
USER’S MANUAL
Machine Controller MP2000 Series

for Motion Programming

MANUAL NO. SIEP C880700 38D

1

2

3

4

5

6

7

8

9

10

Overview

Specifications

Program Development Flow

Motion Programs

Sequence Programs

Variables (Registers)

Programming

Command Reference

Engineering Tool MPE720

Troubleshooting

Appendices App

Copyright © 2008 YASKAWA ELECTRIC CORPORATION

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, mechanical, electronic, photocopying, recording,
or otherwise, without the prior written permission of Yaskawa. No patent liability is assumed
with respect to the use of the information contained herein. Moreover, because Yaskawa is con-
stantly striving to improve its high-quality products, the information contained in this manual is
subject to change without notice. Every precaution has been taken in the preparation of this
manual. Nevertheless, Yaskawa assumes no responsibility for errors or omissions. Neither is
any liability assumed for damages resulting from the use of the information contained in this
publication.

About This Manual

 This manual provides information on motion commands for the MP2000 series Machine Control-

lers.

• Motion program overview

• Specifications

• Program development flow

• Motion programs and sequence programs

• Variables

• Programming

• Command reference

• Engineering tool MPE720

• Troubleshooting, etc.

 Read this manual carefully to ensure the proper use of the MP2000 series Machine Controller.

Also, keep this manual in a safe place so that it can be referred to whenever necessary.

Using This Manual

 Intended Audience

This manual is intended for the following users.

• Those responsible for designing the MP2000 series Machine Controller system

• Those responsible for writing MP2000 series Machine Controller motion programs and sequence pro-

grams

 Engineering Tool MPE720 Version Number

In this manual, the operation of MPE720 is described using screenshots of MPE720 version 6.

For this reason, the screenshots and some descriptions may differ from those for MPE720 version 5.

 Description of Abbreviation

In this manual, the following abbreviation is used.

• MP2000: Machine controller model including MP2100, MP2100M, MP2200, MP2300, MP2300S,

 MP2310, MP2400, MP2500, MP2500M, MP2500D, and MP2500MD

Manuals for MP2000 Series

 The user’s manuals are prepared by classifying MP2000 series Machine Controller models into

MP2100, MP2100M, MP2200, MP2300, MP2300S, MP2310, MP2400, MP2500, MP2500M,

MP2500D, and MP2500MD.

Refer to Related Manuals on the next page as required.
iii

iv
Related Manuals

 The following table lists the related manuals. Refer to these manuals as required.

 Before using, be sure you understand the product conditions, including specifications and usage

restrictions.

Manual Name Manual Number Contents

Machine Controller MP2100/MP2100M User’s Manual SIEPC88070001

Describes the functions, specifications, setup

procedures, and operating methods of the

MP2100/MP2100M.

Machine Controller MP2200 User’s Manual SIEPC88070014

Describes the functions, specifications, setup

procedures, and operating methods of the

MP2200.

Machine Controller MP2300 Basic Module User’s Manual SIEPC88070003

Describes the functions, specifications, setup

procedures, and operating methods of the

MP2300.

Machine Controller MP2300S Basic Module User’s Manual SIEPC88073200

Describes the functions, specifications, setup

procedures, and operating methods of the

MP2300S.

Machine Controller MP2310 Basic Module
User’s Manual

SIEPC88073201
Describes the functions, specifications, setup
procedures, and operating methods of the
MP2310.

Machine Controller MP2400 User’s Manual SIJPC88074200
Describes the functions, specifications, setup
procedures, and operating methods of the
MP2400.

Machine Controller MP2500/MP2500M/MP2500D/
MP2500MD User’s Manual

SIEPC88075200

Describes the functions, specifications, setup

procedures, and operating methods of the

MP2500/MP2500M/MP2500D/MP2500MD.

Machine Controller MP2000 series SVB/SVB-01
Motion Module User's Manual

SIEPC88070033

Describes the functions, specifications, and
application methods of the MP2000-series
Motion Module that is built into the SVB and
SVB-01 Module.

Machine Controller MP2000 Series Motion Module SVA-01
User’s Manual

SIEPC88070032
Describes the functions, specifications, and
operating methods of MP2000-series Motion
Module SVA-01.

Machine Controller MP2000 Series Pulse Output Motion
Module PO-01 User’s Manual

SIEPC88070028
Describes the functions, specifications, and
operating methods of MP2000-series Motion
Module PO-01.

Machine Controller MP2000 Series Communication Module
User’s Manual

SIEPC88070004
Describes the functions, specifications, and

application methods of the MP2000 series
Communication Modules.

Engineering Tool for Machine Controller MP2000 Series
MPE720 Version 6 User’s Manual

SIEPC88070030
Describes the installation and operation of
the programming software MPE720 for
MP2000 series.

Machine Controller MP900/MP2000 Series MPE720
Software for Programming Device User’s Manual

SIEPC88070005
Describes the installation and operation of
the programming software MPE720 for
MP900/MP2000 series.

Machine Controller MP900/MP2000 Series User’s Manual,
Ladder Programming

SIEZ-C887-1.2
Describes the processing instructions used in
MP900/MP2000 series Machine Controller
ladder programs.

Machine Controller MP900/MP2000 Series
New Ladder Editor User’s Manual
Programming Manual

SIEZ-C887-13.1

Describes the programming instructions of
the New Ladder Editor, which assists
MP900/MP2000-series design and mainte-
nance.

Machine Controller MP900/MP2000 Series
New Ladder Editor User’s Manual
Operation

SIEZ-C887-13.2
Describes the operating methods of the New
Ladder Editor, which assists MP900/
MP2000-series design and maintenance.

Visual Aids

The following aids are used to indicate certain types of information for easier reference.

Indicates important information that should be memorized, including precautions such as alarm displays to
avoid damaging the devices.

Indicates supplemental information.

Indicates application examples.

Indicates definitions of difficult terms or terms that have not been previously explained in this manual.

Safety Information

The following conventions are used to indicate precautions in this manual. Information marked as shown

below is important for the safety of the user. Always read this information and heed the precautions that are

provided. The conventions are as follows:

IMPORTANT

EXAMPLE

INFO

TERMS

Indicates precautions that, if not heeded, could possibly result in loss of life or serious in-
jury.

Indicates precautions that, if not heeded, could result in relatively serious or minor injury,
or property damage.

If not heeded, even precautions classified under can lead to serious

results depending on circumstances.

 Indicates prohibited actions. Specific prohibitions are indicated inside .

For example, indicates no fire or open flame.

Indicates mandatory actions. Specific actions are indicated inside .

For example, indicates that grounding is required.

WARNING

CAUTION
CAUTION

PROHIBITED

MANDATORY
v

vi
Safety Precautions

This section describes important precautions that apply to motion programming. Before programming,

always read this manual and all other attached documents to ensure correct programming.

Before using the equipment, familiarize yourself with equipment details, safety information, and all other

precautions.

 Application Precautions

• When programming the following axis move commands, check the path to make sure that there are no

tools or other obstacles in the way of the workpiece.

The axis move commands that must be checked are as follows:

• Positioning (MOV)

• Linear Interpolation (MVS)

• Circular Interpolation (MCC, MCW)

• Helical Interpolation (MCC, MCW)

• Set Time Positioning (MVT)

• Linear Interpolation with Skip Function (SKP)

• Zero Point Return (ZRN)

• External Positioning (EXM)

Example of Basic Path for Positioning (MOV)

Failure to carry out the above checks may result in damage to equipment, serious personal injury,

or even death.

CAUTION

EXAMPLE

axis 1

axis 2

axis 3

axis 2

axis 1

axis 3

Current position

End position

Each axis is moved
independently at rapid
traverse speed.

Positioning

 General Precautions

• If the following coordinate commands are designated incorrectly, the subsequent move operations will

be entirely different than those expected. Before starting operations, be sure to check that the settings

are designated correctly.

The coordinate commands that must be checked are as follows:

• Absolute Programming Mode (ABS)

• Incremental Programming Mode (INC)

• Current Position Set (POS)

• Move ON Machine Coordinates (MVM)

Example of Work Coordinate System Created with
Current Position Set (POS)

Failure to carry out the above checks may result in damage to equipment, serious personal injury, or even death.

Observe the following general precautions
to ensure safe application.

• MP2000-series Machine Controller was not designed or manufactured for use in devices or systems directly
related to human life. Users who intend to use the product described in this manual for special purposes such as
devices or systems relating to transportation, medical, space aviation, atomic power control, or underwater use
must contact Yaskawa Electric Corporation beforehand.

• MP2000-series Machine Controller has been manufactured under strict quality control guidelines.
However, if this product is to be installed in any location in which a failure of MP2000-series Machine Control-
ler involves a life and death situation or in a facility where failure may cause a serious accident, safety devices
MUST be installed to minimize the likelihood of any accident.

• Drawings and photos in this manual show typical product examples that may differ somewhat from the product
delivered.

• We will update the data sheet number for the manual and issue revisions when changes are made. The edition
number of the revised manual appears on the back of the manual.

• Contact your Yaskawa representative and quote the data sheet number on the front page of the manual if you
need to replace a manual that was lost or destroyed.

• Contact your Yaskawa representative to order new nameplates whenever a nameplate becomes worn or dam-
aged.

CAUTION

EXAMPLE

(axis 1)

axis 1

axis 1

(axis 2)

axis 2
axis 2

(0, 0)

(0, 0)

Workpiece coordinate system

Machine coordinate system

Current position
vii

viii
Warranty

(1) Details of Warranty
 Warranty Period

The warranty period for a product that was purchased (hereinafter called “delivered product”) is one year

from the time of delivery to the location specified by the customer or 18 months from the time of shipment

from the Yaskawa factory, whichever is sooner.

 Warranty Scope

Yaskawa shall replace or repair a defective product free of charge if a defect attributable to Yaskawa occurs

during the warranty period above. This warranty does not cover defects caused by the delivered product

reaching the end of its service life and replacement of parts that require replacement or that have a limited

service life.

This warranty does not cover failures that result from any of the following causes.

1. Improper handling, abuse, or use in unsuitable conditions or in environments not described in product cat-
alogs or manuals, or in any separately agreed-upon specifications

2. Causes not attributable to the delivered product itself

3. Modifications or repairs not performed by Yaskawa

4. Abuse of the delivered product in a manner in which it was not originally intended

5. Causes that were not foreseeable with the scientific and technological understanding at the time of ship-
ment from Yaskawa

6. Events for which Yaskawa is not responsible, such as natural or human-made disasters

(2) Limitations of Liability
1. Yaskawa shall in no event be responsible for any damage or loss of opportunity to the customer that arises

due to failure of the delivered product.

2. Yaskawa shall not be responsible for any programs (including parameter settings) or the results of pro-
gram execution of the programs provided by the user or by a third party for use with programmable
Yaskawa products.

3. The information described in product catalogs or manuals is provided for the purpose of the customer pur-
chasing the appropriate product for the intended application. The use thereof does not guarantee that there
are no infringements of intellectual property rights or other proprietary rights of Yaskawa or third parties,
nor does it construe a license.

4. Yaskawa shall not be responsible for any damage arising from infringements of intellectual property
rights or other proprietary rights of third parties as a result of using the information described in catalogs
or manuals.

(3) Suitability for Use
1. It is the customer’s responsibility to confirm conformity with any standards, codes, or regulations that

apply if the Yaskawa product is used in combination with any other products.

2. The customer must confirm that the Yaskawa product is suitable for the systems, machines, and equip-
ment used by the customer.

3. Consult with Yaskawa to determine whether use in the following applications is acceptable. If use in the
application is acceptable, use the product with extra allowance in ratings and specifications, and provide
safety measures to minimize hazards in the event of failure.

• Outdoor use, use involving potential chemical contamination or electrical interference, or use in condi-

tions or environments not described in product catalogs or manuals

• Nuclear energy control systems, combustion systems, railroad systems, aviation systems, vehicle sys-

tems, medical equipment, amusement machines, and installations subject to separate industry or gov-

ernment regulations

• Systems, machines, and equipment that may present a risk to life or property

• Systems that require a high degree of reliability, such as systems that supply gas, water, or electricity,

or systems that operate continuously 24 hours a day

• Other systems that require a similar high degree of safety

4. Never use the product for an application involving serious risk to life or property without first ensuring
that the system is designed to secure the required level of safety with risk warnings and redundancy, and
that the Yaskawa product is properly rated and installed.

5. The circuit examples and other application examples described in product catalogs and manuals are for
reference. Check the functionality and safety of the actual devices and equipment to be used before using
the product.

6. Read and understand all use prohibitions and precautions, and operate the Yaskawa product correctly to
prevent accidental harm to third parties.

(4) Specifications Change
The names, specifications, appearance, and accessories of products in product catalogs and manuals may be

changed at any time based on improvements and other reasons. The next editions of the revised catalogs or

manuals will be published with updated code numbers. Consult with your Yaskawa representative to confirm

the actual specifications before purchasing a product.
ix

x

Contents

About This Manual - iii

Using This Manual - iii

Manuals for MP2000 Series - iii

Related Manuals - iv

Visual Aids- v

Safety Information - v

Safety Precautions - vi

Warranty - viii

1 Overview

1.1 What is a Motion Program? - 1-2

1.2 Motion Program Features - 1-3

1.2.1 Execution Method- -1-3

1.2.2 Motion Control in Full Synchronization with Sequence Control -1-3

1.2.3 Easy to Realize High-level Motion Control- -1-4

1.2.4 Easy-to-Understand Motion Language -1-4

1.2.5 Arithmetic Operations -1-4

1.2.6 Data Transfer from/to Ladder Program -1-5

1.2.7 Memory Usage Reduced by Use of Subprograms -1-5

1.2.8 Parallel Program Execution -1-6

1.2.9 Program Online Editing -1-6

1.2.10 Enriched Easy Programming Functions (MPE720 Ver.6.04 or later)- - - - - - - - - - - - - - - - - - -1-7

1.3 Motion Program Execution Sequence- 1-8

1.4 Motion Program Execution Registration - 1-9

1.5 Motion Program Execution Timing - 1-10

1.6 Grouping - 1-11

1.7 Application Examples - 1-12

1.7.1 Example 1: Handling System - 1-12

1.7.2 Example 2: Mechanical Parts Inserting Machine - 1-12

1.7.3 Example 3: Panel Processing Machine - 1-13

1.7.4 Example 4: Metal Sheet Bending Equipment- 1-13

1.8 What is a Sequence Program? - 1-14

1.9 Sequence Program Features- 1-15

1.9.1 Execution Method- 1-15

1.9.2 Programming Language Commonly Used in Motion Programs - 1-15

1.9.3 Data Transfer from/to Motion Program - 1-15

1.9.4 Memory Usage Reduced by Use of Subprograms - 1-16

1.9.5 Easy Programming Functions (MPE720 Ver.6.04 or later) - 1-16

2 Specifications

2.1 MP2000 Series Machine Controller Specifications - 2-2

2.1.1 Applicable Machine Controller Models- 2-2

2.1.2 Applicable Motion Modules- 2-2

2.1.3 List of Machine Controller Specifications - 2-3

2.2 Engineering Tool MPE720 Specifications - 2-5

2.2.1 Applicable Version Numbers of the Engineering Tool MPE720- 2-5

2.2.2 List of Engineering Tool MPE720 Specifications - 2-5

2.3 List of Motion Language Commands - 2-6

3 Program Development Flow

3.1 Program Development Flow - 3-2

3.2 Program Development Procedure - 3-3

3.2.1 Hardware Configuration - 3-3

3.2.2 Installing MPE720 Version 6- 3-3

3.2.3 Communication Settings - 3-3

3.2.4 System Setup - 3-3

3.2.5 Creating Project Files - 3-4

3.2.6 Group Definitions - 3-5

3.2.7 Creating a Motion Program - 3-6

3.2.8 Registering the Program Execution - 3-7

3.2.9 Transferring the Motion Program- 3-10

3.2.10 Debugging the Program - 3-12

3.2.11 Saving the Programs in Flash Memory- 3-13

3.2.12 Executing the Programs - 3-14

4 Motion Programs

4.1 Types of Motion Programs- 4-2

4.2 Motion Programs For Each Axis Group- 4-2

4.3 Running a Motion Program - 4-3

4.3.1 How to Run a Motion Program - 4-3

4.3.2 Registering the Program Execution - 4-5

4.3.3 Work Registers - 4-6

4.4 Advanced Programming - 4-11

4.4.1 Indirect Designation of a Program Number Using a Register - 4-11

4.4.2 Controlling the Motion Program Directly from an External Device- 4-12

4.4.3 Monitor the Motion Program Execution Information Using S Register - - - - - - - - - - - - - - - - - 4-13

5 Sequence Programs

5.1 Sequence Program Types - 5-2

5.2 How to Run a Sequence Program - 5-3

5.2.1 How to Run a Sequence Program- 5-3

5.2.2 Registering Program Execution - 5-4

5.2.3 Work Register - 5-5
xi

xii
6 Variables (Registers)

6.1 Overview - 6-2

6.1.1 Variable Types -6-2

6.1.2 Global Variables and Local Variables -6-4

6.2 Using Variables - 6-7

6.2.1 System Variables (S Registers) -6-7

6.2.2 Data Variables (M Registers) -6-8

6.2.3 Input Variables (I Registers)- -6-9

6.2.4 Output Variables (O Registers) - 6-11

6.2.5 C Variables (C Registers) - 6-13

6.2.6 D Variables (D Registers) - 6-14

6.3 How to Use Subscripts i, j - 6-15

7 Programming

7.1 Motion Program Format - 7-2

7.1.1 Motion Program Structure -7-2

7.1.2 Block Format -7-2

7.1.3 Using Constants and Variables -7-7

7.2 Motion Module Parameters - 7-9

7.2.1 Axis Type Selection -7-9

7.2.2 Reference Unit -7-9

7.2.3 Electronic Gear - 7-10

7.2.4 Speed Reference - 7-12

7.2.5 Acceleration/Deceleration Setting- 7-12

7.3 Group Definition - 7-13

7.4 Priority Levels of Operations - 7-15

7.5 Commands and Execution Scans - 7-17

7.5.1 Command Types - 7-17

7.5.2 List of Command Types- -7-18

7.6 Sequence Program Format - 7-19

8 Command Reference

8.1 Axis Setting Commands - 8-3

8.1.1 Absolute Mode (ABS) -8-3

8.1.2 Incremental Mode (INC) -8-7

8.1.3 Acceleration Time Change (ACC)- 8-11

8.1.4 Deceleration Time Change (DCC) - 8-17

8.1.5 S-curve Time Constant Change (SCC) - 8-23

8.1.6 Set Velocity (VEL)- 8-29

8.1.7 Maximum Interpolation Feed Speed Setting (FMX) - 8-35

8.1.8 Interpolation Feed Speed Ratio Setting (IFP)- 8-37

8.1.9 Interpolation Acceleration Time Change (IAC) - 8-40

8.1.10 Interpolation Deceleration Time Change (IDC)- 8-43

8.1.11 Set Interpolation Acceleration/Deceleration Mode (ACCMODE) - 8-46

8.2 Axis Move Commands - 8-60

8.2.1 Positioning (MOV) - 8-60

8.2.2 Linear Interpolation (MVS) - 8-64

8.2.3 Clockwise/Counterclockwise Circular Interpolation with Center Position Designation

(MCW, MCC) - 8-69

8.2.4 Clockwise/Counterclockwise Circular Interpolation with Radius Designation (MCW, MCC) - - 8-75

8.2.5 Clockwise/Counterclockwise Helical Interpolation with Center Position Designation

(MCW, MCC) - 8-79

8.2.6 Clockwise/Counterclockwise Helical Interpolation with Radius Designation (MCW, MCC) - - 8-82

8.2.7 Zero Point Return (ZRN) - 8-84

8.2.8 Linear Interpolation with Skip Function (SKP)- 8-86

8.2.9 Set Time Positioning (MVT) - 8-88

8.2.10 External Positioning (EXM)- 8-90

8.3 Axis Control Commands - 8-92

8.3.1 Current Position Set (POS) - 8-92

8.3.2 Move On Machine Coordinates (MVM) - 8-94

8.3.3 Program Current Position Update (PLD) - 8-95

8.3.4 In-Position Check (PFN) - 8-96

8.3.5 Set In-Position Range (INP) - 8-98

8.3.6 Coordinate Plane Setting (PLN) - 8-100

8.4 Program Control Commands - 8-101

8.4.1 Branching Commands (IF ELSE IEND) - 8-101

8.4.2 Repeat (WHILE WEND) - 8-103

8.4.3 Parallel Execution (PFORK, JOINTO, PJOINT) - 8-106

8.4.4 Selective Execution (SFORK, JOINTO, SJOINT) - 8-109

8.4.5 Motion Subprogram Call (MSEE) -8-113

8.4.6 Sequence Subprogram Call (SSEE) -8-114

8.4.7 User Function Call From Motion Program (UFC) -8-115

8.4.8 User Function Call from Sequence Program (FUNC) - 8-123

8.4.9 Program End (END) - 8-124

8.4.10 Subprogram End (RET) - 8-125

8.4.11 Dwell Time (TIM) - 8-126

8.4.12 I/O Variable Wait (IOW) - 8-127

8.4.13 One Scan Wait (EOX) - 8-129

8.4.14 Single-block Signal Disabled (SNGD)/Single-block Signal Enabled (SNGE) - - - - - - - - - - 8-130

8.5 Arithmetic Operations - 8-131

8.5.1 Substitute (=) - 8-131

8.5.2 Add (+) - 8-132

8.5.3 Subtract (-) - 8-133

8.5.4 Multiply (*) - 8-134

8.5.5 Divide (/)- 8-135

8.5.6 Remainder (MOD) - 8-136
xiii

xiv
8.6 Logic Operation - 8-137

8.6.1 OR (|) - 8-137

8.6.2 AND (&)- 8-139

8.6.3 XOR (^) - 8-140

8.6.4 NOT (!) - 8-141

8.7 Data Comparisons - 8-142

8.7.1 Data Comparison Commands (==, <>, >, <, >=, <=)- 8-142

8.8 Data Operations - 8-144

8.8.1 Bit Right Shift (SFR) - 8-144

8.8.2 Bit Left Shift (SFL) - 8-145

8.8.3 Block Move (BLK)- 8-146

8.8.4 Clear (CLR) - 8-147

8.8.5 ASCII Conversion 1 (ASCII)- 8-148

8.9 Basic Functions - 8-150

8.9.1 Sine (SIN) - 8-150

8.9.2 Cosine (COS)- 8-152

8.9.3 Tangent (TAN) - 8-153

8.9.4 Arc Sine (ASN)- 8-154

8.9.5 Arc Cosine (ACS) - 8-155

8.9.6 Arc Tangent (ATN) - 8-156

8.9.7 Square Root (SQT)- 8-157

8.9.8 BCD to Binary (BIN) - 8-159

8.9.9 Binary to BCD (BCD) - 8-160

8.9.10 Set Bit (S{ }) - 8-161

8.9.11 Reset Bit (R{ }) - 8-162

8.9.12 Rising Pulse (PON)- 8-163

8.9.13 Falling Pulse (NON) - 8-165

8.9.14 ON-Delay Timer (TON): Counting unit: 0.01 second - 8-168

8.9.15 OFF-Delay Timer (TOF): Counting unit: 0.01 second - 8-170

8.10 C-Language Control Commands - 8-172

8.10.1 C-Language Task Control (CTSK) - 8-172

8.10.2 C-Language Function Call (CFUNC)- 8-174

9 Engineering Tool MPE720

9.1 Motion Editor - 9-2

9.1.1 Overview -9-2

9.1.2 Names and Descriptions of Motion Editor Window Components -9-4

9.2 Command Input Assistant Function - 9-6

9.2.1 Overview -9-6

9.2.2 Motion Command Assist Dialog Box Details -9-8

9.3 Program Execution Registration Function - 9-12

9.3.1 Overview - 9-12

9.3.2 Program Execution Registry Screen Dialog Box Details - 9-13

9.4 Debug Function - 9-15

9.4.1 Overview - 9-15

9.4.2 Motion Editor Window during Debugging - 9-16

9.5 Motion Task Manager - 9-22

9.5.1 Overview - 9-22

9.5.2 Motion Task Manager Window Details - 9-23

9.6 Drive Control Panel- 9-24

9.6.1 Overview - 9-24

9.6.2 Drive Control Panel Details- 9-26

9.7 Test Run Function- 9-28

9.7.1 Overview - 9-28

9.7.2 Test Run Window Details - 9-29

9.8 Axis Status and Alarm Monitor - 9-31

9.8.1 Overview - 9-31

9.8.2 Monitor Window Details - 9-33

10 Troubleshooting

10.1 Troubleshooting - 10-2

10.1.1 Basic Flow of Troubleshooting - 10-2

10.2 Troubleshooting for Motion Programs - 10-3

10.2.1 Error Investigation Flow - 10-3

10.2.2 Problem Starting a Motion Program- 10-4

10.2.3 Confirming the Alarm Code - 10-9

10.2.4 Motion Program Alarm Codes- 10-15

10.3 Troubleshooting for Sequence Programs - 10-17

10.3.1 Error Investigation Flow - 10-17

10.3.2 Problem Starting a Sequence Program - 10-18

Appendices

A Motion Language Commands - A-2

A.1 Axis Setting Commands - A-2

A.2 Axis Move Commands - A-3

A.3 Control Commands - A-5

A.4 Program Control Commands - A-6

A.5 Arithmetic Operations- A-8

A.6 Logical Operations- A-8

A.7 Data Comparison- A-9

A.8 Data Operations - A-9

A.9 Basic Functions - A-10

A.10 C-Language Control Commands - A-11
xv

xvi
B Sample Programs - A-12

B.1 Programs for Controlling Motion Program Execution -A-13

B.2 Parallel Processing -A-15

B.3 Motion Program for Speed Control -A-16

B.4 Simple Synchronized Operation Using a Virtual Axis -A-17

B.5 Sequence Programs -A-19

C Differences between MP900 Series and MP2000 Series Machine Controllers - - A-21

C.1 Motion Programs -A-21

C.2 Sequence Programs -A-21

C.3 Motion Programming Commands -A-22

C.4 Group Definitions -A-22

C.5 Debug Function -A-23

C.6 Motion Program Alarms- -A-23

D Precautions - A-24

D.1 General Precautions -A-24

D.2 Precautions on Motion Parameter Settings -A-25

Index

Revision History

O
ve

rv
ie

w

1

Overview

This chapter introduces motion programs and describes their features for those who are unfa-
miliar with them.

1.1 What is a Motion Program? - 1-2

1.2 Motion Program Features - 1-3
1.2.1 Execution Method - 1-3
1.2.2 Motion Control in Full Synchronization with Sequence Control - - - - - - - - - - - - - - - - - - 1-3
1.2.3 Easy to Realize High-level Motion Control - 1-4
1.2.4 Easy-to-Understand Motion Language - 1-4
1.2.5 Arithmetic Operations - 1-4
1.2.6 Data Transfer from/to Ladder Program - 1-5
1.2.7 Memory Usage Reduced by Use of Subprograms - 1-5
1.2.8 Parallel Program Execution - 1-6
1.2.9 Program Online Editing - 1-6
1.2.10 Enriched Easy Programming Functions (MPE720 Ver.6.04 or later) - - - - - - - - - - - - - 1-7

1.3 Motion Program Execution Sequence - 1-8

1.4 Motion Program Execution Registration - 1-9

1.5 Motion Program Execution Timing - 1-10

1.6 Grouping - 1-11

1.7 Application Examples - 1-12
1.7.1 Example 1: Handling System - 1-12
1.7.2 Example 2: Mechanical Parts Inserting Machine - 1-12
1.7.3 Example 3: Panel Processing Machine - 1-13
1.7.4 Example 4: Metal Sheet Bending Equipment - 1-13

1.8 What is a Sequence Program? - 1-14

1.9 Sequence Program Features - 1-15
1.9.1 Execution Method - 1-15
1.9.2 Programming Language Commonly Used in Motion Programs - - - - - - - - - - - - - - - - 1-15
1.9.3 Data Transfer from/to Motion Program - 1-15
1.9.4 Memory Usage Reduced by Use of Subprograms - 1-16
1.9.5 Easy Programming Functions (MPE720 Ver.6.04 or later) - 1-16
1-1

1 Overview

1-2
1.1 What is a Motion Program?
The motion program is a program written in motion language, Yaskawa’s unique textual language.
A motion program can be executed either by coding an MSEE command in a ladder program or by registering
the motion program in the program execution registry screen dialog box for the M-EXECUTOR Module.

Note: The M-EXECUTOR Module can not be used with the following modules and Machine Controllers:
MP2300, CPU-01, CPU-02

Apart from ladder programs, up to 256 motion programs can be created.

An example of a motion program is shown below.

The features of motion programs are described starting from the next page.

1.2 Motion Program Features

O
ve

rv
ie

w

1.2 Motion Program Features
1.2.1 Execution Method

A motion program employs an execution method that differs from the ladder program.
With a ladder program, processing from the program start to an END command is completed within one scan.
With a motion program, the processing requested by one command normally requires more than one scan.
Also, the commands are executed sequentially, in the order they are coded.
In this manual, the execution method of ladder program is referred to as Scan Execution, and that of a motion
program as Sequential Execution.

1.2.2 Motion Control in Full Synchronization with Sequence Control
The process written in a motion program is executed in full synchronization with high-speed scans of the
MP2000-series Machine Controller. The axis movement will start within one scan after the start request from the
ladder program, without any time lag to start the motion program.

Ladder program
(Scan execution)

Motion program
(Sequential execution)

One program
is executed
in a fixed
cycle.

IB00000 IB00001 OB00000

IB00002

IB00003

DB000005

IB00004 DB000006 OB00001

END

MOV [X]1000 [Y]2000;

MOV [X]-1000 [Y]-2000;

MVS [X]2000 [Y]1000 F30000;

END;

At the completion of
execution of one
move command,
the next command will
be executed.

Sequence Control Motion Control
(Motion Module)

Ladder program (High-speed scan)

MPM001

Motion program

Starts the motion
program

VEL [X]2000 [Y]2000;
ACC [X]100 [Y]100;
DCC [X]100 [Y]100;
MOV [X]0 [Y]0;
MVS [X]100.0 [Y]200.0;

Motion control in full
synchronization with
high-speed scans

M
ot

io
n

pa
ra

m
et

er
s

Set motion
parameters

Fully
synchronized
control

Position
control

Speed
control

Torque
control
1-3

1 Overview

1.2.3 Easy to Realize High-level Motion Control

1-4
1.2.3 Easy to Realize High-level Motion Control
In addition to basic motion control, motion control that involves complicated movements can be easily realized
by using motion programs.

1.2.4 Easy-to-Understand Motion Language
A motion program employs intuitive motion language commands such as VEL to set a velocity and MOV for
positioning.

1.2.5 Arithmetic Operations
The motion language includes commands for arithmetic operations and logical operations.
These commands allow you to include various calculations, such as calculation of target position in a motion pro-
gram.

Positioning

Linear
interpolation

Circular
interpolation

Helical
interpolation

VEL [A1]1000 [B1]500;

MOV [A1]100 [B1]200;

Set Velocity

Positioning

DL00000 = DL00002 + DW00004;

DL00000 = DW00002 * DL00004;

MW00000 = MW00000 & 00FFH;

MF00000 = SIN(30.0);

1.2 Motion Program Features

O
ve

rv
ie

w

1.2.6 Data Transfer from/to Ladder Program
Data can be transferred between a ladder program and motion program.
Data registers (M registers) are used to transfer the data.
In this way, a value updated in a ladder program can be used in a motion program, and vice versa

1.2.7 Memory Usage Reduced by Use of Subprograms
Subroutines (subprograms) can be created within a motion program.
The number of program steps can be minimized by creating a subprogram that includes a set of commands to
perform a repeated or regular task, thus reducing memory usage.

Data register
(M register) MOV [A1] ML00000;

Ladder program Motion program

Read Update Read Update

Main program

MPM001

Main program

MPM002

Main program

MPM003

Subprogram

MPS010

Calling
(MSEE)

Write common
processing in a
subprogram.

Calling
(MSEE)

Calling
(MSEE)
1-5

1 Overview

1.2.8 Parallel Program Execution

1-6
1.2.8 Parallel Program Execution
With a single MP2000-series Machine Controller, up to 16 tasks can be simultaneously executed using motion
programs. With one motion program, up to four main programs can be simultaneously executed. Additionally, up
to two subprograms can be simultaneously executed by calling subprograms from the main program. Multiple
different movements can be simultaneously controlled by using such the parallel program execution function.

1.2.9 Program Online Editing
Motion programs can be edited online in the same way as ladder programs.
Online editing refers to editing programs with the programming device logged on to the Machine Controller.
In online editing mode, the operation to save the edited program automatically transfers the saved program to the
Machine Controller. Thus, an operation to transfer to the Machine Controller is not required and program devel-
opment efficiency is improved.

Online editing is disabled while a motion program is running.

MP2000-
series
Machine
Controller

Task 1

Task 2

Task 16

Processing 1

Subprogram

Processing
1-1

Processing
1-2

Processing 2 Processing 3 Processing 4

Task

Simultaneous
execution of
up to 16 tasks

Up to four main programs
can be executed
in parallel.

Up to two subprograms
can be executed in
parallel.

Offline editing

Online editing

Programming

Operation to transfer a program
to the Machine Controller

Debugging

INFO

1.2 Motion Program Features

O
ve

rv
ie

w

1.2.10 Enriched Easy Programming Functions (MPE720 Ver.6.04 or later)
The engineering tool MPE720 Ver.6 for MP2000-series Machine Controllers is provided with the following easy
programming functions.

Test Run Function
Control the axes onscreen.

Program Execution Registration Function
Easily register programs to be executed in the system.

Operation Control Panel Function
Start motion programs from the Motion
Editor window.

Debug Function
Debug a motion program.
The debug commands, including step-by-step execution
and break point setting, are provided.

 Axis Operation Monitor Function
View the motion status of each axis onscreen.

 Command Input Assistant Function
Simply select a command and set data in the Motion
Command Assist dialog box to insert the command in
the editor.

Inserts the command
1-7

1 Overview

1-8
1.3 Motion Program Execution Sequence
The motion programs created on the MPE720 Motion Editor window are transferred to the MP2000-series
Machine Controller. The transferred motion programs can be called by MSEE commands coded in the ladder
program, or from the execution registry screen dialog box of the M-EXECUTOR Module. Motion commands are
sent to the motion module via the motion parameters to move axes.
The following diagram illustrates how motion programs created using the MPE720 are executed.

H

H01

H02

H01.01

H01.02

Ladder program

MP2000-series Machine Controller

M-EXECUTOR

Program Definition tab

Calling

Calling

Motion programs

SVR

Built-in
SVB

SVB-01

SVA-01

PO-01

Transfer the created programs

MSEE command

Motion Editor Window

Can call motion
programs without using
ladder program

Capable of storing
up to 256 programs

M
ot

io
n

pa
ra

m
et

er
s

MPE720

VEL [X]2000 [Y]2000;
ACC [X]100 [Y]100;
DCC [X]100 [Y]100;
MOV [X]0 [Y]0;
MVS [X]100.0 [Y]200.0;

ABS;
FMX T100000;
MVS [C1]300 [D1]400F1000;

END;

MPM002

MPM001

Can call up to
16 programs at once

1.4 Motion Program Execution Registration

O
ve

rv
ie

w

1.4 Motion Program Execution Registration
Execution of motion programs can be registered in two ways.

 Calling a Motion Program from the Ladder Program

Code an MSEE command in an H drawing to call the motion program to run. An MSEE work register is used
to start/stop the called motion program. Motion programs can be called from any H drawing: parent drawing,
child drawing, or grandchild drawing.

In this manual, the high-speed processing drawing of a ladder program is referred to as H drawing.

 Registering Motion Programs in M-EXECUTOR

Register motion programs in the M-EXECUTOR program execution definition. A control register (I/O regis-
ter) is used to start or stop the registered motion program.

M-EXECUTOR is a software module to execute motion programs and sequence programs.

DWG.H

Work register

Control signal

Status

System work number

Interpolation override

MPM001

 INC;

 VEL [A1]100 [B1]200;

 MOV [A1]1000 [B1]2000;

 END;

Calls

Motion program

INFO

M-EXECUTOR
Program definition MPM001

INC;

 VEL [A1]100 [B1]200;

 MOV [A1]1000 [B1]2000;

 END;

Motion program

Control registers

Calls

INFO
1-9

1 Overview

1-1
1.5 Motion Program Execution Timing
Motion programs are executed in full synchronization with MP2000 high-speed scans. In every high-speed scan
cycle, I/O services are performed first, and the motion program registered in M-EXECUTOR is executed.
Next, the motion program initiated in the MSEE command coded in the DWG.H is executed at the timing of the
MSEE command execution.
The following diagram illustrates motion program execution timing.

Empty

I/O service
(Output)

H drawing

M-EXECUTOR

External device

Batch
output

Batch
input

MP2000-series
CPU Module

Requests
to execute

Reports

Motion program

Status

Control signal

SubprogramM-EXECUTOR

Requests
to execute

Reports
Status

Control signal

High-speed scan High-speed scan High-speed scan

I/O service
(Input)

Empty Empty

MSEE

END;

MPM001

RET;

MPS101

DWG.H

Motion program

Subprogram

MSEE

END;

MPM002

RET;

MPS102

System processing

Output (O)
register

Input (I)
register
0

1.6 Grouping

O
ve

rv
ie

w

1.6 Grouping
The axes involved in related operations are organized into individual groups. Motion programs can be created for
each group. This allows one MP2000-series Machine Controller to independently control multiple machines
using group operation. Group operation can be single group operation or multiple group operation.

Definitions for axes to be grouped together are made under Group Definitions.

 Single Group Operation

 Multiple Group Operation

Group1
S

G
D

S

S
G

D
S

S
G

D
S

S
G

D
S

S
G

D
S

A1 B1 C1 F1 G1

���

MP2000 series
Machine Controller

Groups are organized
in a tree structure.

MP2000 series
Machine Controller

S
G

D
S

S
G

D
S

S
G

D
S

S
G

D
S

S
G

D
S

A1 B1 A2 D2 A3

���

Group1 Group2 Group3
1-11

1 Overview

1.7.1 Example 1: Handling System

1-1
1.7 Application Examples
Motion programs can be used for operations of various systems.
Some application examples are shown below.

1.7.1 Example 1: Handling System

1.7.2 Example 2: Mechanical Parts Inserting Machine

Outline

• To stack a specified number of cardboard boxes on a pallet and
transport them to the next process

• The system operation includes three axes motion control for
the palletizing process and an automatic pallet feeding
sequence.

Control points

• Moves X1 and X2 axes in synchronization using
a virtual axis.

• Realizes smooth movements by using interpola-
tion.

• Palletizes by calculating the position data with the
motion program according to predefined condi-
tions (box dimensions, the number of boxes in a
horizontal row, the number of boxes in a vertical
row, and the number of boxes in a stack.

Pallet

Pallet

Outline

• To insert parts, such as connectors, in a printed board.

• The handling robot takes out the parts and brings them to the
stand. The inserting robot inserts the parts in the specified posi-
tion and angle on the board.

Control points

• Two groups of axes are organized, and programs
are created for each group, so that each robot is
independently controlled.

• The tact time can be shortened by using two-axes
or three-axes linear interpolation.

+

+

-

+
-

+
-

+
-

+

--

2

Printed
board Stand

Parts tray

Robot 2
Robot 1
2

1.7 Application Examples

O
ve

rv
ie

w

1.7.3 Example 3: Panel Processing Machine

1.7.4 Example 4: Metal Sheet Bending Equipment

Outline

• To draw waveforms on a flat panel made of construction mate-
rial.

• More than ten cutters are mounted in series on the X axis, and
the width of the pattern can be easily changed.

Control points

• Moves X and Y axes in circular interpolation
to draw waveforms.

• Moves Y1 and Y2 axes in synchronization
using a vertical axis.

z
Y

Wave forms

Cutter

 Flat panel

Outline

• To bend a metal sheet

• A metal sheet can be bent into various shapes by changing the
adjusting axis while feeding a sheet using the rolling axis.

Control points

• Controls two axes, a linear axis and rota-
tional axis, in linear interpolation.

• Switches the motion program to be called
according to the process.

Workpiece
platform

Motor for
adjusting roller

Motor for feeding roller

Gear
Feeding roller (urethane)

Adjusting roller

Workpiece
(metal sheet)

Motor for
inserting workpieces
1-13

1 Overview

1-1
1.8 What is a Sequence Program?
The sequence program is a scan execution type program written in the language commonly used for the motion
program.
An application to cyclically check a status, such as an interlock, can be created by using a sequence program.
A sequence program can be executed by calling from the program execution registry screen dialog box of M-
EXECUTOR Module.

Note: The M-EXECUTOR Module can not be used with the following modules and Machine Controllers:
MP2300, CPU-01, CPU-02

A total of up to 256 sequence and motion programs can be created.
An example of a sequence program is shown below.

The features of sequence programs are described, starting from the next page.
4

1.9 Sequence Program Features

O
ve

rv
ie

w

1.9 Sequence Program Features
1.9.1 Execution Method

A sequence program employs the same execution method as the ladder program.
A sequence program is a cyclically executed scan execution type program. Processing from the program start to
an END command is completed within one scan.
Sequence programs can be used by registering them in the program execution registry screen dialog box of M-
EXECUTOR Module.

1.9.2 Programming Language Commonly Used in Motion Programs
A sequence program employs the same motion language as a motion program.
The motion language commands that can be used in sequence programs, however, are limited to sequence com-
mands, such as math commands. Commands for motion control, such as axis move commands, cannot be used.
The use of sequence programs allows you to create an application for sequence control without using a ladder
program.

1.9.3 Data Transfer from/to Motion Program
Data can be transferred between a sequence program and a motion program.
Data registers (M registers) are used to transfer the data.
In this way, data updated in the sequence program can be used in the motion program, and vice versa.

Sequence program
(Scan execution type)

Ladder program
(Scan execution type)

Executed in
a constant
cycle

IB00000 IB00001 OB00000

IB00002

IB00003

DB000005

IB00004 DB000006 OB00001

END

OB00000 = IB00000 & IB00001;

DB000005 = IB00002 | IB00003;

OB00001 = PON(IB00004 DB000006);

END;

Executed in
a constant
cycle

Data register
(M register) MOV [A1] ML00000;

Sequence program Motion program

Read Update Read Update

ML00000 = ML00002 + ML00004;

ML00000 = ML00000 * ML00006;

END;
1-15

1 Overview

1.9.4 Memory Usage Reduced by Use of Subprograms

1-1
1.9.4 Memory Usage Reduced by Use of Subprograms
Subroutines (subprograms) can be created within a sequence program.
The number of program steps can be minimized by creating a subprogram that includes a set of commands to
perform a repeated or regular task, thus reducing memory usage.

1.9.5 Easy Programming Functions (MPE720 Ver.6.04 or later)
The following easy programming functions can also be used for sequence programs.

Main program

SPM001

Main program

SPM002

Main program

SPM003

Subprogram

SPS010

Call
(SSEE)

Write a repeated
or regular task in
a subprogram

Call
(SSEE)

Call
(SSEE)

Debug Function
Debug a sequence program.
The debug commands, including step-by-step execution
and break point setting, are provided.

 Command Input Assistant Function
Simply select a command and set data in the Motion
Command Assist dialog box to insert the command
in the editor.

Inserts the command
6

S
pe

ci
fic

at
io

ns
2

Specifications

This chapter describes the relevant specifications of motion program and engineering tool
MPE720.

2.1 MP2000 Series Machine Controller Specifications - - - - - - - - - - - - - - - - - - 2-2
2.1.1 Applicable Machine Controller Models - 2-2
2.1.2 Applicable Motion Modules - 2-2
2.1.3 List of Machine Controller Specifications - 2-3

2.2 Engineering Tool MPE720 Specifications - 2-5
2.2.1 Applicable Version Numbers of the Engineering Tool MPE720 - - - - - - - - - - - - - - - - - - 2-5
2.2.2 List of Engineering Tool MPE720 Specifications - 2-5

2.3 List of Motion Language Commands - 2-6
2-1

2 Specifications

2.1.1 Applicable Machine Controller Models

2-2
2.1 MP2000 Series Machine Controller Specifications
2.1.1 Applicable Machine Controller Models

Motion programs can be used with the following MP2000-series Machine Controller models.

• MP2100
• MP2100M
• MP2200/CPU-01
• MP2200/CPU-02
• MP2200/CPU-03
• MP2200/CPU-04
• MP2300
• MP2300S
• MP2310
• MP2400
• MP2500
• MP2500D
• MP2500M
• MP2500MD
• MPU-01

With the exception of MP2300, CPU-01 and CPU-02, both motion programs and sequence programs can be used.

If using the M-EXECUTOR module or sequence programs with MP2100 or MP2100M, the programming tools with fol-
lowing versions are required.

2.1.2 Applicable Motion Modules
The following motion modules support motion programs.

The axes connected to the following motion modules can be controlled using motion programs.

• Built-in SVB (Built in MP2100, MP2100M, MP2300, MP2300S, MP2310, MP2400, and MP2500,
 MP2500D, MP2500M, MP2500MD as a standard feature)

• SVR (Mounted on all models of MP2000-series Machine Controllers as standard)
• SVA-01
• SVB-01
• PO-01

MP2000 Series Controller Applicable Version MPE720 Applicable Version

MP2100
MP2100M

Ver 2.66 or later MPE720 Ver 5 MPE720 Ver 5.44 or later

MPE720 Ver 6 MPE720 Ver 6.10 or later

MPE720 Ver 6.10 Lite or later

INFO

2.1 MP2000 Series Machine Controller Specifications

S
pe

ci
fic

at
io

ns
2.1.3 List of Machine Controller Specifications

MP2100,
MP2100M

MP2300 MP2300S MP2400
MP2200
/CPU-01

MP2310
MP2200
/CPU-02

MP2200
/CPU-03,
MP2200
/CPU-04,
MPU-01

Remarks

Program Capacity 5.5 MB 7.5 MB 11.5 MB

Total user program
capacity including lad-
der programs, motion
programs, and
sequence programs.

La
dd

e
r

P
ro

gr
a

m

Applicable N/A Applicable −
Start
Processing

64 drawings max. −

Interrupt
Processing

64 drawings max. −

High-speed
Processing

200 drawings max. −

Low-speed
Processing

500 drawings max. −

User function 500 drawings max. −

M
ot

io
n

P
ro

gr
a

m

Applicable −

Number of
Programs

256 programs max.
Up to a total of 256
motion programs and
sequence program.

Number of
Groups

Eight groups
Up to 16 axes can be
set for one group.

Number of
Tasks

16 tasks

Number of motion
programs that can be
executed simulta-
neously.

Number of
Parallel
Processes
(Per Task)

Eight parallel processes

Parallel execution of
four main programs ×
parallel execution of
two subprograms.

Execution
Method

• By writing an MSEE instruction in the ladder program

• By using an M-EXECUTOR Module (Excluding MP2300, CPU-01 and CPU-02)
−

Starting
Method

The program starts running at the rising edge of control signal bit 0
(Program start request).

−

Override Can be set in the range from 0.01% to 327.67%. −

Operation
Mode

ABS (absolute) and INC (incremental) mode
Mode switching by
use of the exclusive
command (ABS/INC).

Reference Unit

• Built-in SVB, SVB-01, and SVR Module:
pulse, mm, deg, inch, μm

• SVA-01 and PO-01 Module:
pulse, mm, deg, inch

−

Min.
Reference Unit

• E pulse
1

• mm, deg, inch, μm
1, 0.1, 0.01, 0.001, 0.0001, 0.00001

−

Reference
Range

-2147483648 to +2147483647 (32-bit with sign) −

Number of
Simultaneously
Controlled
Axes
(Per Task)

16 axes max. −
2-3

2 Specifications

2.1.3 List of Machine Controller Specifications

2-4
S
eq

u
en

ce
 P

ro
gr

a
m

Applicable N/A Applicable N/A
Applica-
ble

N/A
Applica-
ble

−

Number of
Programs

256 programs max.

(The execution timing can be selected from the start drawing, high-speed scan drawing,
or low-speed scan drawing.)

Up to a total of 256
motion programs and
sequence.

Number of
Tasks

16 tasks max.

Number of sequence
programs that can be
executed simulta-
neously.

Number of
Parallel
Processes
(Per Task)

None −

Execution
Method

By using the M-EXECUTOR Module −

Start Method Started by the system.

Started by the system
by registering pro-
grams in the M-
EXECUTOR module.

A
cc

es
si

bl
e

R
eg

is
te

rs

M Register Accessible (65535 words)
Memory backed up by
battery.

S Register Accessible (8192 word)
Memory backed up by
battery.

I Register Accessible (32768 words and motion monitoring parameters) −
O Register Accessible (32768 words and motion setting parameters) −
C Register Accessible (16384 words) −

D Register Accessible (Can be specified in the range from 0 to 16384 words)

Internal register
unique to each draw-
ing. Can be used by
only the correspond-
ing drawing.

Register
Accessible only from ladder program (Can be specified in the range from 0 to 16384
words)
(# register cannot be accessed from motion program and sequence program.)

−

MP2100,
MP2100M

MP2300 MP2300S MP2400
MP2200
/CPU-01

MP2310
MP2200
/CPU-02

MP2200
/CPU-03,
MP2200
/CPU-04,
MPU-01

Remarks

2.2 Engineering Tool MPE720 Specifications

S
pe

ci
fic

at
io

ns
2.2 Engineering Tool MPE720 Specifications
2.2.1 Applicable Version Numbers of the Engineering Tool MPE720

Motions programs and/or sequence programs can be created or edited on the following engineering tool MPE720
versions.

• MPE720 Ver.5 (Compatible with MP2000-series Machine Controller models excluding MP2400)

• MPE720 Ver.6 (Compatible with all models of MP2000-series Machine Controllers)

• MPE720 Ver.6 Lite (Compatible only with MP2400)

The above engineering tool software can be installed on one personal computer.

2.2.2 List of Engineering Tool MPE720 Specifications

INFO

MPE720 Ver.5
(CPMC-MPE720)

MPE720 Ver.6
(CPMC-MPE770)

MPE720 Ver.6 Lite
(CPMC-MPE770L)

Remarks

M
ac

h
in

e
C

o
nt

ro
lle

r
M

od
e

l

MP2100 Compatible Not compatible −
MP2100M Compatible Not compatible −
MP2200/CPU-01 Compatible Not compatible −
MP2200/CPU-02 Compatible Not compatible −
MP2200/CPU-03 Compatible Not compatible −
MP2200/CPU-04 Compatible Not compatible −
MP2300 Compatible Not compatible −
MP2300S Compatible Not compatible −
MP2310 Compatible Not compatible −
MP2400 Not compatible Compatible −
MPU-01 Compatible Not compatible −

P
ro

gr
a

m
s Ladder Program Supported Not supported −

Motion Program Supported −

Sequence Program Supported −

Command Input Assistant
Function

Not provided Provided (Ver.6.04 or later) −

Program Execution
Registration Function

Provided
(Ver.5.38 or later)

Provided (Ver. 6.04 or later)
Not supported by
MP2300, CPU-01,
CPU-02

Debug Function Provided −
Motion Task Manager Provided −

Drive Control Panel
Provided
(Ver.5.38 or later)

Provided (Ver.6.04 or later)
Not supported by
MP2300, CPU-01,
CPU-02

Test Run Function Not provided Provided (Ver.6.04 or later) −
Axis Operation Monitor/
Alarm Monitor Function

Not provided Provided (Ver.6.04 or later) −
2-5

2 Specifications

2-6
2.3 List of Motion Language Commands

Type Command Name Type Commands Name

A
xi

s
S

et
 C

om
m

an
ds

ABS Absolute Mode

A
rit

hm
et

ic
 O

pe
ra

tio
n

= Substitute

INC Incremental Mode + Add

ACC Acceleration Time Change - Subtract

DCC Deceleration Time Change * Multiply

SCC S-curve Time Constant Change / Divide

VEL Set Speed MOD Remainder

FMX Maximum Interpolation Feed Speed

Lo
gi

ca
l

O
pe

ra
tio

n

| OR (Logical OR)

IFP Interpolation Feed Speed Ratio Setting & AND (Logical AND)

IAC Interpolation Acceleration Time Change ^
XOR (Logical exclusive
OR)

IDC Interpolation Deceleration Time Change ! NOT (Inversion)

A
xi

s
M

o
ve

 C
om

m
a

nd
s

MOV Positioning

D
at

a
C

om
pa

ris
on

== Match

MVS Linear Interpolation <> Mismatch

MCW Clockwise Circular/Helical Interpolation > Greater than

MCC
Counterclockwise Circular/Helical
Interpolation

< Less than

ZRN Zero Point Return >= Greater than or equal to

SKP Linear Interpolation with SKIP Function <= Less than or equal to

MVT Set Time Positioning

D
at

a
O

p
er

at
io

n SFR Right Shift

EXM External Positioning SFL Left Shift

C
o

nt
ro

l C
om

m
an

d
s POS Current Position Set BLK Block Move

MVM Move On Machine Coordinates CLR Clear

PLN Coordinate Plane Setting ASCII ASCII Conversion 1

PLD Program Current Position Update

B
as

ic
 F

un
ct

io
n

s

SIN Sine

PFN In-Position Check COS Cosine

INP Set In-Position Check Width TAN Tangent

P
ro

gr
am

 C
on

tr
ol

 C
om

m
an

ds

IF ELSE IEND Branch ASN Arc Sine

WHILE WEND Repeat ACS Arc Cosine

PFORK,
JOINTO,
PJOINT

Parallel Execution

ATN Arc Tangent

SQT Square Root

BIN BCD to Binary

SFORK,
JOINTO,
SJOINT

Selective Execution

BCD Binary to BCD

S{ } Set Bit

R{ } Reset Bit

MSEE Subroutine (motion subprogram) Call PON Rising Pulse

SSEE Subroutine (sequence subprogram) Call NON Falling Pulse

UFC User Function Call from Motion Program
TON On-Delay Timer

TOF Off-Delay Timer

FUNC User Function Call from Sequence Program

C
 L

an
g

ua
ge

C
on

tr
ol

 C
om

m
an

ds CTSK
C Language Task
Control

END Program End

RET Subprogram End

TIM Dwell Time

CFUNC
C Language Function
Call

IOW I/O Variable Wait

EOX One Scan Wait

SNGD/SNGE Disable/Enable Single Block

P
ro

gr
am

 D
ev

el
op

m
en

t F
lo

w

3

Program Development Flow

This chapter describes the procedures from system setup to operation start using the program-
ming tool MPE720 version 6.

3.1 Program Development Flow - 3-2

3.2 Program Development Procedure - 3-3
3.2.1 Hardware Configuration - 3-3
3.2.2 Installing MPE720 Version 6 - 3-3
3.2.3 Communication Settings - 3-3
3.2.4 System Setup - 3-3
3.2.5 Creating Project Files - 3-4
3.2.6 Group Definitions - 3-5
3.2.7 Creating a Motion Program - 3-6
3.2.8 Registering the Program Execution - 3-7
3.2.9 Transferring the Motion Program - 3-10
3.2.10 Debugging the Program - 3-12
3.2.11 Saving the Programs in Flash Memory - 3-13
3.2.12 Executing the Programs - 3-14
3-1

3 Program Development Flow

3-2
3.1 Program Development Flow
In this chapter, motion program development procedures are described according to the following flowchart.

Note: 1. The development procedure for sequence programs is basically the same as that for motion programs.
For this reason, descriptions of the sequence program development flow are omitted.

2. The above flowchart shows an example of program development. To use programs for the actual system,
settings for the external devices are required.

Motion Program to be Created

In this chapter, the following motion program is used to explain the program development flow. The motion
program contains only three lines for the simple operation of moving an axis 150,000 pulses from the current
position and then stopping.

INC; “INCREMENTAL MODE”

MOV [A1]150000 [B1]150000; “2 AXES 150000 PULSES POSITIONING”

END;

3. Creating Project Files

Create a project in preparation for program
development.

1. Preparation for Devices to be Connected

Connect the devices.
Install MPE720 in a personal computer.

2. System Setup

Execute the self-configuration function to set up the
system.

7. Transferring the Program

Transfer the created program to the MP2000-series
Machine Controller.

8. Debugging the Program

Debug the created program.

9. Saving the Program in Flash Memory

Save the debugged program in flash memory.

6. Registering the Program Execution

Register the program in the system to execute
the program in high-speed scan.

5. Creating a Motion Program

Code a motion program on the Motion Editor.

4. Settings for Group Definitions

Organize the axes into individual groups according
to the machine configuration.

10. Executing the Programs

Execute the created program by using the register
list.

Refer to the following sections:
3.2.1 Hardware Configuration
3.2.2 Installing MPE720 Version 6
3.3.3 Communication Settings

Refer to the following section:
3.2.4 System Setup

Refer to the following section:
3.2.5 Creating Project Files

Refer to the following section:
3.2.6 Group Definitions

Refer to the following section:
3.2.7 Creating a Motion Program

Refer to the following section:
3.2.8 Registering the Program Execution

Refer to the following section:
3.2.9 Transferring the Motion Program

Refer to the following section:
3.2.10 Debugging the Program

Refer to the following section:
3.2.11 Saving the Programs in Flash Memory

Refer to the following section:
3.2.12 Executing the Programs

3.2 Program Development Procedure

P
ro

gr
am

 D
ev

el
op

m
en

t F
lo

w

3.2 Program Development Procedure
3.2.1 Hardware Configuration

The program development procedure is explained using the following system configuration.

Note: In the system configuration above, set the station numbers of the two SERVOPACKs to 1 and 2.

3.2.2 Installing MPE720 Version 6
Install MPE720 Ver.6 in a personal computer.

For information on the installation procedure, refer to Engineering Tool for MP2000 Series Machine Controller
MPE720 Version 6 User’s Manual (manual no.: SIEPC88070030).

3.2.3 Communication Settings
Set the conditions for communications between the computer on which MPE720 Ver.6 is installed and the
MP2000-series Machine Controller.

For information on the communication settings, refer to Engineering Tool for MP2000 Series Machine Control-
ler MPE720 Version 6 User’s Manual (manual no.: SIEPC88070030).

3.2.4 System Setup
Use the self-configuration function to setup the system. The self-configuration function automatically recognizes
the modules installed on the MP2000-series Machine Controller and the devices connected to the Machine Con-
troller through the MECHATROLINK connection. This function allows you to quickly and easily set up the sys-
tem. The self-configuration can be executed either when the power to the Machine Controller turns ON or by
using MPE720.

For information on how to execute self-configuration, refer to the user’s manual for the Machine Controller to be
used.

Personal computer running MPE720

SERVOPACK
YASKAWA SERVOPACK 200V

SGDS-01A12A

SW1

CHARGE

C
N
3

A/B

C
N
1

C
N
2

C
N
4

L1
L2

L2C

L1C

B1/
B2

U

V

W

C
N
6

SERVOPACK
YASKAWA SERVOPACK 200V

SGDS-01A12A

SW1

CHARGE

C
N
3

A/B

C
N
1

C
N
2

C
N
4

L1
L2

L2C

L1C

B1/
B2

U

V

W

C
N
6

MECHATROLINK cable

Servomotor Servomotor

Power
supply

Power supply

Terminator

DC24V

DC 0V

MP2300
YASKAWA

TEST

RDY

ALM
TX

RUN

ERR
BAT

MON
CNFG

INT
SUP

STOP

SW1

OFF ON

BATTERY

CPU I/O

M-I/II

218IF-01
ERR

COL

RX

RUN

STRX

TX

INIT
TEST

ONOFF

PORT

10Base-T

Machine Controller

Motor cableEncoder cable

MECHATROLINK
cable

PP cable
3-3

3 Program Development Flow

3.2.5 Creating Project Files

3-4
3.2.5 Creating Project Files

1. Double-click the MPE720 Ver.6 icon on the computer desktop to launch the MPE720 Ver. 6.

2. Click New under Project.

3. Specify the file name, file saving destination folder, and Machine Controller model. Then click the Create
button.

Select the file saving
destination folder.

Select the MP2000-series
Machine Controller model.

Select the file name.

3.2 Program Development Procedure

P
ro

gr
am

 D
ev

el
op

m
en

t F
lo

w

3.2.6 Group Definitions
Before creating a motion program, organize the axes into individual groups according to the machine configura-
tion.

1. Click the Motion tab to display Motion program in the subwindow.

2. Right-click Motion program in the subwindow. Select Group Definition from the drop-down menu.

3. Click OK. For details on group definitions, refer to 7.3 Group Definition.

Motion program
appears here.

Right-
click
3-5

3 Program Development Flow

3.2.7 Creating a Motion Program

3-6
3.2.7 Creating a Motion Program
Start the Motion Editor to create a motion program.

1. Programs are displayed under Motion program in the subwindow. Right-click Main program. Select
New from the drop-down menu.

2. Click OK.

3. Enter the sample motion program provided in 3.1 Program Development Flow.

4. Click the Save icon () on the toolbar of the Motion Editor window to start compiling. The motion
program will be automatically saved after compiling is completed.

Note that the motion program will not be automatically saved if the Error List dialog box appears during com-
piling.

Right-
click

Click to
open

the tree.

IMPORTANT

3.2 Program Development Procedure

P
ro

gr
am

 D
ev

el
op

m
en

t F
lo

w

3.2.8 Registering the Program Execution
Call the created motion program from the H drawing using an MSEE command. For details, refer to 4.3.2 Regis-
tering the Program Execution.

1. Click the Ladder tab in the subwindow to display Ladder program.

2. Right-click High-speed under Ladder program in the subwindow. Select New from the drop-down
menu.

3. Click OK.

Ladder program is
displayed here.

Right-click
3-7

3 Program Development Flow

3.2.8 Registering the Program Execution

3-8
4. Create the ladder program shown below. After the ladder program has been created, compile the program

by pressing the F8 key on the keyboard or clicking the icon on the toolbar.

• Make sure that bit 0 of motion monitoring parameter IW00 (Operation Ready) is ON before turning ON the Servo
ON command MB000000.

• The Servo ON command will not be accepted if the Operation Ready bit is OFF.

INFO

3.2 Program Development Procedure

P
ro

gr
am

 D
ev

el
op

m
en

t F
lo

w

The motion programs can be registered to run by registering the programs in the M-EXECUTOR program execution defi-
nition, without creating the ladder program described on the previous page.

The procedure to register motion programs to the program definition of M-EXECUTOR is described below. Before using
this procedure, be sure to carry out the operation described in 3.2.9 Transferring the Motion Program.

1. Click the icon on the toolbar in the Motion Editor window where the motion program is created.

2. The Program execution registry screen dialog box will open. Click OK to register the program.

INFO
3-9

3 Program Development Flow

3.2.9 Transferring the Motion Program

3-1
3.2.9 Transferring the Motion Program
Transfer the motion program to the MP2000-series Machine Controller. If the program is created on a computer
using MPE720 Version 6 and the Machine Controller connected online, this operation will not be required.

1. Click Communications Setting in the following window.

2. Select the communication port selected in 3.2.3 Communication Settings, and click the Connection but-
ton.

3. Offline will change to Online. Select Transfer - Write into controller.
0

3.2 Program Development Procedure

P
ro

gr
am

 D
ev

el
op

m
en

t F
lo

w

4. Click the Individual button, and then select the Program check box. Click the Start button.

• When Individual transfer is selected, the same file in the Machine Controller will be overwritten with the selected proj-
ect file data.

• When Batch transfer is selected, the MP2000-series Machine Controller’s RAM will be cleared before transfer, and all
project file data will be written in the RAM.

5. Click the CPU STOP button to start transfer.

6. Click the Yes button in the following dialog box to restart the Machine Controller.

INFO
3-11

3 Program Development Flow

3.2.10 Debugging the Program

3-1
3.2.10 Debugging the Program
Debug the created program. For details on debugging, refer to 9.4 Debug Function.

1. Click the Register List 1 tab to display the register list. Specify register MB000000. Set MP000000 to
ON as follows to turn the servo ON.

When using the M-EXECUTOR as described in 3.2.8 Registering the Program Execution, directly set the motion setting
parameter to turn the servo ON.

2. Click the Debug Mode icon () on the toolbar.

3. The Motion Editor will enter debug mode.

4. Click the Step In icon () to execute the program line by line, and check the programmed movements.
For details on debugging, refer to 9.4 Debug Function.

5. Debug the program until the END command. When the debugging operation is completed, turn the servo
OFF.

INFO
2

3.2 Program Development Procedure

P
ro

gr
am

 D
ev

el
op

m
en

t F
lo

w

3.2.11 Saving the Programs in Flash Memory
Save the data in the MP2000-series Machine Controller’s RAM to the flash memory.

1. Select Transfer - Save to flash in the following window.

2. Click the Start button.

3. Click the CPU STOP button to start saving.

4. Click the Yes button in the following dialog box to restart the Machine Controller.
3-13

3 Program Development Flow

3.2.12 Executing the Programs

3-1
3.2.12 Executing the Programs
Execute the created programs to operate the actual machine. Turn the Program Start Request bit to ON using the
control signal to execute the motion program.

1. Click the Register List 1 tab to display the register list. Specify register MB000000. Set MB000000 to
ON to turn the servo ON.

2. Set MB000001 in the register list to ON to execute motion program MPM001.

Set MB00000 to ON
to turn the servo ON.

MPM001 starts running at the
rising edge of DB000010.

