolation feed speed can also be specified as a percentage of the maximum feed speed for interpola-
tion (FMX).

Refer to 8.1.8 Interpolation Feed Speed Ratio Setting (IFP) for information how to specify an interpolation
feed speed as a percentage of the maximum feed speed for interpolation.

+ If a value higher than the FMX reference value (reference units/min) is specified for an F designation (reference units/
min), a motion alarm will occur.

&
|
o
&

« If the interpolation override applied interpolation feed speed exceeds the FMX value, the output value of the interpola-
tion feed speed will be reset to the FMX reference value.

» When the interpolation feed speed is not specified in the command block, the interpolation feed speed specified in the
previous command block will be applied.

8.2 Axis Move Commands

The interpolation override can be changed during axis movement.

Speed (V)
A 150% of
interpolation
100% of : feed speed
interpolation E
Interpolation feed feed speed 5
speed 50% of
(F designation or interpolation ,
feed,speed

One block of an interpolatién related command

Interpolation
override
A

150.00%

\

Time (t)

100.00%

50.00%

[

-

Time (t)

Fig. 8.29 Interpolation Override and Interpolation Related Command

¢) Acceleration/deceleration type

The acceleration/deceleration for an MVS command can be selected from the following three types.
It can be selected according to the combination of settings of IAC, IDC, and SCC commands and motion

parameter OWLII03, bit 8 to B: Filter type selection.

(a) No acceleration/deceleration

Movement with both the acceleration time and deceleration time set to 0

Setting Method

Movement Path

» OWOOO03, bit 8 to B: Filter type selection = 0 (No filter)
* Set the IAC command to 0.
« Set the IDC command to 0.

(b) Single-step linear acceleration/deceleration

Movement with a constant acceleration/deceleration speed

Setting Method

Movement Path

» OWOOO03, bit 8 to B: Filter type selection = 0 (No filter)
« Set the IAC command to a value other than 0.
« Set the IDC command to a value other than 0.

(c) S-curve acceleration/deceleration

Movement at S-curved acceleration/deceleration speed

Command Reference

Setting Method

Movement Path

+ OWLIOO03, bit 8 to B: Filter type selection = 2 (Moving average filter)
* Set the IAC command to a value other than 0.
* Set the IDC command to a value other than 0.
¢ Set the SCC command to a value other than 0.

8-67

8 Command Reference

8.2.2 Linear Interpolation (MVS)

(N * Code a FMX command to specify the maximum feed speed for interpolation at the beginning of motion program.
; Otherwise, a motion program alarm will occur at execution of the MVS command.
« If the acceleration/deceleration time is not specified, the default time of 0 ms is applied.
* For axis movement with the MVS command, an in-position check is not automatically executed. Use the PFN com-
mand to execute an in-position check if required.

(4) Programming Examples
A programming example of an MVS command in ABS mode is shown below.

<4 EXAMPLE »

FMX T30000000;

ABS;

IAC T1000;

IDC T1000;

MVS [A1]4000 [B1]3000 [C1]2000 F50000;
END;

S End
i position

i Program
icurrent
! position

3000 . E'

B1

Fig. 8.30 MVS Command Programming Example

8-68

8.2 Axis Move Commands

8.2.3 Clockwise/Counterclockwise Circular Interpolation with Center Position Desig-

nation (MCW, MCC)

Motion Programs

Sequence Programs

Applicable

Not applicable

(1) Overview

The Clockwise/Counterclockwise Circular Interpolation with Center Position Designation command (MCW,
MCC) moves two axes simultaneously from the program current position to the end position on the designated

plane at the interpolation feed speed on the circle determined by the center position.

* MCW: Circular Interpolation command for Clockwise (CW)
* MCC: Circular Interpolation command for Counterclockwise (CCW)

Logical axis 2 4

End position Program current position

Center point

MCW o
position

Number of turns

Interpolation feed speed
(Tangential speed)

» Logical axis 1

IMPORTANT

Before designating a Clockwise/Counterclockwise Circular Interpolation command, be sure to designate
the circular interpolation plane in Coordinate Plane Setting (PLN).

If the PLN command is not coded, a motion program alarm will occur at execution of the MCW or MCC
command.

Designate the axes for the end position and center position in the same order as the axes are specified in the
PLN command.

Be sure to code the FMX command at the beginning of the program to specify the maximum feed speed for
interpolation.

Otherwise, a motion program alarm will occur at execution of the MCW or MCC command.

When the acceleration/deceleration time is not specified, the default acceleration/deceleration time of 0 ms
will be applied.

(N
&

For axis movement with the MCW or MCC command, an in-position check is not automatically executed. Use the PFN
command to execute an in-position check if required.

Command Reference

8-69

8 Command Reference
8.2.3 Clockwise/Counterclockwise Circular Interpolation with Center Position Designation (MCW, MCC)

(2) Format

MCW [Logical axis name 1] End position [Logical axis name 2] End position U Center position V Center position

T Number of turns F Interpolation feed speed ;

Item Unit Usable Data
End position Reference unit - Directly designated value
Center point position Reference unit - Double integer register (Indirect designation)
Number of turns Number of times of turn
Interpolation feed speed | Reference units/min

Note: The number of turns and interpolation feed speed can be omitted.

(3) Setting Items for MCW and MCC Commands

Motion Image

Logical axis 2
A

a) End position

O

a) Center
position

MCW

b) Number of turns

c) Interpolation feed speed
(Tangential speed)

» Logical axis 1

a) End position and Center point position

End position: Specify a numerical value or register following to a logical axis name.
Center position: Specify a numerical value or register following to character U and V in the MCW or MCC command

block.
The actual end position and center position for the reference positions will differ, depending on the move-

ment mode: ABS mode or INC mode.

8-70

8.2 Axis Move Commands

* In ABS Mode

The center position and end position are treated as absolute positions.

ABS;

MCC

FMX T30000000;

PLN[A1][B1];

[A1]1500[B1]4000 U2500 V1000 F50000;

I

Center position

End position
B1 End]
position Counterclockwise
4000‘f _____________ ; circular interpolation
(MCC)
Program
2000 T T current position

Center .
position .- |
1000 o ;

i i N
1500 2500 5500

* In INC Mode

The center position and end position are treated as relative positions from the program current position.

INC;
PLN[A1][B1];

FMX T30000000;

MCC [A1]-4000 [B1]2000 U-3000 V-1000 F50000;

End position \— Center position

(relative position) (relative position)

< -4000
B‘j Counterclockwise
4000 / circular interpolation
End 4 (MCC) A
position }
2000
Program
Y current
2000 position
Center . -1000
position__.-—""
1000 T -3000
: > A1
1500 2500 5500

Command Reference

8-71

8 Command Reference
8.2.3 Clockwise/Counterclockwise Circular Interpolation with Center Position Designation (MCW, MCC)

Special care must be taken with regard to the start point radius, and end point radius, because the circular inter-
IMPORTANT polation path will become as shown below if the start point radius is not equal to the end point radius.

End position

Program
current position

Fig. 8.31 Circular Interpolation Path When Start Point Radius # End Point Radius

b) Number of turns
Specify a numerical value or register following to character T in the MCW or MCC command block.
Specifying the number of turns will implement multiple circular movements. Specifying a negative value for
the number of turns will cause a motion program alarm. The number of circular movements determined by
the specified number of turns will differ depending on the relationship between the program current position
and end position as shown below.

<« EXAMPLE »
* When the number of turns is set to 2

When Program current position # End position Program current position = End position

B1 a B1 a

Program current position
End position and
End position

Program
current position

A\
A\

A1 A1

Two circles + 1/4 circle Three circles

8-72

8.2 Axis Move Commands

¢) Interpolation feed speed

For circular interpolation (MCW, MCC), the specified interpolation feed speed is treated as the speed of a
tangential direction.
The reference range is between 1 and the maximum interpolation feed speed (FMX) [reference unit/min].

MCC command block: MCC[A1]- [B1]- F200;

F=200=V Vx2 + Vy2 (reference units/min)

End position
200 reference units/min

Vy (reference units/min)

Vx (reference units/min)

Program current position

v

A1

Command Reference

8-73

8 Command Reference

8.2.3 Clockwise/Counterclockwise Circular Interpolation with Center Position Designation (MCW, MCC)

(4) Programming Examples
<4 EXAMPLE »

A programming example of circular interpolation (MCW, MCC) in ABS mode is shown below.
The MCW commands turns axes clockwise, while MCC commands counterclockwise.

Turning .
Direction Programming Example
ABS;
FMX T30000000;
PLN [A1][B1];
MCW [A1]0 [B1]0 U1000 VO F2000; “MCW (clockwise)”
END;
B1 a
Clockwise
(MCW) (0,0)
End position—C O > A1
i Center position
i (1000,0)
— Program current position
Clockwise circular
interpolation (MCW)
Fig. 8.32 Center Position Designated Clockwise
Circular Interpolation (MCW)
ABS;
FMX T30000000;
PLN [A1][B1];
MCC [A1]0 [B1]0 U1000 VO F2000; “MCC (Counterclockwise)”
END;
B1 a4
Counterclockwise
/ circular interpolation
Counter- (mee)
clockwise
(MCC) End position—C A1
i Center
i position
1(1000,0)
Program current position
Fig. 8.33 Center Position Designated Counterclockwise
Circular Interpolation (MCC)

8-74

8.2 Axis Move Commands

8.2.4 Clockwise/Counterclockwise Circular Interpolation with Radius Designation
(MCW, MCC)

Motion Programs Sequence Programs

Applicable Not applicable

(1) Overview

The Clockwise/Counterclockwise Circular Interpolation with Radius Designation command (MCW, MCC)
moves two axes simultaneously from the program current position to the end position on the designated plane at
the interpolation speed on the circle determined by the radius.

* MCW: Circular Interpolation command for Clockwise (CW)
* MCC: Circular Interpolation command for Counterclockwise (CCW)

Logical axis 2 A
Radius

End position

MCW

Interpolation feed speed
(Tangential speed)

» Logical axis 1

* Before designating a Clockwise/Counterclockwise Circular Interpolation command, be sure to designate
the circular interpolation plane in Coordinate Plane Setting (PLN).

IMPORTANT

If the PLN command is not coded, a motion program alarm will occur at execution of the MCW or MCC
command.

Designate the axes for the end position and center point position in the same order as the axes are specified
in the PLN command.
* Be sure to code the FMX command at the beginning of the program to specify the maximum feed speed for
interpolation.
Otherwise, a motion program alarm will occur at execution of the MCW or MCC command.
» When the acceleration/deceleration time is not specified, the default acceleration/deceleration time of 0 ms
will be applied.

INFO For axis movement with the MCW or MCC command, an in-position check is not automatically executed. Use the PFN
% command to execute an in-position check if required.

Command Reference

8-75

8 Command Reference

8.2.4 Clockwise/Counterclockwise Circular Interpolation with Radius Designation (MCW, MCC)

(2) Format

MCW [Logical axis name 1] End position [Logical axis name 2] End position R Radius F Interpolation speed ;

ltem Unit Usable Data
End position Reference unit

- Directly designated value

Radius Reference unit - Double integer type register (Indirect designation)
Interpolation feed speed| Reference units/min

Notes: 1. The interpolation feed speed can be omitted.
2. With radius designating circular interpolation, the number of turns cannot be specified.

(3) Setting Items for MCW and MCC Commands

Motion Image

Logical axis 2
A

End position

a) Radius

MCW

» Logical axis 1

a) Radius

Specify a numerical value or register following to character R in the MCW or MCC command block.
The circular interpolation path will differ depending on the radius reference value as follows.

With the MCW command block MCW [A1] - [B1] - R —;

If R > 0: Circular interpolation with an arc angle of 180° or less

If R < 0: Circular interpolation with an arc angle of more than 180°
If R = 0: A motion program alarm will occur.

More than 180° - End position

SR 180° max.

“"O Center point
-~ when R is a
positive value

Program current position

AN
IN FO With the radius designating circular interpolation, the number of turns cannot be specified.

8-76

8.2 Axis Move Commands

(4) Programming Examples
<4 EXAMPLE »

Programming examples of the circular interpolation command (MCW, MCC) in ABS mode are shown below.
The turning direction is specified by MCW (clockwise) and MCC (counterclockwise), and the arc angle is speci-

fied by the radius reference value.

180° or more
(Radius reference
value < 0)

Turning .
Direction Arc Angle Programming Example
ABS;
FMX T30000000;
PLN [A1][B1];
MCW [A1]1000 [B1]1000 R1000 F2000; “MCW (Clockwise)’
END;
B1
A
180° or less Clockwise circular interpolation (MCW)
(Radius reference ' End oosii
D End position
value > 0) ! (1000,1000)
Arc angle
180° or lesg™ !
P C /S/ , Al
rogram current ;. Center point
position (0,0) |Radius = 1000} (1000,0)
Fig. 8.34 Radius Designating Clockwise Circular
Interpolation Command (MCW)
Clockwise ABS:
(MCW) FMX T30000000;

PLN [A1][B1];
MCW [A1]1000 [B1]1000 R-1000 F2000; “MCW (Clockwise)”
END;

Clockwise circular interpolation (MCW)

Arc angle Center point

&1000)
,,,,,,,,,,,,,,,,,,, B I o W End position

(1000,1000)

Radius = 1000

Program current position
(0,0)

Fig. 8.35 Radius Designating Clockwise Circular
Interpolation Command (MCW)

Command Reference

8-77

8-78

8 Command Reference

8.2.4 Clockwise/Counterclockwise Circular Interpolation with Radius Designation (MCW, MCC)

180° or more
(Radius reference
value < 0)

Turning :
Direction Arc Angle Programming Example
ABS;
FMX T30000000;
PLN [A1][B1];
MCC [A1]1000 [B1]1000 R1000 F2000; “MCC (Counterclockwise)”
END;
B1
A
Center point
0,1000
180° or less (—)} 7777777777777777 O-- End position
(Radius reference (1000,1000)
value > 0) ?é%fnglle
Radius = 1000 oriess Counterclockwise
circular interpolation
(MCC)
Program Al
current
position
(0,0
Fig. 8.36 Radius Designating Counterclockwise Circular Interpolation
Command (MCC)
Countgr- ABS
clockwise _
(McCC) FMX T30000000;

PLN [A1][B1];
MCC [A1]1000 [B1]1000 R-1000 F2000; “MCC (Counterclockwise)”
END;

. End position
' (1000,1000)
QO

Counterclockwise
circular interpolation
(MCCQC)

Prograﬁc

current
position
(0,0)

A1

180°0or more

Fig. 8.37 Radius Designating Counterclockwise Circular Interpolation
Command (MCC)

8.2 Axis Move Commands

8.2.5 Clockwise/Counterclockwise Helical Interpolation with Center Position Desig-
nation (MCW, MCC)

Motion Programs Sequence Programs

Applicable Not applicable

(1) Overview

The Clockwise/Counterclockwise Helical Interpolation with Center Position Designation command (MCW,
MCC) simultaneously executes a linear interpolation movement while moving on the circle (circular interpola-
tion) determined by the designated center point position.

The helical interpolation feed speed is calculated by using the tangential speed for circular interpolation and com-
posite speed for linear interpolation.

* MCW: Helical Interpolation command for Clockwise (CW)
* MCC: Helical Interpolation command for Counterclockwise (CCW)

/A CAUTION

» The linear interpolation axis specified for a Clockwise/Counterclockwise Helical Interpolation (MCW, MCC)
command can be either a linear axis or a rotary axis. Depending on the axis movement in the linear interpo-
lation portion, the helical interpolation path may not be a helical shape. When programming, be sure to
check the path to make sure that there are no tools or other obstacles in the way of the workpiece.

Failure to carry out this check may result in damage to equipment, serious personal injury, or even death.

* Be sure to specify the plane for circular interpolation by using the Coordinate Plane Setting command
(PLN) before executing the Helical Interpolation command (MCW or MCC).
Use logical axis 1 and logical axis 2 to specify the end positions and center points of circle of the horizontal
and vertical axes of the designated plane.

IMPORTANT

* Specify the axes for the end position and center position in the same order as the axes are specified in the
PLN command.

* Any axis that has not been specified in the plane designation can be specified as a linear interpolation axis.
The axis does not need to be at right angles to the interpolation plane.

INFO For an axis movement initiated by execution of the helical interpolation command MCW or MCC, an in-position check to
% check whether the axis enters the positioning completion range will not be executed.
Use the PFN command to execute an in-position check if required.

Command Reference

8-79

8 Command Reference
8.2.5 Clockwise/Counterclockwise Helical Interpolation with Center Position Designation (MCW, MCC)

(2) Format

MCW [Logical axis name 1] End position [Logical axis name 2] End position U Center point position V Center point position

[Logical axis name 3] End position for linear interpolation T Number of turns F Interpolation feed speed ;

Item Unit Usable Data
End position Reference unit - Directly designated value
Center point position Reference unit - Double integer type register (Indirect designation)
Number of turns Number of times of turn
Interpolation feed speed | Reference unit/min

Note: The number of turns and interpolation feed speed can be omitted.

(3) Setting Items for MCW and MCC Commands

Motion Image

Logical axis 3

End position
(Same as for circular interpolation)

Linear interpolation T
portion i
Center position T
(Same as for circular
interpolation)

Logical axis 1

a) Interpolation
feed speed
(Tangential speed)

Logical axis 2 e J— 2

Program \

current position
Circular interpolation portion

a) Interpolation feed speed
For the helical interpolation commands (MCW and MCC), the interpolation feed speed is calculated with the
tangential speed for circular interpolation and the composite speed for the linear interpolation axis.

MCC command block: MCC [X]- [Y]- U- V- [Z]- F300;

2 2 2
F =300 = /Vx + VW + Vz (reference units/min)

Interpolation feed speed
(Composite speed of three axes)

Vz (reference units/min)

Vy (reference units/min)

Vx (reference units//min)

8-80

8.2 Axis Move Commands

(4) Programming Examples

<4 EXAMPLE p
A programming example of a clockwise helical interpolation command (MCC) in ABS mode is shown below.

ABS;

FMX T30000000;

PLN [A1][B1];

MCC [A1]1000 [B1]0 U0 VO [C1]500 F2000;

END;
Aci
500 F--------------— End position
: Linear interpolation
: portion
I
I
Circle center point\ :
(0,0,0) A1
Program
current)))
position " ————" - -~ - Circular interpolation

end position
B1

Fig. 8.38 Center Point Position Designating Clockwise Helical Interpolation
Command (MCC) Programming Example

Command Reference

8-81

8-82

8 Command Reference

8.2.6 Clockwise/Counterclockwise Helical Interpolation with Radius Designation (MCW, MCC)

8.2.6 Clockwise/Counterclockwise Helical Interpolation with Radius Designation
(MCW, MCC)

Motion Programs Sequence Programs
Applicable Not applicable

(1) Overview

The Clockwise/Counterclockwise Helical Interpolation with Radius Designation command (MCW, MCC) simul-
taneously executes a linear interpolation movement while moving on the circle (circular interpolation) deter-
mined by the designated radius.

The helical interpolation feed speed is calculated by using the tangential speed for circular interpolation and the
composite speed for linear interpolation.

* MCW: Helical Interpolation command for Clockwise (CW)

* MCC: Helical Interpolation command for Counterclockwise (CCW)

/A CAUTION

» The linear interpolation axis specified for a Clockwise/Counterclockwise Helical Interpolation (MCW, MCC)
command can be either a linear axis or a rotary axis. Depending on the axis movement in the linear interpo-
lation portion, the helical interpolation path may not be a helical shape. When programming, be sure to
check the path to make sure that there are no tools or other obstacles in the way of the workpiece.

Failure to carry out this check may result in damage to equipment, serious personal injury, or even death.

* Be sure to specify the plane for circular interpolation by using the Coordinate Plane Setting command
IMPORTANT (PLN) before executing the Helical Interpolation command (MCW or MCC).

Use logical axis 1 and logical axis 2 to specify the end positions and center points of circle of the horizontal
and vertical axes of the designated plane.

* Specify the axes for the end position and center position in the same order as the axes are specified in the
PLN command.

 Any axis that has not been specified in the plane designation can be specified as a linear interpolation axis.
The axis does not need to be at right angles to the interpolation plane.

N FO For an axis movement initiated by execution of the helical interpolation command MCW or MCC, an in-position check to
% check whether the axis enters the positioning completion range will not be executed.
Use the PFN command to execute an in-position check if required.

(2) Format

MCW [Logical axis name 1] End position [Logical axis name 2] End position R Radius

[Logical axis name 3] End position for linear interpolation F Interpolation feed speed ;

Iltem Unit Usable Data
End position Reference unit - Directly designated value
Center point position Reference unit - Double integer type register (Indirect designation)
Radius Reference unit

Interpolation feed speed Reference units/min

Notes: 1. The interpolation feed speed can be omitted.

2. With the radius designating helical interpolation command, the number of turns cannot be designated.

8.2 Axis Move Commands

(3) Setting Items for MCW and MCC Commands

Motion Image

Logical axis 3

End position
(Same as for circular interpolation)

Logical axis 1 Linear interpolation 7
portion \
Radius '

(Same as for circular interpolation) : Interpolation feed speed

\ """"""""""""""""""""" (Same as for center point
Logical axis 2 i designating helical

interpolation)
Program \

current position Circular interpolation portion

INFO The designation methods of the radius and end position for the radius designating helical interpolation command are the
% same as for the radius designating circular interpolation command.

Additionally, the designation method of the interpolation feed speed is the same as for the center position designating heli-
cal interpolation command.

(4) Programming Examples

4 EXAMPLE >

A programming example of a radius designating counterclockwise helical interpolation command (MCC) is
shown below.

ABS;

FMX T30000000;

PLN [A1][B1];

MCC [A1]1000 [B1]0 R1000 [C1]500 F2000;
END;

500 End position

Linear interpolation

/ portion

Radius 1000

Command Reference

_________ Circular interpolation
end position
Program

B1 "
current position Circular interpolation portion

Fig. 8.39 Radius Designating Counterclockwise Helical
Interpolation Command (MCC)

8-83

8-84

8 Command Reference

8.2.7 Zero Point Return (ZRN)

8.2.7 Zero Point Return (ZRN)

Motion Programs Sequence Programs
Available Not Available

(1) Overview

The Zero Point Return (ZRN) command executes the zero point return operation. Up to 16 axes can be desig-
nated simultaneously. An axis unspecified in the command block will not move. The resulting stop position is set
as the machine coordinate origin.

Logical axis 3
A

Program
current position

Machine coordinate
system origin

» Logical axis 1

Logical axis 2

Fig. 8.40 Movement Path with ZRN Command

When the ZRN command is executed, the returned position is set as the machine coordinate origin. At the same
time, the work coordinate system previously set by Current Position Set (POS) is cancelled.

After the ZRN command has been executed, the machine coordinate system will be the same as the work coordi-
nate system. Until the next time that Current Position Set (POS) is executed, Move ON Machine Coordinates
(MVM) will be ineffective, even if it is designated.

Refer to 8.3.1 Current Position Set (POS) for details of the machine coordinate system and work coordinate sys-

tem.
Request for temporary stop of program is disabled during ZRN command execution. To stop the operation on
IMPORTANT
the way, execute request for stop of program.
Refer to 4.3.3 Work Registers for information on Program Pause Request and Program Stop Request signals.
(2) Format

ZRN [Logical axis name 1] 0 [Logical axis name 2] 0 [Logical axis name 3]0 ... ;

Note: Always code “0” after each logical axis name.

8.2 Axis Move Commands

(3) Setting Items for ZRN Command
(a) Zero Point Return Methods

Use motion setting parameter OWOO3C (Zero point return method) to set the zero point return method for

each axis.

The table below lists the available zero point return methods.
Refer to the relevant motion module manual for details on each method.

Zero Point Return Method (O\?VelétIEI%C) SVA-01 Blil\t/-iBr;(g\//B PO-01
DEC1 + Phase-C pulse 0 Available Available N/A
ZERO signal 1 Available Available N/A
DEC1 + ZERO signal 2 Available Available Available
Phase-C pulse 3 Available Available N/A
DEC2 + ZERO signal 4 Available N/A Available
DEC1 + LMT + ZERO signal 5 Available N/A Available
DEC2 + Phase-C signal 6 Available N/A N/A
DEC1 + LMT + Phase-C signal 7 Available N/A N/A
C pulse only 11 Available Available N/A
P-OT & Phase-C pulse 12 Available Available N/A
P-OT 13 Available Available N/A
HOME LS & Phase-C pulse 14 Available Available N/A
HOME LS 15 Available Available N/A
N-OT & Phase-C pulse 16 Available Available N/A
N-OT 17 Available Available N/A
INPUT & Phase-C pulse 18 Available Available N/A
INPUT 19 Available Available N/A

(b) Zero Point Return Speed

The zero point return speed depends on the applied zero point return method.
For details, refer to the relevant motion module manual.

(4) Programming Examples
<4 EXAMPLE p

A programming example of a ZRN command in ABS mode is shown below.

ZRN [A1]0 [B1]0;
END:

B1

e;

Program
current position

Zero point return operation

»

>

A1

The stop position is set to the machine coordinate origin (0, 0).

Command Reference

8-85

8 Command Reference

8.2.8 Linear Interpolation with Skip Function (SKP)

8.2.8 Linear Interpolation with Skip Function (SKP)

Motion Programs Sequence Programs
Applicable Not applicable
(1) Overview

The Linear Interpolation with Skip Function command (SKP) is an extended command of the Linear Interpola-

tion command (MVS). When the skip input signal is turned ON during axis movement by a SKP command, the
moving axis is decelerated to a stop and the remaining travel distance is cancelled.

A use of a SKP command enables the programming of motion control that can respond to external conditions.
The skip signal is input to the control signal for the MSEE command or the control register of M-EXECUTOR.

Speed (V)

A

Cancelled moving amount
Linear interpolation / "
Reference position for
‘ \ SKP command
VK o > Time (t)
Skip input signal
(Control signal bit 8 or 9)

Skip Input Signal Selection

Skip Input Signal
Skip input signal 1 (SS1)

Bit 8 of control signal
Skip input signal 2 (SS2)

The position where the axis is stopped by
skip input signal (ON)

Bit 9 of control signal

Fig. 8.41 Axis Movement by SKP Command

IMPORTANT The moving axis decelerates to a stop when the skip input signal is turned ON. The SKP command, however,
remains in effect until the positioning completion signal is turned ON.
(2) Format
SKP [Logical axis name 1] Reference position [Logical axis name 2] Reference position [Logical axis name 3] Reference position...
F Interpolation feed speed SS Skip input signal selection
ltem Unit Usable Data
Reference position Reference unit - Directly designated value
Interpolation feed speed Reference unit/min Double integer type register (Indirect designation)
Skip input signal selection) - Directly designated number 1 or 2

Double integer type register (Indirect designation)
Note: The interpolation feed speed can be omitted.

8-86

8.2 Axis Move Commands

(3) Programming Examples

<4 EXAMPLE p
A programming example of a SKP command in ABS mode is shown below.

FMX T30000000;
ABS;
IAC T1000;
IDC T1000;
SKP [A1]4000 [B1]3000 [C1]2000 F50000 SS1;
END;
C1 Position where the axis stopped after
A deceleration by skip input signal
2000
e o) "'Target position
o | \
",ﬂ ! '
Prog;am H
current position > A1l
i 4000

B1

Fig. 8.42 SKP Command Programming Example

Command Reference

8-87

8 Command Reference

8.2.9 Set Time Positioning (MVT)

8.2.9 Set Time Positioning (MVT)

Motion Programs Sequence Programs

Applicable Not applicable

(1) Overview

The Set Time Positioning command (MVT) is an extended Positioning command (MOV).

The MVT command can simultaneously move up to 16 axes. An axis unspecified in the MVT command block
will not move.

With the MVT command, the feed speed of each axis is adjusted to complete positioning in the specified time.
The MVT command does not use an interpolation operation, and there is no restriction on completing the posi-
tioning for all the specified axes simultaneously.

There is a time lag caused by the acceleration/deceleration setting.

Speed (V)
A
Feed speed

/ \ Clamped feed speed

i » Time

v

Positioning time
Fig. 8.43 Axis Movement with MVT Command

If an override is used, positioning will not complete in the specified time.
If a filter is used, the positioning time will be delayed by the filter time constant.

Filter time constant

Fig. 8.44 Positioning Time Delay When a Filter is used

* If the positioning time is set to 0, an alarm will occur in the motion program.

IMPORTANT

« If the moving amount of any of the specified axes is set to 0, an alarm will occur in the motion program.

(2) Format

MVT [Logical axis name 1] Reference position [Logical axis name 2] Reference position [Logical axis name 3] Reference position ...

T Positioning time ;

Item Unit Usable Data
Position reference Reference unit - Directly designated value
Positioning time ms - Double integer type register (Indirect designation)

8-88

8.2 Axis Move Commands

The positioning time reference range is between 1 and 2147483647 (ms).

Inside the MP2000 Machine Controller, the feed speed during MVT command execution is calculated according
to the specified positioning time and moving amount.

This calculation does not include acceleration (acceleration = 0) as shown below.

Speed (V)

A

Calculated :
Moving amount L
|
feed speed V 4 (Travel distance)
» Time (t)
’ »
I

Positioning time T !

The actual operation when the acceleration time T1 is less than the deceleration time T2 will be as shown below.

Speed (V)
A

Calculated

feed speed V Moving amount L

(Travel distance)

I
:
i —> Time (t)
5 N |
| Positioning time T 1 ! \
I‘ 'I :‘ 'I
Acceleration time T1 Deceleration time T2

The feed speed set by VEL command will be changed accordingly. After executing the MVT command, reset the
feed speed by using VEL command.

INFO An in-position check is executed for axis movement by MVT command execution, as well as for MOV command execu-
% tion, to verify that the axis enters the positioning completed range.

(3) Programming Examples
<4 EXAMPLE »

A programming example of an MVT command in ABS mode is shown below.

ABS;

ACC [A1]1000;

DCC [A1]1000;

MVT [A1]4000 T1000;

END;
Positioning in
one second
Program 4000
current
position O pO—> A1
End position

Fig. 8.45 MVT Command Programming Example

Command Reference

8-89

8-90

8 Command Reference

8.2.10 External Positioning (EXM)

8.2.10 External Positioning (EXM)

Motion Programs Sequence Programs

Applicable Not applicable

(1) Overview

The External Positioning command (EXM) is an extended Positioning command (MOV).

The EXM command executes positioning by using an incremental value to move the axis the specified moving
amount when the external positioning signal is turned ON. If the external positioning signal is not turned ON, the
axis completes positioning at the reference position specified in the EXM command block.

Only one axis can be specified in an EXM command block.

Speed (V) Moving amount from when
N the external positioning
signal is input

| > Time (t)

External positioning signal r_l

Fig. 8.46 Movement by EXM Command

When a negative value is specified for the moving amount, the axis decelerates to a stop and then moves in the
negative direction.

IMPORTANT * For the external positioning signal, refer to the relevant motion module manual.

+ The External Positioning command (EXM) cannot be used with a PO-01 module.
If used, an alarm will occur in the motion program.

* Special care must be taken to use the external latch input signal, because it is also used for the zero point
return operation.

(2) Format

EXM [Logical axis name 1] Reference position D Moving amount from when the external positioning signal is input ;

ltem Unit Usable Data

Reference position Reference unit - Directly designated value

- Double integer type register (Indirect designation)

Moving amount from when the

external positioning signal is input Reference unit

8.2 Axis Move Commands

(3) Setting Items for EXM Command

Motion Image

Speed (V)
1 a) Moving amount from when
the external positioning signal is input

Rated speed --------=------=-mmmmmom oo 7 B
Acceleration/deceleration type
(Same as for MOV command)

Positioning speed | -.........._______ — .
(VEL) ‘

Moving amount
(Same as for MOV command)

> Time (t)
Acceleration time Deceleration time
(ACC) ! (DCC)
b) External positioning signal H

a) Moving amount from when the external positioning signal is input

Set the moving amount using an incremental value after the external positioning signal is turned ON.
The reference range is between -2147483648 to +2147483647 (reference unit).

b) External positioning signal

Use bits 4 to 7 (External positioning signal setting) of motion setting parameter OWL1[J04 (Function setting
2) to select the external positioning signal.
For details, refer to the relevant motion module manual.

N .A.)
|NFO The PO-01 module does not have the external positioning function.

(4) Programming Examples

<4 EXAMPLE p
A programming example of EXM command in ABS mode is shown below.

ABS;

ACC [A1]1000;

DCC [A1]1000;

VEL [A1]2000;

DL00000 = 1000;

EXM [A1]4000 DDL0000O;
END;

Command Reference

8-91

8-92

8 Command Reference

8.3.1 Current Position Set (POS)

8.3 Axis Control Commands

This section describes the axis control commands.

8.3.1 Current Position Set (POS)

Motion Programs Sequence Programs

Applicable Not applicable

A\ CAUTION

» Care is required with the Current Position Set (POS) command.
The Current Position Set (POS) command is used to create new work coordinate system values. If POS is specified
incorrectly, subsequent move operations will be entirely different. Before starting operations, be sure to check that the
work coordinate system is specified correctly.

Failure to carry out this check may result in damage to equipment, serious personal injury, or even death.

(1) Overview

The Current Position Set command (POS) changes the current position to a desired coordinate value to create a
new coordinate system. In this manual, the newly set coordinate system is referred to as the “work coordinate
system” while the original coordinate system of machine is referred to as the “machine coordinate system.”
Move commands coded after a POS command will be executed to move axes in the work coordinate system.

Coordinate System Description Remarks
Machine Coordi- - . . The position for zero point return is the ori-
Original coordinate system of machine .
nate System gin (0).
Work Coordinate | Coordinate system constructed by the user A new coordinate system constructed by
System defined position POS command execution

Logical axis 2
Logical axis 2 . . |
A (Logical axis 1) »
P Current position

Origin set by POS command
execution

(Origin of work coordinate system) (Logical axis 2)

| - " .

- P Logical axis 1
Zero point return position (0,0) Work coordinate syste: 9
(Origin of machine

coordinate system)

R N R

n))
» Logical axis 1
(0,0) Machine coordinate system 9

Fig. 8.47 Work Coordinate System Setting by POS Command

The work coordinate system can be changed as often as desired by using the POS command. The machine coor-
dinate system must be set in advance. The machine coordinate system is not affected by the POS command.

Up to 16 axes can be designated in a POS command block. The work coordinate system for an axis not designated
in the POS command block will not be constructed or updated.

Move commands in a work coordinate system cannot exceed the maximum programmable value when converted
to coordinates in the machine coordinate system.

8.3 Axis Control Commands

The following table shows the setting status of the machine coordinate system and the work coordinate system.

Table 8.1 Coordinate System Setting Timing

Timing

Coordinate System Setting

Motion Fixed Parameter 30: Encoder Selection

0 or 2: Incremental Encoder/Absolute

Encoder (Incremental Encoder is Used) (8 ARl O SR 27

After power ON

1

Machine coordinate system: Default setting ™' | Machine coordinate system: Yes *2

Work coordinate system: Cancelled 3 Work coordinate system: Cancelled

command (ZRN)

After Zero Point Return

Machine coordinate system: Set

Work dinat tem: C lled
Work coordinate system: Cancelled ork coordinate system: L-ancefie

After POS command

Work coordinate system: Set Work coordinate system: Set

command

After Zero Point Set (ZSET)

Machine coordinate system: Set Machine coordinate system: Set

* 1. Default setting: The current position is set as the machine coordinate origin when the power is turned

ON. If the Zero Point Return operation is then not executed, the software limit switch function will not

be effective.

* 2. Yes: The machine coordinate origin is set using the position information in the absolute position detec-

tion encoder.

* 3. Cancelled: The previously set work coordinate system is cancelled, and the work coordinate system is

the same as the machine coordinate system.

IMPORTANT

gram.

* For infinite-length axes, set a value within the range of 0 to POSMAX.
If a value outside the setting range is set for any infinite-length axis, an alarm will occur in the motion pro-

* When the zero point return operation is executed without using a ZRN command, such as zero point return

operation executed from the ladder program, the work coordinate system will not be cancelled.

(2) Format

POS [Logical axis name 1] Coordinate axis [Logical axis name 2] Coordinate axis . :

ltem

Unit

Usable Data

Coordinate axis| Reference unit | - Double integer type register

- Directly designated value

(Indirect designation)

(3) Programming Examples

4 EXAMPLE »

A POS command programming example is shown below.

ABS;

POS [A1]0 [B1]0;

DL00000 = IL8010;
DL00002 = IL8090;

END;

MOV [A1]1000 [B1]2000;

MOV [A1]3000 [B1]4000;

POS [A1]DL0O0000 [B1]DL0O0002; " Cancel work coordinate system

" Absolute mode

" Positioning

" Set work coordinate system
" Positioning

" Get Machine Coordinate System Calculated Position (CPOS) of Axis A1
" Get Machine Coordinate System Calculated Position (CPOS of Axis B1

Command Reference

8-93

8-94

8 Command Reference

8.3.2 Move On Machine Coordinates (MVM)

8.3.2 Move On Machine Coordinates (MVM)

Motion Programs

Sequence Programs

Applicable

Not applicable

/A CAUTION

in the machine coordinate system is correct.

* The Move ON Machine Coordinates (MVM) command is used to position the coordinate positions in a
machine coordinate system. If the machine coordinate origin is designated without being verified, unex-
pected move operations will result. Before starting operations, be sure to check that the position designated

Failure to carry out this check may result in damage to equipment, serious personal injury, or even death.

(1) Overview

The Move ON Machine Coordinates (MVM) command is used to move axes in a machine coordinate system
after a work coordinate system that is different from the machine coordinate system has been set by Current Posi-

tion Set (POS).

Specifying an MVM command for an axis move command temporarily moves the axis to the absolute coordinate
position in the machine coordinate system. During execution of an MVM command, the axis moves in ABS

mode regardless of the movement mode setting.

The MVM command is valid only in the MVM command coded block. For example, the axis moves in the work

coordinate system in the linear interpolation (MVS) in the next block or following blocks.

(2) Format

MVM MOV ;
or
MVM MVS ;

(3) Programming Examples
<4 EXAMPLE »

An MVM command programming example is shown below.

MVM MVS [A1]50 [B1]150 F1000; MVS [A1]50 [B1]50 F1000;

When MVM command is coded When MVM command
is not coded

B1

250

150

A1
Work coordinate system

o -

100 Progr:

m current position
(0,0

» A1
50 Machine coordinate system

(0,00 50 100

Fig. 8.48 Move On Machine Coordinates Command (MVM) Programming Example

8.3 Axis Control Commands

8.3.3 Program Current Position Update (PLD)

Motion Programs Sequence Programs
Applicable Not applicable

(1) Overview

The Program Current Position Update command (PLD) updates a program current position that has been shifted
by a manual intervention, etc.

If an axis movement is executed outside a motion program while the motion program is running (such as when an
axis is moved by JOG, STEP, or a user function), the program current position will not be updated. If the motion
program is executed in this status, the axis will move to the position shifted for the moving amount by manual
intervention. To solve this problem, a PLD command is used to update the program current position.

(2) Format

PLD [Logical axis name 1] [Logical axis name 2] [Logical axis name 3] ... ;

(3) Programming Examples
PLD programming examples are shown below.

(a) Manual intervention while the motion program is running
<4 EXAMPLE p»

MOV [A1]1000;

" Axis [A1] is moved by JOG during this command block is being executed.
PLD [A1]; " Updates the program current position.
MOV [A1]2000;

(b) Axis is moved within the motion program user function

<4 EXAMPLE

MOV [A1]1000;

UFC FNC10 MB000000O IW0100 MB000020; " Axis [A1] is moved by a user function
PLD [A1]; " Updates the program current position.
MOV [A1]2000;

INFO The PLD command can be executed by the user in some applications. The PLD command cannot be used in some of the
% applications where manual intervention is required while the motion program is running.

Command Reference

8-95

8 Command Reference

8.3.4 In-Position Check (PFN)

8.3.4 In-Position Check (PFN)

Motion Programs Sequence Programs
Applicable Not applicable

(1) Overview

The In-Position Check command (PFN) verifies whether the axis being moved by an interpolation related com-
mand enters the NEAR position range (NEAR signal output width).

For an axis that is being moved by interpolation related command MVS, MCW, MCC, or SKP, an in-position
check is normally not executed. Use a PFN command to verify that the axis enters the NEAR position range.

Distribution completed NEAR position signal ON

SpeedV 4
Interpolation related command block

To the next commandkblock

—
\4

Motion monitoring parameter

o " Time (t)
IwOOOC, bit 3: NEAR t
, bi position

In-position check
executed by PFN command

Fig. 8.49 In-position Check Executed by PFN Command

Bit 3 (NEAR position) of motion monitoring parameter IWCCOC turns ON when the following condition is sat-
isfied.
Use INP command to set the NEAR signal output width.

| MPOS - APOS | < NEAR signal output width

MPOS : Motion monitoring parameter ILCIO12 (Machine coordinate system reference position)

APOS : Motion monitoring parameter ILCICJ16 (Machine coordinate system feedback position)

INFO If the NEAR signal output width is set to 0, bit 3 of motion monitoring parameter IWCICOC turns ON when the distribu-
%

tion of the reference value, including the filter, is completed.

(2) Format

* When coding a PFN command in the interpolation related command block
MVS [Logical axis name 1] - [Logical axis name 2] - [Logical axis name 3] ... PFN;

* When coding a PFN command independently
PFN [Logical axis name 1] [Logical axis name 2] [Logical axis name 3]...;

8-96

8.3 Axis Control Commands

(3) Programming Examples
PFN command programming examples are shown below.