DW00000

DW00001

DW00002

DW00003

Status flag

Control signal

Override for interpolation

System work number

MSEE work register
4

M
ot

io
n

P
ro

gr
am

s

4

Motion Programs

This chapter describes motion program types and how to run them.

4.1 Types of Motion Programs - 4-2

4.2 Motion Programs For Each Axis Group - 4-2

4.3 Running a Motion Program - 4-3
4.3.1 How to Run a Motion Program - 4-3
4.3.2 Registering the Program Execution - 4-5
4.3.3 Work Registers - 4-6

4.4 Advanced Programming - 4-11
4.4.1 Indirect Designation of a Program Number Using a Register - - - - - - - - - - - - - - - - - - 4-11
4.4.2 Controlling the Motion Program Directly from an External Device - - - - - - - - - - - - - - - 4-12
4.4.3 Monitor the Motion Program Execution Information Using S Register - - - - - - - - - - - - 4-13
4-1

4 Motion Programs

4-2
4.1 Types of Motion Programs
There are two motion program types, as listed below.

 The program numbers of motion programs are managed in the same manner as the sequence program num-
bers. Assign a unique number for each program number.

• Program number of Motion program MPM, MPS

• Program number of Sequence program SPM, SPS

 The MP2000-series Machine Controllers can execute up to 16 motion programs simultaneously. An alarm (no
system work error) will occur if 17 or more programs are executed simultaneously.

• No system work error: Bit E of the leading word in the MSEE work registers

4.2 Motion Programs For Each Axis Group
With motion programs, the axes that have related operations are organized into individual groups, and programs
can be created for each group. This allows one MP2000-series Machine Controller to independently control mul-
tiple machines using group operation. Group operation can be single group operation or multiple group opera-
tion. Definitions for axes to be grouped together are made under Group Definitions.

For information on the group definition setting window, refer to 7.3 Group Definition.

Type
Designation

Method
Features No. of Programs

Main Program
MPM

= 1 to 256)

• Called from the M-EXECUTOR
program execution definition

• Called from DWG.H

Up to 256 programs including following
programs can be created.

• Motion main program

• Motion subprogram

• Sequence main program

• Sequence subprogram
Subprogram

MPS

(= 1 to 256)
• Called from the main program

INFO

 Single Group Operation Multiple Group Operation

MP2000 Series
Machine Controller

Group1

S
G

D
S

S
G

D
S

S
G

D
S

S
G

D
S

S
G

D
S

A1 B1 C1 F1 G1

���

MP2000 Series
Machine Controller

S
G

D
S

S
G

D
S

S
G

D
S

S
G

D
S

S
G

D
S

A1 B1 A2 D2 A3

���

Group1 Group2 Group3

4.3 Running a Motion Program

M
ot

io
n

P
ro

gr
am

s

4.3 Running a Motion Program
4.3.1 How to Run a Motion Program

To run the created motion programs, the user must register them in the system. The motion programs registered
in the system can be referenced in the high-speed scan cycle.

Motion programs can be run in two ways, depending on how they were registered in the system:

• Calling it from the ladder program using a MSEE command
• Registering it to the M-EXECUTOR program execution definition

Now, this section explains each way to run a motion program:

(1) Calling the Motion Program from the Ladder Program Using a MSEE command
After creating a motion program, embed an MSEE command (Motion Program Call command) in the H draw-
ings. Motion programs can be called from any parent, child, or grandchild drawing in an H drawing. The follow-
ing figure shows an example of motion program execution.

H drawing ladder commands are executed in hierarchical order i.e., parent drawings, child drawings, then grand-
child drawings in each high-speed scan cycle.

To start up the motion program, after the MSEE command is incorporated, use a control signal to turn ON the
request for the program operation startup.

Motion programs are also called in each scan cycle, but unlike ladder programs, all motion programs cannot be
executed in one scan. For this reason, motion programs are executed and controlled by special system’s motion
management function.

When running a motion program, pay attention to the followings:.

• The motion program registered in M-EXECUTOR cannot be executed using a MSEE command.

• Multiple motion programs with the same number cannot be executed using a MSEE command.

• A subroutine (MPS) cannot be executed from a MSEE command in a ladder.

• It can only be referenced from a motion program (MPM, MPS).

• A sequence program (SPM, SPS) cannot be executed from a MSEE command in a ladder.

MSEE
MPM001

DWG.H

SEE
H01

DEND

DWG.H01

SEE H01.01

END
DEND

END

RETEND

DEND

MPM003
MPS101

DWG.H01.01 MPM001

Parent Drawings

System programs are
started according to
execution conditions.

MPM002
MSEE

MPM002

MSEE
MPM003

MSEE
MPS101

Subprogram

VEL [a1]5000 [b1]..
FMX T10000000;
IAC T25;
IDC T30;
MOV [a1]300. [b1]..
MVS [a1]200. [b1]..

 .
 .
 .

Motion ProgramsChild Drawings

Grandchild

Grandchild Drawings

IMPORTANT
4-3

4 Motion Programs

4.3.1 How to Run a Motion Program

4-4
(2) Registering it to the M-EXECUTOR Program Execution Definition
After creating a motion program, register it in the M-EXECUTOR program execution definition screen.

The programs registered in the M-EXECUTOR program execution definition screen are executed in ascending
numeric order.

The execution example is shown in the figure below.

To start up the motion program, after the motion program registration, use a control signal to turn ON the
request for the program operation startup.

The motion program registered in M-EXECUTOR is executed at a scan cycle, but similar to a ladder, the
whole program cannot be executed at a single scan. In case of the motion program, a motion management
function in the system carries out an execution control exclusive for the motion programs.

When registering a motion program to M-EXECUTOR, pay attention to the followings:

• Multiple motion programs with the same number cannot be registered.

• Multiple motion programs with the same number cannot be referenced using an indirect designation.

END

RETEND

MPM003
MPS101

MPM001

Motion program

M-EXECUTOR program execution definition

MPM002

MSEE
MPS101

Subprogram

END

VEL [a1]5000 [b1]..
FMX T10000000;
IAC T25;
IDC T30;
MOV [a1]300. [b1]..
MVS [a1]200. [b1]..

 .
 .
 .

IMPORTANT

4.3 Running a Motion Program

M
ot

io
n

P
ro

gr
am

s

4.3.2 Registering the Program Execution
Programs can be registered in the two following ways.
The following examples shows when the motion program MPM001 is registered.

(1) Embedding an MSEE command in the Ladder Program

(2) Registering MPM001 in the M-EXECUTOR

Embed an MSEE command into the H drawing
Set the MSEE command so that it is
executed every scan.

MPM number

Register MPM001.
4-5

4 Motion Programs

4.3.3 Work Registers

4-6
4.3.3 Work Registers
When registering motion programs as described in 4.3.2 Registering the Program Execution, a work register to
control and monitor the program execution is assigned for each registered program. The work registers are used
to send instructions to the motion programs from the motion program control program, and to get the motion pro-
gram status.

(1) For a Motion Program Called from the Ladder Program Using an MSEE Command
Four words of the register (MA or DA) that are specified for Data of the MSEE command are
used as the work register.

(2) For a Motion Program Registered in an M-EXECUTOR Program Execution Definition
The M-EXECUTOR control registers are used as the work registers.
The M-EXECUTOR control registers are automatically defined by the system.

The details of the work registers are described from the next page.

1st word

2nd word

3rd word

4th word

DW00000

DW00001

DW00002

DW00003

Status flag

Control signal

Override for interpolation

System work number

Register No.
in the Example ContentsWork Register

Output

Input

Input

Input

I/O

Status

Control signal

Override

IW0C00

OW0C01

OW0C02

Status flag

Control signal

Override for interpolation

Work Registers
M-EXECUTOR
Control Registers)

Register No.
in the Example

Contents

Output

Input

Input

I/O

4.3 Running a Motion Program

M
ot

io
n

P
ro

gr
am

s

(a) Status Flag

Bit No Status Description

0 to 3

Bit 0 Program running
This bit is ON while the motion program is running.

0: The motion program is being stopped
1: The motion program is running

Bit 1 Program paused
This bit is ON while the motion program is paused by Program Pause Request.

0: The program is not paused by Program Pause Request.
1: The program is paused by Program Pause Request.

Bit 2
Program stopped by
stop request

This bit is ON while the motion program is stopped by Program Stop Request.

0: The program is not stopped by Program Stop Request.
1: The program is stopped by Program Stop Request.

Bit 3 (Reserved) −

4 to 7

Bit 4
Single program block
operation stopped

This bit is ON while a single program block operation is stopped during debug-
ging.

0: Other than single block operation stop
1: Single block operation stop

Bit 5 (Reserved) −
Bit 6 (Reserved) −
Bit 7 (Reserved) −

8 to B

Bit 8 Program alarm

This bit is ON while a program alarm is occurring.

When this bit turns ON, the details of the error are written in the error informa-
tion screen and S register.

0: No program alarm
1: A program alarm is occurring.

Bit 9 Stopped by break point

This bit is ON while the program is stopped during a break point during debug-
ging.

0: Not stopped at break point
1: Stopped at break point

Bit A (Reserved) −

Bit B In debug mode
This bit is ON while debugging the motion program.

0: Normal operation mode
1: Debug mode

C to F

Bit C Program type
Reports the running program type: Motion program or sequence program

0: Motion program
1: Sequence program

Bit D
Start request signal
history

This bit turns ON when the Program Operation Start Request is ON.

0: Program Operation Start Request OFF
1: Program Operation Start Request ON

Bit E
No system work error
Scanning error

This bit turns ON when the system work required to execute the motion pro-
gram is not assigned, or when an MSEE command is embedded in a drawing
other than the H drawing.

0: No system work error is not occurring.
1: No system work error is occurring.

Bit F
Main program number
exceeded error

This bit turns ON when the specified motion program number is outside the
range.
Motion program number range: 1 to 256

0: Within the range
1: Outside the range
4-7

4 Motion Programs

4.3.3 Work Registers

4-8
(b) Control Signal

: Signals with this indication must be kept ON until they are accepted by the system.

: Signals with this indication should be ON for one high-speed scan.

Bit No Status Description

0 to 3

Bit 0
Program operation
start request

Request to start a motion program. When this bit status changes from OFF to ON, the
motion program will start running. However, this bit is disabled whenever an alarm is
occurring in the motion program.

0: Program Operation Start Request OFF
1: Program Operation Start Request ON

Bit 1 Program pause
request

Request to pause a motion program.
Resetting this bit to 0 after pausing the motion program will restart the program from
the point it was stopped.

0: Program Pause Request OFF (Cancel the pause request)
1: Program Pause Request ON

Bit 2 Program stop
request

Request to stop a running motion program.
Turning this bit ON while the axis is moving will cause a motion program alarm.

0: Program Stop Request OFF, 1: Program Stop Request ON

Bit 3 Program single
block mode
selection

Request for program single block mode.
Use this bit instead of the debugging operation

0: Program Single Block Mode Selection OFF
1: Program Single Block Mode Selection ON

4 to 7

Bit 4
Program single
block start request

Changing this bit status from OFF to ON will start the program single block operation
(step-by-step operation). This bit is valid when the control signal bit 3 (Program single
block mode selection) is ON.

0: Program Single Block Start Request OFF
1: Program Single Block Start Request ON

Bit 5 Program reset and
alarm reset request

Request to reset a motion program and a alarm.

0: Program reset and Alarm Reset Request OFF,

1: Program reset and Alarm Reset Request ON

Bit 6 Program
continuous
operation start
request

Request to restart a program that has been stopped by a motion program alarm or the
Program Stop Request, from the point it was stopped.

0: Program Continuous Operation Start Request OFF
1: Program Continuous Operation Start Request ON

Bit 7 (Reserved) −

8 to B

Bit 8
Skip 1 information

Turning this bit ON while moving the axis using an SKP command (when SS1 is
selected for the skip input signal) will decelerate the axis to a stop and cancel the mov-
ing amount that remains.

0: SS1 signal OFF, 1: SS1 signal ON

Bit 9
Skip 2 information

Turning this bit ON while moving the axis using an SKP command (when SS2 is
selected for the skip input signal) will decelerate the axis to a stop and cancel the mov-
ing amount that remains.

0: SS2 signal OFF, 1: SS2 signal ON

Bit A (Reserved) −
Bit B (Reserved) −

C to F

Bit C (Reserved) −
Bit D System work

number setting
Turn this bit ON to specify the system work number.

0: Do not specify the system work number, 1: Specify the system work number

Bit E Override setting for
interpolation

Turn this bit ON to enable the interpolation override.

0: Disable the interpolation override.

1: Enable the interpolation override.

Bit F (Reserved) −

4.3 Running a Motion Program

M
ot

io
n

P
ro

gr
am

s

(c) Interpolation Override

Set the override value for execution of an interpolation command MVS, MCW, MCC, or SKP.
Interpolation override refers to change the output ratio of the speed reference for axis movement executed by
an interpolation related command.
Interpolation override is enabled when the bit E (Override setting for interpolation) of the control signal is
ON.

• Setting range of interpolation override: 0 to 32767
• Unit: 1 = 0.01%

(d) System Work Number

When using an MSEE command to call a motion program from the ladder program, set the system work
number to call the motion program. The set system work number is valid when the bit D (System work num-
ber setting) is ON.

• Setting range: 1 to 16

Note: 1. When using the M-EXECUTOR, the system work number cannot be set. A system work number that is
same as the definition number is used.

2. Do not specify the system work number for the M-EXECUTOR by the MSEE command when using both
the MSEE command and the M-EXECUTER. Doing so will cause a no system work error.
System work number for the M-EXECUTOR: 0 to the number set in Program definition number.
4-9

4 Motion Programs

4.3.3 Work Registers

4-1
• Timing Chart for Motion Program Control Signals

The following figure shows an example of a timing chart for motion program control signals.

• Turning ON the Stop Request while the axis is being moved by a motion command will cause an alarm.

• Turning ON the Stop Request while the axis is being moved by an interpolation related command will
immediately stop the axis.
Use the Pause Request to decelerate the axis to a stop.

• During execution of the Zero Point Return (ZRN) command, Pause Requests will not be accepted.
Use the Stop Request to stop the zero point return operation.

A program example for motion program control is given in B.1 Programs for Controlling Motion Program Exe-
cution.

Control signal:
 Operation start request

Status: Operating

Distribution

One scan

Control signal:
 Operation start request

Status: Operating

Distribution

Control signal: Pause request

Status: Paused

� Pause Request

� Program Operation Start Request

One scan

One scan

Control signal:
 Operation start request

Status: Operating

Distribution
(Positioning related commands)

Control signal: Stop request

Distribution (Zero point return)

Distribution
(Interpolation related commands)

Status: Stopped

Status: Alarm

� Stop Request

Control signal: Alarm clear

IMPORTANT
0

4.4 Advanced Programming

M
ot

io
n

P
ro

gr
am

s

4.4 Advanced Programming
4.4.1 Indirect Designation of a Program Number Using a Register

This method calls the program (MPM) that matches the value stored in the register.

(1) When Using a Motion Program called by a MSEE Command from
the Ladder Program
Specify a register (M or D register) to be used for the indirect designation in the Program No. of the MSEE com-
mand.

(2) For a Motion Program Registered in the M-EXECUTOR Program Execution Definition
Select Indirect under Setting. The register to be used for indirect designation will be assigned automatically by
the system.

Motion program call command

Ladder program Motion program

 ABS;

 IOW MB0001

...

MOV[X] _ [Y] _

MOV[X] _ [Y] _

MVS[X] _ [Y] _ F

MW00200 = 3

MPM003

Store 3 in the
register
MW00200.

Register number

Motion program

M-EXECUTOR Program Definition

 ABS;

 IOW MB0001

MOV[X] _ [Y] _

MOV[X] _ [Y] _

MVS[X] _ [Y] _ F

OW0C00 = 3

MPM003

Stores 3 in the
register
OW0C00
4-11

4 Motion Programs

4.4.2 Controlling the Motion Program Directly from an External Device

4-1
4.4.2 Controlling the Motion Program Directly from an External Device
The M-EXECUTOR Module has a function used to allocate the M-EXECUTOR’s control register to a desired
register.

With this function, data can automatically be exchanged between the M-EXECUTOR’s control register and the I/
O register connected to an external device. Thus, this function allows an external device to directly control the
motion program.

The following diagram shows a setting example for this function.

 The allocated interlock contact is used as an interlock for motion program execution. Always allocate an inter-
lock contact in Allocation Contact interlock when allocating a register in Allocation register.

The following processes are executed according to the ON/OFF status of the allocated interlock contact.

• When the allocated interlock contact is ON, the allocated register exchanges data with the M-EXECUTOR control reg-
ister in a high-speed scan cycle, and motion program execution is enabled during the data exchange.

• When the allocated interlock contact is OFF, the allocated register does not exchange data with the M-EXECUTOR
control register, and motion program execution is disabled.

• When the Allocation Contact interlock is changed from ON to OFF while the motion program is running, the motion
program will stop running and the axes will stop moving. At this moment, the motion program alarm “1Bh: Emergency
Stop Command in Execution” will occur, and bit 8 (Program alarm occurring) of the status flag will turn ON.

Use the following procedure to restart the motion program.

1. Set the interlock contact from OFF to ON.

2. Set bit 5 (Program reset and alarm reset request) of the control signal to ON.

3. Confirm that bit 8 (Program alarm) of the status flag turns OFF.

4. Set bit 5 (Program reset and alarm reset request) of the control signal to OFF.

5. Set bit 0 (Program operation start request) of the control signal to ON.

Signals from external device

� Program number
� Program operation start
� Program pause
� Program stop, etc.

Allocated
interlock
contacts

References the
M-EXECUTOR
control registers

Set desired registers for Allocation register and
Allocation Contact interlock.

Allocated registers

Program number

Data will be
exchanged
in high-speed
scan cycle.

� Host PLC
� Touch panel
� Switch
� LED, etc

External devices

MPM001

END

Execution control by
motion management function

Motion program

VEL [a1] 5000 [b1]..
FMX T10000000;
IAC T25;

IDC T30;
MOV [a1] 300. [b1]..
MVS [a1] 200. [b1]..

.

.

.

.

Status
Control signal

M-EXECUTOR Register Allocation window

Override for interpolation

INFO
2

4.4 Advanced Programming

M
ot

io
n

P
ro

gr
am

s

4.4.3 Monitor the Motion Program Execution Information Using S Register
Using S register (SW03200 to SW04191) allows you to monitor the motion program execution information.

The way to monitor the execution information for a motion program registered in the M-EXECUTOR program
execution definition differs from that for a motion program referenced by an MSEE command from a ladder pro-
gram.

The way to monitor it in each case is shown as follows:

(1) A Motion Program Referenced by an MSEE Command from a Ladder Program
When a motion program is referenced by an MSEE command from a ladder program, the way differs, depending
on the “Bit D” setting (system work number setting) of the motion program control signal, as follows:

(a) The motion program control signal “Bit D, System Work Number Setting” = ON

The execution information is reported to “Program Information Using Work n” register (SW03264 to
SW04191). For example, when “System Work Number” = 1, the motion program execution information can
be monitored in SW03264 to SW03321 “Program Information Using Work 1.”

(b) The motion program control signal “Bit D, System Work Number Setting” = OFF

The used system work is automatically decided by system. Thus, to check which work is used, refer to “Run-
ning Program Number” (= SW03200 to SW03215). For example, when you want to monitor the motion pro-
gram MPM001 and SW03202 = 1, as used the work number = 3, the execution information for the motion
program MPM001 can be monitored in “Program Information Using Work 3” (= SW03380 to SW03437).

(2) A Motion Program Registered in the M-EXECUTOR Program Execution Definition
For motion programs registered in the Program definition tab page of the M-EXECUTOR, the system work
numbers to be used are the same as for the Program execution registry number registered in the M-EXECUTOR
Module.

For example, a motion program is registered as “Definition No.” = 3, the used system work number is “System
Work” = 3. In this case, the execution information for the motion program can be monitored in “Program Infor-
mation Using Work 3” (= SW03380 to SW03437).

For more information on the register area of the motion program execution information, refer to the subsequent
pages.
4-13

4 Motion Programs

4.4.3 Monitor the Motion Program Execution Information Using S Register

4-1
(a) Register Areas for Motion Program Execution Information

SW03670

SW03612

SW03554

SW03496

SW03438

SW03380

SW03222

SW03264

SW03248

SW03232

SW03216

SW03200

SW03211

SW03232

SW03210

SW03209

SW03208

SW03215

SW03214

SW03213

SW03212

SW03200

SW03207

SW03206

SW03205

SW03204

SW03203

SW03202

SW03201

58W

58W

58W

58W

58W

58W

58W

58W

16W

16W

16W

16W

SW05120

SW04192

SW04134

SW04076

SW04018

SW03960

SW03902

SW03844

SW03786

SW03728

SW03235

SW03234

SW03233

SW03247

SW03246

SW03245

SW03244

SW03243

SW03242

SW03241

SW03240

SW03238

SW03237

SW03239

SW03236

64W

928W

58W

58W

58W

58W

58W

58W

58W

58W

MP 256 (Bit15) to MP 241 (Bit0)

MP 240 (Bit15) to MP 225 (Bit0)

MP 224 (Bit15) to MP 209 (Bit0)

MP 208 (Bit15) to MP 193 (Bit0)

MP 192 (Bit15) to MP 177 (Bit0)

MP 176 (Bit15) to MP 161 (Bit0)

MP 160 (Bit15) to MP 145 (Bit0)

MP 144 (Bit15) to MP 129 (Bit0)

MP 128 (Bit15) to MP 113 (Bit0)

MP 112 (Bit15) to MP 097 (Bit0)

MP 096 (Bit15) to MP 081 (Bit0)

MP 080 (Bit15) to MP 055 (Bit0)

MP 054 (Bit15) to MP 049 (Bit0)

MP 048 (Bit15) to MP 033 (Bit0)

MP 032 (Bit15) to MP 017 (Bit0)

MP 016 (Bit15) to MP 001 (Bit0)

Motion program execution information Executing program number

Executing program bit

Executing program number
(No. of main program currently

executing)

Executing Program Bit
(Executing when corresponding

bit is ON)

Reserved by the system.

Reserved by the system.

Reserved by the system.

Reserved by the system.

Program information used by
work 1

Program information used by
work 2

Program information used by
work 3

Program information used by
work 4

Program information used by
work 5

Program information used by
work 6

Program information used by
work 7

Program information used by
work 8

Program information used by
work 9

Program information used by
work 10

Program information used by
work 11

Program information used by
work 12

Program information used by
work 13

Program information used by
work 14

Program information used by
work 15

Program information used by
work 16

Program number used by work 1

Program number used by work 2

Program number used by work 3

Program number used by work 4

Program number used by work 5

Program number used by work 6

Program number used by work 7

Program number used by work 8

Program number used by work 9

Program number used by work 10

Program number used by work 11

Program number used by work 12

Program number used by work 13

Program number used by work 14

Program number used by work 15

Program number used by work 16

Note: indicates M or S.
4

4.4 Advanced Programming

M
ot

io
n

P
ro

gr
am

s

(b) Details of Program Information Used by Work n

For a list of S registers, refer (2) Using S Register in 10.2.3 Confirming the Alarm Code.

+56

+54

+52

+50

+48

+46

+44

+42

+40

+38

+36

+34

+32

+30

+28

+0

+26

+23

+20

+17

+14

+11

+8

+5

+2

+1

2W

2W

2W

2W

2W

2W

2W

2W

2W

2W

2W

2W

2W

2W

2W

2W

3W

3W

3W

3W

3W

3W

3W

3W

Program information used by work n

Program status

Program control signal

Parallel 0 information

Parallel 1 information

Parallel 2 information

Parallel 3 information

Parallel 4 information

Parallel 5 information

Parallel 6 information

Parallel 7 information

Executing program number

Executing block number

Alarm code

Logical axis #1 program current position

Logical axis #2 program current position

Logical axis #3 program current position

Logical axis #4 program current position

Logical axis #5 program current position

Logical axis #6 program current position

Logical axis #7 program current position

Logical axis #8 program current position

Logical axis #9 program current position

Logical axis #10 program current position

Logical axis #11 program current position

Logical axis #12 program current position

Logical axis #13 program current position

Logical axis #14 program current position

Logical axis #15 program current position

Logical axis #16 program current position

INFO
4-15

S
eq

ue
nc

e
P

ro
gr

am
s

5

Sequence Programs

This chapter describes sequence program types and how to run them.

5.1 Sequence Program Types - 5-2

5.2 How to Run a Sequence Program - 5-3
5.2.1 How to Run a Sequence Program - 5-3
5.2.2 Registering Program Execution - 5-4
5.2.3 Work Register - 5-5
5-1

5 Sequence Programs

5-2
5.1 Sequence Program Types
Sequence programs are of the following two types.

 The program numbers of sequence programs are managed in the same manner as the motion program num-
bers. Assign a different number for each program number.

• Motion program MPM: Program number of MPS

• Sequence program SPM: Program number of SPS

Category
Designation

Method
Features Number of Programs

Main Program
SPM

= 1 to 256

Calling from the M-EXECU-
TOR program execution defini-
tion

Up to 256 programs of the following types
can be created:

• Main motion program

• Sub motion program

• Main sequence program

• Sub sequence program

Subprogram
SPS

= 1 to 256
Calling from the main program

INFO

5.2 How to Run a Sequence Program

S
eq

ue
nc

e
P

ro
gr

am
s

5.2 How to Run a Sequence Program
5.2.1 How to Run a Sequence Program

A sequence program is executed by registering it in the Program definition tab page of the M-EXECUTOR.

When the execution type is set to Sequence Program (H scan) or Sequence Program (L scan), the program is
executed at the time the definition is saved. When the execution type is set to Sequence Program (Start), the
program is executed when the power supply is turned ON again next time.

An operation example of running a sequence program is shown below.

(1) M-EXECUTOR Program Definition Tab Page

END

END

RETEND

SPM003
SPS101

SPM001

Sequence program

M-EXECUTOR program execution definition

SPM002

SSEE
SPS101

Sequence subprogram

IF MW000<32767;
MW000=MW000+1;
ELSE;
MW000;
IEND;
5-3

5 Sequence Programs

5.2.2 Registering Program Execution

5-4
(2) Execution Timing
The following diagram illustrates program execution timing.
As shown in the following diagram, the programs are executed in the order they are registered in the Program
definition tab page.

5.2.2 Registering Program Execution
Register the programs to run as shown below. The following screenshot shows an example of registering the
sequence program SPM001 to run in a high-speed scan cycle.

Only the direct designation is available for sequence programs. The indirect designation cannot be used.

SPM003 MPM004 SPM005 DWG.H

SPM001 DWG.A

DWG.L

SPM003 MPM004

SPM002

High-speed scan cycle

Low-speed scan

High-speed scan

Start

 : Ladder program
 processing

Low-speed scan cycle

SPM005 DWG.H

DWG.XThe shaded area is an interruption
from processing that has higher
priority.

High-speed scan cycle

SPM002

Register the program to run.

INFO

5.2 How to Run a Sequence Program

S
eq

ue
nc

e
P

ro
gr

am
s

5.2.3 Work Register
A status flag to monitor program status is assigned to the sequence program in 5.2.2 Registering Program Execu-
tion. The status flag of a sequence program can be obtained by the following equation.

(1) Status Flag of Sequence Program

IW���� + 4 × (Program definition number - 1)
M-EXECUTOR’s I/O start register number

� The I/O start register number can be confirmed in the Module Configuration window.

I/O start register number

Bit No Status Description

0 to 3

Bit 0 Program running
This bit is ON while the sequence program is running.

0: The sequence program is being stopped, 1: The sequence program is running.

Bit 1 (Reserved) −
Bit 2 (Reserved) −
Bit 3 (Reserved) −

4 to 7

Bit 4 (Reserved) −
Bit 5 (Reserved) −
Bit 6 (Reserved) −
Bit 7 (Reserved) −

8 to B

Bit 8
Program alarm is
occurring

This bit turns ON when any of the following errors occur while calling the sequence
program using an SSEE command. This bit turns OFF when the error is corrected.

• The called program is not registered.

• The called program is not a sequence program.

• The called program is not a subprogram. (The main program is called.)

• The called program number exceeded the set range.

• Over nested

0: No program alarm (Normal), 1: Program alarm occurring

Bit 9
Stopping at
break point

This bit is ON when the program is stopped at a break point during debugging.

0: Not stopped at break point, 1: Stopped at break point

Bit A (Reserved) −

Bit B In debug mode
This bit is ON while the program is running in debug mode.

0: Normal operation mode, 1: Debug mode

C to F

Bit C Program type
Reports the running program type: Motion program or sequence program

0: Motion program, 1: Sequence program

Bit D Start request history
This bit is ON while the sequence program is running.

0: Sequence program stopped, 1: Sequence program running

Bit E (Reserved) −
Bit F (Reserved) −
5-5

Va
ria

bl
es

 (R
eg

is
te

rs
)

6

Variables (Registers)

This chapter describes the details of variables that can be used in both motion programs and
sequence programs.

6.1 Overview - 6-2
6.1.1 Variable Types - 6-2
6.1.2 Global Variables and Local Variables - 6-4

6.2 Using Variables - 6-7
6.2.1 System Variables (S Registers) - 6-7
6.2.2 Data Variables (M Registers) - 6-8
6.2.3 Input Variables (I Registers) - 6-9
6.2.4 Output Variables (O Registers) - 6-11
6.2.5 C Variables (C Registers) - 6-13
6.2.6 D Variables (D Registers) - 6-14

6.3 How to Use Subscripts i, j - 6-15
6-1

6 Variables (Registers)

6.1.1 Variable Types

6-2
6.1 Overview
This section summarizes the variables used in motion programs.

6.1.1 Variable Types
In a motion program and a sequence program, variables can be coded in place of numeric values. When variables
are used in actual operations, the numeric values stored in the variable area are retrieved.

(1) Types of Variable (Registers)
The seven types of register shown in the following table can be used as variables in a motion program and a
sequence program. S, M, I, O, and C registers are global variables that can be used by both motion programs and
sequence programs. D registers are local variables that are defined for each program and cannot be used by other
programs.

The # registers cannot be used in motion programs or sequence programs. If a # register is used in a motion
program or sequence program, a syntax error will occur when saving the program.

Table 6.1 Types of Variable

Type Name Designation Method Range Description
Character-

istic

S System Registers SB,SW,SL,SFnnnnn
SW00000

to SW08191

Registers that can be referenced by the sys-
tem.
Register number nnnn is a decimal expres-
sion.

Common to
programs

M Data Registers MB,MW,ML,MFnnnnn
MW00000

to MW65534

Registers common to all programs.
Used as interfaces between programs.
Register number nnnn is a decimal expres-
sion.

I Input Registers IB,IW,IL,IFhhhh
IW0000

to IW7FFF

Registers used for input data.
Register number hhhh is a hexadecimal
expression.
The register numbers 8000 and onward are
used as motion monitoring parameters.

O Output Registers OB,OW,OL,OFhhhh
OW0000

to OW7FFF

Registers used for output data.
Register number hhhh is a hexadecimal
expression.

The register numbers 8000 and onward are
used as motion setting parameters.

C
Constant
Registers

CB,CW,CL,CFnnnnn
CW00000

to CW16383

Registers that can be referenced only by a
program.
Register number nnnn is a decimal expres-
sion.

D D Registers DB,DW,DL,DFnnnnn
DW00000

to DW16383

Internal registers unique to each program.
Can only be used by the corresponding pro-
gram.
The actual range to be used is specified by
the user on the MPE720.
Register number nnnn is a decimal expres-
sion.

Unique to a
program

IMPORTANT

6.1 Overview

Va
ria

bl
es

 (R
eg

is
te

rs
)

(2) Data Types
As shown in the following table, the data types are bit, integer, double integer, and real number data.
Use them as required.

Table 6.2 Data Types

Symbol Data Type Numeric Range Remarks

B Bit ON (1), OFF (0)
Used to determine the relay sequence and the ON/OFF
condition.

W Integer
-32768 to +32767
(8000H to 7FFFH)

Used for arithmetic operations. The parentheses () show its
use in logic operations.

L
Double
Integer

-2147483648 to +2147483647
(80000000H to 7FFFFFFFH)

Used for arithmetic operations. The parentheses () show its
use in logic operations.

F Real Number ± (1.175E-38 to 3.402E + 38) Used for high-level arithmetic operations.

[MW00100]

[MW00103]

One digit to indicate bit A is
added to the register number
00103.

One word for the next register number is
included in the coded register number 00102.
Therefore, the register number is increased by two.

[MW00102]

[MW00101]

[ML00100]

Bit type

[MF00100]

[ML00102]
[MF00102]

[MB00103A]

[MB001006]

F E D C B A 9 8 7 6 5 4 3 2 1 0

Bit type
Double integer type
and real number type

Integer type

One word for each
register number

One digit to indicate bit 6 is added
to the register number 00100.

Data Type and Register Designation
6-3

6 Variables (Registers)

6.1.2 Global Variables and Local Variables

6-4
6.1.2 Global Variables and Local Variables

(1) Global Variables
Global variables can be used in common by ladder logic programs, user functions, and the drawings in motion
programs and sequence programs. In other words, the calculated results for a given ladder logic program can be
used by other user functions and motion programs. The global variable size is stored by the system for each vari-
able. (See the following illustration.)

Fig. 6.1 Global Variables

(2) Local Variables
Local variables are used locally by each program. They cannot be used by other programs. Local variables are
stored in the corresponding program memory.

Ladder programs User functions Motion programs and
Sequence programs

Global variables

S registers

8192 words

M registers

65535 words

I registers

32768 words
+

Monitoring
parameters

O registers

32768 words
+

Setting
parameters

C registers

16384 words

D register D register D register D register

Subprogram
(SPS004)

Subprogram
(MPS002)

SSEE SPS004;

Sequence program #3
(SPM003)

MSEE MPS002;

Motion program #1
(MPM001)

6.1 Overview

Va
ria

bl
es

 (R
eg

is
te

rs
)

The number of local variables (D registers) to be used in each program can be specified in the Program Prop-
erty window or Motion Program Configuration Definition window. Up to 16384 words can be used for one
drawing.

registers cannot be used in motion programs or sequence programs.

Program Property window

Right-click

Motion Program Configuration Definition window

Click

INFO
6-5

6 Variables (Registers)

6.1.2 Global Variables and Local Variables

6-6
 Precautions for Variable Operations

Storing data in a variable of a different data type will result in:

Format
• Use a Substitute command (=).

• Write a destination register on the left and the operation on the right.

MW00100 = MW00101 + MW00102;

Variable
Operations

• When real number data is stored in an integer type variable.

MW00100 = MF00200; The real number data is converted into integer
(00001) (1.234) data and stored in the destination register.

Note: Be careful to avoid a round-off error, caused when storing real number data
into an integer type variable.
Specify the round-off method when storing the real number in an integer
type variable in the Motion Program Configuration Definition window.

MW00100 = MF00200 + MF00202;
(0124) (123.48) (0.02) The operation result will differ depending
(0123) (123.49) (0.01) on the variable values to be calculated.

• When real number data is stored in a double integer type variable.

ML00100 = MF00200; The real number data is converted to integer
 (65432) (65432.1) data and stored in the destination register.

• When double integer data is stored in an integer type variable.

MW00100 = ML00200; The lower 16 bits of double integer data are
(-00001) (65535) stored in the destination register as they are.

• When integer data is stored in a double integer type variable.

ML00100 = MW00200; The integer data is converted to double integer

(0001234) (1234) data and stored in the destination register.

Operations that
Cause Syntax
Errors

• When integer data is stored in a bit type variable,

MB000100 = 123; => Syntax error
MB000100 = MW00100; => Syntax error

IMPORTANT

6.2 Using Variables

Va
ria

bl
es

 (R
eg

is
te

rs
)

6.2 Using Variables
This section explains how to use variables.

6.2.1 System Variables (S Registers)

(1) Overview
System variables (S registers) are provided by the MP2000-series Machine Controller system. They can be used
to read system error information, the operation status, and so on. S registers are global variables that can be used
in any motion program and sequence program. For details, refer to the user’s manual for the Machine Controller
to be used.

(2) Description
S registers are designated as follows:

The variable number is expressed as a decimal. When bits are specified, the bit number is expressed in hexadeci-
mal.

(3) Programming Examples

• Bit Designation

• Integer Designation

• Double Integer Designation

The system registers (S) are used exclusively for reading. If they are written to, system operations cannot be
guaranteed.

SB000000 to SB08191F
SW00000 to SW08191
SL00000 to SL08190
SF00000 to SF08190

OB000010 = SB000402|SB000403;

MW00100 = SW00041;

ML00100 = SL00062;

EXAMPLE

IMPORTANT
6-7

6 Variables (Registers)

6.2.2 Data Variables (M Registers)

6-8
6.2.2 Data Variables (M Registers)

(1) Overview
M registers are general-purpose variables that can be used in ladder logic programs, user functions, motion pro-
grams, and sequence programs. These are global variables that can be used as interfaces between motion pro-
grams, sequence programs, and ladder logic programs.

(2) Description
M registers are designated as follows:

The M register can be used as a variable for each type of operation and substituted for the operation result, or
specified as the variable for the positioning coordinate value or the speed. The variable number is expressed as a
decimal.

(3) Programming Examples

(a) Specifying the Position and Speed in Axis Move Commands as Variables

(b) Using Variables in Operations

• Bit Designation

• Integer Designation

• Double Integer Designation

• Real Number Designation

When the travel distance coordinate values or speed is designated as a variable in the following motion com-
mands, double integer data must be used.
MOV, MVS, MCW/MCC, ZRN, SKP, MVT, EXM, POS, ACC, SCC, IAC, IDC, IFP, FMX, INP, VEL

MB000000 to MB65534F
MW00000 to MW65534
ML00000 to ML65533
MF00000 to MF65533

• Parameter Reference unit = mm
 When decimal point position = 3

ML00100=100000;

ML00102=200000;

ML00104=300000;

ML00106=500000;

MVS [X]ML00100 [Y]ML00102 [Z]ML00104 FML00106;

→ 100.000 mm
→ 200.000 mm
→ 300.000 mm
→ 500.000 mm/min

MB001001=IB00100 & IB00201;

MW00101=(MW00101 | MW00102) & FF0CH;

ML00200=((Ml00202*ML00204) / ML00206)*3;

MF00200=((MF00202*MF00204) / MF00206)*3.14;

EXAMPLE

EXAMPLE

IMPORTANT

6.2 Using Variables

Va
ria

bl
es

 (R
eg

is
te

rs
)

6.2.3 Input Variables (I Registers)

(1) Overview
These variables are used by input data and the servo monitor parameters. Although servo parameters can also be
used for writing data, the values can not be guaranteed.

(2) Description
I registers are designated as follows:

(a) Register Numbers of Input Data

Depends on the address specified in the module configuration definition.

(b) Register Numbers of Motion Monitor Parameter

The number of controlled axes depends on the module type. The following indicates the number of controlled
axes for each module and the maximum number of modules.

* 1. The number of axes controlled by one built-in SVB or SVB-01 depends on the MECHATROLINK definitions.
* 2. With MP2100M and MP2500MD, an expansion rack is required to use optional modules (SVB-01, SVA-01,

and PO-01).
* 3. The maximum number of optional modules (SVB-01, SVA-01, and PO-01) that can be mounted on MP2100M,

MP2200, or MP2500MD with an expansion rack.

IW0000 to IW7FFF: Input data

IW8000 to IWFFFF: Motion monitoring parameters

Table 6.3 Number of Axes Controlled by One Module

Motion Module
Number of Axes

Controlled by One
Module

Max. Number of Modules That Can Be Mounted on One
Machine Controller

M
P

21
00

M
P

21
0

0M

M
P

22
00

M
P

23
00

M
P

23
00

S

M
P

23
10

M
P

24
00

M
P

25
00

(D
)

M
P

25
0

0M

M
P

25
0

0M
D

MP2000 Series
Built-in SVB

16 max. *1 1 1 − 1 1 1 1 1 1 1

MP2100M/MP2500M
SVB-01

16 max. *1 − 1 − − − − − − 1 1

Optional Module
SVB-01

16 max. *1

−
14
*2
*3

16
*3

2 1 3 − − −
14
*2
*3

Optional Module
SVA-01

2

Optional Module
PO-01

4

6-9

6 Variables (Registers)

6.2.3 Input Variables (I Registers)

6-1
The register numbers for each axis of the motion monitor parameters can be obtained by the following equation.

The register start number of the motion monitor parameter = IW8000 + (Circuit No. -1) × 800h + (Axis No. -1)
× 80h

(3) Programming Examples
The Input data and servo monitor parameters are read out and referenced.

• Bit Designation

• Integer Designation

• Double Integer Designation

Table 6.4 Register Numbers of Motion Parameter

Axis No.
Circuit No.

Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 • • Axis 16

1 8000 to 807F 8080 to 80FF 8100 to 817F 8180 to 81FF 8200 to 827F • • 8780 to 87FF

2 8800 to 887F 8880 to 88FF 8900 to 897F 8980 to 89FF 8A00 to 8A7F • • 8F80 to 8FFF

3 9000 to 907F 9080 to 90FF 9100 to 917F 9180 to 91FF 9200 to 9A7F • • 9780 to 97FF

4 9800 to 987F 9880 to 98FF 9900 to 997F 9980 to 99FF 9A00 to 997F • • 9F80 to 9FFF

5 A000 to A07F A080 to A0FF A100 to A17F A180 to A1FF A200 to A27F • • A780 to A7FF

6 A800 to A87F A880 to A8FF A800 to A87F A980 to A9FF AA00 to AA7F • • AF80 to AFFF

7 B000 to B07F B080 to B0FF B100 to B17F B180 to B1FF B200 to B27F • • B780 to B7FF

8 B800 to B87F B880 to B8FF B900 to B97F B980 to B9FF BA00 to BA7F • • BF80 to BFFF

9 C000 to C07F C080 to C0FF C100 to C17F C180 to C1FF C200 to C27F • • C780 to C7FF

10 C800 to C87F C880 to C8FF C900 to C97F C980 to C9FF CA00 to CA7F • • CF80 to CFFF

11 D000 to D07F D080 to D0FF D100 to D17F D180 to D1FF D200 to D27F • • D780 to D7FF

12 D800 to D87F D880 to D8FF D900 to D97F D980 to D9FF DA00 to DA7F • • DF80 to DFFF

13 E000 to E07F E080 to E0FF E100 to E17F E180 to E1FF E200 to E27F • • E780 to E7FF

14 E800 to E87F E880 to E8FF E900 to E97F E980 to E9FF EA00 to A97F • • EF80 to EFFF

15 F000 to F07F F080 to F0FF F100 to F17F F180 to F1FF F200 to F27F • • F780 to EFFF

16 F800 to F87F F880 to F8FF F900 to F97F F980 to F9FF F900 to F97F • • FF80 to FFFF

 ↑
Module number offset

INFO

MB01000 = IB0010 & IB00105;

MW0100 = IW8008;

ML0100 = IL8004;

EXAMPLE
0

6.2 Using Variables

Va
ria

bl
es

 (R
eg

is
te

rs
)

6.2.4 Output Variables (O Registers)

(1) Overview
These variables are used for output data and servo setting parameters.

(2) Description
O registers are designated as follows:

(a) Register Numbers of Output Data

Depends on the address specified in the module configuration definition.

(b) Register Numbers of Motion Setting Parameter

The number of controlled axes depends on the module type. The following indicates the number of controlled
axes for each module and the maximum number of modules.

* 1. The number of axes controlled by one built-in SVB or SVB-01 depends on the MECHATROLINK definitions.
* 2. With MP2100M and MP2500MD, an expansion rack is required to use optional modules (SVB-01, SVA-01,

and PO-01).
* 3. The maximum number of optional modules (SVB-01, SVA-01, and PO-01) that can be mounted on MP2100M,

MP2200, or MP2500MD with an expansion rack.

OW0000 to OW7FFF: Output data

OW8000 to OWFFFF: Motion setting parameter

Table 6.5 Number of Axes Controlled by One Module

Motion Module
Number of Axes

Controlled by One
Module

Max. Number of Modules That Can Be Mounted on One
Machine Controller

M
P

21
00

M
P

21
0

0M

M
P

22
00

M
P

23
00

M
P

23
00

S

M
P

23
10

M
P

24
00

M
P

25
00

(D
)

M
P

25
0

0M

M
P

25
0

0M
D

MP2000 Series
Built-in SVB

16 max. *1 1 1 − 1 1 1 1 1 1 1

MP2100M/MP2500M
SVB-01

16 max. *1 − 1 − − − − − − 1 1

Optional Module
SVB-01

16 max. *1

−
14
*2
*3

16
*3

2 1 3 − − −
14

 *2

 *3

Optional Module
SVA-01

2

Optional Module
PO-01

4

6-11

6 Variables (Registers)

6.2.4 Output Variables (O Registers)

6-1
The register numbers for each axis of motion setting parameters can be obtained by the following equation.

The register start number of the motion setting parameter
= OW8000 + (Circuit No. -1) × 800h + (Axis No. -1) × 80h

(3) Programming Examples
The output data and motion setting parameters are written in.

• Bit Designation

• Integer Designation

• Double Integer Designation

Table 6.6 Register Numbers of Motion Parameter

Axis No.
Circuit No.

Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 • • Axis 16

1 8000 to 807F 8080 to 80FF 8100 to 817F 8180 to 81FF 8200 to 827F • • 8780 to 87FF

2 8800 to 887F 8880 to 88FF 8900 to 897F 8980 to 89FF 8A00 to 8A7F • • 8F80 to 8FFF

3 9000 to 907F 9080 to 90FF 9100 to 917F 9180 to 91FF 9200 to 9A7F • • 9780 to 97FF

4 9800 to 987F 9880 to 98FF 9900 to 997F 9980 to 99FF 9A00 to 997F • • 9F80 to 9FFF

5 A000 to A07F A080 to A0FF A100 to A17F A180 to A1FF A200 to A27F • • A780 to A7FF

6 A800 to A87F A880 to A8FF A800 to A87F A980 to A9FF AA00 to AA7F • • AF80 to AFFF

7 B000 to B07F B080 to B0FF B100 to B17F B180 to B1FF B200 to B27F • • B780 to B7FF

8 B800 to B87F B880 to B8FF B900 to B97F B980 to B9FF BA00 to BA7F • • BF80 to BFFF

9 C000 to C07F C080 to C0FF C100 to C17F C180 to C1FF C200 to C27F • • C780 to C7FF

10 C800 to C87F C880 to C8FF C900 to C97F C980 to C9FF CA00 to CA7F • • CF80 to CFFF

11 D000 to D07F D080 to D0FF D100 to D17F D180 to D1FF D200 to D27F • • D780 to D7FF

12 D800 to D87F D880 to D8FF D900 to D97F D980 to D9FF DA00 to DA7F • • DF80 to DFFF

13 E000 to E07F E080 to E0FF E100 to E17F E180 to E1FF E200 to E27F • • E780 to E7FF

14 E800 to E87F E880 to E8FF E900 to E97F E980 to E9FF EA00 to A97F • • EF80 to EFFF

15 F000 to F07F F080 to F0FF F100 to F17F F180 to F1FF F200 to F27F • • F780 to EFFF

16 F800 to F87F F880 to F8FF F900 to F97F F980 to F9FF F900 to F97F • • FF80 to FFFF

 ↑
Module number offset

INFO

OB01000=MB001000 & IB00100;

OW8008=MW00100;

OL8010=ML00100+ML00200;

EXAMPLE
2

6.2 Using Variables

Va
ria

bl
es

 (R
eg

is
te

rs
)

6.2.5 C Variables (C Registers)

(1) Overview
C registers are variables to be referenced from programs. They cannot be used to write.

(2) Description
C registers are designated as follows:

C registers cannot be written from programs.

(3) Programming Examples

Using Variables in Operations.

• Bit Designation

• Integer Designation

• Double Integer Designation

• Real Number Designation

CW00000 to CW16383

MB001000=CB001001;

MW00100=CW00100;

ML00100=CL00100;

MF00100=CF00100;

EXAMPLE
6-13

6 Variables (Registers)

6.2.6 D Variables (D Registers)

6-1
6.2.6 D Variables (D Registers)

(1) Overview
D variables can be used only by the relevant program using specific internal registers for each motion program
and sequence program.

(2) Description
D registers are designated as follows:

The D register can be used as a variable for each type of operation and substituted for the operation result, or
specified as the variable for the positioning coordinate value or the speed. The variable number is expressed as a
decimal.

The size is specified in the program configuration definition (Motion Properties), and the default is 32words max.

(3) Programming Examples

(a) Specifying the Position and Speed in Axis Move Commands as Variables

(b) Using Variables in Operations

• Bit Designation

• Integer Designation

• Double Integer Designation

• Real Number Designation

When the travel distance coordinate value or speed is designated as a variable in the following motion com-
mands, double integer data must be used.

MOV, MVS, MCW/MCC, ZRN, SKP, MVT, EXM, POS, ACC, DCC, SCC, IAC, IDC, IFP, FMX, INP, VEL

DW00000 to DW16383 (Maximum)

• Parameter Reference unit = mm
 When decimal point position = 3

DL00100=100000;

DL00102=200000;

DL00104=300000;

DL00106=500000;

MVS [A1]DL00100 [B1]DL00102 [C1]DL00104 FDL00106;

→ 100.000 mm
→ 200.000 mm
→ 300.000 mm
→ 500.000 mm/min

DB001000=IB01001 & MB000101;

DW00102= (CW00103 | DW00104) & DW00105;

DL00106= (DL00108*ML00011) / ML00200;

DF00200= (MF00202*DF00202)*3.14;

EXAMPLE

EXAMPLE

IMPORTANT
4

6.3 How to Use Subscripts i, j

Va
ria

bl
es

 (R
eg

is
te

rs
)

6.3 How to Use Subscripts i, j
Two type of registers (i, j) are available as dedicated registers to modify the relay and register numbers. Both i
and j have the same function. They are used when you want to handle a register number as a variable.
An example for each register data type is given as explanation.

(1) Bit Type Attached with a Subscript

(2) Integer Type Attached with a Subscript

(3) Long Integer or Real Type Attached with a Subscript

Program example using subscript is as follows.

The result is a register number added with i or j
value.

For example, MB000000i for i=2 is the same
as MB000002. Also, MB000000j for j=27 is
the same as MB00001B.

I=2;

DB000000=MB000000i; DB000000=MB000002;

Equivalent

Equivalent

The result is a register number added with i
or j value.

For example, MW00010i for i=3 is the same
as MW00013. Also, MW00001j for j=30 is
the same as MW00031.

DW00000=MW00031;
DW00000=MW00001j;

J=30;

The result is a register number with an added i or j
value.

For example, “ML00000j for j=1” is the same as
ML00001. Also, “MF00000j for j=1” is the same as
MF00001.

For double integer registers and real number regis-
ters, one word of register number and one word of
one added register number are used. Be careful to
avoid overlapping one with the other when using
subscripts. For ML00000j when j = 0 and
ML00000j when j = 1, for example, one word of
MW00001 will be overlapped.

ML00000j for j = 0: ML00000

ML00000j for j = 1: ML00001

Upper wordLong integer type
MW00001

Lower word
MW00000

MW00002 MW00001

MF00000j for j = 0: MF00000

MF00000j for j = 1: MF00001

Upper wordReal type
MW00001

Lower word
MW00000

MW00002 MW00001

EXAMPLE

 :

 :

ML00200 = 0 ;

J = 0 ;

WHILE J < 100 ;

 ML00200 = ML00200 + ML00100j ;

 J = J + 2 ;

WEND ;

 :

 :

The left program uses a subscript j and calculates the
total amount of 50 registers from ML00100 to
ML00198, and stores the total amount in ML00200.
6-15

6 Variables (Registers)

6-1
• The following versions of system software and programming tool MPE720 are required to use subscripts i and j.

• Both upper and lower case letters can be used for subscripts i and j.

MP2000 Series
Machine Controller

Required Version MPE720 Required Version

All models Ver.2.63 or later
MPE720 Ver.5 Ver.5.41 or later

MPE720 Ver.6
Ver.6.06 or later

Ver.6.06 Lite or later

i = 0;

I = 0;

DW00000 = MW00000i ;

DW00000 = MW00000I ;

INFO
6

7-1

P
ro

gr
am

m
in

g

7

Programming

This chapter describes the rules for creating motion programs and sequence programs.

7.1 Motion Program Format - 7-2
7.1.1 Motion Program Structure - 7-2
7.1.2 Block Format - 7-2
7.1.3 Using Constants and Variables - 7-7

7.2 Motion Module Parameters - 7-9
7.2.1 Axis Type Selection - 7-9
7.2.2 Reference Unit - 7-9
7.2.3 Electronic Gear - 7-10
7.2.4 Speed Reference - 7-12
7.2.5 Acceleration/Deceleration Setting - 7-12

7.3 Group Definition - 7-13

7.4 Priority Levels of Operations - 7-15

7.5 Commands and Execution Scans - 7-17
7.5.1 Command Types - 7-17
7.5.2 List of Command Types - 7-18

7.6 Sequence Program Format - 7-19

7 Programming

7.1.1 Motion Program Structure

7-2

7.1 Motion Program Format
7.1.1 Motion Program Structure

A motion program contains a program number, arbitrary comment, program body, and END command. The pro-
cess executed by a motion program is coded in the program body. The motion program basic structure is shown
below.

One line of program number and comment can be omitted.

7.1.2 Block Format
One block is one process execution unit. The program body consists of one or more than one block. The format
of one block is shown below. The details of each item are described from the next page.

Program number and comment

Program body

INFO

LABEL: MVS [A1]20.0 [B1]30.0 [C1]40.0 F300000 ; " Comment "

(1) Label
(2) Motion language command

(3) Logical axis name

(5) Specific character

(6) End of block

(7) Comment(4) Coordinate word

No. Items Description

(1) Label Indicates the destination of PFROK and SFORK command.

(2)
Motion language
command

Specifies a motion program command.

(3) Logical axis name Specifies a logical axis name set in the Group Definition window.

(4) Coordinate words
Specifies the axis coordinate value or the incremental travel amount
of axis.

(5) Specific character Specifies supplemental data for the motion command.

(6) End of block Specifies the end of a block.

(7) Comment Describes the program comment.

7.1 Motion Program Format

7-3

P
ro

gr
am

m
in

g

(1) Label
A label consists of a character string containing from one to eight alphanumeric characters or symbols, a colon
[:], and a space or TAB.

A label is required when using a Parallel Fork command (PFORK) or Selective Fork command (SFORK) com-
mand. If a PFORK or SFORK command is not used, the label description is not required.

Label Coding Example

(2) Motion Language Commands
Code a motion language command.
Refer to Chapter 8 Command Reference or Appendix A Motion Language Commands for information on motion
language commands.

(3) Logical Axis Name
Code a logical axis name set in the Group Definition window. The logical axis name must be enclosed in brack-
ets [].

PFORK LAB1, LAB2;

LAB1: ZRN [A1]0 [B1]0 [C1]0;

JOINTO LAB3;

LAB2: MVS [D1]100.0 [E1]200.0 [F1]300.0;

JOINTO LAB3;

LAB3: PJOINT;

LABEL : ;

A character string
containing one to eight
characters

Colon

Space or TAB

Note: Numbers cannot be used at the heads
of labels.

Type Available Characters

Letters A to Z, a to z

Numbers 0 to 9

Symbols _ (hyphen)

EXAMPLE

A1

Logical axis name
(A character string
containing from one
to eight characters)

[]MVS 20.0 ; Type Available Characters

Letters A to Z, a to z

Numbers 0 to 9

7 Programming

7.1.2 Block Format

7-4

(4) Coordinate Words
A coordinate word is a numerical value or a variable to be coded after an axis name. A coordinate word specifies
the reference position, speed, acceleration/deceleration rate, and other items.

• Using Numbers for a Coordinate Word

Write a numerical value after an axis name to directly specify the coordinate word.

Both integers and real numbers can be used for a numerical value. However, special care must be taken
when using integers.

When the reference unit is set to 0.001 mm and the reference position “1000 (integer numbers)” is written
in the coordinate word, for example, the Machine Controller interprets it as 1.000 mm. When writing
“1.000 (real numbers),” the Machine Controller interprets it as it is (1.000 mm).

• Using a Variable for a Coordinate Word

Write a double integer type variable after an axis name to indirectly specify the coordinate word.

When the reference unit is set to 0.001 mm with indirect designation using a variable, and the register
value is set to 1000, the Machine Controller interprets the coordinate word as 1.000 mm in the same way
as for an integer value set in the above example.

The coordinate word unit depends on the command and motion module settings. Refer to 7.2.2 Reference Unit for informa-
tion on the coordinate word unit.

MVS [A1]1000;

or

MVS [A1]1.000;

or

MVS [A1]1.;

→ 1.000 mm

→ 1.000 mm

→ 1.000 mm

ML00000 = 1000;

MVS [A1]ML00000; → 1.000 mm

EXAMPLE

EXAMPLE

INFO

7.1 Motion Program Format

7-5

P
ro

gr
am

m
in

g

(5) Specific Characters
The meaning and application examples of each specific character are listed below. Refer to the Reference Section
indicated in the following table for details of each specific character.

Character Meaning Application Examples Reference Section

F
Interpolation
feed speed

MVS [A1]1000 [B1]2000 F3000000;
MVS [A1]1000 [B1]2000 FML00000;

8.2.2 Linear Interpolation (MVS)

T

Max.
interpolation
feed speed

FMX T30000000;
FMX TML00000;

8.1.7 Maximum Interpolation Feed Speed
Setting (FMX)

Time Settings

TIM T100;
TIM TMW00000;
MVT [A1]1000 [B1]2000 T100;
MVT [A1]1000 [B1]2000 TML00000;
IAC T100;
IAC TML00000;
IDC T100;
IDC TML00000;

8.4.11 Dwell Time (TIM)

8.2.9 Set Time Positioning (MVT)

8.1.9 Interpolation Acceleration Time
Change (IAC)

8.1.10 Interpolation Deceleration Time
Change (IDC)

Number of
turns for
circular
interpolation

MCW [A1]1000 [B1]2000 U500 V500 T2 F3000000;
MCW [A1]1000 [B1]2000 U500 V500 TML00000
F3000000;

8.2.3 Clockwise/Counterclockwise Circular
Interpolation with Center Position Designa-
tion (MCW, MCC)
8.2.4 Clockwise/Counterclockwise Circular
Interpolation with Radius Designation
(MCW, MCC)

R Radius of circle
MCW [A1]1000 [B1]2000 R500 F3000000;
MCW [A1]1000 [B1]2000 RML00000 F3000000;

8.2.3 Clockwise/Counterclockwise Circular
Interpolation with Center Position Designa-
tion (MCW, MCC)
8.2.4 Clockwise/Counterclockwise Circular
Interpolation with Radius Designation
(MCW, MCC)

U

Circle center
point
coordinate 1
(horizontal ax-
is)

MCW [A1]1000 [B1]2000 U500 V500 T2 F3000000;
MCW [A1]1000 [B1]2000 UML00000 V500 T2
F3000000;

8.2.3 Clockwise/Counterclockwise Circular
Interpolation with Center Position Designa-
tion (MCW, MCC)
8.2.4 Clockwise/Counterclockwise Circular
Interpolation with Radius Designation
(MCW, MCC)

V

Circle center
point
coordinate 2
(vertical axis)

MCW [A1]1000 [B1]2000 U500 V500 T2 F3000000;
MCW [A1]1000 [B1]2000 U500 VML00000 T2
F3000000;

8.2.3 Clockwise/Counterclockwise Circular
Interpolation with Center Position Designa-
tion (MCW, MCC)
8.2.4 Clockwise/Counterclockwise Circular
Interpolation with Radius Designation
(MCW, MCC)

P

Interpolation
feed speed
specified by
percentage

IFP P50;
IFP PML00000;

8.1.8 Interpolation Feed Speed Ratio Set-
ting (IFP)

SS
Skip signal
selection

SKP [A1]1000 [B1]2000 F3000000 SS1;
SKP [A1]1000 [B1]2000 F3000000 SS2;

8.2.8 Linear Interpolation with Skip Func-
tion (SKP)

D

Movement
amount for
external
positioning

EXM [A1]1000 D1000;
EXM [A1]1000 DML00000;

8.2.10 External Positioning (EXM)

N
Number of
shifts

SFR MB001000 N5 W10;
SFR MB001000 NMW00000 W10;

8.8.1 Bit Right Shift (SFR)
8.8.2 Bit Left Shift (SFL)

W Bit width
BLK MW00100 DW00100 W10;
BLK MW00100 DW00100 WMW00000;

8.8.1 Bit Right Shift (SFR)
8.8.2 Bit Left Shift (SFL)
8.8.3 Block Move (BLK)
8.8.4 Clear (CLR)

7 Programming

7.1.2 Block Format

7-6

(6) End of Block
Insert a semi-colon at the end of block. There is no limitation on the number of lines in a block. Code the end of
a block to specify its end.

Always insert Line Feed after the end of a block.

End of Block Coding Example

(7) Comments
Either of the following two formats can be used.

• Code a Character String Enclosed in Double Quotation Marks

A character string enclosed in double quotation marks is interpret as a comment.

Comment Coding Example 1

• Code a Character String after One Double Quotation Mark

The characters from the double quotation mark to a Line Feed (until the Enter key is pressed) are interpret
as a comment.

Comment Coding Example 2

MPS
Motion
subprogram
number

MSEE MPS002; 8.4.5 Motion Subprogram Call (MSEE)

SPS
Sequence
subprogram
number

SSEE SPS002; 8.4.6 Sequence Subprogram Call (SSEE)

Character Meaning Application Examples Reference Section

EXAMPLE

MOV [A1]1000; Moves Axis A1”

Moves Axis A1
Moves Axis B1
Moves Axis C1

Block end code

MOV [A1]1000
 [B1]2000
 [C1]3000;

Block end code

Line Feed

Line Feed

“ Character string ”

ZRN [A1]0 [B1]0 [C1]0; ” Zero point return of all axes ”

MVS [A1]100.0 [B1]200.0 [C1]300.0; ” 3-axis linear interpolation ”

 Line Feed

“ Character string

“ Zero point return of all axes

ZRN [A1]0 [B1]0 [C1]0;

“ 3-axis linear interpolation

MVS [A1]100.0 [B1]200.0 [C1]300.0;

EXAMPLE

EXAMPLE

7.1 Motion Program Format

7-7

P
ro

gr
am

m
in

g

7.1.3 Using Constants and Variables

(1) Constants
The constants that can be used in motion programs are listed below.

• The − (minus) sign cannot be omitted, but the + (plus) sign can.

• A decimal integer value is multiplied by 1000 by adding K to the value. For a value such as position reference, adding a K

in place of three zeros makes it easy to read.

(2) Variables
The variables that can be used in motion programs are listed below.

Refer to Chapter 6 Variables (Registers) for details on variables.

A variable coding example is shown below.

Classification Range Coding Examples

Decimal Integers -2147483648 to 2147483647 823, -2493, 123k, 123K

Hexadecimal Integers 00000000H to FFFFFFFFH FFFABCDEH, 2345H, FH

Real Numbers
-214748.3648 to 214748.3647
Change according to the setting of the num-
ber of digits below the decimal point

763.0, 824.2, 234.56, -321.12345

[A1]+123 ⇒ [A1]123

[A1]-123 ⇒ [A1]-123

[A1]123k ⇒ [A1]123000

[A1]123K ⇒ [A1]123000

INFO

Classification Variable Type
Data Type

Bit Word Long Floating point

Global Variables

S register SB SW SL SF

M register MB MW ML MF

I register IB IW IL IF

O register OB OW OL OF

C register CB CW CL CF

Local Variables D register DB DW DL DF

EXAMPLE

1 2 3 4 5 F

Data type: B, W, L, or F

Variable number

Bit position: Valid only with bit data

M B

Variable type: S, M, I, O, C, or D

7 Programming

7.1.3 Using Constants and Variables

7-8

0 (zero) cannot be omitted in all constants and variables.

■ Examples Where 0 (zero) Can be Omitted

■ Examples Where 0 (zero) Cannot be Omitted

[A1]00123 => [A1]123

[A1]MW00010 => [A1]MW10

[A1]100.000 => [A1]100.

MPM001;(Program number coded at the head of program)

MSEE MPS002;

INFO

7.2 Motion Module Parameters

7-9

P
ro

gr
am

m
in

g

7.2 Motion Module Parameters
Motion control using motion programs is determined according to the settings of the motion module parameters.
Set the motion module parameters referring to the connected machine before running motion programs.
This chapter describes the minimum settings of motion module parameters required for motion control using
motion programs.

7.2.1 Axis Type Selection
There are two types of position control: Finite length position control for return and other operations that are performed
only within a specified range, and infinite length position control, which is used for moving in one direction only.
Infinite length position control can reset the position to 0 after one rotation, e.g, belt conveyors, or move in one direc-
tion only, without resetting position after one rotation. The axis type selection sets which of these types of position con-
trol is to be used.
The details of the Axis Type Selection are listed in the following table.

7.2.2 Reference Unit
The unit of position reference that is input from a motion program is called a reference unit, and is a pulse, mm,
deg, inch, or μm. The reference unit is specified in Reference Unit Selection (motion fixed parameter 4).

The minimum reference unit that can be specified is determined by the setting of Number of Digits below Deci-
mal Point (motion fixed parameter 5).

* When “pulse” is selected, the motion fixed parameter 5 (number of digits below decimal point) is invalid.

Parameter Type
Parameter No.
(Register No.)

Name Description
Default
Value

Motion Fixed
Parameters

No. 1, bit 0
Function Selec-
tion Flag 1, Axis
Selection

Specify the position control method for the con-
trolled axis.

0: Finite Length Axis
Set a finite length axis if control is performed
within a limited length or for an axis that uses
infinite length control in one moving direction
only without resetting the position every rotation.

1: Infinite Length Axis
Set an infinite length axis for an axis that uses
infinite length control while resetting the position
every rotation.

0

No. 10
Infinite Length
Axis Reset Posi-
tion (POSMAX)

Set the reset position of the position data when an
infinite length axis has been set for the axis type
using the reference unit.

360000

Motion Fixed Parame-
ter 5: Number of Digits
below Decimal Point

Motion Fixed Parameter 4: Reference Unit Selection

0: pulse 1: mm 2: deg 3: inch 4: μm

0: 0 digits

1 pulse*

1 mm 1 deg 1 inch 1μm

1: 1 digits 0.1 mm 0.1 deg 0.1 inch 0.1 μm

2: 2 digits 0.01 mm 0.01 deg 0.01 inch 0.01μm

3: 3 digits 0.001 mm 0.001 deg 0.001 inch 0.001 μm

4: 4 digits 0.0001 mm 0.0001 deg 0.0001 inch 0.0001μm

5: 5 digits 0.00001 mm 0.00001 deg 0.0001 inch 0.00001μm

Minimum
reference
unit

7 Programming

7.2.3 Electronic Gear

7-10

The range of reference positions for an axis move command are as follows:

7.2.3 Electronic Gear
In contrast to the reference unit input to the Machine Controller, the moving unit in the mechanical system is
called the “output unit.” The electronic gear converts position or speed units from reference units to output units
for the mechanical system without going through an actual mechanism, such as a gear.

When the axis of the motor has rotated m times and the mechanical configuration allows the axis at the load to
rotate n times, this electronic gear function can be used to make the reference unit equal to the output unit.

The electronic gear function is enabled when the following settings are made:

• Fixed Parameter 6: Travel Distance per Machine Rotation
• Fixed Parameter 8: Servo Motor Gear Ratio
• Fixed Parameter 9: Machine Gear Ratio

Note: The electronic gear is disabled when the pulse is specified for the Reference Unit Selection.

The following setting example uses ball screw and rotating table workpieces.

(1) Parameter Setting Example Using Ball Screw
• Machine specifications: Ball screw axis rotates 5 times for every 7 rotations of the motor axis (Refer to the

following figure.)
• Reference unit: 0.001 mm

To move the workpiece 0.001 mm for 1 reference unit input under the conditions outlined above, i.e., 1 reference
unit = 1 output unit, set the fixed parameters 6, 8, and 9 as follows:

• Fixed Parameter 6: Travel Distance per Machine Rotation = 6 mm/0.001 mm = 6000 (reference units)
• Fixed Parameter 8: Servo Motor Gear Ratio = m = 7
• Fixed Parameter 9: Machine Gear Ratio = n = 5

Note: Set the SERVOPACK gear ratio to 1:1.

Motion Fixed
Parameter 5: Num-
ber of Digits below

Decimal Point

Motion Fixed Parameter 4: Reference Unit Selection

0: pulse 1: mm, 2: deg, 3: inch, 4μm

0: 0 digit -2147483648 to 2147483647 -2147483648 to 2147483647

1: 1 digit -2147483648 to 2147483647 -214748364.8 to 214748364.7

2: 2 digits -2147483648 to 2147483647 -21474836.48 to 21474836.47

3: 3 digits -2147483648 to 2147483647 -2147483.648 to 2147483.647

4: 4 digits -2147483648 to 2147483647 -214748.3648 to 214748.3647

5: 5 digits -2147483648 to 2147483647 -21474.83648 to 21474.83647

INFO

Ball screw

Workpiece

P (pitch) = 6 mm/rotation

m = 7 rotations

n = 5 rotations

Motor

7.2 Motion Module Parameters

7-11

P
ro

gr
am

m
in

g

(2) Parameter Setting Example Using Rotating Table
• Machine specifications: Rotating table axis rotates 10 times for every 30 rotations of the motor axis (Refer

to the following figure.)
• Reference unit: 0.1°

To rotate the table 0.1° for 1 reference unit input under the conditions outlined above, i.e., 1 reference unit = 1
output unit, set the fixed parameters 6, 8, and 9 as follows:

• Fixed Parameter 6: Travel Distance per Machine Rotation = 360×/0.1× = 3600 (reference units)
• Fixed Parameter 8: Servo Motor Gear Ratio = m = 30
• Fixed Parameter 9: Machine Gear Ratio = n = 10

Note: 1. The gear ratio for fixed parameters 8 and 9 (m/n) may be constant, e.g., m = 3 and n = 1.
2. Set the SERVOPACK gear ratio to 1:1.

Workpiece (Rotating table)

360°/rotation

n = 10 rotations

Motor

m = 30 rotations

7 Programming

7.2.4 Speed Reference

7-12

7.2.4 Speed Reference

The unit for the speed coded in a motion program can be selected: Reference unit/s, 10n reference unit/min.,
0.01% of rated speed, or 0.0001% of rated speed. Use bits 0 to 3 (Speed unit selection) of the motion setting
parameter OW03 to select the unit.

7.2.5 Acceleration/Deceleration Setting

The unit for the acceleration/deceleration rate coded in a motion program can be selected: Reference unit/s2 or
ms. Use bits 4 to 7 (Acceleration/deceleration degree unit selection) of the motion setting parameter OW03
to select the unit.

Motion Setting
Parameter

Speed Unit Coordinate Word Designation Method

OW03, bits 0
to 3:
Speed unit
selection

0: Reference unit/s Designate a movement amount per second in reference units.

1: 10n reference unit/
min.

Designate a movement amount per minute in reference units.
When the reference unit is a pulse:

The designated value is multiplied by 1000.
Example: Reference unit = pulse

VEL [A1]1000;
Speed reference = 1,000,000 [pulses/min.].

When the reference unit is not a pulse:

The designated value is handled as:
Example) Reference unit = mm

VEL [A1]1000;

Number of digits below decimal point n = 3

Speed reference = 1000 × 103 [0.001 mm/min]
2: 0.01% Designates the speed in percentage of the rated speed in units of 0.01%.

3: 0.0001% Designates the speed in percentage of the rated speed in units of 0.0001%.

Motion Setting
Parameter

Speed Unit Coordinate Word Designation Method

OW03, bits 4 to 7
Acceleration/deceler-
ation degree unit
selection

0: Reference unit/s2
Designates the acceleration/deceleration rate per second in units of refer-

ence unit/s2.

1: ms Designates the acceleration/deceleration time in units of ms.

7.3 Group Definition

7-13

P
ro

gr
am

m
in

g

7.3 Group Definition
Axes to be grouped together are defined in the Group Definition window.

This section describes the components of the Group Definition window.

 No. of Group

Set a number for operation as a group.

Set it to 1 for operation as one group.

Set it to the number of groups for operation with multiple groups.

 Group Name

Define a group name.

 Control Axis No.

Set the number of axes controlled in the group.

 Circuit

Set a line number for the motion module used.
The line number can be checked in the module configuration definition.

1 2 3

4 5 6

1

2

3

4

Line number

7 Programming

7-14

 Axis No.

Set an axis number for the axis used.

The axis number can be checked in the detailed screen of the used motion module.

 Logical Axis Name

Define a name for the specified axis number.
The name defined here is used when programming a motion program.

MVS [A1]1000 [B1]2000 [C1]3000 F1000;

5

Axis number

Double-click

6

Logical axis name

7.4 Priority Levels of Operations

7-15

P
ro

gr
am

m
in

g

7.4 Priority Levels of Operations
A priority level is assigned to each operator used in an operation written in motion language.
For an operation involving three or more items, specify the priority level by using ().
The priority levels of operators are shown below.

• Arithmetic Operation Example

 Precautions on operations involving three items or more

For example, with the operation below,

1 + 2 is calculated first according to the priority level shown above, and then the result of 3 is multiplied by 3. The final
result of 9 is then stored in MW00100. Therefore, MW00100 = 9.

Operator
Priority Level

1 2 3 4

Parentheses ()

NOT !

AND &

OR |

XOR ^

Arithmetic operation

+

-

*

/

High Low

• Operation example

With this operation, 1 + 2 is calculated, and the result of 3 is stored in MW00100.

• Example of operation involving three items or more

With this operation, 2 * 3 is calculated first, and 1 is added to the result of 6. The final result of 7 is then
stored in MW00100.

Therefore, MW00100 = 7

 MW00100 = 1 + 2 ∗ 3;

EXAMPLE

　 　
　 MW00100 = 1 + 2;

　 　
　 MW00100 = 1 + (2 ∗ 3);

INFO

7 Programming

7-16

• Logical Operation Example

 Precautions on operations involving three or more items

For example, with the following operation,

With this operation, the AND operation of 2222H and 00FFH is executed first. Then, the OR operation of the AND
result and 1111H is executed. The OR result is then stored in MW00100.
Therefore, MW00100 = 1133H

• Operation example

With this operation, OR operation of 0001H and 0002H are executed, and the result is stored in MW00100.

• Example of operation involving three or more items

With this operation, OR operation of 1111H and 2222H are executed first, and the AND operation of the OR
result and 00FFH is calculated. The AND result is then stored in MW00100.
Therefore, MW00100 = 0033H

MW00100 = 1111H | 2222H & 00FFH;

EXAMPLE

　 　
　 MW00100 = 0001H | 0002H;

　 　
　 MW00100 = (1111H | 2222H) & 00FFH;

INFO

7.5 Commands and Execution Scans

7-17

P
ro

gr
am

m
in

g

7.5 Commands and Execution Scans
7.5.1 Command Types

There are three motion language command types. The number of scans required to execute a command will differ
depending on the command type. The following table shows the number of scans required to execute each type of
command.

The details of each command type follow:

• S Type Commands

S type commands, including operation commands, are executed in one scan.
A program in which S type commands are continuously coded is executed within one scan.

• M Type Commands

M type commands, including axis move commands, are executed in more than one scan.
One scan is required to switch from the S type command to the M type command.

• T Type Commands

T type commands, including timer related commands, are executed in more than one scan.

The following diagram shows the number of scans required to execute each command type.

Command Type Command
Number of Scans Required

to Execute a Command

S type Operation commands One scan

M type Axis move commands
More than one scan

T type Timer related commands

S type command
S type command
S type command

T type command

END;

Executed in one scan

Executed in more
than one scan

Waits for one scan

Executed in more
than one scan

M type command

M type command

S type command
S type command
S type command

Executed in one scan

When the command before an S type command is
an M type, the S type command is executed at
the last scan of the M type command.

7 Programming

7.5.2 List of Command Types

7-18

7.5.2 List of Command Types
The following table lists the command types.

Classification Command S Type M Type T Type Classification Command S Type M Type T Type

Axis Setting
Commands

ABS

Arithmetic
Operation

=

INC +

ACC -

DCC *

SCC /

VEL MOD

FMX

Logical
Operation

|

IFP &

IAC ^

IDC !

ACCMODE

Data
Comparison

==

Axis Move
Commands

MOV <>

MVS >

MCW <

MCC >=

ZRN <=

SKP

Data
Operations

SFR

MVT SFL

EXM BLK

Control
Commands

POS CLR

MVM ASCII

PLN

Basic
Functions

SIN

PLD COS

PFN TAN

INP ASN

Program
Control

Commands

IF
ELSE
IEND

 ACS

WHILE
WEND

 ATN

PFORK
JOINTO
PJOINT

 SQT

SFORK
JOINTO
SJOINT

 BIN

MSEE BCD

SSEE S{ }

UFC R{ }

FUNC PON

END NON

RET TON

TIM TOF

IOW C
Language

Control
Commands

CTSK
EOX

SNGD/
SNGE

 CFUNC

7.6 Sequence Program Format

7-19

P
ro

gr
am

m
in

g

7.6 Sequence Program Format
The format of a sequence program is the same as that for a motion program.
However, the motion language commands that can be used in a sequence program are limited. For the commands
that can be used in sequence programs, refer to Appendix A Motion Language Commands.

C
om

m
an

d
R

ef
er

en
ce
8

Command Reference

This chapter describes the motion language commands.

8.1 Axis Setting Commands - 8-3
8.1.1 Absolute Mode (ABS) - 8-3
8.1.2 Incremental Mode (INC) - 8-7
8.1.3 Acceleration Time Change (ACC) - 8-11
8.1.4 Deceleration Time Change (DCC) - 8-17
8.1.5 S-curve Time Constant Change (SCC) - 8-23
8.1.6 Set Velocity (VEL) - 8-29
8.1.7 Maximum Interpolation Feed Speed Setting (FMX) - 8-35
8.1.8 Interpolation Feed Speed Ratio Setting (IFP) - 8-37
8.1.9 Interpolation Acceleration Time Change (IAC) - 8-40
8.1.10 Interpolation Deceleration Time Change (IDC) - 8-43
8.1.11 Set Interpolation Acceleration/Deceleration Mode (ACCMODE) - - - - - - - - - - - - - - - 8-46

8.2 Axis Move Commands - 8-60
8.2.1 Positioning (MOV) - 8-60
8.2.2 Linear Interpolation (MVS) - 8-64
8.2.3 Clockwise/Counterclockwise Circular Interpolation with Center Position

Designation (MCW, MCC) - 8-69
8.2.4 Clockwise/Counterclockwise Circular Interpolation with Radius Designation

(MCW, MCC) - 8-75
8.2.5 Clockwise/Counterclockwise Helical Interpolation with Center Position

Designation (MCW, MCC) - 8-79
8.2.6 Clockwise/Counterclockwise Helical Interpolation with Radius

Designation (MCW, MCC) - 8-82
8.2.7 Zero Point Return (ZRN) - 8-84
8.2.8 Linear Interpolation with Skip Function (SKP) - 8-86
8.2.9 Set Time Positioning (MVT) - 8-88
8.2.10 External Positioning (EXM) - 8-90

8.3 Axis Control Commands - 8-92
8.3.1 Current Position Set (POS) - 8-92
8.3.2 Move On Machine Coordinates (MVM) - 8-94
8.3.3 Program Current Position Update (PLD) - 8-95
8.3.4 In-Position Check (PFN) - 8-96
8.3.5 Set In-Position Range (INP) - 8-98
8.3.6 Coordinate Plane Setting (PLN) - 8-100
8-1

8 Command Reference

8-2
8.4 Program Control Commands - 8-101
8.4.1 Branching Commands (IF ELSE IEND) -8-101
8.4.2 Repeat (WHILE WEND) -8-103
8.4.3 Parallel Execution (PFORK, JOINTO, PJOINT) -8-106
8.4.4 Selective Execution (SFORK, JOINTO, SJOINT) -8-109
8.4.5 Motion Subprogram Call (MSEE) - 8-113
8.4.6 Sequence Subprogram Call (SSEE) - 8-114
8.4.7 User Function Call From Motion Program (UFC) - 8-115
8.4.8 User Function Call from Sequence Program (FUNC) -8-123
8.4.9 Program End (END) -8-124
8.4.10 Subprogram End (RET) -8-125
8.4.11 Dwell Time (TIM) -8-126
8.4.12 I/O Variable Wait (IOW) -8-127
8.4.13 One Scan Wait (EOX) -8-129
8.4.14 Single-block Signal Disabled (SNGD)/Single-block Signal Enabled (SNGE) - - - - - -8-130

8.5 Arithmetic Operations - 8-131
8.5.1 Substitute (=) -8-131
8.5.2 Add (+) -8-132
8.5.3 Subtract (-) -8-133
8.5.4 Multiply (*) -8-134
8.5.5 Divide (/) -8-135
8.5.6 Remainder (MOD) -8-136

8.6 Logic Operation - 8-137
8.6.1 OR (|) -8-137
8.6.2 AND (&) -8-139
8.6.3 XOR (^) -8-140
8.6.4 NOT (!) -8-141

8.7 Data Comparisons - 8-142
8.7.1 Data Comparison Commands (==, <>, >, <, >=, <=) -8-142

8.8 Data Operations - 8-144
8.8.1 Bit Right Shift (SFR) -8-144
8.8.2 Bit Left Shift (SFL) -8-145
8.8.3 Block Move (BLK) -8-146
8.8.4 Clear (CLR) -8-147
8.8.5 ASCII Conversion 1 (ASCII) -8-148

8.9 Basic Functions - 8-150
8.9.1 Sine (SIN) -8-150
8.9.2 Cosine (COS) -8-152
8.9.3 Tangent (TAN) -8-153
8.9.4 Arc Sine (ASN) -8-154
8.9.5 Arc Cosine (ACS) -8-155
8.9.6 Arc Tangent (ATN) -8-156
8.9.7 Square Root (SQT) -8-157
8.9.8 BCD to Binary (BIN) -8-159
8.9.9 Binary to BCD (BCD) -8-160
8.9.10 Set Bit (S{ }) -8-161
8.9.11 Reset Bit (R{ }) -8-162
8.9.12 Rising Pulse (PON) -8-163
8.9.13 Falling Pulse (NON) -8-165
8.9.14 ON-Delay Timer (TON): Counting unit: 0.01 second -8-168
8.9.15 OFF-Delay Timer (TOF): Counting unit: 0.01 second -8-170

8.10 C-Language Control Commands - 8-172
8.10.1 C-Language Task Control (CTSK) -8-172
8.10.2 C-Language Function Call (CFUNC) -8-174

8.1 Axis Setting Commands

C
om

m
an

d
R

ef
er

en
ce
8.1 Axis Setting Commands
This section describes the axis setting commands.

8.1.1 Absolute Mode (ABS)

(1) Overview
The Absolute Mode (ABS) command causes the coordinate words that control axis movement to be treated as a
target position.

Once ABS mode has been executed, it remains in effect until Incremental Mode (INC) is next executed. ABS
mode is the default mode when the program operation is started.

Fig. 8.1 Movement Mode: Absolute Mode (ABS)

In this manual, the coordinate word that follows the logical axis name for the axis move command is expressed as
“reference position” or “position reference value.”

 Program Current Position

The position on the work coordinate system when an axis is started moving by execution of an axis move command. And,
the work coordinate system is the coordinate system used in motion programs.
For information on the work coordinate system, refer to 8.3.1 Current Position Set (POS).

Motion Programs Sequence Programs

Available Not Available

• The movement of a coordinate word designated in ABS mode is entirely different from that of the same coor-
dinate word designated in INC mode. Before starting operations, be sure to check that the ABS or INC com-
mand is specified correctly.
Failure to carry out this check may result in damage to equipment, serious personal injury, or even death.

CAUTION

Logical axis 2

Logical axis 1

Program
current position

Target position

ABS;

Reference position 1

Reference
position 2

MOV [Logical axis 2 Reference position 1

Coordinate word

[Logical axis 2] Reference position 2;

TERMS
8-3

8 Command Reference

8.1.1 Absolute Mode (ABS)

8-4
(2) Format

(3) Programming Example
An ABS command programming example is given below.

Fig. 8.2 ABS Command Programming Example

(4) Supplemental Information on ABS Command

(a) Related Motion Parameters

Motion setting parameters and ABS commands have no relation.
The movement mode (ABS mode/INC mode) for axis move commands is control data exclusively reserved
for motion programs, and no motion setting parameter can be used to specify these modes.

• Note that the movement mode (ABS mode/INC mode) for axis move commands is totally different from the position
reference type specified by the motion setting parameter OW09, bit 5.

• When executing a motion program, set bit 5 (position reference type) of motion setting parameter OW09 to 0
(incremental addition mode) regardless of the movement mode setting.

• To code an individual ABS command
ABS;

• To code an ABS command in the same block with an axis move command
ABS MOV [Logical axis name 1] ⎯ [Logical axis name 2] ⎯ ;

ABS; "Absolute mode

MOV [A1]10000 [B1]40000; "Positioning

MOV [A1]50000 [B1]20000; "Positioning

END;

EXAMPLE

(50000, 20000)

Program current position

B1

A1
0

(10000, 40000)

10000 50000

20000

40000

INFO

8.1 Axis Setting Commands

C
om

m
an

d
R

ef
er

en
ce
(b) Finite-length Axis and Infinite-length Axis

The position reference value of a coordinate word for a finite-length axis must be handled differently from
one for an infinite-length axis.
The following table shows how to designate the position reference values for a finite-length axis and infinite-
length axis.

• Use bit 0 (Axis selection) of motion fixed parameter 1 (Function selection flag 1) to select a finite-length axis or
infinite-length axis.
Select a finite-length axis or infinite-length axis according to the machine configuration. For details on how to set
motion parameters, refer to the manual for the motion module to be used.

• Use the motion fixed parameter 10 (Infinite length axis reset position) to set POSMAX.

The motions of the finite-length axis and infinite-length axis in ABS mode are shown below.
For the motions in INC mode, refer to 8.1.2 Incremental Mode (INC).

• When Selecting ABS Mode for a Finite-length Axis

Specify the target position for the position reference value.
The following diagrams illustrate the axis motions when specifying the position reference values 2000 and
-2000 from the current position (1000).

Axis Type
Movement Mode for

Axis Move Command
Position Reference Value Designation Method

Finite-
length Axis

ABS Mode Designate the target position for the position reference value.

INC Mode Designate the relative movement amount for the position reference value.

Infinite-
length Axis

ABS Mode

Designate the target position in the range between 0 to POSMAX for the position
reference value.

The position reference value indicates the movement direction: Positive direction
with a positive value, and negative direction with a negative value.

INC Mode Designate the relative movement amount for the position reference value.

INFO

ABS;
MOV [A1]2000;

ABS;
MOV [A1] - 2000;

20000-2000 1000

Current
position

Positioning
end position

A1

20000-2000 1000

Current
position

Positioning
end position

A1
8-5

8 Command Reference

8.1.1 Absolute Mode (ABS)

8-6
• When Selecting ABS Mode for an Infinite-length Axis

Specify the target position in the range between 0 to POSMAX for the position reference value.
The position reference value indicates the movement direction: Positive direction with a positive value, and
negative direction with a negative value.
The following diagrams illustrate the axis motions when specifying the position reference values 2700 and
-2700 from the current position 450 for the infinite-length axis, with POSMAX set to 3600.

• When the position reference value +0 is specified for an infinite-length axis in ABS mode, the axis moves in the nega-
tive direction.
Specify the POSMAX value for the position reference value to move the axis in the positive direction.

• If the target position (the absolute value of the position reference value) exceeds the POSMAX value for an infinite-
length axis in ABS mode, an alarm will occur in the motion program.

ABS;
MOV [A1]2700;

ABS;
MOV [A1] - 2700;

Positioning
end position

0

1800

9002700

Positioning
end position

Current
position

Current position

1800

 900

 0

3600

2700

A1

The axis moves in the positive direction
for positioning to 2700.

450
(POSMAX)

Positioning
end position

0

1800

9002700
Positioning
end position

Current
position

Current position

A1

The axis moves in the negative direction
for positioning to 2700.

450

1800

 900

 0

3600

2700

(POSMAX)

INFO

8.1 Axis Setting Commands

C
om

m
an

d
R

ef
er

en
ce
8.1.2 Incremental Mode (INC)

(1) Overview
The Incremental Mode (INC) command causes the coordinate words that control axis movement to be treated as a relative
movement amount.
Once INC mode has been executed, it remains in effect until the next time the Absolute Mode (ABS) is executed.
ABS mode is the default mode when the program operation starts.

Fig. 8.3 Movement Mode of Incremental Mode (INC)

In this manual, the coordinate word that follows the logical axis name for the axis move command is expressed as
“reference position” or “position reference value.”

 Program Current Position

The position on the work coordinate system when an axis is started moving by execution of an axis move command. And,
the work coordinate system is the coordinate system used in motion programs.
For information on the work coordinate system, refer to 8.3.1 Current Position Set (POS).

Motion Programs Sequence Programs

Available Not Available

• The movement of a coordinate word designated in ABS mode is entirely different from that of the same coor-
dinate word designated in INC mode. Before starting operations, be sure to check that the ABS or INC com-
mand is specified correctly.
Failure to carry out this check may result in damage to equipment, serious personal injury, or even death.

CAUTION

Logical axis 2

Logical axis 1

Program
current position

Target position

Reference
position 1

Reference
position 2

INC;
MOV [Logical axis 1] Reference position 1 [Logical axis 2] Reference position 2;

Coordinate words

TERMS
8-7

8 Command Reference

8.1.2 Incremental Mode (INC)

8-8
(2) Format

(3) Programming Example
An INC command programming example is given below.

Fig. 8.4 INC Command Programming Example

(4) Supplemental Information on INC Command

(a) Related Motion Parameters

Motion setting parameters and INC commands have no relation.

The movement mode (ABS mode/INC mode) for axis move commands is control data exclusively reserved
for motion programs, and no motion setting parameter can be used to specify these modes.

• To code an individual INC command
INC;

• To code an INC command in the same block with an axis move command
INC MOV [Logical axis name 1] ⎯ | [Logical axis name 2] ⎯ ;

INC; " Incremental mode

MOV [A1]20000 [B1]30000; " Positioning

MOV [A1]20000 [B1]10000; " Positioning

END;

EXAMPLE

Program
current position

B1

A1
0

20000

30000

20000

10000

8.1 Axis Setting Commands

C
om

m
an

d
R

ef
er

en
ce
(b) Finite-length Axis and Infinite-length Axis

The position reference value of a coordinate word for a finite-length axis must be handled differently from
one for an infinite-length axis.
The following table shows how to designate the position reference values for a finite-length axis and infinite-
length axis.

• Use bit 0 (Axis selection) of motion fixed parameter 1 (Function selection flag 1) to select a finite-length axis or
infinite-length axis.
Select a finite-length axis or infinite-length axis according to the machine configuration. For details on how to set
motion parameters, refer to the manual for the motion module to be used.

• Use the motion fixed parameter 10 (Infinite length axis reset position) to set POSMAX.

The motions of the finite-length axis and infinite-length axis in INC mode are shown below.
For the motions in ABS mode, refer to 8.1.1 Absolute Mode (ABS).

• When Selecting INC Mode for a Finite-length Axis

Specify the relative movement amount for the position reference value.
The following diagrams illustrate the axis motions when specifying the position reference values 2000 and
-2000 from the current position (1000).

Axis Type
Movement Mode for

Axis Move Command
Position Reference Value Designation Method

Finite-
length Axis

ABS Mode Designate the target position for the position reference value.

INC Mode Designate the relative movement amount for the position reference value.

Infinite-
length Axis

ABS Mode

Designate the target position in the range between 0 to POSMAX for the position
reference value.

The position reference value indicates the movement direction: Positive direction
with a positive value, and negative direction with a negative value.

INC Mode Designate the relative movement amount for the position reference value.

INFO

INC;
MOV [A1]2000;

INC;
MOV [A1] - 2000;

20000-2000 1000

Current
Position

Current
Position

Positioning
end position

Positioning
end position

A1

3000

300020000-1000 1000
A1
8-9

8 Command Reference

8.1.2 Incremental Mode (INC)

8-1
• When Selecting INC Mode for Infinite-length Axis

Specify the relative movement amount for the position reference value.

The following diagrams illustrate the axis motions when specifying the position reference values 2700 and
-2700 from the current position 450 for the infinite-length axis, with POSMAX set to 3600.

• If the absolute value of the position reference value (coordinate word) exceeds the POSMAX value, the position refer-

ence value (coordinate word) is used for the relative movement amount to move the axis in INC mode.

INC;
MOV [A1]2700;

INC;
MOV [A1] - 2700;

Positioning
end position

0

1800

9002700

Positioning
end position

Current
position

Current position

1800

 900

 0

3600

2700

A1

4503150
(POSMAX)

0

1800

9002700

Positioning
end position

Current
position

Current position

A1

450

1350

1800

 900

 0

3600

2700

(POSMAX)

Positioning
end position

INFO

INC;
MOV [A1]6300; "|6300|>3600(POSMAX)

0

1800

9002700

Positioning
end position

Current
position

Current position

1800

 900

 0

3600

2700

A1

4503150
(POSMAX)

Positioning end position
0

8.1 Axis Setting Commands

C
om

m
an

d
R

ef
er

en
ce
8.1.3 Acceleration Time Change (ACC)

(1) Overview
The Acceleration Time Change command (ACC) changes the acceleration time or acceleration rate of the axis
for which one of the following axis move commands is executed.

• Positioning (MOV)
• Set Time Positioning (MVT)
• External Positioning (EXM)

The acceleration time for up to 16 axes can be changed at once. The acceleration time of any axis unspecified in
the command block is not changed.
The acceleration time changed by the ACC command remains until it is reset by the next ACC command.

Fig. 8.5 Acceleration Time Change (ACC)

• The Acceleration Time Change command (ACC) changes the acceleration time for positioning related commands
MOV, EXM, and MVT. Use an IAC command to set the acceleration time for interpolation related commands, MVS,
MCW, MCC, and SKP.

• All motion modules, except the PO-01 module, support ACC, DCC, and SCC commands.
Use of these commands with the PO-01 module requires the following combination of MP2000-series Machine Con-
troller and PO-01 module versions.

Motion Programs Sequence Programs

Applicable Not applicable

MP2000 Series Version Number PO-01 Module Version Number
Ver.2.46 or later Ver.1.06 or later

Speed (V)

Time (t)
Before acceleration time change

Speed (V)

Time (t)
After acceleration time change

INFO
8-11

8 Command Reference

8.1.3 Acceleration Time Change (ACC)

8-1
(2) Format

(3) Setting Items for ACC Command

Either acceleration time (ms) or acceleration rate (reference unit/s2) can be selected for the unit of set value for
ACC command.

Motion setting parameter OW03, bits 4 to 7 (Acceleration/deceleration degree unit selection)

• When bits 4 to 7 (Acceleration/deceleration degree unit selection) of OW03 are set to
1 (ms)

Motion Image

a) Linear acceleration time constant

Set the linear acceleration time constant (the time required to reach the rated speed from 0) for the ACC
command. The reference range is as follows.

b) Rated speed

Set the rated speed of each axis using the motion fixed parameter 34 (Rated motor speed).
For details, refer to the manual for the motion module to be used.

;

Item Unit Data That Can Be Used

Acceleration
time
or
acceleration
rate

ms or reference unit/s � Directly specified value
� Double integer register (Indirect designation)

ACC [Logical axis name 1] Acceleration time [Logical axis name 2] Acceleration time [Logical axis name 3] Acceleration time . . .

2

Note: Use bits 4 to 7 of the motion setting
 parameter OW��03
 (Acceleration/deceleration degree
 unit selection) to set the unit.

Parameter Name Acceleration/Deceleration Unit

Function setting 1,

Acceleration/deceleration degree unit
selection

0: Reference unit/s2

1: ms (default)

1 to 32767 (ms)

Speed (V)

b) Rated speed

c) Positioning speed
 (VEL)

Time (t)

a) Linear acceleration time constant
(ACC)
2

8.1 Axis Setting Commands

C
om

m
an

d
R

ef
er

en
ce
c) Positioning speed

The speed for positioning related commands MOV, MVT, or EXM.
Set the positioning speed of each axis using the Set Velocity command (VEL).

For the Set Time Positioning command (MVT), the positioning speed is not the reference value of the VEL command.
The Set Time Positioning command (MVT) changes the positioning speed according to the set positioning time and the
amount of movement.

• When bits 4 to 7 (Acceleration/deceleration degree unit selection) of OW03 are set to
0 (reference unit/s2)

Motion Image

a) Linear acceleration rate

Set the value of the linear acceleration rate for the ACC command.
The reference range is as follows.

b) Positioning speed

The speed of positioning related commands, MOV, MVT, or EXM.
Set the positioning speed of each axis using the Set Velocity command (VEL).

For the Set Time Positioning command (MVT), the positioning speed is not the reference value of the VEL command.
The Set Time Positioning command (MVT) changes the positioning speed according to the set positioning time and the
amount of movement.

1 to 231-1 (reference unit/s2)

INFO

Speed (V)

b) Positioning speed
(VEL)

Time (t)

a) Linear acceleration rate
(ACC)

INFO
8-13

8 Command Reference

8.1.3 Acceleration Time Change (ACC)

8-1
(4) Programming Examples
ACC command programming examples are shown below.

• When bits 4 to 7 (Acceleration/deceleration degree unit selection) of OW03 are set to
1 (ms)

The following example shows when the MOV command is executed to accelerate axis A1 from static to the
rated speed in four seconds, and when the MOV command is executed to accelerate axis A1 in eight seconds.

* The unit of rated speed (min-1) must be converted to the same unit used for positioning speed (10n refer-
ence units/min).

Fig. 8.6 Acceleration Time Change (ACC) Command Programming Example 1:
When Acceleration/Deceleration Degree Unit Selection is Set to 1 (ms)

INC;
VEL [A1]10000;
DCC [A1]8000;
ACC [A1]4000;
MOV [A1]5000000;
DL00000 = 8000;
ACC [A1]DL00000;
MOV [A1]5000000;
END;

" Incremental mode
" Set Velocity [10∗∗n reference units/min.]
" Deceleration time change [ms]
" Acceleration time change [ms]
" Positioning
" Acceleration time [ms]
" Acceleration time change [ms]
" Positioning

EXAMPLE

Speed (V)
[10 reference units/min]

Time (t)
[s]

10000

20000

8 s4 s
ACC ACC

Rated speed

Positioning speed

∗

n

4

8.1 Axis Setting Commands

C
om

m
an

d
R

ef
er

en
ce
• When bits 4 to 7 of OW03 (Acceleration/deceleration degree unit selection) are set to
0 (reference unit/s2)

The following example shows when the MOV command is executed to accelerate the axis A1 at the rate of
60.000 (mm/s2), and when the MOV command is executed to accelerate axis A1 at the rate of 100.000
(mm/s2). In this example, one reference unit is set to 0.001 mm.

Fig. 8.7 Acceleration Time Change Command (ACC) Programming Example 2:
When Acceleration/Deceleration Degree Unit Selection is Set to 0 (Reference unit/s2)

INC;

VEL [A1]18000;

DCC [A1]100000;

ACC [A1]60000;

MOV [A1]5000000;

DL00000 = 100000;

ACC [A1] DL00000;

MOV [A1]5000000;

END;

" Incremental mode

" Set Velocity [10∗∗n reference units/min]

" Deceleration time change [reference unit /S∗S]

" Acceleration rate change [reference unit/S∗S]

" Positioning

" Acceleration rate [reference unit/S∗S]

" Acceleration rate change [reference unit/S∗S]

" Positioning

END;

EXAMPLE

Speed (V)
[0.001 mm/s]

Time (t)
[s]

300000
18000 (mm/min)
 = 300000 (0.001 mm/s)

VEL

ACC
60.000 mm/s2

ACC
100.000 mm/s 2
8-15

8 Command Reference

8.1.3 Acceleration Time Change (ACC)

8-1
(5) Supplemental Information on ACC Command

(a) Related Motion Parameters

ACC changes the acceleration time of the following motion setting parameter.

The acceleration time can be changed by directly changing the setting of the motion setting parameter
OL36 (Straight line acceleration time constant) instead of executing an ACC command. Refer to the fol-
lowing table for details on how to directly change the acceleration time setting.

Motion and setting procedure of acceleration time for positioning related commands are as follows.

* The built-in SVB and SVB-01 modules have a function that can automatically write the setting of motion setting
parameter OL36 (Straight line acceleration/acceleration time constant) into the SERVOPACK parameters.
When this automatic writing function is enabled, you do not need to use bit 10 (ACC: Change acceleration time)
of motion setting parameter OW08.
For the automatic writing function, refer to 11.6 Parameters That Are Automatically Updated in Machine Controller

MP2000 Series Built-in SVB/SVB-01 Motion Module User’s Manual (manual number: SIEPC88070033).

(b) Setting Acceleration Time and Deceleration Time

With the following combination of motion module and SERVOPACK model, the acceleration time and
deceleration time cannot be set individually. If you set the acceleration time, the deceleration time will be
automatically set. With SERVOPACK models other than those listed below, the acceleration times and decel-
eration times can be set individually using ACC and DCC commands.

Parameter Name Register No. Description

Straight Line Acceleration/
Acceleration Time Constant

OL36 Sets the linear acceleration rate or linear acceleration time constant.

Motion
Module

Motion Setting Procedure

SVA-01,
PO-01,
SVR

The axis moves according to the accelera-
tion time of motion setting parameter
OL36 (Straight line acceleration/
acceleration time constant).

Set an acceleration time to motion setting parameter OL36
(Straight line acceleration/acceleration time constant).

SVB-01,
Built-in
SVB

The axis moves at the acceleration rate of
the SERVOPACK parameter.

Set an acceleration time using motion setting parameter
OL36. Then, use bit 10 (ACC: Change acceleration time)
of motion setting parameter OW08 (Motion command) to

write the new acceleration time into the SERVOPACK. *

Motion
Module

SERVOPACK
Model

Description

SVB-01,
Built-in SVB

SGD-N • With a built-in SVB or SVB-01 module, the axis moves at the acceleration/decelera-
tion rate of the SERVOPACK parameter.

• SGD-N and SGDB-N SERVOPACKs uses same parameter to set both acceleration
time and deceleration time.

SGDB-N
6

8.1 Axis Setting Commands

C
om

m
an

d
R

ef
er

en
ce
8.1.4 Deceleration Time Change (DCC)

(1) Overview
The Deceleration Time Change command (DCC) changes the deceleration time or deceleration rate of the axis
for which one of the following axis move commands is executed.

• Positioning (MOV)
• Set Time Positioning (MVT)
• External Positioning (EXM)

The deceleration time for up to 16 axes can be changed at once. The deceleration time of any axis unspecified in
the command block is not changed.
The deceleration time changed by the DCC command remains until it is reset by the next DCC command.

Fig. 8.8 Deceleration Time Change (DCC)

• The Deceleration Time Change command (DCC) changes the deceleration time for positioning related commands
MOV, EXM, and MVT. Use the IDC command to set the interpolation related commands MVS, MCW, MCC, and SKP.

• All motion modules, except the PO-01 module, support ACC, DCC, and SCC commands.
Use of these commands with the PO-01 module requires the following combination of MP2000-series Machine Con-
troller and PO-01 module versions.

Motion Programs Sequence Programs

Applicable Not applicable

MP2000 Series Version Number PO-01 Version Number
Ver.2.46 or later Ver.1.06 or later

Speed (V)

Time (t)
Before deceleration time change

Speed (V)

Time (t)
After deceleration time change

INFO
8-17

8 Command Reference

8.1.4 Deceleration Time Change (DCC)

8-1
(2) Format

(3) Setting Items for the DCC Command

Either deceleration time (ms) or deceleration rate (reference unit/s2) can be selected for the unit of set value for
the DCC command.

Motion setting parameter OW03, bit 4 to 7 (Acceleration/deceleration degree unit selection)

• When bits 4 to 7 (Acceleration/deceleration degree unit selection) of OW03 are set to
1 (ms)

Motion Image

a) Linear deceleration time constant

Set the linear deceleration time constant (the time required to decelerate to 0 from the rated speed) for
DCC command. The reference range is as follows.

b) Rated speed

Set the rated speed of each axis using motion fixed parameter 34 (Rated motor speed).
For details, refer to the manual for the motion module to be used.

. . . ;

Item Unit Data That Can Be Used
Deceleration
time
or
Deceleration
rate

ms or reference unit/s2 � Directly specified value
� Double integer register (Indirect designation)

DCC [Logical axis name 1] Deceleration time [Logical axis name 2] Deceleration time [Logical axis name 3] Deceleration time

Note: Use bits 4 to 7 of the motion
 setting parameter OW��03
 (Acceleration/deceleration degree
 unit selection) to set the unit.

Parameter Name Acceleration/Deceleration Unit

Function setting 1,

Acceleration/deceleration degree unit
selection

0: Reference unit/s2

1: ms (default)

1 to 32767 (ms)

Speed (V)

b) Rated speed

c) Positioning speed
(VEL)

Time (t)

a) Linear deceleration time constant
(DCC)
8

8.1 Axis Setting Commands

C
om

m
an

d
R

ef
er

en
ce
c) Positioning speed

The speed for positioning related commands MOV, MVT, or EXM.
Set the positioning speed of each axis using the Set Velocity command (VEL).

For the Set Time Positioning command (MVT), the positioning speed is not the reference value of the VEL command.
The Set Time Positioning command (MVT) changes the positioning speed according to the set positioning time and the
amount of movement.

• When bits 4 to 7 (Acceleration/deceleration degree unit selection) of OW03 are set to
0 (reference unit/s2)

Motion Image

a) Linear deceleration rate

Set the linear acceleration rate value for the DCC command.
The reference range is as follows.

b) Positioning speed

The speed of positioning related value commands MOV, MVT, or EXM.
Set the positioning speed of each axis using the Set Velocity command (VEL).

For the Set Time Positioning command (MVT), the positioning speed is not the reference value of the VEL command.
The Set Time Positioning command (MVT) changes the positioning speed according to the set positioning time and the
amount of movement.

1 to 231-1 (reference unit/s2)

INFO

Speed (V)

b) Positioning speed
(VEL)

Time (t)

a) Linear deceleration rate
(DCC)

INFO
8-19

8 Command Reference

8.1.4 Deceleration Time Change (DCC)

8-2
(4) Programming Examples
DCC command programming examples are shown below.

• When bits 4 to 7 (Acceleration/deceleration degree unit selection) of OW03 are set to
1 (ms).

The following example shows when the MOV command is executed to decelerate axis A1 from the rated
speed to 0 in four seconds, and when the MOV command is executed to decelerate the axis from the rated
speed to 0 in eight seconds.

* The unit of rated speed (min-1) must be converted to the same unit used for positioning speed (10n refer-
ence units/min).

Fig. 8.9 Deceleration Time Change (DCC) Command Programming Example 1:
 When Acceleration/Deceleration Degree Unit Selection is Set to 1 (ms).

INC;
VEL [A1]10000;
ACC [A1]8000;
DCC [A1]4000;
MOV [A1]5000000;
DL00000 = 8000;
 DCC [A1]DL00000;
MOV [A1]5000000;
END;

" Incremental mode
" Set Velocity [10∗∗n reference units/min]
" Acceleration time change [ms]
" Deceleration time change [ms]
" Positioning
" Deceleration time [ms]
" Deceleration time change [ms]
" Positioning

EXAMPLE

Speed (V)

Time (t)
[s]

10000

8 s4 s
DCC DCC

Positioning speed

[10 reference units/min]

20000

n

Rated speed *
0

8.1 Axis Setting Commands

C
om

m
an

d
R

ef
er

en
ce
• When bits 4 to 7 (Acceleration/deceleration degree unit selection) of OW03 are set to
0 (reference unit/s2)

The following example shows when the MOV command is executed to decelerate axis A1 at the rate of
60.000 (mm/s2) and when the MOV command is executed to decelerate the axis A1 at the rate of 100.000
(mm/s2). In this example, one reference unit is 0.001 mm.

Fig. 8.10 Deceleration Time Change Command (DCC) Programming Example 2:
 When Acceleration/Deceleration Degree Unit Selection is Set to 0 (Reference unit/s2)

INC;
VEL [A1]18000;
ACC [A1]100000;
DCC [A1]60000;
MOV [A1]5000000;
DL00000 = 100000;
DCC [A1] DL00000;
MOV [A1]5000000;
END;

" Incremental mode
" Set Velocity [10∗∗n reference units/min]
" Acceleration rate change [reference unit//S∗S]
" Deceleration rate change [reference unit/S∗S]
" Positioning
" Deceleration rate [reference unit/S∗S]
" Deceleration rate change [reference unit/S∗S]
" Positioning

EXAMPLE

Speed (V)
[0.001 mm/s]

Time (t)
[s]

300000 VEL
18000 (mm/min)

 = 300000 (0.001 mm/s)
DCC
60.000 mm/s2

DCC
100.000 mm/s2
8-21

8 Command Reference

8.1.4 Deceleration Time Change (DCC)

8-2
(5) Supplemental Information on DCC Command

(a) Related Motion Parameters

DCC changes the deceleration time of the following motion setting parameter.

The deceleration time can be changed by directly changing the setting of the motion setting parameter
OL38 (Straight line deceleration/deceleration time constant) instead of executing an DCC command.
Refer to the following table for details on how to directly change the deceleration time setting.

Motion and setting procedure of acceleration time for positioning related commands are as follows.

* The built-in SVB and SVB-01 modules have a function that can automatically write the setting of motion setting
parameter OL38 (Straight line deceleration/deceleration time constant) into the SERVOPACK parameters.
When this automatic writing function is enabled, you do not need to use bit 11 (ACC: Change deceleration time)
of motion setting parameter OW08.
For the automatic writing function, refer to 11.6 Parameters That Are Automatically Updated in Machine Controller

MP2000 Series Built-in SVB/SVB-01 Motion Module User’s Manual (manual number: SIEPC88070033).

(b) Setting Acceleration Time and Deceleration Time

With the following combination of motion module and SERVOPACK model, the acceleration time and
deceleration time cannot be set individually. If you set the acceleration time, the deceleration time will be
automatically set. With SERVOPACK models other than those listed below, the acceleration times and decel-
eration times can be set individually using ACC and DCC commands.

Parameter Name Register No. Description

Straight Line Deceleration/
Deceleration Time Constant

OL38 Sets the linear deceleration rate or linear deceleration time constant.

Motion
Module

Motion Setting Procedure

SVA-01,
PO-01,
SVR

The axis moves according to the decelera-
tion time of motion setting parameter
OL38 (Straight line deceleration/
deceleration time constant).

Set a deceleration time to motion setting parameter OL38
(Straight line deceleration/deceleration time constant).

SVB-01,
Built-in
SVB

The axis moves at the deceleration rate of
the SERVOPACK parameter.

Set a deceleration time using motion setting parameter
OL38. Then, use bit 11 (ACC: Change deceleration time)
of motion setting parameter OW08 (Motion command) to

write the new acceleration time into the SERVOPACK. *

Motion
Module

SERVOPACK
Model

Description

SVB-01,
Built-in SVB

SGD-N • With a built-in SVB or SVB-01 module, the axis moves at the acceleration/decelera-
tion rate of the SERVOPACK parameter.

• SGD-N and SGDB-N SERVOPACKs uses same parameter to set both acceleration
time and deceleration time.

SGDB-N
2

8.1 Axis Setting Commands

C
om

m
an

d
R

ef
er

en
ce
8.1.5 S-curve Time Constant Change (SCC)

(1) Overview
The S-curve Time Constant Change command (SCC) changes the S-curve time constant of each axis for which
an axis move command is executed.
The S-curve time constant is the parameter for the S-curve acceleration/deceleration function that suppresses
mechanical vibration during acceleration/deceleration.
The S-curve time constant for up to 16 axes can be changed at once. The S-curve time constant of any axis
unspecified in the command block is not changed.
The S-curve time constant changed by the SCC command remains until it is reset by the next SCC command.

Fig. 8.11 S-curve Time Constant Change

All motion modules, except the PO-01 module, support ACC, DCC, and SCC commands.
Use of these commands with PO-01 module requires the following combination of Machine Controller and PO-01 module
version numbers.

(2) Format

Motion Programs Sequence Programs

Applicable Not applicable

MP2000 Series Version Number PO-01 Version Number
Ver.2.46 or later Ver.1.06 or later

Speed (V)

Time (t)

Before S-curve time constant change

Speed (V)

Time (t)

After S-curve time constant change

INFO

. . . ;

Item Unit Data That Can Be Used
S-curve time
constant

ms � Directly designated value
� Double integer register (indirect designation)

SCC [Logical axis name 1] S-curve time constant [Logical axis name 2] S-curve time constant
8-23

8 Command Reference

8.1.5 S-curve Time Constant Change (SCC)

8-2
(3) Setting Items for SCC Command
Motion Image

Specify a numerical value or register for the S-curve time constant of each axis using an SCC command.
The reference range of the S-curve time constant depends on the motion module to be used:

• For SVA-01, PO-01, and SVR modules, the reference range is specified by motion setting parameter
OW3A (Filter time constant).

• For built-in SVB and SVB-01 modules, the reference range is specified by the SERVOPACK parameter
Average Movement Time.

The following table shows the reference range of S-curve time constants for each motion module model.

• If a reference value of more than 6553 ms is input, a motion program alarm will occur regardless of the motion module
model.

• If a reference value exceeds the upper limit (511 to 6553 ms) when using a built-in SVB or SVB-01 module, bit 1 of
motion monitoring parameter IL02 is set to 1 (Set parameter error), and the upper limit (510 ms) is set for the Aver-
age Movement Time of the SERVOPACK parameter.

Speed (V)

Time (t)

S-curve time constant (SCC)

When the acceleration/deceleration filter is disabled

Motion Module
SCC Command

Reference Range (ms)
Remarks

SVA-01 0 to 6553 −

SVB-01,
Built-in SVB

0 to 510 With the SGD-N, SGDB-N, SGDH+NS110/NS115, SGDS, SGDX, or
SGDV SERVOPACK

−
With the SGDJ SERVOPACK, the S-curve acceleration/deceleration can-
not be used since the SERVOPACK does not have a parameter for Aver-
age Movement Time.

PO-01 0 to 6553 −
SVR 0 to 6553 −

INFO
4

8.1 Axis Setting Commands

C
om

m
an

d
R

ef
er

en
ce
(4) Programming Examples

An SCC command programming example is given below.
The following example shows when a MOV command with an S-curve time constant of 250 ms and a MOV
command with an S-curve time constant of 500 ms are executed.
The parameters are set as follows for execution of this program.

• Motion setting parameter OW03, bits 0 to 3 (Speed unit selection) = 0 (reference unit/s)
• Motion setting parameter OW03, bits 4 to 7 (Acceleration/deceleration degree unit selection) = 0

(reference unit/s2)

Fig. 8.12 S-curve Time Change Command Programming Example

INC;

VEL [A1]10000;

ACC [A1]20000;

DCC [A1]20000;

SCC [A1]250;

MOV [A1]20000;

DL00000 = 500;

SCC [A1]DL00000;

MOV [A1]20000;

END;

" Incremental mode

" Set Velocity [reference unit/S]

" Acceleration rate change [reference unit/S∗S]

" Deceleration rate change [reference unit/S∗S]

" S-curve time constant change [ms]

" Positioning

" S-curve time constant [ms]

" S-curve time constant change [ms]

" Positioning

EXAMPLE

Speed (V)

Time (t)
[ms]250 ms

(SCC)
250 ms
(SCC)

500 ms
(SCC)

500 ms
(SCC)
8-25

8 Command Reference

8.1.5 S-curve Time Constant Change (SCC)

8-2
(5) Supplemental Information on SCC Command

(a) Related Motion Parameters

SCC command changes the S-curve time constant of the following motion setting parameter.

The S-curve time constant can be changed by directly changing the motion setting parameter OW3A
(filter time constant) instead of executing an SCC command. Refer to the following table for information on
how to directly change the S-curve time constant.

Motion and setting procedure of S-curve time constant are as follows.

* The built-in SVB and SVB-01 modules can automatically write the setting of motion setting parameter
OW3A into Average Movement Filter Time Constant of the SERVOPACK parameter.
When this automatic writing function is enabled, you do not need to execute 12 of motion setting parameter
OW08.
For the automatic writing function, refer to 11.6 Parameters That Are Automatically Updated in Machine Controller

MP2000 Series Built-in SVB/SVB-01 Motion Module User’s Manual (manual number: SIEPC88070033).

Parameter Name Register No. Description

Filter time constant OW3A

Sets the acceleration/deceleration filter time constant (1 = 0.1 ms).

• Change the filter time constant after confirming that bit 0 of motion moni-
toring parameter IW0C is set to 1 (discharging completed).

• Change the filter time constant after selecting a filter type using bits 8 to B
of motion setting parameter OW03 (Filter type selection).

Motion
Module

Motion Setting Procedure

SVA-01,
PO-01,

SVR

When S-curve acceleration/deceleration is
enabled, the axis moves according to the
S-curve time constant set in motion set-
ting parameter OW3A (Filter time
constant).

Set the S-curve time constant to motion setting parameter
OW3A (filter time constant).

SVB-01,
Built-in SVB

When the S-curve acceleration/decelera-
tion is enabled, the axis moves according
to the Average Movement Filter Time
Constant of the SERVOPACK parameter.

Set the S-curve time constant using the motion setting parame-
ter OW3A (filter time constant). Then, execute 12 (change
filter time constant) of motion setting parameter OW08
(Motion command) to write the set S-curve time constant into

the SERVOPACK.*
6

8.1 Axis Setting Commands

C
om

m
an

d
R

ef
er

en
ce
(b) Movement Path by Interpolation Command and S-Curve Acceleration/Deceleration

The S-curve acceleration/deceleration influences the movement path by using the interpolation related com-
mand MVS. MCW, MCC, or SKP.

• To achieve the same motion path as when the S-curve acceleration/deceleration is disabled for linear inter-
polation, set the same S-curve time constant for all the axes involved in interpolation.

• When the S-curve acceleration/deceleration is enabled for circular interpolation, the motion path will not
be the same as when the S-curve acceleration/deceleration is disabled.

• Axis Movement Path by Linear Interpolation

• Axis Movement Path by Circular Interpolation

Y1

X1

Start position

End position

When the acceleration/deceleration
filter is disabled.

Y1

X1

Start position

End position
Y1

X1

Start position

End position

When the S-curve acceleration/
deceleration is enabled,
and the S-curve time constants
are matched.

When the S-curve acceleration/
deceleration is enabled, and
the S-curve time constants are
unmatched.

S-curve time constant
X1>Y1

EXAMPLE

EXAMPLE

Y1

X1

Y1

X1

Start position

End position

Start position

End position

Y1

X1

Start position

End position

S-curve time constant
X1>Y1

When the S-curve acceleration/
deceleration is enabled, and the
S-curve time constants are
unmatched.

When the S-curve acceleration/
deceleration is enabled, and the
S-curve time constants are
matched.

When the acceleration/deceleration
filter is disabled.
8-27

8 Command Reference

8.1.5 S-curve Time Constant Change (SCC)

8-2
(c) Filter Type Selection

Before enabling the S-curve acceleration/deceleration, set the filter type of each axis by setting bit 8 to B (Fil-
ter type selection) of OW03 to 2: (Moving Average Filter).

When a built-in SVB or SVB-01 module is used and the function for automatically writing the parameters
into the SERVOPACK is disabled, execute 13 (change filter type) of the motion setting parameter OW08
(Motion commands) to write the set filter type into the SERVOPACK.
An example of programming to change the filter type using a motion program is shown below.

Note: When using an SVA-01, PO-01, or SVR module, the following program is not necessary.
When using an SVB or SVB-01 module, the following program can be omitted by enabling the func-
tion to write parameters into the SERVOPACK.

Refer to 11.6 Parameters That Are Automatically Updated in Machine Controller MP2000 Series Built-in SVB/SVB-01
Motion Module User’s Manual (manual number: SIEPC88070033) for information on the built-in SVB/SVB-01 module
function for automatically writing parameters into the SERVOPACK.

Parameter Name Register No. Filter Type

Function setting 1,
 Filter type selection

OW03,
 bit 8 to B

0: No filter (default)

1: Exponential acceleration/deceleration filter

2: Moving average filter

:

:

" Verify if changing the filter type is allowed

IOW IW8008 == 0; " Wait for response No motion command in execution

IOW IB800C0 == 1; " Wait for response Discharging completed

" Select the filter type Moving Average Filter

DW00000 = OW8003 & F0FFH; " Holds information other than Filter Type Selection

OW8003 = DW00000 | 0200H; " Filter type = Moving average filter

" Write the filter type from the built-in SVB/SVB-01 module into the SERVOPACK

OW8008 = 13; " Request to change filter type

IOW IW8008 == 13; " Wait for response Processing SCC

IOW IB80098 == 1; " Wait for response Command execution completed

OW8008 = 0; " Clears the request

IOW IW8008 == 0; " Wait for response No motion command in execution

:

:

INFO
8

8.1 Axis Setting Commands

C
om

m
an

d
R

ef
er

en
ce
8.1.6 Set Velocity (VEL)

(1) Overview
The Set Velocity command (VEL) changes the feed speed of each axis for the following axis move commands.

• Positioning (MOV)
• External positioning (EXM)

In this manual, the above axis move commands and the Set Time Positioning command (MVT) are referred to as
positioning related commands, and the feed speed of positioning related commands is referred to as positioning
speed.
The positioning speed for up to 16 axes can be changed at once. The positioning speed of an axis unspecified in
the VEL command block is not changed.
The axis positioning speed changed by a VEL command remains until it is reset by the next VEL command or it
is changed by executing the Set Time Positioning command.

Fig. 8.13 Set Velocity (VEL)

The Set Velocity command (VEL) sets the positioning speed for positioning related commands (MOV and EXM). Use F
designation or IFP command to set the feed speed for interpolation related commands (MVS, MCW, MCC, and SKP).

(2) Format

Motion Programs Sequence Programs

Applicable Not applicable

Speed (V)

Time (t)Before set velocity

Speed (V)

Time (t)After set velocity

INFO

;

Item Unit Usable Data
Positioning
speed

10n reference unit/min,
Reference unit/s,
0.01% (percentage of rated speed), or
0.0001% (percentage of rated speed)

Directly specified value
Double integer register (Indirect designation)

VEL [Logical axis name 1] Positioning speed [Logical axis name 2] Positioning speed

Note: Use bits 0 to 3 (Speed unit selection) of
 motion setting parameter OW��03 to
 select a setting unit.
8-29

8 Command Reference

8.1.6 Set Velocity (VEL)

8-3
(3) Setting Items for VEL Command
Motion Image

a) Rated speed

Use motion fixed parameter 34 (Rated motor speed) to set the rated speed of each axis.
For details, refer to the manual for the motion module to be used.

b) Acceleration time/Deceleration time

Use the Acceleration Time Change (ACC)/Deceleration Time Change (DCC) command to set the accelera-
tion/deceleration time for each axis.
The time set by executing ACC command is the time required to reach the rated speed.

c) Speed unit

Use bits 0 to 3 (Speed unit selection) of motion setting parameter OW03 to set the speed unit for each

axis. The default is 10n reference units/min.

The setting unit for VEL command when 10n reference units/min is selected for the speed unit is determined by the
motion fixed parameter 4: Reference unit selection.

d) Positioning speed

Specify a numerical value or register using a VEL command.

Parameter Name Register No. Speed Unit Reference Range

Function setting 1,
 Speed unit selection

OW03,

 bit 0 to 3

0: Reference units/s 0 to 231-1 (reference units/s)

1:10n reference units/min 0 to 231-1 (10n reference units/min)

2: 0.01% (percentage of
rated speed)

0 to 32767 (0.01%)

3: 0.0001% (percentage of
rated speed)

0 to 3276700 (0.0001%)

Motion Fixed Parameter
4: Reference Unit

Selection

Speed Unit:

10n reference units/
min

Remarks

pulse 1 = 1000 pulses/min
• When pulse is selected for reference unit: n = 3

• When a reference unit other than pulse is selected:
n = Motion fixed parameter 5: Number of digits below
 decimal point

mm 1 = 1 mm/min

deg 1 = 1 deg/min

inch 1 = 1 inches/min

μm 1 = 1μm/min

Speed (V)

a) Rated speed

d) Positioning speed
(VEL)

Time (t)

b) Acceleration time
(ACC)

b) Deceleration time
(DCC)

[c) Speed unit]

INFO
0

8.1 Axis Setting Commands

C
om

m
an

d
R

ef
er

en
ce
(4) Programming Examples
A VEL command programming example is shown below.
This example shows execution of a MOV command with the positioning speed specified as 40% of rated speed
and a MOV command with the positioning speed specified as 20% of rated speed.

Fig. 8.14 Set Velocity Command (VEL) Programming Example
 Speed unit: Percentage of rated speed in unit of 0.01%

(5) Supplemental Information on VEL Command

(a) Related Motion Parameters

VEL command changes the positioning speed of the following motion setting parameter.

The positioning speed can be changed by directly changing the setting of motion setting parameter OL10
(Speed reference setting) instead of executing the VEL command.

INC;

ACC [A1]5000;

DCC [A1]5000;

VEL [A1]4000;

MOV [A1]3000000;

VEL [A1]2000;

MOV [A1]3000000;

END;

" Incremental mode

" Acceleration time change [ms]

" Deceleration time change [ms]

" Set Velocity [0.01%]

" Positioning

" Set Velocity [0.01%]

" Positioning

EXAMPLE

[A1] Speed (V)
[0.01%]

Time (t)

4000

2000

10000 Rated speed

VEL 40% of rated speed

20% of rated speedVEL

Parameter Name Register No. Description

Speed reference setting OL10 Sets the speed reference value.
8-31

8 Command Reference

8.1.6 Set Velocity (VEL)

8-3
(b) Override

Motion setting parameter OW18 (Override) can be used to specify a percentage of positioning speed
specified by a VEL command to be output (output ratio).
The default setting of motion setting parameter OW18 is 10000 (100.00%).

 Override

Override often means “to invalidate.” In this manual, however, it should be taken to mean “changing” the set value.

Motion setting parameter OW18 (Override) can be changed while an axis is moving.

Fig. 8.15 OW18 (Override) and Positioning Related Command

• The SVR module does not have motion setting parameter OW18 (Override).

• For the Set Time Positioning command (MVT), the positioning speed used for override is not the VEL command refer-
ence value. The positioning speed changed by executing the Set Time Positioning command (MVT) is used for over-
ride.

• When using an override for the Set Time Positioning command (MVT), the positioning will not complete within the
specified time.
The MP2000 system calculates the positioning speed at execution of the Set Time Positioning command (MVT) assum-
ing the override to be 100%.

• The speed unit of the rated speed specified by the motion fixed parameter is different from the speed unit used for VEL
command coded in a motion program.

Refer to (c) Motor Speed Specifications to calculate the rated speed according to the speed unit for the Set Velocity
command (VEL).

Speed Speed Unit

Motion fixed parameter 34: Rated
motor speed

rotations/min

Set Velocity command (VEL) reference units/s, 10n reference units/min, 0.01%, 0.0001%

Positioning speed
VEL command
reference value

VEL command
reference value

Override
0 to 327.67%

= Positioning speed

Override (OW��18)

TERMS

Time (t)

VEL command
reference value

Speed (V)

100% of VEL

Time (t)

100.00%

150% of VEL

50% of VEL

Override
OW��18

One positioning related command block

50.00%

150.00%

INFO
2

8.1 Axis Setting Commands

C
om

m
an

d
R

ef
er

en
ce
(c) Motor Speed Specifications

In addition to the VEL command reference range, the motor rated speed and max. speed must be taken into
consideration to decide the set value for the VEL command. To avoid causing an overspeed, check the speed
specifications of your motor before setting a value for the VEL command.

For rotational motors, the speed specifications are expressed in unit of rotations per specified time of period.

The rated speed when the speed unit is 10n reference units/min is calculated according to the motion fixed parameter set-
tings.

• Parameter Setting Example: When Electronic Gear is Enabled

Note: When motion fixed parameter 4 (Reference unit selection) is set to a unit other than pulse, the elec-
tronic gear is valid.

When the electronic gear is enabled, n of the speed unit 10n reference units/min is the number of digits below the decimal
point. Therefore, the speed unit is:

10n reference units/min = 103 • 0.001mm/min = [mm/min]

The machine shaft rotation speed when the motor rotates at the rated speed:

Rated speed [rotations/min] × Gear ratio

= 3000 × (2/3) = 2000 [rotations/min]

To convert the number of rotations of the machine shaft into a reference unit (0.001 mm),

Travel distance per machine rotation [0.001 mm/rotation] × 2000 [rotation/min]

= 10000 × 2000 = 20000000 [0.001mm/min]

Because the speed unit is [mm/min],

20000000[0.001mm/min] = 20000[mm/min]

- Continues to the next page -

Motion fixed parameters

• No. 4: Reference unit selection = mm

• No. 5: Number of digits below decimal point = 3

• No. 6: Travel distance per machine rotation = 10000 reference units

• No. 8: Servo motor gear ratio: 3

• No. 9: Machine gear ratio = 2

• No. 34: Rated motor speed = 3000 rotations/min

INFO

Ball screw

Workpiece

Motor The machine shaft rotates two times when
the motor is rotated three times (gear ratio)

The table moves 10 mm for each rotation of the
machine shaft
(Travel amount per one machine rotation)
8-33

8 Command Reference

8.1.6 Set Velocity (VEL)

8-3
- Continued from the previous page -

• Parameter Setting Example: When the Electronic Gear is Disabled and an SVA-01 Module is Used

Note: When motion fixed parameter 4 (Reference unit selection) is set to pulse, the electronic gear is
invalid.

When the electronic gear is disabled, n of the speed unit 10n reference units/min is 3. Therefore, the speed unit is:

[10n reference units/min] = [103 pulse/min] = [1000 pulses/min]

To convert the motor rated speed into pulses,

Rated motor speed [rotations/min] × (Number of pulses per motor rotation [pulse/rotation] × multiplier)

= 3000 × (16384 × 4) = 196608000 [pulses/min]

Because the speed unit is 1000 pulses/min,

196608000 [pulses/min] = 196608 [1000 pulses/min]

• Parameter Setting Example: When the Electronic Gear is Disabled and a Built-in SVB, SVB-01, PO-01, or
SVR Module is Used

Note: When motion fixed parameter 4 (Reference unit selection) is set to pulse, the electronic gear is
invalid.