(a) When coding a PFN command in the interpolation related command block
<4 EXAMPLE p»

MVS [A1]1000 F20000 PFN;
MOV [A1]3000;
END;

(b) When coding a PFN command independently
<4 EXAMPLE p»

MVS [A1]1000 F20000;
PFN [A1];

MOV [A1]3000;

END:

Speed (V)
A

Movement by MOV command execution

Movement by MVS command execution

NEAR signal output width
set by INP command

Fig. 8.50 PFN Command Programming Example

» Time (1)

Command Reference

8-97

8 Command Reference

8.3.5 Set In-Position Range (INP)

8.3.5 Set In-Position Range (INP)

Motion Programs Sequence Programs

Applicable Not applicable

(1) Overview

The Set In-Position Range command (INP) is used to set the NEAR signal output width (in-position check
width). Up to 16 axes can be designated in an INP command block. Motion setting parameter OLO20 (NEAR
signal output width) for each designated axis is updated.

The reference range is between 1 and 65535 (reference unit).

Speed (V)

A Motion monitoring parameter .
ILOO16: Machine coordinate system In-position check starts.
feedback position (APOS) :

\J

N,
N

To the next block

A\

Interpolation reference :
pulses

» Time ()

Motion monitoring parameter
IWOOOC, bit 3: NEAR position

In-position check width
specified by INP command

Fig. 8.51 INP Command

IN FO The SVR module does not have motion setting parameter OLCIO20 (NEAR signal output width).
“ With the SVR module, the NEAR signal output width is treated as 0 (zero).

(2) Format

INP [Logical axis name 1] NEAR signal output width [Logical axis name 2] NEAR signal output width ... ;

ltem Unit Usable Data
) - Directly designated value
NEAR signal output width Reference unit) i)])
- Double integer type register (Indirect designation)

8-98

8.3 Axis Control Commands

(3) Programming Examples

<4 EXAMPLE p
An INP command programming example is shown below.

B1a
1000 -
A
\ 200
ABS; Y
MOV [A1]0 [B1]0; “ Positioning to the zero point
INP [A1]100 [B1]200; “Sets the in-position check width
MVS [A1]1000 PFN;
MVS [B1]1000 PFN; . A1
MVS [A1]-1000 ; 1000 T (0,0) 1000
END; g
) 100
Fig. 8.52 INP Command Programming Example

Command Reference

8-99

8 Command Reference

8.3.6 Coordinate Plane Setting (PLN)

8.3.6 Coordinate Plane Setting (PLN)

Motion Programs

Sequence Programs

Applicable

Not applicable

(1) Overview

The Coordinate Plane Setting command (PLN) defines two logical axes set in the parameters to designate a coor-
dinate plane. Always execute a PLN command before executing a Circular Interpolation command (MCW,

MCC) and Helical Interpolation command (MCW, MCC).

The designated coordinate plane remains in effect until it is reset by another PLN command or until the END

command.

(2) Format

Horizontal axis name Vertical axis name
PLN [Logical axis name 1] [Logical axis name 2] ;

Designate two axes of a coordinate plane.

(3) Programming Examples
<4 EXAMPLE »

A PLN command programming example is shown below.

MCW [A1]50 [B1]50 R50 F1000;

PLN[A1][B1]; " Designates the plane composed of axes A1 and B1

End position
50

Program
current position o » A1
(0,0) 50
Fig. 8.563 PLN Command Programming Example
INFO Designate an end position and a center position for circular interpolation and helical interpolation in the same order used to

specify the axes in the PLN command block.

Logical axis Logical axis y .
PLN [r?a e 1][ame 2],

v
MCC [A1]1500 [B1]4000 U2500 V1000 F150;

8-100

8.4 Program Control Commands

8.4 Program Control Commands

This section describes program control commands including branching commands and repeat commands.

8.4.1 Branching Commands (IF ELSE IEND)

Motion Programs Sequence Programs
Applicable Applicable

(1) Overview

The branching commands IF ELSE IEND execute the block between IF and ELSE when a conditional expres-
sion is satisfied. If the conditional expression is not satisfied, the block between ELSE and IEND is executed.
ELSE can be omitted. If it is omitted and the conditional expression is not satisfied, execution will continue from
the block after IEND.

Eonditiona] Not satisfied
expression

Satisfied

Process 1 Process 2

IMPORTANT Nesting of the branching commands IF ELSE IEND is restricted to a maximum of eight levels.

(2) Format

IF (conditional_expression);
-+ (Process_1)

ELSE;

-+ (Process_2)

IEND;

Command Reference

8-101

8 Command Reference

8.4.1 Branching Commands (IF ELSE IEND)

The conditional expressions that can be used for the branching commands are as follows.

(a) Bit Data Comparison

* Use == (MATCH) command for data comparison.

* Specify a register on the left, and 0 or 1 on the right.
IF MB0O00000O == 0; "MBO000000 =0
IF MB0O00000 == 1; "MB00000O = 1

Format

&, |,and ! (AND, OR, and NOT) can be used.

Operations in IF (MB0O00000 & MB000001) == 1; "MB000000=1 AND MB000001=1
Conditional IF (MB000000 & IMB000001) == 1; "MB000000=1 AND MB000001=0
Expression IF (MB0O00000 | MB000001) ==1; "MB000000=1 OR MB000001=1

IF (MBO00000 | IMB000001) ==1; "MB000000=1 OR MB000001=0

* When a <> (MISMATCH) is used:
IF MB000000 <> 0; => Syntax error
* When a numerical value is specified on the left, or a register is specified on the right:
IF 1 == MB00000O; => Syntax error
Syntax Error IF MB0O00000 == MB000001; => Syntax error
Examples * No data comparison command:
IF MB0O00000O; => Syntax error
IF (0); => Syntax error
* When more than one data comparison command is used:
IF (MB000000 == 0) & (MB000001 == 1); => Syntax error

(b) Integer/Double Integer/Real Number Data Comparison

* All data comparison commands (==, <>, >, <, >=, <=) can be used.
* Specify a register either on the left or right.

Format IF MW00000 == 3; "MWO00000 =3

IF MLO0O000 <> ML00002; "ML00000 = ML00002

IF 1.23456 >= MF00000; "1.23456 > MF00000

* Arithmetic operations and logic operations can be used.

Operations in IF MW00000 == (MW00001/3); "MWO00000 = (MWO00001 + 3)

gs;:a'gggi' IF (MLO000O & FOO00000H) <> ML00002; "(MLOO0OO A FOOOO000H) % MLO0002
IF 1.23456 >= (MF00000 * MF00002); "1.23456 > (MF00000 x MF00002)
* When a constant is specified both on the left and right:
IF0==3; => Syntax error
IF (3.14*2*1000) > 9000.0; => Syntax error
Syntax Error * No comparison command:
Examples IF MW000000; => Syntax error
IF (-1); => Syntax error

* When more than one data comparison command is used:
IF (MWO00000 < 0) & (MW000001 > 0); => Syntax error

(3) Programming Examples

<4 EXAMPLE »
A programming example of branching commands (IF ELSE IEND) is shown below.

IF MB000000== 1;

MOV [A1] 10000; " If MB0O000OO is ON, A1 starts positioning.
ELSE;

MOV [B1] 10000; " If MBO0O000O is OFF, B1 starts positioning.
IEND;

8-102

8.4 Program Control Commands

8.4.2 Repeat (WHILE WEND)

Motion Programs

Sequence Programs

Applicable

Applicable

(1) Overview

The Repeat commands (WHILE WEND) repeatedly execute the blocks from WHILE and WEND as long as the
conditional expression is satisfied. When the conditional expression is no longer satisfied, program execution

will jump to the block after WEND.

Not satisfied Conditional
expression

Satisfied

Process

L |

IMPORTANT

* Nesting of the repeat commands (WHILE WEND) is restricted to a maximum of eight levels.
* If the repeated program section is created using only commands for which processing is completed in one

scan, the Machine Controller may be overloaded by the scan processing, resulting in scan time over or

watchdog timer error.

When using a command for which processing is completed in one scan, be sure to enter EOX (SCAN

WAIT) or TIM (DWELL TIME).

Refer to 7.5 Commands and Execution Scans for information on the commands for which processing is

completed in one scan.

(2) Format

WHILE (conditional_expression) ;

)

(Process) ;

WEND ; " End of Repeat

Command Reference

8-103

8 Command Reference

8.4.2 Repeat (WHILE WEND)

8-104

The conditional expressions that can be used for repeat commands are as follows.

(a) Bit Data Comparison

* Use == (MATCH) command for data comparison.
» Specify a register on the left, and 0 or 1 on the right.

Syntax Error
Examples

Format WHILE MB000000 == 0; "MB000000 = 0
WHILE MB000000 ==1; "MB000000 =1
* &, |,and ! (AND, OR, and NOT) can be used.
Operations in WHILE (MB000000 & MB000001) ==1; "MB000000=1 AND MB000001=1
Conditional WHILE (MB000000 & !MB000001) == 1; "MB000000=1 AND MB000001=0
Expression WHILE (MB000000 | MB0O00001) ==1; "MBO000000=1 OR MB000001=1
WHILE (MB00000O0 | IMB000001) ==1; "MB000000=1 OR MB000001=0
* When a <> (MISMATCH) is used:
WHILE MB000000 <> 0; => Syntax error
* When a numerical value is specified on the left, or a register is specified on the right:
WHILE 1 == MB000000; => Syntax error

WHILE MB000000 == MB000001; => Syntax error
* No data comparison command:
WHILE MB000000; => Syntax error
WHILE (0); => Syntax error
* When more than one data comparison command is used:
WHILE (MB000000 == 0) & (MB000001 == 1); => Syntax error

(b) Integer/Double Integer/Real Number Data Comparison

* All data comparison commands (==, <>, >, <, >=, <=) can be used.
* Specify a register either on the left or right.

Syntax Error
Examples

Format WHILE MWO00000 == 3; "MWO00000 = 3
WHILE MLO0000 <> ML00002; "ML00000 = ML00002
WHILE 1.23456 >= MF00000; "1.23456 > MF00000
. . * Arithmetic operations and logic operations can be used.
ggﬁg?tti';’:; in WHILE MWO00000 == (MW00001/3); "MWO00000 = (MW00001 + 3)
Expression WHILE (MLO0000 & FOO00000H) <> ML00002; "(ML0000O A FOO0O0000H) = ML00002
WHILE 1.23456 >= (MF00000 * MF00002); "1.23456 > (MF00000 x MF00002)
* When a constant is specified both on the left and right:
WHILE 0 == 3; => Syntax error

WHILE (3.14*2*1000) > 9000.0; => Syntax error
* No data comparison command
WHILE MWO000000; => Syntax error
WHILE (-1); => Syntax error
* When more than one data comparison command is used:
WHILE (MWO00000 < 0) & (MW000001 > 0); => Syntax error

8.4 Program Control Commands

(3) Programming Examples

A programming example of a repeat command (WHILE WEND) is shown below.

With this program example, 10 circles will be drawn.

<4 EXAMPLE »

MOV [A1] 0 [B1] O;

MWO00100 = 1;

INC;

PLN [A1] [B1];

WHILE MWO00100 <= 10 ;
MCW [A1]0 [B1]0 U50. V50. F8000 ;
MOV [A1]50. [B1]50.;
MWO00100 = MW00100 + 1;

WEND ;

"Positioning

"Counter preset

"Incremental mode designation
"Coordinate plane designation
"Repeat command

"Circular interpolation
"Positioning

"Counter increments

"End of repeat programming

Fig. 8.54 Repeat Commands (WHILE WEND) Programming Example

Command Reference

8-105

8 Command Reference

8.4.3 Parallel Execution (PFORK, JOINTO, PJOINT)

8-106

8.4.3 Parallel Execution (PFORK, JOINTO, PJOINT)

Motion Programs Sequence Programs
Applicable Not applicable

(1) Overview

The Parallel Fork (PFORK) command performs parallel execution for blocks with the designated labels. After
each parallel process has been executed, execution is merged at the label designated by the JOINTO command. A
maximum of four parallel processes can be designated.

For further in formation on the labels, refer to 7.1.2 (1) Label.

PFORK

Label 1 Label 2 Label 3 Label 4 |

Process 1 Process 2 Process 3 Process 4

[[I
|JOINTO label X | |JOINTO label X | |JOINTO Label x| |JO|NTO label X \
|

Label X

PJOINT

Fig. 8.55 Designating Parallel Execution Commands (PFORK, JOINTO, PJOINT)

With the above commands, the labelled blocks (processl1, process2, process3,...) designated by the PFORK com-
mand are executed in parallel. After each parallel process has been executed, execution is merged at the label
designated by the JOINTO commands.

These commands enable the designation of any combination of commands for parallel execution, such as axis
move commands and sequence commands, or axis move commands and another axis move commands.

(a) Commands Designated Before PFORK

Values set by commands designated before the PFORK command, e.g., FMX, ABS/INC, F designation, IFP,
PLN, IAC/IDC, are effective in processes executed in parallel for the parallel execution commands.
Commands can also be used to set different values in each of the parallel processes. After merging, process-
ing will continue using the values set in the leftmost process.

8.4 Program Control Commands

(b) Parallel Execution Commands in Subprograms

The following restrictions apply to the parallel execution commands in subprograms:
* A maximum of two parallel processes are possible in a subprogram.
* An MSEE command can be coded only in the blocks designated by the first label.

PFORK 0001 0002;
0001:MVS [A1]100.[C1]100.;

JOINTO 0003;
0002:10W MW10000==1;

JOINTO 0003;

0003:PJOINT;

PFORK

0001 1 0002

MVS[A1]100.[C1]100. IOW MW10000==

0003 !

Fig. 8.56 Parallel Execution Commands in Subprograms

+ If the same label is used more than once in a program, an error will result (“Duplicate labels are defined”).

IMPORTANT

* If the number of PFORK branches and the number of labels are different, an error will result.

(2) Format

PFORK Label1 Label2 Label3

Label 1: Process 1

JOINTO Label X;
Label 2: Process 2

JOINTO Label X;
Label 3: Process 3

JOINTO Label X;
Label X: PJOINT

Command Reference

8-107

8 Command Reference

8.4.3 Parallel Execution (PFORK, JOINTO, PJOINT)

(3) Programming Examples

<4 EXAMPLE p
A programming example of parallel execution commands (PFORK, JOINTO, PJOINT) is shown below.

MOV [A1]100. [B1]150.;
MVS [A1]200. [B1]250. F1000;
PFORK 0001 0002 0003;
0001:MVS [A1]300. [B1]100.
JOINTO 0004;
0002:MW12345=MW10000+MW10002;
IOW MB120001==1;
JOINTO 0004;
0003:MVS [C1]100. [D1]100. F3000;
JOINTO 0004;
0004:PJOINT:
MOV [A1]500. [B1]500. [C1]500.;
[]

MOV[A1]100.[B1]150.
MVS[A1]200.[B1]250.

\ PFORK |
0002 0003
0001 | .
| MVS[A1]300.[B1]100. | MW12345=MW10000 | MVS[C11100.[D1]100. |
+MW10002;
|
| 10w MB120001==1 |
|
\ JOINTO 0004 | | JOINTOO004 | | JOINTO 0004 \
0004 | |
| PJOINT |

| MOVIA1]500.[B1]500.[C1]500. |

Fig. 8.57 Parallel Execution Command (PFORK, JOINTO, PJOINT) Programming Example

8-108

8.4 Program Control Commands

8.4.4 Selective Execution (SFORK, JOINTO, SJOINT)

Motion Programs Sequence Programs

Applicable Applicable

(1) Overview

The Selective Execution commands (SFORK, JOINTO, SJOINT) execute labelled blocks following question
marks (?) when the designated conditional expressions are satisfied. After each parallel process has been exe-
cuted, execution is merged at the block with the label designated by the JOINTO commands. Up to 16 condi-
tional expressions including DEFAULT can be designated.

If not all the designated conditional expressions are satisfied, the labelled block following DEFAULT? is exe-
cuted.

DEFAULT can be designated only in the last conditional expression.

DEFAULT designation can be omitted in motion programs, but not in sequence programs.

N » With MP2000 series Machine Controller, the system version number must be Ver.2.66 or later to use the SFORK com-
INFO mand in sequence programs. There is no limitation in the system version number for using the SFORK command in

motion programs.

 The following versions of programming tool MPE720 are required to designate DEFAULT.

MP2000 Series

Machine Controller Required Version MPE720 Required Version

MPE720 Ver.5 MPE720 Ver.5.41 or later

All models Any version number -6.06 or lat
y MPE720 Ver.6 MPE720 Ver. or. ater
MPE720 Ver.6.06 Lite or later

Conditional
expression
4

Conditional
expression
3

Conditional
expression
2

Conditional
expression
1

Label 1 Label 2 Label 3 Label 4 Label n

Process 1 Process 2 Process 3 Process 4 ot Process 5

[| | [[
JOINTO Label X | | JOINTO Label X | | JOINTO Label X | | JOINTO Label X | | JOINTO Label X
|

Label X

SJOINT

Fig. 8.58 Designating Selective Execution Commands (SFORK, JOINTO, SJOINT)
INFO * The conditional expressions are examined in order from conditional expression 1. Even when more than one condi-

tional expression is satisfied, processing is executed from the label that first satisfies the conditional expression.
* When using an SFORK command in motion programs, be sure to code conditions that will be satisfied. If a condition is
not satisfied, processing will remain in wait status at the SFORK command block until the condition is satisfied.

Command Reference

8-109

8 Command Reference

8.4.4 Selective Execution (SFORK, JOINTO, SJOINT)

(2) Format

SFORK Conditional expression 1 ? Label1, Conditional expression 2 ? Label 2, Conditional expression 3 ?
Label 3, Conditional expression 4 ? Label 4,
..... , DEFAULT? Label n ;

Label 1: Process 1

JOINTO Label X
Label 2: Process 2

JOINTO Label X
Label 3: Process 3

JOINTO Label X
Label 4: Process 4

JOINTO Label X

Label n: Process n
JOINTO Label X
Label X: SJOINT

The conditional expressions that can be used for selective execution command (SFORK) are as follows.

(a) Bit Type Data Comparison

* Use == (MATCH) command for data comparison.

* Specify a register on the left, and 0 or 1 on the right.
MBO000000 == 0? Label "MB000000 =0
MBO000000 == 1? Label "MB000000 =1

Format

* &, |,and ! (AND, OR, and NOT) can be used.

Operations in (MB000000 & MB000001) == 1? Label "MB000000 =1 AND MB000001 = 1
Conditional (MB000000 & 'MB000001) == 1? Label "MB000000 =1 AND MB000001 =0
Expressions (MB000000 | MB000001) == 1? Label "MBO000000 =1 OR MB000001 = 1
(MB00000O0 | IMB000001) == 1? Label "MBO000000 =1 OR MB000001 =0

* When <> (MISMATCH) is used:
MBO000000 <> 07? Label => Syntax error

* When a numerical value is specified on the left, or a register is specified on the right:
1 == MB000000? Label => Syntax error

Syntax Error MBO000000 == MB000001? Label => Syntax error

Examples * No data comparison command:

MBO000000? Label => Syntax error

(0)? Label => Syntax error

* When more than one data comparison command is used:
(MB000000 == 0) & (MB000001 == 1)? Label => Syntax error

8-110

8.4 Program Control Commands

(b) Integer/Double Integer/Real Number Data Comparison

Format

* All data comparison commands (==, <>, >, <, >=, <=) can be used.
* Specity a register either on the left or right.
MWO00000 == 37 Label "MWO00000 =3
MLO0000 <> ML00002? Label "ML00000 = ML0O0002
1.23456 >= MF00000? Label "1.23456 > MF00000

Operations in

* Arithmetic operation and logic operation can be used.

Conditional MWO00000 == (MW00001/3)? Label "MWO00000 = (MW00001 + 3)
Expression (ML0O0000 & FO000000H) <> ML00002? Label "(MLO0O000 A FOO0O0000H) = ML0O0002
1.23456 >= (MF00000 * MF00002)? Label "1.23456 = (MF00000 MF00002)
* When a constant is specified both on the left and right:
0 == 37 Label => Syntax error

Syntax Error
Examples

(3.14*2*1000) > 9000.0? Label => Syntax error
* No data comparison command:
MWO000000? Label => Syntax error
(-1)? Label => Syntax error
* When more than one data comparison command is specified
(MWO00000 < 0) & (MW000001 > 0)? Label => Syntax error

Command Reference

8-111

8 Command Reference

8.4.4 Selective Execution (SFORK, JOINTO, SJOINT)

(3) Programming Examples
A programming example of selective execution commands (SFORK, JOINTO, SJOINT) is shown below.

<4 EXAMPLE >

8-112

MOV [A1]100.[B1]150.;
MVS [A1]200.[B1]250.F1000;
SFORK MWO00100==1 ? 0001,MW00100==2 ? 0002,MW00100==3 ? 0003,DEFAULT ? 0004;
0001:MVS [A1]300.[B1]100.F3000:
JOINTO 0005
0002:MVS [A1]300.[C1]100.F3000;
JOINTO 0005
0003:MVS [C1]300.[S]100.F3000;
JOINTO 0005
0004:JOINTO 0005;
0005:SJOINT:
MOV[A1]500.[B1]500.[C1]500.

MOV[A1]100.[B1]150.
MVS[A1]200.[B1]250. F1000;

| SFORK |
MW00100==1 MW00100==2 MW00100==3

MVS[A1]300.[B1]100. F3000; MVS[A1]300.[C1]100. F3000; MVS[C1]300.[S]100. F3000;

DEFAULT

| JOINTO 0005 | | JoINTO 0005 | | JoINTOO005 | | JOINTO 0006

| SJOINT |

MOV[A1]500.[B1]500.

Fig. 8.59 Selective Execution Command (SFORK, JOINT, SJOINT) Programming Example

8.4 Program Control Commands

8.4.5 Motion Subprogram Call (MSEE)

(1) Overview

Motion Programs

Sequence Programs

Applicable

Not applicable

The Motion Subprogram Call command (MSEE) can call a subprogram that has been stored in the motion pro-

gram memory from the motion program.

Nesting of the subprogram call command (MSEE) is restricted to a maximum of eight levels.

MPMO001

MOV [A1]1000;

MPSO002 (1st level nesting)

MSEE MPS002;

RET;

MOV [B1]1000;

MOV [C1]1000;
MSEE MPS003;

MPS003 (2nd level nesting)

MOV [B1]1000;

MOV [C1]1000:
RET:

Fig. 8.60 Subprograms

A subprogram return command (RET) must be

coded at the end of the subprogram.

B Restrictions on Subprograms

IMPORTANT . - . o
The following restrictions apply to motion program coding within a subprogram.
* A maximum of two parallel executions with a PFORK command
* If the program number of a main program is called by an MSEE command, the program will not be exe-
cuted.
(2) Format

MSEE MPS Subprogram number;

ltem Unit

Usable Data

Subprogram number -

A number between 001 and 256

(3) Programming Examples

A programming example of the MSEE command to call the motion subprogram MPS101 is shown below.

<4 EXAMPLE »

MSEE MPS101;
Subprogram number designation

Command Reference

8-113

8 Command Reference

8.4.6 Sequence Subprogram Call (SSEE)

8.4.6 Sequence Subprogram Call (SSEE)

(1) Overview
The Sequence Subprogram Call command (SSEE) calls a subprogram that has been stored in the sequence pro-

gram memory from the sequence program.
Nesting of the subprogram call command is restricted to a maximum of eight levels.

SPMO001
MWO00000=1;
SSEE SPS002; &

END;

Motion Programs

Sequence Programs

Not applicable

Applicable

SPS002 (1st level nesting)

\I MWO00000=2;

SPS003 (2nd level nesting)

SSEE SPS003;
\Q:\\\J MWO00000=3

RET;
RET;

Fig. 8.61 Subprograms

A subprogram return command (RET) must be coded at the end of a subprogram.

IMPORTANT

(2) Format

B Restrictions on Subprograms
The following restriction applies to sequence program coding within a subprogram.

* If a main program is called by the SSEE command, the program will not be executed.

SSEE SPS Subprogram number ;

ltem

Unit

Usable Data

Subprogram number

A number between 001 and 256

(3) Programming Examples
A programming example of the SSEE command to call the subprogram SPS101 is shown below.

<4 EXAMPLE b

SSEE SPS101;
Subprogram number designation

8-114

8.4 Program Control Commands

8.4.7 User Function Call From Motion Program (UFC)

(1) Overview

Motion Programs

Sequence Programs

Applicable

Not applicable

The User Function Call From Motion Program command (UFC) calls a user function (ladder program) from a

motion program.

When execution of the called user function is completed, the block after the UFC command block will be exe-

cuted.

IMPORTANT

* When YB000000 = OFF at the completion of execution of user function:
+ Execution of the user function is recognized as incomplete, and the user function will be called again during

the next scan.

* When YB000000 = ON at the completion of execution of user function:
+ Execution of the user function is recognized as complete, and the block after the UFC command block will

be executed.

For the user function called from the motion program, output bit YB000000 is used for completion judgement
(Complete Bit).

(2) Format

UFC Function name Input data, Input address, Output data;

ltem

Unit

Usable Data

Function name

ASCII 8 bytes

Input data

Max: 16 data items (Minimum: 1 data item)

Input address

Max: 1 address

Output data *

Max:16 data items (Minimum: 1 data item)

* The input address can be omitted. [UFC Input data, Output data;] is used if there is no input
address. The minimum requirement is one input data item and one output data item.

Command Reference

8-115

8 Command Reference

8.4.7 User Function Call From Motion Program (UFC)

8-116

(3) Programming Examples

A UFC command programming example is shown below.
<4 EXAMPLE »

UFC KANSUU MB000000 IW0010 MB000002, MA00100, MB0O00001 MW00200 ML00201;

Function Input data
name

Input address Output data

| MBO(I)LI)OOO
| I

Function name
MBO000001

INPUT-1 OUTPUT-1 4O—|

IW0010 == | INPUT-2 OUTPUT-2 |—> MW00200

| MBOIOPOOZ

| |} INPUT-3 OUTPUT-3 —> ML00201

INPUT-4
MA00100

Fig. 8.62 User Function Call Command (UFC)

(4) UFC Command Creation Procedure

Use the following procedure to create a UFC command.

Determine the UFC command specifi-

cations.

Set the following on the Program
Property window.
* Configuration definition

* I/O definitions

Create the user functions (ladder pro-

gram).
v

Create the motion program.

U

| Check the operation.

The data types are as follows.

* Determine the number of I/Os and data type.
* Determine the function name.

Use the MPE720 to enter the definitions.

Create the user functions in the same way as for the
drawings, except for the register type to be used.

Write a UFC command block with the format:

UFC function name input data, input address, output
data;

(5) Register Types Used Within User Functions

Data Type
BIT Bit
WORD Integer
LONG Double integer
FLOAT Real number

8.4 Program Control Commands

(6) Relationship between I/O Registers and Internal Function Registers

The correspondence between the I/O registers designated by the UFC command and the function registers is

shown below.

Input

Bit data input

Internal Function Registers

X registers
(Input registers)

Y registers
(Output registers)

Output

Bit data output
B-VAL

I-REG,

B-VAL XB000000 to XBOOOOOF YB00000O to YBOOOOOF | |
(16 bits max.) XW0001 YW0001
XW0002 YWO0002
XWO0003 YWO0003
XWO0004 YWO0004
I-REG,
L-REG input
(16 words max.)
XW00014 YWO00014
XWO00016 YWO00016
Address input Aregisters
MAO00100 MWO00100 < > AWO00000
MW00101 < P> AWO0001
MW00102 < > AW0002
MWO00103 l » AWO0003
MWO00104 < > AWO0004
Z registers # registers D registers

L-REG output

Command Reference

8-117

8 Command Reference

8.4.7 User Function Call From Motion Program (UFC)

8-118

The following 11 types of register can be used in each function.

Table 8.2 Function Registers

Type Name Designation Method Description Characteristics
Input to a function
Bit input: XB000000 to XBOOOOF
Function input Integer input: YW00001 to XW00016
X | register XB, XW, XL, XFnnnnn | 1, ble integer input: XL00001 to XL00015
Register number nnnnn is a decimal expres-
sion.
Input to a function
Function outout Bit input: YB000000 to YBOOOOF
Y register P YB, YW, YL, YFnnnnn | Integer input: YW00001 to YW00016
9 Double integer input: YL0O0001 to YL0O0O015
Register number nnnnn is a decimal expression
Internal register unique to each function
Internal function Can be used by the function for internal pro-
Z . ZB, ZW, ZL, ZFnnnnn cesses.
register . . .
Register number nnnnn is a decimal expres-
sion.
External registers that use the address input
External value as the base address. Unique to each
A : . AB, AW, AL, AFnnnnn | For linking with S, M, I, O, #, and DAnnnnn | function
function register . . .
Register number nnnnn is a decimal expres-
sion.
Registers that can be referenced only by a pro-
gram.
Can be referenced only the corresponding
reqister #B, #W, #L, #Fnnnnn drawing.
9 (#Annnnn) The actual range to be used is specified by the
user using the MPE720.
Register number nnnnn is a decimal expres-
sion.
Registers unique to each drawing
Can be referenced only by the corresponding
drawing.
D D register EDBAE\IZ’IBL’ DFnnnnn The actual range to be used is specified by the
user using the MPE720.
Register number nnnnn is a decimal expres-
sion.
. SB, SW, SL, SFnnnnn
S System register (SAnnnnn)
MB, MW, ML, MFnn-
M | Data register nnn Same as the drawing registers.
(MAnnnnn) These registers are used for both drawings and
. . . Common to all
| Inout register IB, IW, IL, IFhhhh functions. Care must be taken in using them to drawin
P 9 (IAhhhh) reference the same function from drawings £
o lo] OB, OW, OL, OFhhhh | With different priority levels.
utput register (OAhhhh)
C Constant register CB, CW, CL, CFnnnnn

(CAnnnnn)

Note: SA, MA, IA, OA, DA, #A, and CA can also be used inside functions.

8.4 Program Control Commands

An example of the transfer of I/O registers is shown below.

Motion program coding

UFC TESTFUNC DB000000 DB000001 MWO00030 MW00032, MA00100, DB000002 MW00040

MA00100

X register
I_D|BOOOOOO
P Y register —
vy g r DB000002
DB000001 Xw00000 | | YW00000 |
|_| > XW00001 YW00001 » MW00040
> XW00002 YW00002
MWO00030
MWO00032 XW00016 YW00015
MWO00100 > AWO00000
MWO00101 > AW00001
MWO00102 » AW00002

Fig. 8.63 Motion Program Coding

Command Reference

8-119

8 Command Reference

8.4.7 User Function Call From Motion Program (UFC)

(7) Creating User Functions

The procedure for creating the user function of the following specifications is described below.

Specifications Motion Program
Designate the servo axis No. and speed data, and set thisin | MWO00030 = Servo axis No. (1 or 2)
the motion setting parameter OLCICI10: Speed reference MLO00032 = Rapid traverse speed
setting. UFC FUNC-T1 MWO00030 ML00032,,DB000001;

Use the following procedure to create the user function.

1. Open the Ladder subwindow. Right-click Function under Ladder program. Click New in the pop-up
menu that will appear.

Ladder *ax]
=

Program

=[] MPzz1n]

1B Ladder program
[E] High-speed
[E] Low-speed
[E Shart

[Inkerrupt

=
3 cut Chrl4s:
% Copy Chrl+C
B paste Chrly
Compile

Enable Main Program

Disable Main Program
Conversion of CF ladder

Imnport 3

Expork 4

Print. ..

lLadder l|:4 o

2. Enter FUNC-T1 in the Program Name input field in the Create New Program dialog box, and then
click OK.

B Create New Program s |

Prograrn Mo, | FUMC-T1

Program MName I |

Configuration
{0 definition
Dekail definition

& FUNG i g

BT BWAL BT BWAL

O I Cancel Help << Detail

A

8-120

8.4 Program Control Commands

3. Ablank ladder program field will appear in th
erty from the pop-up menu.

Ladder
B =

e Ladder subwindow. Right-click FUNC-T1 to select Prop-

Program

=11 MPz310]

*-= [Ladder program
¥ [E] High-speed
1 [E] Lowe-speed
[Start
5[] Tnterrupt

=16 Function

o &

| ELadder |Zlmation |

Hew

Gpen
Gpen{Other] »

cut Chris
Copy ctil+C
Paste Crl
Delete Delete

Rename
Compile

Set the Password

Cancel the Password
Enablef Disable
Conversion of CP [adder

Import »

Export »
Property

Brint...

4. Inthe Program Property window, click Function input definition under I/O definition to set the num-
ber of function inputs and data type, and click Function output definition to set the number of function

outputs and data type.

Example: For the UFC command block UFC FUNC-T1 MW00030 ML00032,,DB000001;,
the settings in the Program Property window are as shown below.

! Program Property Xl :_!,!E‘-Program Property]
Prograrn Mo, I FUNC-T1 Prograrn Mo, I FUMC-T1
Program Marne I Progran Mame I
Configuration Function input no, lﬁ Configuration . Function output no. 1 5
= 10 definition =1 = I} definition =l
Function input: del Type |C0mment | Function input definition |Type |C0mment |
Function address definition |y [yworn ;I Mo, Function address definition M BIT :
Function output definition 02 - | velocity Function output definition
Detail definition Detail definition
Modified history Modified history
<| I3 < I3 [Cawe |
oK I Cancel | Help | << Detall | OK I Cancel | Help I <= Detail I
v o

Command Reference

8-121

8 Command Reference

8.4.7 User Function Call From Motion Program (UFC)

5. Close the DWG Configuration Definition window, and edit the user function program in the ladder
program edit window.

| = (Axis Mo.-1780H

0008 ExFPRESSION 7%

[D\]DLD? I=(A00001-17* 080

CHANG JOG SPEED

0013 EXPRESSION 7

0001 OLA010i = XL00002
ML-1

Always ON

SBO00004 ¥ BO00000

||
000 [Ry
NL-1
TRM L END]
0004
ML-1
6. From the Compile menu, select Compile F8.
HE MPET20 Yer.6 - [MP2310] - [FUNC-T1] - P] 3

[E) Ble Edt view onine Program Debug Window Help _Ax
JRSED X B E 8 e Blleg O HEiDH o ko hiap &6

U E FEYE Y E AT el g3 s ek > R

Z:Ethernet(LP) IP192.168.1.1 CPU-RUN

Compile Optian. .

Online ™MP2310

7. In the Motion Editor window, create a program to call user function FUNC-T1.

MW00030 = 1;
MLO0032 = 500;
yrzg FUNC-T1 Mw00030 MLOOD3Z, , DBODDOOD1;

The user function that is called from the motion program is created.
Execute the motion program to check the operation.

8-122

8.4 Program Control Commands

8.4.8 User Function Call from Sequence Program (FUNC)

Motion Programs

Sequence Programs

Not applicable

Applicable

(1) Overview

The User Function Call from Sequence Program command (FUNC) calls user functions (ladder programs) from

the sequence program.

(2) Format

UFC Function name Inputdata 1 Inputdata 2 Inputdata 3, Input address,

Output data 1 Output data 2 Output data 3 ;

Item Unit Usable Data
Function name - ASCII 8 bytes
Input data - Max: 16 data items (minimum: 1 data item)
Input address - Max: 1 address
Output data - Max: 16 data items (minimum: 1 data item)

Note: 1. More than one item for input data and output data can be described.

can be omitted.
When the input address is omitted, describe only the comma ().

(At least one item each for input data and output data must be described.) The input address

2. The FUNC command calls a user function. The execution proceeds to the next block after
the FUNC command whether or not the user function execution has been completed.

(3) Programming Examples

A FUNC command programming example is shown below.

In this example, three input data items, one input address, and three output data items are described.

<4 EXAMPLE p»

FUNC KANSUU MB000000 IW0010 MB000020, MA00100, MB0O00001 MW00201 ML00202;

name

Function Input data Input address Output data

Function name

MB000000 MBO000001
I Il INPUT-1 OUTPUT-1

IW0010 == | INPUT-2 OUTPUT-2 —> MWO00200
| MB000002
| | } INPUT-3 OUTPUT-3 ——> ML00201

INPUT-4
MA00100

Fig. 8.64 User Function Call Command (FUNC) Programming Example

Command Reference

8-123

8 Command Reference

8.4.9 Program End (END)

8.4.9 Program End (END)

Motion Programs Sequence Programs
Applicable Applicable

(1) Overview

The Program End command (END) ends program operation.

No other commands can be coded in the same block as the END command.

Program operation ends after execution of the END command block.

If there is a move command in the previous block, the program operation ends after the in-position check is com-
pleted.

(2) Format

END;

Program end

8-124

8.4 Program Control Commands

8.4.10 Subprogram End (RET)

(1) Overview

The Subprogram End command (RET) ends subprogram operation.

Motion Programs

Sequence Programs

Applicable

Applicable

After operation of the called subprogram is ended by the RET command, execution proceeds to the block after
the Motion Subprogram Call command (MSEE) or Sequence Subprogram Call command (SSEE) in the main

program or subprogram that called the subprogram.

MPMO001

MOV [A1]1000;
MSEE MPS002;

MPS002

(2) Format

MOV [B1]1000;
MOV [C1]1000;
RET:

RET;

Subprogram end

Command Reference

8-125

8 Command Reference

8.4.11 Dwell Time (TIM)

8.4.11 Dwell Time (TIM)

Motion Programs Sequence Programs
Applicable Not applicable

(1) Overview

The Dwell Time command (TIM) causes execution to pause for a specified period of time before the start of exe-
cution of the next command block.
A period of time between 0.00 to 600.00 seconds can be specified.

(2) Format

TIM T Dwell time ;

ltem Unit Usable Data
Dwell time 0.01s - Directly designated value
- Integer type register (Indirect designation)

(3) Programming Examples

A TIM command programming example is shown below.
<4 EXAMPLE p»

MOV [A1]100;
TIM T250 ;
2.5 seconds

The TIM command is executed after positioning has been completed.

Sp(;: Fd (V)

MOV Next block

i » Time (1)
25s |

Fig. 8.65 Dwell Time Command (TIM) Programming Example

8-126

8.4 Program Control Commands

8.4.12 1/0O Variable Wait (IOW)

(1) Overview

Motion Programs

Sequence Programs

Applicable

Not applicable

The 1/O Variable Wait command (IOW) causes execution to wait until the status specified by the conditional
expression is satisfied. When the condition is satisfied, execution proceeds to the next block.

(2) Format
oW IB0O0001&IB00002 == 1;
A
ltem | Description Usable Data
« All integer type, double integer type, and real number type registers (Exclud-
. ing # and C registers)
A Condltlo.nal * The above registers with subscript
expression . .

* Subscript registers
* Constants

The conditional expressions that can be used in the IOW command block are as follows.

(a) Bit Data Comparison
* Use == (MATCH) command for data comparison.
Formant Specify a register on the left, and 0 or 1 on the right.

IOW MB000000 == 0; "MB000000 =0
IOW MB000000 ==1; "MB000000 =1

Operations in
Conditional
Expression

&, | ,and ! (AND, OR, NOT) can be used.

IOW (MB000000 & MB000001) == 1; "MB000000 =1 AND MB000001 = 1
IOW (MB000000 & !MB000001) == 1; "MB000000 =1 AND MB000001 =0
IOW (MB000000 | MB000001) == 1; "MBO000000 = 1 OR MB000001 = 1

IOW (MB00000O | IMB000001) == 1; "MB000000 = 1 OR MB000001 =0

Syntax Error
Examples

* When <> (MISMATCH) is used:
|IOW MB000000 <> 0; => Syntax error

IOW 1 == MB000000; => Syntax error

IOW MB000000 == MB000001; => Syntax error
* No data comparison command:

IOW MB000000; => Syntax error

IOW (0); => Syntax error

* When more than one data comparison command is used:

IOW (MB000000 == 0) & (MB000001 == 1); => Syntax error

* When a numerical value is specified on the left, or a register is specified on the right:

Command Reference

8-127

8 Command Reference

8.4.12 1/O Variable Wait (IOW)

(b) Integer/Double Integer/Real Number Data Comparison

* All data comparison commands (==, <>, >, <, >=, <=) can be used.
» Specify a register either on the left or right.

Format IOW MWO00000 == 3; "MWO00000 = 3

IOW ML00000 <> ML00002; "MLO00000 # ML00002
IOW 1.23456 >= MF00000; "1.23456 > MF00000

* Arithmetic operations and logic operations can be used.
IOW MWO00000 == (MW00001/3); "MWO00000 = (MW00001 =+ 3)
IOW (MLO0000 & FOO00000H) <> ML00002; "(ML0O0O00O A FOO00000H) = ML00002
IOW 1.23456 >= (MF00000 * MF00002); "1.23456 > (MF00000 x MF00002)

Operations in
Conditional
Expression

* When a constant is specified both on the left and right:
IOW 0 == 3; => Syntax error
IOW (3.14*2*1000) > 9000.0; => Syntax error

Syntax Error * No data comparison command:

Examples IOW MWO000000; => Syntax error
IOW (-1); => Syntax error

* When more than one data comparison command is used:

IOW (MWO00000 < 0) & (MWO000001 > 0); => Syntax error

(3) Programming Examples
An IOW command programming example is shown below.
<4 EXAMPLE p»

IOW (MB001001&MB001002)== 1;

MOV [A1]1000;
4 Speed
Positioning for the axis A1
Time

f >
I

MB001001 :

MB001002

Fig. 8.66 /O Variable Wait Command (IOW) Programming Example

8-128

8.4 Program Control Commands

8.4.13 One Scan Wait (EOX)

(1) Overview

Motion Programs

Sequence Programs

Applicable

Not applicable

The One Scan Wait command (EOX) causes program execution to be suspended for one scan.

The block after EOX command will be executed in the next scan.

(2) Format

EOX;

(3) Programming Examples

An EOX command programming example is shown below.

(a) Used in Combination with Sequence Commands

<4 EXAMPLE »

MWO00000=100;
0OB00010=1;
EOX;
OB00011=0;

First scan

Second scan

(b) Used with a WHILE Command

<4 EXAMPLE »

WHILE OB00010==1;
EOX;
WEND;

Command Reference

8-129

8 Command Reference
8.4.14 Single-block Signal Disabled (SNGD)/Single-block Signal Enabled (SNGE)

8.4.14 Single-block Signal Disabled (SNGD)/Single-block Signal Enabled (SNGE)

Motion Programs Sequence Programs
Applicable Not applicable

(1) Overview

The Single-block Signal Disabled command (SNGD) and the Single-block Signal Enabled command (SNGE) are
used to specify whether to disable or enable the single step operation when debugging a program.
Regardless of the single-block operation mode setting, the blocks enclosed between SNGD and SGNE com-

mands are executed continuously without single-block stops.

B Single-block operation mode
TERMS . . .
In single-block operation mode, a stop is executed for each block.

(2) Format

SNGD;

| Blocks to be continuously executed

SNGE;

(3) Programming Examples

<4 EXAMPLE »
The programming example of SNGD and SNGE commands is shown below.

MVS [A1]0 [B1]0;
SNGD;

MVS [A1]100 [B1]200; “1”
MB000101 = 1; “p”
MB000102 = 1; “3”
SNGE;

MB000103 = 1;

In the above example, the blocks 1 to 3 enclosed between SNGD and SNGE commands are executed contin-
uously without single-block stops regardless of the single-block operation mode setting.

8-130

8.5 Arithmetic Operations

8.5 Arithmetic Operations

This section explains the arithmetic operation commands.
For priority levels of Arithmetic Operation, refer to 7.4 Priority Levels of Operations.

8.5.1 Substitute (=)

(1) Overview

Motion Programs Sequence Programs

Applicable Applicable

The operation result on the right side of the expression is substituted in the register on the left side.

(2) Format

Result = Math expression ;

A

B

ltem

Description

Usable Data

Result

* All bit type, integer type, double integer type, real number type registers (Excluding
and C registers)

*» The above registers with subscript
* Subscript registers

Math
expression

« All bit type, integer type, double integer type, real number type registers (Excluding
and C registers)

* The above registers with subscript

* Subscript registers

« Constants

(3) Programming Examples

Substitute (=) command programming examples are shown below.

<4 EXAMPLE »
Motion Programs/
Type Sequence Programs Ladder Programs
Seooooo4 MBOO1000
B | MB001000=1; o Py
[11 U/ [
W | MW00100=12345; STORE) o
[WLF]1Src 12845 [WLF]Dest MWOO100
L | MLO0100=1234567; = STORE)
[WLF]Src 00012345867 [WLF]Dest MLOOD10D
F | MF00100=1.2345; STORE)
[WLF]Src 1.234500E+000 [WLF1Dest HWFO00D100

Command Reference

8-131

8 Command Reference
8.5.2 Add (+)

8.5.2 Add (+)

Motion Programs Sequence Programs

Applicable Applicable

(1) Overview

ADD (+) performs integer and real number addition on the right side and stores the result in the register on the
left side. With mixed integers and real numbers, the data type on the left side is also stored.

(2) Format

MWO00101 = MWO00100 + 12345 ;
A B C

Iltem [Description Usable Registers

« All integer type, double integer type, real number type registers (Excluding # and C
A | Dat tout registers)
ala oulpu * The above registers with subscript

* Subscript registers

* All integer type, double integer type, real number type registers (Excluding # and C
registers)

* The above registers with subscript

C | Datatoadd | e« Subscript registers

* Constants

B Data input

(3) Programming Examples

Add (+) command programming examples are shown below.

<« EXAMPLE p
Motion Programs/
Type Sequence Programs Ladder Programs
B —_ —
= ADD) o
W | MW00101=MW00100+12345; [WLFISrcA MWOO0100 [WLF]Dest MWOD101
[WLF1SrcB 12345
= ADD) o
L | MLO0106=ML00102+ML00104; [WLFISrcA MLO0102 [WLFIDest MLOD10G
[WLF1SrcB MLOO104
il ADD pax) o
F | MF00202=MF00200+1.23456; [WLF1Srch MF00200 [WLFIDest MF00202
[WLFISrcB 1.234560E+000

IMPORTANT With an operation where the variables are of different data types, the result will be stored according to the data
type on the left side.

For details, refer to 6.1.2 Global Variables and Local Variables.

8-132

8.5 Arithmetic Operations

8.5.3 Subtract (-)

(1) Overview

Motion Programs

Sequence Programs

Applicable

Applicable

Subtract (-) performs integer and real number subtraction on the right side and stores the result in the register on

the left side. With mixed integers and real numbers, the data type on the left side is stored.

(2) Format

MWO00101 = MWO00100 -12345 ;

A B]

ltem | Description

Usable Registers

registers)
A | Data output

* The above registers with subscript
* Subscript registers

* All integer type, double integer type, real number type registers (Excluding # and C

B Data input)
registers)
Data to) -
C subtract Subscript registers

« Constants

* The above registers with subscript

« All integer type, double integer type, real number type registers (Excluding # and C

(3) Programming Examples

Subtract (—) command programming examples are shown below.

<4 EXAMPLE p
Motion Programs/
Type Sequence Programs Ladder Programs
B —_ —_
= SUB frax) o
W | MW00101=MWO00100-12345; [WLFISrcA MWOO0100 [WLF]Dest MWOD101
[WLF1SrcB 12345
= SUB frax) o
L | MLO0106=ML00102-MLO0104; [WLFISrcA MLO0102 [WLFIDest MLOD10G
[WLF1SrcB MLOO104
i suB ot
F | MF00202=MF00200-1.23456; [WLFISrch MFO0200 [WLFIDest MF00202
[WLFISrcB 1.234560E+000

Command Reference

8-133

8 Command Reference

8.5.4 Multiply (*)

8.5.4 Multiply (*)

Motion programs Sequence Programs

Applicable Applicable

(1) Overview

Multiply (*) performs integer and real number multiplication on the right side and stores the result in the register
on the left side. With mixed integers and real numbers, the data type on the left side is stored.

(2) Format

MWO00101 = MWO00100 * 12345 ;
A B C

Iltem [Description Usable Registers

« All integer type, double integer type, real number type registers (Excluding # and C
registers)

A | Dataoutput | | The above registers with subscript

* Subscript registers

* All integer type, double integer type, real number type registers (Excluding # and C

B Data in .
ata input registers)
« The above registers with subscript
C Data to * Subscript registers
multiply pLIce

* Constants

(3) Programming Examples

Multiply (*) command programming examples are shown below.

<4 EXAMPLE p»
Motion Programs/
Type Sequence Programs Ladder Programs
B — —_
= MUL o)
w | MW00102=MW00100+MW00101 [WLF1Srch MWOO0100 [WLFIDest WW0O0102
[WLF1SrcB MW00101
= MUL frax) o
L | MLOO106=ML00102+ML00104; [WLF]SrcA MLOO102 [WLF]Dest MLODI0B
[(WLF1SrcB MLOD1D4
= MUL frax) o
F | MF00202=MF00200+1.23456; [WLF]SrcA MFO0200 [WLF]Dest WFOD0202
[WLF1SrcB 1.234580E+000

8-134

8.5 Arithmetic Operations

8.5.5 Divide (/)

(1) Overview

Divide (/) performs integer and real number division on the right side and stores the result in the register on the
left side. With mixed integers and real numbers, the data type on the left side is stored.

Motion Programs

Sequence Programs

Applicable

Applicable

(2) Format
MWO00101 = MWO00100 / 12345 ;
A B C
Iltem | Description Usable Registers
* All integer type, double integer type, real number type registers (Excluding # and C
A | Dat tout registers)
ala outpu * The above registers with subscript
* Subscript registers
B Data input « All Amteger type, double integer type, real number type registers (Excluding # and C
registers)
* The above registers with subscript
C Data to * Subscript registers
divide price
* Constants

(3) Programming Examples

Divide (/) command programming examples are shown below.

<4 EXAMPLE »
Motion Programs/
Type Sequence Programs Ladder Programs
B - f—
B DIV =)
w | MW00102=MW00100/MWO00101; [WLF1SrcA MWOO0100 TVLFIDest WW00102
[WLF]SrcB MW0D101
T DIV =)
L ML00106=ML00102/ML00104; [WLFISrch WLOO102 TWLFIDost WLG0T06
[WLF]SrcB MLOD104
T DIV =)
F MF00202=MF00200/1.23456; [WLFISrcA WFO0200 TVLFIDest WF00202
[WLF1SrcB 1.234580E+000

Command Reference

8-135

8 Command Reference

8.5.6 Remainder (MOD)

8.5.6 Remainder (MOD)

Motion Programs Sequence Programs

Applicable Applicable

(1) Overview

When specified in the next block after Divide, MOD stores the remainder of the division in the specified vari-
able. The remainder is stored as the data type on the left side.

(2) Format

MWO00001 = 1000 / 999;
MWO00002 = MOD;

A

Iltem | Description Usable Registers

« All integer and double integer type registers (Excluding # and C registers)
A | Data output | < The above registers with subscript
* Subscript registers

(3) Programming Examples

MOD command programming examples are shown below.

<4 EXAMPLE p»
Motion Programs/
Type Sequence Programs Ladder Programs
B - —
—ll DIV A
[WLF]SrcaA MWOD100 [WLF]Dest MWOD101
W MWO00101=MWO00100/3; [WLF]SrcB 00003
MWO00102=MOD;
{ MOD A
[WLIDest MWOO102
— DIV A —
[WLF1SrcA MLOD102 [WLF1Dest MLOO108
L ML00106=ML00102/ML00104; [WLF1SrcB MLOO104
ML00108=MOD;
=i MOD A
[WL]Dest MLOO10S
F — —

Example: Double integers

ML00106=ML00100*ML00102/ML00104;
(173575) (100000) (60000) (34567)
ML00108=MOD;

(32975)

The MOD command must be specified in the next block after Divide. If it is not executed in the next block
after Divide, the operation result cannot be guaranteed.

IMPORTANT

8-136

8.6 Logic Operation

8.6 Logic Operation

This section explains the commands used to perform bit and integer logic operations.

Although operations that combine math operations are also possible, real number operations cannot be per-

formed.

For priority levels of arithmetic operations, refer to 7.4 Priority Levels of Operations.

8.6.1 OR (|)

(1) Overview

Motion Programs

Sequence Programs

Applicable

Applicable

OR performs a logical OR for the immediately preceding operation result and the specified registers, and returns

the operation result. Real number registers cannot be used.

Table 8.3 Logical OR Truth Table (A=B|C)

B C A

0 0 0

0 1 1

1 0 1

1 1 1
(2) Format

MWO00100 = DW00102 | AAAAH;

A B C
Iltem | Description Usable Registers
« All bit type, integer type, and double integer type registers (Excluding # and C reg-
isters)
A Data output | -, The above registers with subscript
* Subscript registers
« All bit type, integer type, and double integer type registers (Excluding # and C reg-
isters)
B, C Data input * The above registers with subscript
* Subscript registers
* Constants

Command Reference

8-137

8 Command Reference

8-138

8.6.1 OR(])

(3) Programming Examples

Logical OR(|) command programming examples are shown below.

<4 EXAMPLE »
Motion Programs/
Type Sequence Programs Ladder Programs
MBOOT010 MBOO 1000
| | Y
|| WS
B | MB001000=MB001010|MB001011;
MBOO1011
—
i OR i)
W [MW00100=MW00101]MW00102 [WLISrch MY00101 [WL1Dest MWO0100
[WLI1SrcB MY00102
L | ML00106=ML00102|ML0O0104; ot OR -
[WLISrch MLO0102 [WL1Dest MLOO108
[WL]SrcB MLOD104
F —_ —

8.6 Logic Operation

8.6.2 AND (&)

(1) Overview

Motion Programs

Sequence Programs

Applicable

Applicable

AND (&) performs a logical AND for the immediately preceding operation result and the specified registers, and
then returns the operation result. Real number registers cannot be used.

Table 8.4 Logical AND Truth Table

(A=B&C)
B C A
0 0 0
0 1 0
1 0 0
1 1 1
(2) Format

MWO00100 = DW00102 & AAAAH;

A B

Cc

ltem | Description

Usable Registers

A Data output

« All bit type, integer type, and double integer type registers (Excluding # and C reg-

isters)

*» The above registers with subscript

* Subscript registers

B, C Data input

« All bit type, integer type, and double integer type registers (Excluding # and C reg-

isters)

* The above registers with subscript

* Subscript registers
* Constants

(3) Programming Examples

The AND (&) command programming examples are shown below.

<4 EXAMPLE p»
Motion Programs/
Type Sequence Programs Ladder Programs
| MBOO1010 MBOO1011 MBO01000 |
B | MB001000=MB001010&MB001011; | | | |)
| I 1] 1), |
= AND o)
W | MW00101=MWO00100&00FFH; [WLISrck MWOD100 [WLIDest WWOO101
[WL1SrcB HOOFF
L | ML0O0106=ML00102&ML00104; 7 AND)
[WL]SrcA MLOD1D2 [WL]Dest MLOD10B

[WL1SrcB MLOO104

Command Reference

8-139

8 Command Reference
8.6.3 XOR (%)

8.6.3 XOR (")

Motion Programs Sequence Programs

Applicable Applicable

(1) Overview

XOR (") performs an exclusive logical OR for the immediately preceding operation result and the specified reg-
isters, and then returns the operation result. Real number registers cannot be used.

Table 8.5 Exclusive Logical OR Truth Table

(A=B"C)
B C A
0 0 0
0 1 1
1 0 1
1 1 0
(2) Format
MWO00100 = DW00102 * AAAAH;
A B Cc
Iltem | Description Usable Registers

* All integer and double integer type registers (Excluding # and C registers)
A Data output | e The above registers with subscript
* Subscript registers

* All integer and double integer type registers (Excluding # and C registers)
BACC | Data input * The abf)ve registers with subscript
* Subscript registers

* Constants

(3) Programming Examples

The XOR (*) command programming examples are shown below.

<4 EXAMPLE p»
Ty Motion Programs/Sequence Ladder Programs
Programs
5 — —
R 25 XOR) o
w [MW00101=MWO00100 » O0FFH; [WL]Srch MWOO100 [WL]Dest MWOO101
[WL1SrcB HOOFF
R =6 XOR pa)
L | MLOO106=ML00102 * ML0O0104; [WL]SrcA MLOO102 [WL1Dest MLOD108
[WL1SrcB MLOO104
F p— -

8-140

8.6 Logic Operation

8.6.4 NOT

(1) Overview

()

Motion Programs Sequence Programs

Applicable Applicable

NOT inverts the data in the specified register and returns the operation result. Real number registers cannot be

used.

(2) Format

MB001000 = ! MB001010;

A B
Iltem [Description Usable Registers
« All bit type, integer type, and double integer type registers (Excluding # and C reg-
isters)
A Data output | -, The above registers with subscript
* Subscript registers
« All bit type, integer type, and double integer type registers (Excluding # and C reg-
isters)
B Data input * The above registers with subscript

« Constants*

* Subscript registers

* Bit constants cannot be specified.

(3) Programming Examples

Logical NOT (!) programming examples are shown below.

< EXAMPLE P>
Motion Programs/
Type Sequence Programs Ladder Programs
B | MB001000=IMB001010 | e NEDR 980
=l) | 71 V!
’ /I O
W | MW00100=IMW00101: = COM)
[WL]Src MW00101 [WL]Dest MW00100
L | ML00100=IML00102 o COM =
[WL]1Src MLOO102 [WL]Dest MLOO100
F — —_

Command Reference

Example: MW00100=!MWO00101;

MW00101
[0001 | 0010 | 0011 | 0100 |
1234H

MW00100

[1110 | 1101 | 1100 | 1011 |

EDCBH

8-141

8 Command Reference

8.7.1 Data Comparison Commands (==, <>, >, <, >=, <=)

8.7 Data Comparisons

This section explains the data comparison commands that are used for conditional expressions.

8.7.1 Data Comparison Commands (==, <>, >, <, >=, <=)
Motion Programs Sequence Programs
Applicable Applicable
(1) Overview

These commands are used to determine conditional expressions for commands such as branching commands
(IF), repeat commands (WHILE), and I/O WAIT (IOW).

The following six comparison commands are provided.

Comparison Command Meaning
== Match
<> Mismatch
Greater than
Less than
>= Greater than or equal to
= Less than or equal to
(2) Format
IF MB001000 == 1;
A
ltem Description Usable Registers
* All bit type*, integer type, double integer type, and real number type registers
A Conditional (Excluding # and C registers)
expression * The above registers with subscript
* Subscript registers
* Only the MATCH (= =) command can be used in a bit conditional expression.

(3) Programming Examples

Data comparison command programming examples are shown below.

<4 EXAMPLE »

Type

Motion Programs/
Sequence Programs

Ladder Programs

B [IF MB001000==1;

IF)
MBOD1000 == true

W | IF MWO00100<>10;

! IF b=

M¥oo100 != 10

L |IF ML00100>10000; L IF =

MLOD100 > 10000

F |IF MF00100>=3.0;

i IF =
MFO0100 >= 3.0

8-142

8.7 Data Comparisons

The conditional expressions that can be used with data comparison commands are as shown below.

(a) Bit Data Comparison

Format

* Use == (MATCH) command for data comparison.

* Specity a register on the left, and 0 or 1 on the right.
IF MB0O00000 == 0; "MBO000000 =0
IF MB0O0O0000 == 1; "MBO000000 =1

Operations in

* &, |, ! (AND, OR, NOT) can be used.

IF (MB000000 & MB000001) == 1; "MB000000=1 AND MB000001=1

Conditional IF (MB0O0000O & !MB000001) ==1; "MB000000=1 AND MB000001=0
Expression IF (MBO0000O | MB000001) ==1; "MB000000=1 OR MB000001=1
IF (MB0O000O0O | IMB000001) ==1; "MBO000000=1 OR MB000001=0
* When <> (MISMATCH) is used:
IF MB000000 <> 0; => Syntax error
* When a numerical value is specified on the left, and a register on the right:
IF 1 == MB00000QO; => Syntax error
gyntax IF MB000000 == MB000001; => Syntax error
E::r;lpl = * No data comparison command:
IF MB0O0O0000; => Syntax error
IF (0); => Syntax error

» When more than one data comparison command is used:

IF (MB0O00000 == 0) & (MB000001 == 1); => Syntax error

(b) Integer/Doub

le Integer/Real Number Data Comparison

Format

* All data comparison commands (==, <>, >, <, >=, <=) can be used.
* Specify a register either on the left or right.

IF MW00000 == 3; "MWO00000 =3

IF MLO0000 <> ML00002; "ML00000 # ML00002

IF 1.23456 >= MF00000; "1.23456 > MF00000

Operations in
Conditional
Expression

* Arithmetic operations and logic operations can be used.
IF MW00000 == (MWO00001/3); "MWO00000 = (MWO00001 + 3)
IF (MLOOO0O & FOO00000H) <> ML00002; "(MLOO0OO A FOO00000H) = ML00002
IF 1.23456 >= (MF00000 * MF00002); "1.23456 > (MF00000 x MF00002)

Syntax Error
Examples

* When a constant is specified both on the left and right:
IF0==3; => Syntax error
IF (3.14*2*1000) > 9000.0; => Syntax error
* No data comparison command:
IF MWO000000; => Syntax error
IF (-1); => Syntax error
* When more than one data comparison command is used:

IF (MWO00000 < 0) & (MW000001 > 0); => Syntax error

Command Reference

8-143

8 Command Reference
8.8.1 Bit Right Shift (SFR)

8.8 Data Operations

This section describes the data operation commands that are used to shift, transfer, and initialize data.

8.8.1 Bit Right Shift (SFR)

Motion Programs Sequence Programs

Applicable Applicable

(1) Overview

The SFR command shifts a bit string designated by the leading bit number and bit width the specified number of
shifts to the right.

(2) Format

SFR MB001000 N5 W10 ;
A B C

ltem Description Usable Registers

* All bit type registers (Excluding # and C registers)
A Leading bit * The above registers with subscript
* Subscript registers

Number of bits | < All integer type registers (Excluding # and C registers)
to be shifted * The above registers with subscript

* Subscript registers
* Constants

Cc Bit width

(3) Programming Examples

SFR command programming examples are shown below.

<4 EXAMPLE p»
Motion Programs/

Type Sequence Programs Ladder Programs

B —_ —_

_ L. SHFTR)
W | SFR MB001000 N5 W10; (B]Adr MB0OO1000 [WIWidth 00010
[#]Num 00005
L — —
F — —

Example: Five bits with MB001005 (bit 5 of MW00100) as the leading bit are shifted three bits to the right.

| SFR MB001005 N3 W5; |

9 5 0
MW00100 | - - - - - - [[A[]- - Before
MW00100 [- - - - - - [o[o[o[4]1]- - |

—

0 entered.

IN FO With the SFR command, if the number of shifts is greater than the bit width, all data with the specified bit width will be set
to 0.

8-144

8.8 Data Operations

8.8.2 Bit Left Shift (SFL)

Motion Programs

Sequence Programs

Applicable

Applicable

(1) Overview

The SFL command shifts a bit string designated by the leading bit number and bit width the specified number of

shifts to the left.

(2) Format

SFL MBO001000 N5 W10 ;

A B C
ltem Description Usable Registers
* All bit type registers (Excluding # and C registers)
A Leading bit * The above registers with subscript

* Subscript registers

Number of bits | < All integer type registers (Excluding # and C registers)
to be shifted * The above registers with subscript
* Subscript registers

C Bit width
* Constants

(3) Programming Examples

SFL command programming examples are shown below.

<4 EXAMPLE »
Motion Programs/

Type Sequence Programs Ladder Programs

B — —

, = SHETL) o
W | SFL MB001000 N5 W10; [6]Adr WB001000 [WIWidth 00010
[WINum 00005
L — —

Examples: Ten bits with MB0O0100A (bit A of MW00100) as the leading bit are shifted five bits to the left.

| SFL MBOO100A N5 W10; |

F Al
MW00100 |1|1|0|0|o|1| ------------ |

MWOO101 | - e e Jo]1]o[1]
Y |
F A:
MW00100 |1 |0|0|0|0|0| ------------ | 0 is placed in the lower five bits
e
0 entered. 3 0
MWO00101 | ---------- |1 |0|0|0| The upper five bits are deleted.

INFO With the SFL command, if the number of shifts is greater than the bit width, all data with the specified bit width will be set

to 0.

Command Reference

8-145

8 Command Reference

8.8.3 Block Move (BLK)

8.8.3 Block Move (BLK)

Motion Programs Sequence Programs
Applicable Applicable

(1) Overview

The BLK command moves the specified number of words from the beginning of the source register to the begin-
ning of the destination register.

(2) Format

BLK MWO00100 DWO00100 W10 ;

A B C
ltem Description Usable Registers
. * All integer type registers (Excluding # and C registers)
Source leading reg- . . .
A ister The above registers with subscript
* Subscript registers
B Destination leading | < All integer type registers (Excluding # and C registers)
register * The above registers with subscript
c Number of blocks to | ¢ Subscript registers
be moved « Constants

(3) Programming Examples

BLK command programming examples are shown below.

<4 EXAMPLE »
Motion Programs/

Type Sequence Programs Ladder Programs

B — —

= MOVY pax) o
W | BLK MW00100 DW00100 W10; (WISrc MWOO100 [W]Dest DWOD100
[WI%idth ooo1o
L —_ —
F — —

Example: MW00100 to MW00109 are moved to MW00200 to MW00209.

BLK MWO00100 MWO00200 W10;

Source Destination
MWO00100 1234H MW00200 1234H
MWO00101 1235H MW00201 1235H
MWO00102 1236H MW00202 1236H
X . —> : .
MWO00108 123CH MWO00208 123CH
MWO00109 123DH MWO00209 123DH

IN FO As long as the source registers and destination registers are not overlapped, the source data is moved to the destination reg-
% isters as it is. If overlapped, the source data may not be moved to the destination registers as it is.

8-146

8.8 Data Operations

8.8.4 Clear (CLR)

(1) Overview

Motion Programs

Sequence Programs

Applicable

Applicable

The CLR command clears the specified number of blocks from the leading data clear register, i.e., sets it to 0.

(2) Format

CLR MWwWO00100 W10 ;

cleared

A B
Item Description Usable Registers
Leading register « All integer type registers (Excluding # and C registers)
A whose data is * The above registers with subscript

* Subscript registers

B Number of blocks

* All integer type registers (Excluding # and C registers)
* The above registers with subscript

* Subscript registers

* Constants

(3) Programming Examples

CLR command programming examples are shown below.

<4 EXAMPLE p»
Motion Programs/
Type Sequence Programs Ladder Programs
B - —
=i SETY Pt o
W | CLR MWO00100 W10; [(W]Dest HMROODI100
[W]Data 00000
[(WWidth 00010
L - _
F — —

Example: The data of registers from MW00100 to MWO00119 are cleared to 0.

| CLR MW00100 W20:

. —> 0000 MW00100
— 0000 MW00101
T 0000 MW00102

MW00118
MWO00119

Command Reference

8-147

8 Command Reference

8.8.5 ASCII Conversion 1 (ASCII)

8.8.5 ASCII Conversion 1 (ASCII)

Motion Programs Sequence Programs

Applicable

Applicable

(1) Overview

The ASCII command converts the character string specified during command execution into ASCII code and
stores it in the specified register (integer register). Upper and lower case letters can be distinguished from each

other.

The first character and the second character are stored respectively in the lower byte and upper byte of the first
word in order. If the number of characters in the string is odd, the upper byte of the last word in the storage desti-

nation register becomes 0. The number of input characters is up to 32.

Note: The following versions of system software and programming tool MPE720 are required to use an

ASCII command.

MP2000 Series Applicable Ver- . .
Machine Controller sion Numbers LT Applicable Version Numbers
MPE720 Ver.5 MPE720 Ver.5.38 or later
All model Ver2.60 or lat 6.
models er or later MPE720 Ver.6 MPE720 Ver.6.04 o'r later
MPE720 Ver.6.04Lite or later
(2) Format
ASCII ‘ABCDEFG’ MWO00200;
A B
ltem Description Usable Registers
A Character string ASCII characters
B Storage register number Lr;’;(:iger type registers (Excluding # and C regis-

The following tables show the characters that can be used in the ASCII command.

(a) Usable Characters

ltem ASCII Characters

Alphanumeric Characters | atoz, AtoZ,0to 9

Space,

SymbO|S !#$%&()*+7_‘/:;<:>?@[]//]A7‘{|}~

(b

~—

Usable Characters

ltem ASCII Characters

Single Quotation ‘

Double Quotation “

Double Slash //

8-148

8.8 Data Operations

(3) Programming Examples
ASCII command programming examples are shown below.

(a) Storing the character string “ABCD” in MW00100 to MW00101
<4 EXAMPLE »

| AscIl ‘ABCD’ MW00100; |

Upper Byte Lower Byte
MWO00100 42H('B’) 41H('A) MWO00100 = 4241H
MWO00101 44H('D’) 43H('C’) MWO00101 = 4443H

(b) Storing the character string “ABCDEFG” in MW00100 to MW00103
<4 EXAMPLE p»

| ASCIl ‘ABCDEFG’ MW00100; |

Upper Byte Lower Byte

MW00100 42H(B) HH(A) MW00100 = 4241H
MW00101 44H(D) 43H(C) MWO00101 = 4443H
MW00102 46H(F) 45H(E) MW00102 = 4645H
MW00103 00H 47TH(G) MWO00103 = 0047H

N 0 will be entered in
the remaining byte.

Command Reference

8-149

8 Command Reference
8.9.1 Sine (SIN)

8.9 Basic Functions

This section describes the basic function commands, including trigonometric functions, square roots, binary data
conversion, and BCD data conversion.

8.9.1 Sine (SIN)

Motion Programs Sequence Programs

Applicable Applicable

(1) Overview

The Sine command (SIN) returns the sine of integer or real number data as the operation result. Double integer
data cannot be used.

(2) Format

MW00100 = SIN (3000);

A B
Item | Description Unit Usable Registers
. * All integer and real number type registers (Excluding # and C registers)
Sine value . . .
A output - * The above registers with subscript
* Subscript registers
* All integer and real number type registers (Excluding # and C registers)
B |Angle input Degr*ee e The ab.ove registers with subscript
(°) * Subscript registers
* Constants

* The input units and output results are different for integer and real number data.

* Integer Data
Integer data can be used within a range of -327.68 to 327.67 degrees. The immediately preceding opera-
tion result (integer data) is used as the input, and the operation result is returned in an integer register
(input unitl = 0.01 degrees). The operation result is multiplied by 10000 before being output.

* Real Number Data
The command will uses the immediately preceding operation result (real number data) as input, and
return the sine in a real number register (unit = degrees).

Example:
Integer Data Real Number Data
Equivalent
|Mwmnm=sm(MmeM); => 0.5=SIN30° MF00102 = SIN (MF00100) ;
(05000) (03000) (0.5) (30.0)
IMPORTANT If integer data is input outside the range of -327.68 to 327.67 degrees, a correct result cannot be obtained.

8-150

8.9 Basic Functions

(3) Programming Examples

SIN command programming examples are shown below.

<« EXAMPLE »
Motion Programs/
Type Sequence Programs Ladder Programs

B - —

W | MW00102=SIN(MWO00100); i SIN =)
[WF1Src MW0D100 [WF]Dest MW0D102

L - -

F | DF00202=SIN(DF00200); B SIN Z)r
[¥FISrc DF00200 [WFIDest DF00202

Command Reference

8-151

8 Command Reference

8.9.2 Cosine (COS)

8.9.2 Cosine (COS)

(1) Overview

Motion Programs Sequence Programs

Applicable Applicable

The cosine command (COS) returns the cosine of integer or real number data as the operation result.
Double integer data cannot be used.

(2) Format

MWO00100 = COS (3000);

A B
Item [Description| Unit Usable Registers
. « All integer and real number type registers (Excluding # and C registers)
Cosine val- . . .
A - * The above registers with subscript
ue output) -
* Subscript registers
« All integer and real number type registers (Excluding # and C registers)
B |Angle input Degt;ee e The abf)ve registers with subscript
(®) * Subscript registers
* Constants

* The input units and output results are different for integer and real number data.

* Integer Data

Integer data can be used within a range of -327.68 to 327.67 degrees. The immediately preceding opera-
tion result (integer data) is used as input, and the operation result is returned in an integer register (input
unit 1 = 0.01 degrees). The operation result is multiplied by 10000 before being output.

e Real Number Data

The command uses the immediately preceding operation result (real number data) as input, and returns
the cosine in a real number register (unit = degrees).

Example:

Integer Data

Real Number Data

Equivalent

IMPORTANT

|Mwom02=COS(MWOm00); => 0.5=COS60° MF00102 = COS (MF00100) ;
(05000) (06000) (0.5) (60.0)
If integer data is input outside the range of -327.68 to 327.67 degrees, a correct result cannot be obtained.

(3) Programming Examples

COS command programming examples are shown below.

<4 EXAMPLE »
Motion Programs/
Type Sequence Programs Ladder Programs

B - _

w MWO00102=COS(MWO00100); i cos)
[WFl1Src MWoOD100 [WF1Dest HWOO102

L - —

F DF00202=COS(DF00200); Tt cos =)
[WFl1Src DFO0200 [WF1Dest DFO0D202

8-152

8.9 Basic Functions

8.9.3 Tangent (TAN)

(1) Overview

The TAN command uses the specified variable or constant (unit = degrees) as input and returns the tangent in a

real number register.

(2) Format

Motion Programs Sequence Programs

Applicable Applicable

MWO00100 = TAN (1.0);
A B
Item | Description Unit Usable Registers
Tangent * All real number type registers (Excluding # and C registers)
A value - * The above registers with subscript
output * Subscript registers
* All real number type registers (Excluding # and C registers)
Degree | - Th ist ith ipt
B | Angle input g | e ab.ove regls ers with subscrip
®) * Subscript registers
 Constants

* Example: Calculates the tangent of the input value (8 = 45.0°): TAN (6) = 1.0

| DF00102=TAN(DF00100);

(1.0) (45.0)

IMPORTANT

The TAN command can use only real number data. If bits, integers, or double integers are specified, an error

will result at compilation.

(3) Programming Examples

TAN command programming examples are shown below.

<4 EXAMPLE »
Motion Programs/
Type Sequence Programs Ladder Programs
B - —
W - _
L - _
F | DF00202=TAN(DF00200); TAN -
[F]Src DF00200 [F]Dest DF0D202

Command Reference

8-153

8 Command Reference

8.9.4 Arc Sine (ASN)

8.9.4 Arc Sine (ASN)

Motion Programs Sequence Programs

Applicable Applicable

(1) Overview

The ASN command uses the specified variable or constant as input and returns the arc sine (unit = degrees) in a
real number register.

(2) Format

MF00100 = ASN (0.5);

A B

Item | Description Unit Usable Registers
* All real number type registers (Excluding # and C registers)
* The above registers with subscript

Angle Degree

output ©) * Subscript registers
* All real number type registers (Excluding # and C registers)
B Sine value B * The above registers with subscript
input * Subscript registers

* Constants

* Example: Calculates the arc sine of the input value (0.5): ASN (0.5) = 30.0 degrees.

MF00202=ASN(MF00200):;
(30.0) (0.5)

The ASN command can use only real number data. If bits, integers, or double integers are specified, an error

IMPORTANT

will result at compilation.

(3) Programming Examples

ASN command programming examples are shown below.

<4 EXAMPLE »
Motion Programs/
Type Sequence Programs Ladder Programs
B - —
W - _
L - _
F | DF00202=ASN(DF00200); - ASIN &
[F1Src DFO0200 [F1Dest DF00D202

8-154

8.9 Basic Functions

8.9.5 Arc Cosine (ACS)

(1) Overview

The ACS command uses the specified variable or constant as input and returns the arc cosine (unit = degrees) in
a real number register.

(2) Format

Motion Programs

Sequence Programs

Applicable

Applicable

MF00100 = ACS (0.5);

A B
Item | Description | Unit Usable Registers
* All real number type registers (Excluding # and C registers
Angle Degree °r type reg (. g gisters)
A N * The above registers with subscript
output ©)) -
* Subscript registers
. * All real number type registers (Excluding # and C registers)
Cosine . . .
B value * The above registers with subscript
input * Subscript registers

» Constants

* Example: Calculates the arc cosine of the input value (0.5): ACS (0.5) = 60.0 degrees.

| MF00100 = ACS (MF00102) ;

(60.0) (0.5)

IMPORTANT

The ACS command can use only real number data. If bits, integers, or double integers are specified, an error

will result at compilation.

(3) Programming Examples

ACS command programming examples are shown below.

<4 EXAMPLE »
Motion Programs/
Type Sequence P?ograms Ladder Programs
B - _
w - _
L - _
F | DF00202=ACS(DF00200); ACOS)
[F]Src DF00200 [F]Dest DF00D202

Command Reference

8-155

8 Command Reference

8.9.6 Arc Tangent (ATN)

8.9.6 Arc Tangent (ATN)

Motion Programs Sequence Programs

Applicable Applicable

(1) Overview

The ATN command returns the arc tangent of integer or real number data as the operation result. Double integer
data cannot be used.

(2) Format

MWO00100 = ATN (100);

A B
Item | Description Unit Usable Registers
* All integer and real number type registers (Excluding # and C registers
Angle Degree g . ‘ ype reg (g g)
A N * The above registers with subscript
output ©) . -
* Subscript registers
* All integer and real number type registers (Excluding # and C registers)
Tangent . . .
B value * The above registers with subscript
input * Subscript registers
* Constants

* The input units and output results are different for integer and real number data.
* Integer Data
Integer data can be used within a range of -327.68 to 327.67 degrees. The immediately preceding opera-
tion result (integer data) is used as the input, and the operation result is returned in an integer register
(input unit 1 = 0.01 degrees). The operation result is multiplied by 100 before being output.
» Real Number Data

The command uses the immediately preceding operation result (real number data) as input, and returns
the arc tangent in a real number register.

Example:
Integer Data Real Number Data
[MW00100 = ATN (MW00102) ; B 45=ATN(1.0) MF00100 = ATN (MF00102) ;
(04500) (00100) (45.0) (1.0)

(3) Programming Examples

ATN command programming examples are shown below.

<4 EXAMPLE »
Motion Programs/
Type Sequence Programs Ladder Programs
B — —
- i S ATAN
W | MW00102=ATN(MW0O0100); [WF1Src MWOOD100 [WF1Dest MWOOD102
L — —
= : - ATAN o)
F DF00202=ATN(DF00200); [WFISrc DF00200 [WF1Dest DF00202

8-156

8.9 Basic Functions

8.9.7 Square Root (SQT)

(1) Overview

Motion Programs Sequence Programs

Applicable Applicable

The SQT command returns the square root of an integer or real number as the operation result. Double integer
data cannot be used.

(2) Format

MWO00100 = SQT (100);

A B
Item | Description Usable Registers
* All integer and real number type registers (Excluding # and C registers)
Root value . . .
A output * The above registers with subscript
* Subscript registers
* All integer and real number type registers (Excluding # and C registers)
B | Data input * The ab.ove registers with subscript
* Subscript registers
* Constants

Note: The input units and output results are different for integer and real number data.

* Integer Data
The result is different from that obtained for the mathematical square root, and is calculated using the
following formula:

32768 * sign(B) = ,/|B|/32768
sign(B): Sign for data input
|B|: Absolute value of data input

That is to say, the output is the result of the mathematically expressed square root multiplied by 32768.
When the input is a negative number, an absolute square root is calculated, and the negative number is
taken as the operation result. The operation error is a maximum of 2.

* Real Number Data

The SQT command uses the immediately preceding operation result (real number data) as input and
returns the square root in a real number register.

Example:

Input Value Integer Data Real Number Data
Positive | MWO00100 = SQT (MW00102) ; | N64 X 432768 = 1448 | MF00100 = SQT (MF00102) ; |

value input (01448) (00064) 8 (181) (8.0) (64.0)
Negative | MW00100 = SQT (MW00102) ; | -(m X m>=-1448 | MF00100 = SQT (MF00102) ; |

value input | = "51278) (-00064) ® (181) (-8.0) (-64.0)

Command Reference

8-157

8 Command Reference

8.9.7 Square Root (SQT)

(3) Programming Examples

SQT command programming examples are shown below.

<4 EXAMPLE »
Motion Programs/
Type e Ladder Programs

B - _

W | MW00102=SQT(MWO00100); i SORT Fa)
[WF1Src MWoD100 [WF1Dest MWOD102

L - _

F | DF00202=SQT(DF00200); —(SORT Fa)
[WF1Src DFO0200 [WF1Dest DFOD202

8-158

8.9 Basic Functions

8.9.8 BCD to Binary (BIN)

(1) Overview

Motion Programs

Sequence Programs

Applicable

Applicable

The BCD to Binary (BIN) command converts BCD data to binary data.

Only integer data can be used. If a non-BCD data is specified, a correct result cannot be obtained.

(2) Format

MWO00100 = BIN (1234H);

A B
Item | Description Usable Registers
. + All integer and double integer type registers (Excluding # and C registers)
Binary data . . .

A output » The above registers with subscript
* Subscript registers
* All integer and double integer type registers (Excluding # and C registers)

B BCD data | ° The above registers with subscript

input * Subscript registers
* Constants

Note: Example 1

Converted to
MW00101|1|2|3|4||::>MW00100|0|4|D|2|
(1234H) 1234 (decimal)
Example 2
Converted to
MW00101|1|2|3|F||::>MW00100|0|4|D|D|
(123FH) 1245 (decimal)
@ If non-BCD data is specified, a correct result cannot be obtained.

(3) Programming Examples

BIN command programming examples are shown below.

Command Reference

<4 EXAMPLE »
Motion Programs/
Type Sequence Programs Ladder Programs
B — —
- . BIN i

W | MW0O101=BIN(MW00100); [WL]Src MWOO100 [¥L1Dest MWOO101
L | ML00102=BIN(ML00100); BIN

’ [WL]Src MLOD100 [WL1Dest MLOD102
F - -

8-159

8 Command Reference

8.9.9 Binary to BCD (BCD)

8.9.9 Binary to BCD (BCD)

Motion Programs Sequence Programs

Applicable Applicable

(1) Overview
The Binary to BCD (BCD) command converts binary data to BCD data.

Only integer data can be used. If the binary data is 9999 or higher or is a negative value, a correct result cannot be
obtained.

(2) Format

MWO00100 = BCD (1234);

A B
Item | Description Usable Registers
+ All integer and double integer type registers (Excluding # and C registers)
BCD data . . .
A * The above registers with subscript
output

* Subscript registers

+ All integer and double integer type registers (Excluding # and C registers)
Binarydata | ¢ The above registers with subscript

input * Subscript registers
* Constants

Note: Example 1

Converted to

Mwoo101 [0 [4 [D [2 | [i} Mwootoo [1 [2 [3 [4 |
1234 (decimal) (1234H)
Example 2
Converted to
Mwooto1 [3] o [3 [9 | [i} Mwootoo [¢ [3 [4 [5
12345 (decimal) (C345H)

IN FO If the binary data is greater than 9999, a correct result cannot be obtained.