When the electronic gear is disabled, n of the speed unit 10n reference units/min is 3. Therefore, the speed unit is:

[10n reference units/min] = [103 pulses/min] = [1000 pulses/min]

To convert the motor rated speed into pulses,

Rated motor speed [rotations/min] × Number of pulses per motor rotation [pulses/rotation]

= 3000 × 65536 = 196608000 [pulses/min]

Because the speed unit is 1000 pulses/min,

196608000 [pulses/min] = 196608 [1000pulses/min]

Motion fixed parameters other than those mentioned in the examples may be required to be correctly set for the correct
axis motions.
For details on each parameter and information on how to set them in accordance with the connected machine, refer to the
relevant motion module manual.

Motion Fixed Parameters

• No. 4: Reference unit selection = pulse

• No. 22: Pulse counting mode selection = A/B × 4 (× 4)

• No. 34: Rated motor speed = 3000 rotations per min

• No. 36: Number of pulses per motor rotation (before multiplication) = 16384
pulses/rotation

Motion Fixed parameters

• No. 4: Reference unit selection = pulse

• No. 34: Rated motor speed = 3000 rotations/min

• No. 36: Number of pulses per motor rotation = 65536 pulses/rotation
4

8.1 Axis Setting Commands

C
om

m
an

d
R

ef
er

en
ce
8.1.7 Maximum Interpolation Feed Speed Setting (FMX)

(1) Overview
The Maximum Interpolation Feed Speed Setting command (FMX) sets the maximum feed speed for interpolation
related commands MVS, MCW, MCC, and SKP. The maximum speed set by FMX command execution remains
in effect until it is reset by the next FMX command.
The maximum feed speed for interpolation is not yet set at the moment the program operation starts. It is neces-
sary to execute an FMX command before executing any of the following interpolation related commands.

• Linear Interpolation command (MVS)
• Circular Interpolation command (MCW, MCC)
• Helical Interpolation command (MCW, MCC)
• SKP command (Linear interpolation with skip function) (SKP)
• Interpolation Feed Speed Ratio Setting command (IFP)
• Interpolation Acceleration Time Change command (IAC)
• Interpolation Deceleration Time Change command (IDC)

Fig. 8.16 Maximum Interpolation Feed Speed Setting Command (FMX)

• Execution of any interpolation related command is subject to the preset maximum feed speed for interpolation. For
example, the Interpolation Acceleration Time Change command (IAC) and the Interpolation Deceleration Time Change
(IDC) set the time required to reach the maximum feed speed for interpolation from the speed of 0.

• Executing an interpolation related command MVS, MCW, MCC, SKP, IFP, IAC, or IDC without first having executed
an FMX command will cause an alarm in the motion program.

(2) Format

Motion Programs Sequence Programs

Applicable Not applicable

Speed (V)

Time (t)

Max. feed speed
for interpolation

Feed speed
for interpolation

Interpolation
acceleration time

Interpolation
deceleration time

INFO

FMX T Interpolation max. feed speed ;

Item Unit Usable Data
Max. feed
speed for
interpolation

Reference units/min � Directly designated value
� Double integer type register (Indirect designation)
8-35

8 Command Reference

8.1.7 Maximum Interpolation Feed Speed Setting (FMX)

8-3
(3) Setting Items for FMX Command
Motion Image

a) Max. feed speed for interpolation

Specify a numerical value or register following to character T in the FMX command block. The maximum
feed speed reference range is as follows.

The maximum feed speed for interpolation is the control data used for all interpolation related commands.
Therefore, an FMX command must be coded at the beginning of the motion program when using an interpo-
lation command MVS, MCW, MCC, or SKP.

(4) Programming Examples
An FMX command programming example is shown below.

Fig. 8.17 Maximum Interpolation Feed Speed Command Programming Example

(5) Supplemental Information on FMX Command

(a) Related Motion Parameters

There are no motion setting parameters related to the FMX command.
The maximum feed speed for interpolation specified by executing an FMX command is the control data
exclusively reserved for motion programs, and cannot be specified by using a motion setting parameter.

1 to 231-1 (reference units/min)

Speed (V)

a) Max. feed speed
 for interpolation
 (FMX)
 (Composite speed)

Time (t)

Feed speed
for interpolation
(F designation or IFP)
(Composite speed)

Interpolation
acceleration time

(IAC)

Interpolation
deceleration time

(IDC)

INC;

FMX T300000;

IAC T4000;

IDC T4000;

IFP P75;

MVS [A1]30000 [B1]30000;

MVS [A1]30000 [B1]30000 F150000;

END;

" Incremental mode

" Maximum interpolation feed speed

" Interpolation acceleration time change [ms]

" Interpolation deceleration time change [ms]

" Interpolation feed speed ratio setting [%]

" Linear interpolation

" Linear interpolation (F command)

EXAMPLE

Time (t)
[s]

(100%)

4 s

150000

Composite speed (V)
[reference unit/min]

225000

4 s
IDC

F command
of MVS

IFP

FMX

IAC

(50%)

(75%)

300000
6

8.1 Axis Setting Commands

C
om

m
an

d
R

ef
er

en
ce
8.1.8 Interpolation Feed Speed Ratio Setting (IFP)

(1) Overview
The Interpolation Feed Speed Ratio Setting command (IFP) sets the feed speed for the following axis move com-
mands as a percentage of the maximum feed speed for interpolation.

• Linear Interpolation command (MVS)
• Circular Interpolation command (MCW, MCC)
• Helical Interpolation command (MCW, MCC)
• SKP command (Linear interpolation with skip function) (SKP)

In this manual, the above axis move commands are referred to as Interpolation Related Commands, and the feed
speed of Interpolation Related Commands is referred to as the Interpolation Feed Speed. The interpolation feed
speed set by IFP command execution remains in effect until it is reset by the next IFP command.
The interpolation feed speed is not set when the program operation starts. It is necessary to set an interpolation
feed speed by executing the Interpolation Feed Speed Ratio Setting (IFP) or F designation before executing any
interpolation related commands.

Fig. 8.18 Interpolation Feed Speed Ratio Setting Command (IFP)

• Specify the maximum feed speed for interpolation by executing the Maximum Interpolation Feed Speed Setting com-
mand (FMX) before executing the IFP command. Executing the IFP command without first having specified the maxi-
mum feed speed will cause an alarm in the motion program.

• F designations can be used to specify the interpolation feed speed by writing a numerical value or register following to
a character F for interpolation related commands. Specify the interpolation feed speed in reference units/min.

• If an IFP command is executed after F designation, the interpolation feed speed specified by the F designation will be
cancelled. If an F designation is executed after IFP command execution, the interpolation feed speed specified by the
IFP command will be cancelled as well.

• Executing an interpolation related command without first having specified the interpolation feed speed will cause an
alarm in the motion program.

• The Interpolation Feed Speed Ratio Setting command (IFP) sets the feed speed for interpolation related commands
MVS, MCW, MCC, and SKP. Use the VEL command to set the feed speed for positioning related commands MOV and
EXM.

Motion Programs Sequence Programs

Applicable Not applicable

Speed (V)
[%]

Interpolation
feed speed

ratio

100% = Max. interpolation feed speed

Time (t)

100

INFO
8-37

8 Command Reference

8.1.8 Interpolation Feed Speed Ratio Setting (IFP)

8-3
(2) Format

IFP command cannot be coded in the same block used for an interpolation command MVS, MCW, MCC, or SKP.

(3) Setting Items for IFP Command
Motion Image

a) Interpolation feed speed ratio

Specify a numerical value or register following to character P in the IFP command block.
The IFP command sets a percentage of the maximum interpolation feed speed (FMX) as the interpolation
feed speed.
The interpolation feed speed is a composite speed of all the axes specified for an interpolation related com-
mand MVS, MCW, MCC, or SKP.
The interpolation feed speed ratio reference range is as follows.

You can select whether or not to apply an interpolation override to the interpolation feed speed.
Refer to 4.3.3 Work Registers for information on how to use the interpolation override.

• When not using an interpolation override

IFP P Interpolation feed speed ratio;

Item Unit Usable Data

Interpolation
feed speed
ratio

% � Directly designated value
� Double integer type register (Indirect designation)

INFO

1 to 100 (%)

Speed (V)
[%]

Time (t)

100
Max. feed speed
for interpolation
(FMX)
(Composite speed)

a) Interpolation feed
 speed ratio

(IFP)

Interpolation
acceleration time

(IAC)

Interpolation
deceleration time

(IDC)

FMX reference value × IFP reference value
1 to 100% = Interpolation feed speed

Interpolation
feed speed

FMX
reference value

IFP
reference value
8

8.1 Axis Setting Commands

C
om

m
an

d
R

ef
er

en
ce
• When using an interpolation override

• The interpolation feed speed can be specified by using either an IFP command or F designation.
Refer to b) Interpolation feed speed in (3) Setting Items for MVS Command in 8.2.2 Linear Interpolation (MVS) for
details.

• If a value higher than 100 (%) is specified for the IFP reference value (%), an alarm will occur in the motion program.

• If an interpolation override applied interpolation feed speed exceeds the FMX reference value, the actual output value
of the interpolation feed speed will be reset to the FMX reference value.

(4) Programming Examples
An IFP command programming example is shown below.

Fig. 8.19 Interpolation Feed Speed Ratio Setting Command (IFP)

(5) Supplemental Information on IFP Command

(a) Related Motion Parameters

There is no motion setting parameter related to the IFP command.
The interpolation feed speed ratio specified by executing an IFP command is the control data exclusively
reserved for motion programs, and cannot be specified by using a motion setting parameter.

Interpolation
feed speed

FMX
reference value

FMX reference value × IFP reference value
1 to 100% = Interpolation feed speed× Interpolation override

0 to 327.67%

IFP
reference value

Interpolation
override

INFO

INC;

FMX T300000;

IAC T4000;

IDC T4000;

IFP P75;

MVS [A1]30000 [B1]30000;

DL00000 = 50;

IFP PDL00000;

MVS [A1]30000 [B1]30000;

END;

" Incremental mode

" Maximum interpolation feed speed setting [reference unit/min]

" Interpolation acceleration time change [ms]

" Interpolation deceleration time change [ms]

" Interpolation feed speed ratio setting [%]

" Linear interpolation

" Interpolation feed speed ratio [%]

" Interpolation feed speed ratio setting [%]

" Linear interpolation

EXAMPLE

Time (t)

100

Composite speed (V)
[%]

50

75

100% = Max. feed speed for interpolation

300000

225000

150000

(reference units/min)

(reference units/min)

(reference units/min)
8-39

8 Command Reference

8.1.9 Interpolation Acceleration Time Change (IAC)

8-4
8.1.9 Interpolation Acceleration Time Change (IAC)

(1) Overview
The Interpolation Acceleration Time Change command (IAC) changes the acceleration time for the following
axis move commands.

• Linear Interpolation command (MVS)
• Circular Interpolation command (MCW, MCC)
• Helical Interpolation command (MCW, MCC)
• SKP command (Linear interpolation with skip function) (SKP)

In this manual, the above axis move commands are referred to as interpolation related commands.
The Maximum Interpolation Feed Speed Setting command (FMX) must be executed before executing the IAC
command. The acceleration time changed by the IAC command remains until it is reset by the next IAC com-
mand.
The interpolation acceleration time is 0 ms when the program starts running.

Fig. 8.20 Interpolation Acceleration Time Change Command (IAC)

The Interpolation Acceleration Time Change command (IAC) changes the acceleration time for interpolation related com-
mands MVS, MCW, MCC, and SKP.
Use ACC command to set the acceleration time for positioning related commands MOV, EXM, and MVT.

(2) Format

Motion Programs Sequence Programs

Applicable Not applicable

Speed (V)

Time (t)

Before interpolation acceleration time change

Speed (V)

Time (t)

After interpolation acceleration time change

Feed speed
for interpolation

Max. feed speed
for interpolation

Feed speed
for interpolation

Max. feed speed
for interpolation

IAC

IAC

INFO

IAC T Interpolation acceleration time;

Item Unit Usable Data
Interpolation
acceleration
time

ms � Directly designated value
� Double integer type register (Indirect designation)
0

8.1 Axis Setting Commands

C
om

m
an

d
R

ef
er

en
ce
(3) Setting Items for IAC Command
Motion Image

a) Interpolation acceleration time

Specify a numerical value or register following to character T in the IAC command block.
The time set by executing an IAC command is the time required to reach the maximum feed speed from the
speed of 0.
The interpolation acceleration time reference range is as follows.

(4) Programming Examples
An IAC command programming example is shown below.

Fig. 8.21 Interpolation Acceleration Time Change Command Programming Example

0 to 32767 (ms)

Speed (V)

Max. feed speed
for interpolation
(FMX)
(Composite speed)

Time (t)
a) Interpolation
 acceleration time (IAC)

Feed speed for
interpolation
(F designation or IFP)
(Composite speed)

INC;

FMX T300000;

IDC T4000;

IAC T2000;

MVS [A1]30000 [B1]30000 F150000;

DL00000 = 4000;

IAC TDL00000;

MVS [A1]30000 [B1]30000;

END;

" Incremental mode

" Maximum interpolation feed speed setting [reference unit/min]

" Interpolation deceleration time change [ms]

" Interpolation acceleration time change [ms]

" Linear interpolation

" Interpolation acceleration time [ms]

" Interpolation acceleration time change [ms]

" Linear interpolation

EXAMPLE

Time (t)
[s]

300000

2 s

150000

Composite speed (V)
[reference unit/min]

4 s

FMX

F command of
MVS

IAC IAC
8-41

8 Command Reference

8.1.9 Interpolation Acceleration Time Change (IAC)

8-4
(5) Supplemental Information on IAC Command

(a) Related Motion Parameters

There is no motion setting parameter related to the IAC command.
The interpolation acceleration time specified by executing the IAC command is the control data exclusively
reserved for motion programs, and cannot be specified by using a motion setting parameter.
2

8.1 Axis Setting Commands

C
om

m
an

d
R

ef
er

en
ce
8.1.10 Interpolation Deceleration Time Change (IDC)

(1) Overview
The Interpolation Deceleration Time Change command (IDC) changes the deceleration time for the following
axis move commands.

• Linear Interpolation command (MVS)
• Circular Interpolation command (MCW, MCC)
• Helical Interpolation command (MCW, MCC)
• SKP command (Linear interpolation with skip function) (SKP)

In this manual, the above axis move commands are referred to as interpolation related commands.
The Maximum Interpolation Feed Speed Setting command (FMX) must be executed before executing the IDC
command. The deceleration time changed by the IDC command remains until it is reset by the next IDC com-
mand.
The interpolation deceleration time is 0 ms when the program starts running.

Fig. 8.22 Interpolation Deceleration Time Change Command (IDC)

The Interpolation Deceleration Time Change command (IDC) sets the deceleration time for interpolation related com-
mands MVS, MCW, MCC, and SKP.
Use the DCC command to set the deceleration time for positioning related commands MOV, EXM, and MVT.

Motion Programs Sequence Programs

Applicable Not applicable

Speed (V)

Time (t)
Before interpolation deceleration time change

Speed (V)

Time (t)
After interpolation deceleration time change

Feed speed for
interpolation

Max. feed speed
for interpolation

Feed speed for
interpolation

Max. feed speed
for interpolation

IDC

IDC

INFO
8-43

8 Command Reference

8.1.10 Interpolation Deceleration Time Change (IDC)

8-4
(2) Format

(3) Setting Items for IDC Command
Motion Image

a) Interpolation deceleration time

Specify a numerical value or register following to T in the IDC command block.
The time set by executing the IDC command is the time to decelerate from the maximum feed speed for
interpolation to the speed of 0.
The interpolation deceleration time reference range is as follows.

IDC T Interpolation deceleration time ;

Item Unit Usable Data
Interpolation
deceleration
time

ms � Directly designated value
� Double integer type register (Indirect designation)

Speed (V)

Max. feed speed
for interpolation
(FMX)
(Composite speed)

Time (t)
a) Interpolation deceleration
 time (IDC)

Feed speed for
interpolation
(F designation or IFP)
(Composite speed)

0 to 32767 (ms)
4

8.1 Axis Setting Commands

C
om

m
an

d
R

ef
er

en
ce
(4) Programming Examples

An IDC command programming example is shown below.

Fig. 8.23 Interpolation Deceleration Time Change Command Programming Example

(5) Supplemental Information on IDC Command

(a) Related Motion Parameters

There is no motion setting parameter related to the IDC command.
The interpolation deceleration time set by executing the IDC command is the control data exclusively
reserved for motion programs, and cannot be set by using a motion setting parameter.

INC;

FMX T300000;

IAC T4000;

IDC T2000;

MVS [A1]30000 [B1]30000 F150000;

DL00000 = 4000;

IDC TDL00000;

MVS [A1]30000 [B1]30000;

END;

" Incremental mode

" Maximum interpolation feed speed setting [reference unit/min]

" Interpolation acceleration time change [ms]

" Interpolation deceleration time change [ms]

" Linear interpolation

" Interpolation deceleration time [ms]

" Interpolation deceleration time change [ms]

" Linear interpolation

EXAMPLE

Time (t)
[s]

300000

2 s

150000

Composite speed (V)
[reference unit/min]

4 s

FMX

F command of
MVS

IDC IDC
8-45

8 Command Reference

8.1.11 Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

8-4
8.1.11 Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

(1) Overview
The Set Interpolation Acceleration/Deceleration Mode (ACCMODE) command sets the acceleration/decelera-
tion mode for the following interpolation commands. You can use the Set Interpolation Acceleration/Decelera-
tion Mode (ACCMODE) command to connect the speeds between continuous interpolation commands.

• Linear Interpolation command (MVS)
• Circular Interpolation command (MCW, MCC)
• Helical Interpolation command (MCW, MCC)
• SKP command (Linear interpolation with skip function) (SKP)

The interpolation acceleration/deceleration mode set by the ACCMODE command remains in effect until it is
changed by another ACCMODE command.

The interpolation acceleration/deceleration mode is set to the default mode (interpolation acceleration/decelera-
tion mode 0) when program operation starts.

1. The interpolation acceleration/deceleration mode cannot be changed between continuous interpolation blocks.
Change the interpolation acceleration/deceleration mode only after the axes decelerate to a stop.

2. If the interpolation acceleration/deceleration mode is set out of range, the operation depends on the version of the CPU
Module.

3. When the PFORK command is used, the interpolation acceleration/deceleration mode setting before branching to the
forks is inherited by all of the forks. After branching, you can set the interpolation acceleration/deceleration mode for
each fork independently.

Motion Programs Sequence Programs

Applicable Not applicable

INFO

Software Version MPE720 Version 6.36 or Later MPE720 Version 6.35 or Earlier

CPU Module Ver-
sion 2.86 or Later

A motion program alarm (31 hex:
Address M out of range) will occur when
an interpolation command is executed.

A motion program alarm (31 hex: Not
registered) will occur when an interpola-
tion command is executed.

CPU Module Ver-
sion 2.85 or Earlier

An alarm will not occur even when an interpolation command is executed.

The current interpolation acceleration/deceleration mode will be retained.
6

8.1 Axis Setting Commands

C
om

m
an

d
R

ef
er

en
ce
Fig. 8.24 Set Interpolation Acceleration/Deceleration Mode

(2) Format
The format of the ACCMODE command is as follows:

ACCMODE Minterpolation_acceleration_deceleration_mode;

(3) Setting Items for ACCMODE Command
This section describes the settings for the ACCMODE command.

The interpolation acceleration/deceleration mode is set by specifying a numerical value after the character “M” in
the ACCMODE command.

There are five interpolation acceleration/deceleration modes.

• Interpolation acceleration/deceleration mode 0 (default mode)
• Interpolation acceleration/deceleration mode 1 (acceleration/deceleration mode with continuous process

control signal monitoring)
• Interpolation acceleration/deceleration mode 2 (acceleration/deceleration mode with interpolation over-

lapping)
• Interpolation acceleration/deceleration mode 3 with continuous deceleration for minute blocks (accelera-

tion/deceleration mode with continuous process control signal monitoring)
• Interpolation acceleration/deceleration mode 4 (acceleration/deceleration mode with next block speed

specification)

Time (t)

Speed (V)

Speed (V)

Time (t)

Before the Interpolation Acceleration/Deceleration Mode Is Set

After the Interpolation Acceleration/Deceleration Mode Is Set

Item Unit Usable Data

Interpolation acceleration/
deceleration mode

− Directly designated value (0 to 4)
8-47

8 Command Reference

8.1.11 Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

8-4
(4) ACCMODE Details
This section describes the five interpolation acceleration/deceleration modes of the ACCMODE command.

(a) Interpolation Acceleration/Deceleration Mode 0 (Default Mode) Details

In this mode, acceleration and deceleration are performed according to the acceleration/deceleration times set
with the IAC and IDC commands.

This is the default mode when program operation starts.

■ Format

Use the following code format to select interpolation acceleration/deceleration mode 0.
ACCMODE M0;

(b) Interpolation Acceleration/Deceleration Mode 1 (Acceleration/Deceleration Mode with
Continuous Process Control Signal Monitoring) Details

This mode monitors a continuous process control signal and performs continuous processing between con-
secutive interpolation blocks when the specified conditions are satisfied.

This mode can be used only when the same axes are used for all consecutive interpolation blocks.

Speed (V)

Time (t)

IAC = IDC = 0Acceleration and deceleration according
to the IAC and IDC commands

Speed (V)

Time (t)

Acceleration and deceleration
according to the IAC and IDC commands

Continuous process
control signal

Condition satisfied. Condition not satisfied.

Speed maintained.
8

8.1 Axis Setting Commands

C
om

m
an

d
R

ef
er

en
ce
■ Format

Use the following format to select interpolation acceleration/deceleration mode 1.
ACCMODE M1;
MVS [Logical_axis_name_1] Reference_position Finterpolation_feed_speed TWcontinuous_process_con-
trol_signal;
Or
ACCMODE M1;
MVS [Logical_axis_name_1] Reference_position Finterpolation_feed_speed FWcontinuous_process_con-
trol_signal;

Note: The format is the same for the MCC, MCW, and SKP commands.

If the characters “TW” or “FW” are added to the interpolation command, continuous process control signal mon-
itoring is performed. The bit data register specified with the characters “TW” or “FW” is used as the continuous
process control signal.

If the characters “TW” or “FW” are not added to the interpolation command, or if the conditions are not satisfied,
the continuous process control signal is not monitored and acceleration/deceleration is performed according to
the acceleration/deceleration times set with the IAC and IDC commands.

The characters “TW” and “FW” are valid only for interpolation acceleration/deceleration modes 1 and 3 (acceleration/
deceleration modes with continuous process control signal monitoring). In other modes, the operation depends on the soft-
ware version of the CPU Module.

The characters “TW” designate monitoring the continuous process control signal with positive logic.

The characters “FW” designate monitoring the continuous process control signal with negative logic.

If you specify a travel distance that is insufficient to perform continuous processing with the set
deceleration time, unexpected operation may occur. Also specify a sufficient travel distance.

Item Unit Usable Data

Continuous process con-
trol signal

− All bit data registers (excluding #, C, and D registers)

Continuous Process
Control Signal

Operation Summary

ON
The deceleration time specified with the IDC command is ignored. The current speed is
maintained and pulse distribution is completed with a deceleration time of 0 ms.

OFF
The axis decelerates to a stop according to the deceleration time specified with the IDC
command.

Continuous Process
Control Signal

Operation Summary

ON
The axis decelerates to a stop according to the deceleration time specified with the IDC
command.

OFF
The deceleration time specified with the IDC command is ignored. The current speed is
maintained and distribution is completed with a deceleration time of 0 ms.

INFO

Software Version MPE720 Version 6.36 or Later MPE720 Version 6.35 or Earlier

CPU Module Ver-
sion 2.86 or Later

A motion program alarm (32 hex: Speci-
fied address error) will occur when an
interpolation command is executed.

A motion program alarm (32 hex: Not
registered) will occur when an interpola-
tion command is executed.

CPU Module Ver-
sion 2.85 or Earlier

An alarm will not occur even when an interpolation command is executed.

The TW or FW address is ignored and the interpolation command is executed.

IMPORTANT
8-49

8 Command Reference

8.1.11 Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

8-5
■ Programming Examples

The following example programming uses interpolation acceleration/deceleration mode 1 (acceleration/
deceleration mode with continuous process control signal monitoring).

FMX T30000000;
ABS;
IAC T1000;

IDC T1000;

ACCMODE M1;

MVS [A1]4000 F50000 TWMB000001; “”

IOW MB000001=1; “”

MVS [A1]8000; “”

END;

The following examples show how to combine the MVS command and interpolation acceleration/deceleration
mode 1.

• When the Continuous Process Control Signal Turns ON after Distribution for MVS Com-
mand Is Completed

The next block is executed after the axis decelerates to a stop for the MVS command .

For the MVS command , acceleration begins when the speed is 0 (reference units/min).

• When the Continuous Process Control Signal Turns ON during Distribution for MVS
(before Deceleration)

MVS is executed at the same speed from MVS without decelerating.

Time (t)

Speed (V)

�
IOW �

MB000001

�

� �

Time (t)

Speed (V)

IOW �
(Do not wait if the conditions are already satisfied.)

MB000001
0

8.1 Axis Setting Commands

C
om

m
an

d
R

ef
er

en
ce
• When the Continuous Process Control Signal Turns ON during Distribution for MVS
(during Deceleration)

MVS is executed with the same speed as when the continuous process signal turned ON.

1. If the reference speed for MVS is higher than for MVS , the end speed of is used for the start speed of . The
axis then accelerates to the specified speed.

2. If the reference speed for MVS is lower than for MVS , the end speed of is used for the start speed of . The
axis then decelerates to the specified speed.

3. If the travel distance for MVS is shorter than the deceleration distance, distribution is finished during the decelera-

tion of .

■ Additional Information

Refer to the following additional information for details on operation in the acceleration/deceleration mode with
continuous process control signal monitoring.

• Request Temporary Stop Operation

Temporary Stop Request before the Interpolation Distribution for the Next Block Begins
The axis decelerates according to the interpolation deceleration time specified with the IDC command.
No continuous processing to the next interpolation block is performed.

Temporary Stop Request after the Interpolation Distribution for the Next Block Begins
The axis decelerates according to interpolation deceleration time specified with the IDC command for both
the previous block and the next block.
After the temporary stop request is removed, distribution of the remaining distance is performed for both the
previous block and the next block.

• Request Stop Operation

The interpolation block for the axis in motion stops immediately.

• Program Single-block Mode Operation

No continuous processing to the next interpolation block is performed.

• Debug Mode Operation

No continuous processing to the next interpolation block is performed.

• Operation When the Next Block Is Not an Interpolation Command Block

No continuous processing to the next block is performed.

Acceleration begins from a speed of 0 for the next block.

• Operation When the Interpolation Deceleration Time (IDC) Is Set to 0 ms

Continuous processing to the next interpolation block is performed, regardless of the status of the continuous
process control signal.

• Continuous Operation during Parallel Execution (PFORK)

Continuous processing is not performed across a PFORK command.

Set the commands so that processing for this mode ends during each fork.

�

Time (t)

Speed (V)

MB000001

IOW �
(Do not wait if the conditions are already satisfied.)

�

INFO
8-51

8 Command Reference

8.1.11 Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

8-5
(c) Interpolation Acceleration/Deceleration Mode 2 (Acceleration/Deceleration Mode with
Interpolation Overlapping) Details

In this mode, the distribution for each interpolation block is made to overlap by starting acceleration for the next
interpolation block during the deceleration for the current interpolation block for continuous processing between
consecutive interpolation blocks.

Each block accelerates and decelerates according to the acceleration times and deceleration times that are set
with the IAC and IDC commands.

This mode is valid for the MVS, MCW, and MCC commands.

■ Format

ACCMODE M2;
MVS [Logical_axis_name_1] Reference_position Finterpolation_feed_speed Dinterpolation_overlap_dis-
tance;

Note: The interpolation overlap distance can be omitted.
The format is the same for the MCC and MCW commands.

In this mode, you can add the character “D” to an interpolation command to specify the maximum distance for
the interpolation distribution to overlap.

When the character “D” is added to an interpolation command in this mode, distribution for the next interpolation
block begins when the remaining travel distance for the current interpolation block falls below the interpolation
overlap distance. If 0 (reference units) is specified for the interpolation overlap distance, distribution for the next
interpolation block begins when the current interpolation block begins deceleration.

If the character “D” is not specified for the interpolation command, the last interpolation overlap distance speci-
fied in the motion program is used.

The interpolation overlap distance is set to 0 (reference units) when program operation starts.

A compiling error will occur if the character “D” is used with MPE720 version 6. MPE720 version 6 does not
support character “D.”

1. The character “D” is valid only in interpolation acceleration/deceleration mode 2.
In other interpolation acceleration/deceleration modes, the operation depends on the software version of the CPU Mod-
ule.

2. The valid range for the interpolation overlap distance is 0 to 2,147,483,647 (reference units).
If a negative value is specified, the absolute value is used.

3. Interpolation acceleration/deceleration mode 2 can be used only with the following versions.

• CPU Module version: Version 2.84 or later
• MPE720 version: Version 7.10 or later

Item Unit Usable Data

Interpolation overlap dis-
tance

Reference units
• Directly designated value

• Indirect designation with a double-length integer register

Speed (V)

Time (t)

IAC = IDC IAC > IDC IAC < IDC

IMPORTANT

INFO

Software Version MPE720 Version 7.24 or Later MPE720 Version 7.23 or Earlier

CPU Module Ver-
sion 2.86 or Later

A motion program alarm (32 hex: Speci-
fied address error) will occur when an
interpolation command is executed.

A motion program alarm (32 hex: Not
registered) will occur when an interpola-
tion command is executed.

CPU Module Ver-
sion 2.85 or Earlier

An alarm will not occur even when an interpolation command is executed.

The D address is ignored and the interpolation command is executed.
2

8.1 Axis Setting Commands

C
om

m
an

d
R

ef
er

en
ce
■ Conditions to Begin Distribution for the Next Interpolation Block

Distribution for the next interpolation block begins when all of the following conditions are satisfied.

■ Programming Examples

A programming example for the acceleration/deceleration mode with interpolation overlapping is given below.

FMX T300000;

INC;

IAC T1000;

IDC T2000;

ACCMODE M2;

MW00010 = 30;
MVS[A1]20000 [B1]10000 F200000; “Linear interpolation ”

MW00010 = 20;
MVS[A1]10000 [B1]-20000 D100; “Linear interpolation ”

MW00010 = 10;
MVS[A1]20000 [B1]10000; “Linear interpolation ”

MW00010 = 0;

END;

No. Condition

1 Not in Program Single-block Mode.

2 Control signal bit 1 (Request Temporary Stop) is OFF.

3 No PFN commands have been added to the interpolation commands.

4 The interpolation block must have started deceleration. (Refer to the timing of in the following figure.)

5
The remaining distance for the interpolation block is less than the interpolation overlap distance that was specified
after the character “D.” (Refer to the timing of in the following figure.)

6
The remaining deceleration time of the current interpolation block is less than the acceleration time of the next
interpolation block. (Refer to the timing of in the following figure.)

Next block

Speed

Time

Speed

Time

Speed

Time

Current Interpolation
Block Speed Waveform

Distribution started
for the next block.

Next Interpolation
Block Speed Waveform

Composite Speed
Waveform

�

� �

The distance specified after the character “D.”

Acceleration time for the next block
8-53

8 Command Reference

8.1.11 Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

8-5
In processing for ACCMODE2, execution moves to the next execution block in the program when deceleration
occurs for the interpolation block or when the interpolation overlap distance becomes equal to or less than the
specified interpolation overlap distance.
S-type commands (e.g., operation commands) that occur during continuous processing for interpolation blocks
are executed when program execution moves to the next block.

The speed waveform for the programming example is given below.

The interpolated path for the above programming example is given below.

As shown in the figure below, some interpolation block end points (i.e., the start point for the next interpolation
block) do not pass through the movement path because the distribution for the next interpolation block starts
during deceleration of the current interpolation block.

Composite speed (V)
(reference units/min)

200000

Time (t)[s]

300000

Linear
interpolation �

Linear
interpolation �

Linear
interpolation �

MW00010

0

10
20

30

Interpolation distribution for linear
interpolation � starts during the

deceleration of linear interpolation �.

Interpolation distribution for linear interpolation
� starts when the remaining distance for linear

interpolation � falls below the interpolation
overlap distance.

Region where the
interpolation

distribution overlaps

Region where the
interpolation

distribution overlaps

Interpolation overlap distance

Linear interpolation � Linear interpolation �

Linear interpolation �

Axis B1

Axis A1
4

8.1 Axis Setting Commands

C
om

m
an

d
R

ef
er

en
ce
■ Additional Information

Refer to the following additional information for details on operation in the acceleration/deceleration mode with
interpolation overlapping.

• Request Temporary Stop Operation

Before distribution for the next interpolation block begins, the interpolation block for axes currently in
motion decelerates in the deceleration time specified with the IDC command.

However, no continuous processing to the next interpolation block is performed.

After distribution for the next interpolation block begins, each interpolation block decelerates in the deceler-
ation time specified with the IDC command.

• Request Stop Operation

Each interpolation block stops immediately.

• Program Single-block Mode Operation

No continuous processing to the next interpolation block is performed.

• Debug Mode Operation

No continuous processing to the next interpolation block is performed.

• Operation When the Next Block Is Not an Interpolation Command Block

No continuous processing to the next block is performed.

Acceleration begins from a speed of 0 for the next block.

• Continuous Operation during Parallel Execution (PFORK)

This mode cannot be used across a PFORK command.

Adjust the timing of pulse distribution for the interpolation block with the PFN command so that processing
(i.e., pulse distribution) for this mode is completed within each fork.

• Operation for Execution of T-type Commands

If a T-type command (e.g., a timer command) is executed in continuous processing for an interpolation block,
the distribution timing in the next interpolation block will be changed.

(d) Interpolation Acceleration/Deceleration Mode 3 (Acceleration/Deceleration Mode with
Continuous Process Control Signal Monitoring) Details

In the same way as in interpolation acceleration/deceleration mode 1 (acceleration/deceleration mode with con-
tinuous process control signal monitoring), interpolation acceleration/deceleration mode 3 (acceleration/deceler-
ation mode with continuous process control signal monitoring) monitors a continuous process control signal and
performs continuous processing between consecutive interpolation blocks when the specified conditions are sat-
isfied.

However, opposed to interpolation acceleration/deceleration mode 1 (acceleration/deceleration mode with con-
tinuous process control signal monitoring), when continuous processing is performed for a minute block with a
minute travel distance, deceleration is performed as much as possible to the specified speed in continuous pro-
cessing between consecutive interpolation blocks.

A minute block is an interpolation bock with a travel distance that is too small for the distance required to decelerate to a
stop at the specified deceleration rate from the speed for continuous processing operation.

INFO
8-55

8 Command Reference

8.1.11 Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

8-5
■ Format

Use the following format when interpolation acceleration/deceleration mode 3 (acceleration/deceleration mode
with continuous process control signal monitoring) is set. Refer to (b) Interpolation Acceleration/Deceleration
Mode 1 (Acceleration/Deceleration Mode with Continuous Process Control Signal Monitoring) Details for
details on continuous processing control signals.

Note: The format is the same for the MCC, MCW, and SKP commands.

The characters “TW” and “FW” are valid only for this mode and for interpolation acceleration/deceleration mode 1 (accel-
eration/deceleration mode with continuous process control signal monitoring). In other modes, the operation when the
characters “TW” or “FW” are specified depends on the software version of the CPU Module.

■ Programming Examples

The difference between interpolation acceleration/deceleration modes 1 and 2 for the MVS command is
described below.

ACCMODE M3

MVS [Logical_axis_name_1] Reference_position ... Finterpolation_feed_speed TWcontinuous_process_-
control_signal;

Or

ACCMODE M3

MVS [Logical_axis_name_1] Reference_position ... Finterpolation_feed_speed FWcontinuous_process_-
control_signal;

Software Version MPE720 Version 6.36 or Later MPE720 Version 6.35 or Earlier

CPU Module Version 2.86
or Later

An alarm (32 hex: Specified address
error) will occur when an interpolation
command is executed.

An alarm (32 hex: No registered) will
occur when an interpolation command is
executed.

CPU Module Version 2.85
or Earlier

An alarm will not occur even when an interpolation command is executed.

The TW or FW address is ignored and the interpolation command is executed.

INC;

FMX T1000000;

IAC T5000;

IDC T5000;

MB1000=1; // Continuous control signal bit

//Interpolation acceleration/deceleration mode (ACCMODE M1 or ACCMODE M3 executed.)

ACCMODE M1; // ACCMODE M1 or ACCMODE M3

MVS [A1]100000 F600000 TWMB1000; // Linear interpolation

MVS [A1]5000 F300000 TWMB1000; // Linear interpolation (minute block)

MVS [A1]100000 F300000 FWMB1000; // Linear interpolation

END;

INFO
6

8.1 Axis Setting Commands

C
om

m
an

d
R

ef
er

en
ce
The speed waveform for the programming example is given below.

• Operation in Interpolation Acceleration/Deceleration Mode

• Operation in Interpolation Acceleration/Deceleration Mode

■ Additional Information

Additional information on interpolation acceleration/deceleration mode 3 (acceleration/deceleration mode with
continuous process control signal monitoring) is the same as the additional information for interpolation acceler-
ation/deceleration mode 1.

(e) Interpolation Acceleration/Deceleration Mode 4 (Acceleration/Deceleration Mode with
Next Block Speed Specification) Details

In interpolation acceleration/deceleration mode 4 (acceleration/deceleration mode with next block speed specifi-
cation), the final speed is specified for each interpolation block and continuous processing to the next interpola-
tion block is performed at the specified speed.

This mode can be used only when the same axes are used for all consecutive interpolation blocks.

■ Format

Use the following format to select interpolation acceleration/deceleration mode 4.

ACCMODE M4

MVS [Logical_axis_name_1] Reference_position ... Finterpolation_feed_speed FEfinal_interpolation_-
feed_speed;

Item Unit Usable Data

Final interpolation feed speed Reference units/min
• Indirect designation with a double-length integer register

• Directly designated value

600000

Time t (s)

Speed (V)
(reference units/min)

300000

Linear
interpolation �

Linear Interpolation (Minute Block) �

Linear interpolation �

When it is determined that deceleration to the specified
speed, 300,000 reference units/min, is not possible for
the minute block, the current speed is maintained and
continuous processing is performed.

600000

Time t (s)

Speed (V)
(reference units/min)

300000

Linear
interpolation �

Linear Interpolation (Minute Block) �

Linear interpolation �

Even in the minute block, deceleration is performed as
close as possible to the specified speed, 300,000
reference units/min, and continuous processing is
performed.

Speed

Time

FE

FE’
8-57

8 Command Reference

8.1.11 Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

8-5
Note: The final interpolation feed speed can be omitted. The format is the same for the MCC, MCW, and SKP com-
mands.

In this mode, you can add the characters “FE” to an interpolation command to specify the final speed for the
interpolation block.

If you add the characters “FE” to an interpolation command, pulse distribution is adjusted so that the interpola-
tion block ends at the specified final interpolation feed speed.

If the specified final interpolation feed speed is 0 (speed units), continuous processing is not performed and the
axes decelerate to a stop.

If the characters “FE” are not specified for the interpolation command, the final interpolation feed speed that was
last specified in the motion program is used.

The final interpolation feed speed is 0 (speed units) when program operation starts.

1. The characters “FE” are valid only for this mode. In other interpolation acceleration/deceleration modes, a
motion program alarm will occur.

2. The valid range for the final interpolation feed speed is 0 to 2,147,483,647 (speed units). A compiler error
will occur if a negative number is specified.

This mode can be used with the following or later versions.

• CPU Module version: Version 2.86

• MPE720 version: Version 6.36

■ Programming Example

The speed waveform for the programming is given below.

FMX T6000000;

IAC T1000;

IDC T1000;

INC;

ACCMODE M4;

MVS [A1]300000 F6000000 FE4000000; “Linear interpolation ”

MVS [A1]300000 F3000000 FE6000000; “Linear interpolation ”

MVS [A1]300000 F6000000 FE0; “Linear interpolation ”

END;

IMPORTANT

INFO

Linear Interpolation �

Linear
interpolation �

4000000
3000000

Linear
interpolation �

Linear
interpolation �

Speed (V)
(reference units/min)

Time t (s)

6000000

Linear Interpolation �

Linear Interpolation �

The block is ended at a final interpolation feed
speed of 4,000,000 (reference units/min) and
continuous processing is performed.

The block is ended at a final interpolation
feed speed of 6,000,000 (reference units/min)
and continuous processing is performed.

The block is ended at a final
interpolation feed speed of 0
(reference units/min).
8

8.1 Axis Setting Commands

C
om

m
an

d
R

ef
er

en
ce
■ Additional Information

Refer to the following additional information for details on operation in the acceleration/deceleration mode with
next block speed specification.

• Request Temporary Stop Operation

If a temporary stop is requested, the axes decelerate to a stop at the set deceleration rates. If the travel dis-
tance is insufficient, a quick stop is performed at the target position.

• Request Stop Operation

The interpolation block stops immediately.

• Operation When Final Interpolation Feed Speed Is Not Reached

Acceleration or deceleration to the final interpolation feed speed is continued and an immediate stop is per-
formed when the travel distance is reached.

If the next block is an interpolation command, continuous processing is performed when the immediate stop
occurs.

• Program Single-block Mode Operation

No continuous processing to the next interpolation block is performed.

• Debug Mode Operation

No continuous processing to the next interpolation block is performed.

• Operation When the Next Block Is Not an Interpolation Command Block

No continuous processing to the next block is performed.

Acceleration begins from a speed of 0 for the next block.

• Continuous Operation during Parallel Execution (PFORK)

Continuous processing is not performed across a PFORK command.

Set the commands so that processing for this mode ends during each fork.
8-59

8 Command Reference

8.2.1 Positioning (MOV)

8-6
8.2 Axis Move Commands
This chapter described axis move commands.

8.2.1 Positioning (MOV)

(1) Overview
The Positioning (MOV) command independently moves each axis from the current position to the end position at
positioning speed.

Up to16 axes can be moved simultaneously. Any axis not specified in the command will not be moved.

The path of movement with the MOV command is different from the linear travel.

Fig. 8.25 Movement Path with MOV Command

(2) Format

Motion Programs Sequence Programs

Applicable Not Applicable

• The path of movement with the Positioning (MOV) command is not always a straight line. When program-
ming, be sure to check the path to make sure that there are no tools or other obstacles in the way of the
workpiece.
Failure to carry out this check may result in damage to equipment, serious personal injury, or even death.

Logical axis 1

Logical axis 2

Logical axis 3

Each axis moves at the
individually specified speed.

Program
current position

Positioning

Positioning
end position

CAUTION

... ;

Item Unit Usable Data
Reference
position

Reference unit � Directly designated value
� Double integer type register (Indirect designation)

MOV [Logical axis name 1] Reference position [Logical axis name 2] Reference position [Logical axis name 3] Reference position
0

8.2 Axis Move Commands

C
om

m
an

d
R

ef
er

en
ce
(3) Setting Items for MOV Command
Motion Image

a) Moving amount

The moving amount of each axis differs depending on the movement mode, ABS mode or INC mode.

• Moving amount in ABS mode

The difference between the program current position and the reference position.

• Moving amount in INC mode

The reference position is used as the moving amount.

Refer to 7.2.2 Reference Unit for information on the moving amount unit.

b) Rated speed

Use motion fixed parameter 34 (Rated motor speed) to set the rated speed of each axis.
For details, refer to the relevant motion module manual.

c) Acceleration/deceleration type

The acceleration/deceleration for a MOV command can be selected from the following three types.
It can be selected according to the combination of the following settings:

Motion setting parameter OW03, bit 4 to 7: Acceleration/deceleration degree unit selection

Motion setting parameter OW03, bit 8 to B: Filter type selection

Speed (V)

b) Rated speed

Positioning
speed
(VEL)

a) Moving
 amount

Time (t)

Acceleration time
(ACC)

Deceleration time
(DCC)

c) Acceleration/
 deceleration type

INFO
8-61

8 Command Reference

8.2.1 Positioning (MOV)

8-6
(a) No acceleration/deceleration

Movement with both the acceleration time and deceleration time set to 0

(b) Single-step linear acceleration/deceleration

Movement with a constant acceleration/deceleration speed

(c) S-curve acceleration/deceleration

Movement at S-curved acceleration/deceleration speed

For axis movement with a MOV command, an in-position check is executed to verify that the axis enters the positioning
completion range. After the in-position check, the next move command block will be executed.
The following diagram illustrates the in-position execution.

Fig. 8.26 Execution of In-position Check

Setting Method Movement Path

• OW03, bit 4 to 7: Acceleration/deceleration degree unit selection = 1
(ms)

• OW03, bit 8 to B: Filter type selection = 0 (No filter)

• Set the ACC command to 0.

• Set the DCC command to 0.

Setting Method Movement Path

• OW03, bit 4 to 7: Acceleration/deceleration degree unit selection = 1
(ms)

• OW03, bit 8 to B: Filter type selection = 0 (No filter)

• Set the ACC command to a value other than 0.

• Set the DCC command to a value other than 0.

Setting Method Movement Path

• OW03, bit 4 to 7: Acceleration/deceleration degree unit selection = 1
(ms)

• OW03, bit 8 to B: Filter type selection = 2 (Moving average filter)

• Set the ACC command to a value other than 0.

• Set the DCC command to a value other than 0.

• Set the SCC command to a value other than 0.

INFO

Positioning command block

The next command block

In-position check

Motion monitor parameter
IW��0C, Bit1 Positioning Completed

The value that is set in the motion setting parameter
OL��1E: Width of positioning completion.

Distribution completed
Speed (V)

Time (t)

The feedback position is within
the positioning completion width.
2

8.2 Axis Move Commands

C
om

m
an

d
R

ef
er

en
ce
(4) Programming Examples
A programming example for a MOV command in ABS mode is shown below.

Fig. 8.27 MOV Command Programming Example

ABS;

ACC [A1]1000 [B1]1000 [C1]1000;

DCC [A1]1000 [B1]1000 [C1]1000;

VEL [A1]2000 [B1]2000 [C1]2000;

MOV [A1]4000 [B1]3000 [C1]2000;

END;

EXAMPLE

C1

A1

B1

End
position

Program
current
position

2000

3000

4000
8-63

8 Command Reference

8.2.2 Linear Interpolation (MVS)

8-6
8.2.2 Linear Interpolation (MVS)

(1) Overview
The Linear Interpolation command (MVS) moves each axis on a straight line from the program current position
to the end position at the specified interpolation feed speed. Up to 16 axes can be moved simultaneously. Any
axis not specified in the command will not be moved.

Fig. 8.28 Movement Path with MVS Command

For axis movement with the MVS command, an in-position check is not automatically executed. Use the PFN command to
execute an in-position check if required.

(2) Format

Motion Programs Sequence Programs

Applicable Not applicable

• Linear Interpolation (MVS) can be executed for either linear axes or rotary axes. If rotary axes are included,
however, the linear interpolation path will not be in straight line. When programming, be sure to check the
path to make sure that there are no tools or other obstacles in the way of the workpiece.
Failure to carry out this check may result in damage to equipment, serious personal injury, or even death.

[Logical axis 2]

[Logical axis 1]

[Logical axis 3]

Logical axis 3

Logical axis 2

Logical axis 1

Interpolation
feed speed
(Composite
speed)

End position

Program
current position

CAUTION

INFO

...

Unit Usable Data
Reference position Reference unit

Interpolation feed speed Reference units/min
� Directly designated value
� Double integer type register (Indirect designation)

Note: The interpolation feed speed can be omitted.

MVS [Logical axis name 1] Reference position [Logical axis name 2] Reference position [Logical axis name 3] Reference position

F Interpolation feed speed ;

Item
4

8.2 Axis Move Commands

C
om

m
an

d
R

ef
er

en
ce
(3) Setting Items for MVS Command
Motion Image

a) Composite moving amount

The composite moving amount differs depending on the movement mode: ABS mode or INC mode.

• Composite moving amount in ABS mode

The difference between the program current position and the reference position

• Composite movement amount in ABS mode

The reference position is used as the moving amount.

Refer to 7.2.2 Reference Unit for information on the moving amount unit.

Speed (V)

b) Interpolation feed
 speed
 (F designation or
 IFP)

Max. feed speed
for interpolation
(FMX)

a) Composite
 moving
 amount

Time (t)

Acceleration time
(IAC)

Deceleration time
(IDC)

c) Acceleration/deceleration type

B1

A1

1500 reference units

1200 reference units

900 reference units

INC command block: INC MVS[A1]1200 [B1]900;
Composite
moving
amount

2 + 900 2 = 1500 (reference unit)= 1200

INFO
8-65

8 Command Reference

8.2.2 Linear Interpolation (MVS)

8-6
b) Interpolation feed speed (F command or IFP)

Specify a numerical value or register following to character F in the MVS command block (F designation).
The specified interpolation feed speed is treated as a composite speed for all the specified axes.
The reference range is between 1 reference unit/min and the maximum feed speed for interpolation (FMX)
[reference units/min].

The feed speed of each axis is calculated using the following formula.

The feed speed of each axis [reference units/min]

= × interpolation feed speed [reference units/min]

For example, the feed speed of each axis in above condition is calculated as following.

Interpolation feed speed (the value of F) = 500 [reference units/min]

Composite moving amount = = 1500 [reference units]

• The feed speed of A1 axis = × 500 = 400 [reference units/min]

• The feed speed of B1 axis = × 500 = 300 [reference units/min]

You can select whether or not to apply an interpolation override to the F designation.
Refer to 4.3.3 Work Registers for information on how to use an interpolation override.

• When not using an interpolation override

• When using an interpolation override

The interpolation feed speed can also be specified as a percentage of the maximum feed speed for interpola-
tion (FMX).
Refer to 8.1.8 Interpolation Feed Speed Ratio Setting (IFP) for information how to specify an interpolation
feed speed as a percentage of the maximum feed speed for interpolation.

• If a value higher than the FMX reference value (reference units/min) is specified for an F designation (reference units/
min), a motion alarm will occur.

• If the interpolation override applied interpolation feed speed exceeds the FMX value, the output value of the interpola-
tion feed speed will be reset to the FMX reference value.

• When the interpolation feed speed is not specified in the command block, the interpolation feed speed specified in the
previous command block will be applied.

For the INC command block INC MVS[A1]1200 [B1]900 F500;
B1

A1

Interpolation feed speed
500 reference units/min

1200 reference units

900
reference units

INFO

composite moving amount [reference units]

moving amount of each axis [reference units]

12002+9002

1200
1500

900
1500

Interpolation
feed speedF designation

F designation = Interpolation feed speed

Interpolation
feed speedF designation

F designation = Interpolation feed speed

Interpolation
override

Interpolation override
0 to 327.67%

INFO
6

8.2 Axis Move Commands

C
om

m
an

d
R

ef
er

en
ce
The interpolation override can be changed during axis movement.

Fig. 8.29 Interpolation Override and Interpolation Related Command

c) Acceleration/deceleration type

The acceleration/deceleration for an MVS command can be selected from the following three types.
It can be selected according to the combination of settings of IAC, IDC, and SCC commands and motion
parameter OW03, bit 8 to B: Filter type selection.

(a) No acceleration/deceleration

Movement with both the acceleration time and deceleration time set to 0

(b) Single-step linear acceleration/deceleration

Movement with a constant acceleration/deceleration speed

(c) S-curve acceleration/deceleration

Movement at S-curved acceleration/deceleration speed

Setting Method Movement Path

• OW03, bit 8 to B: Filter type selection = 0 (No filter)

• Set the IAC command to 0.

• Set the IDC command to 0.

Setting Method Movement Path

• OW03, bit 8 to B: Filter type selection = 0 (No filter)

• Set the IAC command to a value other than 0.

• Set the IDC command to a value other than 0.

Setting Method Movement Path

• OW03, bit 8 to B: Filter type selection = 2 (Moving average filter)

• Set the IAC command to a value other than 0.

• Set the IDC command to a value other than 0.

• Set the SCC command to a value other than 0.

Time (t)

Speed (V)

100% of
interpolation
feed speed

Time (t)

Interpolation
override

One block of an interpolation related command

100.00%
50.00%

150.00%

50% of
interpolation
feed speed

150% of
interpolation
feed speed

Interpolation feed
speed
(F designation or
 IFP)
8-67

8 Command Reference

8.2.2 Linear Interpolation (MVS)

8-6
• Code a FMX command to specify the maximum feed speed for interpolation at the beginning of motion program.
Otherwise, a motion program alarm will occur at execution of the MVS command.

• If the acceleration/deceleration time is not specified, the default time of 0 ms is applied.

• For axis movement with the MVS command, an in-position check is not automatically executed. Use the PFN com-
mand to execute an in-position check if required.

(4) Programming Examples
A programming example of an MVS command in ABS mode is shown below.

Fig. 8.30 MVS Command Programming Example

INFO

FMX T30000000;

ABS;

IAC T1000;

IDC T1000;

MVS [A1]4000 [B1]3000 [C1]2000 F50000;

END;

EXAMPLE

C1

A1

B1

End
position

Program
current
position

2000

3000

4000
8

8.2 Axis Move Commands

C
om

m
an

d
R

ef
er

en
ce
8.2.3 Clockwise/Counterclockwise Circular Interpolation with Center Position Desig-
nation (MCW, MCC)

(1) Overview
The Clockwise/Counterclockwise Circular Interpolation with Center Position Designation command (MCW,
MCC) moves two axes simultaneously from the program current position to the end position on the designated
plane at the interpolation feed speed on the circle determined by the center position.

• MCW: Circular Interpolation command for Clockwise (CW)
• MCC: Circular Interpolation command for Counterclockwise (CCW)

• Before designating a Clockwise/Counterclockwise Circular Interpolation command, be sure to designate
the circular interpolation plane in Coordinate Plane Setting (PLN).
If the PLN command is not coded, a motion program alarm will occur at execution of the MCW or MCC
command.

• Designate the axes for the end position and center position in the same order as the axes are specified in the
PLN command.

• Be sure to code the FMX command at the beginning of the program to specify the maximum feed speed for
interpolation.
Otherwise, a motion program alarm will occur at execution of the MCW or MCC command.

• When the acceleration/deceleration time is not specified, the default acceleration/deceleration time of 0 ms
will be applied.

For axis movement with the MCW or MCC command, an in-position check is not automatically executed. Use the PFN
command to execute an in-position check if required.

Motion Programs Sequence Programs

Applicable Not applicable

Number of turns

Logical axis 2

Logical axis 1

Interpolation feed speed
(Tangential speed)

Center point
position

End position

MCW

Program current position

IMPORTANT

INFO
8-69

8 Command Reference

8.2.3 Clockwise/Counterclockwise Circular Interpolation with Center Position Designation (MCW, MCC)

8-7
(2) Format

(3) Setting Items for MCW and MCC Commands
Motion Image

a) End position and Center point position

End position: Specify a numerical value or register following to a logical axis name.
Center position: Specify a numerical value or register following to character U and V in the MCW or MCC command
block.
The actual end position and center position for the reference positions will differ, depending on the move-
ment mode: ABS mode or INC mode.

Item Unit Usable Data
End position Reference unit

Center point position Reference unit

Number of turns Number of times of turn

Interpolation feed speed Reference units/min

Directly designated value
Double integer register (Indirect designation)

Note: The number of turns and interpolation feed speed can be omitted.

MCW [Logical axis name 1] End position [Logical axis name 2] End position U Center position V Center position

T Number of turns F Interpolation feed speed ;

Logical axis 2

Logical axis 1

b) Number of turns

c) Interpolation feed speed
(Tangential speed)

a) Center
 position

a) End position

MCW
0

8.2 Axis Move Commands

C
om

m
an

d
R

ef
er

en
ce
• In ABS Mode

The center position and end position are treated as absolute positions.

• In INC Mode

The center position and end position are treated as relative positions from the program current position.

B1

A1

End
position

Program
current position

1000

MCC [A1]1500 [B1]4000 U2500 V1000 F50000;

Center position
End position

PLN[A1][B1];

ABS;

1500 2500 5500

2000

4000
Counterclockwise
circular interpolation
(MCC)

Center
position

FMX T30000000;

B1

A1

End
position

Program
current
position

1000

MCC [A1]-4000 [B1]2000 U-3000 V-1000 F50000;

Center position
(relative position)

End position
(relative position)

PLN[A1][B1];

INC;

1500 2500 5500

2000

4000
Counterclockwise
circular interpolation
(MCC)

Center
position

-4000

-3000

2000

-1000

FMX T30000000;
8-71

8 Command Reference

8.2.3 Clockwise/Counterclockwise Circular Interpolation with Center Position Designation (MCW, MCC)

8-7
Special care must be taken with regard to the start point radius, and end point radius, because the circular inter-
polation path will become as shown below if the start point radius is not equal to the end point radius.

Fig. 8.31 Circular Interpolation Path When Start Point Radius ≠ End Point Radius

b) Number of turns

Specify a numerical value or register following to character T in the MCW or MCC command block.
Specifying the number of turns will implement multiple circular movements. Specifying a negative value for
the number of turns will cause a motion program alarm. The number of circular movements determined by
the specified number of turns will differ depending on the relationship between the program current position
and end position as shown below.

• When the number of turns is set to 2

IMPORTANT

Start point
radius

End
 po

int
 ra

diu
s

Center
position

Program
current position

End position

EXAMPLE

B1

A1

Two circles + 1/4 circle

Program
current position

End position

When Program current position ≠ End position

B1

A1
Three circles

Program current position
and

End position

Program current position = End position
2

8.2 Axis Move Commands

C
om

m
an

d
R

ef
er

en
ce
c) Interpolation feed speed

For circular interpolation (MCW, MCC), the specified interpolation feed speed is treated as the speed of a
tangential direction.
The reference range is between 1 and the maximum interpolation feed speed (FMX) [reference unit/min].

B1

A1

MCC command block: MCC[A1]- [B1]- F200;

F = 200 = Vx + Vy (reference units/min)
22

Vx (reference units/min)

End position

Program current position

Vy (reference units/min)

200 reference units/min
8-73

8 Command Reference

8.2.3 Clockwise/Counterclockwise Circular Interpolation with Center Position Designation (MCW, MCC)

8-7
(4) Programming Examples

A programming example of circular interpolation (MCW, MCC) in ABS mode is shown below.
The MCW commands turns axes clockwise, while MCC commands counterclockwise.

Turning
Direction

Programming Example

Clockwise
(MCW)

ABS;

FMX T30000000;

PLN [A1][B1];

MCW [A1]0 [B1]0 U1000 V0 F2000; “MCW (clockwise)”

END;

Fig. 8.32 Center Position Designated Clockwise
Circular Interpolation (MCW)

Counter-
clockwise

(MCC)

ABS;

FMX T30000000;

PLN [A1][B1];

MCC [A1]0 [B1]0 U1000 V0 F2000; “MCC (Counterclockwise)”

END;

Fig. 8.33 Center Position Designated Counterclockwise
Circular Interpolation (MCC)

EXAMPLE

A1

Clockwise circular
interpolation (MCW)

End position
Center position
(1000,0)

(0,0)

B1

Program current position

A1

Counterclockwise
circular interpolation
(MCC)

Center
position
(1000,0)

(0,0)

B1

Program current position

End position
4

8.2 Axis Move Commands

C
om

m
an

d
R

ef
er

en
ce
8.2.4 Clockwise/Counterclockwise Circular Interpolation with Radius Designation
(MCW, MCC)

(1) Overview
The Clockwise/Counterclockwise Circular Interpolation with Radius Designation command (MCW, MCC)
moves two axes simultaneously from the program current position to the end position on the designated plane at
the interpolation speed on the circle determined by the radius.

• MCW: Circular Interpolation command for Clockwise (CW)
• MCC: Circular Interpolation command for Counterclockwise (CCW)

• Before designating a Clockwise/Counterclockwise Circular Interpolation command, be sure to designate
the circular interpolation plane in Coordinate Plane Setting (PLN).
If the PLN command is not coded, a motion program alarm will occur at execution of the MCW or MCC
command.

• Designate the axes for the end position and center point position in the same order as the axes are specified
in the PLN command.

• Be sure to code the FMX command at the beginning of the program to specify the maximum feed speed for
interpolation.
Otherwise, a motion program alarm will occur at execution of the MCW or MCC command.

• When the acceleration/deceleration time is not specified, the default acceleration/deceleration time of 0 ms
will be applied.

For axis movement with the MCW or MCC command, an in-position check is not automatically executed. Use the PFN
command to execute an in-position check if required.

Motion Programs Sequence Programs

Applicable Not applicable

Radius
Logical axis 2

Logical axis 1

Interpolation feed speed
(Tangential speed)

End position

MCW

IMPORTANT

INFO
8-75

8 Command Reference

8.2.4 Clockwise/Counterclockwise Circular Interpolation with Radius Designation (MCW, MCC)

8-7
(2) Format

(3) Setting Items for MCW and MCC Commands
Motion Image

a) Radius

Specify a numerical value or register following to character R in the MCW or MCC command block.
The circular interpolation path will differ depending on the radius reference value as follows.

With the MCW command block MCW [A1] − [B1] − R −;

If R > 0: Circular interpolation with an arc angle of 180° or less

If R < 0: Circular interpolation with an arc angle of more than 180°
If R = 0: A motion program alarm will occur.

With the radius designating circular interpolation, the number of turns cannot be specified.

Notes: 1. The interpolation feed speed can be omitted.

Item Unit Usable Data

End position Reference unit

Radius Reference unit
Interpolation feed speed Reference units/min

� Directly designated value
� Double integer type register (Indirect designation)

MCW [Logical axis name 1] End position [Logical axis name 2] End position R Radius F Interpolation speed ;

2. With radius designating circular interpolation, the number of turns cannot be specified.

Logical axis 2

Logical axis 1

a) Radius

End position

MCW

More than 180°

180° max.

Center point
when R is a
positive value

Center
point when
R is a negative
value

R

Program current position

End position

R

INFO
6

8.2 Axis Move Commands

C
om

m
an

d
R

ef
er

en
ce
(4) Programming Examples

Programming examples of the circular interpolation command (MCW, MCC) in ABS mode are shown below.
The turning direction is specified by MCW (clockwise) and MCC (counterclockwise), and the arc angle is speci-
fied by the radius reference value.

Turning
Direction

Arc Angle Programming Example

Clockwise
(MCW)

180° or less

(Radius reference
value > 0)

ABS;

FMX T30000000;

PLN [A1][B1];

MCW [A1]1000 [B1]1000 R1000 F2000; “MCW (Clockwise)”

END;

Fig. 8.34 Radius Designating Clockwise Circular
Interpolation Command (MCW)

180° or more

(Radius reference
value < 0)

ABS;

FMX T30000000;

PLN [A1][B1];

MCW [A1]1000 [B1]1000 R-1000 F2000; “MCW (Clockwise)”

END;

Fig. 8.35 Radius Designating Clockwise Circular
Interpolation Command (MCW)

EXAMPLE

A1

Clockwise circular interpolation (MCW)

B1

Radius = 1000

End position

Program current
position (0,0)

(1000,1000)

Arc angle
180° or less

Center point
(1000,0)

Clockwise circular interpolation (MCW)

Radius = 1000

End position
(1000,1000)

Arc angle
180 or more

A1

B1

Center point
(0,1000)

Program current position
(0,0)
8-77

8 Command Reference

8.2.4 Clockwise/Counterclockwise Circular Interpolation with Radius Designation (MCW, MCC)

8-7
Turning
Direction

Arc Angle Programming Example

Counter-
clockwise

(MCC)

180° or less

(Radius reference
value > 0)

ABS;

FMX T30000000;

PLN [A1][B1];

MCC [A1]1000 [B1]1000 R1000 F2000; “MCC (Counterclockwise)”

END;

Fig. 8.36 Radius Designating Counterclockwise Circular Interpolation
Command (MCC)

180° or more

(Radius reference
value < 0)

ABS;

FMX T30000000;

PLN [A1][B1];

MCC [A1]1000 [B1]1000 R-1000 F2000; “MCC (Counterclockwise)”

END;

Fig. 8.37 Radius Designating Counterclockwise Circular Interpolation
Command (MCC)

Counterclockwise
circular interpolation
(MCC)

Radius = 1000

End position
(1000,1000)

Arc angle
180° or less

A1

B1

Center point
(0,1000)

Program
current
position
(0,0)

A1

Counterclockwise
circular interpolation
(MCC)

B1

Radius = 1000

End position
(1000,1000)

Arc angle
180°or more

Center point
(1000,0)

Program
current
position
(0,0)
8

8.2 Axis Move Commands

C
om

m
an

d
R

ef
er

en
ce
8.2.5 Clockwise/Counterclockwise Helical Interpolation with Center Position Desig-
nation (MCW, MCC)

(1) Overview
The Clockwise/Counterclockwise Helical Interpolation with Center Position Designation command (MCW,
MCC) simultaneously executes a linear interpolation movement while moving on the circle (circular interpola-
tion) determined by the designated center point position.
The helical interpolation feed speed is calculated by using the tangential speed for circular interpolation and com-
posite speed for linear interpolation.