(3) Programming Examples

BCD command programming examples are shown below.

<4 EXAMPLE »
Motion Programs/
Type Sequence Programs Ladder Programs
B — —
- . = BCD) g
W | MW00101=BCD(MW00100); [WL1Src MWOD100 [WL]1Dest KWOO101
- . — BCD
L ML00102=BCD(ML00100); [WL]1Src HWLOD1OO [WL]Dest HMLOO102
F —_ —_

8-160

8.9 Basic Functions

8.9.10 SetBit (S{})

(1) Overview

Motion Programs

Sequence Programs

Applicable

Applicable

This command turns ON the specified bit if the logical operation result is true. It does not turn OFF the specified
bit, even if the logical operation result is false.

(2) Format

S { MB001000 } = MB001010 & MB001011;

A

B

Iltem [Description

Usable Registers

A | Specified bit

* All bit type registers (Excluding # and C registers)
* The above registers with subscript

Logic
expression

* All bit type registers (Excluding # and C registers)
* The above registers with subscript
* Constants

(3) Programming Examples

The Set Bit command (S{ }) programming examples are shown below.

<« EXAMPLE »
Motion Programs/
Type Sequence Programs Ladder Programs
B S{MB001000}=MB001010& l MBDIUi]uw MBUIIJIIIJII MBIJ’EI_L\DIJIJ |
MB001011; | | 11 (3 |
w _
L _
F —

Command Reference

8-161

8 Command Reference

8.9.11 Reset Bit (R{})

8.9.11 Reset Bit (R{})

Motion Programs Sequence Programs

Applicable Applicable

(1) Overview

This command turns OFF the specified bit if the logical operation result is true. It does not turn ON the specified
bit, even if the logical operation result is false.

(2) Format

R {MB001000 } = MB001010 & MB001011;

A B

ltem | Description Usable Registers

A Specified bit * All bit type registers (Excluding # and C registers)
* The above registers with subscript

* All bit type registers (Excluding # and C registers)
* The above registers with subscript
* Constants

Logic
expression

(3) Programming Examples

Reset Bit command (R{ }) programming examples are shown below.

<4 EXAMPLE »
Motion Programs/
Type Sequence Programs Ladder Programs
- MBOO1010 MBOOTO11 MBOO 1000
B R{MB001000}=MB001010& | ! ! R |
MB001011; | | I P ~
w - _
L - _
F — —

8-162

8.9 Basic Functions

8.9.12 Rising Pulse (PON)

(1) Overview

Motion Programs

Sequence Programs

Not applicable

Applicable

The PON command is ON during one scan of bit output when the bit input status changes from OFF to ON.
The register that stores the previous bit output value is used as a work of PON processing. Set the registers that

are not used

for other processes.

Note: The following versions of system software and programming tool MPE720 are required to use PON

commands.
MP2000 Series
Machine Controller Required Version MPE720 Required Version
MPE720 Ver.5 MPE720 Ver.5.38 or later
All models Ver.2.60 or later 6.
MPE720 Ver 6 MPE720 Ver.6.04 or‘ later
MPE720 Ver.6.04 Lite or later

(2) Format

DB000002 = PON (DB000000 DB000001) ;

A B C
ltem Description Usable Registers
A Bit output * Bit type registérs (Exc.luding # a.md C registers)
* The above registers with subscript
B Bit input * All bit type registers . .
* The above registers with subscript
c To store the previous bit * Bit type registers (Excluding # and C registers)
output value * The above registers with subscript

Command Reference

8-163

8 Command Reference

8.9.12 Rising Pulse (PON)

(3) Programming Examples
The PON command programming examples are shown below.
(a) Outputting to a Coil
<4 EXAMPLE
| DB000002=PON(DB000000 DB000001); |

* Ladder equivalent circuit

| DE0000OO DBOOOODT DE0000D2 |
——F O—

» Timing chart
DB000000 Q I—I Ii
DB000001 Q I—I Ii
DB000002 l_l |_|

+ +

One scan One scan

(b) Using a PON Command Combined with an IF Command
<4 EXAMPLE »

IF PON(DB000000 DB000001) == 1;

IEND;

» Ladder equivalent circuit

DBOOOOOD DBOOOODY pBOOOOD2
| | f i
I p—y

—5t IF =}
DBOO0OD0O2 == true
—URENDEIERE}
+ Timing chart
DB000000 Q I—I |7
DB000001 Q I—I Ii
Processing ,_| l—l
in IF command * *
Executed only for one scan Executed only for one scan

8-164

8.9 Basic Functions

8.9.13 Falling Pulse (NON)

(1) Overview

Motion Programs Sequence Programs

Not applicable Applicable

Falling Pulse (NON) is ON during one scan of bit output when the bit input status changes from ON to OFF.

The register that stores the previous bit output value is used as a work of NON processing. Set the registers that

are not used

for other processes.

Note: The following versions of system software and programming tool MPE720 are required to use NON

commands.
MP2000 Series
Machine Controller Required Version MPE720 Required Version
MPE720 Ver.5 MPE720 Ver.5.38 or later
All del Ver.2.60 or later 6.
models MPE720 Ver.6 MPE720 Ver.6.04 or later

MPE720 Ver.6.04 Lite or later

(2) Format
DB000002 = NON (DB000000 DB000001) ;
A B C
Item Description Usable Registers
A Bit output * Bit type registf':rs (Exc.luding # 2.1nd C registers)
* The above registers with subscript
Y * All bit type registers
B Bit input
Hinpu * The above registers with subscript
c To store the previous bit * Bit type registers (Excluding # and C registers)
output value * The above registers with subscript

Command Reference

8-165

8 Command Reference

8.9.13 Falling Pulse (NON)

(3) Programming Examples
NON command programming examples are shown below.

(a) Outputting to a Coll

DB000002=NON(DB000000 DB000001); |

» Ladder equivalent circuit

<4 EXAMPLE p
| DBOOOOOO DBOOOOOT DBOOODD2 |
" O—f
+ Timing chart
DB000000 Q I—I I—
DBO000001 Q I—I I—
DB000002 I_I |_|
; ;
One scan One scan

8-166

8.9 Basic Functions

(b) Using a NON Command Combined with an IF Command
<4 EXAMPLE p»

IF NON(DB0O00000 DB000001) == 1;
AE
AE

IEND;

* Ladder equivalent circuit

Deoo00OD DEOODOD1

Deoooo02
oy

| ~

Ry

— IF -
DBOO0DODZ2 == true

—IBENDET B

+ Timing chart

DB000000

L

DB000001

Processing
in IF command

TLL

Executed only for one scan

PIT

Executed only for one scan

Command Reference

8-167

8 Command Reference

8.9.14 ON-Delay Timer (TON): Counting unit: 0.01 second

8.9.14 ON-Delay Timer (TON): Counting unit: 0.01 second

(1) Overview

Motion Programs

Sequence Programs

Not applicable

Applicable

The TON command counts the milliseconds (in units of 10 ms) when the bit input is ON. When the counted
value is equal to the set value, the bit output will turn ON. If the bit input turns OFF during counting, the timer
operation will stop. After the bit input turns ON again, counting starts again from the beginning (0). In the regis-
ters for counting, the actual count (in units of 10 ms) is stored.

Note: The following versions of system software and programming tool MPE720 are required to use TON

commands.

MP2000 Series

Machine Controller Required Version MPE720 Required Version
MPE720 Ver.5 MPE720 Ver.5.38 or later
All models Ver.2.60 or later 6.
MPE720 Ver 6 MPE720 Ver.6.04 o.r later
MPE720 Ver.6.04Lite or later
(2) Format
DB000001 = DB0O00000 & TON (500 DWO00001);
A B C D
Item Description Usable Registers
A Bit output * Bit type registf.:rs (Exc.luding # 2.1nd C registers)
* The above registers with subscript
. * All bit type registers
B Bit input
tinpu * The above registers with subscript
* All integer type registers
C Set value * The above registers with subscript
* Constants (0 to 65535 (655.35 s): Every 10 ms)
* All int t ist
D Register for timer counting feeet yp,e fegls ?rs .
* The above registers with subscript
IMPORTANT * Milliseconds are not counted while the debugging operation is stopped.

Counting starts again from the current counted value after the debugging operation restarts.

* Be sure to designate bit input “DBxxxxxx&.”

8-168

8.9 Basic Functions

(3) Programming Examples

TON command programming examples are shown below.

<4 EXAMPLE »

| DB000001=DB000000 & TON (500 DWO00001); |

T Set to 5 seconds.

» Ladder equivalent circuit

DBO0000D DBO00OO1 |
TON[10ns]) {
[W]Set 00500
[¥]Count DW00001
» Timing chart
DB000000 4 I_
DB000001 I—

500

DW00001 500s-Ts

A

(Ts = Scan set value)

Command Reference

8-169

8 Command Reference

8.9.15 OFF-Delay Timer (TOF): Counting unit: 0.01 second

8.9.15 OFF-Delay Timer (TOF): Counting unit: 0.01 second

(1) Overview

Motion Programs

Sequence Programs

Not applicable

Applicable

The TOF command counts the milliseconds (in units of 10 ms) when the bit input is OFF. When the counted
value is equal to the set value, the bit output will turn OFF. If the bit input turns ON during counting, the timer
operation will stop. After the bit input turns OFF again, counting starts again from the beginning (0). In the regis-

ters for counting, the actual count (in units of 10 ms) is stored.

Note: The following versions of system software and programming tool MPE720 are required to use TOF

commands.

MP2000 Series

Machine Controller Required Version

MPE720

Required Version

MPE720 Ver.5 MPE720 Ver.5.38 or later

All models Ver. 2.60 or later MPE720 Ver.6.04 or lat
MPE720 Ver.6 720 Ver6.04 or later
MPE720 Ver.6.04Lite or later
(2) Format
DB000001 = DB0O00000 & TOF (500 DWO00001);
A B Cc D
Item Description Usable Registers
A Bit output * Bit type registe.:rs (Exc:.luding # 'c?nd C registers)
* The above registers with subscript
e All bit t ist
B Bit input bit type regls ers . .
* The above registers with subscript
* All integer type registers
C Set value * The above registers with subscript
* Constants (0 to 65535 (655.35 s): Every 10 ms)
* All int ist
D Register for timer counting infeger typ,e fess ?rs .
* The above registers with subscript
IMPORTANT * Milliseconds are not counted while the debugging operation is stopped.

8-170

Counting starts again from the current counted value after the debugging operation restarts.

* Be sure to designate bit input “DBxxxxxx&.”

8.9 Basic Functions

(3) Programming Examples

TOF command programming examples are shown below.

<4 EXAMPLE »

| DB000001=DB000000 & TOF (500 DWO00001); |

» Ladder equivalent circuit

DBOOOOOD DBOOOODDT |
TOFF [10ms] 2} O
[W]Set 00500
[¥]Count DWO0OO1
» Timing chart
DB000000 4
DB000001 4 I—
500 —
DWO00001 0 500s -Ts
(Ts = Scan set value)

Command Reference

8-171

8

Command Reference

8

.10.1 C-Language Task Control (CTSK)

8.10 C-Language Control Commands

8-172

8.10.1 C-Language Task Control (CTSK)

Motion Programs Sequence Programs

Applicable Applicable

(1) Overview

The C-Language Task Control command (CTSK) is used to control operations, including start and stop, of user
C-language tasks.

Motion program/Sequence program User C language tasks

Main program

—

_'L\‘
CTSK Start, stop, etc .]]

command

v

User C language
task #1

Subprogram

=

AN
CTSK Start, stop, etc. .
command

User C language
task #2

—]

v

Note: The following versions of system software and programming tool MPE720 are required to use CTSK
commands.

MP2000 Series Machine

Required Version MPE720 Required Version
Controller

MPE720 Ver.5 MPE720 Ver.5.38 or later

All models Ver. 2.60 or later 6.
MPE720 Ver.6 MPE720 Ver.6.04 o.r later
MPE720 Ver.6.04Lite or later

INFO The Machine Controller MP2000 series embedded C-language package is required to use user C-language tasks.
% For details, refer to Machine Controller MP2000 Series Embedded C-Language Programming Package Development
Guide (manual no.: SIEP C880700 25).

(2) Format

CTSK EXECUTE TYPE, C_NAME, COMPLETE ERROR ERR_CODE;

8.10 C-Language Control Commands

1/0 I/0
Defini- | No. Name Desig- Description
tion nation
EXECUTE | B-VAL | Designates of execution of CTSK function.
Designates the task control type.
1: WAKEUP | Wakes up the task from the WAIT status.
Valid only for sequence programs (low scan)
Input TYPE I-REG | 2: RESET Exits and deletes the task once, and then creates and starts a task.
The started task then enters the WAIT status.
3: SUSPEND | Interrupts the task and moves the task to the SUSPEND status.
4: RESUME | Moves the task from the SUSPEND status to the READY status.
C NAME Afidress Designates the leading register r.1umber (MW/DW address) of the registers where the
- mput user C-language task name (project name) is stored.
COMPLETE | B-VAL | Completes execution of CTSK function
ERROR B-VAL | Error occurrence (The contents of error is reported to ERR_CODE.)
Error code
0x00000000 | No error
0x0000006F DWG (drawing) type error .
» CTSK function was executed by a sequence program (start drawing)
* TYPE setting error
* TYPE set value is out of the range.
0x00000091 * The task was neither in the WAIT nor WAIT-SUSPEND status when
the task control type WAKEUP was executed.
* The task was neither in the WAIT nor READY status when the task
Output control type SUSPEND was executed.
ERR_CODE | L-REG | 0x00000094 | The task designated in C_NAME does not exist.
0x00000096 CfNAM]‘E register over the upper/lower limit . '
Note: This can be detected also when EXECUTE input is OFF.
OxFFFFFFDD | WITRON detection error (Invalid ID number)#
OXxFFFFFFCC | WITRON detection error (Task not registered)*
UITRON detection error (Illegal object status)
OxFFFFFFCI1 | e The task is in DORMANT status.
* RESUME was commanded to a task that was not in SUSPEND status.
0xFFFFFFBB UWITRON c.letection error (Con.text error)*
* Cannot issue from the task independent context.
OxFFFFFFB7 | WITRON detection error (Queue overflow)#

control in every scan cycle.

* The LWITRON detection errors will not occur normally because the system manages them.
Note: 1. The EXECUTE input is not used for the signal rising edge, but treated as level. This is to implement task

2. The task controls except for RESET can be executed by motion programs, sequence programs for high-

speed scan drawing, and sequence programs for low-speed scan drawing. They cannot be executed by
sequence programs for start drawing.

3. The task control type RESET can be executed only by sequence programs for low-speed scan drawing.

(3) Programming Examples

<4 EXAMPLE »

A CTSK command programming example is shown below.

ASCII 'ctask1' DW00010;
DW00013 = 0000H;

DWO00002 = 1;
DB000001 = 1;

"User C-language task name
"NULL code

"WAKEUP

"Execute the task control
CTSK DB000001 DW00002, DA00010, DB000002 DB000003 DL00004;

Command Reference

8-173

8 Command Reference

8.10.2 C-Language Function Call (CFUNC)

8.10.2 C-Language Function Call (CFUNC)
(1) Overview
The C-Language Function Call command (CFUNC) calls the user C-language task.

Motion program/Sequence program User C-language function

Main program

CFUNC |
command |«

Call PO -

—_ik]\]
User C—Ianguageé
Subprogram i function #1 i

Call S .
CFUNC [>/ j
command H =
| S

User C-Ianguagei
t function #2 ;

Note: The following versions of system software and programming tool MPE720 are required to use
CFUNC commands.

MP2000 Series
Machine Controller Required Version MPE720 Required Version

MPE720 Ver.5 MPE720 Ver.5.38 or later

Ver.2.60 or later MPE720 Ver.6.04 or later

All models
MPE720 Ver.6 .
MPE720 Ver.6.04Lite or later

For details, refer to Machine Controller MP2000 Series Embedded C-Language Programming Package Development
Guide (manual no.: SIEP C880700 25).

INFO The Machine Controller MP2000 series embedded C-language package is required to use user C-language tasks.
%

8-174

8.10 C-Language Control Commands

(2) Format
CFUNC EXECUTE OPTION1 OPTION2, C_NAME C_ARG1 C_ARG2,
COMPLETE ERROR C_RETURN;
I/0 e
Defini- | No. Name . . Description
. Designation
tion

1 EXECUTE B-VAL Designates execution of CFUNC function

2 [OPTION1 I-REG Option designation 1 (For future use)

3 | OPTION2 I-REG Option designation 2 (For future use)

4 |c_NAME Address input Designates the leading register No. (MW/PW address) of the registers

Input where the user c-language function name is stored.

5 |C_ARG1 Address input Designates the leadlng register No. (MW/DW address) to be set for the
user C-language function 1st argument.

6 |C_ARG2 Address input Designates the leadlng register No. (MW/DW address) to be set for the
user C-language function 2nd argument.

1 | COMPLETE | B-VAL Completes execution of the CFUNC function
Error occurrence

* C_ NAME, C_ARG.1, C_ARG.2 register over the upper/lower limit
The si fC ARG.1 ARG.2 ken i ider-
Output > | ERROR B-VAL gtioi s)lzes of C_ARG.1 and C_ARG.2 are not taken into consider:
Note: Detected also when the EXECUTE input is OFF.
* The function designated in C_ NAME does not exist.
3 | C_RETURN | L-REG Stores the return value of user C-language function as it is.

(3) Programming Examples

The CFUNC command programming example is shown below.

<4 EXAMPLE p»

ASCII 'cfunc1' DW00010;
DWO00013 = 0000H;
DB000000 = 1;

DL00016;

"User C-language function name

"NULL code

"Execute the user C-language function
CFUNC DB000000 0 0,DA00010 DA00002 DA00004, DB0O00003 DB000004

Command Reference

8-175

9

Engineering Tool MPE720

This chapter describes the engineering tool MP720, for creating and editing motion programs
and sequence programs.

9.1 Motion Editor --------- oo - e 9-2
9.1.1 OVEIVIBW = = = = = = == m o e m o e e o e e e e e e e meimoamoan 9-2
9.1.2 Names and Descriptions of Motion Editor Window Components ---------------- 9-4

9.2 Command Input Assistant Function --------------ccmo-- 9-6
9.2.1 OVEIVIEW = - = - == m o oo o e e e oo oo 9-6
9.2.2 Motion Command Assist Dialog Box Details - - - - == - == === ccccmmmmmm e - 9-8

9.3 Program Execution Registration Function - ---------------------- 9-12
9.3.1 OVEIVIBW = = == = 5 o m e m o e e o e e e e e emaao oo 9-12
9.3.2 Program Execution Registry Screen Dialog Box Details - -------=------------ 9-13

9.4 Debug Function -------------m-m i 9-15
9.4.1 OVEIVIBW == === 5 o m s o e e e e e e e e e e emaao - 9-15
9.4.2 Motion Editor Window during Debugging - ------=-=--=-=-“«“--“--““--------- 9-16

9.5 Motion Task Manager ------------- - 9-22
9.5.1 OVeIVIEW - - - - - o m oo e o e e e e e 9-22
9.5.2 Motion Task Manager Window Details - - - - -------ccmmmmmmm e aa oo 9-23

9.6 Drive Control Panel - - - - - == == - s e o e e e 9-24
9.6.1 OVEIVIEBW = - === 5 o m s o e e e e e e e e maa oo 9-24
9.6.2 Drive Control Panel Details - - - - - ----------mmmmmmme e 9-26

9.7 TestRun Function - - - - - = == = - o m o e e 9-28
0.7.1 OVeIVIEW - - - - - m m o o e e e e e e e 9-28
9.7.2 Test Run Window Details - ---------cmmmmm e 9-29

9.8 Axis Status and Alarm Monitor - - - - -------- - 9-31
9.8.1 OVEIVIEBW == === - o m s o e e e e e e maa oo 9-31
9.8.2 Monitor Window Details -----------------“------o oo 9-33

Engineering Tool MPE720

9-1

9 Engineering Tool MPE720

9.1.1 Overview

9.1 Motion Editor

This section describes the Motion Editor.

9.1.1 Overview

The Motion Editor is a programming tool that is required to create and edit motion programs and sequence pro-
grams.

It has the full range of functions required to create and edit these programs, including text editing, compiling
(saving), debugging, and monitoring.

ngineering Manager - [Motion Editor MP2310 Online Local[f 5 E||£|
] File Edit Wiew Debug Mindow =] x|
DES W @ BE LEE RS
[PTa: 2 cPU: 1 [= ECEETEE
ot]| RREHS &[5 L[=[EH F L EERNEp
nooo1 MPMOD1 =
00002
00003
00004 "ACCELERATION TIME CHANGE"
00005 00000 ACC [A1]1000 [B1]1000;
00006 "DECELERATION TIME CHANGE"
00007 00001 DCC [A1]1000 [B1]1000;
00008 "SET SPEED"
00009 00002 VEL [A1]6000 [B1]6000;
00010
00011
00012 "POSITIONING"
00013 00003 MOV [A1]1000 [B1]2000;
00014 00004 END;
Line Block K| »

[[\ \ [[[
1DBG_|24BT |3 4N [SovR _[8sP_ [7BP _ [EGO |9 [itBRK_[IRGL |12

For Help, press F1 [[cap fuom | VA

9.1 Motion Editor

There are two ways to start the Motion Editor:

* Double-click the program in the Motion subwindow.

Mation r ox

|

Program

= MPz310]
& Mation program
e

I Motion Editor MP2310 Online Local[MPMOD1] . =10l x|
PT#: 2 CPUR: 1 | 2
Group1 vlaﬁ'ﬂﬂq‘ﬁ‘Eﬁﬁr“‘li“E!‘b']
oooo1 END; ;l

ubr pragran
Sequence program

Line ﬂ _’l—l

|Ladd s Motion TR ISystem |

« Clickthe B icon on the toolbar of the Engineering Manager window.

[Motion Editor MP2310 Online Local[MPMOD1] ;lgl_l
PT#: 2 CPUZ: 1 I_ | L
[Growpt F[RDRESEHS| S| wmE § TR
00001 END; = |

elpn(uEeEsn

Line 1] _blll

Engineering Tool MPE720

9-4

9 Engineering Tool MPE720

9.1.2 Names and Descriptions of Motion Editor Window Components

9.1.2 Names and Descriptions of Motion Editor Window Components

e) f)

?ﬁ,ﬂEngineering Manager - [Motion Editor MP2310 I]nIine.LnEa'![2 | Dlll

| Fle Edit View Debug ‘Window =
IEEEE Y E @ﬂﬁf@'aaa v
e =

RREEY & [wE{imEsmupn
MPMO01 |

“ACCELERATION TIME CHANGE"
ACC [A1]1000 [B1]1000;
“DECELERATION TIME CHANGE"
DCC [A1]1000 [B1]1000;

“SET SPEED" <
VEL [A1]6000 [B1]6000; b)
"POSITIONING
MOV [A1]1000 [B1]2000;
END;
Life Bidek 4] _>|_I
| | | | | | \
1DBG [24BT |3 |4N |SovR |6sP |[7BP |3GO |3 [1tBRK [1RGL [|
For Help, presgF1 |— WW| 2

c) d)

a) Group selection (Only for motion programs)

The group names set in the Group Definition dialog box are displayed in the drop-down menu.
Select a group for which the editing program is to be used.

|Group1 -

Group?
Group3

b) Program editing window

A text editor for programming.

c) Line

Displays program text lines.

d) Block

Displays program blocks.
When an alarm is generated in the motion program, the block where the alarm is generated is reported.

9.1 Motion Editor

e) Tool icons
The following table shows the icons used to edit programs.
Function Icon Key. Description
Operation
Cut ¥ Ctrl + X Deletes the selected range and stores the deleted range in the Clip-
board.
Copy Ctrl+ C | Reproduces the selected range in the Clipboard.
Paste Ctrl+V | Pastes the materials stored in the Clipboard.
Position Monitor e - Displays the Position Monitor dialog box.
New File
(Motion programs) i - Opens a new motion program file.
New File s o l
- ns a new nce program file.
(Sequence programs) Pens a iew sequetice prog ¢
Open = - Displays the File List dialog box.
Saves the editing program to the hard disk of the computer.
Save = Ctrl+S During online editipg, the editing program will be not only be
saved to the hard disk but also downloaded (transferred) to the
Machine Controller.
Consecutively executes the following operations.
« Saves the editing program to the hard disk of the computer.
Save & Save to Flash H:IH _ * Downloads the editing program to the Machine Controller.
* Saves the downloaded program to the flash memory.
All programs downloaded to the Machine Controller will be saved
to the flash memory.
Print & Ctrl + P | Prints out the editing program.
Motion Command Assist Ed F12 Displays the Motion Command Assist dialog box.
Displays the Position Teach dialog box.
o x The work coordinate system current position of the axis desig-
Position Teach -
)_ nated in the Position Teach dialog box will be inserted on the
Motion Editor.
Add/Not Add a i _ Used to select whether or not to allow use of the ENT key to add a
Semicolon ! semicolon (;).
ggfn Error List Dialog List - Displays the list of save errors (compile errors).
Automatic Scroll _ Used tQ sel.ect whether or not to s;roll the screen in llpe with the
executing line of the program during program execution.
f) Monitor tab and status bar
Used to monitor programs.
Function Bution/ OK:?/a- Description
Status Bar tﬁon P

Monitoring Tab

Sets whether or not to monitor programs.

When the moving button is selected (
cuting program line is displayed in real time.

Bar

Monitoring Status E e = =

Indicates the program monitoring status.

Engineering Tool MPE720

9-5

9-6

9 Engineering Tool MPE720

9.2.1 Overview

9.2 Command Input Assistant Function

9.2.1

This section describes the motion command input assistant function.

Overview

The command input assistant function helps a programmer to create a required motion program.
The motion commands are written in a textual language called motion language, and each command needs to be
written in the specified format. The Motion command assist dialog box is provided to make it easy to correctly

select and code the commands.

The following versions of MPE720 support the command input assistant function.

MPE720 Supported Version
MPE720 Ver.5 Not supported
Ver.6.04 or later
MPE720 Ver.6 Ver.6.04 Lite or later

Note: The command input assistant function can be used for all models of MP2000-series Machine Controllers.

The Motion command assist dialog box can be opened from the Motion Editor window. There are two ways to

open the Motion command assist dialog box, as described on the next page.

iﬂjMotion command assist ll
Select Command IMDV: POSITIOMIMG __Y_I
MOV [Axis1]- [Axis2]- ...
Axiz humber : |3 Yl Lpdate |
Set to the arguments :
Argument Axis |Setting ... |Unit |«
[Axis1] Position Al I pulse I
[&xis2] Pasition E1 [Refer...
[&xis3] Position C1 [Refer...
-
[V Comment
POSITIONING =]
|nzert I Cloze | Help |
Ve

9.2 Command Input Assistant Function

* Select Motion command assist from the pop-up menu when you right-click the Motion Editor window,

or press the function key F12.

Urda:

Lkl

Copy
Faste

Insett motion cormmand 3

Mae execubion position
Set/Delete Breakpoint
Enable/Disable Ereakpaint

Select Al

Add Register

Register for Trace Manager.
Refer

Motion alarm analyzer

otion command assist

X

Select Command IAEE ACCELERATION TIME CHANGE j

ACC [Axis1} [Axis2]-

s runber - [ENIL~ | Update
Set o the arguments

Argurnent Axis | Setting v... | Unit -
[Axis 1] Accelera . | A1 [ms]
[4xis2] Accelera.. |B1 [Accel...
[Axis3] Accelera . |C1 [Accel

[Comment

[ACCELERATION TIME CHANGE =]

fre=t | Cose | Helo |

4

* From the right-click menu, select Insert motion command, then select the command you want to insert.

Seren frable
Servo Disable
Hon Clow
o, Merm Cormmandy 0
sovcin
A Register *
Crvmrview of Sequence Conmands B 3,506 S-CURVE TIME CORSTANT CHANGE
Rafer Math Commands * A, WEL : SET SPEED
Motion sl andyer = 5. 1FP : INTERPOLATION FEED SPEED RATIO SETTING

6P
7. 18C ; INTERPOLATION ACCELERATION TIME CHANGE
8, 30 ¢ INTERPOLATION DECELERATION TIVE CHAME

Motion command assist

elect Command |ACC : ACCELERATION TIME CHANGE

ACC [Axis1]- [Axis?]- .;

s rumber : [N~ Update

Setto the arguments :

Argurnent Axis|Sertingv.. |Unit |~

[Axis1] Accelera.. A1 [ms]

[Axis2] Accelera... |E1 [Accel...

[Axis3] Accelera.. |C1 [Accel...

¥ Comment

WCCELERATION TIME CHANGE ;I
|

| Close | Help |

Engineering Tool MPE720

9-7

9 Engineering Tool MPE720

9.2.2 Motion Command Assist Dialog Box Details

9.2.2 Motion Command Assist Dialog Box Details

£ Mation command assist E |
a) ————P 5clest Command MOV POSITIONING =]
b) ———— P} MOV [Axis1]- [Axis2)- .
C) —Pp s rumber 3 - Update |h-— f)
~Set to the arguments
Argument Axis |Sett|ng W, ‘Um([«
d) > [Axis1] Position | A1 [pulse]
[Axis2] Pasition E1 [Refer...
[#xis3] Position | C1 [Refer...
¥ Comment
POSITIONING =]
e) —’
=
Insert i Close | Help |

a) Select command (Command options)

Click the arrow to open the drop-down menu that contains the commands that can be inserted.

F Motion command assist j Ll
Select Command | MOV : POSITIONING LI
MCW : CIRCULAR INTERPOLATION radius{Clockwize] ;l

- o q|MCw CIRCULAR INTERPOLATIONClockwise]
MOV [Axis1 MCw - HELICAL INTERPOLATION radius(Clockwise]

MCW : HELICAL INTERPOLATION[Clockwize)

s rumber :[3[MOD - REMAINDER:

ITIONING
b BROUTINE CaLl
Set 0 the 31Um| 1 - MOVE ON MACHINE CODRDINATES
Argument | MVS : LINEAR INTERPOLATION
MYT © SET TIME POSITIONING =l

R e

b) Command format

Displays the programming format of the selected command.

<4 EXAMPLE »

MOV: Positioning
MOV [Axis1 1- [Axis2]- ...;
+: Add

MLOO106=ML0O0102 + MLOO104;

9.2 Command Input Assistant Function

c) Axis number (Number of axes to be controlled)

For axis move commands, the number of axes to be controlled can be selected in the range from 1 to the num-
ber of axes set in the Group Definition dialog box.

When the number of axes to be controlled is fixed, the fixed number of axes is displayed in the shaded box
(unavailable option).

<4 EXAMPLE »

MQV: Positioning ++ Select the number of axes to be controlled.

Axiz nurmber :

Set to the arg

EXM: External positioning <+« The number of axes to be controller is fixed.

Az number : I 1 VI

ra =) Lo
4

d) Set to the arguments

Set the parameters for the selected command. The setting items are listed below.

ltem Description
Displays the parameter names to be set as the arguments. The displayed parameter
Argument | names cannot be edited.
For the arguments that can be omitted, [Can be omitted] is displayed.
Axis Displays the logical axis names. Change the logical axes as required.
Setting value | Enter a constant or register as the set value.
Unit Displays the parameter setting unit. The setting units cannot be edited.

The logical axis names displayed in the Axis column are defined in the Group Definition dialog box.

The setting units in the Unit column are displayed according to the motion parameter settings of each axis. If
a setting unit has not been specified, the corresponding Unit cell is displayed in yellow. Place the mouse
pointer on the Unit cell and click the mouse. The help balloon will pop up. Follow the help balloon messages
to set the motion parameters.

When the selected command requires neither the settings of number of axes to be controlled nor parameters,

the program input field will appear as shown below. Enter the command block referring to the command for-
mat displayed above.

FiZiMotion command assist x|

— 0 5|

MLO0106=ML00102 + MLOD104;

Input progiam

|

o o

¥ Comment

0D ;I

Insert Cose | Hep |

Engineering Tool MPE720

9-9

9-10

9 Engineering Tool MPE720
9.2.2 Motion Command Assist Dialog Box Details

e) Comment check box and Comment input field

Selecting the Comment check box allows you to insert a comment above the command line. When the Com-
ment check box is cleared, the comment input field will be shaded and comments cannot be inserted.

INFO The comment inserting position cannot be changed.

f) Update button

Click the Update button to refresh the display in the Motion command assist dialog box.

INFO After changing the setting of a unit related motion parameter, click the Update button to refresh the display.

g) Insert button

Click the Insert button to insert the command edited in the Motion command assist dialog box at the
pointer position in the Motion Editor window.

PTit: 2 CPU#: 1

|
Group1 MR : - FIEERPEpIIE
00001 "POSITIONING"
00002 OV [41]10000100 [B1]15000000 [C1}1000
00003

FigMotion command assist D x|

Select Command |Ll G

MOV [Axis1]- [Axis2]- ...

psisumber:[3 ¥] Update
Set to the arguments
Argument fois |Setting ... |Unit |~
[Axis1] Pasition |A1 10000100 [pulse]
[£xis2] Position |E1 15000000 [Refer
[Axis3] Pasition |C1 -1000100 [Refer

Line KA ¥ Comment

POSITIONING =

h) Close button

Click the Close button to close the Motion command assist dialog box.

9.2 Command Input Assistant Function

i) Help button

Click the Help button to display a description of the selected command.

Select Command [MOV: POSITIONING |

MOV [Axis1]- [Axis2]- .

Bz numher'|1 Update Jumps to the help

Sel to the arquments page of the

Argument Axis ‘Sattmg Wi ‘Umt o

[2xis1] Position a1 10000100 [pulse] SeIeCted Command
=]

IV Comment

POSITIONING =]

=1
o | e | Coan D

2

Axis Move Commands

This seetion describes the methods of desi gnating axis move s and provides some peogeam-

ming examples.

2.1.1 POSITIONING (MOV)

A Caution

® The path of mevement with the POSITIONING (MOV) command s not aiways & siraight line.
‘When programming, be sure to check the path to make sure that thers ar= no tools or other ob-
stacles In the wey of the workplece.

Failure to carry out this check may result in damage 40 equipment, serious persons] injury. or even death

W Overview

The POSITIONING (MOY: Jenily achis (rom e current positicn
o the end posirion i rapid iraverse speed (ihe speed set in each s parumeer), Up o 14 axes®

can be moved simulianecusty, Any axis not specified in ihe command will not be meved.

The path of movement with the MOV command is different from the livear travel described in
2.1.2 LINEAR INTERPOLATION (MVS).

* Number of uxes wi

T

chine

imsultmsess control for the MPS3,
mibes of si i i model of the Ma
ontroller. Refer o 1.2 Function Performance for detuils.

B Description

The MOV command 18 desigaated as follows:

MOV [azgiel] = agic?] = we;

Reference

The following illustration shows the path of maovement with the MOV command.

s 3

Each axis s mowed
independinily &l
[p—] Erel pasilicn

s 1
‘Curmeal position

g2

axis 2

Figure 2.1 Path of Movement with MOV

Engineering Tool MPE720

9-11

9 Engineering Tool MPE720

9.3.1 Overview

9.3 Program Execution Registration Function

This section describes the program execution registration function of M-EXECUTOR.

9.3.1 Overview

The created motion programs and sequence programs need to be registered in the MP2000 system to run. The
Program execution registry screen dialog box is provided to make it easy to register the created motion pro-
grams and sequence programs in the MP2000 system.

The following versions of MPE720 support the program execution registration function.

MPE720 Supported Version
MPE720 Ver.5 Ver5.38 or later
Ver6.04 or later
MPE720 Ver.6 Ver6.04 Lite or later

There are two ways to open the Program execution registry screen dialog box:

» Click the E icon in the Motion Editor window.

Program execution registry screen x|

M-EXECUTOR [individual)

Program execution registry number Pragram number
¥ [MPMOT =
Execulion lype Speciication

@a |Motion program | [piest =]
Allocation register
Allocation DISABLE
Program number] l_l
Status ll ird I—
Cantral signal ﬂ icd I—
Dverride(1=0.01%) I [

List Delete | oK I Cancel |

* Open the M-EXECUTOR details window from the Module Configuration Definition window, and then click

the Individual display | icon.

Program execution registry screen |
M-EXECUTOR [individual]
1
5 Program execution registiy number Pragram number
|

M-EXECUTOR ~ M-EXECUTOR List) Individual display I Program defivition number a 1 v MPMODT =
_ Program defirition i Allacation Control register | .

Execution lype Specification
= pf Execution ppe | seming | Program
Qo0 - [u]sequence programistary Direct i |M°“ﬂ“ program .ﬂ |D”EC' Ll

1
L > Allocation i=gister
5 : Allocation DISABLE
- Program numbes T
| an
G Status il W
[Contral signal j i I—
_—I Dveriide(1-0.01%) RIS [
Eunning
List Delete I oK | Cancel |

9.3 Program Execution Registration Function

9.3.2 Program Execution Registry Screen Dialog Box Details

Program execution registry screen ll

M-EXECUTOR (individual)

Program execution registry number Program number

a) — 3 [T = [MPMoD1 -] ——— D)
E=ecution type Specification

C) _’ IMotion program _ﬂ IDirect L! 4—_ d)

— Allocation register

Allocation DISABLE
Program number Tl I
Status _‘?J I~ | l e)
Contral signal _‘?_l ivd |
Overide(1=0.01%) AV |—
Lst | Delerd || oK | Cancel |
h) i) f) 9)

a) Program execution registry number

Select the program execution registration number.
Programs will be executed in order, from the smallest program execution registration number.

b) Program number

Set the program number.

c) Execution type

Select a program execution type from the drop-down menu:

Execution Type ARSI 212 Execution Conditions
Executed
Sequence program At power ON
(Start) (Executed once at power ON.)
Sequence program Cyclic start
Sequence programs .
(L scan) (Executed in low-speed scan cycle.)
Sequence program Cyclic start
(H scan) (Executed in high-speed scan cycle.)
When the Program operation start request bit of con-
. . trol signal turns ON.
Motion program Motion programs .
(Executed when the Program operation start request
bit turns ON.)

d) Specification

Select the program designation method: Direct or Indirect

The applicable designation methods differ depending on whether the program is a motion program or a
sequence program.

Designa- | pytion Sequence -
v Programs Programs DESEAHelT
Method 9 9

Designate the program number.

Direct Applicable | Applicable
Example: MPMO001, SPM002

Designate the register number that stores the program number.

Indirect | Applicable N/A Example: OWOCOC (When 1 is stored in OWOCOC, MPMOO1 is exe-
cuted.)

Engineering Tool MPE720

9-13

9 Engineering Tool MPE720

9.3.2 Program Execution Registry Screen Dialog Box Details

e) Register allocation

Allocate the registers. The allocated registers exchange data in real time with the M-EXECUTOR control
registers. I, O, and M registers can be allocated.

f) Status, Control signal (7| icons)

Click the corresponding icon to display the bit assignment of the status flag or control signal.

— Status bit detail — Control Signal bit detail
bit(: Program iz running. bitd: Program start request
bit1: Program iz pausing. bit1: Program pause request
bit2: Program stopped with program stop request bit2: Program stop request
bit4: Program stopped under zingle block mode. bit3: Pragram single block mode selection
bit8: Program alarm has been generated. bitd: Program single block start request
bitS: Stopped at break point. bitS: &larm rezet request
bitB: Debugging mode [E%'S debugging) bitE: Pragram continuous operation start request
bitD:: Start request signal history bitd: Skip 1 information
bitE: Mo syztem work'" erar bitd: Skip 2 information
bitF: M ain program number limit error bitD:: Swstem work number setting
bitE: Interpolation override setting

g) Allocation DISABLE

Click to select or clear the corresponding check box to enable or disable the allocated register. When the
check box is cleared, the allocated register is enabled.

h) List button
Click the List button to display the M-EXECUTOR (list) window.

i) Delete button
Delete the definition.

9.4 Debug Function

9.4 Debug Function

This section describes the debug function.

9.4.1 Overview

The debug function debugs motion programs and sequence programs.

Various functions including program pause, break point setting, and step-by-step execution (single block execu-
tion) are provided to check the created program operation.

During debugging, the executing program line is highlighted on the screen as shown below.

i Engineering Manager - [Motion Editor MP2310 Online Local[MPMODL]] : =10l x|

Tl File Edit Wiew Debug MWindow =17 x|
IDE&|d| 2 @ @ R EE S

[PT#:2 CPUM: 1 I u
[t][RR S| FLE; wE il AGRENEEIE (RSO0
00001 00000 [=]
00002 00001 MOV [41]90000;

00003 00002 END:

Line Block < _»l_l

Debug Mode »»> Suspend [

\ | \ |
1DBG _[24BT |3 [41N |5ovR _[esP |7BP__ [8GOo |9 10BRK [1IRGL |12 |
For Help, press F1 il

Note: The debug function can be used with all MP2000-series Machine Controller models.

To start debugging, connect the MPE720 online with the Machine Controller, and click the & icon on the
Motion Editor window.
During debugging, the executing program line is highlighted on the screen as shown below.

Normal run status During debugging

@@@Ewﬁwgﬁug; DR EE & e uE F L
: : 3
INC; .
MOV [A1]90000; Elh(l)[\;'.[M]!]I]I]I]I],
END: ;
Highlighted
INFO Before debugging, the programs must be registered in the Program execution registry screen dialog box.

Engineering Tool MPE720

9-15

9 Engineering Tool MPE720

9.4.2 Motion Editor Window during Debugging

9.4.2 Motion Editor Window during Debugging

a)

E{.ﬂ'Engineering Manager - [Motiol i Editor
| File Edit View Debug ‘Windd

MP2310 Online Local[MPMODL]] =

=10l
=18lx|

R T

|PT#: 2 cPUR: 1

IGruup]

00001 00000
00002 00001
00003 00002

Line Block

* N n | EEES
EIEEET T ISR DR TR 1

3 G
1DBG [2ABT |3

(41N |5 OVR

I 1 1 i 1
[ssp [7BP [8G0 |8 [19BRK__[1RGL _[12 |

For Help, press FL

[cap mom | Y

a) Executing program line

The executing program line is highlighted in blue.
If a motion program alarm is generated in the executing program line, the executing program line is high-
lighted in red. Refer to 10.2.4 Motion Program Alarm Codes for information on motion program alarms.

b) Tool icons and function keys
The following table shows the icons, menu commands, and function keys to be used for a debug operation.

Key .
. L Motion Sequence
Function Icon Oper- Description
. Programs | Programs
ation
Debug mode % F1 Starts the program in debug mode. Available Available
Normal run mode J; Fl11 Cancels the debug mode. The program continuously runs Available Available
in normal run mode.
Shift exgcutlon F6 Shifts the execution start line (start point). Available Available
start point
Se.t/ Delete break E F7 Sets or deletes a break point. A break point is described in Available Available
point the program.
Executes one command block. For an MSEE or SSEE
Step in [:E; F4 command, execution will jump to the start line of the Available Available
specified subprogram.
Executes one command block. For an MSEE or SSEE
Step over E}l F5 command, executes the specified subprogram and then Available Available
executes the next block of the MSEE or SSEE command.
Execute [:} F8 Contlnuogsly executes the motion program lines in debug Available Available
mode until the break point.
Break il F10 | Pauses motion program execution in debug mode. Available Available
Forced end Ol F2 Forcibly stops motion program execution. Available N/A
Upc!gte current ¥ - Updates the current position coordinates. Available N/A
position
Setting the .
execute task &ﬁ _ Selts tthi:1 pa{)allel number, nesting level, and task of the Available Available
MSEE Call Stack selected subprogram.
Enables or disables the break point.
Set/Delete . Availabl Availabl
Breakpoint - - This command can be selected from the Debug menu or vailable vailable
the drop-down menu that will appear when right clicking.
Adds the selected register to the Watch Page of Quick
Reference. . .
Add Register - - Available Available
9 This command can be selected from the drop-down menu
that will appear when right clicking.

9-16

9.4 Debug Function

ﬁ
z
o
N

« Debug mode ¥

Click this icon to switch the operation mode to the debug mode and start debugging from the first line of the

program.

1190000;
TIM T100;

MOV [B1]90000;
END;

The debug execution line is in the first line.

The debug start line when the operation mode is switched to the debug mode differs, depending on whether you are using

the motion program or the sequence program:
B Motion Programs

* When debug mode is selected for a motion program that is not running
Debugging starts from the first line of the program, as shown in the above example.
* When debug mode is selected for a running motion program

When the mode is switched to the debug mode while an axis is moving, debugging will start from the next command

block after the axis movement completes.

B Sequence Programs

* When debug mode is selected for a sequence program that is not running.
Debugging is not possible in this case.

* When debug mode is selected for a running sequence program.
Debugging starts from the first line of the program, as shown in the above example.

« Normal run mode

Click this icon to switch the operation mode from debug mode to normal run mode. The debugging will be

cancelled and program execution will restart from the currently executing line.

All the break points that have been set will be deleted.

INC;
MOV [A1]90000;

MOV [B1]90000;
END;

Restarts from the program line in execution.

« Shift start point

Shift the executing program line to the selected line.

1. Click the line to be executed.

2. Click the icon.

FON | E-.I TISAOCC:

3. The executing program line is shifted.

The line MOV [A1]90000 will not be
executed.

Engineering Tool MPE720

9-17

9 Engineering Tool MPE720

9.4.2 Motion Editor Window during Debugging

+ Set/Delete break point [=

Click this icon to set a break point. A maximum of four break points can be set.
Clicking the button of the line for which a break point has been already set will delete the break point.

o
0

MOV [A1]90000;
MOV [B1]90000;
END;

* Stepin B,

Click this icon to execute one program line.
When this icon is clicked while an MSEE or SSEE command block is being executed, execution will jump to

the first line of the called subprogram.

MPMO001

INC:
MEEE MPSUDE;

END;

1. Click the [:% icon.

MPS002

MOV [A1190000;

2. The first line of the called subprogram will be executed.

« Step over |

Click this icon to execute one program line.
When this icon is clicked while an MSEE or SSEE command block is being executed, the called subprogram

will be executed and then execution will proceed to the next block of the MSEE or SSEE command block.

MPMO001

INC;
MEEE MPSODE:;

END;

1. Click the B icon.

MPS002

gOU [A1]1490000;

2. The called subprogram is executed.

INC;

3. The next block of the MSEE of SSEE command block
will be executed.

AN
(v

and SNGE commands.

More than one process can be specified as the processing unit for execution of the Step in and Step over by using SNGD

The command blocks

SNGD;

enclosed with SNGD
and SNGE constitute
the processing unit

Command blocks to be the processing unit
for execution of step in or step over

for execution of step
in or step over.

SNGE;

9-18

9.4 Debug Function

+ Execute [=
Click this icon to continuously execute program lines. When the break point is reached, the execution will
stop.
1. Set a break point. 2. Click the [:3' icon.
) [INC;
MOV [A1]90000: MOV [A1]90000;
0 MOV [B1190000:
END: END:
3. The execution stops at the break
point.
- Break [Ill

Click this icon to pause a program in debug mode. To restart the program, click the Execute icon.

1. Start the motion program.

INC;

Dw0000 = 0:

WHILE DWO00D == 0;
MOV [A1]90000;
MOV [B1]90000;

WEND:

END;

2. click the [icon.

INC;

DW0000 = 0;

WHILE Dw0000 == 0;
MOV [A1]90000;

WEND;
END;

3. The motion program stops.

 Forced end [

Click this icon to forcibly end the execution of a program in debug mode.

INC:
MOV [A1]90000;

MOV [B1]90000;
END:

The lines after the currently executing line will not be
executed.

« Update current position [&

This icon has the same function as the PLD command. While this icon is selected, the operation of the PLD
command is processed by the system when using the Step in, Step over, and Execute icons.
Refer to 8.3.3 Program Current Position Update (PLD) for details on PLD command.

Engineering Tool MPE720

9-19

9 Engineering Tool MPE720

9.4.2 Motion Editor Window during Debugging

« Setting the execute task 5 (Only for subprograms)

Set the subprogram information used for monitoring or debugging subprograms. When the Setting the exe-
cute task command is selected, the currently running main programs will be displayed. Select the main pro-
gram that calls the subprogram.

T e Y-
S Setking the execute task MPMO0L
MSEE Call Stack MPMOOZ

« MSEE call stack 5% (Only for subprograms)

Set more detailed subprogram information than the Setting the execute task command.

MSEE Call Stack x|

b ait program number I1 il 1-256
Fork number i'l ﬂ 1-4
Mest number I1 ﬂ 1.8

oK I Cancel |

Item Description

Main program

number Set the main program number that calls the subprogram.

Set the parallel number of the main program that calls the subprogram.
Example: Set 3 when monitoring and debugging subprogram MPS004.

PFORK Label1 Label2 Label3 Label4;

MPMO001 | Labell: “ Parallel 1
MSEE MPS002;
JOINTO LabelX;

Label2: “ Parallel 2
MSEE MPS003;
JOINTO LabelX;

Label3: “ Parallel 3
MSEE MPS004;
JOINTO LabelX;

Label4: “ Parallel 4
MSEE MPS005;
JOINTO LabelX;

LabelX: PJOINT;

Fork number

END;

Set the nesting level of the subprogram call.
Example: Set 2 when monitoring and debugging subprogram MPS003.

MPMO001
MWO0000=1; MPS002 (Nest 1)
Nest number MSEE MPS002; I Mwo000=2; MPS003 (Nest 2)
e MSEE MPS003; ~—_[Mmw0000=3;
END’ et [
RET; RET

9-20

9.4 Debug Function

» Set/Delete Breakpoint

Enables or disab

les the break point.

Break point enabled
(Displayed in yellow)

Break point disabled
(Displayed in white)

Debug menu

Debug Window
Debug mode
Regular mode

Go
Step Inko
Step Cwver

Set/Delete Breakpoint

Break

<

Update Current Position

Set Motion Eask 3
Set Call stack

Abort

Refer

3

3

'
7 MOV [A1]90000;

—[1

MOV [B1]90000;
END;

MOV [B1]90000;
END;

T
7 MOV [A1190000;

—[1]

The menu that pops up when right-clicking on the
Motion Editor window.

Unda

it
Copy
Paste

Motion command assist... F12
Insett motion command »

Select Al

Add Register

Fegister, for Trace [Manager.
Refer

IMotion alarm analyzer

* Add Register

The register displayed on the Motion Editor can be registered to the Watch Page of Quick Reference.

The values of the registered registers can be monitored on the Watch Page.

Cut

Copy
Paste

Motion command assist... F12
Insert motion command 3

Mowe execution positian
Set/Delete Breakpoint
Enable/Disable Breakpoint

Select: All

Refer
Mation alarm analyzer

1. Right-click on the register to be monitored. Select Add Register from the pop-up menu.

2. The register will be added to the Watch Page of Quick Reference.

Fiegister List *#atch Page I Time Chart I
Mol Fegister I Dirawwiig IDSP Type Data
1 | MWOQO00 DEC * | Qoo00 I

Engineering Tool MPE720

9-21

9 Engineering Tool MPE720

9.5.1 Overview

9.5 Motion Task Manager

This section describes the Motion Task Manager.

9.5.1 Overview

The Motion Task Manager is used to view the list of motion tasks, and to monitor task execution status.
The running tasks and idle tasks are displayed in a tree structure in the Motion Task Manager window.

fik Task lst

=7 Motion tagks
=[] Running Mation tasks
- =-[E] MPMOoD1

- =%y MPMOD1:0

: e MP5100:0
] mPMo02
El{il |dlirig kotion tasks

[=] MPHO50
o] MPMOST

Note: The Motion Task Manager can be used with all MP2000-series Machine Controller models.

To start the Motion Task Manager, select View - Motion Task Manager in the Motion Editor window.
< Wi)lebug Window

Fonk
Tool Bar » IIIEJ T ook list
¥ Status Bar = Mation tasks
v Function Bar EE] Runining Motion tasks
i [MPMOO2 [Running]
E_] |dling Mation tasks
e =] MPMOO3 [Pause]
Debug Function Bar El{:i Sequence tasks
o 7 : @ Running Sequence tasks
Position Teaching Function Bar E@ e
Ervor List =] SPMOO [Pause]

Momitar Parallel rumber

Manitor Regeneration

Autoscrall

9-22

9.5 Motion Task Manager

9.5.2 Motion Task Manager Window Details
a) b)

)

Task list

-0 Motion tasks A4

; E@ Running kotion tasks
MPMO02 [Alarm generated]

rPO03 [Drebug Mode:Suspend]
§ b MPMO04 [Fiunring]
E{E Idling kation tasks
o] MPMODS [Pause]

=3 Sequence tasks
{E Funning Sequence task
E1-{&] Idling Sequence tasks
o[SPMO0T Pausze]

a) Task execution status is displayed in a tree structure

The execution status of each motion program and sequence program is displayed in a tree structure.
Double-click the program to open the corresponding program in the Motion Editor window.

b) Program status display
The program status is displayed.

Display Status
Pause The program execution is paused.
Debug Mode The program is being debugged.
Debug Mode: Suspend The program debugging is suspended at a break point.
Running The program is running.

An alarm has occurred in the motion program.
Place the mouse pointer on the program name to view the alarm details.

Error
During "Program 3top request”
[Cause]
T _ | #naxis move command was inkerrupted
Alarm generated ‘ OH&S | g by the "Program stop request".
| [Measure]
Turn OFF the "Program stop request” bit

Iﬂ; Taszk list of the mation program contral word then

=07 Motion ta set the "alarm reset request” bit,

E@ Hunni@ﬂ/ﬂon tasks
E P00 [&larm generated]

MPMO03 [Debug Mode: Suzpend]

Engineering Tool MPE720

9-23

9 Engineering Tool MPE720

9.6.1 Overview

9.6 Drive Control Panel

This section describes the Drive Control Panel.

9.6.1 Overview

To execute the created motion program, the program needs to be registered in the MP2000 system and the pro-
gram start request must be issued using the user application.

If you want to run the created motion program before creating the user application, use the Drive control panel
to carry out the program trial run.

Commands such as program start request, stop request, and alarm reset request can be issued from the Drive con-
trol panel.

The following versions of MPE720 support the Drive control panel.

MPE720 Supported Version
MPE720 Ver.5 Ver. 5.38 or later
Ver. 6.04 or later

MPE720 Ver.6 .
Ver. 6.04 Lite or later

Frogram exec registy Mo Mol
Program number MF‘Mii‘-[]Z a
START START
PALISE PALISE
Stopped STOP
ALMRST ALMBST
RUNNING RUNKING |
PaUSING PALISING @
STOPPED STOPPED [
ALARM ALARM [T
PRGNOERR PRGNOERAC)
Display Dizplay I

Note: The Drive control panel does not have the break point setting or step-by-step execution (single block
execution) functions that the debug function has.

/A CAUTION

» Be sure the area is safe before starting a motion program by using the Drive control panel.
The axes will start moving as the motion program runs.

» Do not overwrite the motion program control register by using a sequence program or ladder program.
Doing so may disable the control from the Drive control panel.

» Do not simultaneously execute axes move commands for one axis from more than one program.
Doing so may result in an adverse movement of the axis.

9-24

9.6 Drive Control Panel

Click the IBJ icon in the Motion Editor window to start the Drive control panel.

0

Program exec registy Mo, Nall
Program number P (002 ﬂ
START START
PALSE PaLISE
Stopped __stop_|
ALMRST ALMRST
RUNNING RUNMING |2
PALSING PalSING E
STOPPED STOPPED |
ALARM ALARM [
PRGMOERR PRENOERFCY
Dizplay Digplay |

Engineering Tool MPE720

9-25

9-26

9 Engineering Tool MPE720

9.6.2 Drive Control Panel Details

9.6.2 Drive Control Panel Details

Program exec registry No. M0l — a)
Program mumbes WP]nnz a 4+— b)
START sTaRT | €——c)
PALISE PaUSE | 4€——d)
Stopped STOR 4+— e)
ALMRST ALMRST | 4——f)
RUMHING RUNNING [
PALISING PAUSING [
STOPPED STOPFED [Cj4—— Q)
ALARM ALARM |
PRGHOERR FRGNOERFC]
Dizplay Dizplay | T_ h)

a) Program exec registry No.

The program execution registry number of the program for trial run is displayed.
The program execution registry number must be set in the Program execution registry screen dialog box of
the M-EXECUTOR in advance.

b) Program number

The program number for trial run is displayed.
The program number must be set in the Program execution registry screen dialog box of M-EXECUTOR
in advance.

¢) START button
Click the START button to start the trial run.

d) PAUSE button
Click the PAUSE button to pause the trial run.

e) STOP button
Click the STOP button to stop the trial run.

f) ALMRST button
Click the ALMRST button to reset the alarm after an alarm has been generated.

g) Trial run status display
The corresponding status indicator LED lights up to indicate the trial run status.
* RUNNING: Lights up when the START button is clicked.
* PAUSING: Lights up when the PAUSE button is clicked.
* STOPPED: Lights up when the STOP button is clicked.
* ALARM: Lights up when a program alarm occurs.

* PRGNOERR: Lights up when a program number error occurs (the program number is outside the
allowable range).

9.6 Drive Control Panel

h) Display button

Click the Display button to open the Error information screen window. Refer to 70.2.4 Motion Program
Alarm Codes for details on the errors and the Error information screen window. An example of an error

information window is shown below.

Error information screen Xl

— Execution program information
Registry humber. 01 * Double-click the line ta jump ta the
Registy program; MPMO0Z2 conesponding program which alarm occurs,
-
Paralle Alarm code Alarm name Program number | Elock nw_l
1
1 Qi01EH During "Program Stop request” MPMOOZ 0
2
3
4 -
| »

Alarm Contents

|An axiz move command was interrupted by the "Frogram stop request'’.

Cormective Action

Turmn OFF the "Program stop request’’ bit of the motion program control word then set the “Alarm reset request” bit.

Engineering Tool MPE720

9-27

9 Engineering Tool MPE720

9.7.1 Overview

9.7 Test Run Function
This section describes the Test Run function.
9.7.1 Overview
The Test Run function is used to perform a test run of axes that are connected to the MP2000-series Machine

Controller from the Test Run window. The servo ON, servo OFF, JOG operation, and STEP commands can be
executed without using programs.

The following versions of MPE720 support the Test Run function.

MPE720 Supported Version
MPE720 Ver.5 Not supported
Ver6.04 or later
MPE720 Ver.6 Ver6.04 Lite or later

Note: The Test Run function can be used with all MP2000-series Machine Controller models.

a 2
H §|(Cir#n1Axis#m)SGDS-***l**:S(
Servo Enable Alarrn
Enatled |
Enable Dizable Moritor
Jog [Step

Speed reference |)
[
The axis operates only while hold down
Farward button or reverse buttan.

B | B

Fonward Reverse

/A CAUTION

+ Make sure the area is safe before moving the axes by using the Test Run function.

+ Before starting operation, be sure to prepare emergency stop measures to stop axis movement whenever
necessary.

+ Before moving the axes by using the Test Run function, stop all ladder programs and motion programs
that are being executed.

Double-click Test run in the System subwindow to open the Test Run window.

B0 =

I (Cir#01 Axis#01) SGDS-*+H1**) 5o

Servo Enable Alarm
Enabled | e Alarm

01

Enable

<]

=Fp

49

Disable

Monitor

oo [l Blarm monitor

- Qg Gl : VB : MECHATROLINK Mo Toa | Step
gy G2 : SVR : Wirtual Motion Gontral

Speed (eference | 5
]
The axis operates only while hold dowvn
Forward button of reverse button,

“E‘Ladder IMot\
I~
+t3 B-

Fanward Reverse

9-28

9.7 Test Run Function

9.7.2 Test Run Window Details

Test Run x

B0 2

I(Cir#Dl Axis#01) SEDS-FH+* ¥+, 50

Servo Enable Alarm

-'

0 4O @
Enable Disable I anitor

Jog | Step

d) —’ Speed reference |]

-]
The axis operates only while hold down
forward butkon or reverse bukkon,

9) —>») T-

Farward Reverse

Switch by clicking the Jog or Step tab.

Test Run »®
a =
a) e Asis... "(Cir#Dl Axis#01) SGDS-HHH1HE ;5
Servo Enable Alarm
b) —> Fmwes
481
o[4] @[©)
Enable Dizable Monitor
d) e Speed reference | 3000
[1000pulzedmin]
e) —p [1o
[pulze]
f) —> Direction 5etting | Faorward
@ Forward © Reverse

h) —>» l('g' .

Fun Stop

a) Axis

Select the axis for the test run.

b) Servo Enable, Alarm

The servo status (Enabled [servo ON] or Disabled) [servo OFF] and the axis alarm status (Alarm or No
Alarm) are displayed.

Engineering Tool MPE720

c) Enable, Disable, and Monitor buttons

Click the Enable button to turn ON the servo, click the Disable button to turn it OFF. Special care must be
taken for this operation because it will change the motion setting parameter.
Click the Monitor button to display the details of an axis alarm.

9-29

9 Engineering Tool MPE720
9.7.2 Test Run Window Details

d) Speed reference
Set the speed reference value. Special care must be taken for this operation because it will change the motion
setting parameter.

e) Step distance (In the Step tab page)

Set the step movement amount for step operation. Special care must be taken for this operation because it will
change the motion setting parameter.

f) Direction Setting (In the Step tab page)
Click the Direction Setting button. The Direction Setting dialog box used to set the axis operation direction
for step operation will appear.
Select Forward or Reverse of the Direction to specify the axis operation direction. Special care must be
taken for this operation because it will change the motion setting parameter.
A repetitive run for step operation can also be set and specified in this dialog box.

I Direction Setting il x|

Click set button to verite the drive direction inko OBS0032,

Direction % Forward " Reverse

v Repetitive running

Repeat time 1 kimes (1 to 100 times)
Repeat stop time g sec(0toSsec)

The step starts from the selected direction and repetition runs Forward and reverse,
Step is run that forward -3 reverse, when direction is forward and repeat time is one
time. The repeat stop time is stop time of Forward and reverse at run distance(guids).

Set Cancel I

g) Forward and Reverse buttons (In the Jog tab page) for JOG operation
Click the Forward or Reverse button to start JOG operation.
The specified axis keeps moving in the corresponding direction as long as the button is being pressed.
The axis will stop when the button is released.

h) Run and Stop buttons (In the Step tab page) for STEP operation

Click the Run button to start one step operation of the specified axis. Unlike with the jog operation, the but-
ton does not need to be continuously pressed.

When the Repetitive running check box is selected in the Direction Setting dialog box, the step operation is
repeated for the specified number of times, and then the axis will stop. During a repetitive run, the axis can be
stopped by clicking the Stop button.

9-30

9.8 Axis Status and Alarm Monitor

9.8 Axis Status and Alarm Monitor

9.8.1

This section describes the axis operation monitor and axis alarm monitor.

Overview

The Axis Monitor displays the operation status of the axes connected to the MP2000-series Machine Controller.
The axis status (Ready/Servo Enable [Servo ON], Alarm/Warning, Prof. Comp [Distribution Completed]/In
Position [Positioning Completed], and Motion Command) and the user selected monitoring parameter status
are displayed onscreen.
The Alarm Monitor displays the alarm information of the axes connected to the MP2000-series Machine Controller.
The following MPE720 versions support the Axis Monitor and Alarm Monitor.

MPE720 Supported Version
MPE720 Ver.5 Not supported
Ver. 6.04 or later
MPE720 Ver6 Ver. 6.04 Lite or later

Note: The Axis Monitor and Alarm Monitor functions can be used with all MP2000-series Machine Controller

models.

Axis Monitor

ircuk [Cir0l ; SV : MECHATRE = |

] bagh speed manitar

0 ronkonng... B (2]

'
20000

[asoi]
[l

[l

Alarm Monitor

[£] manually refrssh I Monitoring. ..

Cir#l1 - 5VB

Engineering Tool MPE720

9-31

9 Engineering Tool MPE720

9.8.1 Overview

Double-click Axis monitor or Alarm monitor in the System subwindow to start the axis monitor or alarm mon-
itor.

=] | B g spesdmnir = B M.,

Ainl] | SGOE1" Axis#id :

(200 et =

I Gir#2 : SVR: Virtual Mati.

i [E]Ladder lMotion ‘lw’

9-32

9.8 Axis Status and Alarm Monitor

9.8.2 Monitor Window Details
(1) Axis Monitor

a) b) c) d)e)

! Lol

Cireuit |Cir#011 : SYE : MECHATRO = | [b] High speed monitar = [Moritaring, . [(2]

Axis#l] - SGDS-1" Axis#02 - SGDS-"1" Aoas#03 : SGD3-1"

9) —» i <«—Nh)
Parameter..

Parameter..

Parameter..

Parameter

a) Circuit

Select the circuit whose motion monitoring parameters are to be displayed.

b) Monitoring cycle selection
Select the monitoring cycle.

[re¥| High speed monitor 'I 1l
El High speed monitor

’E| Mormal speed manitar

] Low speed monitor

¢) Pausing/Starting monitoring

Click this button to start or pause monitoring.

d) Axis alarm monitor

Click this icon to open the Alarm Monitor window.

e) Refresh
Click this icon to refresh the display to the latest axis status.

Engineering Tool MPE720

f) Axis status

Ready/Servo Enable (Servo ON), Alarm/Warning, Prof. Comp (Distribution Completed)/In Position

(Positioning Completed), Motion Command status are displayed. The display will change according to the
status.

9-33

9 Engineering Tool MPE720
9.8.2 Monitor Window Details

g) Motion monitoring parameter selection

A maximum of eight motion monitoring parameters can be selected.
Machine coordinate reference position (APOS), Position error (PERR), Feedback speed, and Feedback
torque/thrust are displayed as defaults.

Click the Parameter.. button, and select a desired monitoring parameter from the Monitor drop-down
menu in the Monitor Parameter dialog box that will appear as shown below.
1 vontor Porameter

Monitar

; & coordinate target position {
Target position {CPOS) : ILxxl10

Machine coordinate system position (MPOS) : ILxx12
Machine coordinate Feedback position (APOS) @ ILxxla
Machine coordinate latch position (LPOS) : ILxx18
Position error (PERR) : ILxx1A

POSMAR number of turns @ ILxx1E

Speed reference output monitor @ ILxx20

Feedback speed : ILxx40

Feedback torquef thrust ; ILxxd2

Monitoring parameter in Monitor pull-down list

Monitoring Parameters Register Unit
?{Ir?:%g)e coordinate target position LxxOE Reference unit
Target position (CPOS) ILxx10 Reference unit
?/I\I/:la;glgc)e coordinate system position Lxx12 Reference unit
CPOS for 32bit ILxx14 Reference unit
I(\'/La;:::gg)e coordinate feedback position Lxx16 Reference unit
Machine coordinate latch position (LPOS) ILxx18 Reference unit
Position error (PERR) ILxx1A Reference unit
POSMAX number of turns ILxx1E rev
Speed reference output monitor ILxx20 pulse/s
Feedback speed ILxx40 Selected speed unit
Feedback torque/thrust ILxx42 Selected torque unit

IN FO If you want to set a monitoring parameter not included in the Monitor pull-down list, directly enter the register number
¢ (IW8000 for example) in the dialog box.

h) Monitoring parameter status

The status of the selected monitoring parameters is displayed.

9-34

9.8 Axis Status and Alarm Monitor

(2) Alarm Monitor
a) b)

Lo

[2] Manually refrash - |l Monitoring. .

a) Manually refresh

Click this icon to refresh the alarm and warning information.

b) Pausing/Starting monitoring

Click this button to start or pause monitoring.

c) Alarm and warning display

Displays alarm and warning status.

Display Axis Status

No alarm or warning occurs.

An alarm is occurring.

Wiarning (Yellow) | A warning is occurring.

Engineering Tool MPE720

9-35

10

Troubleshooting

This chapter describes the causes of errors in motion programs and sequence programs, and
suggests corrective actions.

10.1 Troubleshooting -------------- - e e 10-2
10.1.1 Basic Flow of Troubleshooting - ----==--=ccccmmmmmm i - 10-2
10.2 Troubleshooting for Motion Programs - -----------c-co-cooo-- 10-3
10.2.1 Error Investigation FIOW == - = - == - o m e o e 10-3
10.2.2 Problem Starting a Motion Program - - - = - = = == == o o oo oo e 10-4
10.2.3 Confirming the Alarm Code - - - - - - - == - mmmm i 10-9
10.2.4 Motion Program Alarm Codes - - - - == === = - mm e m e e 10-15
10.3 Troubleshooting for Sequence Programs --------------------- 10-17
10.3.1 Error Investigation FIOW - ------ - - om oo e 10-17
10.3.2 Problem Starting a Sequence Program = ---- == -ccccmmmmmm oo 10-18

a Troubleshooting

10-1

10 Troubleshooting

10.1.1 Basic Flow of Troubleshooting

10.1 Troubleshooting

This section describes troubleshooting methods, and provides a list of motion program and sequence program
errors.

10.1.1 Basic Flow of Troubleshooting

When a problem occurs, it is important to quickly find the cause of the problem and get the system running again
as soon as possible. The basic troubleshooting flow is illustrated below.

Step 1 | Visually confirm the following items.
» Machine movement (or status if stopped)
» Power supply
* I/O device status
» Wiring status
* Indicator status (LED indicators on each Module)
» Switch settings (e.g., DIP switches)
» Parameter settings and program contents

v

Monitor the system to see if the problem changes in
response to the following operations.

» Switching the Controller to STOP status

* Resetting alarms

* Turning the power supply OFF and ON again.

v

Determine the location of the cause from the results
of steps 1 and 2.

* Controller or external?

» Sequence control or motion control?

* Software or hardware?

Step 2

Step 3

10-2

10.2 Troubleshooting for Motion Programs

10.2 Troubleshooting for Motion Programs

10.2.1 Error Investigation Flow

If the cause of error may be related to the motion program, refer to the following flowchart to troubleshoot.

START
A
Do you have a problem YES Problem starting a
starting a motion program? motion program
NO
Refer to 10.2.2 Problem Starting a
Motion Program.
A
Is ERR or ALM of the System error or
LED on the front basic YES Ogeration error
module lit? System error or
operation error
NO

Refer to the user’s manual
for the Machine

Controller being used to
troubleshoot errors.

A
Is any alarm reported to the YES

motion monitoring parameter »| Motion module fault
ILOO04 (Alarm) ? \
NO
Y \J
Display the contents of Check the ILOO04 alarm bits to

alarm code. find out the cause.

A

Determine the cause from the

alarm code.
\
Refer to 10.2.4 Motion Program Refer to the user’s manual
Alarm Codes. for the motion module

being used.

E Troubleshooting

10-3

10-4

10 Troubleshooting

10.2.2 Problem Starting a Motion Program

10.2.2 Problem Starting a Motion Program

If a problem exists when starting a motion program, check the following items to find out how to correct the
problem.

(1) Program Execution Registration to the System

Before starting the motion program, motion programs must be registered to the system used for execution.
Two methods can be used to register motion programs: By embedding an MSEE command in H drawing or by
registering motion programs to the M-EXECUTOR module.

Refer to 4.3.2 Registering the Program Execution for details on motion program registration methods.

* Embedding an MSEE command in H Drawing

Check the ladder program to see if an
MSEE command is embedded.

(¥]Program No. M#00000 Embed the MSEE command so that
[A]Data Egggggg it is executed every scan cycle.
DADODDODD

* Registering Motion Programs to M-EXECUTOR

If the check box () is se- Confirm that the d.esignated
program number is correct.

[Rackao1 [siy” A0 Jocoo-0c3F N

Program definition number IB l

lected, the motion program
will not start.

= M-EXECUTOR Online Local

PT#: 2 CPUR: 1

M-EXECUTOR(List)

Prograrn definition ocation Control register I

=
=

Dl Execution type | setting I Program I ,Acecution maonitor register(s register)
quence programistart) Direct = / -

Direct > MPMOOT SW03264 - SW03321

I Motion program

|~ o ||| ra =0
L

Lelefafefefafels

10.2 Troubleshooting for Motion Programs

(2) Program Start Request Bit of Control Signal and Program Running Status Bit of Status

Flag

When the MP2000 system detects a status change in motion program control signal bit 0 (Program start request)
from OFF to ON, the motion program will start running. When the motion program successfully starts running,
status flag signal bit 0 (Program running) will turn ON. Status flag signal bit 0 (Program running) will turn OFF
when the END command in the motion program is executed.

To start the motion program again, turn motion program control signal bit 0 (Program start request) OFF, and
then turn it ON again.

Check the ON/OFF status of these signal by using the data trace function.

Check to see if the program
start request bit is ON.

The motion program has correctly
started if the program running
bit is turned ON.

Control signal, bit 0:)

Program start request
_ -)_
p-

Motion program end timing

Status flag, bit 0:
Program running

le—— The motion program correctly started

Program running
if bit 0 is turned ON.

Program paused

Stopped by program stop request
(Reserved by the system)
Program single-block operation stopped
(Reserved by the system)
(Reserved by the system)
(Reserved by the system)
Program alarm

Stopped by break point
(Reserved by the system)

In debug mode

Motion program
work register

1st word Status flag Program type
N Start request signal history
2nd word Control Slgnal “No system work” error, Execution scan error
3rd word Interpolation override Main program No. over the range
4th word SyStem work number Program operation start request le—— If this bit turns ON, the motion

Program pause request

program will start running.

Program stop request

Program single-block mode selection

Program single-block operation start request

Program reset and alarm reset request

Program continuous operation start request

(Reserved by the system)

Skip 1 information

Skip 2 information

(Reserved by the system)

(Reserved by the system)

(Reserved by the system)

System work number setting

Interpolation override setting

(Reserved by the system)

a Troubleshooting

10-5

10 Troubleshooting

10.2.2 Problem Starting a Motion Program

(3) Program Alarm Bit of Status Flag

If status flag bit 8 (Program alarm) is ON, the motion program is disabled from running because of the alarm in
the motion program.
Remove the cause of the alarm by referring to 10.2.4 Motion Program Alarm Codes, and then turn ON motion

program control signal bit 5 (Program reset and alarm reset request) to reset the alarm. After the alarm is reset,
start the motion program again.

The motion program will not start while

) ! The motion program starts
an alarm is occurring even when the running when the program start
program start request bit is turned ON. request bit is turned ON.

Program reset and alarm

reset request bit ON
Control signal, bit 0: () / ()
Program operation start request S’

Control signal, bit 5: (
Program reset and alarm -
reset request

Alarmreset
Status flag, bit 0:
Program running

[y
Status flag, bit 8:
Program alarm occurring

An alarm occurred in the
motion program.

Status flag bit 8 turns
OFF when the Program
reset and alarm reset
request bit turns ON.

," Bit 0| Program running
," Bit 1| Program paused
," Stopped by program stop request

Bit 3| (Reserved by the system)

/
/
," Program single-block operation stopped
/
/I Bit 5| (Reserved by the system)
/I Bit 6| (Reserved by the system)
/ Bit 7 | (Reserved by the system)
III
i
/
/
/
/

) The motion program cannot start
Bit 8| Program alarm [4— when this bit is ON because an
Bit 9| Stopped by break point

alarm is occurring in the motion
Bit A| (Reserved by the system) program.

Motion program
work register

Bit B| In debug mode
Bit C| Program type
S Bit D| Start request signal history
2nd word Control Signal < Bit E| “No system work” error, Execution scan error
3rd word Interpolation override 5 ‘\:\\Bit F| Main program No. outside the range

4th word

1st word Status flag

\
\

\

System work number \
\

‘ ‘Bit 0| Program operation start request
‘.‘ Bit 1| Program pause request
\ Bit 2| Program stop request
\
| Bit 3| Program single-block mode selection
\
\ Bit 4| Program single-block operation start request o .
\
\ Bit 5| Program reset and alarm reset request - When this bit tu_rns ON, the motion
\ . - - program alarm is reset.
\ Bit 6| Program continuous operation start request
'\ Bit 7| (Reserved by the system)
' Bit8[Skip 1 information
\
|
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\

Bit 9| Skip 2 information

Bit A| (Reserved by the system)
Bit B| (Reserved by the system)
Bit C| (Reserved by the system)
Bit D| System work number setting
Bit E| Interpolation override setting
Bit F| (Reserved by the system)

10-6

10.2 Troubleshooting for Motion Programs

(4) “No System Work” Error/Execution Scan Error Bit of Status Flag

If running status flag bit E (“No system work” error/execution scan error) is ON, the motion program will be dis-
abled from running because of error occurrence. In this case, confirm the following items:

» The number of tasks being executed is less than 16.

* The task that the system work number designates is not being executed.
* The MSEE command is embedded in a high-speed scan drawing (DWG.H).

1st word
2nd word
3rd word
4th word

Motion program
work register

Status flag

Control signal

Interpolation override

System work number

\,
i
i N,
!

!
!

1
!
!
!
!
!
Il
\
It
!
!
!
Il
\
It
!
!
!
!
1
!
!
!
!
!
1
!
!
!
!
!
Il
\
It
!
!
!
Il
\
It
!
!
!
!
1
!
!
v

'
/
/
i
/
/
i
/
/
i
i
/
/
/
/
/ Bit 5| (Reserved by the system)
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

. BitF

\,

Bit 0 Program running

Bit 1| Program paused

Bit 2| Stopped by program stop request

Bit 3| (Reserved by the system)

Bit4

Program single-block operation stopped

Bit 6| (Reserved by the system)

Bit 7| (Reserved by the system)

Bit 8| Program alarm

Bit 9| Stopped by break point

Bit A| (Reserved by the system)

Bit B| In debug mode

Bit C| Program type

Bit D| Start request signal history

BitE

“No system work” error, execution scan error ,_When this bit is ON, the motion

Main program No. outside the range

program will not start running

\,
\,
\,

because of error occurrence.

Bit 0| Program start request

Program pause request

Program stop request

Program single-block mode selection

Program single-block operation start request

Program reset and alarm reset request

Program continuous operation start request

Bit 7| (Reserved by the system)

Bit 8| Skip 1 information

Bit 9| Skip 2 information

Bit A| (Reserved by the system)

Bit B| (Reserved by the system)

Bit C| (Reserved by the system)

Bit D| System work number setting

Bit E| Interpolation override setting

Bit F| (Reserved by the system)

a Troubleshooting

10-7

10 Troubleshooting

10.2.2 Problem Starting a Motion Program

(5) Main Program Number Over the Range Status Flag Bit
When status flag bit F (Main program number outside the range) is ON, the motion program will be disabled

from running because of an error. In this case, confirm the following:
* The motion program number designated in the MSEE command is within the range of 1 to 256.

Motion program
work register

J

[

H

[M]1Program Nog MWI0000
Mira0000

[t]Deta
DAOOOD

Bit0
Bit 1

Bit
Bit

1st word Status flag
2nd word Control signal

3rd word Interpolation override
4th word System work number

10-8

Bit2
Bit3

Bit 6
Bit 7
Bit 8
Bit 9
BitA
Bit B
Bit C| Program type

Program running
Program paused
Stopped by program stop request
(Reserved by the system)
Program single-block operation stopped
(Reserved by the system)
(Reserved by the system)
(Reserved by the system)
Program alarm
Stopped by break point

4
5

(Reserved by the system)

In debug mode

Start request signal history

BitD

Bit E| “No system work” error, execution scan error

Main program number outside the range

Program start request

Program pause request

Program stop request

Program single-block mode selection

Program single-block operation start request

Program reset and alarm reset request

Program continuous operation start request

(Reserved by the system)

Skip 1 information

Skip 2 information
(Reserved by the system)

(Reserved by the system)

(Reserved by the system)

System work number setting

Interpolation override setting

(Reserved by the system)

If the register value to indirectly designate

NSEE =H
the motion program is out of the range of
1 to 256, the error “Main program number

outside the range” will occur.

When this bit is ON, the motion
program will be disabled from
running because of error
occurrence.

10.2 Troubleshooting for Motion Programs

10.2.3 Confirming the Alarm Code

When an alarm occurs in motion programs (status flag bit 8 [Program alarm] is ON), the alarm code indicates the

cause of the alarm.

The alarm codes of motion programs can be found by using either of the following:

e Error information screen window

* S register

(1) Using Error Information Screen Window

There are two ways to open the Error information screen window.

(a) Opening from the Drive Control Panel
Click the Display button on the Drive control panel.

Frogram exec registy Mo, Mol
Fragram number F4 P4 IDL'I'I @
START STaRT
PASE PALSE
Stopped STOP
ALMRBST ALMRST
RUNNING RUNNING [C)
PAUSING PAUSING [T
STOPPED STORPED [
ALARM ALARM (D)
PRGMOERR PRGMOERREO
Dizplay Diizplay |

(b) Opening from the Pop-up Menu when Right-clicking on the Motion Editor Window

Right-click with the cursor on the Motion Editor window. Select Motion alarm analyzer from the menu

that pops up.

Undo

it
Capy
Paste

Mation command assist. ..
Insert motion command

Fi2
L3

Maove execubion position
SetfDelete Breakpaint
Enable)Disable Breakpoint

Select Al

Add Register
Register For Trace Manager
Refer

a Troubleshooting

10-9

10 Troubleshooting
10.2.3 Confirming the Alarm Code

The components of the Error information screen window are described below.

c) d) e) f) 9)

Error information screen : S il
— Execftion program iffarmation ‘
a) * Dauble-click the line to jurmp to the
b) . P 007 comespondi granm which alarm geurs.
-
Paralle Alarm code Alarm name Program number | Elock nulj
1 Q0O1EH During "Prograrm Stop request” MPRMOOT 0

2

3

o o

Alarm Contents
h) —’lAn axis move command was interrupted by the “Program stop request’.

Corrective Action

I Tum OFF the "Program stop request’” bit of the motion program control word then set the “Alarm reset request” bit.

i)

a) Registry number

When an alarm occurs in the motion program registered in the Program Definition window of the M-EXEC-
UTOR, the registry number of the M-EXECUTOR defined in the Program Definition window is displayed.
When an alarm occurs in the motion program called from the ladder program by an MSEE command, “---
is displayed.

b) Registry program
When an alarm occurs in the motion program registered in the Program Definition window of the M-EXEC-
UTOR, the motion program name defined in the Program Definition window is displayed.
When an alarm occurs in the motion program called from the ladder program by an MSEE command, “---
is displayed.

99

c) Parallel

When parallel execution commands (PFORK) are used in a motion program, more than one alarm may occur
at once. Refer to 8.4.3 Parallel Execution (PFORK, JOINTO, PJOINT) for details on parallel execution com-
mands.

d) Alarm code
Alarm code is displayed.

e) Alarm name

The alarm name is displayed.

f) Program number
The program number where an error occurs is displayed.