• MCW: Helical Interpolation command for Clockwise (CW)
• MCC: Helical Interpolation command for Counterclockwise (CCW)

• Be sure to specify the plane for circular interpolation by using the Coordinate Plane Setting command
(PLN) before executing the Helical Interpolation command (MCW or MCC).
Use logical axis 1 and logical axis 2 to specify the end positions and center points of circle of the horizontal
and vertical axes of the designated plane.

• Specify the axes for the end position and center position in the same order as the axes are specified in the
PLN command.

• Any axis that has not been specified in the plane designation can be specified as a linear interpolation axis.
The axis does not need to be at right angles to the interpolation plane.

For an axis movement initiated by execution of the helical interpolation command MCW or MCC, an in-position check to
check whether the axis enters the positioning completion range will not be executed.
Use the PFN command to execute an in-position check if required.

Motion Programs Sequence Programs

Applicable Not applicable

• The linear interpolation axis specified for a Clockwise/Counterclockwise Helical Interpolation (MCW, MCC)
command can be either a linear axis or a rotary axis. Depending on the axis movement in the linear interpo-
lation portion, the helical interpolation path may not be a helical shape. When programming, be sure to
check the path to make sure that there are no tools or other obstacles in the way of the workpiece.
Failure to carry out this check may result in damage to equipment, serious personal injury, or even death.

CAUTION

IMPORTANT

INFO
8-79

8 Command Reference

8.2.5 Clockwise/Counterclockwise Helical Interpolation with Center Position Designation (MCW, MCC)

8-8
(2) Format

(3) Setting Items for MCW and MCC Commands
Motion Image

a) Interpolation feed speed

For the helical interpolation commands (MCW and MCC), the interpolation feed speed is calculated with the
tangential speed for circular interpolation and the composite speed for the linear interpolation axis.

Item Unit Usable Data
End position

Reference unit

Number of turns
Interpolation feed speed Reference unit/min

� Directly designated value
� Double integer type register (Indirect designation)

Note: The number of turns and interpolation feed speed can be omitted.

MCW [Logical axis name 1] End position [Logical axis name 2] End position U Center point position V Center point position

[Logical axis name 3] End position for linear interpolation T Number of turns F Interpolation feed speed ;

Center point position

Reference unit

Number of times of turn

Logical axis 3

Logical axis 1

Logical axis 2

End position
(Same as for circular interpolation)

Center position
(Same as for circular
 interpolation)

Linear interpolation
portion

Circular interpolation portion

Program
current position

a) Interpolation
 feed speed
 (Tangential speed)

MCC command block: MCC [X]- [Y]- U- V- [Z]- F300;

F = 300 = Vx + Vy + Vz (reference units/min)
2 2

Vx (reference units//min)

Vy (reference units/min)

Interpolation feed speed
(Composite speed of three axes)

Vz (reference units/min)

2

Z

X

Y

0

8.2 Axis Move Commands

C
om

m
an

d
R

ef
er

en
ce
(4) Programming Examples

A programming example of a clockwise helical interpolation command (MCC) in ABS mode is shown below.

Fig. 8.38 Center Point Position Designating Clockwise Helical Interpolation
Command (MCC) Programming Example

ABS;

FMX T30000000;

PLN [A1][B1];

MCC [A1]1000 [B1]0 U0 V0 [C1]500 F2000;

END;

EXAMPLE

Circle center point
(0,0,0)

500 End position

Program
current
position Circular interpolation

end position

1000

Linear interpolation
portion

F

B1

A1

C1
8-81

8 Command Reference

8.2.6 Clockwise/Counterclockwise Helical Interpolation with Radius Designation (MCW, MCC)

8-8
8.2.6 Clockwise/Counterclockwise Helical Interpolation with Radius Designation
(MCW, MCC)

(1) Overview
The Clockwise/Counterclockwise Helical Interpolation with Radius Designation command (MCW, MCC) simul-
taneously executes a linear interpolation movement while moving on the circle (circular interpolation) deter-
mined by the designated radius.
The helical interpolation feed speed is calculated by using the tangential speed for circular interpolation and the
composite speed for linear interpolation.

• MCW: Helical Interpolation command for Clockwise (CW)
• MCC: Helical Interpolation command for Counterclockwise (CCW)

• Be sure to specify the plane for circular interpolation by using the Coordinate Plane Setting command
(PLN) before executing the Helical Interpolation command (MCW or MCC).
Use logical axis 1 and logical axis 2 to specify the end positions and center points of circle of the horizontal
and vertical axes of the designated plane.

• Specify the axes for the end position and center position in the same order as the axes are specified in the
PLN command.

• Any axis that has not been specified in the plane designation can be specified as a linear interpolation axis.
The axis does not need to be at right angles to the interpolation plane.

For an axis movement initiated by execution of the helical interpolation command MCW or MCC, an in-position check to
check whether the axis enters the positioning completion range will not be executed.
Use the PFN command to execute an in-position check if required.

(2) Format

Motion Programs Sequence Programs

Applicable Not applicable

• The linear interpolation axis specified for a Clockwise/Counterclockwise Helical Interpolation (MCW, MCC)
command can be either a linear axis or a rotary axis. Depending on the axis movement in the linear interpo-
lation portion, the helical interpolation path may not be a helical shape. When programming, be sure to
check the path to make sure that there are no tools or other obstacles in the way of the workpiece.
Failure to carry out this check may result in damage to equipment, serious personal injury, or even death.

CAUTION

IMPORTANT

INFO

Item Unit Usable Data
End position

Reference unit

Center point position

Radius

Interpolation feed speed Reference units/min

� Directly designated value
� Double integer type register (Indirect designation)

MCW [Logical axis name 1] End position [Logical axis name 2] End position R Radius

[Logical axis name 3] End position for linear interpolation F Interpolation feed speed ;

Reference unit

Reference unit

Notes: 1. The interpolation feed speed can be omitted.
2. With the radius designating helical interpolation command, the number of turns cannot be designated.
2

8.2 Axis Move Commands

C
om

m
an

d
R

ef
er

en
ce
(3) Setting Items for MCW and MCC Commands
Motion Image

The designation methods of the radius and end position for the radius designating helical interpolation command are the
same as for the radius designating circular interpolation command.

Additionally, the designation method of the interpolation feed speed is the same as for the center position designating heli-
cal interpolation command.

(4) Programming Examples

A programming example of a radius designating counterclockwise helical interpolation command (MCC) is
shown below.

Fig. 8.39 Radius Designating Counterclockwise Helical
Interpolation Command (MCC)

Logical axis 3

Logical axis 1

Logical axis 2

End position
(Same as for circular interpolation)

Radius
(Same as for circular interpolation)

Linear interpolation
portion

Circular interpolation portion
Program
current position

Interpolation feed speed
(Same as for center point
designating helical
interpolation)

INFO

ABS;

FMX T30000000;

PLN [A1][B1];

MCC [A1]1000 [B1]0 R1000 [C1]500 F2000;

END;

EXAMPLE

500 End position

Program
current position

Circular interpolation
end position

Circular interpolation portion

Radius 1000
1000

Linear interpolation
portion

F

B1

A1

C1
8-83

8 Command Reference

8.2.7 Zero Point Return (ZRN)

8-8
8.2.7 Zero Point Return (ZRN)

(1) Overview
The Zero Point Return (ZRN) command executes the zero point return operation. Up to 16 axes can be desig-
nated simultaneously. An axis unspecified in the command block will not move. The resulting stop position is set
as the machine coordinate origin.

Fig. 8.40 Movement Path with ZRN Command

When the ZRN command is executed, the returned position is set as the machine coordinate origin. At the same
time, the work coordinate system previously set by Current Position Set (POS) is cancelled.

After the ZRN command has been executed, the machine coordinate system will be the same as the work coordi-
nate system. Until the next time that Current Position Set (POS) is executed, Move ON Machine Coordinates
(MVM) will be ineffective, even if it is designated.

Refer to 8.3.1 Current Position Set (POS) for details of the machine coordinate system and work coordinate sys-
tem.

Request for temporary stop of program is disabled during ZRN command execution. To stop the operation on
the way, execute request for stop of program.

Refer to 4.3.3 Work Registers for information on Program Pause Request and Program Stop Request signals.

(2) Format

Motion Programs Sequence Programs

Available Not Available

Logical axis 3

Logical axis 1

Logical axis 2

Machine coordinate
system origin

Program
current position

IMPORTANT

... ;

Note: Always code “0” after each logical axis name.

ZRN [Logical axis name 1] 0 [Logical axis name 2] 0 [Logical axis name 3] 0
4

8.2 Axis Move Commands

C
om

m
an

d
R

ef
er

en
ce
(3) Setting Items for ZRN Command

(a) Zero Point Return Methods

Use motion setting parameter OW3C (Zero point return method) to set the zero point return method for
each axis.
The table below lists the available zero point return methods.
Refer to the relevant motion module manual for details on each method.

(b) Zero Point Return Speed

The zero point return speed depends on the applied zero point return method.
For details, refer to the relevant motion module manual.

(4) Programming Examples

A programming example of a ZRN command in ABS mode is shown below.

Zero Point Return Method
Setting

(OW3C)
SVA-01

SVB-01/
Built-in SVB

PO-01

DEC1 + Phase-C pulse 0 Available Available N/A

ZERO signal 1 Available Available N/A

DEC1 + ZERO signal 2 Available Available Available

Phase-C pulse 3 Available Available N/A

DEC2 + ZERO signal 4 Available N/A Available

DEC1 + LMT + ZERO signal 5 Available N/A Available

DEC2 + Phase-C signal 6 Available N/A N/A

DEC1 + LMT + Phase-C signal 7 Available N/A N/A

C pulse only 11 Available Available N/A

P-OT & Phase-C pulse 12 Available Available N/A

P-OT 13 Available Available N/A

HOME LS & Phase-C pulse 14 Available Available N/A

HOME LS 15 Available Available N/A

N-OT & Phase-C pulse 16 Available Available N/A

N-OT 17 Available Available N/A

INPUT & Phase-C pulse 18 Available Available N/A

INPUT 19 Available Available N/A

ZRN [A1]0 [B1]0;

END;

EXAMPLE

B1

A1

Program
current position

Zero point return operation

The stop position is set to the machine coordinate origin (0, 0).
8-85

8 Command Reference

8.2.8 Linear Interpolation with Skip Function (SKP)

8-8
8.2.8 Linear Interpolation with Skip Function (SKP)

(1) Overview
The Linear Interpolation with Skip Function command (SKP) is an extended command of the Linear Interpola-
tion command (MVS). When the skip input signal is turned ON during axis movement by a SKP command, the
moving axis is decelerated to a stop and the remaining travel distance is cancelled.
A use of a SKP command enables the programming of motion control that can respond to external conditions.
The skip signal is input to the control signal for the MSEE command or the control register of M-EXECUTOR.

Fig. 8.41 Axis Movement by SKP Command

The moving axis decelerates to a stop when the skip input signal is turned ON. The SKP command, however,
remains in effect until the positioning completion signal is turned ON.

(2) Format

Motion Programs Sequence Programs

Applicable Not applicable

Speed (V)

Time (t)

Cancelled moving amount

Skip input signal
(Control signal bit 8 or 9)

Linear interpolation
Reference position for
SKP command

The position where the axis is stopped by
skip input signal (ON)

Skip input signal 1 (SS1) Bit 8 of control signal

Skip input signal 2 (SS2) Bit 9 of control signal

Skip Input SignalSkip Input Signal Selection

IMPORTANT

...

Item Unit Usable Data

Reference position Reference unit

Interpolation feed speed Reference unit/min

� Directly designated value
� Double integer type register (Indirect designation)

Skip input signal selection -
� Directly designated number 1 or 2
� Double integer type register (Indirect designation)

SKP [Logical axis name 1] Reference position [Logical axis name 2] Reference position [Logical axis name 3] Reference position

F Interpolation feed speed SS Skip input signal selection ;

Note: The interpolation feed speed can be omitted.
6

8.2 Axis Move Commands

C
om

m
an

d
R

ef
er

en
ce
(3) Programming Examples

A programming example of a SKP command in ABS mode is shown below.

Fig. 8.42 SKP Command Programming Example

FMX T30000000;

ABS;

IAC T1000;

IDC T1000;

SKP [A1]4000 [B1]3000 [C1]2000 F50000 SS1;

END;

EXAMPLE

Target position

C1

A1

B1

2000

3000

4000

Position where the axis stopped after
deceleration by skip input signal

Program
current position
8-87

8 Command Reference

8.2.9 Set Time Positioning (MVT)

8-8
8.2.9 Set Time Positioning (MVT)

(1) Overview
The Set Time Positioning command (MVT) is an extended Positioning command (MOV).
The MVT command can simultaneously move up to 16 axes. An axis unspecified in the MVT command block
will not move.
With the MVT command, the feed speed of each axis is adjusted to complete positioning in the specified time.
The MVT command does not use an interpolation operation, and there is no restriction on completing the posi-
tioning for all the specified axes simultaneously.
There is a time lag caused by the acceleration/deceleration setting.

Fig. 8.43 Axis Movement with MVT Command

If an override is used, positioning will not complete in the specified time.
If a filter is used, the positioning time will be delayed by the filter time constant.

Fig. 8.44 Positioning Time Delay When a Filter is used

• If the positioning time is set to 0, an alarm will occur in the motion program.

• If the moving amount of any of the specified axes is set to 0, an alarm will occur in the motion program.

(2) Format

Motion Programs Sequence Programs

Applicable Not applicable

Speed (V)

Time

Positioning time

Clamped feed speed

Feed speed

Filter time constant

IMPORTANT

...

Item Unit Usable Data

Position reference Reference unit

Positioning time ms

� Directly designated value
� Double integer type register (Indirect designation)

MVT [Logical axis name 1] Reference position [Logical axis name 2] Reference position [Logical axis name 3] Reference position

T Positioning time ;
8

8.2 Axis Move Commands

C
om

m
an

d
R

ef
er

en
ce
The positioning time reference range is between 1 and 2147483647 (ms).
Inside the MP2000 Machine Controller, the feed speed during MVT command execution is calculated according
to the specified positioning time and moving amount.
This calculation does not include acceleration (acceleration = 0) as shown below.

The actual operation when the acceleration time T1 is less than the deceleration time T2 will be as shown below.

The feed speed set by VEL command will be changed accordingly. After executing the MVT command, reset the
feed speed by using VEL command.

An in-position check is executed for axis movement by MVT command execution, as well as for MOV command execu-
tion, to verify that the axis enters the positioning completed range.

(3) Programming Examples

A programming example of an MVT command in ABS mode is shown below.

Fig. 8.45 MVT Command Programming Example

Positioning time T

Moving amount L
(Travel distance)

Calculated
feed speed V

Speed (V)

Time (t)

Positioning time T

Acceleration time T1 Deceleration time T2

Moving amount L
(Travel distance)

Calculated
feed speed V

Speed (V)

Time (t)

INFO

ABS;

ACC [A1]1000;

DCC [A1]1000;

MVT [A1]4000 T1000;

END;

EXAMPLE

A1
End position

Program
current
position

4000

Positioning in
one second
8-89

8 Command Reference

8.2.10 External Positioning (EXM)

8-9
8.2.10 External Positioning (EXM)

(1) Overview
The External Positioning command (EXM) is an extended Positioning command (MOV).
The EXM command executes positioning by using an incremental value to move the axis the specified moving
amount when the external positioning signal is turned ON. If the external positioning signal is not turned ON, the
axis completes positioning at the reference position specified in the EXM command block.
Only one axis can be specified in an EXM command block.

Fig. 8.46 Movement by EXM Command

When a negative value is specified for the moving amount, the axis decelerates to a stop and then moves in the
negative direction.

• For the external positioning signal, refer to the relevant motion module manual.

• The External Positioning command (EXM) cannot be used with a PO-01 module.
If used, an alarm will occur in the motion program.

• Special care must be taken to use the external latch input signal, because it is also used for the zero point
return operation.

(2) Format

Motion Programs Sequence Programs

Applicable Not applicable

Speed (V)

Time (t)

Moving amount from when
the external positioning
signal is input

External positioning signal

IMPORTANT

Item Unit Usable Data

Reference position Reference unit

Moving amount from when the
external positioning signal is input Reference unit

� Directly designated value
� Double integer type register (Indirect designation)

EXM [Logical axis name 1] Reference position D Moving amount from when the external positioning signal is input ;
0

8.2 Axis Move Commands

C
om

m
an

d
R

ef
er

en
ce
(3) Setting Items for EXM Command
Motion Image

a) Moving amount from when the external positioning signal is input

Set the moving amount using an incremental value after the external positioning signal is turned ON.
The reference range is between -2147483648 to +2147483647 (reference unit).

b) External positioning signal

Use bits 4 to 7 (External positioning signal setting) of motion setting parameter OW04 (Function setting
2) to select the external positioning signal.
For details, refer to the relevant motion module manual.

The PO-01 module does not have the external positioning function.

(4) Programming Examples

A programming example of EXM command in ABS mode is shown below.

Speed (V)

Rated speed

Positioning speed
(VEL)

Moving amount
(Same as for MOV command)

Time (t)

Acceleration time
(ACC)

Deceleration time
(DCC)

Acceleration/deceleration type
(Same as for MOV command)

b) External positioning signal

a) Moving amount from when
 the external positioning signal is input

INFO

ABS;

ACC [A1]1000;

DCC [A1]1000;

VEL [A1]2000;

DL00000 = 1000;

EXM [A1]4000 DDL00000;

END;

EXAMPLE
8-91

8 Command Reference

8.3.1 Current Position Set (POS)

8-9
8.3 Axis Control Commands
This section describes the axis control commands.

8.3.1 Current Position Set (POS)

(1) Overview
The Current Position Set command (POS) changes the current position to a desired coordinate value to create a
new coordinate system. In this manual, the newly set coordinate system is referred to as the “work coordinate
system” while the original coordinate system of machine is referred to as the “machine coordinate system.”
Move commands coded after a POS command will be executed to move axes in the work coordinate system.

Fig. 8.47 Work Coordinate System Setting by POS Command

The work coordinate system can be changed as often as desired by using the POS command. The machine coor-
dinate system must be set in advance. The machine coordinate system is not affected by the POS command.
Up to 16 axes can be designated in a POS command block. The work coordinate system for an axis not designated
in the POS command block will not be constructed or updated.
Move commands in a work coordinate system cannot exceed the maximum programmable value when converted
to coordinates in the machine coordinate system.

Motion Programs Sequence Programs

Applicable Not applicable

• Care is required with the Current Position Set (POS) command.
The Current Position Set (POS) command is used to create new work coordinate system values. If POS is specified
incorrectly, subsequent move operations will be entirely different. Before starting operations, be sure to check that the
work coordinate system is specified correctly.

Failure to carry out this check may result in damage to equipment, serious personal injury, or even death.

CAUTION

Coordinate System Description Remarks

Machine Coordi-
nate System

Original coordinate system of machine
The position for zero point return is the ori-
gin (0).

Work Coordinate
System

Coordinate system constructed by the user
defined position

A new coordinate system constructed by
POS command execution

(Logical axis 1)

Logical axis 1

Logical axis 1

(Logical axis 2)

Logical axis 2
Logical axis 2

Work coordinate system

Machine coordinate system

Current position

(0,0)

(0,0)

Zero point return position
(Origin of machine
 coordinate system)

Origin set by POS command
execution
(Origin of work coordinate system)
2

8.3 Axis Control Commands

C
om

m
an

d
R

ef
er

en
ce
The following table shows the setting status of the machine coordinate system and the work coordinate system.

* 1. Default setting: The current position is set as the machine coordinate origin when the power is turned
ON. If the Zero Point Return operation is then not executed, the software limit switch function will not
be effective.

* 2. Yes: The machine coordinate origin is set using the position information in the absolute position detec-
tion encoder.

* 3. Cancelled: The previously set work coordinate system is cancelled, and the work coordinate system is
the same as the machine coordinate system.

• For infinite-length axes, set a value within the range of 0 to POSMAX.
If a value outside the setting range is set for any infinite-length axis, an alarm will occur in the motion pro-
gram.

• When the zero point return operation is executed without using a ZRN command, such as zero point return
operation executed from the ladder program, the work coordinate system will not be cancelled.

(2) Format

(3) Programming Examples

A POS command programming example is shown below.

Table 8.1 Coordinate System Setting Timing

Coordinate System Setting
Timing

Motion Fixed Parameter 30: Encoder Selection

0 or 2: Incremental Encoder/Absolute
Encoder (Incremental Encoder is Used)

1: Absolute Encoder

After power ON
Machine coordinate system: Default setting *1

Work coordinate system: Cancelled *3

Machine coordinate system: Yes *2

Work coordinate system: Cancelled

After Zero Point Return
command (ZRN)

Machine coordinate system: Set

Work coordinate system: Cancelled
Work coordinate system: Cancelled

After POS command Work coordinate system: Set Work coordinate system: Set

After Zero Point Set (ZSET)
command

Machine coordinate system: Set Machine coordinate system: Set

IMPORTANT

... ;

Item Unit Usable Data

Coordinate axis Reference unit
� Directly designated value
� Double integer type register
 (Indirect designation)

POS [Logical axis name 1] Coordinate axis [Logical axis name 2] Coordinate axis

ABS;

MOV [A1]1000 [B1]2000;

POS [A1]0 [B1]0;

MOV [A1]3000 [B1]4000;

DL00000 = IL8010;

DL00002 = IL8090;

POS [A1]DL00000 [B1]DL00002;

END;

" Absolute mode

" Positioning

" Set work coordinate system

" Positioning

" Get Machine Coordinate System Calculated Position (CPOS) of Axis A1

" Get Machine Coordinate System Calculated Position (CPOS of Axis B1

" Cancel work coordinate system

EXAMPLE
8-93

8 Command Reference

8.3.2 Move On Machine Coordinates (MVM)

8-9
8.3.2 Move On Machine Coordinates (MVM)

(1) Overview
The Move ON Machine Coordinates (MVM) command is used to move axes in a machine coordinate system
after a work coordinate system that is different from the machine coordinate system has been set by Current Posi-
tion Set (POS).

Specifying an MVM command for an axis move command temporarily moves the axis to the absolute coordinate
position in the machine coordinate system. During execution of an MVM command, the axis moves in ABS
mode regardless of the movement mode setting.
The MVM command is valid only in the MVM command coded block. For example, the axis moves in the work
coordinate system in the linear interpolation (MVS) in the next block or following blocks.

(2) Format

(3) Programming Examples

An MVM command programming example is shown below.

Fig. 8.48 Move On Machine Coordinates Command (MVM) Programming Example

Motion Programs Sequence Programs

Applicable Not applicable

• The Move ON Machine Coordinates (MVM) command is used to position the coordinate positions in a
machine coordinate system. If the machine coordinate origin is designated without being verified, unex-
pected move operations will result. Before starting operations, be sure to check that the position designated
in the machine coordinate system is correct.
Failure to carry out this check may result in damage to equipment, serious personal injury, or even death.

CAUTION

MVM MOV ;

or

MVM MVS ;

EXAMPLE

MVS [A1]50 [B1]50 F1000;MVM MVS [A1]50 [B1]150 F1000;

250

150

B1
B1

100

150 Machine coordinate system

(0,0)

(0,0)

Work coordinate system

When MVM command is coded When MVM command
is not coded

10050

A1

A1

Program current position
4

8.3 Axis Control Commands

C
om

m
an

d
R

ef
er

en
ce
8.3.3 Program Current Position Update (PLD)

(1) Overview
The Program Current Position Update command (PLD) updates a program current position that has been shifted
by a manual intervention, etc.
If an axis movement is executed outside a motion program while the motion program is running (such as when an
axis is moved by JOG, STEP, or a user function), the program current position will not be updated. If the motion
program is executed in this status, the axis will move to the position shifted for the moving amount by manual
intervention. To solve this problem, a PLD command is used to update the program current position.

(2) Format

(3) Programming Examples
PLD programming examples are shown below.

(a) Manual intervention while the motion program is running

(b) Axis is moved within the motion program user function

The PLD command can be executed by the user in some applications. The PLD command cannot be used in some of the
applications where manual intervention is required while the motion program is running.

Motion Programs Sequence Programs

Applicable Not applicable

PLD [Logical axis name 1] [Logical axis name 2] [Logical axis name 3] ... ;

MOV [A1]1000;

 " Axis [A1] is moved by JOG during this command block is being executed.

PLD [A1]; " Updates the program current position.

MOV [A1]2000;

MOV [A1]1000;

UFC FNC10 MB000000 IW0100 MB000020; " Axis [A1] is moved by a user function

PLD [A1]; " Updates the program current position.

MOV [A1]2000;

EXAMPLE

EXAMPLE

INFO
8-95

8 Command Reference

8.3.4 In-Position Check (PFN)

8-9
8.3.4 In-Position Check (PFN)

(1) Overview
The In-Position Check command (PFN) verifies whether the axis being moved by an interpolation related com-
mand enters the NEAR position range (NEAR signal output width).
For an axis that is being moved by interpolation related command MVS, MCW, MCC, or SKP, an in-position
check is normally not executed. Use a PFN command to verify that the axis enters the NEAR position range.

Fig. 8.49 In-position Check Executed by PFN Command

Bit 3 (NEAR position) of motion monitoring parameter IW0C turns ON when the following condition is sat-
isfied.
Use INP command to set the NEAR signal output width.

If the NEAR signal output width is set to 0, bit 3 of motion monitoring parameter IW0C turns ON when the distribu-
tion of the reference value, including the filter, is completed.

(2) Format

Motion Programs Sequence Programs

Applicable Not applicable

 MPOS – APOS ≤ NEAR signal output width

MPOS : Motion monitoring parameter IL12 (Machine coordinate system reference position)

APOS : Motion monitoring parameter IL16 (Machine coordinate system feedback position)

Interpolation related command block

To the next command block

In-position check
executed by PFN command

Distribution completed
Speed V

Time (t)

NEAR position signal ON

Motion monitoring parameter
IW��0C, bit 3: NEAR position

INFO

• When coding a PFN command in the interpolation related command block
MVS [Logical axis name 1] - [Logical axis name 2] - [Logical axis name 3] ... PFN;

• When coding a PFN command independently
PFN [Logical axis name 1] [Logical axis name 2] [Logical axis name 3]...;
6

8.3 Axis Control Commands

C
om

m
an

d
R

ef
er

en
ce
(3) Programming Examples
PFN command programming examples are shown below.

(a) When coding a PFN command in the interpolation related command block

(b) When coding a PFN command independently

Fig. 8.50 PFN Command Programming Example

MVS [A1]1000 F20000 PFN;

MOV [A1]3000;

END;

MVS [A1]1000 F20000;

PFN [A1];

MOV [A1]3000;

END;

EXAMPLE

EXAMPLE

Movement by MVS command execution

Speed (V)

Time (t)

Movement by MOV command execution

NEAR signal output width
set by INP command
8-97

8 Command Reference

8.3.5 Set In-Position Range (INP)

8-9
8.3.5 Set In-Position Range (INP)

(1) Overview
The Set In-Position Range command (INP) is used to set the NEAR signal output width (in-position check
width). Up to 16 axes can be designated in an INP command block. Motion setting parameter OL20 (NEAR
signal output width) for each designated axis is updated.
The reference range is between 1 and 65535 (reference unit).

Fig. 8.51 INP Command

The SVR module does not have motion setting parameter OL20 (NEAR signal output width).
With the SVR module, the NEAR signal output width is treated as 0 (zero).

(2) Format

Motion Programs Sequence Programs

Applicable Not applicable

In-position check width
specified by INP command

Speed (V)

Motion monitoring parameter
IW��0C, bit 3: NEAR position

Motion monitoring parameter
IL��16: Machine coordinate system
feedback position (APOS)

Interpolation reference
pulses

In-position check starts.

To the next block

Time (t)

INFO

...

Item Unit Usable Data

NEAR signal output width Reference unit
� Directly designated value

� Double integer type register (Indirect designation)

INP [Logical axis name 1] NEAR signal output width [Logical axis name 2] NEAR signal output width ;
8

8.3 Axis Control Commands

C
om

m
an

d
R

ef
er

en
ce
(3) Programming Examples

An INP command programming example is shown below.

EXAMPLE

ABS;

MOV [A1]0 [B1]0; “ Positioning to the zero point

INP [A1]100 [B1]200; “ Sets the in-position check width

MVS [A1]1000 PFN;

MVS [B1]1000 PFN;

MVS [A1]-1000 ;

END;

Fig. 8.52 INP Command Programming Example

B1

A1
1000

200

100

(0, 0)-1000

1000
8-99

8 Command Reference

8.3.6 Coordinate Plane Setting (PLN)

8-1
8.3.6 Coordinate Plane Setting (PLN)

(1) Overview
The Coordinate Plane Setting command (PLN) defines two logical axes set in the parameters to designate a coor-
dinate plane. Always execute a PLN command before executing a Circular Interpolation command (MCW,
MCC) and Helical Interpolation command (MCW, MCC).
The designated coordinate plane remains in effect until it is reset by another PLN command or until the END
command.

(2) Format

(3) Programming Examples

 A PLN command programming example is shown below.

Fig. 8.53 PLN Command Programming Example

Designate an end position and a center position for circular interpolation and helical interpolation in the same order used to
specify the axes in the PLN command block.

Motion Programs Sequence Programs

Applicable Not applicable

 Horizontal axis name Vertical axis name

PLN [Logical axis name 1] [Logical axis name 2] ;

 Designate two axes of a coordinate plane.

PLN[A1][B1]; " Designates the plane composed of axes A1 and B1

MCW [A1]50 [B1]50 R50 F1000;

EXAMPLE

B1

50

50

(0,0)
A1

End position

Program
current position

INFO

PLN [] [] ;

MCC [A1]1500 [B1]4000 U2500 V1000 F150;

Logical axis
name 1

Logical axis
name 2
00

8.4 Program Control Commands

C
om

m
an

d
R

ef
er

en
ce
8.4 Program Control Commands
This section describes program control commands including branching commands and repeat commands.

8.4.1 Branching Commands (IF ELSE IEND)

(1) Overview

The branching commands IF ELSE IEND execute the block between IF and ELSE when a conditional expres-
sion is satisfied. If the conditional expression is not satisfied, the block between ELSE and IEND is executed.
ELSE can be omitted. If it is omitted and the conditional expression is not satisfied, execution will continue from
the block after IEND.

Nesting of the branching commands IF ELSE IEND is restricted to a maximum of eight levels.

(2) Format

Motion Programs Sequence Programs

Applicable Applicable

Conditional
expression

Process 1 Process 2

Not satisfied

Satisfied

IMPORTANT

IF (conditional_expression);

 ··· (Process_1)

ELSE;

 ··· (Process_2)

IEND;
8-101

8 Command Reference

8.4.1 Branching Commands (IF ELSE IEND)

8-1
The conditional expressions that can be used for the branching commands are as follows.

(a) Bit Data Comparison

(b) Integer/Double Integer/Real Number Data Comparison

(3) Programming Examples

A programming example of branching commands (IF ELSE IEND) is shown below.

Format

• Use == (MATCH) command for data comparison.

• Specify a register on the left, and 0 or 1 on the right.

IF MB000000 == 0; "MB000000 = 0
IF MB000000 == 1; "MB000000 = 1

Operations in
Conditional
Expression

• &, ⏐, and ! (AND, OR, and NOT) can be used.

IF (MB000000 & MB000001) == 1; "MB000000=1 AND MB000001=1
IF (MB000000 & !MB000001) == 1; "MB000000=1 AND MB000001=0
IF (MB000000 | MB000001) == 1; "MB000000=1 OR MB000001=1
IF (MB000000 | !MB000001) == 1; "MB000000=1 OR MB000001=0

Syntax Error
Examples

• When a <> (MISMATCH) is used:

IF MB000000 <> 0; => Syntax error

• When a numerical value is specified on the left, or a register is specified on the right:

IF 1 == MB000000; => Syntax error
IF MB000000 == MB000001; => Syntax error

• No data comparison command:

IF MB000000; => Syntax error
IF (0); => Syntax error

• When more than one data comparison command is used:

IF (MB000000 == 0) & (MB000001 == 1); => Syntax error

Format

• All data comparison commands (==, <>, >, <, >=, <=) can be used.

• Specify a register either on the left or right.

IF MW00000 == 3; "MW00000 = 3
IF ML00000 <> ML00002; "ML00000 ≠ ML00002
IF 1.23456 >= MF00000; "1.23456 ≥ MF00000

Operations in
Conditional
Expression

• Arithmetic operations and logic operations can be used.

IF MW00000 == (MW00001/3); "MW00000 = (MW00001 ÷ 3)
IF (ML00000 & F0000000H) <> ML00002; "(ML00000 ∧ F0000000H) ≠ ML00002
IF 1.23456 >= (MF00000 * MF00002); "1.23456 ≥ (MF00000 × MF00002)

Syntax Error
Examples

• When a constant is specified both on the left and right:

IF 0 == 3; => Syntax error
IF (3.14*2*1000) > 9000.0; => Syntax error

• No comparison command:

IF MW000000; => Syntax error
IF (-1); => Syntax error

• When more than one data comparison command is used:

IF (MW00000 < 0) & (MW000001 > 0); => Syntax error

IF MB000000== 1;

 MOV [A1] 10000; " If MB000000 is ON, A1 starts positioning.

ELSE;

 MOV [B1] 10000; " If MB000000 is OFF, B1 starts positioning.

IEND;

EXAMPLE
02

8.4 Program Control Commands

C
om

m
an

d
R

ef
er

en
ce
8.4.2 Repeat (WHILE WEND)

(1) Overview
The Repeat commands (WHILE WEND) repeatedly execute the blocks from WHILE and WEND as long as the
conditional expression is satisfied. When the conditional expression is no longer satisfied, program execution
will jump to the block after WEND.

• Nesting of the repeat commands (WHILE WEND) is restricted to a maximum of eight levels.

• If the repeated program section is created using only commands for which processing is completed in one
scan, the Machine Controller may be overloaded by the scan processing, resulting in scan time over or
watchdog timer error.
When using a command for which processing is completed in one scan, be sure to enter EOX (SCAN
WAIT) or TIM (DWELL TIME).

Refer to 7.5 Commands and Execution Scans for information on the commands for which processing is
completed in one scan.

(2) Format

Motion Programs Sequence Programs

Applicable Applicable

Conditional
expression

Process

Not satisfied

Satisfied

IMPORTANT

WHILE (conditional_expression) ;

 ··· ;

(Process) ;

 ··· ;

WEND ; " End of Repeat
8-103

8 Command Reference

8.4.2 Repeat (WHILE WEND)

8-1
The conditional expressions that can be used for repeat commands are as follows.

(a) Bit Data Comparison

(b) Integer/Double Integer/Real Number Data Comparison

Format

• Use == (MATCH) command for data comparison.

• Specify a register on the left, and 0 or 1 on the right.

WHILE MB000000 == 0; "MB000000 = 0
WHILE MB000000 == 1; "MB000000 = 1

Operations in
Conditional
Expression

• &, ⏐, and ! (AND, OR, and NOT) can be used.

WHILE (MB000000 & MB000001) == 1; "MB000000=1 AND MB000001=1
WHILE (MB000000 & !MB000001) == 1; "MB000000=1 AND MB000001=0
WHILE (MB000000 | MB000001) == 1; "MB000000=1 OR MB000001=1
WHILE (MB000000 | !MB000001) == 1; "MB000000=1 OR MB000001=0

Syntax Error
Examples

• When a <> (MISMATCH) is used:

WHILE MB000000 <> 0; => Syntax error

• When a numerical value is specified on the left, or a register is specified on the right:

WHILE 1 == MB000000; => Syntax error
WHILE MB000000 == MB000001; => Syntax error

• No data comparison command:

WHILE MB000000; => Syntax error
WHILE (0); => Syntax error

• When more than one data comparison command is used:

WHILE (MB000000 == 0) & (MB000001 == 1); => Syntax error

Format

• All data comparison commands (==, <>, >, <, >=, <=) can be used.

• Specify a register either on the left or right.

WHILE MW00000 == 3; "MW00000 = 3
WHILE ML00000 <> ML00002; "ML00000 ≠ ML00002
WHILE 1.23456 >= MF00000; "1.23456 ≥ MF00000

Operations in
Conditional
Expression

• Arithmetic operations and logic operations can be used.

WHILE MW00000 == (MW00001/3); "MW00000 = (MW00001 ÷ 3)
WHILE (ML00000 & F0000000H) <> ML00002; "(ML00000 ∧ F0000000H) ≠ ML00002
WHILE 1.23456 >= (MF00000 * MF00002); "1.23456 ≥ (MF00000 × MF00002)

Syntax Error
Examples

• When a constant is specified both on the left and right:

WHILE 0 == 3; => Syntax error
WHILE (3.14*2*1000) > 9000.0; => Syntax error

• No data comparison command

WHILE MW000000; => Syntax error
WHILE (-1); => Syntax error

• When more than one data comparison command is used:

WHILE (MW00000 < 0) & (MW000001 > 0); => Syntax error
04

8.4 Program Control Commands

C
om

m
an

d
R

ef
er

en
ce
(3) Programming Examples
A programming example of a repeat command (WHILE WEND) is shown below.
With this program example, 10 circles will be drawn.

Fig. 8.54 Repeat Commands (WHILE WEND) Programming Example

MOV [A1] 0 [B1] 0;

MW00100 = 1;

INC;

PLN [A1] [B1];

WHILE MW00100 <= 10 ;

 MCW [A1]0 [B1]0 U50. V50. F8000 ;

 MOV [A1]50. [B1]50.;

 MW00100 = MW00100 + 1;

WEND ;

"Positioning

"Counter preset

"Incremental mode designation

"Coordinate plane designation

"Repeat command

"Circular interpolation

"Positioning

"Counter increments

"End of repeat programming

EXAMPLE

50

B1

Circle 9

Circle 10

A1

Circle 3

Circle 2

Circle 1

50
(0,0)
8-105

8 Command Reference

8.4.3 Parallel Execution (PFORK, JOINTO, PJOINT)

8-1
8.4.3 Parallel Execution (PFORK, JOINTO, PJOINT)

(1) Overview
The Parallel Fork (PFORK) command performs parallel execution for blocks with the designated labels. After
each parallel process has been executed, execution is merged at the label designated by the JOINTO command. A
maximum of four parallel processes can be designated.

For further in formation on the labels, refer to 7.1.2 (1) Label.

Fig. 8.55 Designating Parallel Execution Commands (PFORK, JOINTO, PJOINT)

With the above commands, the labelled blocks (process1, process2, process3,...) designated by the PFORK com-
mand are executed in parallel. After each parallel process has been executed, execution is merged at the label
designated by the JOINTO commands.

These commands enable the designation of any combination of commands for parallel execution, such as axis
move commands and sequence commands, or axis move commands and another axis move commands.

(a) Commands Designated Before PFORK

Values set by commands designated before the PFORK command, e.g., FMX, ABS/INC, F designation, IFP,
PLN, IAC/IDC, are effective in processes executed in parallel for the parallel execution commands.
Commands can also be used to set different values in each of the parallel processes. After merging, process-
ing will continue using the values set in the leftmost process.

Motion Programs Sequence Programs

Applicable Not applicable

 PJOINT
Label X

 JOINTO label X

 PFORK

 JOINTO label X JOINTO Label X

Process 4

 JOINTO label X

Process 1 Process 2 Process 3

Label 1 Label 2 Label 3 Label 4
06

8.4 Program Control Commands

C
om

m
an

d
R

ef
er

en
ce
(b) Parallel Execution Commands in Subprograms

The following restrictions apply to the parallel execution commands in subprograms:

• A maximum of two parallel processes are possible in a subprogram.
• An MSEE command can be coded only in the blocks designated by the first label.

Fig. 8.56 Parallel Execution Commands in Subprograms

• If the same label is used more than once in a program, an error will result (“Duplicate labels are defined”).

• If the number of PFORK branches and the number of labels are different, an error will result.

(2) Format

PFORK

MVS[A1]100.[C1]100. IOW MW10000==1

 PFORK 0001 0002;
0001:MVS [A1]100.[C1]100.;
 JOINTO 0003;
0002:IOW MW10000==1;
 JOINTO 0003;

0003:PJOINT;

0001 0002

0003

IMPORTANT

PFORK Label1 Label 2 Label 3

Label 1: Process 1

 JOINTO Label X;

Label 2: Process 2

 JOINTO Label X;

Label 3: Process 3

 JOINTO Label X;

Label X: PJOINT
8-107

8 Command Reference

8.4.3 Parallel Execution (PFORK, JOINTO, PJOINT)

8-1
(3) Programming Examples

A programming example of parallel execution commands (PFORK, JOINTO, PJOINT) is shown below.

Fig. 8.57 Parallel Execution Command (PFORK, JOINTO, PJOINT) Programming Example

MOV [A1]100. [B1]150.;

MVS [A1]200. [B1]250. F1000;

PFORK 0001 0002 0003;

0001:MVS [A1]300. [B1]100.

JOINTO 0004;

0002:MW12345=MW10000+MW10002;

IOW MB120001==1;

JOINTO 0004;

0003:MVS [C1]100. [D1]100. F3000;

JOINTO 0004;

0004:PJOINT;

MOV [A1]500. [B1]500. [C1]500.;

 •
 •

EXAMPLE

MOV[A1]100.[B1]150.
MVS[A1]200.[B1]250.

PFORK

0001

0004

0002 0003

JOINTO 0004

MW12345=MW10000
 +MW10002;

IOW MB120001==1

JOINTO 0004

MVS[C1]100.[D1]100.

MOV[A1]500.[B1]500.[C1]500.

JOINTO 0004

PJOINT

MVS[A1]300.[B1]100.
08

8.4 Program Control Commands

C
om

m
an

d
R

ef
er

en
ce
8.4.4 Selective Execution (SFORK, JOINTO, SJOINT)

(1) Overview
The Selective Execution commands (SFORK, JOINTO, SJOINT) execute labelled blocks following question
marks (?) when the designated conditional expressions are satisfied. After each parallel process has been exe-
cuted, execution is merged at the block with the label designated by the JOINTO commands. Up to 16 condi-
tional expressions including DEFAULT can be designated.
If not all the designated conditional expressions are satisfied, the labelled block following DEFAULT? is exe-
cuted.
DEFAULT can be designated only in the last conditional expression.
DEFAULT designation can be omitted in motion programs, but not in sequence programs.

• With MP2000 series Machine Controller, the system version number must be Ver.2.66 or later to use the SFORK com-
mand in sequence programs. There is no limitation in the system version number for using the SFORK command in
motion programs.

• The following versions of programming tool MPE720 are required to designate DEFAULT.

Fig. 8.58 Designating Selective Execution Commands (SFORK, JOINTO, SJOINT)

• The conditional expressions are examined in order from conditional expression 1. Even when more than one condi-
tional expression is satisfied, processing is executed from the label that first satisfies the conditional expression.

• When using an SFORK command in motion programs, be sure to code conditions that will be satisfied. If a condition is
not satisfied, processing will remain in wait status at the SFORK command block until the condition is satisfied.

Motion Programs Sequence Programs

Applicable Applicable

MP2000 Series
Machine Controller

Required Version MPE720 Required Version

All models Any version number
MPE720 Ver.5 MPE720 Ver.5.41 or later

MPE720 Ver.6
MPE720 Ver.6.06 or later

MPE720 Ver.6.06 Lite or later

INFO

Process 1

Label 1 Label 2 Label 3 Label 4 Label n

Process 2 Process 3 Process 4 Process 5

JOINTO Label X

Label X

SJOINT

JOINTO Label X JOINTO Label X JOINTO Label X JOINTO Label X

Conditional
expression

1

Conditional
expression

2

Conditional
expression

3

Conditional
expression

4
DEFAULT

INFO
8-109

8 Command Reference

8.4.4 Selective Execution (SFORK, JOINTO, SJOINT)

8-1
(2) Format

The conditional expressions that can be used for selective execution command (SFORK) are as follows.

(a) Bit Type Data Comparison

　　

SFORK Conditional expression 1 ? Label1, Conditional expression 2 ? Label 2, Conditional expression 3 ?
Label 3, Conditional expression 4 ? Label 4,
....., DEFAULT? Label n ;

Label 1: Process 1

 JOINTO Label X

Label 2: Process 2

 JOINTO Label X

Label 3: Process 3

 JOINTO Label X

Label 4: Process 4

 JOINTO Label X

 •

 •

Label n: Process n

 JOINTO Label X

Label X: SJOINT

Format

• Use == (MATCH) command for data comparison.

• Specify a register on the left, and 0 or 1 on the right.

 MB000000 == 0? Label "MB000000 = 0
 MB000000 == 1? Label "MB000000 = 1

Operations in
Conditional
Expressions

• &, ⏐, and ! (AND, OR, and NOT) can be used.

 (MB000000 & MB000001) == 1? Label "MB000000 =1 AND MB000001 = 1
 (MB000000 & !MB000001) == 1? Label "MB000000 =1 AND MB000001 = 0
 (MB000000 | MB000001) == 1? Label "MB000000 =1 OR MB000001 = 1
 (MB000000 | !MB000001) == 1? Label "MB000000 =1 OR MB000001 = 0

Syntax Error
Examples

• When <> (MISMATCH) is used:

 MB000000 <> 0? Label => Syntax error

• When a numerical value is specified on the left, or a register is specified on the right:

 1 == MB000000? Label => Syntax error
 MB000000 == MB000001? Label => Syntax error

• No data comparison command:

 MB000000? Label => Syntax error
 (0)? Label => Syntax error

• When more than one data comparison command is used:

 (MB000000 == 0) & (MB000001 == 1)? Label => Syntax error
10

8.4 Program Control Commands

C
om

m
an

d
R

ef
er

en
ce
(b) Integer/Double Integer/Real Number Data Comparison

Format

• All data comparison commands (==, <>, >, <, >=, <=) can be used.

• Specify a register either on the left or right.

 MW00000 == 3? Label "MW00000 = 3
 ML00000 <> ML00002? Label "ML00000 ≠ ML00002
 1.23456 >= MF00000? Label "1.23456 ≥ MF00000

Operations in
Conditional
Expression

• Arithmetic operation and logic operation can be used.

 MW00000 == (MW00001/3)? Label "MW00000 = (MW00001 ÷ 3)
 (ML00000 & F0000000H) <> ML00002? Label "(ML00000 ∧ F0000000H) ≠ ML00002
 1.23456 >= (MF00000 * MF00002)? Label "1.23456 ≥ (MF00000 MF00002)

Syntax Error
Examples

• When a constant is specified both on the left and right:

 0 == 3? Label => Syntax error
 (3.14*2*1000) > 9000.0? Label => Syntax error

• No data comparison command:

 MW000000? Label => Syntax error
 (-1)? Label => Syntax error

• When more than one data comparison command is specified

 (MW00000 < 0) & (MW000001 > 0)? Label => Syntax error
8-111

8 Command Reference

8.4.4 Selective Execution (SFORK, JOINTO, SJOINT)

8-1
(3) Programming Examples
A programming example of selective execution commands (SFORK, JOINTO, SJOINT) is shown below.

Fig. 8.59 Selective Execution Command (SFORK, JOINT, SJOINT) Programming Example

MOV [A1]100.[B1]150.;

 MVS [A1]200.[B1]250.F1000;

 SFORK MW00100==1 ? 0001,MW00100==2 ? 0002,MW00100==3 ? 0003,DEFAULT ? 0004;

0001:MVS [A1]300.[B1]100.F3000;

 JOINTO 0005

0002:MVS [A1]300.[C1]100.F3000;

 JOINTO 0005

0003:MVS [C1]300.[S]100.F3000;

 JOINTO 0005

0004:JOINTO 0005;

0005:SJOINT;

MOV[A1]500.[B1]500.[C1]500.

EXAMPLE

MVS[A1]300.[B1]100. F3000;

JOINTO 0005 JOINTO 0005

MVS[C1]300.[S]100. F3000;

SJOINT

MOV[A1]100.[B1]150.
MVS[A1]200.[B1]250. F1000;

SFORK

JOINTO 0005

MVS[A1]300.[C1]100. F3000;

MOV[A1]500.[B1]500.

MW00100==2MW00100==1 MW00100==3

JOINTO 0006

DEFAULT
12

8.4 Program Control Commands

C
om

m
an

d
R

ef
er

en
ce
8.4.5 Motion Subprogram Call (MSEE)

(1) Overview
The Motion Subprogram Call command (MSEE) can call a subprogram that has been stored in the motion pro-
gram memory from the motion program.
Nesting of the subprogram call command (MSEE) is restricted to a maximum of eight levels.

Fig. 8.60 Subprograms

A subprogram return command (RET) must be coded at the end of the subprogram.

 Restrictions on Subprograms

The following restrictions apply to motion program coding within a subprogram.

• A maximum of two parallel executions with a PFORK command

• If the program number of a main program is called by an MSEE command, the program will not be exe-
cuted.

(2) Format

(3) Programming Examples
A programming example of the MSEE command to call the motion subprogram MPS101 is shown below.

Motion Programs Sequence Programs

Applicable Not applicable

MPM001

MOV [A1]1000;

....

....

 MSEE MPS002;
MPS002 (1st level nesting)

 MOV [B1]1000;
MOV [C1]1000;
MSEE MPS003;
RET;

MPS003 (2nd level nesting)

MOV [B1]1000;
 MOV [C1]1000;

RET;

IMPORTANT

MSEE MPS Subprogram number;

Item Unit Usable Data

Subprogram number − A number between 001 and 256

MSEE MPS101;

 Subprogram number designation

EXAMPLE
8-113

8 Command Reference

8.4.6 Sequence Subprogram Call (SSEE)

8-1
8.4.6 Sequence Subprogram Call (SSEE)

(1) Overview
The Sequence Subprogram Call command (SSEE) calls a subprogram that has been stored in the sequence pro-
gram memory from the sequence program.
Nesting of the subprogram call command is restricted to a maximum of eight levels.

Fig. 8.61 Subprograms

A subprogram return command (RET) must be coded at the end of a subprogram.

 Restrictions on Subprograms

The following restriction applies to sequence program coding within a subprogram.

• If a main program is called by the SSEE command, the program will not be executed.

(2) Format

(3) Programming Examples
A programming example of the SSEE command to call the subprogram SPS101 is shown below.

Motion Programs Sequence Programs

Not applicable Applicable

MW00000=1;

SSEE SPS002;

END;

SPM001

MW00000=2;

SSEE SPS003;

RET;

MW00000=3;

....

....

....

....

....

....

RET;

SPS002 (1st level nesting)

SPS003 (2nd level nesting)

IMPORTANT

SSEE SPS Subprogram number ;

Item Unit Usable Data

Subprogram number − A number between 001 and 256

SSEE SPS101;

 Subprogram number designation

EXAMPLE
14

8.4 Program Control Commands

C
om

m
an

d
R

ef
er

en
ce
8.4.7 User Function Call From Motion Program (UFC)

(1) Overview
The User Function Call From Motion Program command (UFC) calls a user function (ladder program) from a
motion program.
When execution of the called user function is completed, the block after the UFC command block will be exe-
cuted.

For the user function called from the motion program, output bit YB000000 is used for completion judgement
(Complete Bit).

• When YB000000 = OFF at the completion of execution of user function:

• Execution of the user function is recognized as incomplete, and the user function will be called again during
the next scan.

• When YB000000 = ON at the completion of execution of user function:

• Execution of the user function is recognized as complete, and the block after the UFC command block will
be executed.

(2) Format

Motion Programs Sequence Programs

Applicable Not applicable

IMPORTANT

UFC Function name Input data, Input address, Output data;

Item Unit Usable Data

Function name − ASCII 8 bytes

Input data − Max: 16 data items (Minimum: 1 data item)

Input address − Max: 1 address

Output data * − Max:16 data items (Minimum: 1 data item)

* The input address can be omitted. [UFC Input data, Output data;] is used if there is no input
address. The minimum requirement is one input data item and one output data item.
8-115

8 Command Reference

8.4.7 User Function Call From Motion Program (UFC)

8-1
(3) Programming Examples
A UFC command programming example is shown below.

Fig. 8.62 User Function Call Command (UFC)

(4) UFC Command Creation Procedure
Use the following procedure to create a UFC command.

(5) Register Types Used Within User Functions
The data types are as follows.

UFC KANSUU MB000000 IW0010 MB000002, MA00100, MB000001 MW00200 ML00201;
 Function Input data Input address Output data

 name

EXAMPLE

 Function name

INPUT-1 OUTPUT-1

INPUT-2 OUTPUT-2

INPUT-3 OUTPUT-3

 INPUT-4
 MA00100

MB000000 MB000001

MB000002

IW0010 MW00200

ML00201

Determine the UFC command specifi-
cations.

• Determine the number of I/Os and data type.

• Determine the function name.

Set the following on the Program
Property window.
• Configuration definition

• I/O definitions

Use the MPE720 to enter the definitions.

Create the user functions (ladder pro-
gram).

Create the user functions in the same way as for the
drawings, except for the register type to be used.

Create the motion program.
Write a UFC command block with the format:

UFC function name input data, input address, output
data;

Check the operation.

Data Type

BIT Bit

WORD Integer

LONG Double integer

FLOAT Real number
16

8.4 Program Control Commands

C
om

m
an

d
R

ef
er

en
ce
(6) Relationship between I/O Registers and Internal Function Registers
The correspondence between the I/O registers designated by the UFC command and the function registers is
shown below.

XB000000 to XB00000F

XW0001

XW0002

XW0003

XW0004

XW00016

XW00014

YB000000 to YB00000F

YW0001

YW0002

YW0003

YW0004

YW00016

YW00014

Bit data input
 B-VAL
(16 bits max.)

(16 words max.)

I-REG,
L-REG input

Bit data output
 B-VAL

 I-REG,
L-REG output

X registers
(Input registers)

Y registers
(Output registers)

MA00100 MW00100

MW00101

MW00102

MW00103

MW00104

Address input

Z registers # registers D registers

Internal Function RegistersInput Output

AW00000

AW0001

AW0002

AW0003

AW0004

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

A registers
8-117

8 Command Reference

8.4.7 User Function Call From Motion Program (UFC)

8-1
The following 11 types of register can be used in each function.

Note: SA, MA, IA, OA, DA, #A, and CA can also be used inside functions.

Table 8.2 Function Registers

Type Name Designation Method Description Characteristics

X
Function input
register

XB, XW, XL, XFnnnnn

Input to a function
Bit input: XB000000 to XB0000F
Integer input: YW00001 to XW00016
Double integer input: XL00001 to XL00015
Register number nnnnn is a decimal expres-
sion.

Unique to each
function

Y
Function output
register

YB, YW, YL, YFnnnnn

Input to a function
Bit input: YB000000 to YB0000F
Integer input: YW00001 to YW00016
Double integer input: YL00001 to YL00015
Register number nnnnn is a decimal expression

Z
Internal function
register

ZB, ZW, ZL, ZFnnnnn

Internal register unique to each function
Can be used by the function for internal pro-
cesses.
Register number nnnnn is a decimal expres-
sion.

A
External
function register

AB, AW, AL, AFnnnnn

External registers that use the address input
value as the base address.
For linking with S, M, I, O, #, and DAnnnnn
Register number nnnnn is a decimal expres-
sion.

register
#B, #W, #L, #Fnnnnn
(#Annnnn)

Registers that can be referenced only by a pro-
gram.
Can be referenced only the corresponding
drawing.
The actual range to be used is specified by the
user using the MPE720.
Register number nnnnn is a decimal expres-
sion.

D D register
DB, DW, DL, DFnnnnn
(DAnnnnn)

Registers unique to each drawing
Can be referenced only by the corresponding
drawing.
The actual range to be used is specified by the
user using the MPE720.
Register number nnnnn is a decimal expres-
sion.

S System register
SB, SW, SL, SFnnnnn
(SAnnnnn)

Same as the drawing registers.
These registers are used for both drawings and
functions. Care must be taken in using them to
reference the same function from drawings
with different priority levels.

Common to all
drawings

M Data register
MB, MW, ML, MFnn-
nnn
(MAnnnnn)

I Input register
IB, IW, IL, IFhhhh
(IAhhhh)

O Output register
OB, OW, OL, OFhhhh
(OAhhhh)

C Constant register
CB, CW, CL, CFnnnnn
(CAnnnnn)
18

8.4 Program Control Commands

C
om

m
an

d
R

ef
er

en
ce
An example of the transfer of I/O registers is shown below.

Fig. 8.63 Motion Program Coding

UFC TESTFUNC DB000000 DB000001 MW00030 MW00032, MA00100, DB000002 MW00040

Motion program coding

X register

Y register
DB000000

DB000001

MW00030

MW00032

DB000002

MW00040

YW00000

YW00001

YW00002

YW00015

MW00100

MW00101

MW00102

AW00000

AW00001

AW00002

MA00100

XW00000

XW00001

XW00002

XW00016

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

8-119

8 Command Reference

8.4.7 User Function Call From Motion Program (UFC)

8-1
(7) Creating User Functions
The procedure for creating the user function of the following specifications is described below.

Use the following procedure to create the user function.

1. Open the Ladder subwindow. Right-click Function under Ladder program. Click New in the pop-up
menu that will appear.

2. Enter FUNC-T1 in the Program Name input field in the Create New Program dialog box, and then
click OK.

Specifications Motion Program

Designate the servo axis No. and speed data, and set this in
the motion setting parameter OL10: Speed reference
setting.

MW00030 = Servo axis No. (1 or 2)
ML00032 = Rapid traverse speed
UFC FUNC-T1 MW00030 ML00032,,DB000001;
20

8.4 Program Control Commands

C
om

m
an

d
R

ef
er

en
ce
3. A blank ladder program field will appear in the Ladder subwindow. Right-click FUNC-T1 to select Prop-
erty from the pop-up menu.

4. In the Program Property window, click Function input definition under I/O definition to set the num-
ber of function inputs and data type, and click Function output definition to set the number of function
outputs and data type.

Example: For the UFC command block UFC FUNC-T1 MW00030 ML00032,,DB000001;,
 the settings in the Program Property window are as shown below.
8-121

8 Command Reference

8.4.7 User Function Call From Motion Program (UFC)

8-1
5. Close the DWG Configuration Definition window, and edit the user function program in the ladder
program edit window.

6. From the Compile menu, select Compile F8.

7. In the Motion Editor window, create a program to call user function FUNC-T1.

The user function that is called from the motion program is created.
Execute the motion program to check the operation.
22

8.4 Program Control Commands

C
om

m
an

d
R

ef
er

en
ce
8.4.8 User Function Call from Sequence Program (FUNC)

(1) Overview
The User Function Call from Sequence Program command (FUNC) calls user functions (ladder programs) from
the sequence program.

(2) Format

(3) Programming Examples
A FUNC command programming example is shown below.

In this example, three input data items, one input address, and three output data items are described.

Fig. 8.64 User Function Call Command (FUNC) Programming Example

Motion Programs Sequence Programs

Not applicable Applicable

UFC Function name Input data 1 Input data 2 Input data 3, Input address,

 Output data 1 Output data 2 Output data 3 ;

Item Unit Usable Data

Function name − ASCII 8 bytes

Input data − Max: 16 data items (minimum: 1 data item)

Input address − Max: 1 address

Output data − Max: 16 data items (minimum: 1 data item)

Note: 1. More than one item for input data and output data can be described.
(At least one item each for input data and output data must be described.) The input address
can be omitted.
When the input address is omitted, describe only the comma (,).

2. The FUNC command calls a user function. The execution proceeds to the next block after
the FUNC command whether or not the user function execution has been completed.

FUNC KANSUU MB000000 IW0010 MB000020, MA00100, MB000001 MW00201 ML00202;
 Function Input data Input address Output data

 name

EXAMPLE

 Function name

INPUT-1 OUTPUT-1

INPUT-2 OUTPUT-2

INPUT-3 OUTPUT-3

 INPUT-4
 MA00100

MB000000 MB000001

MB000002

IW0010 MW00200

ML00201
8-123

8 Command Reference

8.4.9 Program End (END)

8-1
8.4.9 Program End (END)

(1) Overview
The Program End command (END) ends program operation.
No other commands can be coded in the same block as the END command.
Program operation ends after execution of the END command block.
If there is a move command in the previous block, the program operation ends after the in-position check is com-
pleted.

(2) Format

Motion Programs Sequence Programs

Applicable Applicable

END;

Program end
24

8.4 Program Control Commands

C
om

m
an

d
R

ef
er

en
ce
8.4.10 Subprogram End (RET)

(1) Overview
The Subprogram End command (RET) ends subprogram operation.
After operation of the called subprogram is ended by the RET command, execution proceeds to the block after
the Motion Subprogram Call command (MSEE) or Sequence Subprogram Call command (SSEE) in the main
program or subprogram that called the subprogram.

(2) Format

Motion Programs Sequence Programs

Applicable Applicable

MPM001

MOV [A1]1000;
MPS002

 MSEE MPS002;

 MOV [B1]1000;
MOV [C1]1000;

RET;

RET;

Subprogram end
8-125

8 Command Reference

8.4.11 Dwell Time (TIM)

8-1
8.4.11 Dwell Time (TIM)

(1) Overview
The Dwell Time command (TIM) causes execution to pause for a specified period of time before the start of exe-
cution of the next command block.
A period of time between 0.00 to 600.00 seconds can be specified.

(2) Format

(3) Programming Examples
A TIM command programming example is shown below.

The TIM command is executed after positioning has been completed.

Fig. 8.65 Dwell Time Command (TIM) Programming Example

Motion Programs Sequence Programs

Applicable Not applicable

TIM T Dwell time ;

Item Unit Usable Data
Dwell time 0.01 s � Directly designated value

� Integer type register (Indirect designation)

MOV [A1]100;

TIM T250 ;
 2.5 seconds

EXAMPLE

Speed (V)

MOV Next block

Time (t)
2.5 s
26

8.4 Program Control Commands

C
om

m
an

d
R

ef
er

en
ce
8.4.12 I/O Variable Wait (IOW)

(1) Overview
The I/O Variable Wait command (IOW) causes execution to wait until the status specified by the conditional
expression is satisfied. When the condition is satisfied, execution proceeds to the next block.

(2) Format

The conditional expressions that can be used in the IOW command block are as follows.

(a) Bit Data Comparison

Motion Programs Sequence Programs

Applicable Not applicable

IOW IB00001&IB00002 == 1;

 A

Item Description Usable Data

A
Conditional
expression

• All integer type, double integer type, and real number type registers (Exclud-
ing # and C registers)

• The above registers with subscript

• Subscript registers

• Constants

Formant

• Use = = (MATCH) command for data comparison.

• Specify a register on the left, and 0 or 1 on the right.

IOW MB000000 == 0; "MB000000 = 0
IOW MB000000 == 1; "MB000000 = 1

Operations in
Conditional
Expression

• &, , and ! (AND, OR, NOT) can be used.

IOW (MB000000 & MB000001) == 1; "MB000000 =1 AND MB000001 = 1
IOW (MB000000 & !MB000001) == 1; "MB000000 =1 AND MB000001 = 0
IOW (MB000000 | MB000001) == 1; "MB000000 = 1 OR MB000001 = 1
IOW (MB000000 | !MB000001) == 1; "MB000000 = 1 OR MB000001 = 0

Syntax Error
Examples

• When <> (MISMATCH) is used:

IOW MB000000 <> 0; => Syntax error

• When a numerical value is specified on the left, or a register is specified on the right:

IOW 1 == MB000000; => Syntax error
IOW MB000000 == MB000001; => Syntax error

• No data comparison command:

IOW MB000000; => Syntax error
IOW (0); => Syntax error

• When more than one data comparison command is used:

IOW (MB000000 == 0) & (MB000001 == 1); => Syntax error
8-127

8 Command Reference

8.4.12 I/O Variable Wait (IOW)

8-1
(b) Integer/Double Integer/Real Number Data Comparison

(3) Programming Examples
An IOW command programming example is shown below.

Fig. 8.66 I/O Variable Wait Command (IOW) Programming Example

Format

• All data comparison commands (==, <>, >, <, >=, <=) can be used.

• Specify a register either on the left or right.

IOW MW00000 == 3; "MW00000 = 3
IOW ML00000 <> ML00002; "ML00000 ≠ ML00002
IOW 1.23456 >= MF00000; "1.23456 ≥ MF00000

Operations in
Conditional
Expression

• Arithmetic operations and logic operations can be used.

IOW MW00000 == (MW00001/3); "MW00000 = (MW00001 ÷ 3)
IOW (ML00000 & F0000000H) <> ML00002; "(ML00000 ∧ F0000000H) ≠ ML00002
IOW 1.23456 >= (MF00000 * MF00002); "1.23456 ≥ (MF00000 × MF00002)

Syntax Error
Examples

• When a constant is specified both on the left and right:

IOW 0 == 3; => Syntax error
IOW (3.14*2*1000) > 9000.0; => Syntax error

• No data comparison command:

IOW MW000000; => Syntax error
IOW (-1); => Syntax error

• When more than one data comparison command is used:

IOW (MW00000 < 0) & (MW000001 > 0); => Syntax error

IOW (MB001001&MB001002)== 1;

MOV [A1]1000;

EXAMPLE

Speed

Time

Positioning for the axis A1

MB001001

MB001002
28

8.4 Program Control Commands

C
om

m
an

d
R

ef
er

en
ce
8.4.13 One Scan Wait (EOX)

(1) Overview
The One Scan Wait command (EOX) causes program execution to be suspended for one scan.
The block after EOX command will be executed in the next scan.

(2) Format

(3) Programming Examples
An EOX command programming example is shown below.