10-10

10.2 Troubleshooting for Motion Programs

g) Block number

The block number where an error occurs is displayed.
Double-click the block number to jump to the corresponding program.
The block numbers are displayed on the Motion Editor window.

i Motion Editor MP2310 Online Local[MPMOD1] -0 x|
[PTa#2 cPU# 1 | 2 - |
IGmupl v||ﬂ|§]ﬁ’uﬂ“|@|$}i|—;ug|
00001 "INCREMENTAL MODE"]
00002 J00000 INC;
00003
00004 "POSITIONING"
00005 joooo1 MOV [A1]10000;
00006 5
00007 joooo2 END;
00008
Line [Block 1 |
\ 4

i}

Block number

h) Alarm Contents

The contents of the alarm are displayed.

i) Corrective Action

The corrective actions for the alarm are displayed.

(2) Using S Register
The motion program alarm codes are stored in the motion program execution information of S registers
(SW03200 to SW04191).

The S register number of the motion program alarm code will differ, depending on the system work to be used
and the parallel number.

The motion program execution information of S registers (SW03200 to SW04191) is listed on the next page.

INFO Use the following procedure to open the register list of MPE720 Ver.6.
%

1. Open the Register List 1 subwindow from the MPE720 Ver.6 window.
The Register List 1 tab is provided on the bottom of the MPE720 Ver.6 window by default.

Register Lis

Register || '| El Mariitor . ﬁ T i F

IF:-']Output lTransFer lWatch it lm Cross Reference 1 l-'bForce Coil List QEBIReqister List 1

2. Enter the start number SWOOOOO of system registers to view in the Register input field. The
contents of system registers starting from the entered number will be displayed.

Register Li > ax
Reg|st< swonoon g - -|[Acts B EoLT

[0 [1 2 3 T4 [5 I 7 8 9 10 [11 1z [13 (14 [15 |
SWODODD (0010 0701 0000 0700 0064 0003 0004 OLF4 0000 0000 O7DO 0ODO OOOZ 0000 O7D0 0098
SWODO16 (0109 (0034 0029 0002 0263 0000 OOOD 0000 0000 0000 9720 0077 OO0 OO78 0000 0ODO
SWO00032 (0000 0ODO 0000 0OOO 000D D000 0OOD 0000 8083 0ODO 000D 0000 OOOD 0ODO 0000 0ODO
SWOD048 |00OC 0000 0000 0OOO 000D 0000 0OOD 0000 0000 OO0 000D 0000 OOOD 0000 0000 0ODO
SWODOG4 0000 0ODO 0000 0OOO 000D 0000 0OOD 0000 0000 0ODO 000D 0000 OOOD 0ODO 0OOC 0000
SWODOBO (0000 0000 0000 00O 000D 0000 0OOD 0000 0000 OO0 000D 0000 OOOD 0000 0000 0ODO
SWOD096 0000 0000 0000 0OOO 000D D000 0OOD 0000 0000 OO0 000D 0000 OOOD 0000 0000 0000

| output [¥2Transfer |(lwatch 1 | 32 Cross Reference 1 |40 Farce Coil List | ERegister List 1 |

Note: The default data type setting is decimal. The data type can be changed to hexadecimal: Right-click
with the cursor on the list. Select Hexadecimal from the menu that pops up.

a Troubleshooting

10-11

10 Troubleshooting

10.2.3 Confirming the Alarm Code

» System Work Number 1 to 8

System | System | System [System | System | System [System | System

SBLEI E NUaET V\york1 V\york2 V\)//ork3 V\)/lork4 V\)/lorks V\york6 V\)//ork7 V\)/lork8
Executing Main Program No. | SW03200 | SW03201 | SW03202 | SW03203 | SW03204 | SW03205 | SW03206 | SW03207
Status SW03264 | SW03322 | SW03380 | SW03438 | SW03496 | SW03554 | SW03612 | SW3670
Control Signal SW03265 | SW03323 | SW03381 | SW03439 | SW03497 | SW03555 | SW03613 | SW3671
Program Number SW03266 | SW03324 | SW03382 | SW03440 | SW03498 | SW03556 | SW03614 | SW3672

gara"e' Block Number SW03267 | SW03325 | SW03383 | SWO03441 | SW03499 | SW03557 | SWO03615 | SW3673
Alarm Code SW03268 | SW03326 | SW03384 | SW03442 | SW03500 | SW03558 | SW03616 | SW3674
Program Number SW03269 | SW03327 | SW03385 | SW03443 | SW03501 | SW03559 | SW03617 | SW3675

Tara"e' Block Number SW03270 | SW03328 | SW03386 | SW03444 | SW03502 | SW03560 | SWO03618 | SW3676
Alarm Code SWO03271 | SW03329 | SW03387 | SW03445 | SW03503 | SW03561 | SW03619 | SW3677
Program Number SW03272 | SW03330 | SW03388 | SW03446 | SW03504 | SW03562 | SW03620 | SW3678

gara"e' Block Number SW03273 | SW03331 | SW03389 | SW03447 | SW03505 | SW03563 | SW03621 | SW3679
Alarm Code SW03274 | SW03332 | SW03390 | SW03448 | SW03506 | SW03564 | SW03622 | SW3680
Program Number SW03275 | SW03333 | SW03391 | SW03449 | SW03507 | SW03565 | SW03623 | SW3631

ga'a"e' Block Number SW03276 | SW03334 | SW03392 | SW03450 | SW03508 | SW03566 | SW03624 | SW3682
Alarm Code SW03277 | SW03335 | SW03393 | SW03451 | SW03509 | SW03567 | SW03625 | SW3683
Program Number SW03278 | SW03336 | SW03394 | SW03452 | SW03510 | SW03568 | SW03626 | SW3684

4Para"e' Block Number SW03279 | SW03337 | SW03395 | SW03453 | SWO03511 | SW03569 | SW03627 | SW3685
Alarm Code SW03280 | SW03338 | SW03396 | SW03454 | SW03512 | SW03570 | SW03628 | SW3686
Program Number SWO03281 | SW03339 | SW03397 | SW03455 | SW03513 | SW03571 | SW03629 | SW3687

Eara"e' Block Number SW03282 | SW03340 | SW03398 | SW03456 | SW03514 | SW03572 | SW03630 | SW3688
Alarm Code SW03283 | SW03341 | SW03399 | SW03457 | SW03515 | SW03573 | SW03631 | SW3689
Program Number SW03284 | SW03342 | SW03400 | SWO03458 | SW03516 | SW03574 | SW03632 | SW3690

gara"e' Block Number SW03285 | SW03343 | SW03401 | SW03459 | SW03517 | SW03575 | SW03633 | SW3691
Alarm Code SW03286 | SW03344 | SW03402 | SW03460 | SWO03518 | SW03576 | SW03634 | SW3692
Program Number SWO03287 | SW03345 | SW03403 | SW03461 | SW03519 | SW03577 | SW03635 | SW3693

sa'a"e' Block Number SWO03288 | SW03346 | SW03404 | SW03462 | SW03520 | SW03578 | SW03636 | SW3694
Alarm Code SW03289 | SW03347 | SW03405 | SW03463 | SW03521 | SW03579 | SW03637 | SW3695

'I;‘r’g;? r:’gif;;nt Bosition SL03290 | SL03348 | SL03406 | SL03464 | SL03522 | SL03580 | SL03638 | SL3696
'I;‘r’g;? r:’gifznt Bosition SL03292 | SL03350 | SL03408 | SL03466 | SL03524 | SL03582 | SL03640 | SL3698
Iﬁ?g;gl nf’gif:gnt Bosition SL03294 | SL03352 | SL03410 | SL03468 | SL03526 | SL03584 | SL03642 | SL3700
:;‘:gg’rz' :’gﬁ:’:nt Bosition SL03296 | SL03354 | SL03412 | SL03470 | SL03528 | SL03586 | SL03644 | SL3702
:;‘:gg’rz' :’gﬁ:’:nt Bosition SL03298 | SL03356 | SL03414 | SL03472 | SL03530 | SL03588 | SL03646 | SL3704
:;‘:gg’;':’giﬁgm Position SL03300 | SL03358 | SL03416 | SL03474 | SL03532 | SL03590 | SL03648 | SL3706
:;‘:g;z‘:gz:zm Position SL03302 | SL03360 | SL03418 | SL03476 | SL03534 | SL03592 | SL03650 | SL3708
:;‘:g;z‘:gz:gm Position SL03304 | SL03362 | SL03420 | SL03478 | SL03536 | SL03594 | SL03652 | SL3710
'Efr’g;g' r:)gzr#ant Position SL03306 | SL03364 | SL03422 | SL03480 | SL03538 | SL03596 | SL03654 | SL3712
'Efr’g;’rgl r:’gi:;gt Position SL03308 | SL03366 | SL03424 | SL03482 | SL03540 | SL03598 | SL03656 | SL3714
'I;‘r’g;;' r:’gi::;lt Position SL03310 | SL03368 | SL03426 | SL03484 | SL03542 | SL03600 | SL03658 | SL3716
s SL03312 | SL03370 | SL03428 | SL03486 | SL03544 | SL03602 | SL03660 | SL3718

Program Current Position

10.2 Troubleshooting for Motion Programs

E Troubleshooting

System | System | System | System | System | System [System [System
SR N LT Work 1 | Work2 | Work3 | Work4 | Work5 | Work6 | Work7 | Work 8
LopfeEl RS SL03314 | SL03372 | SL03430 | SL03488 | SL03546 | SL03604 | SL03662 | SL3720
Program Current Position
LegfeRllErioia SL03316 | SL03374 | SL03432 | SL03490 | SL03548 | SL03606 | SL03664 | SL3722
Program Current Position
LR RS SL03318 | SL03376 | SL03434 | SL03492 | SL03550 | SL03608 | SL03666 | SL3724
Program Current Position
Legezllomseie SL03320 | SL03378 | SL03436 | SL03494 | SL03552 | SL03610 | SL03668 | SL3726
Program Current Position
» System Word Number 9 to 16
System | System | System | System | System | System [System [System
SRR LS AR Work 9 | Work 10 | Work 11 | Work 12 | Work 13 | Work 14 | Work 15 | Work 16
Executing Main Program No. | SW03208 | SW03209 | SW03210 | SW03211 | SW03212 | SW03213 | SW03214 | SW03215
Status SW03728 | SW03786 | SW03844 | SW03902 | SW03960 | SW04018 | SW04076 | SW04134
Control Signal SW03729 | SW03787 | SW03845 | SW03903 | SW03961 | SW04019 | SW04077 | SWO04135
Program Number SW03730 | SW03783 | SW03846 | SW03904 | SW03962 | SW04020 | SW04078 | SW04136
gara"e' Block Number SWO03731 | SW03789 | SWO03847 | SW03905 | SW03963 | SW04021 | SW04079 | SW04137
Alarm Code SW03732 | SW03790 | SW03848 | SW03906 | SW03964 | SW04022 | SW04080 | SW04138
Program Number SW03733 | SW03791 | SW03849 | SW03907 | SW03965 | SW04023 | SW04081 | SW04139
':ara"e' Block Number SW03734 | SW03792 | SW03850 | SW03908 | SW03966 | SW04024 | SW04032 | SW04140
Alarm Code SW03735 | SW03793 | SWO03851 | SW03909 | SW03967 | SW04025 | SW04083 | SW04141
Program Number SW03736 | SW03794 | SW03852 | SW03910 | SW03968 | SW04026 | SW04084 | SW04142
Zara"e' Block Number SWO03737 | SW03795 | SW03853 | SW03911 | SW03969 | SW04027 | SW04085 | SW04143
Alarm Code SW03738 | SW03796 | SW03854 | SW03912 | SW03970 | SW04028 | SW04036 | SW04144
Program Number SW03739 | SW03797 | SW03855 | SW03913 | SWO03971 | SW04029 | SW04087 | SW04145
gara"e' Block Number SW03740 | SW03798 | SW03856 | SW03914 | SW03972 | SW04030 | SW04088 | SW04146
Alarm Code SWO03741 | SW03799 | SW03857 | SW03915 | SW03973 | SW04031 | SW04089 | SW04147
Program Number SW03742 | SW03800 | SW03858 | SW03916 | SW03974 | SW04032 | SW04090 | SW04148
Zara"e' Block Number SW03743 | SWO03801 | SW03859 | SW03917 | SW03975 | SW04033 | SW04091 | SW04149
Alarm Code SWO03744 | SW03802 | SW03860 | SWO03918 | SW03976 | SW04034 | SW04092 | SWO04150
Program Number SWO03745 | SW03803 | SW03861 | SW03919 | SW03977 | SW04035 | SW04093 | SWO04151
:ara"e' Block Number SWO03746 | SW03804 | SW03862 | SW03920 | SW03978 | SW04036 | SW04094 | SW04152
Alarm Code SWO03747 | SW03805 | SW03863 | SW03921 | SW03979 | SW04037 | SW04095 | SWO04153
Program Number SW03743 | SW03806 | SW03864 | SW03922 | SW03980 | SW04038 | SW04096 | SW04154
zara"e' Block Number SW03749 | SW03807 | SW03865 | SW03923 | SW03981 | SW04039 | SW04097 | SWO04155
Alarm Code SW03750 | SW03808 | SW03866 | SW03924 | SW03982 | SW04040 | SW04098 | SW04156
Program Number SWO03751 | SW03809 | SW03867 | SW03925 | SW03983 | SW04041 | SW04099 | SW04157
sara"e' Block Number SW03752 | SW03810 | SW03868 | SW03926 | SW03984 | SW04042 | SW04100 | SW04158
Alarm Code SW03753 | SWO03811 | SW03869 | SW03927 | SW03985 | SW04043 | SWO4101 | SWO04159
LeglEel] S " SL03754 | SL03812 | SL03870 | SL03928 | SL03986 | SL04044 | SL04102 | SL04160
Program Current Position
LogliEsl) St 2 » SL03756 | SL03814 | SL03872 | SL03930 | SL03988 | SL04046 | SL04104 | SL04162
Program Current Position
LEgEE S5 LS " SL03758 | SL03816 | SL03874 | SL03932 | SL03990 | SL04048 | SL04106 | SL04164
Program Current Position
Logical axis #4 SL03760 | SL03818 | SL03876 | SL03934 | SL03992 | SL04050 | SL04108 | SLO4166
Program Current Position
Lol E " SL03762 | SL03820 | SL03878 | SL03936 | SL03994 | SL04052 | SL04110 | SLO4168
Program Current Position
ki " SL03764 | SL03822 | SL03880 | SL03938 | SL03996 | SL04054 | SL04112 | SL04170
Program Current Position
Legliesl) 2167 SL03766 | SL03824 | SL03882 | SL03940 | SL03998 | SL04056 | SL04114 | SL04172

Program Current Position

10-13

10 Troubleshooting

10.2.3 Confirming the Alarm Code

System | System [System | System | System | System | System | System

System Work Number Work 9 | Work 10 | Work 11 | Work 12 | Work 13 | Work 14 | Work 15 | Work 16

Logical axis #8

" SL03768 | SL03826 | SL03884 | SL03942 | SL04000 | SL04058 | SL04116 | SL04174
Program Current Position

Logical axis #9

" SL03770 | SL03828 | SL03886 | SL03944 | SL04002 | SL04060 | SL04118 | SL04176
Program Current Position

Logical axis #10

" SL03772 | SL03830 | SL03888 | SL03946 | SL04004 | SL04062 | SL04120 | SL04178
Program Current Position

Logical axis #11

" SL03774 | SL03832 | SL03890 | SL03948 | SL04006 | SL04064 | SL04122 | SL04180
Program Current Position

Logical axis #12

. SL03776 | SL03834 | SL03892 | SL03950 [SL04008 | SL04066 | SL04124 | SL04182
Program Current Position

Logical axis #13

o, SL03778 | SL03836 | SL03894 | SL03952 | SL04010 | SL04068 | SL04126 | SL04184
Program Current Position

Logical axis #14

L SL03780 | SL03838 | SL03896 | SL03954 | SL04012 | SL04070 | SL04128 | SL04186
Program Current Position

Logical axis #15

L SL03782 | SL03840 | SL03898 | SL03956 | SL04014 | SL04072 | SL04130 | SL04188
Program Current Position

Logical axis #16

o SL03784 | SL03842 | SL03900 | SL03958 | SL04016 | SL04074 | SL04132 | SL04190
Program Current Position

10-14

10.2 Troubleshooting for Motion Programs

10.2.4 Motion Program Alarm Codes
(1) Configuration of Motion Program Alarms

The following diagram shows the configuration of alarms.

Bit15

Bit12

Bit8 Bit7

Bit0

Alarm occurrence axis
information (1 to 16)

Alarm code (When Bit 7 is ON: Axis alarm)

(2) Alarm Code List for Motion Program

The following table shows the alarm codes of motion programs.

Alarm Name Description Corrective Actions
Code
02h Division error Data divided by 0 Review the motion program.
. . * Designate a center coordinate instead
. . Turn number was specified instead of . .
A circle instead of . . o of a radius to perform the circular arc
10h . . radius in the circular arc or helical interpo- Lo .
radius was specified . or helical interpolation command.
lation command. .
* Never specify the turn number.
11h Interpolation feeding | Interpolation feeding speed exceeded the Modify the interpolation feeding speed
speed over limit valid range of the FMX command. of the interpolation command
. . No interpolation feeding speed was speci-
12h No 1nterpolat19n feed- fied. (once specified, this can be omitted as Spec1fy the 1ntemolat10n feeding speed
ing speed specified . . in the interpolation command.
in the motion program)
R ft . .
ange §Xceeded AT Indirect acceleration parameter exceeded . .
13h converting accelera- . Change the indirect register value.
. the valid range.
tion parameter
Circular arc length Circular arc length exceeded the valid range | Review the circular arc length in the cir-
14h exceeded in the circular arc or helical interpolation cular arc or helical interpolation com-
LONG_MAX command. mand.
Vertical axis not speci-
15h fied for circular arc Vertical axis v as.not P ec1ﬁed in the circu- Use PLN command to specify the axis.
lar arc or helical interpolation command.
plane
Horizontal axis not Horizontal axis was not specified in the cir
16h specified for circular . pect Use PLN command to specify the axis.
cular arc or helical interpolation command.
arc plane
. . Too many axes were configured in the cir-
Specified axis over ; Moditfy the axis in the circular arc or
17h S cular arc (two axes) or helical (three axes) .7 .
limit . . helical interpolation command.
interpolation command.
Turn number over Turn.number exceedgd th.e valid rangen Modify the turn number in the circular
18h .. the circular arc or helical interpolation com- . .
limit arc or helical interpolation command.
mand.
19h Radius exceeded Radius exceeded the valid range in the cir- | Review the radius in the circular arc or
LONG_MAX cular arc or helical interpolation command. | helical interpolation command.
Improper center point was specified in the | Specify the center point properly in the
1Ah Center point error circular arc or helical interpolation com- circular arc or helical interpolation com-
mand. mand.
Running emergency Axis move command stopped due to a pro- Tumn Ol.:F the program stop rc':quest for
1Bh stop command am ston request the motion program control signal, and
P & P request. turn ON the alarm reset request.
Linear interpolation
1Ch moving amount Moving amount exceeded the valid range in | Review the moving amount in the linear
exceeded the linear interpolation command. interpolation command.
LONG_MAX
FMX command not executed in the motion [Perform an FMX command. The FMX
1Dh FMX undefined program containing an interpolation com- command is required in each program
mand. containing an interpolation command.
Designation exceeded the valid range in the | Review the setting in the IAC/IDC/FMX
1Eh | Address Tout of range | 1 1pc/FMX commands. command.

a Troubleshooting

10-15

10 Troubleshooting

10.2.4 Motion Program Alarm Codes

Alarm
Code

Name

Description

Corrective Actions

1Fh

Address P out of range

Designation exceeded the valid range in the
IFP command.

Review the setting in the [IFP command.

21h

PFORK execution
error

A motion command was instructed simulta-
neously at the second line in the PFORK of
both a source motion program and a subpro-
gram.

Review the source motion program or
subprogram.

22h

Indirect register range
error

Specified register address exceeds the regis-
ter size range.

Review the motion program.

23h

Moving amount out of
range

Axis moving amount with decimal point for
an axis move command exceeded the possi-
ble range.

Review the axis moving amount.

80h

Use of logical axis
prohibited

Multiple motion commands instructed
against the same axis at the same time.

Review the motion program.

81h

Designation exceeded
POSMAX in the infi-
nite length axis

Moving distance designation exceeded
POSMAX in the infinite length axis.

* Modify the fixed parameter “Maxi-
mum infinite length axis counter”

* Review the motion program.

82h

Axis moving distance
exceeded
LONG_MAX

Axis moving distance designation exceeded
the valid range.

Review the motion program.

84h

Duplicated motion
command

Multiple commands ware executed against
a single axis.

Check to see whether another program
gave a command to the same axis at the
same time. If so, review the program.

85h

Motion command
response error

A motion command response different from
that instructed by the motion command is
reported from a motion module.

* Remove the alarm cause from the des-
tination axis.

« If the servo is not turned ON, turn ON
the servo.

* Check to see whether another program
gave a command to the same axis at
the same time. If so, review the pro-
gram.

87h

VEL setting data out
of range

An instruction in the VEL command
exceeded the valid range.

Review the VEL command.

88h

INP setting data out of
range

An instruction in the INP command
exceeded the valid range.

Review the INP command.

89h

ACC/SCC/DCC set-
ting data out of range

An instruction in the ACC/SCC/DCC com-
mand exceeded the valid range.

Review the ACC/SCC/DCC command.

8Ah

No time specified in
the MVT command

T designation in the MVT command was
Zero.

Review the MVT command.

8Bh

Command execution
disabled

A motion command which cannot be exe-
cuted by the destination motion module was
instructed.

Review the motion program.

8Ch

Distribution
incomplete

A motion command was executed when a
motion module was not in the Distribution
Completed state.

Review the motion program so that the
motion command is executed in the Dis-
tribution Completed state.

8Dh

Motion command
abnormally aborted

Motion module fell into the “Motion com-
mand abnormally aborted” state.

* Release the destination axis error.
* Review the motion program.

10-16

10.3 Troubleshooting for Sequence Programs

10.3 Troubleshooting for Sequence Programs

10.3.1 Error Investigation Flow

If the cause of error may be related to the sequence program, refer to the following flowchart to troubleshoot the

€ITor.
(START

A 4
Do you have any problem YES Problem starting a
starting a sequence program?, sequence program
NO
Refer to 10.3.2 Problem Starting a
Sequence Program.
A 4
Is ERR or ALM of the
LED on the front of basic YES p(System error or
module lit? System error or operation error
operation error
NO

Refer to the user’s manual
for the Machine Controller
being used to troubleshoot
errors.

It's not an error.

a Troubleshooting

10-17

10 Troubleshooting

10.3.2 Problem Starting a Sequence Program

10.3.2 Problem Starting a Sequence Program
When a problem exists when starting a sequence program, check the following items to find out how to correct it.

(1) Program Execution Registration to the System

Before starting the sequence program, sequence programs must be registered to the system used to execute.
Register the sequence programs to the M-EXECUTOR module to register them to the system for execution.
Refer to 5.2.2 Registering Program Execution for information for sequence program registration.

If the check box ([#{) is selected, the Confirm that the designated se-
sequence program will not start running. quence program number is correct.

[M-EXECUTOR MP2310 Online Lg

PT#: 2 CPU#: 1

[RACK#01 [Slot #00” 1C00-0C3F |

Pragram definition humber I 8 b I

DI Execution type I Setting | Program |/ecuti0n monitor register(s register)

=
=

QUENCE prograrmistar) Direct = -
Direct sPMoo1) =

A EBequence programiH-scan)

foa 0 N e T V) N VR [P
1]

Lelefefafefafefs

-
| | »

(2) Program Alarm Occurring Status Flag Bit
When status flag bit 8 (Program alarm occurring) is ON, the sequence program is disabled from running
because of an error occurrence. In this case, check the following items:
* The called program exists.
* The called program is a sequence program.
 The sequence subprogram call command (SSEE) calls a subprogram, but not a main program.
+ The sequence program number designated in the SSEE command is within the range of 1 to 256.
* Nesting of sequence subprogram call command (SSEE) is within 8 levels.

/ Bit 0| Program running
/ Bit 1| (Reserved by the system)
/ Bit 2| (Reserved by the system)
Bit 3| (Reserved by the system)
M-EXECUTOR ,’/ Bit 4 | (Reserved by the system)
)
)
)

control register / Bit 5| (Reserved by the system
Bit 6| (Reserved by the system

tatus fla
SE 9 Bit 7| (Reserved by the system

\ Bit 8 | Program alarm
Bit 9 | Stopped by break point
Bit A | (Reserved by the system)
\ BitB[In debug mode
Bit C| Program type
Bit D| Start request signal history
\ Bit E| (Reserved by the system)
‘\‘ Bit F | (Reserved by the system)

10-18

Appendices

A Motion Language Commands - --------------------------~----- A-2
A.1 Axis Setting Commands - ------- - - oo e A-2
A.2 Axis Move Commands == - === === - o mmm o m e e e A-3
A.3 Control Commands ----------------- oo A-5
A.4 Program Control Commands == - === == === - s cmm i A-6
A.5 Arithmetic Operations - ------------------- oo A-8
A.6 Logical Operations = - === === - oo s e e A-8
A.7 Data Comparison - -------------mm oo oo A-9
A.8 Data Operations === - === - - - s o e e e A-9
A.9 BasicFunctions ----------mm o A-10
A.10 C-Language Control Commands -----------------coommm oo A-11

B Sample Programs ----------mmmmmm e A-12
B.1 Programs for Controlling Motion Program Execution =----=-=---==-ccccoumooon-- A-13
B.2 Parallel Processing = ---- === - - o m o e A-15
B.3 Motion Program for Speed Control - - - === - - - - - cmm oo - A-16
B.4 Simple Synchronized Operation Using a Virtual Axis - ------=----=----“------ A-17
B.5 Sequence Programs - - - - === - - oo e e A-19

C Differences between MP900 Series and MP2000 Series Machine
Controllers = ----- oo e e e e e A-21
C.1 Motion Programs = - - = = = = = = - o s o e o e e e e e e A-21
C.2 Sequence Programs = - - === == m o mm e m o e e e A-21
C.3 Motion Programming Commands - ------ == == -c-m oo A-22
C.4 Group Definitions = - === === == c s e o e e A-22
C.5 Debug Function ---------mmmmm A-23
C.6 Motion Program Alarms - - = = = = = = = = = = @ o o m o e e e e o - A-23

D Precautions - -------------mmmm oo A-24
D.1 General Precautions === - === === @ cm oo e e s A-24

D.2 Precautions on Motion Parameter Settings -----------------c-cco- A-25

A-2

Appendices

A.1 Axis Setting Commands

A Motion Language Commands

Motion language commands are listed below. Refer to Chapter 8§ Command Reference for details on each com-

mand.
v —
Applicable | Not applicable
A.1 Axis Setting Commands
o|lo o
§5|5 5
Command Name Programming Format Description s 5 < =
=288
o 8 o
ABS;
or Treats all subsequent coordinate words
v _
ABS Absolute Mode ABS MOV [Logical axis name 1] - as absolute values.
[Logical axis name 2] - ;
INC;
INC Incremental or Treats all subsequent coordinate words v B
Mode INC MOV [Logical axis name 1] - as incremental values.
[Logical axis name 2] - ;
. ACC.[LoglcaI .aXIS ngme 1]Accelera- Sets the acceleration time for linear
Acceleration tion time [Logical axis name 2] Ac- . .
ACC) o) . acceleration/deceleration for up to 16 v -
Time Change celeration time [Logical axis name 3] .
C . axes simultaneously.
Acceleration time -+ ;
DCC [Logical axis name 1] Deceler- | Sets the deceleration time for a position-
DCC Deceleration ation time [Logical axis name 2] De- | ing related command. v B
Time Change celeration time [Logical axis name 3] | A maximum of 16 axes can be desig-
Deceleration time - ; nated in one command block.
S-curve Time SCC [Logical axis name 1] S-curve | Sets the time constant for moving aver-
SCC Constant time constant [Logical axis name 2] | age acceleration/deceleration for up to v -
Change S-curve time constant -+ ; 16 axes simultaneously.
VEL [Logical axis name 1] Feed Sets the speed for a positioning related
. speed [Logical axis name 2] Feed command.
VEL Set Velocit . . v -
"y speed [Logical axis name 3] Feed A maximum of 16 axes can be desig-
speed *** ; nated in one command block.
Sets the maximum speed during an inter-
i - . . . lation feed.
Max'f““m Inter FMX T Maximum interpolation feed bo aA1on c . S
FMX polation Feed speed ; The interpolation acceleration time is the | v/ -
Speed Setting ’ time taken from “0” until this speed is
reached.
Sets the speed for an interpolation
Interpolation . . related command.
IFP P Interpolation feed speed ratio
IFP Feed Speed Ra- | poiat P I Designate a percentage of the maximum | v -
tio Setting ’ speed as the interpolation feed speed
ratio.
. Sets the acceleration time for an interpo-
Interpolation Ac- . . .
. ' IAC T Interpolation acceleration lation related command.
IAC celeration Time L . .) v -
Change time ; Designate the time required to reach the
maximum speed from the speed 0 (zero).
Sets the deceleration time for an interpo-
i - . . lati lated d.
Interpo.latlor) De IDC T Interpolation deceleration 2 lo_n reate c'omman .
IDC celeration Time time - Designate the time required to decelerate | ¥ =
Change ’ to the speed 0 (zero) from the maximum
speed.
Sets the acceleration/deceleration mode
Set Interpolation for interpolation commands.
ACCMODE [Acceleration/De- | ACCMODE M mode_number; This allows you to specify processing v -
celeration Mode multiple interpolation commands in suc-
cession.

A Motion Language Commands

A.2 Axis Move Commands

(2]
%) IS
g g
© (o))
() e
" o)
ki Name Programming Format Description o %
mand = 3
o c
£ 13
o
2|8
(%}
MOV [Logical axis name 1] Reference position o .
o .) iy . Executes positioning at the specified
MOV | Positioning | [Logical axis name 2] Reference position [Logical . v -
. " . positioning speed for up to 16 axes.
axis name 3] Reference position - ;
Linear MVS. [LOQI(.;aI axis name 1] Referenc?. pOSItlon. Executes linear movement at the
[Logical axis name 2] Reference position [Logical . .
MVS | Interpola- . I) interpolation feed speed F for up to v -
. axis name 3] Reference position -* F Interpolation
tion : 16 axes.
feed speed ;
MCW [Logical axis name 1] End po-
Center sition [Logical axis name 2] End po-
Clockwi position sition U Center point position V
C,OC IW|se designation | Center point position T Number of
MCW Inltrgru 2[3 turns F Interpolation speed ;
tion P MCW [Logical axis name 1] End po- | Executes circular interpolation at tan-
Radius sition [Logical axis name 2] End po- | gential speed F for two axes simulta-
designation | sition R Radius F Interpolation feed | neously following radius R (or
speed ; designated center point coordinates). v
MCC [Logical axis name 1] End po- | With the center point coordinate des-
Center sition [Logical axis name 2] End po- | ignation, multiple circles can be des-
Counter- position sition U Center point position V ignated with T—. (T— can also be
clockwise | designation | Center point position T Number of omitted.)
MCC | Circular turns F Interpolation feed speed ;
Interpola- MCC [Logical axis name 1] End po-
tion Radius sition [Logical axis name 2] End po-
designation | sition R Radius F Interpolation feed
speed ;
MCW [Logical axis name 1] End po-
sition [Logical axis name 2] End po-
Center sition U Center point position V
position Center point position [Logical axis
Clockwise | designation | name 3] Linear interpolation end po-
MCW Helical sition T Number of turns F Interpola-
C Interpola- tion feed speed ;
tion MCW [Logical axis name 1] End po- | Moves three axes simultaneously in a
. sition [Logical axis name 2] End po- | combination of circular interpolation
Radius I,) . :
. . sition R Radius [Logical axis name 3] | and linear interpolation outside the
designation .) . I, . . .
Linear interpolation end position F circular interpolation plane. Speed F
Interpolation feed speed ; will be the circular interpolation tan- v
MCC [Logical axis name 1] End po- | gential speed.
sition [Logical axis name 2] End po- | With the center point coordinate des-
Center sition U Center point position V ignation, the number of turns can be
position Center point position [Logical axis designated with T—. (T— can also be
(DlouEtgr— designation | name 3] Linear interpolation end po- | omitted.)
cc ¢ O(,: wise sition T Number of turns F Interpola-
M Helical tion feed speed ;
Interpola- - -
tion MCC [Logical axis name 1] End po-
. sition [Logical axis name 2] End po-
Radius . . .)
. . sition R Radius [Logical axis name 3]
designation

Linear interpolation end position F
Interpolation feed speed -+ ;

- Continues to the next page -

A-4

Appendices

A.2 Axis Move Commands

(cont'd)
(2]
) =
= e
© (o))
() o
- o
el Name Programming Format Description o %
mand = 3
o c
£ 13
o
= | §
n
Zero Point | ZRN [Logical axis name1]0 L .
v _
ZRN Return [Logical axis name 2]0 [Logical axis name 3] ; Returns each axis to its zero point.
:_r:?eera';)la- SKP [Logical axis name 1] Reference position If the SKIP signal turns ON during a
nterpe [Logical axis name 2] Reference position [Logical | linear interpolation operation, skips
SKP | tion with : ") .. 4 -
. axis name 3] Reference position :*- F Interpolation | the remaining movement and pro-
Skip g .)
. feed speed SS Skip input signal ; ceeds to the next block.
Function
MVT [Logical axis name 1] Reference position . .
) . . o . Executes positioning by clamping the
Set Time [Logical axis name 2] Reference position [Logical
MVT - . " e feed speed so that travel can be com- v -
Positioning | axis name 3] Reference position -+ T Positioning . .
: . pleted at the designated time.
time (ms) ;
When an external positioning signal
is input while external positioning i
EXM [Logical axis name 1] Reference position D 1 Mput Wh'E €xtera’ PoSTHOMINS 1S
External : .| being executed, only the travel dis-
EXM . Movement amount from the time the external posi- . w9 . v -
Positioning tionina sianal is inout - tance designated by “D-" is posi-
g sig put; tioned with an incremental value, and
then the next command is executed.

A Motion Language Commands

A.3 Control Commands

(2]
» IS
S o
S| 8
o] =
Com- . o o o
Name Programming Format Description o)
mand = 3
S | &
° =]
2|5
w
Changes the current values to the
Current POS [Logical axis name 1] Desired coordinate val- | desired coordinate values for up to
POS Position Set | Y€ [Logical axis name 2] Desired coordinate value | 16 axes. Subsequent move com- v -
e mands use this new coordinate sys-
tem.
Goes to the target position on the
machine coordinate system. The
Move on MVM MOV [Logical axis name 1] Reference posi- coordinate .SyStem set automa:tlcally
. . . - i on completion of the zero point
MVM | Machine tion [Logical axis name 2] Reference position [Log- . . . v -
. . . " return is called a machine coordi-
Coordinate | ical axis name 3] Reference position -- ; . .
nate system. This coordinate system
is not affected by the POS com-
mand.
Coordinate PLN [Logical axis name 1 (vertical axis)] [Logical Designates the coordinate p I?I.le o
PLN | Plane axis name 2 (horizontal axis)] ; be used for a command requiring a v -
Setting ’ plane designation command.
Program Updates the program current posi-
PLD Current PLD [Logical axis name 1] tion for axes shifted by manual v B
Position [Logical axis name 2] - ; intervention. Up to 16 axes can be
Update designated.
MVS [Logical axis name 1] - [Logical axis name 2] -
-+ PFN;
or Proceeds to the next block when the
o axis that is being moved by an inter-
PEN Ié\hr;?:skltlon MVS [Logical axis name 1] - [Logical axis name 2] polation related command in the v B
’] same block or the previous block,
PFN [Logical axis name 1] [Logical axis name 2] ; enters the in-position check width.
MVS [Logical axis name 1] - [Logical axis name 2] -
Sets the NEAR signal output width.
Set . INP [Logical axis name 1] NEAR signal output The e.xecuuon of a subsequent inter-
INp | IN-POSItON | it 1L ogical axis name 2] NEAR signal output | Polation related command block v | -
Check width - g 9 P with a PFN command proceeds to
Width ’ the next block after entering in-posi-

tion check width.

A-6

Appendices

A.4 Program Control Commands

A.4 Program Control Commands

(2]
%) =
g o
© (o)
c 2| &
om- Name Programming Format Description o %
mand = bt
S| &
° =]
=8
w
IF (Condltlor?al expression) ; Executes process 1 if the conditional
IF . (Process 1) ; S
Branching i expression is satisfied, and executes
ELSE ELSE; . o 4 v
Commands . process 2 if the conditional expres-
IEND (Process 2) ; L .
IEND: sion is not satisfied.
WHILE | Repeat WH.ILE (Conditional expression) ; Repeatedly executes WHILE to , .
WEND | Commands L WEND processing for as long as the
WEND; conditional expression is satisfied.
PFORK Label 1, Label 2, Label 3, ---;
Label 1: Process 1 ; Executes the blocks designated by the
PFORK | parallel JOINT(? Label X ; . label.s in parallel. With a subroutine., a
JOINTO | E tion Label 2: Process 2 ; maximum of two labels can be desig- v
o OINT e o | JOINTO Label X ; nated. -
JO Label 3: Process 3 ; END and RET cannot be used during
JOINTO Label X ; parallel execution processing.
Label X: PJOINT ;
SFORK Conditional expression 1? Label 1,
Conditional expression 2? Label 2, Condi-
tional expression 3? Label 3, Conditional ex-
pression 4? Label 4 ;
Label 1: Process 1 ;
SFORK | selective JOINTQ Label X ; . Execute.s process 1 if conditional
. Label 2: Process 2 ; expression 1 is satisfied, and executes
JOINTO | Execution ; . . v v
Commands JOINTO Label X; process 2 if the conditional expres-
SJOINT Label 3: Process 3 ; sion 2 is satisfied.
JOINTO Label X ;
Label 4: Process 4 ;
JOINTO Label X ;
Label X: SJOINT;
Motion
MSEE | Subprogram MSEE MPSOOO ; Executes subprogram MPSOOO. v -
Call
Sequence
SSEE | Subprogram SSEE SPSO0OO; Executes subprogram SPSCICI. - v
Call
UFC gzﬁrFFrgrr:]ctlon UFC User function name Input data, Input Calls the user defined function from a v _
. address, Output data ; motion program.
Motion Program
User Function
Call From FUNC User function name, Input data, Input | Calls the user defined function from a
FUNC) - v
Sequence address, Output data ; sequence program.
Program
END | Program End END; Ends the motion program. v v
RET Subrautine RET; Ends the subroutine. v v
Return

A Motion Language Commands

(cont’d)

Waits for the period of time specified

TIM Dwell Time TIM T- by T, and then proceeds to the next v -
block.
Stops execution of the motion pro-

IOW | I/O Wait IOW MB—==:-; gram until the conditional expression | v/ -

given in the command is satisfied.

Divides the execution of consecu-
tively coded sequence commands. v
The command block after EOX will
be executed at the next scan.

EOX One Scan Wait | EOX;

Single-block

SNGD/ Disabled SNGD; Specifies whether to enable or disable

SNGE (SNGD)/Single- | **-; single step operation during debug- v -
block Enabled | SNGE; ging.

(SNGE)

A-8

Appendices

A.5 Arithmetic Operations

A.5 Arithmetic Operations

(2]
» s
E | ©
© o))
C g | &
om- Name Programming Format Description o %
mand c Q
S| &
° >
= | 8
n
Substitutes operation results. Performs calcula-
= Substitute | (Result) = (Math expression) | tions from left to right (with no order of prior- v v
ity).
Performs integer and real number addition. Cal-
+ Add MW - =MW - + MW —; culates combinations of integers and real num- 4 v
bers as real numbers.
Performs integer and real number subtraction.
- Subtract MW - =MW - - MW —; Calculates combinations of integers and real 4 v
numbers as real numbers.
Performs integer and real number multiplication.
* Multiply MW - =MW - * MW —; Calculates combinations of integers and real v 4
numbers as real numbers.
Performs integer and real number division. Cal-
/ Divide MW - = MW -/ MW —; culates combinations of integers and real num- v v
bers as real numbers.
_ . When programmed in the next block after a divi-
. MW - = MW -/ MW —;
MOD Remainder sion, MOD stores the remainder in the desig- 4 v
MW - = MOD; .
nated register.
A.6 Logical Operations
o
%) <
= S
© =)
() e
o o
el Name Programming Format Description o %
mand c Q
o C
18
o
s | 8
(D]
MB -=MB - | MB —;
MB-=MB-|1;
OR (logical OR) MW — = MW _l | ;\/IW . Performs bit/integer logical OR. v v
MW — = MW — | O0FFH;
MB-=MB-& MB —;
AND MB -=MB - & 1; . .
’ v v
& (logical AND) MW — = MW — & MW —: Performs bit/integer logical AND.
MW — = MW — & 00FFH;
XOR
MW — =MW —* MW —;
A g(?;cal exclusive MW — = MW — A 0 OFFH’; Performs integer logical exclusive OR. v v
MB - =IMB —;
| NOT (logical MB - =11, Performs bit/integer logical complement v v
’ complement) MW — = IMW —; (inverts bits).
MW — = 100FFH;

A Motion Language Commands

A.7 Data Comparison

Com-

mand Name Programming Format Description

Motion Programs
Sequence Programs

IF MW — == MW — - Used in an IF or WHILE conditional

== Match WHILE MW — == MW — : expression. If th.e.left.si‘(‘le anfi’ right side
match, the condition is “true.

. IF MW — <> MW — Used in an IF or WHILE condl'.uonal_

<> Mismatch expression. If the left side and right sidedo | v/ v

WHILE MW — <> MW —; e i
not match, the condition is “true.

IF MW —> MW —: Used 1n.an IF or WHILE cpndltlonal

> Greater Than expression. If the left side is greater than v 4

WHILE MW —> MW —; . . B '
the right side, the condition is “true.

IF MW — < MW —: Used 1n.an IF or WHIL.E c9nd1t10nal

< Less Than expression. If the left side is less than the v v

WHILE MW — <MW - . . e '
right side, the condition is “true.

Used in an IF or WHILE conditional

AN
\

o Greater Than | IF MW —>= MW —; expression. If the left side is greater than or v v
or Equal To | WHILE MW - >= MW —; equal to the right side, the condition is
“true.”
Used in an IF or WHILE conditional
- Less Thanor [IF MW —<=MW —; expression. If the left side is less than or v v
Equal To WHILE MW — <= MW —; equal to the right side, the condition is
“true.”

A.8 Data Operations

(2]
%) S
E | 8
© (o))
o | 2
5 e}
2l Name Programming Format Description o %
mand = o
5 c
5 | S
o
= | 8
n
SFR Right Shift | SFR MB— N— W-—: Shifts the bl.t variable in the specified num- v v
bers to the right.
SFL Left Shift SFL MB- N- W-—: Shifts the bit variable in the specified num- v v

bers to the left.

Copies the areas of specified blocks begin-
BLK Block Move |BLK MW - MW - W —; ning with the specified transfer source to the | v v
specified destination.

Clears the desired area to 0 (zero) beginning v v

CLR Clear CLR MW- W-; with the specified register.
ASCII ASCII ASCII ‘Character string MW — - Converts the specified chargcters to -ASCII v v
Convert 1 code, and stores to the specified register.

A-10

Appendices

A.9 Basic Functions

A.9 Basic Functions

o
%) IS
E| @
© o))
c g|&
om- Name Programming Format Description a %
mand c [8
S| &
° >
= |8
n
SIN (MW -): Obtains the sine of integer or real number data.
SIN Sine o The specifications differ depending on the data vV
SIN (90) ;
type: Integer or real number.
COS (MW -); Obtains the cosine of integer or real number data.
COosSs Cosine o7 The specifications differ depending on the data vV
COS (90) ;
type: Integer or real number.
TAN (MF -); Obtains the tangent of real number data.
v v
TAN Tangent TAN (45.0) ; Only a real number type register can be designated.
. ASN (MF -); Obtains the arc sine of the real number data.
’ v v
ASN Arc Sine ASN (90.0) ; Only a real number type register can be designated.
. ACS (MF -); Obtains the arc cosine of real number data.
’ v v
ACS Arc Cosine ACS (90.0) ; Only a real number type register can be designated.
Obtains the arc tangent of integer or real number
ATN (MW -); data.
’ v v
ATN Arc Tangent ATN (45); The specifications differ depending on the data
type: Integer or real number.
SQT (MW -); Obtains the root of integer or real number data.
SQT | Square Root 7 The specifications differ depending on the data v | v
SQT (100) ;
type: Integer or real number.
BCD-to- . .
BIN : BIN (MW —); Converts BCD data to binary data. VIV
Binary
BCD BlrlgacI;yD-to- BCD (MW -); Converts binary data to BCD data. v | v
If the logical operation result is true, the desig-
. nated bit turns ON.
—1= — _ - v v
S{} Set Bit S{MB-}=MB-8&MB-; The designated bit does not turn OFF even if the
logical operation result is false.
If the logical operation result is true, the desig-
. nated bit turns OFF. The designated bit does not
1= - —: v v
R{ } Reset Bit R{MB-}=MB-&MB-; turn ON even if the logical operation result is
false.
MB —=PON (MB - MB -);
or . .
- The bit output turns ON for one scan when the bit
— — == - —_ /
PON Rising Pulse lF _PON (MB - MB -) K input status changes from OFF to ON.
IEND;
MB — = NON (MB — MB -);
or . .
. The bit output turns ON for one scan when the bit
- —_ == . —_ \/
NON Falling Pulse IF _NON (MB —M8 -) K input status changes from ON to OFF.
IEND;
Counts the period of time when the bit input is
ON-Del ON.
TON "DelaY | B —=MB - & TON (- MB—); | The bit output turns ON when the counted valueis | — | v
Timer
equal to the set value.
Counting unit: 10 ms.
Counts the period of time when the bit input is
OFF-Dela OFF.
TOF Timer Y |MB-=MB-&TOF (-=MB-); The bit output turns OFF when the counted value | — v
is equal to the set value.
Counting unit: 10 ms.

A Motion Language Commands

A.10 C-Language Control Commands

CTSK EXECUTE TYPE,

COMPLETE ERROR C_RETURN;

C-Language Controls the operations of C-language
CTSK Task Control C_NAME, user task, such as start and stop.
COMPLETE ERROR ERR_CODE;
oL CFUNC EXECUTE OPTION1 OPTIONZ,
CFUNC | 2 -@nguage C_NAME C_ARG1 C_ARG2, Calls the C-language user function.
Function Call

A-11

A-12

Appendices

B Sample Programs

The following table shows the sample programs.

a single axis servomotor.

o Reference
Sample Programs Description Section
Programs to control motion programs Sample ladder and sequence programs to control motion B 1
program.
. Sample motion program for parallel processing using a

Parallel processing PFORK command. B.2
Speed control by using a motion program | Sample motion program for speed control. B.3
Simple synchronized operation using a Sample program to move two axes in synchronization using

: . B.4
virtual axis the SVR module.
Sequence programs Sample sequence programs for JOG and STEP operations of B5

B Sample Programs

B.1 Programs for Controlling Motion Program Execution

Sample ladder and sequence programs to control execution of motion program are shown below.

(1) Ladder Program

0aoo
ML-1

000z
KL-1

0005
ML-1

0oa7
MNL-1

0oog
ML-1

Oy —(wseE

for axis 1

orans senoon The servo turns ON when
SemD on Al~Servo ON
i IBO0O0OO turns ON. g

[ey

The motion program starts running
when IBO0001 turns ON.

programm start

start command program start

|BO0001 DEOOD040 DEOO0010
|| F e
[0 _ S

prograrn haold

hold hold request

|BO000Z DBO00011
|| g
[e

program abort

ahort ahort request

|BO000OS DBEOoo01 2
|| e
[Wi

reset for program and alarm

reset reset for program and alarm
|BO0004 DBO00015

| 72

[p—y

call motian prograrm Registers the motion program to

run by using an MSEE command.

0011 [¥]Prograrm Mo, 00001
ML-1 [AlData DADOO00
rmotion prograrm stop
mation prograrm run off pulse check if program stopped
DBO0O0ao DEOO0041 DEOO0042
|| P
S [;_ N
ML-1
IF
0015 DBO00042==true
HL-1
here program for treatment after motion program stopped
WEEy — END IF)
0016
ML-1
{ END)
o017
ML-1

A-13

A-14

Appendices

B.1 Programs for Controlling Motion Program Execution

(2) Sequence Program

" | The servo turns ON

; SeNOoNcommand/ when 1B0000O turns
//I

. ON.
OB80000 = 1BO00OO; "Axis 1 servo ON"

" . / The motion program starts running
" Control signal /I when 1B00001 turns ON.

DB000010 = PON(IBO0001 MB000000); " Program start"

DB000011 = 1B0000Z; " Pause "
DB000012 = IB00003; " Program stop"
DB000015 = 1B00004; " Alarm reset "

Stops the motion program operation

IF NON(DB000000 MB000001) == 1; " Program operation OFF? "
; " Process when the program
IEND; operation stops™"

END;

IMPORTANT

No MSEE command can be embedded in sequence programs.
In this case, embed an MSEE command in the H drawing.

B Sample Programs

B.2 Parallel Processing

A sample motion program for parallel execution accomplished by using a PFORK command is shown below.

ABS;

001:FMX T10000K;
PLN [A1] [B1];

JOINTO 005;
002:FMX T10000K;

JOINTO 005;
003:10W 1L8816>130000;

0OB00000=1;

JOINTO 005;
004:10W 1L8896>12000;

OB00001=1;

JOINTO 005;
005:PJOINT;

END;

PFORK 001 002 003 004;

" Absolute mode

1
J Starts parallel

MCC [A1] 0 [B1]0 U100000 VO F10000K;

MVS [C1] 131072 [D1] 20000 F10000K;

" Sets the max. interpolation feed speed
" Sets the plane for circular interpolation

i Program 1: Circular interpolation

" Circular interpolation

" Sets the max. interp
" Linear interpolation

"Monitors C1 axis p

" When reached, OB00000 turns ON.

"Monitors D1 axis p

" When reached, OB00001 turns o/m% Program 4: D1 axis position monitor

osition

osition

olation feed speed
! P Program 2: Linear interpolation

__processing

:! Program 3: C1 axis position monitor

The following diagram illustrates the operations executed by the above sample program.

001

002

003

004

Circular interpolation
with axis A1 and B1

2-axis linear

interpolation with axis

C1and D1

C1 axis pos|

ition monitor

D1 axis position monitor

005

A-15

Appendices

B.3 Motion Program for Speed Control

B.3 Motion Program for Speed Control

A sample motion program for speed control is shown below.
For this sample program, bits 0 to 3 (Speed unit selection) of motion setting parameter OWO03 are set to
0.01% (a percentage of the rated speed).

OW8008=23; "Speed control mode

0OL8010=6000; "Changes the speed to 60% of rated speed
TIM T300; "Waits for three seconds

0OL8010=10000; "Changes the speed to the rated speed
TIM T400; " Waits for four seconds

0OL8010=5000; "Changes the speed to 50% of rated speed
TIM T600; " Waits for six seconds

OW8008=0; "Cancels the speed control mode

END;

The following diagram illustrates the moving pattern implemented by the above sample program.

Speed [%]
A

100 _Rated speed

50 f-f L

| |
[['
[['
0 : : : » Time (s)
| I
Motion setting parameter | :
OLOO10: Speed unit setting : |
10000 |------m - - [remm——— oo F--
|
|
|
5000 f-------------- — --
| |
| |
| | -
O 5 7 4s 6s Time (s)

B Sample Programs

B.4 Simple Synchronized Operation Using a Virtual Axis

With this sample program, a motion program is used to move an SVR (virtual axis), and two copies of the SVR
feedback position are made by a ladder program for two actual axes to perform a two-axis synchronized opera-
tion.

SVB
Axis 1

SVR (Virtual axis) \
\ _ Axis 2

Use the motion program to
execute single-axis interpolation. o

A

Use the ladder program to make copies of
the SVR (virtual axis) feedback position.
Axis 1 and Axis 2 use the copied feedback
position to perform two-axis synchronized

operation.
* Motion Program
FMX T10000K; "Sets the max. interpolation feed speed. (K=1000)
INC; "Incremental mode
IAC T500; "Interpolation acceleration time = 500 ms
IDC T500; "Interpolation deceleration time = 500 ms
MVS [SVR] 1000K F10000K; "Interpolation with movement amount 1000000
END;

A-17

Appendices

B.4 Simple Synchronized Operation Using a Virtual Axis

0ooo
ML-1

0oo2
ML-1

o014
ML-1

0016
ML-1

o018
ML-1

I — MSEE X}

0022 [¥]Program Mo. 00001
ML-1 [A]Data DADDDOD

POSITION COMMAND FOR ACTUAL AXES
I EXPRESSION =l
0023 OLB01C = ILBA1E; # Al POSITION = FEEDBACK OF SWR
ML OLBO0SC = ILA31E; # B1 POSITION = FEEDBACK OF SWR
| END)
0024

SAMPLE PROGRAM FOR SYR

SERYWO 0N
Mation contraller op
Sy OON eration ready Servo ON
WE300000 |BS0000 0Ba0000
| | PR
I 1 o
System busy
|BS0002
||
[
Motion controller op
eration ready Servo ON
|BB0800 0Ba0s00
| T
[Ry
Systern busy
|BB0B02
|
[
|B&2000 QBa3000
l#
[p—y
CHECK A1, B1, SWR
Runrning Rurnning A1,B1 RUNNING
IBB0001 IBB0801 DBO00040
| || P
[[b
Al B1,5WR RUNMING
1BS3001 DE000041
| 7Ty
[BB
SET MOTION COMMAND FOR SWE
A1.B1 RUNNING
DBEO00040
|| (EXPRESSION A

OWWB00E = 4; /f INTERPOLATE FOR AXIS Al
OwyB0BE = 4; // INTERFOLATE FOR AXIS B1

A1,B1 RUNNING
DE00040
[/] { EXPRESSION
OWB008 = 0; # NOP FOR AXIS Al
OWB088 = 0; # NOP FOR AXIS B

ZD

START MOTION PROGRAM
CONTROL WORD BITO

AXlS MOWE oM PULSE A1,B1,5VR RUNNING REQUEST FOR START
WEB300001 DEOO0044 DBO0O041 DEOO0010

|| F - | |

[_l 1 oy

CALL MOTION PROGRAM

B Sample Programs

B.5 Sequence Programs

In this sample program, sequence programs are used for JOG and STEP operation of servomotor with single axis.

Sequence main program (SPM001)

"SPMO001: Main program"

SSEE SPS002; "Settings common to all axes
SSEE SPS003; "JOG & STEP operation process
END;

Sequence subprogram (SPS002)

"SPS002: Settings common to all axes"

" Motion command 0 (No command) detection

IF IW8008 == 0;
MB300010 = 1;
ELSE;
MB300010 = 0;
IEND;

The Servo turns ON when
" MB300000 turns ON.

" Servo ON command

OB80000 = MB300000 & (IB8000O | IB80002); "Servo ON

" Alarm reset

OB8000F = MB300001; "Alarm reset

Speed unit & Acceleration/deceleration unit selection

Bit 0 to 3: Speed unit selection (0: reference unit/s, 1: Reference unit/min., 2: Designated in %)
Bit 4 to 7: Acceleration/deceleration unit selection (0: Reference unit /s, 1: ms)

DW00010 = OW8003 & FFOOH,; "Function setting 1 work
Ow8003 = DW00010 | 0011H,; "Function setting 1

" Linear acceleration/deceleration setting

IF MB300020 == 1;

OL8036 = 100; "Linear acceleration rate/Acceleration time constant
0OL8038 = 100; "Linear deceleration rate/Deceleration time constant
IEND;

- App_

A-19

A-20

Appendices

B.5 Sequence Programs

Sequence subprogram (SPS003)

"SPS003: JOG & STEP operation process "

" JOG operation

IF 1IB80001 & ((DB000010 & 'DB000011) | ('DB000010 & DB000011)) == 1;
DB000000 = 1;

ELSE; . .
DB000000 = 0: Starts JOG operation Starts JOG operation

IEND: (forward rotation) when (reverse rotation) when
’ DB000010 turns ON. DB000011 turns ON.

DB000001 = PON(DB000000 DB000050) & MB300010; "JOG operation starts

DB000002 = NON(DB000000 DB000051); "JOG operation stops
IF DB000001 == 1;
OL8010 = 1000;
owa008 =7, " Motion command FEED
IEND;
IF DB000002 == 1;
OW8008 = 0; " Motion command NOP
IEND;
" STEP operation
IF 1IB80001 & ((DB000012 & 'DB000013) | (\DBO00012 & DB000013)) == 1;
DB000008 = 1;
ELSE; i Starts STEP f
DB000008 = 0: Starts STEP operation arts operation

IEND: (forward rotation) when (reverse rotation) when
’ DB000012 turns ON. DB000013 turns ON.

DB000009 = PON(DB000008 DB000058) & MB300010; "STEP operation starts

DBO00000A = NON(DB000008 DB000059); "STEP operation stops
IF DB000009 == 1;
OL8010 = 1000; "STEP speed setting

OW8044 = 1000; "STEP moving amount setting (1000 pulses)

OW8008 = 8; "Motion command STEP
IEND;
IF DBOOOOOA == 1;

OW8008 = 0; " Motion command NOP
IEND;

Reverse rotation selection

0OB80092 = (DBO00000 & DB000011) | (DBO00008 & DB000013);"Reverse rotation selection

RET,;

C Differences between MP900 Series and MP2000 Series Machine Controllers

C Differences between MP900 Series and MP2000 Series
Machine Controllers

This section describes motion program differences between the MP900 series and the MP2000 series Machine

Controllers.

C.1 Motion Programs

Item MP900 Series MP2000 Series Remarks
Number of tasks No limitation 16 tasks Number of simultancously execut-
able programs

MP910: 28 axes

Group definition MP920: 48 axes
16 axes -

Max. number of axes per group | MP930: 14 axes

MP940: 1 axis
Work size of MSEE command 2 words 4 words See 4.3.3 Work Registers.
in ladder programs
Interpolation override Always enabled Enabled or disabled can be See 4.3.3 Work Registers.

selected.

Register for interpolation over-

Designated in the

Designated using the 3rd

. . . Group Definition word of an MSEE work See 4.3.3 Work Registers.

ride value designation . .
dialog box. register.

P ti istrati

rogram execution registration Can not be used with MP2300,
function Not supported Supported CPU-01 or CPU-02
(M-EXECUTOR Module) '
Nesting of PFORK command
(PFORK execution during Permitted Prohibited -
parallel processing)
Axis move command in the Prohibited Permitted B
two parallel subprograms
Subprogram call (MSEE) from Permitted Prohibited 3

the two parallel subprogram

Numbers below decimal point
when real number data is
stored in an integer register

Rounded-off

Cut-down (Truncate) or
rounded-off (Rounding)

The default for the MP2000 series is
cut-down.

C.2 Sequence Programs

ltem

MP900 Series

MP2000 Series

Remarks

Applicable/Not applicable

Not applicable

Applicable

Can not be used with MP2300,
CPU-01 or CPU-02.

A-21

A-22

Appendices

C.3 Motion Programming Commands

C.3 Motion Programming Commands

Item

MP900 Series

MP2000 Series

Remarks

ACC, DCC

» Executable with
SVA-01, SVA-02,
and SVB-01 Mod-
ules.

» Unexecutable with
PO-01 Module.

Executable

SCC

» Executable with
SVB-01.

» Unexecutable with
SVA-01, SVA-02,
and PO-01.

Executable

Speed unit for VEL
command

10™ reference units/
min.

Can be selected from:

* 10™ reference units/min.

« Reference units/s

* Depends on the difference in functions
between MP900 series Motion Modules and
MP2000 series Motion Modules.

*0.01% «See 8.1.6 Set Velocity (VEL).
*0.0001%
Speed unit for VEL
command when the 11\/(1)29201})0/;?1;1\4()@16' * Depends on the difference in functions
reference unit is set to p uises ’) between MP900 series Motion Modules and
Motion modules other | 1000 pulses/min.

pulse

(10" reference units/
min.)

than MP920 PO-01:
1000 pulses/min.

MP2000 series Motion Modules.
* See 8.1.6 Set Velocity (VEL).

Acceleration/Deceler-
ation rate designation
method for ACC and
DCC commands

MP930 SVB module:
Acceleration/decelera-
tion time (ms) calcu-
lated on the base of the
feed speed

Modules other than
MP930 SVB Module:
Acceleration/decelera-
tion time (ms) calcu-
lated on the base of the
rated speed

Can be selected from
followings:

* Acceleration/decelera-
tion time (ms) calcu-
lated on the base of the
rated speed

 Acceleration/decelera-
tion rate

(reference unit/sz)

* Depends on the difference in functions
between MP900 series Motion Modules and
MP2000 series Motion Modules.

* See 8.1.3 Acceleration Time Change (ACC)
and 8.1.4 Deceleration Time Change
(DCC).

Unit of moving amount
specified for external
positioning command
EXM

In unit of pulse

In reference unit

Depends on the difference in functions
between MP900 series Motion Modules and
MP2000 series Motion Modules.

C.4 Group Definitions

ltem

MP900 Series

MP2000 Series

Remarks

Group definition

saving operation while | Prohibited Permitted -
online

Possible
Automatic generation (Can be specified in the Not possible B

of ladder program

Group Definition dia-
log box.)

C Differences between MP900 Series and MP2000 Series Machine Controllers

C.5 Debug Function

Item

MP900 Series

MP2000 Series

Remarks

Single-block operation
applicable commands

Axis move commands
only

All commands

Designation to ignore
single-block signal

By coding an SNG
command for each
block that ignores the
single-block signal

By executing SNGD and
SNDE commands in the
enclosed blocks.

See 8.4.14 Single-block Signal Disabled
(SNGD)/Single-block Signal Enabled
(SNGE).

Number of settable
. 1 4 -
break points
C.6 Motion Program Alarms
Item MP900 Series MP2000 Series Remarks
Motion oroaram alarm Storage designated in
prog the Group Definition S register See 10.2.3 Confirming the Alarm Code.
storage .
dialog box

A-23

A-24

Appendices

D.1 General Precautions

D Precautions

D.1 General Precautions

(1) Saving the Changes in Programs to the Flash Memory

After changing an application such as a motion program or sequence program, always save the changed applica-
tion to the flash memory. If the changed application is not saved to the flash memory and the power to the
Machine Controller is turned OFF, the changed application will be lost.

(2) Prohibited Use of Debug Function for a System in Operation

Never use the debug function for a system in operation. Debugging will cause changes in program operation,
such as in command execution timing, resulting in malfunction or failure of the system.

For debugging, use the exclusive system for debugging.

(3) Differences in Axis Operation When an Alarm Occurs for One or More Axes Specified
in an Axis Move Command

If an alarm occurs in one or more axes specified in an axis motion command in an MP2000-series motion pro-
gram, the axes for which alarms do not occur may not stop. Create the required interlocks in the application.

Motion program operation when an alarm occurs for one or more axes specified in an axis move command is
described in the following table.

Axis Move
Command

Axes for Which
Alarms Occur

Axes for Which
Alarms Do Not
Occur

Motion Program Operation

Positioning (MOV)

Move to target posi-

References continue to axes without alarms and they

(MCW and MCC),
or Linear Interpola-
tion with Skip

Function (SKP)

Move to target posi-
tions.

or Set-time Posi- Stop. . »

tioning (MVT) tions. move to the target positions.

External Position- References continue until bit 8§ (Command Execution
. EXM)* Stop. - Completed) in IWODOO09 (Motion Command Status)
ing () turns ON.

Zero Point Return References continue until bit 5 (Zero Point Return
ZRNY* Stop. Move to zero point. (Setting) Completed) in IWODOOC (Position Man-

() agement Status) turns ON for all specified axes.
Linear Interpolation A motion program alarm (84h: Duplicated Motion
(MVS), Circular In- Stop. Command) occurs and references to all specified
terpolation/Helical axes are stopped.

Interpolation Stop.

References continue to axes without alarms and they
move to the target positions.

* An alarm does not occur and the motion program execution block does not change to the next block. Therefore,
you must execute a program reset or alarm reset request after a program stop request is executed.

D Precautions

D.2 Precautions on Motion Parameter Settings

(1) Set bit 5 (Position reference type) of motion setting parameter OWLILI09 to
Incremental value add method

When using a motion program, always set bit 5 (Position reference type) of motion setting parameter OWI[J109
to Incremental value add method. Motion programs manage position information using the incremental value

add method. Therefore, operation using a motion program cannot be guaranteed if bit 5 of motion setting param-
eter OWLII09 is set to Absolute value set method.

bit &

Fixed Parameters Setup Param

Phase compensation type

;]
ation command contral flag
bit 0 Holds a command 0N * OFF
bit 1 Interrupt a command 0N = OFF
bit 2 Moving direction [JOG/STER) " Reverse = Forward
= bit 3 Zera point retum direction selection " Forward % Reversa
bit 4 Latch zone effective selection " Enabled * Disabled
(bit & Pozition reference bype " Absolute value set method 1+ Incremental value add method)
[asis 1 x| [SERVOPACK 55 =

" Absolute value set method Increm ue add method

(G |Mation cormmand contral flag

OWEO0G

o
3 |Function setting 1 ok Cancel
4 |Function setting 2 |
5 |Function setting 3 QZO0S5 |0000 0000 0000 Q000 0000 H 0000 O
5 | Option Setting OWE00E |0000 0000 0000 Q000 0000 H 0000

0000 G000 Q000 Q0000000 H

10 |Motion subcommand OWEO0A
12 |Torgue/Thrust reference setting OLEO0OC

Mo Cummandﬂ—
0.00 %

With a motion program, an ABS or INC command is used to set the absolute mode or incremental mode:
Code an ABS command to set the absolute mode (ABS).
Code an INC command to set the incremental mode (INC).

Absolute mode (ABS)

Incremental mode (INC)

The reference position is treated as the target position.

Coordinate
words
ABS;
MOV [Logical axis 1] Reference position 1
[Logical axis 2] Reference position 2 ;

Logical axis 2

The reference position is treated as the relative moving amount from
program current position.
Coordinate
words
INC;
MOV [Logical axis 1] Reference position 1
[Logical axis 2] Reference position 2 ;

Logical axis 2

A
Target position
Reference |- - - - - Target position
position 2 Reference !
position 2 :
! |
|
Program ! Program '
current position : current position~ Reference |
) position 1
L » Logical axis 1 » Logical axis 1
Reference 9 | 9
position 1

Fig. D.1 Movement Modes for Axis Move Commands

A-25

Appendices

D.2 Precautions on Motion Parameter Settings

(2) Do not access a motion register from the I/O register by using a subscript

I/O registers and motion registers are not assigned to consecutive memory locations.
Therefore, when using a subscript, access is limited within the respective register range of 1/O register and

motion register.

IW0000/0W0000
Can access
1/O registers
IW7FFF/OW7FFF
Cannot access
Example:
1=1;
1W8000/0W8000 OWTYFFFi = 0;
Motion registers
Can access
IWFFFF/OWFFFF

A-26

D Precautions

(3) Do not access a motion register of a different circuit by using a subscript

As with the relationship between /O registers and motion registers, motion registers of different circuits are not
assigned to consecutive memory locations.

Therefore, when using a subscript, access is limited within the same motion register range of each circuit.

If the circuit numbers of two registers are the same, it is possible to access a register of a different axis.

Circuit No. Axis 1 Axis 2 Axis 16

1 OW8000 to OW807F OW8080 to OW80FF OW8780 to OW87FF
2 OW8800 to OWS887F OW8880 to OWS8SFF OWS8F80 to OWSFFF
3 OW9000 to OW907F OW9080 to OW90FF OW9780 to OW97FF
4 OW9800 to OW987F OW9880 to OWI9SFF OWOIF80 to OW9FFF
5 OWAO000 to OWAOQ7F OWA080 to OWAOFF OWA780 to OWATFF
6 OWAZS800 to OWAS7F OWAS80 to OWASFF OWAF80 to OWAFFF
7 OWBO000 to OWBO07F OWBO080 to OWBOFF OWB780 to OWB7FF
8 OWB800 to OWB87F OWB880 to OWBSFF OWBF80 to OWBFFF
9 OWC000 to OWCO7F OWCO080 to OWCOFF OWC780 to OWCTFF
10 OWC800 to OWC87F OWC880 to OWCSFF OWCF80 to OWCFFF
11 OWDO000 to OWDO7F OWDO080 to OWDOFF OWD780 to OWD7FF
12 OWD800 to OWDS87F OWD880 to OWDSFF OWDF80 to OWDFFF
13 OWEO000 to OWEO7F OWEO080 to OWEOFF OWE780 to OWE7FF
14 OWES800 to OWER7F OWES880 to OWESFF OWEF80 to OWEFFF
15 OWEF000 to OWFO7F OWF080 to OWFOFF OWEF780 to OWF7FF
16 OWF800 to OWF87F OWF880 to OWF8FF OWFF80 to OWFFFF

AX[S,J,(JW@QQQEQ!W,B,QZE,,QW,%QQQIQ,QW,SQZF),D Can access

Axis 2 (IW8080 to IW80FF, OW8080 to OWS80FF) £ |

”””””””””””””””””””””””””””””””” xample:

Circuit . I=1; .
1 . OW807Fi = 0;
lAxis 16 (IW8780 to IW87FF, OW8780 to OWS7FF,
Cannot access
Example:
Axis 1 (IW8800 to IW887F, OW8800 to OW887F) =1,
Axis 2 (IW8880 to IW88FF, OW8880 to OW8SFF) OWB8T7FFi = 0;
Circuit
2
Axis 16 (IWBF80 to IWBFFF, OWSF80 to OWSFFF

A-27

Appendices

D.2 Precautions on Motion Parameter Settings

(4) Do not change the motion setting parameter OLOO1C “Position reference setting”
while axis motion is in progress in a motion program.

If OLOOI1C “Position reference setting” is changed in another program (e.g. a ladder program) while axis
motion is in progress in a motion program, the axes will move in accordance with the change. This will result in
a discrepancy between the actual position and the position specified in the motion program.

Example:

If the travel distance of the Al axis specified by OLOO1C “Position reference setting” in the motion program
below is changed from +1000 to +1500 while executing (a) in the motion program, the Al axis moves to the
position +1500. At this point a discrepancy arises in relation to the reference position in the motion program
(+1000). Then (b) in the motion program will be executed. As a result, the actual final position of the A1 axis will
be at a different position from that specified in the motion program.

INC;
ZRN [A1]0;

MOV [A1]1000; . . . (a)
MOV [A1]1000; . - - (b)

END;

Position that the motion b
program specifies Q#po*(;;o

s Chanlge iﬂ i Discrepancy :
i travelinthe : ;
“ladder ¥ “infinal ¥
Actual position of o (a) i program i (b) i position
the axis : ’V :
0 1000 1500 2060 2500

A-28

Index

Index

Symbols

A il 2-6, 8-140
-(subtract) ----------m e e e oo 2-6, 8-133
| 2-6, 8-141
R e T 2-6, 8-134
A e 2-6, 8-135
L e 2-6, 8-139
Hregister === --------- - eee oo 2-4, 6-2, 8-118
e 2-6, 8-132
R 2-6, 8-142
S e R 2-6, 8-142
B e 2-6, 8-142
il 2-6, 8-131
S il 2-6, 8-142
D e 2-6, 8-142
D 2-6, 8-142
-- 2-6, 8-137
Numerics
0.0001% of rated speed- === - === === ----=""ccc-- 7-12
0.01% of rated speed - -===----------cmmmmiaaa oo 7-12
10n reference unit/min.- - - = - === === - - 7-12
A
ABS - -k 2-6, 8-3
ABSmode - ------- - - - e e 8-3
absolute mode (ABS) - - - -------mmi i 8-3
ACC = - - el 2-6, 8-11
Acceleration Time Change (ACC) =----=---------------- 8-11
acceleration time/deceleration time- - - == = == = === === - - - - -~ 8-30
acceleration/deceleration degree unit selection - - - - - - - - - - - - - 7-12
Acceleration/Deceleration Mode with Continuous Process
Control Signal Monitoring -------------------------- 8-48
Acceleration/Deceleration Mode with Interpolation
Overlapping - === ---==------cmm e 8-52
acceleration/deceleration setting- - - - - === --------------- 7-12
acceleration/deceleration type - ------------------- 8-61, 8-67
ACCMODE - = = = = < & o oo oo oo oo 8-46
ACS - - il 2-6, 8-155
add (F)---- - - s s m e 8-132
Add Register------===c-cmmmm oo 9-21
alarmcode - - - - - - - - 10-12
alarm code list for motion program- - - ----------------- 10-15
alarm display - --------mie oo 9-35
alarm reset request - - === === - === - --------oooaaoo 4-8
allocated interlock contact- - === === --cccmoommoaaooo 4-12
Allocation DISABLE - == - === - - e ccmmmmm e cee e o oo 9-14
Allocation register - - - - == == == === - - oo oo 4-12
AND (&) - - === - - - - o e 8-139
APOS - - - - m e i 8-96
Arc Cosine (ACS) == -------mmmmmmmmem oo - 8-155
Arc Sine (ASN)---- - mm oo - 8-154
Arc Tangent (ATN) === ---cmmmmm i oo o - 8-156
arithmetic operations - ---------------------------- 8-131
ASCII - - - - - e s s e e e m e e - 2-6, 8-148
ASCIlcode---------cmmmmm e 8-148
ASCII Conversion 1 (ASCII)------------------------ 8-148
ASN - - m o il 2-6, 8-154
ATN mmmmmm e 2-6, 8-156
axis alarm monitor-----------------o-ooooo--- 9-31, 9-33

axis control commands- - - - - - - - - - -- - 8-92
axis move commands- - - - - - - - - - - - - oo 8-60
AXISNO. === - s s e s oo 7-14
axis operation Mmonitor - = - === === -------------------- 9-31
Axis Operation Monitor function----------------------- 1-7
Axis Operation Monitor/Alarm Monitor function------------ 2-5
axis setting commands - - - - - - - - - - - - - oo 8-3
AXIS StAtUS = = = == == - s s s e e e 9-33
axis type selection - - - - = = = =< - - - o i i i i 7-9, 8-5
B
basic flow of troubleshooting - ---------------o-ooon 10-2
basic functions - - -------------------oooooooon 8-150
Batch transfer---------ccocmmmmm e 3-11
BCD - e mmm e 2-6, 8-150, 8-160
BCDdata------------cccmmmmm o 8-159, 8-160
BCD to Binary (BIN)- - = = = - - - oo oo e 8-159
BIN-- oo o e 2-6, 8-159
binary data-------------------oooooooooao 8-159, 8-160
binary data conversion----------------------------- 8-150
Binary to BCD (BCD) - - === === == m e e e e e e e oo 8-160
[R 6-3
Bit Left Shift (SFL) - - - === === - oo e e e 8-145
Bit Right Shift (SFR) - - - = == == = = = = mm oo mmee oo 8-144
BLEK = = = 2 2 o oo oo 2-6, 8-146
BlOCK- = = = = s s e e e e e e 7-2, 9-4
block format- - - = - === - - e oo 7-2
Block Move (BLK) - == -----ccmmmmm e ce e e e oo 8-146
block number - = === === - oo 10-12
branching commands (IF ELSE IEND)- - - - - - == - - - - - - - - - - 8-101
Break --------cmm e 9-19
break point setting------====-----“----------------- 1-7
built-in SVB-----cccmme i 1-8, 2-2
C
Cregisters == - ---==-=-----cooo oo 2-4, 6-13
C variables (C registers)------------=--------------- 6-13
C-Language Function Call (CFUNC) - -----=------------ 8-174
C-Language Task Control (CTSK)-----------mmmmmm-no-- 8-172
Call m s s s 1-8
center point position - - - - === === c-comaaaaa o 8-70
center position designation - - - ------------------- 8-69, 8-79
CFUNC-----m o mmmmm e i e o - - 2-6, 8-174
character
D e e T 7-5
I e T T 7-5
MPS - - e e o e 7-6
I e 7-5
P o s 7-5
Ro-emmm - 7-5
N N R 7-6
N e T T 7-5
R e T 7-5
L e T 7-5
A R T 7-5
N R 7-5
childdrawing - - - === - - - - - - - - - c oo 1-9
CirCUit- = = = = = oo m oo 7-13
circular interpolation = = = = - - - === - oo 1-13
Clear (CLR) === == === mm e mmm e e e e oo - 8-147
Clockwise/Counterclockwise Circular Interpolation with Center
Position Designation (MCW, MCC)-------------------- 8-69
Clockwise/Counterclockwise Circular Interpolation with Radius
Designation (MCW, MCC)----------mmmommmmmnaon 8-75
Clockwise/Counterclockwise Helical Interpolation with Center
Position Designation (MCW, MCC)-------------------- 8-79

Index

Clockwise/Counterclockwise Helical Interpolation with Radius

Designation (MCW, MCC) - -------cccmomoamoaoaooo 8-82
@) 5 2 S 2-6, 8-147
command format - - ---------------ooooo . 9-8
command input assistant - - - - - == === == - oo oo oo 9-6
Command Input Assistant function - - - - - - - - ---------- 1-7, 1-16
command input assistant function - - - = - - === - - - - oo oo 2-5
command types - - - === === - -- - - 7-17
comment check box and comment input field - - ------------ 9-10
COMMENES = = = = = = = = = == = === o m oo oo e oo e me oo 7-2, 7-6
communication settings- - - = = - == === == - oo oo oo 3-3
COmPiling - - = == == == == e e e 3-6
COMPOSite MOVINE AMOUNt- - = = = = = = = = = === === o oo oo oo o 8-65
configuration of motion program alarms ---------------- 10-15
confirming the alarm code - - = - - = === = == o e e e e e 10-9
constant registers - === ------------------------- 6-2, 8-118
CONSEANES - = = = = = = = = = = = = = o m o f e m e e e oo 7-7
control signal---------------------------- 4-8, 9-14, 10-12
Coordinate Plane Setting (PLN) - - - - = - === - oo oo oo - 8-100
coordinate Words = - ---------c--oooomo oo 7-2, 7-4
COS-mm s mm e 2-6, 8-152
Co8ing (COS) === === m s e e e e oo 8-152
creating a motion Program---------------------------- 3-6
creating project files - - - - = - = == < - - oo oo oo 3-4
CTSK = === m et 2-6, 8-172
Current Position Set (POS) =-----------mcommommooo 8-92
D
D registers----=---------------------- 2-4, 6-2, 6-14, 8-118
D variables (D registers) - - - = - == === - oo ooooooo oo 6-14
data comparison commands - - - - === === == === --o---o- - 8-142
data Operations=- - - = = = = = == = === o oo e 8-144
data registers - - = = = = = = = - e e oo 6-2, 8-118
data types - - = ---------oo oo 6-3, 8-116
data variables (M registers) - - - - - === -=-=-=--=-2----=-- 6-8
DCC --mmmmmmmmmmmmmm e 2-6, 8-17
Debug function ----------------------- 1-7, 1-16, 2-5, 9-15
debugmode----------mmmm 3-12, 9-17
debugging the program - - - - = == === === == o oo oo oo 3-12
Deceleration Time Change (DCC) - ----------mmmmmnamann 8-17
decimal integers- - - - = = == == - c - oo oo 7-7
DEFAULT -----mm e e e e e e 8-109
[R e T T 7-9
degree ----- - - - - e 8-150
direct designation=- - - - - === = - - - oo oo o e 5-4, 9-13
divide (/)= == === mm e e 8-135
double integer - - - === === - - - - e 6-3
Drive control panel--------------ooooooaooooo 2-5,9-24
Drive control panel function- - - - = == = = === o oo oo e oo oo 1-7
Dwell Time (TIM) = = = = = === = c oo e e oo e oo 8-126
E
easy programming functions ---------------------- 1-7, 1-16
electronic gear---------=-----------~-~-~-~-~------ 7-10, 8-33
encoder cable- - - - - - - - - 3.3
END ---cmmimmi i 2-6, 8-124
end of bIoCK = == == === - oo 7-2,7-6
end Position- - - - = = = == - - oo oo oo 8-70
EOX - --mmmmmi e 2-6, 8-129
EITOr COdE = = = === = m e e 4-15
Error List dialog box- - = = == = = === o c e oo e oo 3-6
EXECUtE == =-cmcemmmmm e aiicicnicae e aaaas 9-19
executing block number - - - - - - - - oo oo 4-15
executing main program NO. - - - - === - === - oo~ 10-12
executing program ling - - - = = = - = - o oo e e e e oo 9-16

Index-2

executing program nuUMmMber - - - = === -=------------- 4-14, 4-15
executing the programs---------------------------- 3-14
execution method --------cocmmmmmm 2-3,2-4
execution registry Screen---------------------~-------- 1-8
€XECUtION SCANS = = = = = === === = === === oo oo oo 7-17
Execution type = ----==----c-mm oo 9-13
EXM--mmmm e m e e e 2-6, 8-90
external function register -------------------~-~------ 8-118
External Positioning (EXM) -----------cmoooooooo 8-90
external positioning signal--------------------------- 8-91
F
F designation --------------cocooooooooooon 8-37, 8-66
Falling Pulse (NON) = ------cmmmmmmmm oo - 8-165
filter time constant-- - - - - ------c-coom oo 8-24
filter type selection ---=------cccoommmm oo 8-28
finite length axis - - - - === 7-9, 8-5
FMX - - - m e m e e e el 2-6, 8-35
Forcedend ---------ccmmmmmm s 9-19
Fork number-------cccmmmmme i 9-20
FUNC - --- - e 2-6, 8-123
function input register ----------------“----------- 8-118
function keys - ----------miiie oo 9-16
function output register- - - - === - ---------------oo--- 8-118
Function selection flag 1- - -------cmommmmoooo 8-5
G
global variables - - - - - - - - - - - - cooi e 6-4, 7-7
grandchild drawing - ---------------------------_-__ 1-9
group definitions - - - ----------------------- 1-11, 3-5, 7-13
Group Name - ------------commm oo 7-13
group selection == - - === - - - oo 9-4
GIOUPS = = = = = = = = == mm e mm oo 1-11
H
Hdrawing ---------cmmmmmmmm e oo - 1-9
handling system- - - - - - - - - - - - - - oo oo oo 1-12
Helpbutton- - - - - - - === - mm e e e i e 9-11
hexadecimal integers - -------------=---------------- 7-7
high-speed processing ------------------------------ 2-3
high-speed processing drawing ------------------------ 1-9
how to directly change the acceleration time setting - -------- 8-16
how to directly change the deceleration time setting - - - - - - - - - 8-22
|
Iregisters - == === == m e s e 2-4, 6-9
IO services ---------ccccmiieeeieoioooooo - 1-10
1/O Variable Wait (IOW)- - - -----ccmomooooooo o 8-127
TAC = = = = = m mmf e f e e oo 2-6, 8-40
1D O e 2-6, 8-43
IFELSE IEND - -« oo oo oo oo 2-6, 8-101
13 R 2-6, 8-37
indebugmode- - - - - ------oioiii oo 4-7,5-5
in-position check - - - - - == - - - - - - ci oo 8-62, 8-64
In-Position Check (PFN)- - - ----ccmmmmmmma oo 8-96
in-position check width--------------------- - 8-98
INC--mm e e e e e e e 2-6, 8-7
1T R e 7-9
incremental mode (INC) - = === === 8-3, 8-7
indirect designation - - - - - -------------ooo--- 4-11, 5-4, 9-13
indirect designation of a program number using a register - - - - - 4-11
Individual transfer - = = = == = === oo m e e 3-11
infinite length axis - - - - =------=------------------ 7-9, 8-5
Infinite Length Axis Reset Position --------------------- 7-9
infinite length axis reset position (POSMAX)--------------- 8-5
N R e T 2-6, 8-98