(a) Used in Combination with Sequence Commands

(b) Used with a WHILE Command

Motion Programs Sequence Programs

Applicable Not applicable

EOX;

MW00000=100;

OB00010=1;

EOX;

OB00011=0;

WHILE OB00010==1;
EOX;
WEND;

EXAMPLE

First scan

Second scan

EXAMPLE
8-129

8 Command Reference

8.4.14 Single-block Signal Disabled (SNGD)/Single-block Signal Enabled (SNGE)

8-1
8.4.14 Single-block Signal Disabled (SNGD)/Single-block Signal Enabled (SNGE)

(1) Overview
The Single-block Signal Disabled command (SNGD) and the Single-block Signal Enabled command (SNGE) are
used to specify whether to disable or enable the single step operation when debugging a program.
Regardless of the single-block operation mode setting, the blocks enclosed between SNGD and SGNE com-
mands are executed continuously without single-block stops.

 Single-block operation mode

In single-block operation mode, a stop is executed for each block.

(2) Format

(3) Programming Examples

The programming example of SNGD and SNGE commands is shown below.

In the above example, the blocks 1 to 3 enclosed between SNGD and SNGE commands are executed contin-
uously without single-block stops regardless of the single-block operation mode setting.

Motion Programs Sequence Programs

Applicable Not applicable

TERMS

 SNGD;

Blocks to be continuously executed

 SNGE;

MVS [A1]0 [B1]0;

MVS [A1]100 [B1]200; “ 1 ”

MB000101 = 1; “ 2 ”

MB000102 = 1; “ 3 ”

MB000103 = 1;

EXAMPLE

SNGD;

SNGE;
30

8.5 Arithmetic Operations

C
om

m
an

d
R

ef
er

en
ce
8.5 Arithmetic Operations
This section explains the arithmetic operation commands.
For priority levels of Arithmetic Operation, refer to 7.4 Priority Levels of Operations.

8.5.1 Substitute (=)

(1) Overview
The operation result on the right side of the expression is substituted in the register on the left side.

(2) Format

(3) Programming Examples
Substitute (=) command programming examples are shown below.

Motion Programs Sequence Programs

Applicable Applicable

 Result = Math expression ;

 A B

Item Description Usable Data

A Result

• All bit type, integer type, double integer type, real number type registers (Excluding
and C registers)

• The above registers with subscript

• Subscript registers

B
Math

expression

• All bit type, integer type, double integer type, real number type registers (Excluding
and C registers)

• The above registers with subscript

• Subscript registers

• Constants

Type
Motion Programs/

Sequence Programs
Ladder Programs

B MB001000=1;

W MW00100=12345;

L ML00100=1234567;

F MF00100=1.2345;

EXAMPLE
8-131

8 Command Reference

8.5.2 Add (+)

8-1
8.5.2 Add (+)

(1) Overview
ADD (+) performs integer and real number addition on the right side and stores the result in the register on the
left side. With mixed integers and real numbers, the data type on the left side is also stored.

(2) Format

(3) Programming Examples
Add (+) command programming examples are shown below.

With an operation where the variables are of different data types, the result will be stored according to the data
type on the left side.

For details, refer to 6.1.2 Global Variables and Local Variables.

Motion Programs Sequence Programs

Applicable Applicable

MW00101 = MW00100 + 12345 ;

 A B C

Item Description Usable Registers

A Data output

• All integer type, double integer type, real number type registers (Excluding # and C
registers)

• The above registers with subscript

• Subscript registers

B Data input
• All integer type, double integer type, real number type registers (Excluding # and C

registers)

• The above registers with subscript

• Subscript registers

• Constants

C Data to add

Type
Motion Programs/

Sequence Programs
Ladder Programs

B − −

W MW00101=MW00100+12345;

L ML00106=ML00102+ML00104;

F MF00202=MF00200+1.23456;

EXAMPLE

IMPORTANT
32

8.5 Arithmetic Operations

C
om

m
an

d
R

ef
er

en
ce
8.5.3 Subtract (-)

(1) Overview
Subtract (-) performs integer and real number subtraction on the right side and stores the result in the register on
the left side. With mixed integers and real numbers, the data type on the left side is stored.

(2) Format

(3) Programming Examples
Subtract (−) command programming examples are shown below.

Motion Programs Sequence Programs

Applicable Applicable

MW00101 = MW00100 -12345 ;

 A B C

Item Description Usable Registers

A Data output

• All integer type, double integer type, real number type registers (Excluding # and C
registers)

• The above registers with subscript

• Subscript registers

B Data input
• All integer type, double integer type, real number type registers (Excluding # and C

registers)

• The above registers with subscript

• Subscript registers

• Constants
C

Data to
subtract

Type
Motion Programs/

Sequence Programs
Ladder Programs

B − −

W MW00101=MW00100-12345;

L ML00106=ML00102-ML00104;

F MF00202=MF00200-1.23456;

EXAMPLE
8-133

8 Command Reference

8.5.4 Multiply (*)

8-1
8.5.4 Multiply (*)

(1) Overview
Multiply (*) performs integer and real number multiplication on the right side and stores the result in the register
on the left side. With mixed integers and real numbers, the data type on the left side is stored.

(2) Format

(3) Programming Examples
Multiply (∗) command programming examples are shown below.

Motion programs Sequence Programs

Applicable Applicable

MW00101 = MW00100 ∗ 12345 ;

 A B C

Item Description Usable Registers

A Data output

• All integer type, double integer type, real number type registers (Excluding # and C
registers)

• The above registers with subscript

• Subscript registers

B Data input
• All integer type, double integer type, real number type registers (Excluding # and C

registers)

• The above registers with subscript

• Subscript registers

• Constants
C

Data to
multiply

Type
Motion Programs/

Sequence Programs
Ladder Programs

B − −

W MW00102=MW00100∗MW00101

L ML00106=ML00102∗ML00104;

F MF00202=MF00200∗1.23456;

EXAMPLE
34

8.5 Arithmetic Operations

C
om

m
an

d
R

ef
er

en
ce
8.5.5 Divide (/)

(1) Overview
Divide (/) performs integer and real number division on the right side and stores the result in the register on the
left side. With mixed integers and real numbers, the data type on the left side is stored.

(2) Format

(3) Programming Examples
Divide (/) command programming examples are shown below.

Motion Programs Sequence Programs

Applicable Applicable

MW00101 = MW00100 / 12345 ;

 A B C

Item Description Usable Registers

A Data output

• All integer type, double integer type, real number type registers (Excluding # and C
registers)

• The above registers with subscript

• Subscript registers

B Data input
• All integer type, double integer type, real number type registers (Excluding # and C

registers)

• The above registers with subscript

• Subscript registers

• Constants
C

Data to
divide

Type
Motion Programs/

Sequence Programs
Ladder Programs

B − −

W MW00102=MW00100/MW00101;

L ML00106=ML00102/ML00104;

F MF00202=MF00200/1.23456;

EXAMPLE
8-135

8 Command Reference

8.5.6 Remainder (MOD)

8-1
8.5.6 Remainder (MOD)

(1) Overview
When specified in the next block after Divide, MOD stores the remainder of the division in the specified vari-
able. The remainder is stored as the data type on the left side.

(2) Format

(3) Programming Examples
MOD command programming examples are shown below.

Example: Double integers

ML00106=ML00100*ML00102/ML00104;
(173575) (100000) (60000) (34567)
ML00108=MOD;
(32975)

The MOD command must be specified in the next block after Divide. If it is not executed in the next block
after Divide, the operation result cannot be guaranteed.

Motion Programs Sequence Programs

Applicable Applicable

MW00001 = 1000 / 999;

MW00002 = MOD;

 A

Item Description Usable Registers

A Data output
• All integer and double integer type registers (Excluding # and C registers)

• The above registers with subscript

• Subscript registers

EXAMPLE

Type
Motion Programs/

Sequence Programs
Ladder Programs

B − −

W
MW00101=MW00100/3;
MW00102=MOD;

L
ML00106=ML00102/ML00104;
ML00108=MOD;

F − −

IMPORTANT
36

8.6 Logic Operation

C
om

m
an

d
R

ef
er

en
ce
8.6 Logic Operation
This section explains the commands used to perform bit and integer logic operations.

Although operations that combine math operations are also possible, real number operations cannot be per-
formed.

For priority levels of arithmetic operations, refer to 7.4 Priority Levels of Operations.

8.6.1 OR (|)

(1) Overview
OR performs a logical OR for the immediately preceding operation result and the specified registers, and returns
the operation result. Real number registers cannot be used.

(2) Format

Motion Programs Sequence Programs

Applicable Applicable

Table 8.3 Logical OR Truth Table (A=B|C)

B C A
0 0 0

0 1 1

1 0 1

1 1 1

MW00100 = DW00102 | AAAAH;

 A B C

Item Description Usable Registers

A Data output

• All bit type, integer type, and double integer type registers (Excluding # and C reg-
isters)

• The above registers with subscript

• Subscript registers

B, C Data input

• All bit type, integer type, and double integer type registers (Excluding # and C reg-
isters)

• The above registers with subscript

• Subscript registers

• Constants
8-137

8 Command Reference

8.6.1 OR (|)

8-1
(3) Programming Examples
Logical OR(|) command programming examples are shown below.

Type
Motion Programs/

Sequence Programs
Ladder Programs

B MB001000=MB001010|MB001011;

W MW00100=MW00101|MW00102

L ML00106=ML00102|ML00104;

F − −

EXAMPLE
38

8.6 Logic Operation

C
om

m
an

d
R

ef
er

en
ce
8.6.2 AND (&)

(1) Overview
AND (&) performs a logical AND for the immediately preceding operation result and the specified registers, and
then returns the operation result. Real number registers cannot be used.

(2) Format

(3) Programming Examples
The AND (&) command programming examples are shown below.

Motion Programs Sequence Programs

Applicable Applicable

Table 8.4 Logical AND Truth Table
(A=B&C)

B C A
0 0 0

0 1 0

1 0 0

1 1 1

MW00100 = DW00102 & AAAAH;

 A B C

Item Description Usable Registers

A Data output

• All bit type, integer type, and double integer type registers (Excluding # and C reg-
isters)

• The above registers with subscript

• Subscript registers

B, C Data input

• All bit type, integer type, and double integer type registers (Excluding # and C reg-
isters)

• The above registers with subscript

• Subscript registers

• Constants

Type
Motion Programs/

Sequence Programs
Ladder Programs

B MB001000=MB001010&MB001011;

W MW00101=MW00100&00FFH;

L ML00106=ML00102&ML00104;

F − −

EXAMPLE
8-139

8 Command Reference

8.6.3 XOR (^)

8-1
8.6.3 XOR (^)

(1) Overview
XOR (^) performs an exclusive logical OR for the immediately preceding operation result and the specified reg-
isters, and then returns the operation result. Real number registers cannot be used.

(2) Format

(3) Programming Examples
The XOR (^) command programming examples are shown below.

Motion Programs Sequence Programs

Applicable Applicable

Table 8.5 Exclusive Logical OR Truth Table
(A= B ^ C)

B C A
0 0 0

0 1 1

1 0 1

1 1 0

MW00100 = DW00102 ^ AAAAH;

 A B C

Item Description Usable Registers

A Data output
• All integer and double integer type registers (Excluding # and C registers)

• The above registers with subscript

• Subscript registers

BÅCC Data input

• All integer and double integer type registers (Excluding # and C registers)

• The above registers with subscript

• Subscript registers

• Constants

Type
Motion Programs/Sequence

Programs
Ladder Programs

B − −

W MW00101=MW00100 ^ 00FFH;

L ML00106=ML00102 ^ ML00104;

F − −

EXAMPLE
40

8.6 Logic Operation

C
om

m
an

d
R

ef
er

en
ce
8.6.4 NOT (!)

(1) Overview
NOT inverts the data in the specified register and returns the operation result. Real number registers cannot be
used.

(2) Format

* Bit constants cannot be specified.

(3) Programming Examples
Logical NOT (!) programming examples are shown below.

Example: MW00100=!MW00101;

Motion Programs Sequence Programs

Applicable Applicable

MB001000 = ! MB001010;

 A B

Item Description Usable Registers

A Data output

• All bit type, integer type, and double integer type registers (Excluding # and C reg-
isters)

• The above registers with subscript

• Subscript registers

B Data input

• All bit type, integer type, and double integer type registers (Excluding # and C reg-
isters)

• The above registers with subscript

• Subscript registers

• Constants*

EXAMPLE

Type
Motion Programs/

Sequence Programs
Ladder Programs

B MB001000=!MB001010;

W MW00100=!MW00101;

L ML00100=!ML00102

F − −

0010 0011 01000001
MW00101

1234H

1101 1100 10111110
MW00100

EDCBH
8-141

8 Command Reference

8.7.1 Data Comparison Commands (==, <>, >, <, >=, <=)

8-1
8.7 Data Comparisons
This section explains the data comparison commands that are used for conditional expressions.

8.7.1 Data Comparison Commands (==, <>, >, <, >=, <=)

(1) Overview
These commands are used to determine conditional expressions for commands such as branching commands
(IF), repeat commands (WHILE), and I/O WAIT (IOW).

The following six comparison commands are provided.

(2) Format

(3) Programming Examples
Data comparison command programming examples are shown below.

Motion Programs Sequence Programs

Applicable Applicable

Comparison Command Meaning

= = Match

< > Mismatch

> Greater than

< Less than

> = Greater than or equal to

< = Less than or equal to

IF MB001000 == 1;

 A

Item Description Usable Registers

A
Conditional
expression

• All bit type*, integer type, double integer type, and real number type registers
(Excluding # and C registers)

• The above registers with subscript

• Subscript registers

* Only the MATCH (= =) command can be used in a bit conditional expression.

Type
Motion Programs/

Sequence Programs
Ladder Programs

B IF MB001000==1;

W IF MW00100<>10;

L IF ML00100>10000;

F IF MF00100>=3.0;

EXAMPLE
42

8.7 Data Comparisons

C
om

m
an

d
R

ef
er

en
ce
The conditional expressions that can be used with data comparison commands are as shown below.

(a) Bit Data Comparison

(b) Integer/Double Integer/Real Number Data Comparison

Format

• Use == (MATCH) command for data comparison.

• Specify a register on the left, and 0 or 1 on the right.

IF MB000000 == 0; "MB000000 = 0
IF MB000000 == 1; "MB000000 = 1

Operations in
Conditional
Expression

• &, |, ! (AND, OR, NOT) can be used.

IF (MB000000 & MB000001) == 1; "MB000000=1 AND MB000001=1
IF (MB000000 & !MB000001) == 1; "MB000000=1 AND MB000001=0
IF (MB000000 | MB000001) == 1; "MB000000=1 OR MB000001=1
IF (MB000000 | !MB000001) == 1; "MB000000=1 OR MB000001=0

Syntax
Error
Examples

• When <> (MISMATCH) is used:

IF MB000000 <> 0; => Syntax error

• When a numerical value is specified on the left, and a register on the right:

IF 1 == MB000000; => Syntax error
IF MB000000 == MB000001; => Syntax error

• No data comparison command:

IF MB000000; => Syntax error
IF (0); => Syntax error

• When more than one data comparison command is used:

IF (MB000000 == 0) & (MB000001 == 1); => Syntax error

Format

• All data comparison commands (==, <>, >, <, >=, <=) can be used.

• Specify a register either on the left or right.

IF MW00000 == 3; "MW00000 = 3
IF ML00000 <> ML00002; "ML00000 ≠ ML00002
IF 1.23456 >= MF00000; "1.23456 ≥ MF00000

Operations in
Conditional
Expression

• Arithmetic operations and logic operations can be used.

IF MW00000 == (MW00001/3); "MW00000 = (MW00001 ÷ 3)
IF (ML00000 & F0000000H) <> ML00002; "(ML00000 ∧ F0000000H) ≠ ML00002
IF 1.23456 >= (MF00000 * MF00002); "1.23456 ≥ (MF00000 × MF00002)

Syntax Error
Examples

• When a constant is specified both on the left and right:

IF 0 == 3; => Syntax error
IF (3.14*2*1000) > 9000.0; => Syntax error

• No data comparison command:

IF MW000000; => Syntax error
IF (-1); => Syntax error

• When more than one data comparison command is used:

IF (MW00000 < 0) & (MW000001 > 0); => Syntax error
8-143

8 Command Reference

8.8.1 Bit Right Shift (SFR)

8-1
8.8 Data Operations
This section describes the data operation commands that are used to shift, transfer, and initialize data.

8.8.1 Bit Right Shift (SFR)

(1) Overview
The SFR command shifts a bit string designated by the leading bit number and bit width the specified number of
shifts to the right.

(2) Format

(3) Programming Examples
SFR command programming examples are shown below.

Example: Five bits with MB001005 (bit 5 of MW00100) as the leading bit are shifted three bits to the right.

With the SFR command, if the number of shifts is greater than the bit width, all data with the specified bit width will be set
to 0.

Motion Programs Sequence Programs

Applicable Applicable

SFR MB001000 N5 W10 ;

 A B C

Item Description Usable Registers

A Leading bit
• All bit type registers (Excluding # and C registers)

• The above registers with subscript

• Subscript registers

B
Number of bits
to be shifted

• All integer type registers (Excluding # and C registers)

• The above registers with subscript

• Subscript registers

• Constants
C Bit width

Type
Motion Programs/

Sequence Programs
Ladder Programs

B − −

W SFR MB001000 N5 W10;

L − −
F − −

EXAMPLE

SFR MB001005 N3 W5 ;

9 5 0

0 entered.

1 1 1 1 1

0 0 0 1 1

Before
executionMW00100

MW00100

INFO
44

8.8 Data Operations

C
om

m
an

d
R

ef
er

en
ce
8.8.2 Bit Left Shift (SFL)

(1) Overview
The SFL command shifts a bit string designated by the leading bit number and bit width the specified number of
shifts to the left.

(2) Format

(3) Programming Examples
SFL command programming examples are shown below.

Examples: Ten bits with MB00100A (bit A of MW00100) as the leading bit are shifted five bits to the left.

With the SFL command, if the number of shifts is greater than the bit width, all data with the specified bit width will be set
to 0.

Motion Programs Sequence Programs

Applicable Applicable

SFL MB001000 N5 W10 ;

 A B C

Item Description Usable Registers

A Leading bit
• All bit type registers (Excluding # and C registers)

• The above registers with subscript

• Subscript registers

B
Number of bits
to be shifted

• All integer type registers (Excluding # and C registers)

• The above registers with subscript

• Subscript registers

• Constants
C Bit width

Type
Motion Programs/

Sequence Programs
Ladder Programs

B − −

W SFL MB001000 N5 W10;

L − −
F − −

EXAMPLE

SFL MB00100A N5 W10 ;

F A
1 1 0 0 0MW00100

MW00101

1
3 0
0 101

F A
MW00100

MW00101
3 0
1 000

0 entered.

0 is placed in the lower five bits1 0 0 0 0 0

The upper five bits are deleted.

INFO
8-145

8 Command Reference

8.8.3 Block Move (BLK)

8-1
8.8.3 Block Move (BLK)

(1) Overview
The BLK command moves the specified number of words from the beginning of the source register to the begin-
ning of the destination register.

(2) Format

(3) Programming Examples
BLK command programming examples are shown below.

Example: MW00100 to MW00109 are moved to MW00200 to MW00209.

As long as the source registers and destination registers are not overlapped, the source data is moved to the destination reg-
isters as it is. If overlapped, the source data may not be moved to the destination registers as it is.

Motion Programs Sequence Programs

Applicable Applicable

BLK MW00100 DW00100 W10 ;

 A B C

Item Description Usable Registers

A
Source leading reg-

ister

• All integer type registers (Excluding # and C registers)

• The above registers with subscript

• Subscript registers

B
Destination leading

register
• All integer type registers (Excluding # and C registers)

• The above registers with subscript

• Subscript registers

• Constants
C

Number of blocks to
be moved

EXAMPLE

Type
Motion Programs/

Sequence Programs
Ladder Programs

B − −

W BLK MW00100 DW00100 W10;

L − −
F − −

BLK MW00100 MW00200 W10;

1234H
1235H
1236H

123DH
123CH

MW00100
MW00101
MW00102

MW00109
MW00108

1234H
1235H
1236H

123DH
123CH

MW00200
MW00201
MW00202

MW00209
MW00208

Source Destination

INFO
46

8.8 Data Operations

C
om

m
an

d
R

ef
er

en
ce
8.8.4 Clear (CLR)

(1) Overview
The CLR command clears the specified number of blocks from the leading data clear register, i.e., sets it to 0.

(2) Format

(3) Programming Examples
CLR command programming examples are shown below.

Example: The data of registers from MW00100 to MW00119 are cleared to 0.

Motion Programs Sequence Programs

Applicable Applicable

CLR MW00100 W10 ;

 A B

Item Description Usable Registers

A
Leading register
whose data is

cleared

• All integer type registers (Excluding # and C registers)

• The above registers with subscript

• Subscript registers

B Number of blocks

• All integer type registers (Excluding # and C registers)

• The above registers with subscript

• Subscript registers

• Constants

Type
Motion Programs/

Sequence Programs
Ladder Programs

B − −

W CLR MW00100 W10;

L − −
F − −

EXAMPLE

CLR MW00100 W20;

0000
0000
0000

0000
0000

MW00100
MW00101
MW00102

MW00119
MW00118

0

8-147

8 Command Reference

8.8.5 ASCII Conversion 1 (ASCII)

8-1
8.8.5 ASCII Conversion 1 (ASCII)

(1) Overview
The ASCII command converts the character string specified during command execution into ASCII code and
stores it in the specified register (integer register). Upper and lower case letters can be distinguished from each
other.

The first character and the second character are stored respectively in the lower byte and upper byte of the first
word in order. If the number of characters in the string is odd, the upper byte of the last word in the storage desti-
nation register becomes 0. The number of input characters is up to 32.

Note: The following versions of system software and programming tool MPE720 are required to use an
ASCII command.

(2) Format

The following tables show the characters that can be used in the ASCII command.

(a) Usable Characters

(b) Usable Characters

Motion Programs Sequence Programs

Applicable Applicable

MP2000 Series
Machine Controller

Applicable Ver-
sion Numbers

MPE720 Applicable Version Numbers

All models Ver2.60 or later

MPE720 Ver.5 MPE720 Ver.5.38 or later

MPE720 Ver.6
MPE720 Ver.6.04 or later

MPE720 Ver.6.04Lite or later

ASCII ‘ABCDEFG’ MW00200;

 A B

Item Description Usable Registers

A Character string ASCII characters

B Storage register number
Integer type registers (Excluding # and C regis-
ters)

Item ASCII Characters

Alphanumeric Characters a to z, A to Z, 0 to 9

Symbols
Space,

! # $ % & () * + , - . / : ; < = > ? @ [] //] ^ _ ` { | } ˜

Item ASCII Characters

Single Quotation ‘

Double Quotation “
Double Slash //
48

8.8 Data Operations

C
om

m
an

d
R

ef
er

en
ce
(3) Programming Examples
ASCII command programming examples are shown below.

(a) Storing the character string “ABCD” in MW00100 to MW00101

(b) Storing the character string “ABCDEFG” in MW00100 to MW00103

ASCII ‘ABCD’ MW00100;

Upper Byte Lower Byte

MW00100 42H(‘B’) 41H(‘A’) MW00100 = 4241H

MW00101 44H(‘D’) 43H(‘C’) MW00101 = 4443H

ASCII ‘ABCDEFG’ MW00100;

Upper Byte Lower Byte

MW00100 42H(‘B’) 41H(‘A’) MW00100 = 4241H

MW00101 44H(‘D’) 43H(‘C’) MW00101 = 4443H

MW00102 46H(‘F’) 45H(‘E’) MW00102 = 4645H

MW00103 00H 47H(‘G’) MW00103 = 0047H

 0 will be entered in
 the remaining byte.

EXAMPLE

EXAMPLE
8-149

8 Command Reference

8.9.1 Sine (SIN)

8-1
8.9 Basic Functions
This section describes the basic function commands, including trigonometric functions, square roots, binary data
conversion, and BCD data conversion.

8.9.1 Sine (SIN)

(1) Overview
The Sine command (SIN) returns the sine of integer or real number data as the operation result. Double integer
data cannot be used.

(2) Format

* The input units and output results are different for integer and real number data.

• Integer Data
Integer data can be used within a range of -327.68 to 327.67 degrees. The immediately preceding opera-
tion result (integer data) is used as the input, and the operation result is returned in an integer register
(input unit1 = 0.01 degrees). The operation result is multiplied by 10000 before being output.

• Real Number Data
The command will uses the immediately preceding operation result (real number data) as input, and
return the sine in a real number register (unit = degrees).

If integer data is input outside the range of -327.68 to 327.67 degrees, a correct result cannot be obtained.

Motion Programs Sequence Programs

Applicable Applicable

MW00100 = SIN (3000);

 A B

Item Description Unit Usable Registers

A
Sine value

output
−

• All integer and real number type registers (Excluding # and C registers)

• The above registers with subscript

• Subscript registers

B Angle input
Degree

(°)∗

• All integer and real number type registers (Excluding # and C registers)

• The above registers with subscript

• Subscript registers

• Constants

Example:

Integer Data Real Number Data

 MW00102 = SIN (MW00100) ;
Equivalent

0.5=SIN30°

(05000) (03000)
=> MF00102 = SIN (MF00100) ;

(0.5) (30.0)

IMPORTANT
50

8.9 Basic Functions

C
om

m
an

d
R

ef
er

en
ce
(3) Programming Examples
SIN command programming examples are shown below.

EXAMPLE

Type
Motion Programs/

Sequence Programs
Ladder Programs

B − −

W MW00102=SIN(MW00100);

L − −

F DF00202=SIN(DF00200);
8-151

8 Command Reference

8.9.2 Cosine (COS)

8-1
8.9.2 Cosine (COS)

(1) Overview
The cosine command (COS) returns the cosine of integer or real number data as the operation result.
Double integer data cannot be used.

(2) Format

* The input units and output results are different for integer and real number data.

• Integer Data
Integer data can be used within a range of -327.68 to 327.67 degrees. The immediately preceding opera-
tion result (integer data) is used as input, and the operation result is returned in an integer register (input
unit 1 = 0.01 degrees). The operation result is multiplied by 10000 before being output.

• Real Number Data
The command uses the immediately preceding operation result (real number data) as input, and returns
the cosine in a real number register (unit = degrees).

If integer data is input outside the range of -327.68 to 327.67 degrees, a correct result cannot be obtained.

(3) Programming Examples
COS command programming examples are shown below.

Motion Programs Sequence Programs

Applicable Applicable

MW00100 = COS (3000);

 A B

Item Description Unit Usable Registers

A
Cosine val-
ue output

–
• All integer and real number type registers (Excluding # and C registers)

• The above registers with subscript

• Subscript registers

B Angle input
Degree

(°)∗

• All integer and real number type registers (Excluding # and C registers)

• The above registers with subscript

• Subscript registers

• Constants

Example:

Integer Data Real Number Data

 MW00102 = COS (MW00100) ;
Equivalent

(05000) (06000)
0.5=COS60°=> MF00102 = COS (MF00100) ;

(0.5) (60.0)

IMPORTANT

Type
Motion Programs/

Sequence Programs
Ladder Programs

B − −

W MW00102=COS(MW00100);

L − −

F DF00202=COS(DF00200);

EXAMPLE
52

8.9 Basic Functions

C
om

m
an

d
R

ef
er

en
ce
8.9.3 Tangent (TAN)

(1) Overview
The TAN command uses the specified variable or constant (unit = degrees) as input and returns the tangent in a
real number register.

(2) Format

* Example: Calculates the tangent of the input value (θ = 45.0°): TAN (θ) = 1.0

The TAN command can use only real number data. If bits, integers, or double integers are specified, an error
will result at compilation.

(3) Programming Examples
TAN command programming examples are shown below.

Motion Programs Sequence Programs

Applicable Applicable

MW00100 = TAN (1.0);

 A B

Item Description Unit Usable Registers

A
Tangent

value
output

−
• All real number type registers (Excluding # and C registers)

• The above registers with subscript

• Subscript registers

B Angle input
Degree

(°)∗

• All real number type registers (Excluding # and C registers)

• The above registers with subscript

• Subscript registers

• Constants

 DF00102=TAN(DF00100);

(1.0) (45.0)

IMPORTANT

Type
Motion Programs/

Sequence Programs
Ladder Programs

B − −
W − −
L − −

F DF00202=TAN(DF00200);

EXAMPLE
8-153

8 Command Reference

8.9.4 Arc Sine (ASN)

8-1
8.9.4 Arc Sine (ASN)

(1) Overview
The ASN command uses the specified variable or constant as input and returns the arc sine (unit = degrees) in a
real number register.

(2) Format

* Example: Calculates the arc sine of the input value (0.5): ASN (0.5) = 30.0 degrees.

The ASN command can use only real number data. If bits, integers, or double integers are specified, an error
will result at compilation.

(3) Programming Examples
ASN command programming examples are shown below.

Motion Programs Sequence Programs

Applicable Applicable

MF00100 = ASN (0.5);

 A B

Item Description Unit Usable Registers

A
Angle
output

Degree

(°)∗

• All real number type registers (Excluding # and C registers)

• The above registers with subscript

• Subscript registers

B
Sine value

input
−

• All real number type registers (Excluding # and C registers)

• The above registers with subscript

• Subscript registers

• Constants

 MF00202=ASN(MF00200);

(30.0) (0.5)

IMPORTANT

EXAMPLE

Type
Motion Programs/

Sequence Programs
Ladder Programs

B − −
W − −
L − −

F DF00202=ASN(DF00200);
54

8.9 Basic Functions

C
om

m
an

d
R

ef
er

en
ce
8.9.5 Arc Cosine (ACS)

(1) Overview
The ACS command uses the specified variable or constant as input and returns the arc cosine (unit = degrees) in
a real number register.

(2) Format

* Example: Calculates the arc cosine of the input value (0.5): ACS (0.5) = 60.0 degrees.

The ACS command can use only real number data. If bits, integers, or double integers are specified, an error
will result at compilation.

(3) Programming Examples
ACS command programming examples are shown below.

Motion Programs Sequence Programs

Applicable Applicable

MF00100 = ACS (0.5);

 A B

Item Description Unit Usable Registers

A
Angle
output

Degree

(°)∗

• All real number type registers (Excluding # and C registers)

• The above registers with subscript

• Subscript registers

B
Cosine
value
input

−

• All real number type registers (Excluding # and C registers)

• The above registers with subscript

• Subscript registers

• Constants

 MF00100 = ACS (MF00102) ;

(60.0) (0.5)

IMPORTANT

Type
Motion Programs/

Sequence Programs
Ladder Programs

B − −
W − −
L − −

F DF00202=ACS(DF00200);

EXAMPLE
8-155

8 Command Reference

8.9.6 Arc Tangent (ATN)

8-1
8.9.6 Arc Tangent (ATN)

(1) Overview
The ATN command returns the arc tangent of integer or real number data as the operation result. Double integer
data cannot be used.

(2) Format

* The input units and output results are different for integer and real number data.

• Integer Data
Integer data can be used within a range of -327.68 to 327.67 degrees. The immediately preceding opera-
tion result (integer data) is used as the input, and the operation result is returned in an integer register
(input unit 1 = 0.01 degrees). The operation result is multiplied by 100 before being output.

• Real Number Data
The command uses the immediately preceding operation result (real number data) as input, and returns
the arc tangent in a real number register.

(3) Programming Examples
ATN command programming examples are shown below.

Motion Programs Sequence Programs

Applicable Applicable

MW00100 = ATN (100);

 A B

Item Description Unit Usable Registers

A
Angle
output

Degree

(°)∗

• All integer and real number type registers (Excluding # and C registers)

• The above registers with subscript

• Subscript registers

B
Tangent

value
input

−

• All integer and real number type registers (Excluding # and C registers)

• The above registers with subscript

• Subscript registers

• Constants

Example:

Integer Data Real Number Data

 MW00100 = ATN (MW00102) ;
Equivalent

45=ATN(1.0)

(04500) (00100)
=> MF00100 = ATN (MF00102) ;

(45.0) (1.0)

EXAMPLE

Type
Motion Programs/

Sequence Programs
Ladder Programs

B − −

W MW00102=ATN(MW00100);

L − −

F DF00202=ATN(DF00200);
56

8.9 Basic Functions

C
om

m
an

d
R

ef
er

en
ce
8.9.7 Square Root (SQT)

(1) Overview
The SQT command returns the square root of an integer or real number as the operation result. Double integer
data cannot be used.

(2) Format

Note: The input units and output results are different for integer and real number data.

• Integer Data
The result is different from that obtained for the mathematical square root, and is calculated using the
following formula:

That is to say, the output is the result of the mathematically expressed square root multiplied by 32768.
When the input is a negative number, an absolute square root is calculated, and the negative number is
taken as the operation result. The operation error is a maximum of ±2.

• Real Number Data
The SQT command uses the immediately preceding operation result (real number data) as input and
returns the square root in a real number register.

Motion Programs Sequence Programs

Applicable Applicable

MW00100 = SQT (100);

 A B

Item Description Usable Registers

A
Root value

output

• All integer and real number type registers (Excluding # and C registers)

• The above registers with subscript

• Subscript registers

B Data input

• All integer and real number type registers (Excluding # and C registers)

• The above registers with subscript

• Subscript registers

• Constants

Example:
Input Value Integer Data Real Number Data

Positive
value input

Negative
value input

32768 sign(B)∗ ∗ B /32768
sign(B): Sign for data input
|B|: Absolute value of data input

 MW00100 = SQT (MW00102) ;

(01448) (00064)

64 × 32768 = 1448

(8) (181)

 MF00100 = SQT (MF00102) ;

(8.0) (64.0)

 MW00100 = SQT (MW00102) ;

(-01448) (-00064)

64 × 32768 = -1448

(8)

-

(181)

 MF00100 = SQT (MF00102) ;

(-8.0) (-64.0)
8-157

8 Command Reference

8.9.7 Square Root (SQT)

8-1
(3) Programming Examples
SQT command programming examples are shown below.

Type
Motion Programs/

Sequence Programs
Ladder Programs

B − −

W MW00102=SQT(MW00100);

L − −

F DF00202=SQT(DF00200);

EXAMPLE
58

8.9 Basic Functions

C
om

m
an

d
R

ef
er

en
ce
8.9.8 BCD to Binary (BIN)

(1) Overview
The BCD to Binary (BIN) command converts BCD data to binary data.

Only integer data can be used. If a non-BCD data is specified, a correct result cannot be obtained.

(2) Format

Note: Example 1

 Example 2

If non-BCD data is specified, a correct result cannot be obtained.

(3) Programming Examples
BIN command programming examples are shown below.

Motion Programs Sequence Programs

Applicable Applicable

MW00100 = BIN (1234H);

 A B

Item Description Usable Registers

A
Binary data

output

• All integer and double integer type registers (Excluding # and C registers)

• The above registers with subscript

• Subscript registers

B
BCD data

input

• All integer and double integer type registers (Excluding # and C registers)

• The above registers with subscript

• Subscript registers

• Constants

2 3 41MW00101

(1234H)

Converted to

4 D 20MW00100

1234 (decimal)

2 3 F1MW00101

(123FH)

Converted to

4 D D0MW00100

1245 (decimal)

INFO

Type
Motion Programs/

Sequence Programs
Ladder Programs

B − −

W MW00101=BIN(MW00100);

L ML00102=BIN(ML00100);

F − −

EXAMPLE
8-159

8 Command Reference

8.9.9 Binary to BCD (BCD)

8-1
8.9.9 Binary to BCD (BCD)

(1) Overview
The Binary to BCD (BCD) command converts binary data to BCD data.

Only integer data can be used. If the binary data is 9999 or higher or is a negative value, a correct result cannot be
obtained.

(2) Format

Note: Example 1

 Example 2

If the binary data is greater than 9999, a correct result cannot be obtained.

(3) Programming Examples
BCD command programming examples are shown below.

Motion Programs Sequence Programs

Applicable Applicable

MW00100 = BCD (1234);

 A B

Item Description Usable Registers

A
BCD data

output

• All integer and double integer type registers (Excluding # and C registers)

• The above registers with subscript

• Subscript registers

B
Binary data

input

• All integer and double integer type registers (Excluding # and C registers)

• The above registers with subscript

• Subscript registers

• Constants

MW00101

Converted to

MW00100 2 3 414 D 20

(1234H)1234 (decimal)

0 3 93MW00101

Converted to

3 4 5CMW00100

(C345H)12345 (decimal)

INFO

Type
Motion Programs/

Sequence Programs
Ladder Programs

B − −

W MW00101=BCD(MW00100);

L ML00102=BCD(ML00100);

F − −

EXAMPLE
60

8.9 Basic Functions

C
om

m
an

d
R

ef
er

en
ce
8.9.10 Set Bit (S{ })

(1) Overview
This command turns ON the specified bit if the logical operation result is true. It does not turn OFF the specified
bit, even if the logical operation result is false.

(2) Format

(3) Programming Examples
The Set Bit command (S{ }) programming examples are shown below.

Motion Programs Sequence Programs

Applicable Applicable

S { MB001000 } = MB001010 & MB001011;

 A B

Item Description Usable Registers

A Specified bit
• All bit type registers (Excluding # and C registers)

• The above registers with subscript

B
Logic

expression

• All bit type registers (Excluding # and C registers)

• The above registers with subscript

• Constants

Type
Motion Programs/

Sequence Programs
Ladder Programs

B
S{MB001000}=MB001010&
 MB001011;

W − −
L − −
F − −

EXAMPLE
8-161

8 Command Reference

8.9.11 Reset Bit (R{ })

8-1
8.9.11 Reset Bit (R{ })

(1) Overview
This command turns OFF the specified bit if the logical operation result is true. It does not turn ON the specified
bit, even if the logical operation result is false.

(2) Format

(3) Programming Examples
Reset Bit command (R{ }) programming examples are shown below.

Motion Programs Sequence Programs

Applicable Applicable

R { MB001000 } = MB001010 & MB001011;

 A B

Item Description Usable Registers

A Specified bit
• All bit type registers (Excluding # and C registers)

• The above registers with subscript

B
Logic

expression

• All bit type registers (Excluding # and C registers)

• The above registers with subscript

• Constants

Type
Motion Programs/

Sequence Programs
Ladder Programs

B
R{MB001000}=MB001010&
 MB001011;

W − −
L − −
F − −

EXAMPLE
62

8.9 Basic Functions

C
om

m
an

d
R

ef
er

en
ce
8.9.12 Rising Pulse (PON)

(1) Overview
The PON command is ON during one scan of bit output when the bit input status changes from OFF to ON.
The register that stores the previous bit output value is used as a work of PON processing. Set the registers that
are not used for other processes.

Note: The following versions of system software and programming tool MPE720 are required to use PON
commands.

(2) Format

Motion Programs Sequence Programs

Not applicable Applicable

MP2000 Series
Machine Controller

Required Version MPE720 Required Version

All models Ver.2.60 or later
MPE720 Ver.5 MPE720 Ver.5.38 or later

MPE720 Ver.6
MPE720 Ver.6.04 or later

MPE720 Ver.6.04 Lite or later

DB000002 = PON (DB000000 DB000001) ;

 A B C

Item Description Usable Registers

A Bit output
• Bit type registers (Excluding # and C registers)

• The above registers with subscript

B Bit input
• All bit type registers

• The above registers with subscript

C
To store the previous bit
output value

• Bit type registers (Excluding # and C registers)

• The above registers with subscript
8-163

8 Command Reference

8.9.12 Rising Pulse (PON)

8-1
(3) Programming Examples
The PON command programming examples are shown below.

(a) Outputting to a Coil

• Ladder equivalent circuit

• Timing chart

(b) Using a PON Command Combined with an IF Command

• Ladder equivalent circuit

• Timing chart

DB000002=PON(DB000000 DB000001);

IF PON(DB000000 DB000001) == 1;

 •

 •

IEND;

EXAMPLE

DB000000

DB000001

DB000002

One scan One scan

EXAMPLE

DB000000

DB000001

Processing
in IF command

Executed only for one scan Executed only for one scan
64

8.9 Basic Functions

C
om

m
an

d
R

ef
er

en
ce
8.9.13 Falling Pulse (NON)

(1) Overview
Falling Pulse (NON) is ON during one scan of bit output when the bit input status changes from ON to OFF.

The register that stores the previous bit output value is used as a work of NON processing. Set the registers that

are not used for other processes.

Note: The following versions of system software and programming tool MPE720 are required to use NON
commands.

(2) Format

Motion Programs Sequence Programs

Not applicable Applicable

MP2000 Series
Machine Controller

Required Version MPE720 Required Version

All models Ver.2.60 or later
MPE720 Ver.5 MPE720 Ver.5.38 or later

MPE720 Ver.6
MPE720 Ver.6.04 or later

MPE720 Ver.6.04 Lite or later

DB000002 = NON (DB000000 DB000001) ;

 A B C

Item Description Usable Registers

A Bit output
• Bit type registers (Excluding # and C registers)

• The above registers with subscript

B Bit input
• All bit type registers

• The above registers with subscript

C
To store the previous bit
output value

• Bit type registers (Excluding # and C registers)

• The above registers with subscript
8-165

8 Command Reference

8.9.13 Falling Pulse (NON)

8-1
(3) Programming Examples
NON command programming examples are shown below.

(a) Outputting to a Coil

• Ladder equivalent circuit

• Timing chart

DB000002=NON(DB000000 DB000001);

EXAMPLE

DB000000

DB000001

DB000002

One scan One scan
66

8.9 Basic Functions

C
om

m
an

d
R

ef
er

en
ce
(b) Using a NON Command Combined with an IF Command

• Ladder equivalent circuit

• Timing chart

IF NON(DB000000 DB000001) == 1;
 ÅE
 ÅE
IEND;

EXAMPLE

DB000000

DB000001

Processing
in IF command

 Executed only for one scan Executed only for one scan
8-167

8 Command Reference

8.9.14 ON-Delay Timer (TON): Counting unit: 0.01 second

8-1
8.9.14 ON-Delay Timer (TON): Counting unit: 0.01 second

(1) Overview
The TON command counts the milliseconds (in units of 10 ms) when the bit input is ON. When the counted
value is equal to the set value, the bit output will turn ON. If the bit input turns OFF during counting, the timer
operation will stop. After the bit input turns ON again, counting starts again from the beginning (0). In the regis-
ters for counting, the actual count (in units of 10 ms) is stored.

Note: The following versions of system software and programming tool MPE720 are required to use TON
commands.

(2) Format

• Milliseconds are not counted while the debugging operation is stopped.
Counting starts again from the current counted value after the debugging operation restarts.

• Be sure to designate bit input “DBxxxxxx&.”

Motion Programs Sequence Programs

Not applicable Applicable

MP2000 Series
Machine Controller

Required Version MPE720 Required Version

All models Ver.2.60 or later
MPE720 Ver.5 MPE720 Ver.5.38 or later

MPE720 Ver.6
MPE720 Ver.6.04 or later

MPE720 Ver.6.04Lite or later

DB000001 = DB000000 & TON (500 DW00001);

 A B C D

Item Description Usable Registers

A Bit output
• Bit type registers (Excluding # and C registers)

• The above registers with subscript

B Bit input
• All bit type registers

• The above registers with subscript

C Set value
• All integer type registers

• The above registers with subscript

• Constants (0 to 65535 (655.35 s): Every 10 ms)

D Register for timer counting
• All integer type registers

• The above registers with subscript

IMPORTANT
68

8.9 Basic Functions

C
om

m
an

d
R

ef
er

en
ce
(3) Programming Examples
TON command programming examples are shown below.

• Ladder equivalent circuit

• Timing chart

DB000001=DB000000 & TON (500 DW00001);

 ↑ Set to 5 seconds.

EXAMPLE

DB000000

DB000001

500

DW00001 5.00 s Ts
Ts = Scan set value
8-169

8 Command Reference

8.9.15 OFF-Delay Timer (TOF): Counting unit: 0.01 second

8-1
8.9.15 OFF-Delay Timer (TOF): Counting unit: 0.01 second

(1) Overview
The TOF command counts the milliseconds (in units of 10 ms) when the bit input is OFF. When the counted
value is equal to the set value, the bit output will turn OFF. If the bit input turns ON during counting, the timer
operation will stop. After the bit input turns OFF again, counting starts again from the beginning (0). In the regis-
ters for counting, the actual count (in units of 10 ms) is stored.

Note: The following versions of system software and programming tool MPE720 are required to use TOF
commands.

(2) Format

• Milliseconds are not counted while the debugging operation is stopped.
Counting starts again from the current counted value after the debugging operation restarts.

• Be sure to designate bit input “DBxxxxxx&.”

Motion Programs Sequence Programs

Not applicable Applicable

MP2000 Series
Machine Controller

Required Version MPE720 Required Version

All models Ver. 2.60 or later
MPE720 Ver.5 MPE720 Ver.5.38 or later

MPE720 Ver.6
MPE720 Ver.6.04 or later

MPE720 Ver.6.04Lite or later

DB000001 = DB000000 & TOF (500 DW00001);

 A B C D

Item Description Usable Registers

A Bit output
• Bit type registers (Excluding # and C registers)

• The above registers with subscript

B Bit input
• All bit type registers

• The above registers with subscript

C Set value
• All integer type registers

• The above registers with subscript

• Constants (0 to 65535 (655.35 s): Every 10 ms)

D Register for timer counting
• All integer type registers

• The above registers with subscript

IMPORTANT
70

8.9 Basic Functions

C
om

m
an

d
R

ef
er

en
ce
(3) Programming Examples
TOF command programming examples are shown below.

• Ladder equivalent circuit

• Timing chart

DB000001=DB000000 & TOF (500 DW00001);

EXAMPLE

DB000000

DB000001
500

DW00001 0 5.00 s Ts
Ts = Scan set value
8-171

8 Command Reference

8.10.1 C-Language Task Control (CTSK)

8-1
8.10 C-Language Control Commands
8.10.1 C-Language Task Control (CTSK)

(1) Overview
The C-Language Task Control command (CTSK) is used to control operations, including start and stop, of user
C-language tasks.

Note: The following versions of system software and programming tool MPE720 are required to use CTSK
commands.

The Machine Controller MP2000 series embedded C-language package is required to use user C-language tasks.
For details, refer to Machine Controller MP2000 Series Embedded C-Language Programming Package Development
Guide (manual no.: SIEP C880700 25).

(2) Format

Motion Programs Sequence Programs

Applicable Applicable

MP2000 Series Machine
Controller

Required Version MPE720 Required Version

All models Ver. 2.60 or later
MPE720 Ver.5 MPE720 Ver.5.38 or later

MPE720 Ver.6
MPE720 Ver.6.04 or later

MPE720 Ver.6.04Lite or later

User C language
task #1

User C language
task #2

Main program

Subprogram

Start, stop, etc

Start, stop, etc.

User C language tasksMotion program/Sequence program

CTSK
command

CTSK
command

INFO

CTSK EXECUTE TYPE, C_NAME, COMPLETE ERROR ERR_CODE;
72

8.10 C-Language Control Commands

C
om

m
an

d
R

ef
er

en
ce
* The μITRON detection errors will not occur normally because the system manages them.
Note: 1. The EXECUTE input is not used for the signal rising edge, but treated as level. This is to implement task

control in every scan cycle.
2. The task controls except for RESET can be executed by motion programs, sequence programs for high-

speed scan drawing, and sequence programs for low-speed scan drawing. They cannot be executed by
sequence programs for start drawing.

3. The task control type RESET can be executed only by sequence programs for low-speed scan drawing.

(3) Programming Examples
A CTSK command programming example is shown below.

I/O
Defini-

tion
No. Name

I/O
Desig-
nation

Description

Input

1 EXECUTE B-VAL Designates of execution of CTSK function.

2 TYPE I-REG

Designates the task control type.

1: WAKEUP Wakes up the task from the WAIT status.

2: RESET
Valid only for sequence programs (low scan)
Exits and deletes the task once, and then creates and starts a task.
The started task then enters the WAIT status.

3: SUSPEND Interrupts the task and moves the task to the SUSPEND status.

4: RESUME Moves the task from the SUSPEND status to the READY status.

3 C_NAME
Address

input
Designates the leading register number (MW/DW address) of the registers where the
user C-language task name (project name) is stored.

Output

1 COMPLETE B-VAL Completes execution of CTSK function

2 ERROR B-VAL Error occurrence (The contents of error is reported to ERR_CODE.)

3 ERR_CODE L-REG

Error code

0x00000000 No error

0x0000006F
DWG (drawing) type error

• CTSK function was executed by a sequence program (start drawing)

0x00000091

• TYPE setting error

• TYPE set value is out of the range.

• The task was neither in the WAIT nor WAIT-SUSPEND status when
the task control type WAKEUP was executed.

• The task was neither in the WAIT nor READY status when the task
control type SUSPEND was executed.

0x00000094 The task designated in C_NAME does not exist.

0x00000096 C_NAME register over the upper/lower limit
Note: This can be detected also when EXECUTE input is OFF.

0xFFFFFFDD μITRON detection error (Invalid ID number)∗
0xFFFFFFCC μITRON detection error (Task not registered)∗

0xFFFFFFC1
μITRON detection error (Illegal object status)∗
• The task is in DORMANT status.

• RESUME was commanded to a task that was not in SUSPEND status.

0xFFFFFFBB
μITRON detection error (Context error)∗
• Cannot issue from the task independent context.

0xFFFFFFB7 μITRON detection error (Queue overflow)∗

ASCII 'ctask1' DW00010; "User C-language task name

DW00013 = 0000H; "NULL code

DW00002 = 1; "WAKEUP

DB000001 = 1; "Execute the task control

CTSK DB000001 DW00002, DA00010, DB000002 DB000003 DL00004;

EXAMPLE
8-173

8 Command Reference

8.10.2 C-Language Function Call (CFUNC)

8-1
8.10.2 C-Language Function Call (CFUNC)

(1) Overview
The C-Language Function Call command (CFUNC) calls the user C-language task.

Note: The following versions of system software and programming tool MPE720 are required to use
CFUNC commands.

The Machine Controller MP2000 series embedded C-language package is required to use user C-language tasks.
For details, refer to Machine Controller MP2000 Series Embedded C-Language Programming Package Development

Guide (manual no.: SIEP C880700 25).

MP2000 Series
Machine Controller

Required Version MPE720 Required Version

All models Ver.2.60 or later
MPE720 Ver.5 MPE720 Ver.5.38 or later

MPE720 Ver.6
MPE720 Ver.6.04 or later

MPE720 Ver.6.04Lite or later

Main program

Subprogram

Call

User C-language functionMotion program/Sequence program

CFUNC
command

CFUNC
command

User C-language
function #1

User C-language
function #2

Call

INFO
74

8.10 C-Language Control Commands

C
om

m
an

d
R

ef
er

en
ce
(2) Format

(3) Programming Examples
The CFUNC command programming example is shown below.

CFUNC EXECUTE OPTION1 OPTION2, C_NAME C_ARG1 C_ARG2,

 COMPLETE ERROR C_RETURN;

I/O
Defini-

tion
No. Name

I/O
Designation

Description

Input

1 EXECUTE B-VAL Designates execution of CFUNC function

2 OPTION1 I-REG Option designation 1 (For future use)

3 OPTION2 I-REG Option designation 2 (For future use)

4 C_NAME Address input
Designates the leading register No. (MW/DW address) of the registers
where the user c-language function name is stored.

5 C_ARG.1 Address input
Designates the leading register No. (MW/DW address) to be set for the
user C-language function 1st argument.

6 C_ARG.2 Address input
Designates the leading register No. (MW/DW address) to be set for the
user C-language function 2nd argument.

Output

1 COMPLETE B-VAL Completes execution of the CFUNC function

2 ERROR B-VAL

Error occurrence

• C_NAME, C_ARG.1, C_ARG.2 register over the upper/lower limit
(The sizes of C_ARG.1 and C_ARG.2 are not taken into consider-
ation.)

Note: Detected also when the EXECUTE input is OFF.

• The function designated in C_NAME does not exist.

3 C_RETURN L-REG Stores the return value of user C-language function as it is.

ASCII 'cfunc1' DW00010; "User C-language function name

DW00013 = 0000H; "NULL code

DB000000 = 1; "Execute the user C-language function

CFUNC DB000000 0 0,DA00010 DA00002 DA00004, DB000003 DB000004
DL00016;

EXAMPLE
8-175

E
ng

in
ee

rin
g

To
ol

 M
P

E
72

0

9

Engineering Tool MPE720

This chapter describes the engineering tool MP720, for creating and editing motion programs
and sequence programs.

9.1 Motion Editor - 9-2
9.1.1 Overview - 9-2
9.1.2 Names and Descriptions of Motion Editor Window Components - - - - - - - - - - - - - - - - 9-4

9.2 Command Input Assistant Function - 9-6
9.2.1 Overview - 9-6
9.2.2 Motion Command Assist Dialog Box Details - 9-8

9.3 Program Execution Registration Function - 9-12
9.3.1 Overview - 9-12
9.3.2 Program Execution Registry Screen Dialog Box Details - 9-13

9.4 Debug Function - 9-15
9.4.1 Overview - 9-15
9.4.2 Motion Editor Window during Debugging - 9-16

9.5 Motion Task Manager - 9-22
9.5.1 Overview - 9-22
9.5.2 Motion Task Manager Window Details - 9-23

9.6 Drive Control Panel - 9-24
9.6.1 Overview - 9-24
9.6.2 Drive Control Panel Details - 9-26

9.7 Test Run Function - 9-28
9.7.1 Overview - 9-28
9.7.2 Test Run Window Details - 9-29

9.8 Axis Status and Alarm Monitor - 9-31
9.8.1 Overview - 9-31
9.8.2 Monitor Window Details - 9-33
9-1

9 Engineering Tool MPE720

9.1.1 Overview

9-2
9.1 Motion Editor
This section describes the Motion Editor.

9.1.1 Overview
The Motion Editor is a programming tool that is required to create and edit motion programs and sequence pro-
grams.
It has the full range of functions required to create and edit these programs, including text editing, compiling
(saving), debugging, and monitoring.

9.1 Motion Editor

E
ng

in
ee

rin
g

To
ol

 M
P

E
72

0

There are two ways to start the Motion Editor:

• Double-click the program in the Motion subwindow.

• Click the icon on the toolbar of the Engineering Manager window.
9-3

9 Engineering Tool MPE720

9.1.2 Names and Descriptions of Motion Editor Window Components

9-4
9.1.2 Names and Descriptions of Motion Editor Window Components

a) Group selection (Only for motion programs)

The group names set in the Group Definition dialog box are displayed in the drop-down menu.
Select a group for which the editing program is to be used.

b) Program editing window

A text editor for programming.

c) Line

Displays program text lines.

d) Block

Displays program blocks.
When an alarm is generated in the motion program, the block where the alarm is generated is reported.

e) f)

b)

a)

c) d)

9.1 Motion Editor

E
ng

in
ee

rin
g

To
ol

 M
P

E
72

0

e) Tool icons

The following table shows the icons used to edit programs.

f) Monitor tab and status bar

Used to monitor programs.

Function Icon
Key

Operation
Description

Cut Ctrl + X Deletes the selected range and stores the deleted range in the Clip-
board.

Copy Ctrl + C Reproduces the selected range in the Clipboard.

Paste Ctrl + V Pastes the materials stored in the Clipboard.

Position Monitor − Displays the Position Monitor dialog box.

New File
(Motion programs)

− Opens a new motion program file.

New File
(Sequence programs)

− Opens a new sequence program file.

Open − Displays the File List dialog box.

Save Ctrl + S

Saves the editing program to the hard disk of the computer.

During online editing, the editing program will be not only be
saved to the hard disk but also downloaded (transferred) to the
Machine Controller.

Save & Save to Flash −

Consecutively executes the following operations.

• Saves the editing program to the hard disk of the computer.

• Downloads the editing program to the Machine Controller.

• Saves the downloaded program to the flash memory.

All programs downloaded to the Machine Controller will be saved
to the flash memory.

Print Ctrl + P Prints out the editing program.

Motion Command Assist F12 Displays the Motion Command Assist dialog box.

Position Teach −

Displays the Position Teach dialog box.

The work coordinate system current position of the axis desig-
nated in the Position Teach dialog box will be inserted on the
Motion Editor.

Add/Not Add a
Semicolon

− Used to select whether or not to allow use of the ENT key to add a
semicolon (;).

Open Error List Dialog
Box

− Displays the list of save errors (compile errors).

Automatic Scroll − Used to select whether or not to scroll the screen in line with the
executing line of the program during program execution.

Function
Button/

Status Bar

Key
Opera-

tion
Description

Monitoring Tab −
Sets whether or not to monitor programs.

When the moving button is selected (), the exe-
cuting program line is displayed in real time.

Monitoring Status
Bar

− Indicates the program monitoring status.
9-5

9 Engineering Tool MPE720

9.2.1 Overview

9-6
9.2 Command Input Assistant Function
This section describes the motion command input assistant function.

9.2.1 Overview
The command input assistant function helps a programmer to create a required motion program.
The motion commands are written in a textual language called motion language, and each command needs to be
written in the specified format. The Motion command assist dialog box is provided to make it easy to correctly
select and code the commands.
The following versions of MPE720 support the command input assistant function.

Note: The command input assistant function can be used for all models of MP2000-series Machine Controllers.

The Motion command assist dialog box can be opened from the Motion Editor window. There are two ways to
open the Motion command assist dialog box, as described on the next page.

MPE720 Supported Version

MPE720 Ver.5 Not supported

MPE720 Ver.6
Ver.6.04 or later
Ver.6.04 Lite or later

9.2 Command Input Assistant Function

E
ng

in
ee

rin
g

To
ol

 M
P

E
72

0

• Select Motion command assist from the pop-up menu when you right-click the Motion Editor window,
or press the function key F12.

• From the right-click menu, select Insert motion command, then select the command you want to insert.
9-7

9 Engineering Tool MPE720

9.2.2 Motion Command Assist Dialog Box Details

9-8
9.2.2 Motion Command Assist Dialog Box Details

a) Select command (Command options)

Click the arrow to open the drop-down menu that contains the commands that can be inserted.

b) Command format

Displays the programming format of the selected command.

a)

b)
c)

e)

f)

d)

i)h)g)

MOV: Positioning

+: Add

EXAMPLE

9.2 Command Input Assistant Function

E
ng

in
ee

rin
g

To
ol

 M
P

E
72

0

c) Axis number (Number of axes to be controlled)

For axis move commands, the number of axes to be controlled can be selected in the range from 1 to the num-
ber of axes set in the Group Definition dialog box.
When the number of axes to be controlled is fixed, the fixed number of axes is displayed in the shaded box
(unavailable option).

d) Set to the arguments

Set the parameters for the selected command. The setting items are listed below.

The logical axis names displayed in the Axis column are defined in the Group Definition dialog box.
The setting units in the Unit column are displayed according to the motion parameter settings of each axis. If
a setting unit has not been specified, the corresponding Unit cell is displayed in yellow. Place the mouse
pointer on the Unit cell and click the mouse. The help balloon will pop up. Follow the help balloon messages
to set the motion parameters.
When the selected command requires neither the settings of number of axes to be controlled nor parameters,
the program input field will appear as shown below. Enter the command block referring to the command for-
mat displayed above.

MOV: Positioning ••• Select the number of axes to be controlled.

EXM: External positioning ••• The number of axes to be controller is fixed.

Item Description

Argument
Displays the parameter names to be set as the arguments. The displayed parameter
names cannot be edited.

For the arguments that can be omitted, [Can be omitted] is displayed.

Axis Displays the logical axis names. Change the logical axes as required.

Setting value Enter a constant or register as the set value.

Unit Displays the parameter setting unit. The setting units cannot be edited.

EXAMPLE
9-9

9 Engineering Tool MPE720

9.2.2 Motion Command Assist Dialog Box Details

9-1
e) Comment check box and Comment input field

Selecting the Comment check box allows you to insert a comment above the command line. When the Com-
ment check box is cleared, the comment input field will be shaded and comments cannot be inserted.

The comment inserting position cannot be changed.

f) Update button

Click the Update button to refresh the display in the Motion command assist dialog box.

After changing the setting of a unit related motion parameter, click the Update button to refresh the display.

g) Insert button

Click the Insert button to insert the command edited in the Motion command assist dialog box at the
pointer position in the Motion Editor window.

h) Close button

Click the Close button to close the Motion command assist dialog box.

INFO

INFO
0

9.2 Command Input Assistant Function

E
ng

in
ee

rin
g

To
ol

 M
P

E
72

0

i) Help button

Click the Help button to display a description of the selected command.

Jumps to the help

page of the

selected command
9-11

9 Engineering Tool MPE720

9.3.1 Overview

9-1
9.3 Program Execution Registration Function
This section describes the program execution registration function of M-EXECUTOR.

9.3.1 Overview
The created motion programs and sequence programs need to be registered in the MP2000 system to run. The
Program execution registry screen dialog box is provided to make it easy to register the created motion pro-
grams and sequence programs in the MP2000 system.

The following versions of MPE720 support the program execution registration function.

There are two ways to open the Program execution registry screen dialog box:

• Click the icon in the Motion Editor window.

• Open the M-EXECUTOR details window from the Module Configuration Definition window, and then click

the icon.

MPE720 Supported Version

MPE720 Ver.5 Ver5.38 or later

MPE720 Ver.6
Ver6.04 or later
Ver6.04 Lite or later
2

9.3 Program Execution Registration Function

E
ng

in
ee

rin
g

To
ol

 M
P

E
72

0

9.3.2 Program Execution Registry Screen Dialog Box Details

a) Program execution registry number

Select the program execution registration number.
Programs will be executed in order, from the smallest program execution registration number.

b) Program number

Set the program number.

c) Execution type

Select a program execution type from the drop-down menu:

d) Specification

Select the program designation method: Direct or Indirect
The applicable designation methods differ depending on whether the program is a motion program or a
sequence program.

h) i)

b)

d)

e)

c)

f) g)

a)

Execution Type
Program to be

Executed
Execution Conditions

Sequence program
(Start)

Sequence programs

At power ON

(Executed once at power ON.)

Sequence program
(L scan)

Cyclic start

(Executed in low-speed scan cycle.)

Sequence program
(H scan)

Cyclic start

(Executed in high-speed scan cycle.)

Motion program Motion programs

When the Program operation start request bit of con-
trol signal turns ON.

(Executed when the Program operation start request
bit turns ON.)

Designa-
tion

Method

Motion
Programs

Sequence
Programs

Description

Direct Applicable Applicable
Designate the program number.

Example: MPM001, SPM002

Indirect Applicable N/A
Designate the register number that stores the program number.

Example: OW0C0C (When 1 is stored in OW0C0C, MPM001 is exe-
cuted.)
9-13

9 Engineering Tool MPE720

9.3.2 Program Execution Registry Screen Dialog Box Details

9-1
e) Register allocation

Allocate the registers. The allocated registers exchange data in real time with the M-EXECUTOR control
registers. I, O, and M registers can be allocated.

f) Status, Control signal (icons)

Click the corresponding icon to display the bit assignment of the status flag or control signal.

g) Allocation DISABLE

Click to select or clear the corresponding check box to enable or disable the allocated register. When the
check box is cleared, the allocated register is enabled.

h) List button

Click the List button to display the M-EXECUTOR (list) window.

i) Delete button

Delete the definition.
4

9.4 Debug Function

E
ng

in
ee

rin
g

To
ol

 M
P

E
72

0

9.4 Debug Function
This section describes the debug function.

9.4.1 Overview
The debug function debugs motion programs and sequence programs.
Various functions including program pause, break point setting, and step-by-step execution (single block execu-
tion) are provided to check the created program operation.

During debugging, the executing program line is highlighted on the screen as shown below.

Note: The debug function can be used with all MP2000-series Machine Controller models.

To start debugging, connect the MPE720 online with the Machine Controller, and click the icon on the

Motion Editor window.
During debugging, the executing program line is highlighted on the screen as shown below.

Before debugging, the programs must be registered in the Program execution registry screen dialog box.

　Normal run status
　During debugging

Highlighted

INFO
9-15

9 Engineering Tool MPE720

9.4.2 Motion Editor Window during Debugging

9-1
9.4.2 Motion Editor Window during Debugging

a) Executing program line

The executing program line is highlighted in blue.
If a motion program alarm is generated in the executing program line, the executing program line is high-
lighted in red. Refer to 10.2.4 Motion Program Alarm Codes for information on motion program alarms.

b) Tool icons and function keys

The following table shows the icons, menu commands, and function keys to be used for a debug operation.

a)

b)

Function Icon
Key

Oper-
ation

Description
Motion

Programs
Sequence
Programs

Debug mode F1 Starts the program in debug mode. Available Available

Normal run mode F11 Cancels the debug mode. The program continuously runs
in normal run mode.

Available Available

Shift execution
start point

F6 Shifts the execution start line (start point). Available Available

Set/Delete break
point

F7 Sets or deletes a break point. A break point is described in
the program.

Available Available

Step in F4
Executes one command block. For an MSEE or SSEE
command, execution will jump to the start line of the
specified subprogram.

Available Available

Step over F5
Executes one command block. For an MSEE or SSEE
command, executes the specified subprogram and then
executes the next block of the MSEE or SSEE command.

Available Available

Execute F8 Continuously executes the motion program lines in debug
mode until the break point.