Index

inputdata - - - - - - - - - - 6-9
INPUL T@ZIStErs - - = = = = = === - c e e e e 6-2, 8-118
input variables (I registers) - -------------------------- 6-9
installation = - == = === - e m e 3-2
installing MPE720 Version 6 - - - = === = == === m oo m e e oo o - - 33
O R R R T R 6-3
internal function register------------------~-~--~-~----- 8-118
interpolation acceleration time------------------------ 8-41
Interpolation Acceleration Time Change (IAC) ------------ 8-40
interpolation deceleration time------------------------ 8-44
Interpolation Deceleration Time Change (IDC) ------------ 8-43
Interpolation Feed Speed - -------------commoommmno- 8-37
interpolation feed speed (F command or IFP)- - ------------ 8-66
interpolation feed speed ratio- - - - - - -------------o-oo-- 8-38
Interpolation Feed Speed Ratio Setting (IFP) - - - - - - - - ------ 8-37
interpolation override - === = === === -------ooooooooo 4-9
interpolation related command------------------------ 8-27
interpolation related commands - - - == - - - - === - 2o oo 8-37
interrupt processing - - - ----------------------------- 2-3
(0 A e 2-6, 8-127
J
JOG operation------------c oo mm e 9-30
JOINTO------mm e 8-106, 8-109
L
label - - - - - - - m e o e m e 7-2
ladder program - - ---- - 1-3
ladder program specifications - ------------c-c--ooon 2-3
leading register whose data is cleared - - - - - - - ----------- 8-147
R e 9-4
linenumber ---------c-cmmomm e 7-13
linear acceleration rate - - === == -------------------~--- 8-13
linear acceleration time constant - --------------------- 8-12
linear decelerationrate - == === - -------------ooooooon 8-19
linear deceleration time constant - -----------------o--- 8-18
Linear Interpolation (MVS)--------mmooommmaoaaao 8-64
Linear Interpolation with Skip Function (SKP)------------- 8-86
list of command types- - - - = == === 7-18
list of commands - - - - = - === - - 2-6
list of engineering tool MPE720 specifications-------------- 2-5
list of machine controller specifications------------------- 2-3
local variables- == === -=ccccmommme oo 6-4, 7-7
logic operation = ----===-----ccoooea 8-137
logical axisname-------------------------- 7-2,7-3, 7-14
low-speed processing - - === =-=-=-----------------~-~-~-~--- 2-3
M
Mregisters - - - - === === 1-5, 2-4, 6-8
M type commands - - - - - - - === - - oo 7-17
M-EXECUTOR- = = = = = =« o oo oo oo oo oo i i 1-9
M-EXECUTOR control register (I/O register) - ------------- 1-9
M-EXECUTOR Module- - = = = = = < = < - oo oo oo 1-2
M-EXECUTOR program execution definition - - - - === - - - - - - - 4-4
machine coordinate system - - - ------------------- 8-84, 8-92
Main program - - - - === == === == 4-2,5-2
Main program number - - - -----------------------_-- 9-20
main program number exceeded error-------------------- 4-7
max. feed speed for interpolation - - - - === --------------- 8-36
Maximum Interpolation Feed Speed Setting (FMX) --------- 8-35
MCC---mmmmmm e e - - 2-6, 8-69, 8-75, 8-79
MCW --mmmm e e e - 2-6, 8-69, 8-75, 8-79
mechanical parts inserting machine -------------------- 1-12
MECHATROLINK cable - - - < < < < << < cmmmmmmeeeeee oo 33
memory backed up by battery ------------------------- 2-4
metal sheet bending equipment - ---------------------- 1-13

min. reference Unit - - - = - == == === oo oo oo 2-3
118 e 7-9
T e 7-9
MOD ---mmmmmmm e 2-6, 8-136
MONItOT PAramEters - - = = = == = == = = == = == === == === oo o=~ 6-9
monitor tab and status bar- - - - - - - - - - - - oo 9-5
monitor the motion program execution information
uSing S register---------- - oo oo 4-13
monitoring parameter status - - - - == === ===« --oooooo-- 9-34
Motion Editor---------------cccooooooo 1-7, 1-8, 3-6, 9-2
motion fixed parameters- - - - - - === === --coooooo o 7-9
motion language - - - - = - - === - - - oo oo 1-2
motion language command- - - - - - === === - oo oo 7-2,7-3
motion module - - - = = <= - - o oo 1-8
motion module parameters - - - - == = = = = == - - e e e 7-9
motion Monitor parameter - - - - ---------------------- 6-9
motion monitoring parameter selection- - - - - - ------------ 9-34
MOtion Parameters- - - - = - === === === ========—=—=—— -~ -- 1-8
MOtiON Program - - - - === === === ===-““~-—“~—~—~-~—~~--~-- 1-3, 1-9
applicable machine controller models----------------- 2-2
applicable motion modules - - = = = = = === = - - e e oo oo 2-2
application examples - = - - = == == - - - oo oo oo 1-12
AXIS GrOUPS- = = == = === === == m e e e 4-2
data transfer from/to ladder program ----------------- 1-5
Error information screen window------------------- 10-9
error investigation flow - - - -------coooooooooooo 10-3
execution information - - - - - - - - - - - oo oo 4-14
executionmethod - - --------cmmmmomo 1-3
eXecution registration- - - - - == = = = = === - - oo oo oo 1-9
€XECULiON SEQUENCE - = = = = = === === === === ===——=— =~ 1-8
execution timing - - - = - = == === == - oo oo oo 1-10
format - - - - - - mm e e 7-2
ZrOUPINg == - - - - o e oo 1-11
how to run a motion program - --------------------- 4-3
MOtioN CONrol - - - - - == - oo oo 1-4
parallel program execution - - - - == = == == - = - - oo oo~ 1-6
program online editing----------------coooo-- 1-6
registering the program execution - - - - --------------- 4-5
SRegiSter === === == -m o e 10-11
specification- - - - = = = = =« @ e 2-3
troubleshooting - - - - - = = === = - oo oo oo 10-3
13 R e 4-2
use of Subprograms - - = = - === === - oo oo oo 1-5
motion program alarm codes- - - - === == === - - - - oo oo 10-11
Motion Program Configuration Definition window- - - - - - - - - - - 6-5
motion program execution timing - - ------------------- 1-10
Motion Properties - - - == = == = === = o oo e oo 6-14
motion setting parameter - - - - - - = - - - - = - - oo oo oo 6-11
Motion Subprogram Call (MSEE) - - - - === == - oo oo oo oo 8-113
Motion Task Manager ----------------cccoonon 2-5,9-22
motor ¢able - ------cccm oo 33
MOV = s o s s e e e e e e 2-6, 8-60
Move On Machine Coordinates (MVM) - - = = = = = = == - - - - - - 8-94
movement path by interpolation command and S-curve
acceleration/deceleration - - - - - - - -« - - oo 8-27
Moving Average Filter- - - - -« - - e oemmmmoa oo 8-28
MP2100- - - = = e e e oo e o oo 22
MP2100M - - = = = = o m oo 2-2
MP2200/CPU-01 - === - c o e e e e e e o 2-2
MP2200/CPU-02 - - === - cm e e e e e e e oo o 2-2
MP2200/CPU-03 == ===« oo oo e e e oo 2-2
MP2200/CPU-04 - = = = = - o oo e e oo 2-2
MP2300- - = = == e s m e e e e e e e oo oo o 22
MP2300S- - - = = = = m o m oo 2-2
MP2310- - = = = = = = m e mf e e e e e oo 22

Index

MP2400 - - = === c s s s 2-2
MP2500 - - - - = = = mm e md oo e e e e 22
MP2500D - - - = = = = = = = = o oo e e e e e e e oo 22
MP2500M- = = = = oo 2-2
MP2500MD === -ccmmmmm oo 2-2
MPE720 Ver.5 - - = = = = = = = = = oo oo oo oo 2-5
MPE720 Ver.6 - - ---------momommoimaa oo 1-7, 2-5
MPE720 Ver.6 Lite - - ==« <« <o« oo o oo oo oo oo 2-5
MPOS - - s 8-96
MPU-01 = = = = = = m e m e e e e e e e oo 22
I e 7-12
MSEE ---ccmmmm e 2-6, 8-113
MSEE call stack-----------ccccmmmmm oo 9-20
MSEE command - - === === --cccm oo 1-2
MSEE work register- - - - ---------coooooii oo 1-9
multiple group operation - = == - - === === ------------- 1-11, 4-2
multiply (¥)---------ccmoo oo 8-134
MVMc-cmmm e 2-6, 8-94
MV - 2-6, 8-64
MVT - oo 2-6, 8-88
N
NEAR signal output width- - - === - -----coooooooo- 8-96, 8-98
Nestnumber - - - - - === - 9-20
NEW PrOjeCt - == === = === o oo oo oo e e 3-2
no system work error - ----------------ooooooooo 4-7
NON --cmmmmi e 2-6, 8-165
Normal run mode-------==-----cccmommmmm 9-17
O A I 8-141
number of axes to be controlled - - ----------ccoo-- 7-13, 9-9
number of blocks - = === ---------oooo oo 8-147
number of digits below decimal point - --------------- 7-9, 8-30
number of groups------=------------------------ 2-3,7-13
number of parallel processes ---------------------- 2-3,2-4
number of programs - - - --------------------------o-- 2-3
number of simultaneously controlled axes - - - -------------- 2-3
number of tasks = = = == = - - - oo o 2-3,2-4
number of turns === - - - === ------- oo 8-72
o)
O registers------==-----------------ooooooon 2-4, 6-11
OFF-Delay Timer (TOF)
counting unit 0.01 second - ---------------------- 8-170
ON-Delay Timer (TON)
counting unit 0.01 second - ---------------------- 8-168
One Scan Wait (EOX)--------------------ooomooon 8-129
online editing----------------““-----------_------_ 1-6
operation mode - ------=--------“----------------- 2-3
[0 () e 8-137
organizaing the axes into individual groups ---------------- 3-5
organizing the axes into individual groups - - - -------------- 3-5
outputdata - ------------ oo 6-11
OUtpUt Te@ISters - - === ===-------------«-------- 6-2, 8-118
output variables (O registers) - - - -----------------~----- 6-11
OVEITIde = === === c s e oo 2-3, 8-32
override setting for interpolation------------------------ 4-8
P
palletizing- - - === === ----ccm e 1-12
panel processing machine - -------=----=------------- 1-13
Parallel Execution (PFORK, JOINTO, PJOINT) - ---------- 8-106
parent drawing- - - - === === - 1-9
pausing/starting monitoring - - - - - - === === -2 ---- 9-33, 9-35
PEN - - o m el 2-6, 8-96
PFORK - - - - = - mmmm e e e e oo oo 8-106
PFORK, JOINTO, PJOINT - - = = = = < = <o o ommmmeeeeee oo 2-6

Index-4

| 0] I R 8-106
PLD < - mmmmmm e e e oo ool 2-6, 8-95
PLN - - o c o el 2-6, 8-100
PO-0l - - - - m e e e e e 1-8, 2-2
PON - - o - 2-6
POS- - - - 2-6
position reference value - --------------iio 8-3
positioning (MOV) === ---ccommmm e 8-60
positioning related commands - - - - - - - - - - - - - oo oo ooon 8-29
positioning speed----------------------~--- 8-13, 8-19, 8-29
POSMAX- - - - m oo mm e e - 8-5
PPcable-------cm-mmmm e 33
precautions for variable operations - - - - - - === - ------oo-- 6-6
Priority Levels of Operations---=---------------------- 7-15
problem when starting a motion program- - - - - - - - - -------- 10-4
procedure to create the user function------------------- 8-120
program alarm is occurring - - - === ----=-=----------- 4-7, 5-5
Program capacity - -------===-=-------oo-aoo oo 2-3
program continuous operation start request - - - ------------- 4-8
program control commands - - - - == == == - --oaaaaaon o 8-101
program control signal = = - - ----------cooooooooo-- 4-15
program current position-------------------- 8-3, 8-95, 10-12
Program Current Position Update (PLD) - - - -------------- 8-95
program designation method - - === - - === ---ccoooooo 9-13
program development flow - - - - - - - - - - - - oo oo 32
program editing window - - - == === ----------------_--- 9-4
programend (END) === ------cmomommmmm oo 8-124
program execution registration function ---------- 1-7, 2-5, 9-12
program execution registry number ------------ 4-13, 9-13, 9-26
program information used by workn ------------------- 4-15
program number - - ---------------------- 9-13, 9-26, 10-12
program numbers of motion programs- - - - == === ----------- 4-2
program numbers of sequence programs - - - - - ------------- 5-2
program operation start request - - - - -------------------- 4-8
program pause request = - - - ----=----===----““---~-~-~--- 4-8
program paused-- - === === - - s oo 4-7
Program Property window- - == === ----c-ccmoooooooo- 6-5
Program running - - - ----------------“----------- 4-7,5-5
program single block mode selection - ------------------- 4-8
program single block start request - --------------------- 4-8
Pprogram status- - - - === == ---=““--“-““““------------- 4-15
program Stop request = = = = === === == - - - - o oo 4-8
program stopped by stop request - - - - ---------ooooo-- 4-7
Program type- - - - - === - === - o s oo oo 4-7, 5-5
programs created for each group - --------------------- 1-12
I e 7-9
R
| e 2-6, 8-162
Tadius- = = = = == == m e e e 8-76
radius designation - --------------------------- 8-75, 8-82
rated speed - = = - - - - - - - s o - 8-12, 8-18
real number -------------- oo 6-3, 7-7
reference position - -------- - - oo 8-3
reference range - - - - - - - - - - - - - - oo oo 2-3
reference unit = - === == - -cc oo oo 2-3,7-9
reference unit selection----------cccommoom oo 8-30
reference unit/s - - == === - - - - - oo 7-12
reference UNit/s2 - - - - - - - - - - - oo oo oo 7-12
register allocation - --------------ooioioiaio 9-14
register list == - - - === oo oo 3-2
register start number of the motion monitor parameter- - - - - - - - 6-10
register start number of the motion setting parameter- - - - - - - - - 6-12
register types used within user functions - - - - ------------ 8-116
registering MPMOO1 in the M-EXECUTOR - -------------- 4-5

Index

registering the program execution- - - - - === === - ----------- 3-7
registering to the M-EXECUTOR program execution definition - - 4-4
relationship between I/O registers and internal function

TE@ISLEIS = = = = = = = = = = m e e e e e oo 8-117
relative movement amount - - - - - = - - == === - oo 8-7
remainder (MOD) - - - - - = - = - oo oo oo 8-136
Repeat (WHILE WEND) - -------mmmmmmmm oo o 8-103
Reset Bit (R{ })---------mommmmmm oo 8-162
2323 2-6, 8-125
Rising Pulse (PON) = = = = = = <o oo e oo 8-163
S
S TEgiSters- = === === === e e e 2-4, 6-7
S type commands- - = = = === == == m e e e 7-17
S-curve acceleration/deceleration - - - - - - - - - - - - - - - - -~ 8-62
S-curve time constant- - - - === - - - --- oo oo 8-23, 8-26
S-curve Time Constant Change (SCC) ------------------ 8-23
R e T 2-6, 8-161
sample program
motion program for speed control- - - - - - - == == - - oo oo - A-16
parallel processing - - - - - === === - - oo oo A-15
programs for controlling motion program execution - - - - - - A-13
SeqUENCE Programs - --------=====-========---- A-19
simple synchronized operation using a virtual axis - - - - - - - A-17
Save to flash - - - - - - - - oo oo oo 32
saving the programs in flash memory - ------------------ 3-13
Scan EXecution - - == - - === - oo m oo oo 1-3
SCAN EXECUtION tYPe = = = == = == = == == o m e e e oo 1-15
scan execution type program - - - = = = = === === === ===~~~ -- 1-14
SCANNING EITOT = = = = = = = = = = == = == = === = o m oo oo oo oo oo 4-7
SCC = mm e e e e 2-6, 8-23
select command (command options) - - - = === =------------- 9-8
Selective Execution (SFORK, JOINTO, SJOINT)- - -------- 8-109
self-configuration ------------iia oo 3-2,33
sequence commands- - - - - === -----------ooooo oo 1-15
SEQUENCE PrOZIAM = = = = = = = == = == == === === === = o= = o= = 1-9
error investigation flow --------ccoaommaoooo 10-17
€XECULION = = = == === e 5-3
execution method - ----------ccmm oo 1-15
execution timing - - = - = = == = = = c o oo e e 5-4
fEAtUIeS - = = = == = = = == = m e m e e oo oo 1-15
format - - = = === == s s e e eeaaaa 7-19
how to run a sequence program - - - ------------------ 5-3
M-EXECUTOR program definition - - == === ----------- 5-3
motion languages- - - - - == === - === - - oo oo 1-15
registering program eXecution - - - - = = == === === === - - - 5-4
specifications - - - - === == - - oo oo 2-4
transfer from/to motion program - ------------------ 1-15
troubleshooting - - - = = - == === - o oo oo oo 10-17
13 S L R R 5-2
use of subprograms - - - - - - - === oo oo 1-16
Sequence Subprogram Call (SSEE) - ---------monmunonn- 8-114
Sequential EXecution - - = == = === = = o o oo oo 1-3
SETVOMOLOL = = = = = = = = = = = m - oo 3-3
SERVOPACK - - - - - - o e e e e e e oo 3.3
SetBit (S{}) -----------mmmmmeiea - 8-161
Set In-Position Range (INP) - - - ---------comomoooooo 8-98
Set Time Positioning (MVT) == = == == = - c oo m e oo 8-88
set to the arguments - - - = = = == = == = == oo oo oo 9-9
Set Velocity (VEL) =-------mommmmmmme oo - 8-29
Set/Delete break point - ---------------------- 9-18, 9-21
Setting the execute task - === === coommmmm o 9-20
setting the speed reference velue ------------c-uoomo-- 9-30
) DR e 2-6, 8-145
SFORK - - - c o m i m o e 8-109

SFORK, JOINTO, SJOINT- - - - < - == oo o cemee oo 2:6
) o 2-6, 8-144
shift start point - - - === === - oo oo 9-17
SIN- - o m e e e e e 2-6, 8-150
Sine (SIN) = = == = == e e e e 8-150
single group operation = - - - === === ------- oo oooon 1-11, 4-2
single program block operation stopped - ----------------- 4.7
single-block operation mode - - = - - == - - === oo oo o oo 8-130
Single-block Signal Disabled (SNGD)/Single-block Signal

Enabled (SNGE) - = = = == = - o cc o e e e 8-130
single-step linear acceleration/deceleration - - = - - - - - === - - - - 8-62
SJOINT - - - e memm e e aiaiiciicncaac e aaaanns 8-109
Skip 1 information- - - - == === === oo oo 4-8
Skip 2 information- - - - - = === == - oo oo 4-8
skip input signal = - - = = == == - oo oo 8-86
skip input signal 1 (SS1)-=------ccmmmmmo oo 8-86
skip input signal 2 (SS2)-- === === - - - o - oo 8-86
SKP - ---mmmmmmmmm e 2-6, 8-86
SNGD - --cmmemmi e 8-130
SNGD/SNGE - - = = = = = o o oo oo 2-6
SNGE - - - - - s e m e e 8-130
software limit switch function - - - - = = = = == == - o oo e oo oo 8-93
specific characters----------cooommmomama 7-2,7-5
speed reference - - - - - - - - == - - oo oo oo 7-12
speed Unit - - === = -- e - e 8-30
Speed unit selection- - - - = = = = = - - oo oo 7-12
SQT - - - m 2-6, 8-157
Square Root (SQT) == === == cmmmmmm e oo 8-157
SQUATE FOOS = = = = = = == == == == === mmmmm e oo e oo 8-150
SSEE - ---mmmm e 2-6, 8-114
start method - - - = = == = == == e e 2-3, 2-4
Start processing-----------------c----o--ooooo--- 2-3
start request history - - - - = = = = = = - - - oo e e e e 4-7, 5-5
]2 e 9-14
SEATUS- = = = = = = === e m e m e e e e e meeeoa oo 10-12
status flag - == === == m e m e 4-7, 5-5
step distance- - - = = === == - e oo 9-30
Stepin-------- oo 3-12, 9-18
STEP Operation- - - - = = === === === = oo oo oo oo e oo 9-30
StEP OVET = = = = = = = = e e e e 9-18
step-by-step execution = = = === === == - - m o oo 1-7
stopped at a break point - - ------------oooooo-- 4.7, 5-5
SUDPIOEIAM = = = = = = = = = = = e e oo e oo 4-2,5-2
Subprogram End (RET) == - === - - - - oo oo oo 8-125
subroutines (subprograms) - ---------------------- 1-5, 1-16
SUDSCIIPE 1 = = == = = = = e e e e e o 6-15
SUDSCIIPt j = === == == m e e 6-15
substitute (=) --------- - e e 8-131
SUBLract (=) = = = == = == = m e e 8-133
SVA-01 === = = mm e e 1-8, 2-2
SVB-01 - - - - m e m e e 1-8, 2-2
SVR - oo e 1-8, 2-2
SYNChronization- - = - = = = = = = = = - oo oo oo 1-12
SYNtAX EITOT = == == == === meecmemcancecmaaccna e 6-2
system configuration - - - = = = = = = == - oo e e 3-3
SyStem registers ---------------------~-------- 6-2, 8-118
system setup- - - - - - - - - - - oo oo 3-3
system variables (S registers) - ----------ccceoaoaoooo 6-7
SYSEEM WOTK = = = = = = = = o oo oo 10-12
system work nUMber - = = = = = = = = = oo e 4-9
system work number setting - - - - === === == oo o-- 4-8, 4-13

T

T type commands - ----------------ooooooo oo 7-17
TAN - - ccmoommm oo 2-6, 8-153

Index

Tangent (TAN)- - - - - - - m e m i 8-153
target poSition - === ---- - oo oo 8-3
Task execution status displayed in a tree structure - - - - - - - - - - - 9-23
LEIMINALOr = = = = = = = = = = = = e m e e e e e e e e e e 3-3
test run function----------------ooooooooo-- 1-7, 2-5, 9-28
N L e 2-6, 8-126
TOF - - s mmm i 2-6, 8-170
TON - -mmm e 2-6, 8-168
toolicons === ----- - - oo 9-5, 9-16
transfer- - - - = - - - - o e e 1-8
transferring the motion program - - - - === = === === === 3-10
trigonometric functions - - === - === ---------ooooooon 8-150
types of variable- - - == == - - ------- oo 6-2
U
|8 Y O 2-6, 8-115
Update current position---------------coooooooooooon 9-19
user functioncall - - -----------ooooooooo 8-115, 8-123
User Function Call From Motion Program (UFC) - - -------- 8-115
User Function Call from Sequence Program (FUNC)- - - - - - - - 8-123
user functions - -------------ooae oo 2-3, 8-116
\'}
variable - - -- - - - m e oo 6-2
using variables- - - === === - - - - oo 6-7
variables and data types---------------------o---- 7-7
VEL- - e e e 2-6, 8-29
virtual @xis == ---------------oo oo 1-12
w
warning display - === --------------ooooooo oo 9-35
what is a motion program?- - - - - === - - - ----------------- 1-2
what is a sequence program? - ------------------------ 1-14
WHILE WEND - = = = =« 22 m o oo e oo oo oo oo oo ieee 2-6, 8-103
work coordinate system--------------------- 8-3, 8-84, 8-92
WOTK Te@iSter - = = = = = = = == s s m oo e 5-5
WOTK T@ISters == === ----------oooo oo 4-6
X
D (0) R 8-140
Z
Zero Point Return (ZRN)----------ccmmommmem oo 8-84
zero point return methods - ------------------oo-o- 8-85
zero point return speed - - ----------------ooooooooo 8-85
ZRN- - - oo o e oo 2-6, 8-84

Index-6

Revision History

The revision dates and numbers of the revised manuals are given on the bottom of the back cover.

MANUAL NO. SIEP C880700 38A <0>-1
WEB revision number

Revision number
Published in Japan July 2009

Date of publication

Rev. WEB . .
Date of Publication No. Rev. Section Revised Contents
No.
May 2017 <3> 1 8.1.11 Revision: Descriptions on setting interpolation acceleration/deceleration mode
8.42(3) Revision: Programming example of a repeat command
Back cover Revision: Address
May 2015 0 Front cover Revision: Format
- Printed version of the user’s manual that is available on the web (web version: SIEP
C880700 38D<2>-1)
433(2) Revision: Information on program continuous operation start request
7.5.2,8.1.11, Appen- | Addition: Information on the ACCMODE command
dices A.1
Appendices D.1 (3) Addition: Precaution on motion program operation when an alarm occurs for one or
more axes specified in an axis move command
Back cover Revision: Format and address
July 2014 <2> 1 1.1, 1.8,2.1.1, 2.1.3, Addition: Description of CPU-03, CPU-04 and MPU-01
222,C.1,C2
May 2014 0 - Printed version of the user’s manual that is available on the web (web version:
SIEP C880700 38B<1>-5)
Back cover Revision: Address
July 2012 <1> 5 8.2.3(3) Revision: Figure and INFO on interpolation feed speed
Back cover Revision: Address
November 2011 4 6.2.2 (3),6.2.6 (3) Addition: VEL command in the column of important
June 2011 3 8.2.4 Revision: Descriptions on setting items for MCW and MCC commands.
April 2011 2 7.1.2 (5) Revision: Application example “TIM TML00000” — “TIM TMW00000”
November 2010 1 Front cover Revision: Format
8.4.11 (2) Revision: Usable data
Back cover Revision: Address, format
September 2010 0 - Printed version of the user’s manual, SIEP C880700 38<0>-2, available on the web.
All chapters 2B(e)188d on Japanese user’s manual, SIJP C880700 38B<2>, printed in December
Preface Addition: Warranty
D.24) Addition: Precautions on the motion parameter
Back cover Revision: Address
September 2009 <0> 2 Preface Addition: Warranty
Back cover Revision: Address
July 2009 1 Appendices A.4 Revision: Descriptions in columns of sequence program for Branching command
and Repeat command
Back cover Revision: Address
September 2008 - - - First edition

Machine Controller MP2000 Series

USER’S MANUAL

for Motion Programming

IRUMA BUSINESS CENTER (SOLUTION CENTER)
480, Kamifujisawa, Iruma, Saitama, 358-8555, Japan

Phone: +81-4-2962-5151 Fax: +81-4-2962-6138
http://www.yaskawa.co.jp

YASKAWA AMERICA, INC.
2121, Norman Drive South, Waukegan, IL 60085, U.S.A.

Phone: +1-800-YASKAWA (927-5292) or +1-847-887-7000 Fax: +1-847-887-7310

http://www.yaskawa.com
YASKAWA ELETRICO DO BRASIL LTDA.

777, Avenida Piraporinha, Diadema, Sao Paulo, 09950-000, Brasil

Phone: +55-11-3585-1100 Fax: +55-11-3585-1187
http://www.yaskawa.com.br

YASKAWA EUROPE GmbH

Hauptstrape 185, 65760 Eschborn, Germany

Phone: +49-6196-569-300 Fax: +49-6196-569-398
http://www.yaskawa.eu.com E-mail: info@yaskawa.eu.com

YASKAWA ELECTRIC KOREA CORPORATION

35F, Three IFC, 10 Gukjegeumyung-ro, Yeongdeungpo-gu, Seoul, 07326, Korea

Phone: +82-2-784-7844 Fax: +82-2-784-8495
http://www.yaskawa.co.kr

YASKAWA ELECTRIC (SINGAPORE) PTE. LTD.

151, Lorong Chuan, #04-02A, New Tech Park, 556741, Singapore

Phone: +65-6282-3003 Fax: +65-6289-3003
http://www.yaskawa.com.sg

YASKAWA ELECTRIC (THAILAND) CO., LTD.

59, 1st-5th Floor, Flourish Building, Soi Ratchadapisek 18, Ratchadapisek Road, Huaykwang, Bangkok, 10310, Thailand

Phone: +66-2-017-0099 Fax: +66-2-017-0799
http://www.yaskawa.co.th

YASKAWA ELECTRIC (CHINA) CO., LTD.

22F, One Corporate Avenue, No.222, Hubin Road, Shanghai, 200021, China

Phone: +86-21-5385-2200 Fax: +86-21-5385-3299
http://www.yaskawa.com.cn

YASKAWA ELECTRIC (CHINA) CO., LTD. BEIJING OFFICE
Room 1011, Tower W3 Oriental Plaza, No.1, East Chang An Ave.,

Dong Cheng District, Beijing, 100738, China
Phone: +86-10-8518-4086 Fax: +86-10-8518-4082

YASKAWA ELECTRIC TAIWAN CORPORATION

12F, No. 207, Sec. 3, Beishin Rd., Shindian Dist., New Taipei City 23143, Taiwan
Phone: +886-2-8913-1333 Fax: +886-2-8913-1513 or +886-2-8913-1519

http://www.yaskawa.com.tw

YASKAWA

YASKAWA ELECTRIC CORPORATION

In the event that the end user of this product is to be the military and said product is to
be employed in any weapons systems or the manufacture thereof, the export will fall
under the relevant regulations as stipulated in the Foreign Exchange and Foreign
Trade Regulations. Therefore, be sure to follow all procedures and submit all relevant
documentation according to any and all rules, regulations and laws that may apply.
Specifications are subject to change without notice for ongoing product modifications
and improvements.

© 2008 YASKAWA ELECTRIC CORPORATION

MANUAL NO. SIEP C880700 38D <3>-1

Published in Japan May 2017
17-4-13

	Front Cover
	About This Manual
	Using This Manual
	Manuals for MP2000 Series
	Related Manuals
	Visual Aids
	Safety Information
	Safety Precautions
	Warranty
	Contents
	1 Overview
	1.1 What is a Motion Program?
	1.2 Motion Program Features
	1.2.1 Execution Method
	1.2.2 Motion Control in Full Synchronization with Sequence Control
	1.2.3 Easy to Realize High-level Motion Control
	1.2.4 Easy-to-Understand Motion Language
	1.2.5 Arithmetic Operations
	1.2.6 Data Transfer from/to Ladder Program
	1.2.7 Memory Usage Reduced by Use of Subprograms
	1.2.8 Parallel Program Execution
	1.2.9 Program Online Editing
	1.2.10 Enriched Easy Programming Functions (MPE720 Ver.6.04 or later)

	1.3 Motion Program Execution Sequence
	1.4 Motion Program Execution Registration
	1.5 Motion Program Execution Timing
	1.6 Grouping
	1.7 Application Examples
	1.7.1 Example 1: Handling System
	1.7.2 Example 2: Mechanical Parts Inserting Machine
	1.7.3 Example 3: Panel Processing Machine
	1.7.4 Example 4: Metal Sheet Bending Equipment

	1.8 What is a Sequence Program?
	1.9 Sequence Program Features
	1.9.1 Execution Method
	1.9.2 Programming Language Commonly Used in Motion Programs
	1.9.3 Data Transfer from/to Motion Program
	1.9.4 Memory Usage Reduced by Use of Subprograms
	1.9.5 Easy Programming Functions (MPE720 Ver.6.04 or later)

	2 Specifications
	2.1 MP2000 Series Machine Controller Specifications
	2.1.1 Applicable Machine Controller Models
	2.1.2 Applicable Motion Modules
	2.1.3 List of Machine Controller Specifications

	2.2 Engineering Tool MPE720 Specifications
	2.2.1 Applicable Version Numbers of the Engineering Tool MPE720
	2.2.2 List of Engineering Tool MPE720 Specifications

	2.3 List of Motion Language Commands

	3 Program Development Flow
	3.1 Program Development Flow
	3.2 Program Development Procedure
	3.2.1 Hardware Configuration
	3.2.2 Installing MPE720 Version 6
	3.2.3 Communication Settings
	3.2.4 System Setup
	3.2.5 Creating Project Files
	3.2.6 Group Definitions
	3.2.7 Creating a Motion Program
	3.2.8 Registering the Program Execution
	3.2.9 Transferring the Motion Program
	3.2.10 Debugging the Program
	3.2.11 Saving the Programs in Flash Memory
	3.2.12 Executing the Programs

	4 Motion Programs
	4.1 Types of Motion Programs
	4.2 Motion Programs For Each Axis Group
	4.3 Running a Motion Program
	4.3.1 How to Run a Motion Program
	4.3.2 Registering the Program Execution
	4.3.3 Work Registers

	4.4 Advanced Programming
	4.4.1 Indirect Designation of a Program Number Using a Register
	4.4.2 Controlling the Motion Program Directly from an External Device
	4.4.3 Monitor the Motion Program Execution Information Using S Register

	5 Sequence Programs
	5.1 Sequence Program Types
	5.2 How to Run a Sequence Program
	5.2.1 How to Run a Sequence Program
	5.2.2 Registering Program Execution
	5.2.3 Work Register

	6 Variables (Registers)
	6.1 Overview
	6.1.1 Variable Types
	6.1.2 Global Variables and Local Variables

	6.2 Using Variables
	6.2.1 System Variables (S Registers)
	6.2.2 Data Variables (M Registers)
	6.2.3 Input Variables (I Registers)
	6.2.4 Output Variables (O Registers)
	6.2.5 C Variables (C Registers)
	6.2.6 D Variables (D Registers)

	6.3 How to Use Subscripts i, j

	7 Programming
	7.1 Motion Program Format
	7.1.1 Motion Program Structure
	7.1.2 Block Format
	7.1.3 Using Constants and Variables

	7.2 Motion Module Parameters
	7.2.1 Axis Type Selection
	7.2.2 Reference Unit
	7.2.3 Electronic Gear
	7.2.4 Speed Reference
	7.2.5 Acceleration/Deceleration Setting

	7.3 Group Definition
	7.4 Priority Levels of Operations
	7.5 Commands and Execution Scans
	7.5.1 Command Types
	7.5.2 List of Command Types

	7.6 Sequence Program Format

	8 Command Reference
	8.1 Axis Setting Commands
	8.1.1 Absolute Mode (ABS)
	8.1.2 Incremental Mode (INC)
	8.1.3 Acceleration Time Change (ACC)
	8.1.4 Deceleration Time Change (DCC)
	8.1.5 S-curve Time Constant Change (SCC)
	8.1.6 Set Velocity (VEL)
	8.1.7 Maximum Interpolation Feed Speed Setting (FMX)
	8.1.8 Interpolation Feed Speed Ratio Setting (IFP)
	8.1.9 Interpolation Acceleration Time Change (IAC)
	8.1.10 Interpolation Deceleration Time Change (IDC)
	8.1.11 Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

	8.2 Axis Move Commands
	8.2.1 Positioning (MOV)
	8.2.2 Linear Interpolation (MVS)
	8.2.3 Clockwise/Counterclockwise Circular Interpolation with Center Position Designation (MCW, MCC)
	8.2.4 Clockwise/Counterclockwise Circular Interpolation with Radius Designation (MCW, MCC)
	8.2.5 Clockwise/Counterclockwise Helical Interpolation with Center Position Designation (MCW, MCC)
	8.2.6 Clockwise/Counterclockwise Helical Interpolation with Radius Designation (MCW, MCC)
	8.2.7 Zero Point Return (ZRN)
	8.2.8 Linear Interpolation with Skip Function (SKP)
	8.2.9 Set Time Positioning (MVT)
	8.2.10 External Positioning (EXM)

	8.3 Axis Control Commands
	8.3.1 Current Position Set (POS)
	8.3.2 Move On Machine Coordinates (MVM)
	8.3.3 Program Current Position Update (PLD)
	8.3.4 In-Position Check (PFN)
	8.3.5 Set In-Position Range (INP)
	8.3.6 Coordinate Plane Setting (PLN)

	8.4 Program Control Commands
	8.4.1 Branching Commands (IF ELSE IEND)
	8.4.2 Repeat (WHILE WEND)
	8.4.3 Parallel Execution (PFORK, JOINTO, PJOINT)
	8.4.4 Selective Execution (SFORK, JOINTO, SJOINT)
	8.4.5 Motion Subprogram Call (MSEE)
	8.4.6 Sequence Subprogram Call (SSEE)
	8.4.7 User Function Call From Motion Program (UFC)
	8.4.8 User Function Call from Sequence Program (FUNC)
	8.4.9 Program End (END)
	8.4.10 Subprogram End (RET)
	8.4.11 Dwell Time (TIM)
	8.4.12 I/O Variable Wait (IOW)
	8.4.13 One Scan Wait (EOX)
	8.4.14 Single-block Signal Disabled (SNGD)/Single-block Signal Enabled (SNGE)

	8.5 Arithmetic Operations
	8.5.1 Substitute (=)
	8.5.2 Add (+)
	8.5.3 Subtract (-)
	8.5.4 Multiply (*)
	8.5.5 Divide (/)
	8.5.6 Remainder (MOD)

	8.6 Logic Operation
	8.6.1 OR (|)
	8.6.2 AND (&)
	8.6.3 XOR (^)
	8.6.4 NOT (!)

	8.7 Data Comparisons
	8.7.1 Data Comparison Commands (==, <>, >, <, >=, <=)

	8.8 Data Operations
	8.8.1 Bit Right Shift (SFR)
	8.8.2 Bit Left Shift (SFL)
	8.8.3 Block Move (BLK)
	8.8.4 Clear (CLR)
	8.8.5 ASCII Conversion 1 (ASCII)

	8.9 Basic Functions
	8.9.1 Sine (SIN)
	8.9.2 Cosine (COS)
	8.9.3 Tangent (TAN)
	8.9.4 Arc Sine (ASN)
	8.9.5 Arc Cosine (ACS)
	8.9.6 Arc Tangent (ATN)
	8.9.7 Square Root (SQT)
	8.9.8 BCD to Binary (BIN)
	8.9.9 Binary to BCD (BCD)
	8.9.10 Set Bit (S{ })
	8.9.11 Reset Bit (R{ })
	8.9.12 Rising Pulse (PON)
	8.9.13 Falling Pulse (NON)
	8.9.14 ON-Delay Timer (TON): Counting unit: 0.01 second
	8.9.15 OFF-Delay Timer (TOF): Counting unit: 0.01 second

	8.10 C-Language Control Commands
	8.10.1 C-Language Task Control (CTSK)
	8.10.2 C-Language Function Call (CFUNC)

	9 Engineering Tool MPE720
	9.1 Motion Editor
	9.1.1 Overview
	9.1.2 Names and Descriptions of Motion Editor Window Components

	9.2 Command Input Assistant Function
	9.2.1 Overview
	9.2.2 Motion Command Assist Dialog Box Details

	9.3 Program Execution Registration Function
	9.3.1 Overview
	9.3.2 Program Execution Registry Screen Dialog Box Details

	9.4 Debug Function
	9.4.1 Overview
	9.4.2 Motion Editor Window during Debugging

	9.5 Motion Task Manager
	9.5.1 Overview
	9.5.2 Motion Task Manager Window Details

	9.6 Drive Control Panel
	9.6.1 Overview
	9.6.2 Drive Control Panel Details

	9.7 Test Run Function
	9.7.1 Overview
	9.7.2 Test Run Window Details

	9.8 Axis Status and Alarm Monitor
	9.8.1 Overview
	9.8.2 Monitor Window Details

	10 Troubleshooting
	10.1 Troubleshooting
	10.1.1 Basic Flow of Troubleshooting

	10.2 Troubleshooting for Motion Programs
	10.2.1 Error Investigation Flow
	10.2.2 Problem Starting a Motion Program
	10.2.3 Confirming the Alarm Code
	10.2.4 Motion Program Alarm Codes

	10.3 Troubleshooting for Sequence Programs
	10.3.1 Error Investigation Flow
	10.3.2 Problem Starting a Sequence Program

	Appendices
	A Motion Language Commands
	A.1 Axis Setting Commands
	A.2 Axis Move Commands
	A.3 Control Commands
	A.4 Program Control Commands
	A.5 Arithmetic Operations
	A.6 Logical Operations
	A.7 Data Comparison
	A.8 Data Operations
	A.9 Basic Functions
	A.10 C-Language Control Commands

	B Sample Programs
	B.1 Programs for Controlling Motion Program Execution
	B.2 Parallel Processing
	B.3 Motion Program for Speed Control
	B.4 Simple Synchronized Operation Using a Virtual Axis
	B.5 Sequence Programs

	C Differences between MP900 Series and MP2000 Series Machine Controllers
	C.1 Motion Programs
	C.2 Sequence Programs
	C.3 Motion Programming Commands
	C.4 Group Definitions
	C.5 Debug Function
	C.6 Motion Program Alarms

	D Precautions
	D.1 General Precautions
	D.2 Precautions on Motion Parameter Settings

	Index
	Revision History
	Back Cover