Available Available

Break F10 Pauses motion program execution in debug mode. Available Available

Forced end F2 Forcibly stops motion program execution. Available N/A

Update current
position

− Updates the current position coordinates. Available N/A

Setting the
execute task
MSEE Call Stack

− Sets the parallel number, nesting level, and task of the
selected subprogram.

Available Available

Set/Delete
Breakpoint

− −
Enables or disables the break point.

This command can be selected from the Debug menu or
the drop-down menu that will appear when right clicking.

Available Available

Add Register − −

Adds the selected register to the Watch Page of Quick
Reference.

This command can be selected from the drop-down menu
that will appear when right clicking.

Available Available
6

9.4 Debug Function

E
ng

in
ee

rin
g

To
ol

 M
P

E
72

0

• Debug mode

Click this icon to switch the operation mode to the debug mode and start debugging from the first line of the
program.

The debug start line when the operation mode is switched to the debug mode differs, depending on whether you are using
the motion program or the sequence program:

 Motion Programs

• When debug mode is selected for a motion program that is not running
Debugging starts from the first line of the program, as shown in the above example.

• When debug mode is selected for a running motion program
When the mode is switched to the debug mode while an axis is moving, debugging will start from the next command
block after the axis movement completes.

 Sequence Programs

• When debug mode is selected for a sequence program that is not running.
Debugging is not possible in this case.

• When debug mode is selected for a running sequence program.
Debugging starts from the first line of the program, as shown in the above example.

• Normal run mode

Click this icon to switch the operation mode from debug mode to normal run mode. The debugging will be
cancelled and program execution will restart from the currently executing line.

All the break points that have been set will be deleted.

• Shift start point

Shift the executing program line to the selected line.

The debug execution line is in the first line.

INFO

Restarts from the program line in execution.

1. Click the line to be executed.

2. Click the 　　 icon.

3. The executing program line is shifted.
 The line MOV [A1]90000 will not be

 executed.
9-17

9 Engineering Tool MPE720

9.4.2 Motion Editor Window during Debugging

9-1
• Set/Delete break point

Click this icon to set a break point. A maximum of four break points can be set.
Clicking the button of the line for which a break point has been already set will delete the break point.

• Step in

Click this icon to execute one program line.
When this icon is clicked while an MSEE or SSEE command block is being executed, execution will jump to
the first line of the called subprogram.

• Step over

Click this icon to execute one program line.
When this icon is clicked while an MSEE or SSEE command block is being executed, the called subprogram
will be executed and then execution will proceed to the next block of the MSEE or SSEE command block.

More than one process can be specified as the processing unit for execution of the Step in and Step over by using SNGD
and SNGE commands.

MPM001

1. Click the 　 icon.

2. The first line of the called subprogram will be executed.

MPS002

MPM001
MPS002

1. Click the 　 icon.

2. The called subprogram is executed.

3. The next block of the MSEE of SSEE command block
will be executed.

INFO

Command blocks to be the processing unit
for execution of step in or step over

SNGD;

SNGE;

The command blocks
enclosed with SNGD
and SNGE constitute
the processing unit
for execution of step
in or step over.
8

9.4 Debug Function

E
ng

in
ee

rin
g

To
ol

 M
P

E
72

0

• Execute

Click this icon to continuously execute program lines. When the break point is reached, the execution will
stop.

• Break

Click this icon to pause a program in debug mode. To restart the program, click the Execute icon.

• Forced end

Click this icon to forcibly end the execution of a program in debug mode.

• Update current position

This icon has the same function as the PLD command. While this icon is selected, the operation of the PLD
command is processed by the system when using the Step in, Step over, and Execute icons.
Refer to 8.3.3 Program Current Position Update (PLD) for details on PLD command.

1. Set a break point. 2. Click the icon.

3. The execution stops at the break
 point.

1. Start the motion program. 2. Click the icon.

3. The motion program stops.

The lines after the currently executing line will not be
executed.
9-19

9 Engineering Tool MPE720

9.4.2 Motion Editor Window during Debugging

9-2
• Setting the execute task (Only for subprograms)

Set the subprogram information used for monitoring or debugging subprograms. When the Setting the exe-
cute task command is selected, the currently running main programs will be displayed. Select the main pro-
gram that calls the subprogram.

• MSEE call stack (Only for subprograms)

Set more detailed subprogram information than the Setting the execute task command.

Item Description

Main program
number

Set the main program number that calls the subprogram.

Fork number

Set the parallel number of the main program that calls the subprogram.

Example: Set 3 when monitoring and debugging subprogram MPS004.

Nest number

Set the nesting level of the subprogram call.

Example: Set 2 when monitoring and debugging subprogram MPS003.

PFORK Label1 Label2 Label3 Label4;
Label1: Parallel 1

MSEE MPS002;
JOINTO LabelX;

Label2: Parallel 2
MSEE MPS003;
JOINTO LabelX;

Label3: Parallel 3
MSEE MPS004;
JOINTO LabelX;

Label4: Parallel 4
MSEE MPS005;
JOINTO LabelX;

LabelX: PJOINT;

END;

MPM001

MW0000=1;
MSEE MPS002;

END;

MPM001

MW0000=2;
MSEE MPS003;

RET;

MPS002 (Nest 1)

MW0000=3;

RET;

MPS003 (Nest 2)
0

9.4 Debug Function

E
ng

in
ee

rin
g

To
ol

 M
P

E
72

0

• Set/Delete Breakpoint

Enables or disables the break point.

• Add Register

The register displayed on the Motion Editor can be registered to the Watch Page of Quick Reference.
The values of the registered registers can be monitored on the Watch Page.

1. Right-click on the register to be monitored. Select Add Register from the pop-up menu.

2. The register will be added to the Watch Page of Quick Reference.

Break point enabled
(Displayed in yellow)

Break point disabled
(Displayed in white)

Debug menu
The menu that pops up when right-clicking on the

Motion Editor window.
9-21

9 Engineering Tool MPE720

9.5.1 Overview

9-2
9.5 Motion Task Manager
This section describes the Motion Task Manager.

9.5.1 Overview
The Motion Task Manager is used to view the list of motion tasks, and to monitor task execution status.
The running tasks and idle tasks are displayed in a tree structure in the Motion Task Manager window.

Note: The Motion Task Manager can be used with all MP2000-series Machine Controller models.

To start the Motion Task Manager, select View - Motion Task Manager in the Motion Editor window.
2

9.5 Motion Task Manager

E
ng

in
ee

rin
g

To
ol

 M
P

E
72

0

9.5.2 Motion Task Manager Window Details

a) Task execution status is displayed in a tree structure

The execution status of each motion program and sequence program is displayed in a tree structure.
Double-click the program to open the corresponding program in the Motion Editor window.

b) Program status display

The program status is displayed.

a) b)

Display Status

Pause The program execution is paused.

Debug Mode The program is being debugged.

Debug Mode: Suspend The program debugging is suspended at a break point.

Running The program is running.

Alarm generated

An alarm has occurred in the motion program.

Place the mouse pointer on the program name to view the alarm details.
9-23

9 Engineering Tool MPE720

9.6.1 Overview

9-2
9.6 Drive Control Panel
This section describes the Drive Control Panel.

9.6.1 Overview
To execute the created motion program, the program needs to be registered in the MP2000 system and the pro-
gram start request must be issued using the user application.
If you want to run the created motion program before creating the user application, use the Drive control panel
to carry out the program trial run.
Commands such as program start request, stop request, and alarm reset request can be issued from the Drive con-
trol panel.
The following versions of MPE720 support the Drive control panel.

Note: The Drive control panel does not have the break point setting or step-by-step execution (single block
execution) functions that the debug function has.

MPE720 Supported Version

MPE720 Ver.5 Ver. 5.38 or later

MPE720 Ver.6
Ver. 6.04 or later
Ver. 6.04 Lite or later

• Be sure the area is safe before starting a motion program by using the Drive control panel.
The axes will start moving as the motion program runs.

• Do not overwrite the motion program control register by using a sequence program or ladder program.
Doing so may disable the control from the Drive control panel.

• Do not simultaneously execute axes move commands for one axis from more than one program.
Doing so may result in an adverse movement of the axis.

CAUTION
4

9.6 Drive Control Panel

E
ng

in
ee

rin
g

To
ol

 M
P

E
72

0

Click the icon in the Motion Editor window to start the Drive control panel.
9-25

9 Engineering Tool MPE720

9.6.2 Drive Control Panel Details

9-2
9.6.2 Drive Control Panel Details

a) Program exec registry No.

The program execution registry number of the program for trial run is displayed.
The program execution registry number must be set in the Program execution registry screen dialog box of
the M-EXECUTOR in advance.

b) Program number

The program number for trial run is displayed.
The program number must be set in the Program execution registry screen dialog box of M-EXECUTOR
in advance.

c) START button

Click the START button to start the trial run.

d) PAUSE button

Click the PAUSE button to pause the trial run.

e) STOP button

Click the STOP button to stop the trial run.

f) ALMRST button

Click the ALMRST button to reset the alarm after an alarm has been generated.

g) Trial run status display

The corresponding status indicator LED lights up to indicate the trial run status.

• RUNNING: Lights up when the START button is clicked.
• PAUSING: Lights up when the PAUSE button is clicked.
• STOPPED: Lights up when the STOP button is clicked.
• ALARM: Lights up when a program alarm occurs.
• PRGNOERR: Lights up when a program number error occurs (the program number is outside the

allowable range).

b)

c)
d)
e)
f)

g)

h)

a)
6

9.6 Drive Control Panel

E
ng

in
ee

rin
g

To
ol

 M
P

E
72

0

h) Display button

Click the Display button to open the Error information screen window. Refer to 10.2.4 Motion Program
Alarm Codes for details on the errors and the Error information screen window. An example of an error
information window is shown below.
9-27

9 Engineering Tool MPE720

9.7.1 Overview

9-2
9.7 Test Run Function
This section describes the Test Run function.

9.7.1 Overview
The Test Run function is used to perform a test run of axes that are connected to the MP2000-series Machine
Controller from the Test Run window. The servo ON, servo OFF, JOG operation, and STEP commands can be
executed without using programs.
The following versions of MPE720 support the Test Run function.

Note: The Test Run function can be used with all MP2000-series Machine Controller models.

Double-click Test run in the System subwindow to open the Test Run window.

MPE720 Supported Version

MPE720 Ver.5 Not supported

MPE720 Ver.6
Ver6.04 or later
Ver6.04 Lite or later

• Make sure the area is safe before moving the axes by using the Test Run function.
• Before starting operation, be sure to prepare emergency stop measures to stop axis movement whenever

necessary.
• Before moving the axes by using the Test Run function, stop all ladder programs and motion programs

that are being executed.

CAUTION
8

9.7 Test Run Function

E
ng

in
ee

rin
g

To
ol

 M
P

E
72

0

9.7.2 Test Run Window Details

a) Axis

Select the axis for the test run.

b) Servo Enable, Alarm

The servo status (Enabled [servo ON] or Disabled) [servo OFF] and the axis alarm status (Alarm or No
Alarm) are displayed.

c) Enable, Disable, and Monitor buttons

Click the Enable button to turn ON the servo, click the Disable button to turn it OFF. Special care must be
taken for this operation because it will change the motion setting parameter.
Click the Monitor button to display the details of an axis alarm.

Switch by clicking the Jog or Step tab.

a)

b)

c)

d)

g)

a)

b)

c)

d)

h)

e)

f)
9-29

9 Engineering Tool MPE720

9.7.2 Test Run Window Details

9-3
d) Speed reference

Set the speed reference value. Special care must be taken for this operation because it will change the motion
setting parameter.

e) Step distance (In the Step tab page)

Set the step movement amount for step operation. Special care must be taken for this operation because it will
change the motion setting parameter.

f) Direction Setting (In the Step tab page)

Click the Direction Setting button. The Direction Setting dialog box used to set the axis operation direction
for step operation will appear.
Select Forward or Reverse of the Direction to specify the axis operation direction. Special care must be
taken for this operation because it will change the motion setting parameter.
A repetitive run for step operation can also be set and specified in this dialog box.

g) Forward and Reverse buttons (In the Jog tab page) for JOG operation

Click the Forward or Reverse button to start JOG operation.
The specified axis keeps moving in the corresponding direction as long as the button is being pressed.
The axis will stop when the button is released.

h) Run and Stop buttons (In the Step tab page) for STEP operation

Click the Run button to start one step operation of the specified axis. Unlike with the jog operation, the but-
ton does not need to be continuously pressed.
When the Repetitive running check box is selected in the Direction Setting dialog box, the step operation is
repeated for the specified number of times, and then the axis will stop. During a repetitive run, the axis can be
stopped by clicking the Stop button.
0

9.8 Axis Status and Alarm Monitor

E
ng

in
ee

rin
g

To
ol

 M
P

E
72

0

9.8 Axis Status and Alarm Monitor
This section describes the axis operation monitor and axis alarm monitor.

9.8.1 Overview
The Axis Monitor displays the operation status of the axes connected to the MP2000-series Machine Controller.
The axis status (Ready/Servo Enable [Servo ON], Alarm/Warning, Prof. Comp [Distribution Completed]/In
Position [Positioning Completed], and Motion Command) and the user selected monitoring parameter status
are displayed onscreen.
The Alarm Monitor displays the alarm information of the axes connected to the MP2000-series Machine Controller.
The following MPE720 versions support the Axis Monitor and Alarm Monitor.

Note: The Axis Monitor and Alarm Monitor functions can be used with all MP2000-series Machine Controller
models.

MPE720 Supported Version

MPE720 Ver.5 Not supported

MPE720 Ver.6
Ver. 6.04 or later
Ver. 6.04 Lite or later

Axis Monitor Alarm Monitor
9-31

9 Engineering Tool MPE720

9.8.1 Overview

9-3
Double-click Axis monitor or Alarm monitor in the System subwindow to start the axis monitor or alarm mon-
itor.
2

9.8 Axis Status and Alarm Monitor

E
ng

in
ee

rin
g

To
ol

 M
P

E
72

0

9.8.2 Monitor Window Details

(1) Axis Monitor

a) Circuit

Select the circuit whose motion monitoring parameters are to be displayed.

b) Monitoring cycle selection

Select the monitoring cycle.

c) Pausing/Starting monitoring

Click this button to start or pause monitoring.

d) Axis alarm monitor

Click this icon to open the Alarm Monitor window.

e) Refresh

Click this icon to refresh the display to the latest axis status.

f) Axis status

Ready/Servo Enable (Servo ON), Alarm/Warning, Prof. Comp (Distribution Completed)/In Position
(Positioning Completed), Motion Command status are displayed. The display will change according to the
status.

a) b) c) d) e)

g)

f)

h)
9-33

9 Engineering Tool MPE720

9.8.2 Monitor Window Details

9-3
g) Motion monitoring parameter selection

A maximum of eight motion monitoring parameters can be selected.
Machine coordinate reference position (APOS), Position error (PERR), Feedback speed, and Feedback
torque/thrust are displayed as defaults.

Click the button, and select a desired monitoring parameter from the Monitor drop-down
menu in the Monitor Parameter dialog box that will appear as shown below.

If you want to set a monitoring parameter not included in the Monitor pull-down list, directly enter the register number
(IW8000 for example) in the dialog box.

h) Monitoring parameter status

The status of the selected monitoring parameters is displayed.

Monitoring parameter in Monitor pull-down list

Monitoring Parameters Register Unit

Machine coordinate target position
(TPOS)

ILxx0E Reference unit

Target position (CPOS) ILxx10 Reference unit

Machine coordinate system position
(MPOS)

ILxx12 Reference unit

CPOS for 32bit ILxx14 Reference unit

Machine coordinate feedback position
(APOS)

ILxx16 Reference unit

Machine coordinate latch position (LPOS) ILxx18 Reference unit

Position error (PERR) ILxx1A Reference unit

POSMAX number of turns ILxx1E rev

Speed reference output monitor ILxx20 pulse/s

Feedback speed ILxx40 Selected speed unit

Feedback torque/thrust ILxx42 Selected torque unit

INFO
4

9.8 Axis Status and Alarm Monitor

E
ng

in
ee

rin
g

To
ol

 M
P

E
72

0

(2) Alarm Monitor

a) Manually refresh

Click this icon to refresh the alarm and warning information.

b) Pausing/Starting monitoring

Click this button to start or pause monitoring.

c) Alarm and warning display

Displays alarm and warning status.

a) b)

c)

Display Axis Status

 (Blue) No alarm or warning occurs.

 (Red) An alarm is occurring.

 (Yellow) A warning is occurring.
9-35

Tr
ou

bl
es

ho
ot

in
g

10

Troubleshooting

This chapter describes the causes of errors in motion programs and sequence programs, and
suggests corrective actions.

10.1 Troubleshooting - 10-2
10.1.1 Basic Flow of Troubleshooting - 10-2

10.2 Troubleshooting for Motion Programs - 10-3
10.2.1 Error Investigation Flow - 10-3
10.2.2 Problem Starting a Motion Program - 10-4
10.2.3 Confirming the Alarm Code - 10-9
10.2.4 Motion Program Alarm Codes - 10-15

10.3 Troubleshooting for Sequence Programs - 10-17
10.3.1 Error Investigation Flow - 10-17
10.3.2 Problem Starting a Sequence Program - 10-18
10-1

10 Troubleshooting

10.1.1 Basic Flow of Troubleshooting

10-
10.1 Troubleshooting
This section describes troubleshooting methods, and provides a list of motion program and sequence program
errors.

10.1.1 Basic Flow of Troubleshooting
When a problem occurs, it is important to quickly find the cause of the problem and get the system running again
as soon as possible. The basic troubleshooting flow is illustrated below.

Step 1 Visually confirm the following items.

• Machine movement (or status if stopped)
• Power supply
• I/O device status
• Wiring status
• Indicator status (LED indicators on each Module)
• Switch settings (e.g., DIP switches)
• Parameter settings and program contents

Step 2
Monitor the system to see if the problem changes in
response to the following operations.

• Switching the Controller to STOP status
• Resetting alarms
• Turning the power supply OFF and ON again.

Step 3
Determine the location of the cause from the results
of steps 1 and 2.

• Controller or external?
• Sequence control or motion control?
• Software or hardware?
2

10.2 Troubleshooting for Motion Programs

Tr
ou

bl
es

ho
ot

in
g

10.2 Troubleshooting for Motion Programs
10.2.1 Error Investigation Flow

If the cause of error may be related to the motion program, refer to the following flowchart to troubleshoot.

Is ERR or ALM of the
LED on the front basic
module lit?

System error or
operation error

YES

System error or
operation error

Display the contents of
alarm code.

Determine the cause from the
alarm code.

Check the IL��04 alarm bits to
find out the cause.

Refer to the user’s manual
for the motion module
being used.

Do you have a problem
starting a motion program?

Problem starting a
motion program

YES

NO

NO

YES

NO

Motion module fault

START

Refer to the user’s manual
for the Machine
Controller being used to
troubleshoot errors.

Is any alarm reported to the
motion monitoring parameter
IL��04 (Alarm) ?

Refer to 10.2.4 Motion Program
Alarm Codes.

Refer to 10.2.2 Problem Starting a
Motion Program.
10-3

10 Troubleshooting

10.2.2 Problem Starting a Motion Program

10-
10.2.2 Problem Starting a Motion Program
If a problem exists when starting a motion program, check the following items to find out how to correct the
problem.

(1) Program Execution Registration to the System
Before starting the motion program, motion programs must be registered to the system used for execution.
Two methods can be used to register motion programs: By embedding an MSEE command in H drawing or by
registering motion programs to the M-EXECUTOR module.
Refer to 4.3.2 Registering the Program Execution for details on motion program registration methods.

• Embedding an MSEE command in H Drawing

• Registering Motion Programs to M-EXECUTOR

Check the ladder program to see if an
MSEE command is embedded.
Embed the MSEE command so that
it is executed every scan cycle.

If the check box () is se-
lected, the motion program
will not start.

Confirm that the designated
program number is correct.
4

10.2 Troubleshooting for Motion Programs

Tr
ou

bl
es

ho
ot

in
g

(2) Program Start Request Bit of Control Signal and Program Running Status Bit of Status
Flag
When the MP2000 system detects a status change in motion program control signal bit 0 (Program start request)
from OFF to ON, the motion program will start running. When the motion program successfully starts running,
status flag signal bit 0 (Program running) will turn ON. Status flag signal bit 0 (Program running) will turn OFF
when the END command in the motion program is executed.
To start the motion program again, turn motion program control signal bit 0 (Program start request) OFF, and
then turn it ON again.
Check the ON/OFF status of these signal by using the data trace function.

Status flag

Motion program
work register

Control signal

Interpolation override

System work number

1st word

If this bit turns ON, the motion
program will start running.

Program start request
Control signal, bit 0:

Status flag, bit 0:
 Program running

Check to see if the program
start request bit is ON.

Bit 0 The motion program correctly started
if bit 0 is turned ON.

The motion program has correctly
started if the program running
bit is turned ON.

2nd word

3rd word
4th word

Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bit 8
Bit 9
Bit A
Bit B
Bit C
Bit D
Bit E
BitF

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bit 8
Bit 9
Bit A
Bit B
Bit C
Bit D
Bit E
Bit F

Program running
Program paused
Stopped by program stop request
(Reserved by the system)
Program single-block operation stopped
(Reserved by the system)
(Reserved by the system)
(Reserved by the system)
Program alarm
Stopped by break point
(Reserved by the system)
In debug mode
Program type
Start request signal history
“No system work” error, Execution scan error
Main program No. over the range

Program operation start request
Program pause request
Program stop request
Program single-block mode selection
Program single-block operation start request
Program reset and alarm reset request
Program continuous operation start request
(Reserved by the system)
Skip 1 information
Skip 2 information
(Reserved by the system)
(Reserved by the system)
(Reserved by the system)
System work number setting
Interpolation override setting
(Reserved by the system)

Motion program end timing
10-5

10 Troubleshooting

10.2.2 Problem Starting a Motion Program

10-
(3) Program Alarm Bit of Status Flag
If status flag bit 8 (Program alarm) is ON, the motion program is disabled from running because of the alarm in
the motion program.
Remove the cause of the alarm by referring to 10.2.4 Motion Program Alarm Codes, and then turn ON motion
program control signal bit 5 (Program reset and alarm reset request) to reset the alarm. After the alarm is reset,
start the motion program again.

Status flag

Motion program
work register

Control signal

Interpolation override

System work number

1st word

Control signal, bit 0:
Program operation start request

Program running

Bit 0

Program reset and alarm
reset request bit ON

2nd word

3rd word
4th word

Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bit 8
Bit 9
Bit A
Bit B
Bit C
Bit D
Bit E
Bit F

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bit 8
Bit 9
Bit A
Bit B
Bit C
Bit D
Bit E
Bit F

Program running
Program paused
Stopped by program stop request
(Reserved by the system)
Program single-block operation stopped
(Reserved by the system)
(Reserved by the system)
(Reserved by the system)
Program alarm
Stopped by break point
(Reserved by the system)
In debug mode
Program type
Start request signal history
“No system work” error, Execution scan error
Main program No. outside the range

Program operation start request
Program pause request
Program stop request
Program single-block mode selection
Program single-block operation start request
Program reset and alarm reset request
Program continuous operation start request
(Reserved by the system)
Skip 1 information
Skip 2 information
(Reserved by the system)
(Reserved by the system)
(Reserved by the system)
System work number setting
Interpolation override setting
(Reserved by the system)

Program reset and alarm
reset request

Status flag, bit 8:
Program alarm occurring

An alarm occurred in the
motion program.

Alarm reset

The motion program will not start while
an alarm is occurring even when the
program start request bit is turned ON.

The motion program starts
running when the program start
request bit is turned ON.

Status flag bit 8 turns
OFF when the Program
reset and alarm reset
request bit turns ON.

The motion program cannot start
when this bit is ON because an
alarm is occurring in the motion
program.

When this bit turns ON, the motion
program alarm is reset.

Status flag, bit 0:

Control signal, bit 5:
6

10.2 Troubleshooting for Motion Programs

Tr
ou

bl
es

ho
ot

in
g

(4) “No System Work” Error/Execution Scan Error Bit of Status Flag
If running status flag bit E (“No system work” error/execution scan error) is ON, the motion program will be dis-
abled from running because of error occurrence. In this case, confirm the following items:

• The number of tasks being executed is less than 16.
• The task that the system work number designates is not being executed.
• The MSEE command is embedded in a high-speed scan drawing (DWG.H).

Status flag

Motion program
work register

Control signal

Interpolation override

System work number

1st word

Bit 0

2nd word

3rd word
4th word

Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bit 8
Bit 9
Bit A
Bit B
Bit C
Bit D
Bit E
Bit F

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bit 8
Bit 9
Bit A
Bit B
Bit C
Bit D
Bit E
Bit F

Program running
Program paused
Stopped by program stop request
(Reserved by the system)
Program single-block operation stopped
(Reserved by the system)
(Reserved by the system)
(Reserved by the system)
Program alarm
Stopped by break point
(Reserved by the system)
In debug mode
Program type
Start request signal history
“No system work” error, execution scan error
Main program No. outside the range

Program start request
Program pause request
Program stop request
Program single-block mode selection
Program single-block operation start request
Program reset and alarm reset request
Program continuous operation start request
(Reserved by the system)
Skip 1 information
Skip 2 information
(Reserved by the system)
(Reserved by the system)
(Reserved by the system)
System work number setting
Interpolation override setting
(Reserved by the system)

When this bit is ON, the motion
program will not start running
because of error occurrence.
10-7

10 Troubleshooting

10.2.2 Problem Starting a Motion Program

10-
(5) Main Program Number Over the Range Status Flag Bit
When status flag bit F (Main program number outside the range) is ON, the motion program will be disabled
from running because of an error. In this case, confirm the following:

• The motion program number designated in the MSEE command is within the range of 1 to 256.

Status flag

Motion program
work register

Control signal
Interpolation override

System work number

1st word

Bit 0

2nd word

3rd word
4th word

Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bit 8
Bit 9
Bit A
Bit B
Bit C
Bit D
Bit E
Bit F

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bit 8
Bit 9
Bit A
Bit B
Bit C
Bit D
Bit E
Bit F

Program running
Program paused
Stopped by program stop request
(Reserved by the system)
Program single-block operation stopped
(Reserved by the system)
(Reserved by the system)
(Reserved by the system)
Program alarm
Stopped by break point
(Reserved by the system)
In debug mode
Program type
Start request signal history
“No system work” error, execution scan error
Main program number outside the range

Program start request
Program pause request
Program stop request
Program single-block mode selection
Program single-block operation start request
Program reset and alarm reset request
Program continuous operation start request
(Reserved by the system)
Skip 1 information
Skip 2 information
(Reserved by the system)
(Reserved by the system)
(Reserved by the system)
System work number setting
Interpolation override setting
(Reserved by the system)

When this bit is ON, the motion
program will be disabled from
running because of error
occurrence.

If the register value to indirectly designate
the motion program is out of the range of
1 to 256, the error “Main program number
outside the range” will occur.
8

10.2 Troubleshooting for Motion Programs

Tr
ou

bl
es

ho
ot

in
g

10.2.3 Confirming the Alarm Code
When an alarm occurs in motion programs (status flag bit 8 [Program alarm] is ON), the alarm code indicates the
cause of the alarm.
The alarm codes of motion programs can be found by using either of the following:

• Error information screen window
• S register

(1) Using Error Information Screen Window
There are two ways to open the Error information screen window.

(a) Opening from the Drive Control Panel

Click the Display button on the Drive control panel.

(b) Opening from the Pop-up Menu when Right-clicking on the Motion Editor Window

Right-click with the cursor on the Motion Editor window. Select Motion alarm analyzer from the menu
that pops up.
10-9

10 Troubleshooting

10.2.3 Confirming the Alarm Code

10-
The components of the Error information screen window are described below.

a) Registry number

When an alarm occurs in the motion program registered in the Program Definition window of the M-EXEC-
UTOR, the registry number of the M-EXECUTOR defined in the Program Definition window is displayed.
When an alarm occurs in the motion program called from the ladder program by an MSEE command, “---”
 is displayed.

b) Registry program

When an alarm occurs in the motion program registered in the Program Definition window of the M-EXEC-
UTOR, the motion program name defined in the Program Definition window is displayed.
When an alarm occurs in the motion program called from the ladder program by an MSEE command, “---”
is displayed.

c) Parallel

When parallel execution commands (PFORK) are used in a motion program, more than one alarm may occur
at once. Refer to 8.4.3 Parallel Execution (PFORK, JOINTO, PJOINT) for details on parallel execution com-
mands.

d) Alarm code

Alarm code is displayed.

e) Alarm name

The alarm name is displayed.

f) Program number

The program number where an error occurs is displayed.

c) d) e) f) g)

a)
b)

h)

i)
10

10.2 Troubleshooting for Motion Programs

Tr
ou

bl
es

ho
ot

in
g

g) Block number

The block number where an error occurs is displayed.
Double-click the block number to jump to the corresponding program.
The block numbers are displayed on the Motion Editor window.

h) Alarm Contents

The contents of the alarm are displayed.

i) Corrective Action

The corrective actions for the alarm are displayed.

(2) Using S Register
The motion program alarm codes are stored in the motion program execution information of S registers
(SW03200 to SW04191).
The S register number of the motion program alarm code will differ, depending on the system work to be used
and the parallel number.
The motion program execution information of S registers (SW03200 to SW04191) is listed on the next page.

Use the following procedure to open the register list of MPE720 Ver.6.

1. Open the Register List 1 subwindow from the MPE720 Ver.6 window.
The Register List 1 tab is provided on the bottom of the MPE720 Ver.6 window by default.

2. Enter the start number SW of system registers to view in the Register input field. The
contents of system registers starting from the entered number will be displayed.

Note: The default data type setting is decimal. The data type can be changed to hexadecimal: Right-click
with the cursor on the list. Select Hexadecimal from the menu that pops up.

Block number

INFO
10-11

10 Troubleshooting

10.2.3 Confirming the Alarm Code

10-
• System Work Number 1 to 8

System Work Number
System
Work 1

System
Work 2

System
Work 3

System
Work 4

System
Work 5

System
Work 6

System
Work 7

System
Work 8

Executing Main Program No. SW03200 SW03201 SW03202 SW03203 SW03204 SW03205 SW03206 SW03207

Status SW03264 SW03322 SW03380 SW03438 SW03496 SW03554 SW03612 SW3670

Control Signal SW03265 SW03323 SW03381 SW03439 SW03497 SW03555 SW03613 SW3671

Parallel
0

Program Number SW03266 SW03324 SW03382 SW03440 SW03498 SW03556 SW03614 SW3672

Block Number SW03267 SW03325 SW03383 SW03441 SW03499 SW03557 SW03615 SW3673

Alarm Code SW03268 SW03326 SW03384 SW03442 SW03500 SW03558 SW03616 SW3674

Parallel
1

Program Number SW03269 SW03327 SW03385 SW03443 SW03501 SW03559 SW03617 SW3675

Block Number SW03270 SW03328 SW03386 SW03444 SW03502 SW03560 SW03618 SW3676

Alarm Code SW03271 SW03329 SW03387 SW03445 SW03503 SW03561 SW03619 SW3677

Parallel
2

Program Number SW03272 SW03330 SW03388 SW03446 SW03504 SW03562 SW03620 SW3678

Block Number SW03273 SW03331 SW03389 SW03447 SW03505 SW03563 SW03621 SW3679

Alarm Code SW03274 SW03332 SW03390 SW03448 SW03506 SW03564 SW03622 SW3680

Parallel
3

Program Number SW03275 SW03333 SW03391 SW03449 SW03507 SW03565 SW03623 SW3681

Block Number SW03276 SW03334 SW03392 SW03450 SW03508 SW03566 SW03624 SW3682

Alarm Code SW03277 SW03335 SW03393 SW03451 SW03509 SW03567 SW03625 SW3683

Parallel
4

Program Number SW03278 SW03336 SW03394 SW03452 SW03510 SW03568 SW03626 SW3684

Block Number SW03279 SW03337 SW03395 SW03453 SW03511 SW03569 SW03627 SW3685

Alarm Code SW03280 SW03338 SW03396 SW03454 SW03512 SW03570 SW03628 SW3686

Parallel
5

Program Number SW03281 SW03339 SW03397 SW03455 SW03513 SW03571 SW03629 SW3687

Block Number SW03282 SW03340 SW03398 SW03456 SW03514 SW03572 SW03630 SW3688

Alarm Code SW03283 SW03341 SW03399 SW03457 SW03515 SW03573 SW03631 SW3689

Parallel
6

Program Number SW03284 SW03342 SW03400 SW03458 SW03516 SW03574 SW03632 SW3690

Block Number SW03285 SW03343 SW03401 SW03459 SW03517 SW03575 SW03633 SW3691

Alarm Code SW03286 SW03344 SW03402 SW03460 SW03518 SW03576 SW03634 SW3692

Parallel
7

Program Number SW03287 SW03345 SW03403 SW03461 SW03519 SW03577 SW03635 SW3693

Block Number SW03288 SW03346 SW03404 SW03462 SW03520 SW03578 SW03636 SW3694

Alarm Code SW03289 SW03347 SW03405 SW03463 SW03521 SW03579 SW03637 SW3695

Logical axis #1
Program Current Position

SL03290 SL03348 SL03406 SL03464 SL03522 SL03580 SL03638 SL3696

Logical axis #2
Program Current Position

SL03292 SL03350 SL03408 SL03466 SL03524 SL03582 SL03640 SL3698

Logical axis #3
Program Current Position

SL03294 SL03352 SL03410 SL03468 SL03526 SL03584 SL03642 SL3700

Logical axis #4
Program Current Position

SL03296 SL03354 SL03412 SL03470 SL03528 SL03586 SL03644 SL3702

Logical axis #5
Program Current Position

SL03298 SL03356 SL03414 SL03472 SL03530 SL03588 SL03646 SL3704

Logical axis #6
Program Current Position

SL03300 SL03358 SL03416 SL03474 SL03532 SL03590 SL03648 SL3706

Logical axis #7
Program Current Position

SL03302 SL03360 SL03418 SL03476 SL03534 SL03592 SL03650 SL3708

Logical axis #8
Program Current Position

SL03304 SL03362 SL03420 SL03478 SL03536 SL03594 SL03652 SL3710

Logical axis #9
Program Current Position

SL03306 SL03364 SL03422 SL03480 SL03538 SL03596 SL03654 SL3712

Logical axis #10
Program Current Position

SL03308 SL03366 SL03424 SL03482 SL03540 SL03598 SL03656 SL3714

Logical axis #11
Program Current Position

SL03310 SL03368 SL03426 SL03484 SL03542 SL03600 SL03658 SL3716

Logical axis #12
Program Current Position

SL03312 SL03370 SL03428 SL03486 SL03544 SL03602 SL03660 SL3718
12

10.2 Troubleshooting for Motion Programs

Tr
ou

bl
es

ho
ot

in
g

• System Word Number 9 to 16

Logical axis #13
Program Current Position

SL03314 SL03372 SL03430 SL03488 SL03546 SL03604 SL03662 SL3720

Logical axis #14
Program Current Position

SL03316 SL03374 SL03432 SL03490 SL03548 SL03606 SL03664 SL3722

Logical axis #15
Program Current Position

SL03318 SL03376 SL03434 SL03492 SL03550 SL03608 SL03666 SL3724

Logical axis #16
Program Current Position

SL03320 SL03378 SL03436 SL03494 SL03552 SL03610 SL03668 SL3726

System Work Number
System
Work 1

System
Work 2

System
Work 3

System
Work 4

System
Work 5

System
Work 6

System
Work 7

System
Work 8

System Work Number
System
Work 9

System
Work 10

System
Work 11

System
Work 12

System
Work 13

System
Work 14

System
Work 15

System
Work 16

Executing Main Program No. SW03208 SW03209 SW03210 SW03211 SW03212 SW03213 SW03214 SW03215

Status SW03728 SW03786 SW03844 SW03902 SW03960 SW04018 SW04076 SW04134

Control Signal SW03729 SW03787 SW03845 SW03903 SW03961 SW04019 SW04077 SW04135

Parallel
0

Program Number SW03730 SW03788 SW03846 SW03904 SW03962 SW04020 SW04078 SW04136

Block Number SW03731 SW03789 SW03847 SW03905 SW03963 SW04021 SW04079 SW04137

Alarm Code SW03732 SW03790 SW03848 SW03906 SW03964 SW04022 SW04080 SW04138

Parallel
1

Program Number SW03733 SW03791 SW03849 SW03907 SW03965 SW04023 SW04081 SW04139

Block Number SW03734 SW03792 SW03850 SW03908 SW03966 SW04024 SW04082 SW04140

Alarm Code SW03735 SW03793 SW03851 SW03909 SW03967 SW04025 SW04083 SW04141

Parallel
2

Program Number SW03736 SW03794 SW03852 SW03910 SW03968 SW04026 SW04084 SW04142

Block Number SW03737 SW03795 SW03853 SW03911 SW03969 SW04027 SW04085 SW04143

Alarm Code SW03738 SW03796 SW03854 SW03912 SW03970 SW04028 SW04086 SW04144

Parallel
3

Program Number SW03739 SW03797 SW03855 SW03913 SW03971 SW04029 SW04087 SW04145

Block Number SW03740 SW03798 SW03856 SW03914 SW03972 SW04030 SW04088 SW04146

Alarm Code SW03741 SW03799 SW03857 SW03915 SW03973 SW04031 SW04089 SW04147

Parallel
4

Program Number SW03742 SW03800 SW03858 SW03916 SW03974 SW04032 SW04090 SW04148

Block Number SW03743 SW03801 SW03859 SW03917 SW03975 SW04033 SW04091 SW04149

Alarm Code SW03744 SW03802 SW03860 SW03918 SW03976 SW04034 SW04092 SW04150

Parallel
5

Program Number SW03745 SW03803 SW03861 SW03919 SW03977 SW04035 SW04093 SW04151

Block Number SW03746 SW03804 SW03862 SW03920 SW03978 SW04036 SW04094 SW04152

Alarm Code SW03747 SW03805 SW03863 SW03921 SW03979 SW04037 SW04095 SW04153

Parallel
6

Program Number SW03748 SW03806 SW03864 SW03922 SW03980 SW04038 SW04096 SW04154

Block Number SW03749 SW03807 SW03865 SW03923 SW03981 SW04039 SW04097 SW04155

Alarm Code SW03750 SW03808 SW03866 SW03924 SW03982 SW04040 SW04098 SW04156

Parallel
7

Program Number SW03751 SW03809 SW03867 SW03925 SW03983 SW04041 SW04099 SW04157

Block Number SW03752 SW03810 SW03868 SW03926 SW03984 SW04042 SW04100 SW04158

Alarm Code SW03753 SW03811 SW03869 SW03927 SW03985 SW04043 SW04101 SW04159

Logical axis #1
Program Current Position

SL03754 SL03812 SL03870 SL03928 SL03986 SL04044 SL04102 SL04160

Logical axis #2
Program Current Position

SL03756 SL03814 SL03872 SL03930 SL03988 SL04046 SL04104 SL04162

Logical axis #3
Program Current Position

SL03758 SL03816 SL03874 SL03932 SL03990 SL04048 SL04106 SL04164

Logical axis #4
Program Current Position

SL03760 SL03818 SL03876 SL03934 SL03992 SL04050 SL04108 SL04166

Logical axis #5
Program Current Position

SL03762 SL03820 SL03878 SL03936 SL03994 SL04052 SL04110 SL04168

Logical axis #6
Program Current Position

SL03764 SL03822 SL03880 SL03938 SL03996 SL04054 SL04112 SL04170

Logical axis #7
Program Current Position

SL03766 SL03824 SL03882 SL03940 SL03998 SL04056 SL04114 SL04172
10-13

10 Troubleshooting

10.2.3 Confirming the Alarm Code

10-
Logical axis #8
Program Current Position

SL03768 SL03826 SL03884 SL03942 SL04000 SL04058 SL04116 SL04174

Logical axis #9
Program Current Position

SL03770 SL03828 SL03886 SL03944 SL04002 SL04060 SL04118 SL04176

Logical axis #10
Program Current Position

SL03772 SL03830 SL03888 SL03946 SL04004 SL04062 SL04120 SL04178

Logical axis #11
Program Current Position

SL03774 SL03832 SL03890 SL03948 SL04006 SL04064 SL04122 SL04180

Logical axis #12
Program Current Position

SL03776 SL03834 SL03892 SL03950 SL04008 SL04066 SL04124 SL04182

Logical axis #13
Program Current Position

SL03778 SL03836 SL03894 SL03952 SL04010 SL04068 SL04126 SL04184

Logical axis #14
Program Current Position

SL03780 SL03838 SL03896 SL03954 SL04012 SL04070 SL04128 SL04186

Logical axis #15
Program Current Position

SL03782 SL03840 SL03898 SL03956 SL04014 SL04072 SL04130 SL04188

Logical axis #16
Program Current Position

SL03784 SL03842 SL03900 SL03958 SL04016 SL04074 SL04132 SL04190

System Work Number
System
Work 9

System
Work 10

System
Work 11

System
Work 12

System
Work 13

System
Work 14

System
Work 15

System
Work 16
14

10.2 Troubleshooting for Motion Programs

Tr
ou

bl
es

ho
ot

in
g

10.2.4 Motion Program Alarm Codes

(1) Configuration of Motion Program Alarms
The following diagram shows the configuration of alarms.

(2) Alarm Code List for Motion Program
The following table shows the alarm codes of motion programs.

Alarm code (When Bit 7 is ON: Axis alarm)

Bit15 Bit12 Bit8 Bit7 Bit0

Alarm occurrence axis
information (1 to 16)

Alarm
Code

Name Description Corrective Actions

02h Division error Data divided by 0 Review the motion program.

10h
A circle instead of
radius was specified

Turn number was specified instead of
radius in the circular arc or helical interpo-
lation command.

• Designate a center coordinate instead
of a radius to perform the circular arc
or helical interpolation command.

• Never specify the turn number.

11h
Interpolation feeding
speed over limit

Interpolation feeding speed exceeded the
valid range of the FMX command.

Modify the interpolation feeding speed
of the interpolation command

12h
No interpolation feed-
ing speed specified

No interpolation feeding speed was speci-
fied. (once specified, this can be omitted as
in the motion program)

Specify the interpolation feeding speed
in the interpolation command.

13h
Range exceeded after
converting accelera-
tion parameter

Indirect acceleration parameter exceeded
the valid range.

Change the indirect register value.

14h
Circular arc length
exceeded
LONG_MAX

Circular arc length exceeded the valid range
in the circular arc or helical interpolation
command.

Review the circular arc length in the cir-
cular arc or helical interpolation com-
mand.

15h
Vertical axis not speci-
fied for circular arc
plane

Vertical axis was not specified in the circu-
lar arc or helical interpolation command.

Use PLN command to specify the axis.

16h
Horizontal axis not
specified for circular
arc plane

Horizontal axis was not specified in the cir-
cular arc or helical interpolation command.

Use PLN command to specify the axis.

17h
Specified axis over
limit

Too many axes were configured in the cir-
cular arc (two axes) or helical (three axes)
interpolation command.

Modify the axis in the circular arc or
helical interpolation command.

18h
Turn number over
limit

Turn number exceeded the valid range in
the circular arc or helical interpolation com-
mand.

Modify the turn number in the circular
arc or helical interpolation command.

19h
Radius exceeded
LONG_MAX

Radius exceeded the valid range in the cir-
cular arc or helical interpolation command.

Review the radius in the circular arc or
helical interpolation command.

1Ah Center point error
Improper center point was specified in the
circular arc or helical interpolation com-
mand.

Specify the center point properly in the
circular arc or helical interpolation com-
mand.

1Bh
Running emergency
stop command

Axis move command stopped due to a pro-
gram stop request.

Turn OFF the program stop request for
the motion program control signal, and
turn ON the alarm reset request.

1Ch

Linear interpolation
moving amount
exceeded
LONG_MAX

Moving amount exceeded the valid range in
the linear interpolation command.

Review the moving amount in the linear
interpolation command.

1Dh FMX undefined
FMX command not executed in the motion
program containing an interpolation com-
mand.

Perform an FMX command. The FMX
command is required in each program
containing an interpolation command.

1Eh Address T out of range
Designation exceeded the valid range in the
IAC/IDC/FMX commands.

Review the setting in the IAC/IDC/FMX
command.
10-15

10 Troubleshooting

10.2.4 Motion Program Alarm Codes

10-
1Fh Address P out of range
Designation exceeded the valid range in the
IFP command.

Review the setting in the IFP command.

21h
PFORK execution
error

A motion command was instructed simulta-
neously at the second line in the PFORK of
both a source motion program and a subpro-
gram.

Review the source motion program or
subprogram.

22h
Indirect register range
error

Specified register address exceeds the regis-
ter size range.

Review the motion program.

23h
Moving amount out of
range

Axis moving amount with decimal point for
an axis move command exceeded the possi-
ble range.

Review the axis moving amount.

80h
Use of logical axis
prohibited

Multiple motion commands instructed
against the same axis at the same time.

Review the motion program.

81h
Designation exceeded
POSMAX in the infi-
nite length axis

Moving distance designation exceeded
POSMAX in the infinite length axis.

• Modify the fixed parameter “Maxi-
mum infinite length axis counter”

• Review the motion program.

82h
Axis moving distance
exceeded
LONG_MAX

Axis moving distance designation exceeded
the valid range.

Review the motion program.

84h
Duplicated motion
command

Multiple commands ware executed against
a single axis.

Check to see whether another program
gave a command to the same axis at the
same time. If so, review the program.

85h
Motion command
response error

A motion command response different from
that instructed by the motion command is
reported from a motion module.

• Remove the alarm cause from the des-
tination axis.

• If the servo is not turned ON, turn ON
the servo.

• Check to see whether another program
gave a command to the same axis at
the same time. If so, review the pro-
gram.

87h
VEL setting data out
of range

An instruction in the VEL command
exceeded the valid range.

Review the VEL command.

88h
INP setting data out of
range

An instruction in the INP command
exceeded the valid range.

Review the INP command.

89h
ACC/SCC/DCC set-
ting data out of range

An instruction in the ACC/SCC/DCC com-
mand exceeded the valid range.

Review the ACC/SCC/DCC command.

8Ah
No time specified in
the MVT command

T designation in the MVT command was
zero.

Review the MVT command.

8Bh
Command execution
disabled

A motion command which cannot be exe-
cuted by the destination motion module was
instructed.

Review the motion program.

8Ch
Distribution
incomplete

A motion command was executed when a
motion module was not in the Distribution
Completed state.

Review the motion program so that the
motion command is executed in the Dis-
tribution Completed state.

8Dh
Motion command
abnormally aborted

Motion module fell into the “Motion com-
mand abnormally aborted” state.

• Release the destination axis error.

• Review the motion program.

Alarm
Code

Name Description Corrective Actions
16

10.3 Troubleshooting for Sequence Programs

Tr
ou

bl
es

ho
ot

in
g

10.3 Troubleshooting for Sequence Programs
10.3.1 Error Investigation Flow

If the cause of error may be related to the sequence program, refer to the following flowchart to troubleshoot the
error.

Is ERR or ALM of the
LED on the front of basic
module lit?

System error or
operation error

Refer to the user’s manual
for the Machine Controller
being used to troubleshoot
errors.

YES

System error or
operation error

Do you have any problem
starting a sequence program?

Problem starting a
sequence program

YES

NO

START

It’s not an error.

NO

Refer to 10.3.2 Problem Starting a
Sequence Program.
10-17

10 Troubleshooting

10.3.2 Problem Starting a Sequence Program

10-
10.3.2 Problem Starting a Sequence Program
When a problem exists when starting a sequence program, check the following items to find out how to correct it.

(1) Program Execution Registration to the System
Before starting the sequence program, sequence programs must be registered to the system used to execute.
Register the sequence programs to the M-EXECUTOR module to register them to the system for execution.
Refer to 5.2.2 Registering Program Execution for information for sequence program registration.

(2) Program Alarm Occurring Status Flag Bit
When status flag bit 8 (Program alarm occurring) is ON, the sequence program is disabled from running
because of an error occurrence. In this case, check the following items:

• The called program exists.
• The called program is a sequence program.
• The sequence subprogram call command (SSEE) calls a subprogram, but not a main program.
• The sequence program number designated in the SSEE command is within the range of 1 to 256.
• Nesting of sequence subprogram call command (SSEE) is within 8 levels.

If the check box () is selected, the
sequence program will not start running.

Confirm that the designated se-
quence program number is correct.

Status flag

M-EXECUTOR
control register

Bit 0
Bit 1
Bit 2
Bit 3
Bit 4
Bit 5
Bit 6
Bit 7
Bit 8
Bit 9
Bit A
Bit B
Bit C
Bit D
Bit E
Bit F

Program running
(Reserved by the system)
(Reserved by the system)
(Reserved by the system)
(Reserved by the system)
(Reserved by the system)
(Reserved by the system)
(Reserved by the system)
Program alarm
Stopped by break point
(Reserved by the system)
In debug mode
Program type
Start request signal history
(Reserved by the system)
(Reserved by the system)
18

Appendices

A Motion Language Commands - A-2

A.1 Axis Setting Commands - A-2

A.2 Axis Move Commands - A-3

A.3 Control Commands - A-5

A.4 Program Control Commands - A-6

A.5 Arithmetic Operations - A-8

A.6 Logical Operations - A-8

A.7 Data Comparison - A-9

A.8 Data Operations - A-9

A.9 Basic Functions - A-10

A.10 C-Language Control Commands - A-11

B Sample Programs -A-12

B.1 Programs for Controlling Motion Program Execution - A-13

B.2 Parallel Processing - A-15

B.3 Motion Program for Speed Control - A-16

B.4 Simple Synchronized Operation Using a Virtual Axis - A-17

B.5 Sequence Programs - A-19

C Differences between MP900 Series and MP2000 Series Machine
Controllers -A-21

C.1 Motion Programs - A-21

C.2 Sequence Programs - A-21

C.3 Motion Programming Commands - A-22

C.4 Group Definitions - A-22

C.5 Debug Function - A-23

C.6 Motion Program Alarms - A-23

D Precautions -A-24

D.1 General Precautions - A-24

D.2 Precautions on Motion Parameter Settings - A-25
A-1

Appendices

A.1 Axis Setting Commands

A-2
A Motion Language Commands
Motion language commands are listed below. Refer to Chapter 8 Command Reference for details on each com-
mand.

A.1 Axis Setting Commands

 −
Applicable Not applicable

Command Name Programming Format Description

M
o

tio
n

P
ro

gr
am

s

S
eq

ue
n

ce

P
ro

gr
am

s

ABS Absolute Mode

ABS;
or
ABS MOV [Logical axis name 1] -
[Logical axis name 2] - ;

Treats all subsequent coordinate words
as absolute values.

 −

INC
Incremental
Mode

INC;
or
INC MOV [Logical axis name 1] -
[Logical axis name 2] - ;

Treats all subsequent coordinate words
as incremental values.

 −

ACC
Acceleration
Time Change

ACC [Logical axis name 1]Accelera-
tion time [Logical axis name 2] Ac-
celeration time [Logical axis name 3]
Acceleration time ;

Sets the acceleration time for linear
acceleration/deceleration for up to 16
axes simultaneously.

 −

DCC
Deceleration
Time Change

DCC [Logical axis name 1] Deceler-
ation time [Logical axis name 2] De-
celeration time [Logical axis name 3]
Deceleration time ;

Sets the deceleration time for a position-
ing related command.

A maximum of 16 axes can be desig-
nated in one command block.

 −

SCC
S-curve Time
Constant
Change

SCC [Logical axis name 1] S-curve
time constant [Logical axis name 2]
S-curve time constant ;

Sets the time constant for moving aver-
age acceleration/deceleration for up to
16 axes simultaneously.

 −

VEL Set Velocity

VEL [Logical axis name 1] Feed
speed [Logical axis name 2] Feed
speed [Logical axis name 3] Feed
speed ;

Sets the speed for a positioning related
command.

A maximum of 16 axes can be desig-
nated in one command block.

 −

FMX
Maximum Inter-
polation Feed
Speed Setting

FMX T Maximum interpolation feed
speed ;

Sets the maximum speed during an inter-
polation feed.

The interpolation acceleration time is the
time taken from “0” until this speed is
reached.

 −

IFP
Interpolation
Feed Speed Ra-
tio Setting

IFP P Interpolation feed speed ratio
;

Sets the speed for an interpolation
related command.

Designate a percentage of the maximum
speed as the interpolation feed speed
ratio.

 −

IAC
Interpolation Ac-
celeration Time
Change

IAC T Interpolation acceleration
time ;

Sets the acceleration time for an interpo-
lation related command.

Designate the time required to reach the
maximum speed from the speed 0 (zero).

 −

IDC
Interpolation De-
celeration Time
Change

IDC T Interpolation deceleration
time ;

Sets the deceleration time for an interpo-
lation related command.

Designate the time required to decelerate
to the speed 0 (zero) from the maximum
speed.

 −

ACCMODE
Set Interpolation
Acceleration/De-
celeration Mode

ACCMODE M mode_number;

Sets the acceleration/deceleration mode
for interpolation commands.

This allows you to specify processing
multiple interpolation commands in suc-
cession.

 −

A Motion Language Commands
A.2 Axis Move Commands

Com-
mand

Name Programming Format Description

M
o

tio
n

P
ro

gr
am

s

S
eq

ue
n

ce
 P

ro
g

ra
m

s

MOV Positioning
MOV [Logical axis name 1] Reference position
[Logical axis name 2] Reference position [Logical
axis name 3] Reference position ;

Executes positioning at the specified
positioning speed for up to 16 axes.

 −

MVS
Linear
Interpola-
tion

MVS [Logical axis name 1] Reference position
[Logical axis name 2] Reference position [Logical
axis name 3] Reference position F Interpolation
feed speed ;

Executes linear movement at the
interpolation feed speed F for up to
16 axes.

 −

MCW

Clockwise
Circular
Interpola-
tion

Center
position
designation

MCW [Logical axis name 1] End po-
sition [Logical axis name 2] End po-
sition U Center point position V
Center point position T Number of
turns F Interpolation speed ;

Executes circular interpolation at tan-
gential speed F for two axes simulta-
neously following radius R (or
designated center point coordinates).

With the center point coordinate des-
ignation, multiple circles can be des-
ignated with T−. (T− can also be
omitted.)

 −

Radius
designation

MCW [Logical axis name 1] End po-
sition [Logical axis name 2] End po-
sition R Radius F Interpolation feed
speed ;

MCC

Counter-
clockwise
Circular
Interpola-
tion

Center
position
designation

MCC [Logical axis name 1] End po-
sition [Logical axis name 2] End po-
sition U Center point position V
Center point position T Number of
turns F Interpolation feed speed ;

Radius
designation

MCC [Logical axis name 1] End po-
sition [Logical axis name 2] End po-
sition R Radius F Interpolation feed
speed ;

MCW

Clockwise
Helical
Interpola-
tion

Center
position
designation

MCW [Logical axis name 1] End po-
sition [Logical axis name 2] End po-
sition U Center point position V
Center point position [Logical axis
name 3] Linear interpolation end po-
sition T Number of turns F Interpola-
tion feed speed ;

Moves three axes simultaneously in a
combination of circular interpolation
and linear interpolation outside the
circular interpolation plane. Speed F
will be the circular interpolation tan-
gential speed.

With the center point coordinate des-
ignation, the number of turns can be
designated with T−. (T− can also be
omitted.)

 −

Radius
designation

MCW [Logical axis name 1] End po-
sition [Logical axis name 2] End po-
sition R Radius [Logical axis name 3]
Linear interpolation end position F
Interpolation feed speed ;

MCC

Counter-
clockwise
Helical
Interpola-
tion

Center
position
designation

MCC [Logical axis name 1] End po-
sition [Logical axis name 2] End po-
sition U Center point position V
Center point position [Logical axis
name 3] Linear interpolation end po-
sition T Number of turns F Interpola-
tion feed speed ;

Radius
designation

MCC [Logical axis name 1] End po-
sition [Logical axis name 2] End po-
sition R Radius [Logical axis name 3]
Linear interpolation end position F
Interpolation feed speed ;

 - Continues to the next page -
A-3

Appendices

A.2 Axis Move Commands

A-4
ZRN
Zero Point
Return

ZRN [Logical axis name1]0
[Logical axis name 2]0 [Logical axis name 3] ;

Returns each axis to its zero point. −

SKP

Linear
Interpola-
tion with
Skip
Function

SKP [Logical axis name 1] Reference position
[Logical axis name 2] Reference position [Logical
axis name 3] Reference position F Interpolation
feed speed SS Skip input signal ;

If the SKIP signal turns ON during a
linear interpolation operation, skips
the remaining movement and pro-
ceeds to the next block.

 −

MVT
Set Time
Positioning

MVT [Logical axis name 1] Reference position
[Logical axis name 2] Reference position [Logical
axis name 3] Reference position T Positioning
time (ms) ;

Executes positioning by clamping the
feed speed so that travel can be com-
pleted at the designated time.

 −

EXM
External
Positioning

EXM [Logical axis name 1] Reference position D
Movement amount from the time the external posi-
tioning signal is input ;

When an external positioning signal
is input while external positioning is
being executed, only the travel dis-
tance designated by “D−” is posi-
tioned with an incremental value, and
then the next command is executed.

 −

(cont’d)

Com-
mand

Name Programming Format Description

M
ot

io
n

P
ro

gr
am

s

S
eq

u
en

ce
 P

ro
gr

a
m

s

A Motion Language Commands
A.3 Control Commands

Com-
mand

Name Programming Format Description

M
ot

io
n

P
ro

gr
am

s

S
eq

ue
n

ce
 P

ro
g

ra
m

s

POS
Current
Position Set

POS [Logical axis name 1] Desired coordinate val-
ue [Logical axis name 2] Desired coordinate value
 ;

Changes the current values to the
desired coordinate values for up to
16 axes. Subsequent move com-
mands use this new coordinate sys-
tem.

 −

MVM
Move on
Machine
Coordinate

MVM MOV [Logical axis name 1] Reference posi-
tion [Logical axis name 2] Reference position [Log-
ical axis name 3] Reference position ;

Goes to the target position on the
machine coordinate system. The
coordinate system set automatically
on completion of the zero point
return is called a machine coordi-
nate system. This coordinate system
is not affected by the POS com-
mand.

 −

PLN
Coordinate
Plane
Setting

PLN [Logical axis name 1 (vertical axis)] [Logical
axis name 2 (horizontal axis)] ;

Designates the coordinate plane to
be used for a command requiring a
plane designation command.

 −

PLD

Program
Current
Position
Update

PLD [Logical axis name 1]
 [Logical axis name 2] ;

Updates the program current posi-
tion for axes shifted by manual
intervention. Up to 16 axes can be
designated.

 −

PFN
In-position
Check

MVS [Logical axis name 1] - [Logical axis name 2] -
 PFN ;
or
MVS [Logical axis name 1] - [Logical axis name 2] -
 ;
PFN [Logical axis name 1] [Logical axis name 2] ;
MVS [Logical axis name 1] - [Logical axis name 2] -
 ;

Proceeds to the next block when the
axis that is being moved by an inter-
polation related command in the
same block or the previous block,
enters the in-position check width.

 −

INP

Set
In-position
Check
Width

INP [Logical axis name 1] NEAR signal output
width [Logical axis name 2] NEAR signal output
width ;

Sets the NEAR signal output width.
The execution of a subsequent inter-
polation related command block
with a PFN command proceeds to
the next block after entering in-posi-
tion check width.

 −
A-5

Appendices

A.4 Program Control Commands

A-6
A.4 Program Control Commands

Com-
mand

Name Programming Format Description

M
ot

io
n

P
ro

gr
am

s

S
eq

ue
n

ce
 P

ro
g

ra
m

s

IF
ELSE
IEND

Branching
Commands

IF (Conditional expression) ;
(Process 1) ;
ELSE;
(Process 2) ;
IEND;

Executes process 1 if the conditional
expression is satisfied, and executes
process 2 if the conditional expres-
sion is not satisfied.

WHILE
WEND

Repeat
Commands

WHILE (Conditional expression) ;
 ;
WEND;

Repeatedly executes WHILE to
WEND processing for as long as the
conditional expression is satisfied.

PFORK
JOINTO
PJOINT

Parallel
Execution
Commands

PFORK Label 1, Label 2, Label 3, ;
 Label 1: Process 1 ;
JOINTO Label X ;
Label 2: Process 2 ;
JOINTO Label X ;
Label 3: Process 3 ;
JOINTO Label X ;
Label X: PJOINT ;

Executes the blocks designated by the
labels in parallel. With a subroutine, a
maximum of two labels can be desig-
nated.

END and RET cannot be used during
parallel execution processing.

 −

SFORK
JOINTO
SJOINT

Selective
Execution
Commands

SFORK Conditional expression 1? Label 1,
Conditional expression 2? Label 2, Condi-
tional expression 3? Label 3, Conditional ex-
pression 4? Label 4 ;
Label 1: Process 1 ;
JOINTO Label X ;
Label 2: Process 2 ;
JOINTO Label X ;
Label 3: Process 3 ;
JOINTO Label X ;
Label 4: Process 4 ;
JOINTO Label X ;
 ;
 Label X: SJOINT;

Executes process 1 if conditional
expression 1 is satisfied, and executes
process 2 if the conditional expres-
sion 2 is satisfied.

MSEE
Motion
Subprogram
Call

MSEE MPS ; Executes subprogram MPS. −

SSEE
Sequence
Subprogram
Call

SSEE SPS ; Executes subprogram SPS. −

UFC
User Function
Call From
Motion Program

UFC User function name Input data, Input
address, Output data ;

Calls the user defined function from a
motion program.

 −

FUNC

User Function
Call From
Sequence
Program

FUNC User function name, Input data, Input
address, Output data ;

Calls the user defined function from a
sequence program.

−

END Program End END; Ends the motion program.

RET
Subroutine
Return

RET; Ends the subroutine.

A Motion Language Commands
TIM Dwell Time TIM T−
Waits for the period of time specified
by T, and then proceeds to the next
block.

 −

IOW I/O Wait IOW MB−== ;
Stops execution of the motion pro-
gram until the conditional expression
given in the command is satisfied.

 −

EOX One Scan Wait EOX;

Divides the execution of consecu-
tively coded sequence commands.
The command block after EOX will
be executed at the next scan.

 −

SNGD/
SNGE

Single-block
Disabled
(SNGD)/Single-
block Enabled
(SNGE)

SNGD;
 ;
SNGE;

Specifies whether to enable or disable
single step operation during debug-
ging.

 −

(cont’d)

Com-
mand

Name Programming Format Description

M
ot

io
n

P
ro

gr
am

s

S
eq

u
en

ce
 P

ro
gr

a
m

s

A-7

Appendices

A.5 Arithmetic Operations

A-8
A.5 Arithmetic Operations

A.6 Logical Operations

Com-
mand

Name Programming Format Description

M
o

tio
n

P
ro

gr
am

s

S
eq

ue
n

ce
 P

ro
g

ra
m

s

= Substitute (Result) = (Math expression)
Substitutes operation results. Performs calcula-
tions from left to right (with no order of prior-
ity).

+ Add MW − = MW − + MW − ;
Performs integer and real number addition. Cal-
culates combinations of integers and real num-
bers as real numbers.

- Subtract MW − = MW − - MW − ;
Performs integer and real number subtraction.
Calculates combinations of integers and real
numbers as real numbers.

* Multiply MW − = MW − * MW − ;
Performs integer and real number multiplication.
Calculates combinations of integers and real
numbers as real numbers.

/ Divide MW − = MW −/ MW − ;
Performs integer and real number division. Cal-
culates combinations of integers and real num-
bers as real numbers.

MOD Remainder
MW − = MW −/ MW − ;
MW − = MOD;

When programmed in the next block after a divi-
sion, MOD stores the remainder in the desig-
nated register.

Com-
mand

Name Programming Format Description
M

o
tio

n
P

ro
gr

am
s

S
eq

ue
nc

e
 P

ro
g

ra
m

s

| OR (logical OR)

MB − = MB − | MB − ;
MB − = MB − | 1;
MW − = MW − | MW − ;
MW − = MW − | 00FFH;

Performs bit/integer logical OR.

&
AND
(logical AND)

MB − = MB − & MB − ;
MB − = MB − & 1;
MW − = MW − & MW − ;
MW − = MW − & 00FFH;

Performs bit/integer logical AND.

^
XOR
(logical exclusive
OR)

MW − = MW − ^ MW − ;
MW − = MW − ^ 00FFH;

Performs integer logical exclusive OR.

!
NOT (logical
complement)

MB − = !MB − ;
MB − = !1;
MW − = !MW − ;
MW − = !00FFH;

Performs bit/integer logical complement
(inverts bits).

A Motion Language Commands
A.7 Data Comparison

A.8 Data Operations

Com-
mand

Name Programming Format Description

M
o

tio
n

P
ro

gr
am

s

S
eq

ue
n

ce
 P

ro
g

ra
m

s

== Match
IF MW − == MW − ;
WHILE MW − == MW − ;

Used in an IF or WHILE conditional
expression. If the left side and right side
match, the condition is “true.”

<> Mismatch
IF MW − <> MW − ;
WHILE MW − <> MW − ;

Used in an IF or WHILE conditional
expression. If the left side and right side do
not match, the condition is “true.”

> Greater Than
IF MW − > MW − ;
WHILE MW − > MW − ;

Used in an IF or WHILE conditional
expression. If the left side is greater than
the right side, the condition is “true.”

< Less Than
IF MW − < MW − ;
WHILE MW − < MW −

Used in an IF or WHILE conditional
expression. If the left side is less than the
right side, the condition is “true.”

>=
Greater Than
or Equal To

IF MW − >= MW − ;
WHILE MW − >= MW − ;

Used in an IF or WHILE conditional
expression. If the left side is greater than or
equal to the right side, the condition is
“true.”

<=
Less Than or

Equal To
IF MW − <= MW − ;
WHILE MW − <= MW − ;

Used in an IF or WHILE conditional
expression. If the left side is less than or
equal to the right side, the condition is
“true.”

Com-
mand

Name Programming Format Description

M
ot

io
n

P
ro

gr
a

m
s

S
e

qu
en

ce
 P

ro
gr

am
s

SFR Right Shift SFR MB − N − W − ;
Shifts the bit variable in the specified num-
bers to the right.

SFL Left Shift SFL MB − N − W − ;
Shifts the bit variable in the specified num-
bers to the left.

BLK Block Move BLK MW − MW − W − ;
Copies the areas of specified blocks begin-
ning with the specified transfer source to the
specified destination.

CLR Clear CLR MW − W − ;
Clears the desired area to 0 (zero) beginning
with the specified register.

ASCII
ASCII

Convert 1
ASCII ‘Character string’ MW − ;

Converts the specified characters to ASCII
code, and stores to the specified register.

A-9

Appendices

A.9 Basic Functions

A-1
A.9 Basic Functions

Com-
mand

Name Programming Format Description

M
o

tio
n

P
ro

gr
am

s

S
eq

ue
n

ce
 P

ro
g

ra
m

s

SIN Sine
SIN (MW −);
SIN (90) ;

Obtains the sine of integer or real number data.
The specifications differ depending on the data
type: Integer or real number.

COS Cosine
COS (MW −);
COS (90) ;

Obtains the cosine of integer or real number data.
The specifications differ depending on the data
type: Integer or real number.

TAN Tangent
TAN (MF −);
TAN (45.0) ;

Obtains the tangent of real number data.
Only a real number type register can be designated.

ASN Arc Sine
ASN (MF −);
ASN (90.0) ;

Obtains the arc sine of the real number data.
Only a real number type register can be designated.

ACS Arc Cosine
ACS (MF −);
ACS (90.0) ;

Obtains the arc cosine of real number data.
Only a real number type register can be designated.

ATN Arc Tangent
ATN (MW −);
ATN (45) ;

Obtains the arc tangent of integer or real number
data.
The specifications differ depending on the data
type: Integer or real number.

SQT Square Root
SQT (MW −);
SQT (100) ;

Obtains the root of integer or real number data.
The specifications differ depending on the data
type: Integer or real number.

BIN
BCD-to-
Binary

BIN (MW −); Converts BCD data to binary data.

BCD
Binary-to-

BCD
BCD (MW −); Converts binary data to BCD data.

S { 　 } Set Bit S {MB − } = MB − & MB − ;

If the logical operation result is true, the desig-
nated bit turns ON.
The designated bit does not turn OFF even if the
logical operation result is false.

R { 　 } Reset Bit R {MB − } = MB − & MB − ;

If the logical operation result is true, the desig-
nated bit turns OFF. The designated bit does not
turn ON even if the logical operation result is
false.

PON Rising Pulse

MB − = PON (MB − MB −);
or
IF PON (MB − MB −) == 1;
 ;
IEND;

The bit output turns ON for one scan when the bit
input status changes from OFF to ON.

−

NON Falling Pulse

MB − = NON (MB − MB −);
or
IF NON (MB − MB −) == 1;
 ;
IEND;

The bit output turns ON for one scan when the bit
input status changes from ON to OFF.

−

TON
ON-Delay

Timer
MB − = MB − & TON (− MB −);

Counts the period of time when the bit input is
ON.
The bit output turns ON when the counted value is
equal to the set value.

Counting unit: 10 ms.

−

TOF
OFF-Delay

Timer
MB − = MB − & TOF (− MB −);

Counts the period of time when the bit input is
OFF.
The bit output turns OFF when the counted value
is equal to the set value.
Counting unit: 10 ms.

−
0

A Motion Language Commands
A.10 C-Language Control Commands

Com-
mand

Name Programming Format Description

M
o

tio
n

P
ro

gr
am

s

S
eq

ue
n

ce
 P

ro
g

ra
m

s

CTSK
C-Language
Task Control

CTSK EXECUTE TYPE,
 C_NAME,
 COMPLETE ERROR ERR_CODE;

Controls the operations of C-language
user task, such as start and stop.

CFUNC
C-Language
Function Call

CFUNC EXECUTE OPTION1 OPTION2,
 C_NAME C_ARG1 C_ARG2,
 COMPLETE ERROR C_RETURN;

Calls the C-language user function.
A-11

Appendices

A-1
B Sample Programs

The following table shows the sample programs.

Sample Programs Description
Reference

Section

Programs to control motion programs
Sample ladder and sequence programs to control motion
program.

B.1

Parallel processing
Sample motion program for parallel processing using a
PFORK command.

B.2

Speed control by using a motion program Sample motion program for speed control. B.3

Simple synchronized operation using a
virtual axis

Sample program to move two axes in synchronization using
the SVR module.

B.4

Sequence programs
Sample sequence programs for JOG and STEP operations of
a single axis servomotor.

B.5
2

B Sample Programs
B.1 Programs for Controlling Motion Program Execution
Sample ladder and sequence programs to control execution of motion program are shown below.

(1) Ladder Program

Registers the motion program to
run by using an MSEE command.

The motion program starts running
when IB00001 turns ON.

The servo turns ON when
IB00000 turns ON.
A-13

Appendices

B.1 Programs for Controlling Motion Program Execution

A-1
(2) Sequence Program

No MSEE command can be embedded in sequence programs.
In this case, embed an MSEE command in the H drawing.

"---------------------------------------
" Servo ON command
"---------------------------------------
OB80000 = IB00000; "Axis 1 servo ON "

"---------------------------------------
" Control signal
"---------------------------------------
DB000010 = PON(IB00001 MB000000); " Program start "
DB000011 = IB00002; " Pause "
DB000012 = IB00003; " Program stop "
DB000015 = IB00004; " Alarm reset "

"---------------------------------------
" Stops the motion program operation
"---------------------------------------
IF NON(DB000000 MB000001) == 1; " Program operation OFF? "
; " Process when the program

 operation stops "

IEND;

END;

The servo turns ON
when IB00000 turns
ON.

The motion program starts running
when IB00001 turns ON.

IMPORTANT
4

B Sample Programs
B.2 Parallel Processing
A sample motion program for parallel execution accomplished by using a PFORK command is shown below.

The following diagram illustrates the operations executed by the above sample program.

ABS; " Absolute mode
PFORK 001 002 003 004;

001:FMX T10000K; " Sets the max. interpolation feed speed
PLN [A1] [B1]; " Sets the plane for circular interpolation
MCC [A1] 0 [B1]0 U100000 V0 F10000K; " Circular interpolation
JOINTO 005;

002:FMX T10000K; " Sets the max. interpolation feed speed
MVS [C1] 131072 [D1] 20000 F10000K; " Linear interpolation
JOINTO 005;

003:IOW IL8816>130000; "Monitors C1 axis position
OB00000=1; " When reached, OB00000 turns ON.
JOINTO 005;

004:IOW IL8896>12000; "Monitors D1 axis position
OB00001=1; "When reached, OB00001 turns ON.
JOINTO 005;

005:PJOINT;
END;

Starts parallel
processing

Program 1: Circular interpolation

Program 2: Linear interpolation

Program 3: C1 axis position monitor

Program 4: D1 axis position monitor

Circular interpolation
with axis A1 and B1

2-axis linear
interpolation with axis
C1 and D1

C1 axis position monitor D1 axis position monitor

001 002 003 004

005

A-15

Appendices

B.3 Motion Program for Speed Control

A-1
B.3 Motion Program for Speed Control
A sample motion program for speed control is shown below.
For this sample program, bits 0 to 3 (Speed unit selection) of motion setting parameter OW03 are set to
0.01% (a percentage of the rated speed).

The following diagram illustrates the moving pattern implemented by the above sample program.

OW8008=23; "Speed control mode

OL8010=6000; "Changes the speed to 60% of rated speed

TIM T300; "Waits for three seconds

OL8010=10000; "Changes the speed to the rated speed

TIM T400; " Waits for four seconds

OL8010=5000; "Changes the speed to 50% of rated speed

TIM T600; " Waits for six seconds

OW8008=0; "Cancels the speed control mode

END;

50

100

0

3 4 6

Speed [%]

0

5000

10000

Rated speed

Motion setting parameter
OL��10: Speed unit setting

Time (s)

Time (s)
6

B Sample Programs
B.4 Simple Synchronized Operation Using a Virtual Axis
With this sample program, a motion program is used to move an SVR (virtual axis), and two copies of the SVR
feedback position are made by a ladder program for two actual axes to perform a two-axis synchronized opera-
tion.

• Motion Program

FMX T10000K; "Sets the max. interpolation feed speed. (K=1000)

INC; "Incremental mode

IAC T500; "Interpolation acceleration time = 500 ms

IDC T500; "Interpolation deceleration time = 500 ms

MVS [SVR] 1000K F10000K; "Interpolation with movement amount 1000000

END;

SVR (Virtual axis)

Axis 1

Axis 2

Use the motion program to
execute single-axis interpolation.

Use the ladder program to make copies of
the SVR (virtual axis) feedback position.
Axis 1 and Axis 2 use the copied feedback
position to perform two-axis synchronized
operation.

SVB
A-17

Appendices

B.4 Simple Synchronized Operation Using a Virtual Axis

A-1
8

B Sample Programs
B.5 Sequence Programs
In this sample program, sequence programs are used for JOG and STEP operation of servomotor with single axis.

Sequence main program (SPM001)

Sequence subprogram (SPS002)

"SPM001: Main program"

SSEE SPS002; "Settings common to all axes
SSEE SPS003; "JOG & STEP operation process
END;

"SPS002: Settings common to all axes"

"---------------------------------------
" Motion command 0 (No command) detection
"---------------------------------------
IF IW8008 == 0;
 MB300010 = 1;
ELSE;
 MB300010 = 0;
IEND;

"---------------------------------------
" Servo ON command
"---------------------------------------
OB80000 = MB300000 & (IB80000 | IB80002); "Servo ON

"---------------------------------------
" Alarm reset
"---------------------------------------
OB8000F = MB300001; "Alarm reset

"---
" Speed unit & Acceleration/deceleration unit selection
"
" Bit 0 to 3: Speed unit selection (0: reference unit/s, 1: Reference unit/min., 2: Designated in %)

" Bit 4 to 7: Acceleration/deceleration unit selection (0: Reference unit /s2, 1: ms)
"---
DW00010 = OW8003 & FF00H; "Function setting 1 work
OW8003 = DW00010 | 0011H; "Function setting 1

"---------------------------------------
" Linear acceleration/deceleration setting
"---------------------------------------
IF MB300020 == 1;
 OL8036 = 100; "Linear acceleration rate/Acceleration time constant
 OL8038 = 100; "Linear deceleration rate/Deceleration time constant
IEND;

RET;

 The Servo turns ON when
MB300000 turns ON.
A-19

Appendices

B.5 Sequence Programs

A-2
Sequence subprogram (SPS003)

"SPS003: JOG & STEP operation process "

"---------------------------------------
" JOG operation
"---------------------------------------
IF IB80001 & ((DB000010 & !DB000011) | (!DB000010 & DB000011)) == 1;
 DB000000 = 1;
ELSE;
 DB000000 = 0;
IEND;

DB000001 = PON(DB000000 DB000050) & MB300010; "JOG operation starts
DB000002 = NON(DB000000 DB000051); "JOG operation stops

IF DB000001 == 1;
 OL8010 = 1000;
 OW8008 = 7; "Motion command FEED
IEND;
IF DB000002 == 1;
 OW8008 = 0; "Motion command NOP
IEND;

"---------------------------------------
" STEP operation
"---------------------------------------
IF IB80001 & ((DB000012 & !DB000013) | (!DB000012 & DB000013)) == 1;
 DB000008 = 1;
ELSE;
 DB000008 = 0;
IEND;

DB000009 = PON(DB000008 DB000058) & MB300010; "STEP operation starts
DB00000A = NON(DB000008 DB000059); "STEP operation stops

IF DB000009 == 1;
 OL8010 = 1000; "STEP speed setting
 OW8044 = 1000; "STEP moving amount setting (1000 pulses)
 OW8008 = 8; "Motion command STEP
IEND;

IF DB00000A == 1;
 OW8008 = 0; "Motion command NOP
IEND;

"---------------------------------------
" Reverse rotation selection
"---------------------------------------
OB80092 = (DB000000 & DB000011) | (DB000008 & DB000013); "Reverse rotation selection

RET;

Starts JOG operation
(forward rotation) when
DB000010 turns ON.

Starts STEP operation
(forward rotation) when
DB000012 turns ON.

Starts JOG operation
(reverse rotation) when
DB000011 turns ON.

Starts STEP operation
(reverse rotation) when
DB000013 turns ON.
0

C Differences between MP900 Series and MP2000 Series Machine Controllers
C Differences between MP900 Series and MP2000 Series
Machine Controllers

This section describes motion program differences between the MP900 series and the MP2000 series Machine
Controllers.

C.1 Motion Programs

C.2 Sequence Programs

Item MP900 Series MP2000 Series Remarks

Number of tasks No limitation 16 tasks
Number of simultaneously execut-
able programs

Group definition
Max. number of axes per group

MP910: 28 axes

MP920: 48 axes

MP930: 14 axes

MP940: 1 axis

16 axes −

Work size of MSEE command
in ladder programs

2 words 4 words See 4.3.3 Work Registers.

Interpolation override Always enabled
Enabled or disabled can be
selected.

See 4.3.3 Work Registers.

Register for interpolation over-
ride value designation

Designated in the
Group Definition
dialog box.

Designated using the 3rd
word of an MSEE work
register.

See 4.3.3 Work Registers.

Program execution registration
function
(M-EXECUTOR Module)

Not supported Supported
Can not be used with MP2300,
CPU-01 or CPU-02.

Nesting of PFORK command
(PFORK execution during
parallel processing)

Permitted Prohibited −

Axis move command in the
two parallel subprograms

Prohibited Permitted −

Subprogram call (MSEE) from
the two parallel subprogram

Permitted Prohibited −

Numbers below decimal point
when real number data is
stored in an integer register

Rounded-off
Cut-down (Truncate) or
rounded-off (Rounding)

The default for the MP2000 series is
cut-down.

Item MP900 Series MP2000 Series Remarks

Applicable/Not applicable Not applicable Applicable
Can not be used with MP2300,
CPU-01 or CPU-02.
A-21

Appendices

C.3 Motion Programming Commands

A-2
C.3 Motion Programming Commands

C.4 Group Definitions

Item MP900 Series MP2000 Series Remarks

ACC, DCC

• Executable with
SVA-01, SVA-02,
and SVB-01 Mod-
ules.

• Unexecutable with
PO-01 Module.

Executable −

SCC

• Executable with
SVB-01.

• Unexecutable with
SVA-01, SVA-02,
and PO-01.

Executable −

Speed unit for VEL
command

10n reference units/
min.

Can be selected from:

• 10n reference units/min.

• Reference units/s

• 0.01%

• 0.0001%

• Depends on the difference in functions
between MP900 series Motion Modules and
MP2000 series Motion Modules.

• See 8.1.6 Set Velocity (VEL).

Speed unit for VEL
command when the
reference unit is set to
pulse

(10n reference units/
min.)

MP920 PO-01 Module:
100 pulses/min.

Motion modules other
than MP920 PO-01:
1000 pulses/min.

1000 pulses/min.

• Depends on the difference in functions
between MP900 series Motion Modules and
MP2000 series Motion Modules.

• See 8.1.6 Set Velocity (VEL).

Acceleration/Deceler-
ation rate designation
method for ACC and
DCC commands

MP930 SVB module:
Acceleration/decelera-
tion time (ms) calcu-
lated on the base of the
feed speed

Modules other than
MP930 SVB Module:
Acceleration/decelera-
tion time (ms) calcu-
lated on the base of the
rated speed

Can be selected from
followings:

• Acceleration/decelera-
tion time (ms) calcu-
lated on the base of the
rated speed

• Acceleration/decelera-
tion rate

(reference unit/s2)

• Depends on the difference in functions
between MP900 series Motion Modules and
MP2000 series Motion Modules.

• See 8.1.3 Acceleration Time Change (ACC)
and 8.1.4 Deceleration Time Change
(DCC).

Unit of moving amount
specified for external
positioning command
EXM

In unit of pulse In reference unit
Depends on the difference in functions
between MP900 series Motion Modules and
MP2000 series Motion Modules.

Item MP900 Series MP2000 Series Remarks

Group definition
saving operation while
online

Prohibited Permitted −

Automatic generation
of ladder program

Possible
(Can be specified in the
Group Definition dia-
log box.)

Not possible −
2

C Differences between MP900 Series and MP2000 Series Machine Controllers
C.5 Debug Function

C.6 Motion Program Alarms

Item MP900 Series MP2000 Series Remarks

Single-block operation
applicable commands

Axis move commands
only

All commands −

Designation to ignore
single-block signal

By coding an SNG
command for each
block that ignores the
single-block signal

By executing SNGD and
SNDE commands in the
enclosed blocks.

See 8.4.14 Single-block Signal Disabled
(SNGD)/Single-block Signal Enabled
(SNGE).

Number of settable
break points

1 4 −

Item MP900 Series MP2000 Series Remarks

Motion program alarm
storage

Storage designated in
the Group Definition
dialog box

S register See 10.2.3 Confirming the Alarm Code.
A-23

Appendices

D.1 General Precautions

A-2
D Precautions
D.1 General Precautions

(1) Saving the Changes in Programs to the Flash Memory
After changing an application such as a motion program or sequence program, always save the changed applica-
tion to the flash memory. If the changed application is not saved to the flash memory and the power to the
Machine Controller is turned OFF, the changed application will be lost.

(2) Prohibited Use of Debug Function for a System in Operation
Never use the debug function for a system in operation. Debugging will cause changes in program operation,
such as in command execution timing, resulting in malfunction or failure of the system.

For debugging, use the exclusive system for debugging.

(3) Differences in Axis Operation When an Alarm Occurs for One or More Axes Specified
in an Axis Move Command
If an alarm occurs in one or more axes specified in an axis motion command in an MP2000-series motion pro-
gram, the axes for which alarms do not occur may not stop. Create the required interlocks in the application.

Motion program operation when an alarm occurs for one or more axes specified in an axis move command is
described in the following table.

* An alarm does not occur and the motion program execution block does not change to the next block. Therefore,
you must execute a program reset or alarm reset request after a program stop request is executed.

Axis Move
Command

Axes for Which
Alarms Occur

Axes for Which
Alarms Do Not

Occur
Motion Program Operation

Positioning (MOV)
or Set-time Posi-
tioning (MVT)

Stop.
Move to target posi-
tions.

References continue to axes without alarms and they
move to the target positions.

External Position-

ing (EXM)∗ Stop. −
References continue until bit 8 (Command Execution
Completed) in IW09 (Motion Command Status)
turns ON.

Zero Point Return

(ZRN)∗ Stop. Move to zero point.
References continue until bit 5 (Zero Point Return
(Setting) Completed) in IW0C (Position Man-
agement Status) turns ON for all specified axes.

Linear Interpolation
(MVS), Circular In-
terpolation/Helical
Interpolation
(MCW and MCC),
or Linear Interpola-
tion with Skip
Function (SKP)

Stop.

Stop.
A motion program alarm (84h: Duplicated Motion
Command) occurs and references to all specified
axes are stopped.

Move to target posi-
tions.

References continue to axes without alarms and they
move to the target positions.
4

D Precautions
D.2 Precautions on Motion Parameter Settings

(1) Set bit 5 (Position reference type) of motion setting parameter OW09 to
Incremental value add method
When using a motion program, always set bit 5 (Position reference type) of motion setting parameter OW09
to Incremental value add method. Motion programs manage position information using the incremental value
add method. Therefore, operation using a motion program cannot be guaranteed if bit 5 of motion setting param-
eter OW09 is set to Absolute value set method.

With a motion program, an ABS or INC command is used to set the absolute mode or incremental mode:
Code an ABS command to set the absolute mode (ABS).
Code an INC command to set the incremental mode (INC).

Fig. D.1 Movement Modes for Axis Move Commands

Logical axis 2

Absolute mode (ABS)

Logical axis 1

Program
current position

Logical axis 2

Incremental mode (INC)

INC;

Logical axis 1

Reference
position 1

The reference position is treated as the target position. The reference position is treated as the relative moving amount from
program current position.

Target position

ABS;

Target position

Reference
position 2

Reference
position 1

Reference
position 2

Coordinate
words

Coordinate
words

Program
current position

MOV [Logical axis 1] Reference position 1
[Logical axis 2] Reference position 2 ;

MOV [Logical axis 1] Reference position 1
[Logical axis 2] Reference position 2 ;
A-25

Appendices

D.2 Precautions on Motion Parameter Settings

A-2
(2) Do not access a motion register from the I/O register by using a subscript
I/O registers and motion registers are not assigned to consecutive memory locations.
Therefore, when using a subscript, access is limited within the respective register range of I/O register and
motion register.

IW0000/OW0000

IW7FFF/OW7FFF

IW8000/OW8000

IWFFFF/OWFFFF

I/O registers

Motion registers

Example:
I = 1;
OW7FFFi = 0;

Cannot access

Can access

Can access
6

D Precautions
(3) Do not access a motion register of a different circuit by using a subscript
As with the relationship between I/O registers and motion registers, motion registers of different circuits are not
assigned to consecutive memory locations.
Therefore, when using a subscript, access is limited within the same motion register range of each circuit.
If the circuit numbers of two registers are the same, it is possible to access a register of a different axis.

Circuit No. Axis 1 Axis 2 Axis 16

1 OW8000 to OW807F OW8080 to OW80FF OW8780 to OW87FF

2 OW8800 to OW887F OW8880 to OW88FF OW8F80 to OW8FFF

3 OW9000 to OW907F OW9080 to OW90FF OW9780 to OW97FF

4 OW9800 to OW987F OW9880 to OW98FF OW9F80 to OW9FFF

5 OWA000 to OWA07F OWA080 to OWA0FF OWA780 to OWA7FF

6 OWA800 to OWA87F OWA880 to OWA8FF OWAF80 to OWAFFF

7 OWB000 to OWB07F OWB080 to OWB0FF OWB780 to OWB7FF

8 OWB800 to OWB87F OWB880 to OWB8FF OWBF80 to OWBFFF

9 OWC000 to OWC07F OWC080 to OWC0FF OWC780 to OWC7FF

10 OWC800 to OWC87F OWC880 to OWC8FF OWCF80 to OWCFFF

11 OWD000 to OWD07F OWD080 to OWD0FF OWD780 to OWD7FF

12 OWD800 to OWD87F OWD880 to OWD8FF OWDF80 to OWDFFF

13 OWE000 to OWE07F OWE080 to OWE0FF OWE780 to OWE7FF

14 OWE800 to OWE87F OWE880 to OWE8FF OWEF80 to OWEFFF

15 OWF000 to OWF07F OWF080 to OWF0FF OWF780 to OWF7FF

16 OWF800 to OWF87F OWF880 to OWF8FF OWFF80 to OWFFFF

Circuit
1

Example:
I = 1;
OW87FFi = 0;

Cannot access

Can accessAxis 1 (IW8000 to IW807F, OW8000 to OW807F)
Axis 2 (IW8080 to IW80FF, OW8080 to OW80FF)

Axis 16 (IW8780 to IW87FF, OW8780 to OW87FF)

Example:
I = 1;
OW807Fi = 0;

Circuit
2

Axis 1 (IW8800 to IW887F, OW8800 to OW887F)
Axis 2 (IW8880 to IW88FF, OW8880 to OW88FF)

Axis 16 (IW8F80 to IW8FFF, OW8F80 to OW8FFF)
A-27

Appendices

D.2 Precautions on Motion Parameter Settings

A-2
(4) Do not change the motion setting parameter OL1C “Position reference setting”
while axis motion is in progress in a motion program.
If OL1C “Position reference setting” is changed in another program (e.g. a ladder program) while axis
motion is in progress in a motion program, the axes will move in accordance with the change. This will result in
a discrepancy between the actual position and the position specified in the motion program.

Example:

If the travel distance of the A1 axis specified by OL1C “Position reference setting” in the motion program
below is changed from +1000 to +1500 while executing (a) in the motion program, the A1 axis moves to the
position +1500. At this point a discrepancy arises in relation to the reference position in the motion program
(+1000). Then (b) in the motion program will be executed. As a result, the actual final position of the A1 axis will
be at a different position from that specified in the motion program.

INC;

ZRN [A1]0;

MOV [A1]1000; • • • (a)

MOV [A1]1000; • • • (b)

END;

Actual position of
the axis

0 1000 1500 2000 2500

(a) (b)

(a) (b)

Discrepancy
in final
position

Position that the motion
program specifies

Change in
travel in the
ladder
program
8

Index
Index

Symbols
^ - 2-6, 8-140
- (subtract) - 2-6, 8-133
! - 2-6, 8-141
* - 2-6, 8-134
/ - 2-6, 8-135
& - 2-6, 8-139
register -2-4, 6-2, 8-118
+ - 2-6, 8-132
< - 2-6, 8-142
<= - 2-6, 8-142
<> - 2-6, 8-142
= - 2-6, 8-131
== - 2-6, 8-142
> - 2-6, 8-142
>= - 2-6, 8-142
| - 2-6, 8-137

Numerics
0.0001% of rated speed- 7-12
0.01% of rated speed - 7-12
10n reference unit/min. - 7-12

A
ABS -2-6, 8-3
ABS mode - 8-3
absolute mode (ABS) - 8-3
ACC - 2-6, 8-11
Acceleration Time Change (ACC) - 8-11
acceleration time/deceleration time- 8-30
acceleration/deceleration degree unit selection - - - - - - - - - - - - - 7-12
Acceleration/Deceleration Mode with Continuous Process
Control Signal Monitoring - 8-48
Acceleration/Deceleration Mode with Interpolation
Overlapping - 8-52
acceleration/deceleration setting- 7-12
acceleration/deceleration type - 8-61, 8-67
ACCMODE - 8-46
ACS - 2-6, 8-155
add (+) - 8-132
Add Register- 9-21
alarm code - 10-12
alarm code list for motion program- 10-15
alarm display - 9-35
alarm reset request - 4-8
allocated interlock contact- 4-12
Allocation DISABLE - 9-14
Allocation register - 4-12
AND (&) - 8-139
APOS - 8-96
Arc Cosine (ACS) - 8-155
Arc Sine (ASN)- 8-154
Arc Tangent (ATN) - 8-156
arithmetic operations - 8-131
ASCII - 2-6, 8-148
ASCII code- 8-148
ASCII Conversion 1 (ASCII)- 8-148
ASN - 2-6, 8-154
ATN - 2-6, 8-156
axis alarm monitor - 9-31, 9-33

axis control commands- 8-92
axis move commands- 8-60
Axis No. - 7-14
axis operation monitor - 9-31
Axis Operation Monitor function - 1-7
Axis Operation Monitor/Alarm Monitor function - - - - - - - - - - - - 2-5
axis setting commands - 8-3
axis status - 9-33
axis type selection - 7-9, 8-5

B
basic flow of troubleshooting - 10-2
basic functions -8-150
Batch transfer - 3-11
BCD - 2-6, 8-150, 8-160
BCD data- -8-159, 8-160
BCD to Binary (BIN)- -8-159
BIN- 2-6, 8-159
binary data -8-159, 8-160
binary data conversion -8-150
Binary to BCD (BCD) -8-160
bit- 6-3
Bit Left Shift (SFL) -8-145
Bit Right Shift (SFR) -8-144
BLK - 2-6, 8-146
block- 7-2, 9-4
block format- 7-2
Block Move (BLK) -8-146
block number -10-12
branching commands (IF ELSE IEND)- - - - - - - - - - - - - - - - - -8-101
Break - 9-19
break point setting- 1-7
built-in SVB- 1-8, 2-2

C
C registers - 2-4, 6-13
C variables (C registers) - 6-13
C-Language Function Call (CFUNC) - - - - - - - - - - - - - - - - - - -8-174
C-Language Task Control (CTSK) -8-172
call - 1-8
center point position - 8-70
center position designation - 8-69, 8-79
CFUNC - 2-6, 8-174
character

D - 7-5
F - 7-5
MPS - 7-6
N - 7-5
P - 7-5
R - 7-5
SPS- 7-6
SS- 7-5
T - 7-5
U - 7-5
V - 7-5
W - 7-5

child drawing - 1-9
Circuit - 7-13
circular interpolation - 1-13
Clear (CLR) -8-147
Clockwise/Counterclockwise Circular Interpolation with Center
Position Designation (MCW, MCC) - 8-69
Clockwise/Counterclockwise Circular Interpolation with Radius
Designation (MCW, MCC) - 8-75
Clockwise/Counterclockwise Helical Interpolation with Center
Position Designation (MCW, MCC) - 8-79
Index-1

Index

Inde
Clockwise/Counterclockwise Helical Interpolation with Radius
Designation (MCW, MCC) - 8-82
CLR- 2-6, 8-147
command format - 9-8
command input assistant - 9-6
Command Input Assistant function - - - - - - - - - - - - - - - - - -1-7, 1-16
command input assistant function - 2-5
command types - 7-17
comment check box and comment input field - - - - - - - - - - - - - - 9-10
comments - 7-2, 7-6
communication settings- 3-3
compiling - 3-6
composite moving amount- 8-65
configuration of motion program alarms - - - - - - - - - - - - - - - - 10-15
confirming the alarm code - 10-9
constant registers - 6-2, 8-118
constants- 7-7
control signal- -4-8, 9-14, 10-12
Coordinate Plane Setting (PLN) - 8-100
coordinate words - 7-2, 7-4
COS- 2-6, 8-152
Cosine (COS) - 8-152
creating a motion program - 3-6
creating project files - 3-4
CTSK- 2-6, 8-172
Current Position Set (POS) - 8-92

D
D registers- 2-4, 6-2, 6-14, 8-118
D variables (D registers) - 6-14
data comparison commands - 8-142
data operations- 8-144
data registers - 6-2, 8-118
data types - 6-3, 8-116
data variables (M registers) - 6-8
DCC -2-6, 8-17
Debug function - 1-7, 1-16, 2-5, 9-15
debug mode- 3-12, 9-17
debugging the program - 3-12
Deceleration Time Change (DCC) - 8-17
decimal integers- 7-7
DEFAULT - 8-109
deg- 7-9
degree - 8-150
direct designation -5-4, 9-13
divide (/)- 8-135
double integer - 6-3
Drive control panel- -2-5, 9-24
Drive control panel function- 1-7
Dwell Time (TIM) - 8-126

E
easy programming functions -1-7, 1-16
electronic gear - 7-10, 8-33
encoder cable- 3-3
END - 2-6, 8-124
end of block - 7-2, 7-6
end position- 8-70
EOX - 2-6, 8-129
error code - 4-15
Error List dialog box- 3-6
Execute - 9-19
executing block number - 4-15
executing main program No. - 10-12
executing program line - 9-16

executing program number - 4-14, 4-15
executing the programs- 3-14
execution method -2-3, 2-4
execution registry screen- 1-8
execution scans - 7-17
Execution type - 9-13
EXM - 2-6, 8-90
external function register - 8-118
External Positioning (EXM) - 8-90
external positioning signal- 8-91

F
F designation - 8-37, 8-66
Falling Pulse (NON) - 8-165
filter time constant - 8-24
filter type selection - 8-28
finite length axis -7-9, 8-5
FMX - 2-6, 8-35
Forced end - 9-19
Fork number - 9-20
FUNC - 2-6, 8-123
function input register - 8-118
function keys - 9-16
function output register- 8-118
Function selection flag 1 - 8-5

G
global variables -6-4, 7-7
grandchild drawing - 1-9
group definitions -1-11, 3-5, 7-13
Group Name - 7-13
group selection - 9-4
groups - 1-11

H
H drawing - 1-9
handling system- 1-12
Help button- 9-11
hexadecimal integers - 7-7
high-speed processing - 2-3
high-speed processing drawing - 1-9
how to directly change the acceleration time setting - - - - - - - - - 8-16
how to directly change the deceleration time setting - - - - - - - - - 8-22

I
I registers -2-4, 6-9
I/O services - 1-10
I/O Variable Wait (IOW)- 8-127
IAC - 2-6, 8-40
IDC - 2-6, 8-43
IF ELSE IEND - 2-6, 8-101
IFP - 2-6, 8-37
in debug mode- -4-7, 5-5
in-position check - 8-62, 8-64
In-Position Check (PFN)- 8-96
in-position check width- 8-98
INC -2-6, 8-7
inch - 7-9
incremental mode (INC) -8-3, 8-7
indirect designation -4-11, 5-4, 9-13
indirect designation of a program number using a register - - - - - 4-11
Individual transfer - 3-11
infinite length axis -7-9, 8-5
Infinite Length Axis Reset Position - 7-9
infinite length axis reset position (POSMAX)- - - - - - - - - - - - - - - 8-5
INP - 2-6, 8-98
x-2

Index
input data - 6-9
input registers - 6-2, 8-118
input variables (I registers) - 6-9
installation - 3-2
installing MPE720 Version 6 - 3-3
integer - 6-3
internal function register - 8-118
interpolation acceleration time - 8-41
Interpolation Acceleration Time Change (IAC) - - - - - - - - - - - - 8-40
interpolation deceleration time- 8-44
Interpolation Deceleration Time Change (IDC) - - - - - - - - - - - - 8-43
Interpolation Feed Speed - 8-37
interpolation feed speed (F command or IFP) - - - - - - - - - - - - - - 8-66
interpolation feed speed ratio- 8-38
Interpolation Feed Speed Ratio Setting (IFP) - - - - - - - - - - - - - - 8-37
interpolation override - 4-9
interpolation related command- 8-27
interpolation related commands - 8-37
interrupt processing - 2-3
IOW - 2-6, 8-127

J
JOG operation- 9-30
JOINTO - 8-106, 8-109

L
label - 7-2
ladder program - 1-3
ladder program specifications - 2-3
leading register whose data is cleared - - - - - - - - - - - - - - - - - - 8-147
line - 9-4
line number - 7-13
linear acceleration rate - 8-13
linear acceleration time constant - 8-12
linear deceleration rate - 8-19
linear deceleration time constant - 8-18
Linear Interpolation (MVS)- 8-64
Linear Interpolation with Skip Function (SKP)- - - - - - - - - - - - - 8-86
list of command types- 7-18
list of commands - 2-6
list of engineering tool MPE720 specifications - - - - - - - - - - - - - - 2-5
list of machine controller specifications- - - - - - - - - - - - - - - - - - - 2-3
local variables -6-4, 7-7
logic operation - 8-137
logical axis name - 7-2, 7-3, 7-14
low-speed processing - 2-3

M
M registers - 1-5, 2-4, 6-8
M type commands - 7-17
M-EXECUTOR- 1-9
M-EXECUTOR control register (I/O register) - - - - - - - - - - - - - - 1-9
M-EXECUTOR Module - 1-2
M-EXECUTOR program execution definition - - - - - - - - - - - - - - 4-4
machine coordinate system - 8-84, 8-92
main program -4-2, 5-2
Main program number - 9-20
main program number exceeded error - 4-7
max. feed speed for interpolation - 8-36
Maximum Interpolation Feed Speed Setting (FMX) - - - - - - - - - 8-35
MCC - 2-6, 8-69, 8-75, 8-79
MCW - 2-6, 8-69, 8-75, 8-79
mechanical parts inserting machine - 1-12
MECHATROLINK cable - 3-3
memory backed up by battery - 2-4
metal sheet bending equipment - 1-13

min. reference unit - 2-3
mm - 7-9
μm - 7-9
MOD - 2-6, 8-136
monitor parameters - 6-9
monitor tab and status bar- 9-5
monitor the motion program execution information
using S register - 4-13
monitoring parameter status - 9-34
Motion Editor - 1-7, 1-8, 3-6, 9-2
motion fixed parameters - 7-9
motion language - 1-2
motion language command - 7-2, 7-3
motion module - 1-8
motion module parameters - 7-9
motion monitor parameter - 6-9
motion monitoring parameter selection - - - - - - - - - - - - - - - - - - 9-34
motion parameters- 1-8
motion program - 1-3, 1-9

applicable machine controller models- - - - - - - - - - - - - - - - - 2-2
applicable motion modules - 2-2
application examples - 1-12
axis groups- 4-2
data transfer from/to ladder program - - - - - - - - - - - - - - - - - 1-5
Error information screen window- - - - - - - - - - - - - - - - - - - 10-9
error investigation flow - 10-3
execution information - 4-14
execution method - 1-3
execution registration- 1-9
execution sequence - 1-8
execution timing - 1-10
format - 7-2
grouping - 1-11
how to run a motion program - 4-3
motion control - 1-4
parallel program execution - 1-6
program online editing - 1-6
registering the program execution - - - - - - - - - - - - - - - - - - - 4-5
S Register -10-11
specification- 2-3
troubleshooting- 10-3
types - 4-2
use of subprograms - 1-5

motion program alarm codes -10-11
Motion Program Configuration Definition window- - - - - - - - - - - 6-5
motion program execution timing - 1-10
Motion Properties - 6-14
motion setting parameter - 6-11
Motion Subprogram Call (MSEE) -8-113
Motion Task Manager - 2-5, 9-22
motor cable - 3-3
MOV - 2-6, 8-60
Move On Machine Coordinates (MVM) - - - - - - - - - - - - - - - - - 8-94
movement path by interpolation command and S-curve
acceleration/deceleration - 8-27
Moving Average Filter - 8-28
MP2100- 2-2
MP2100M - 2-2
MP2200/CPU-01 - 2-2
MP2200/CPU-02 - 2-2
MP2200/CPU-03 - 2-2
MP2200/CPU-04 - 2-2
MP2300- 2-2
MP2300S- 2-2
MP2310- 2-2
Index-3

Index

Inde
MP2400 - 2-2
MP2500 - 2-2
MP2500D - 2-2
MP2500M- 2-2
MP2500MD - 2-2
MPE720 Ver.5 - 2-5
MPE720 Ver.6 - 1-7, 2-5
MPE720 Ver.6 Lite- 2-5
MPOS - 8-96
MPU-01 - 2-2
ms - 7-12
MSEE - 2-6, 8-113
MSEE call stack- 9-20
MSEE command - 1-2
MSEE work register - 1-9
multiple group operation -1-11, 4-2
multiply (*) - 8-134
MVM- -2-6, 8-94
MVS -2-6, 8-64
MVT -2-6, 8-88

N
NEAR signal output width- 8-96, 8-98
Nest number - 9-20
new project - 3-2
no system work error - 4-7
NON - 2-6, 8-165
Normal run mode - 9-17
NOT (!) - 8-141
number of axes to be controlled -7-13, 9-9
number of blocks - 8-147
number of digits below decimal point - - - - - - - - - - - - - - - -7-9, 8-30
number of groups -2-3, 7-13
number of parallel processes - 2-3, 2-4
number of programs - 2-3
number of simultaneously controlled axes - - - - - - - - - - - - - - - - - 2-3
number of tasks - 2-3, 2-4
number of turns - 8-72

O
O registers- -2-4, 6-11
OFF-Delay Timer (TOF)

counting unit 0.01 second - 8-170
ON-Delay Timer (TON)

counting unit 0.01 second - 8-168
One Scan Wait (EOX)- 8-129
online editing- 1-6
operation mode - 2-3
OR (|) - 8-137
organizaing the axes into individual groups - - - - - - - - - - - - - - - - 3-5
organizing the axes into individual groups - - - - - - - - - - - - - - - - - 3-5
output data - 6-11
output registers - 6-2, 8-118
output variables (O registers) - 6-11
override -2-3, 8-32
override setting for interpolation- 4-8

P
palletizing - 1-12
panel processing machine - 1-13
Parallel Execution (PFORK, JOINTO, PJOINT) - - - - - - - - - - - 8-106
parent drawing- 1-9
pausing/starting monitoring - 9-33, 9-35
PFN -2-6, 8-96
PFORK - 8-106
PFORK, JOINTO, PJOINT - 2-6

PJOINT - 8-106
PLD - 2-6, 8-95
PLN - 2-6, 8-100
PO-01 -1-8, 2-2
PON - 2-6
POS- 2-6
position reference value - 8-3
positioning (MOV) - 8-60
positioning related commands - 8-29
positioning speed- 8-13, 8-19, 8-29
POSMAX- 8-5
PP cable - 3-3
precautions for variable operations - 6-6
Priority Levels of Operations- 7-15
problem when starting a motion program- - - - - - - - - - - - - - - - - 10-4
procedure to create the user function- - - - - - - - - - - - - - - - - - - 8-120
program alarm is occurring -4-7, 5-5
program capacity - 2-3
program continuous operation start request - - - - - - - - - - - - - - - - 4-8
program control commands - 8-101
program control signal - 4-15
program current position- 8-3, 8-95, 10-12
Program Current Position Update (PLD) - - - - - - - - - - - - - - - - - 8-95
program designation method - 9-13
program development flow - 3-2
program editing window - 9-4
program end (END) - 8-124
program execution registration function - - - - - - - - - - 1-7, 2-5, 9-12
program execution registry number - - - - - - - - - - - - 4-13, 9-13, 9-26
program information used by work n - - - - - - - - - - - - - - - - - - - 4-15
program number - 9-13, 9-26, 10-12
program numbers of motion programs- 4-2
program numbers of sequence programs - - - - - - - - - - - - - - - - - - 5-2
program operation start request - 4-8
program pause request - 4-8
program paused - 4-7
Program Property window- 6-5
program running -4-7, 5-5
program single block mode selection - 4-8
program single block start request - 4-8
program status- 4-15
program stop request - 4-8
program stopped by stop request - 4-7
program type- -4-7, 5-5
programs created for each group - 1-12
pulse - 7-9

R
R{ }- 2-6, 8-162
radius- 8-76
radius designation - 8-75, 8-82
rated speed - 8-12, 8-18
real number -6-3, 7-7
reference position - 8-3
reference range - 2-3
reference unit -2-3, 7-9
reference unit selection - 8-30
reference unit/s - 7-12
reference unit/s2 - 7-12
register allocation - 9-14
register list - 3-2
register start number of the motion monitor parameter - - - - - - - - 6-10
register start number of the motion setting parameter- - - - - - - - - 6-12
register types used within user functions - - - - - - - - - - - - - - - - 8-116
registering MPM001 in the M-EXECUTOR - - - - - - - - - - - - - - - 4-5
x-4

Index
registering the program execution- 3-7
registering to the M-EXECUTOR program execution definition - - 4-4
relationship between I/O registers and internal function
registers - 8-117
relative movement amount - 8-7
remainder (MOD) - 8-136
Repeat (WHILE WEND) - 8-103
Reset Bit (R{ })- 8-162
RET - 2-6, 8-125
Rising Pulse (PON) - 8-163

S
S registers- -2-4, 6-7
S type commands- 7-17
S-curve acceleration/deceleration - 8-62
S-curve time constant - 8-23, 8-26
S-curve Time Constant Change (SCC) - - - - - - - - - - - - - - - - - - 8-23
S{ } - 2-6, 8-161
sample program

motion program for speed control- - - - - - - - - - - - - - - - - - - A-16
parallel processing - A-15
programs for controlling motion program execution - - - - - - A-13
sequence programs - A-19
simple synchronized operation using a virtual axis - - - - - - - A-17

Save to flash - 3-2
saving the programs in flash memory - - - - - - - - - - - - - - - - - - - 3-13
Scan Execution - 1-3
scan execution type - 1-15
scan execution type program - 1-14
scanning error - 4-7
SCC - 2-6, 8-23
select command (command options) - 9-8
Selective Execution (SFORK, JOINTO, SJOINT)- - - - - - - - - - 8-109
self-configuration -3-2, 3-3
sequence commands- 1-15
sequence program - 1-9

error investigation flow - 10-17
execution - 5-3
execution method - 1-15
execution timing - 5-4
features - 1-15
format - 7-19
how to run a sequence program - 5-3
M-EXECUTOR program definition - - - - - - - - - - - - - - - - - - 5-3
motion languages- 1-15
registering program execution - 5-4
specifications - 2-4
transfer from/to motion program - - - - - - - - - - - - - - - - - - - 1-15
troubleshooting - 10-17
types - 5-2
use of subprograms - 1-16

Sequence Subprogram Call (SSEE) - - - - - - - - - - - - - - - - - - - 8-114
Sequential Execution - 1-3
servomotor - 3-3
SERVOPACK - 3-3
Set Bit (S{ }) - 8-161
Set In-Position Range (INP) - 8-98
Set Time Positioning (MVT) - 8-88
set to the arguments - 9-9
Set Velocity (VEL) - 8-29
Set/Delete break point - 9-18, 9-21
Setting the execute task - 9-20
setting the speed reference velue - 9-30
SFL - 2-6, 8-145
SFORK - 8-109

SFORK, JOINTO, SJOINT- 2-6
SFR - 2-6, 8-144
shift start point - 9-17
SIN- 2-6, 8-150
Sine (SIN) -8-150
single group operation - 1-11, 4-2
single program block operation stopped - - - - - - - - - - - - - - - - - - 4-7
single-block operation mode -8-130
Single-block Signal Disabled (SNGD)/Single-block Signal
Enabled (SNGE) -8-130
single-step linear acceleration/deceleration - - - - - - - - - - - - - - - 8-62
SJOINT -8-109
Skip 1 information- 4-8
Skip 2 information- 4-8
skip input signal - 8-86
skip input signal 1 (SS1)- 8-86
skip input signal 2 (SS2)- 8-86
SKP - 2-6, 8-86
SNGD -8-130
SNGD/SNGE - 2-6
SNGE -8-130
software limit switch function - 8-93
specific characters - 7-2, 7-5
speed reference - 7-12
speed unit - 8-30
Speed unit selection- 7-12
SQT - 2-6, 8-157
Square Root (SQT) -8-157
square roots -8-150
SSEE - 2-6, 8-114
start method - 2-3, 2-4
start processing - 2-3
start request history - 4-7, 5-5
Status - 9-14
status- -10-12
status flag - 4-7, 5-5
step distance- 9-30
Step in - 3-12, 9-18
STEP operation- 9-30
Step over - 9-18
step-by-step execution - 1-7
stopped at a break point - 4-7, 5-5
subprogram - 4-2, 5-2
Subprogram End (RET) -8-125
subroutines (subprograms) - 1-5, 1-16
subscript i - 6-15
subscript j - 6-15
substitute (=) -8-131
subtract (-) -8-133
SVA-01 - 1-8, 2-2
SVB-01 - 1-8, 2-2
SVR - 1-8, 2-2
synchronization- 1-12
syntax error - 6-2
system configuration - 3-3
system registers - 6-2, 8-118
system setup- 3-3
system variables (S registers) - 6-7
system work -10-12
system work number - 4-9
system work number setting - 4-8, 4-13

T
T type commands - 7-17
TAN - 2-6, 8-153
Index-5

Index

Inde
Tangent (TAN)- 8-153
target position - 8-3
Task execution status displayed in a tree structure - - - - - - - - - - - 9-23
terminator - 3-3
test run function - 1-7, 2-5, 9-28
TIM - 2-6, 8-126
TOF - 2-6, 8-170
TON - 2-6, 8-168
tool icons -9-5, 9-16
transfer - 1-8
transferring the motion program - 3-10
trigonometric functions - 8-150
types of variable- 6-2

U
UFC- 2-6, 8-115
Update current position - 9-19
user function call - 8-115, 8-123
User Function Call From Motion Program (UFC) - - - - - - - - - - 8-115
User Function Call from Sequence Program (FUNC)- - - - - - - - 8-123
user functions - 2-3, 8-116

V
variable - 6-2

using variables- 6-7
variables and data types- 7-7
VEL- -2-6, 8-29
virtual axis - 1-12

W
warning display - 9-35
what is a motion program?- 1-2
what is a sequence program? - 1-14
WHILE WEND - 2-6, 8-103
work coordinate system- 8-3, 8-84, 8-92
work register - 5-5
work registers - 4-6

X
XOR (^) - 8-140

Z
Zero Point Return (ZRN)- 8-84
zero point return methods - 8-85
zero point return speed - 8-85
ZRN- -2-6, 8-84
x-6

Revision History

The revision dates and numbers of the revised manuals are given on the bottom of the back cover.

Date of Publication
Rev.
No.

WEB
Rev.
No.

Section Revised Contents

May 2017 <3> 1 8.1.11 Revision: Descriptions on setting interpolation acceleration/deceleration mode

8.4.2 (3) Revision: Programming example of a repeat command

Back cover Revision: Address

May 2015 0 Front cover Revision: Format

– Printed version of the user’s manual that is available on the web (web version: SIEP
C880700 38D<2>-1)

4.3.3 (2) Revision: Information on program continuous operation start request

7.5.2, 8.1.11, Appen-
dices A.1

Addition: Information on the ACCMODE command

Appendices D.1 (3) Addition: Precaution on motion program operation when an alarm occurs for one or
more axes specified in an axis move command

Back cover Revision: Format and address

July 2014 <2> 1 1.1, 1.8, 2.1.1, 2.1.3,
2.2.2, C.1, C.2

Addition: Description of CPU-03, CPU-04 and MPU-01

May 2014 0 – Printed version of the user’s manual that is available on the web (web version:
SIEP C880700 38B<1>-5)

Back cover Revision: Address

July 2012 <1> 5 8.2.3 (3) Revision: Figure and INFO on interpolation feed speed

Back cover Revision: Address

November 2011 4 6.2.2 (3), 6.2.6 (3) Addition: VEL command in the column of important

June 2011 3 8.2.4 Revision: Descriptions on setting items for MCW and MCC commands.

April 2011 2 7.1.2 (5) Revision: Application example “TIM TML00000” → “TIM TMW00000”

November 2010 1 Front cover Revision: Format

8.4.11 (2) Revision: Usable data

Back cover Revision: Address, format

September 2010 0 – Printed version of the user’s manual, SIEP C880700 38<0>-2, available on the web.

All chapters Based on Japanese user’s manual, SIJP C880700 38B<2>, printed in December
2009.

Preface Addition: Warranty

D.2 (4) Addition: Precautions on the motion parameter

Back cover Revision: Address

September 2009 <0> 2 Preface Addition: Warranty

Back cover Revision: Address

July 2009 1 Appendices A.4 Revision: Descriptions in columns of sequence program for Branching command
and Repeat command

Back cover Revision: Address

September 2008 – – – First edition

MANUAL NO. SIEP C880700 38A <0>-1

Published in Japan July 2009

Date of publication

Revision number
WEB revision number

IRUMA BUSINESS CENTER (SOLUTION CENTER)
480, Kamifujisawa, Iruma, Saitama, 358-8555, Japan
Phone: +81-4-2962-5151 Fax: +81-4-2962-6138
http://www.yaskawa.co.jp

YASKAWA AMERICA, INC.
2121, Norman Drive South, Waukegan, IL 60085, U.S.A.
Phone: +1-800-YASKAWA (927-5292) or +1-847-887-7000 Fax: +1-847-887-7310
http://www.yaskawa.com

YASKAWA ELÉTRICO DO BRASIL LTDA.
777, Avenida Piraporinha, Diadema, São Paulo, 09950-000, Brasil
Phone: +55-11-3585-1100 Fax: +55-11-3585-1187
http://www.yaskawa.com.br

YASKAWA EUROPE GmbH
Hauptstraβe 185, 65760 Eschborn, Germany
Phone: +49-6196-569-300 Fax: +49-6196-569-398
http://www.yaskawa.eu.com E-mail: info@yaskawa.eu.com

YASKAWA ELECTRIC KOREA CORPORATION
35F, Three IFC, 10 Gukjegeumyung-ro, Yeongdeungpo-gu, Seoul, 07326, Korea
Phone: +82-2-784-7844 Fax: +82-2-784-8495
http://www.yaskawa.co.kr

YASKAWA ELECTRIC (SINGAPORE) PTE. LTD.
151, Lorong Chuan, #04-02A, New Tech Park, 556741, Singapore
Phone: +65-6282-3003 Fax: +65-6289-3003
http://www.yaskawa.com.sg

YASKAWA ELECTRIC (THAILAND) CO., LTD.
59, 1st-5th Floor, Flourish Building, Soi Ratchadapisek 18, Ratchadapisek Road, Huaykwang, Bangkok, 10310, Thailand
Phone: +66-2-017-0099 Fax: +66-2-017-0799
http://www.yaskawa.co.th

YASKAWA ELECTRIC (CHINA) CO., LTD.
22F, One Corporate Avenue, No.222, Hubin Road, Shanghai, 200021, China
Phone: +86-21-5385-2200 Fax: +86-21-5385-3299
http://www.yaskawa.com.cn

YASKAWA ELECTRIC (CHINA) CO., LTD. BEIJING OFFICE
Room 1011, Tower W3 Oriental Plaza, No.1, East Chang An Ave.,
Dong Cheng District, Beijing, 100738, China
Phone: +86-10-8518-4086 Fax: +86-10-8518-4082

YASKAWA ELECTRIC TAIWAN CORPORATION
12F, No. 207, Sec. 3, Beishin Rd., Shindian Dist., New Taipei City 23143, Taiwan
Phone: +886-2-8913-1333 Fax: +886-2-8913-1513 or +886-2-8913-1519
http://www.yaskawa.com.tw

In the event that the end user of this product is to be the military and said product is to
be employed in any weapons systems or the manufacture thereof, the export will fall
under the relevant regulations as stipulated in the Foreign Exchange and Foreign
Trade Regulations. Therefore, be sure to follow all procedures and submit all relevant
documentation according to any and all rules, regulations and laws that may apply.

Specifications are subject to change without notice for ongoing product modifications
and improvements.

© 2008 YASKAWA ELECTRIC CORPORATION

Published in Japan May 2017

MANUAL NO. SIEP C880700 38D <3>-1

17-4-13

USER’S MANUAL
Machine Controller MP2000 Series

for Motion Programming

	Front Cover
	About This Manual
	Using This Manual
	Manuals for MP2000 Series
	Related Manuals
	Visual Aids
	Safety Information
	Safety Precautions
	Warranty
	Contents
	1 Overview
	1.1 What is a Motion Program?
	1.2 Motion Program Features
	1.2.1 Execution Method
	1.2.2 Motion Control in Full Synchronization with Sequence Control
	1.2.3 Easy to Realize High-level Motion Control
	1.2.4 Easy-to-Understand Motion Language
	1.2.5 Arithmetic Operations
	1.2.6 Data Transfer from/to Ladder Program
	1.2.7 Memory Usage Reduced by Use of Subprograms
	1.2.8 Parallel Program Execution
	1.2.9 Program Online Editing
	1.2.10 Enriched Easy Programming Functions (MPE720 Ver.6.04 or later)

	1.3 Motion Program Execution Sequence
	1.4 Motion Program Execution Registration
	1.5 Motion Program Execution Timing
	1.6 Grouping
	1.7 Application Examples
	1.7.1 Example 1: Handling System
	1.7.2 Example 2: Mechanical Parts Inserting Machine
	1.7.3 Example 3: Panel Processing Machine
	1.7.4 Example 4: Metal Sheet Bending Equipment

	1.8 What is a Sequence Program?
	1.9 Sequence Program Features
	1.9.1 Execution Method
	1.9.2 Programming Language Commonly Used in Motion Programs
	1.9.3 Data Transfer from/to Motion Program
	1.9.4 Memory Usage Reduced by Use of Subprograms
	1.9.5 Easy Programming Functions (MPE720 Ver.6.04 or later)

	2 Specifications
	2.1 MP2000 Series Machine Controller Specifications
	2.1.1 Applicable Machine Controller Models
	2.1.2 Applicable Motion Modules
	2.1.3 List of Machine Controller Specifications

	2.2 Engineering Tool MPE720 Specifications
	2.2.1 Applicable Version Numbers of the Engineering Tool MPE720
	2.2.2 List of Engineering Tool MPE720 Specifications

	2.3 List of Motion Language Commands

	3 Program Development Flow
	3.1 Program Development Flow
	3.2 Program Development Procedure
	3.2.1 Hardware Configuration
	3.2.2 Installing MPE720 Version 6
	3.2.3 Communication Settings
	3.2.4 System Setup
	3.2.5 Creating Project Files
	3.2.6 Group Definitions
	3.2.7 Creating a Motion Program
	3.2.8 Registering the Program Execution
	3.2.9 Transferring the Motion Program
	3.2.10 Debugging the Program
	3.2.11 Saving the Programs in Flash Memory
	3.2.12 Executing the Programs

	4 Motion Programs
	4.1 Types of Motion Programs
	4.2 Motion Programs For Each Axis Group
	4.3 Running a Motion Program
	4.3.1 How to Run a Motion Program
	4.3.2 Registering the Program Execution
	4.3.3 Work Registers

	4.4 Advanced Programming
	4.4.1 Indirect Designation of a Program Number Using a Register
	4.4.2 Controlling the Motion Program Directly from an External Device
	4.4.3 Monitor the Motion Program Execution Information Using S Register

	5 Sequence Programs
	5.1 Sequence Program Types
	5.2 How to Run a Sequence Program
	5.2.1 How to Run a Sequence Program
	5.2.2 Registering Program Execution
	5.2.3 Work Register

	6 Variables (Registers)
	6.1 Overview
	6.1.1 Variable Types
	6.1.2 Global Variables and Local Variables

	6.2 Using Variables
	6.2.1 System Variables (S Registers)
	6.2.2 Data Variables (M Registers)
	6.2.3 Input Variables (I Registers)
	6.2.4 Output Variables (O Registers)
	6.2.5 C Variables (C Registers)
	6.2.6 D Variables (D Registers)

	6.3 How to Use Subscripts i, j

	7 Programming
	7.1 Motion Program Format
	7.1.1 Motion Program Structure
	7.1.2 Block Format
	7.1.3 Using Constants and Variables

	7.2 Motion Module Parameters
	7.2.1 Axis Type Selection
	7.2.2 Reference Unit
	7.2.3 Electronic Gear
	7.2.4 Speed Reference
	7.2.5 Acceleration/Deceleration Setting

	7.3 Group Definition
	7.4 Priority Levels of Operations
	7.5 Commands and Execution Scans
	7.5.1 Command Types
	7.5.2 List of Command Types

	7.6 Sequence Program Format

	8 Command Reference
	8.1 Axis Setting Commands
	8.1.1 Absolute Mode (ABS)
	8.1.2 Incremental Mode (INC)
	8.1.3 Acceleration Time Change (ACC)
	8.1.4 Deceleration Time Change (DCC)
	8.1.5 S-curve Time Constant Change (SCC)
	8.1.6 Set Velocity (VEL)
	8.1.7 Maximum Interpolation Feed Speed Setting (FMX)
	8.1.8 Interpolation Feed Speed Ratio Setting (IFP)
	8.1.9 Interpolation Acceleration Time Change (IAC)
	8.1.10 Interpolation Deceleration Time Change (IDC)
	8.1.11 Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

	8.2 Axis Move Commands
	8.2.1 Positioning (MOV)
	8.2.2 Linear Interpolation (MVS)
	8.2.3 Clockwise/Counterclockwise Circular Interpolation with Center Position Designation (MCW, MCC)
	8.2.4 Clockwise/Counterclockwise Circular Interpolation with Radius Designation (MCW, MCC)
	8.2.5 Clockwise/Counterclockwise Helical Interpolation with Center Position Designation (MCW, MCC)
	8.2.6 Clockwise/Counterclockwise Helical Interpolation with Radius Designation (MCW, MCC)
	8.2.7 Zero Point Return (ZRN)
	8.2.8 Linear Interpolation with Skip Function (SKP)
	8.2.9 Set Time Positioning (MVT)
	8.2.10 External Positioning (EXM)

	8.3 Axis Control Commands
	8.3.1 Current Position Set (POS)
	8.3.2 Move On Machine Coordinates (MVM)
	8.3.3 Program Current Position Update (PLD)
	8.3.4 In-Position Check (PFN)
	8.3.5 Set In-Position Range (INP)
	8.3.6 Coordinate Plane Setting (PLN)

	8.4 Program Control Commands
	8.4.1 Branching Commands (IF ELSE IEND)
	8.4.2 Repeat (WHILE WEND)
	8.4.3 Parallel Execution (PFORK, JOINTO, PJOINT)
	8.4.4 Selective Execution (SFORK, JOINTO, SJOINT)
	8.4.5 Motion Subprogram Call (MSEE)
	8.4.6 Sequence Subprogram Call (SSEE)
	8.4.7 User Function Call From Motion Program (UFC)
	8.4.8 User Function Call from Sequence Program (FUNC)
	8.4.9 Program End (END)
	8.4.10 Subprogram End (RET)
	8.4.11 Dwell Time (TIM)
	8.4.12 I/O Variable Wait (IOW)
	8.4.13 One Scan Wait (EOX)
	8.4.14 Single-block Signal Disabled (SNGD)/Single-block Signal Enabled (SNGE)

	8.5 Arithmetic Operations
	8.5.1 Substitute (=)
	8.5.2 Add (+)
	8.5.3 Subtract (-)
	8.5.4 Multiply (*)
	8.5.5 Divide (/)
	8.5.6 Remainder (MOD)

	8.6 Logic Operation
	8.6.1 OR (|)
	8.6.2 AND (&)
	8.6.3 XOR (^)
	8.6.4 NOT (!)

	8.7 Data Comparisons
	8.7.1 Data Comparison Commands (==, <>, >, <, >=, <=)

	8.8 Data Operations
	8.8.1 Bit Right Shift (SFR)
	8.8.2 Bit Left Shift (SFL)
	8.8.3 Block Move (BLK)
	8.8.4 Clear (CLR)
	8.8.5 ASCII Conversion 1 (ASCII)

	8.9 Basic Functions
	8.9.1 Sine (SIN)
	8.9.2 Cosine (COS)
	8.9.3 Tangent (TAN)
	8.9.4 Arc Sine (ASN)
	8.9.5 Arc Cosine (ACS)
	8.9.6 Arc Tangent (ATN)
	8.9.7 Square Root (SQT)
	8.9.8 BCD to Binary (BIN)
	8.9.9 Binary to BCD (BCD)
	8.9.10 Set Bit (S{ })
	8.9.11 Reset Bit (R{ })
	8.9.12 Rising Pulse (PON)
	8.9.13 Falling Pulse (NON)
	8.9.14 ON-Delay Timer (TON): Counting unit: 0.01 second
	8.9.15 OFF-Delay Timer (TOF): Counting unit: 0.01 second

	8.10 C-Language Control Commands
	8.10.1 C-Language Task Control (CTSK)
	8.10.2 C-Language Function Call (CFUNC)

	9 Engineering Tool MPE720
	9.1 Motion Editor
	9.1.1 Overview
	9.1.2 Names and Descriptions of Motion Editor Window Components

	9.2 Command Input Assistant Function
	9.2.1 Overview
	9.2.2 Motion Command Assist Dialog Box Details

	9.3 Program Execution Registration Function
	9.3.1 Overview
	9.3.2 Program Execution Registry Screen Dialog Box Details

	9.4 Debug Function
	9.4.1 Overview
	9.4.2 Motion Editor Window during Debugging

	9.5 Motion Task Manager
	9.5.1 Overview
	9.5.2 Motion Task Manager Window Details

	9.6 Drive Control Panel
	9.6.1 Overview
	9.6.2 Drive Control Panel Details

	9.7 Test Run Function
	9.7.1 Overview
	9.7.2 Test Run Window Details

	9.8 Axis Status and Alarm Monitor
	9.8.1 Overview
	9.8.2 Monitor Window Details

	10 Troubleshooting
	10.1 Troubleshooting
	10.1.1 Basic Flow of Troubleshooting

	10.2 Troubleshooting for Motion Programs
	10.2.1 Error Investigation Flow
	10.2.2 Problem Starting a Motion Program
	10.2.3 Confirming the Alarm Code
	10.2.4 Motion Program Alarm Codes

	10.3 Troubleshooting for Sequence Programs
	10.3.1 Error Investigation Flow
	10.3.2 Problem Starting a Sequence Program

	Appendices
	A Motion Language Commands
	A.1 Axis Setting Commands
	A.2 Axis Move Commands
	A.3 Control Commands
	A.4 Program Control Commands
	A.5 Arithmetic Operations
	A.6 Logical Operations
	A.7 Data Comparison
	A.8 Data Operations
	A.9 Basic Functions
	A.10 C-Language Control Commands

	B Sample Programs
	B.1 Programs for Controlling Motion Program Execution
	B.2 Parallel Processing
	B.3 Motion Program for Speed Control
	B.4 Simple Synchronized Operation Using a Virtual Axis
	B.5 Sequence Programs

	C Differences between MP900 Series and MP2000 Series Machine Controllers
	C.1 Motion Programs
	C.2 Sequence Programs
	C.3 Motion Programming Commands
	C.4 Group Definitions
	C.5 Debug Function
	C.6 Motion Program Alarms

	D Precautions
	D.1 General Precautions
	D.2 Precautions on Motion Parameter Settings

	Index
	Revision History
	Back Cover

