
YASKAWA

Machine Controller MP2000 Series USER'S MANUAL for Motion Programming

MANUAL NO. SIEP C880700 38D

Copyright © 2008 YASKAWA ELECTRIC CORPORATION

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permission of Yaskawa. No patent liability is assumed with respect to the use of the information contained herein. Moreover, because Yaskawa is constantly striving to improve its high-quality products, the information contained in this manual is subject to change without notice. Every precaution has been taken in the preparation of this manual. Nevertheless, Yaskawa assumes no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained in this publication.

About This Manual

- This manual provides information on motion commands for the MP2000 series Machine Controllers.
 - Motion program overview
 - Specifications
 - Program development flow
 - · Motion programs and sequence programs
 - Variables
 - Programming
 - Command reference
 - Engineering tool MPE720
 - Troubleshooting, etc.
- Read this manual carefully to ensure the proper use of the MP2000 series Machine Controller. Also, keep this manual in a safe place so that it can be referred to whenever necessary.

Using This Manual

Intended Audience

This manual is intended for the following users.

- Those responsible for designing the MP2000 series Machine Controller system
- Those responsible for writing MP2000 series Machine Controller motion programs and sequence programs
- Engineering Tool MPE720 Version Number

In this manual, the operation of MPE720 is described using screenshots of MPE720 version 6.

For this reason, the screenshots and some descriptions may differ from those for MPE720 version 5.

Description of Abbreviation

In this manual, the following abbreviation is used.

 MP2000: Machine controller model including MP2100, MP2100M, MP2200, MP2300, MP2300S, MP2310, MP2400, MP2500, MP2500M, MP2500D, and MP2500MD

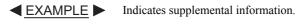
Manuals for MP2000 Series

The user's manuals are prepared by classifying MP2000 series Machine Controller models into MP2100, MP2100M, MP2200, MP2300, MP2300S, MP2310, MP2400, MP2500, MP2500M, MP2500D, and MP2500MD.

Refer to Related Manuals on the next page as required.

Related Manuals

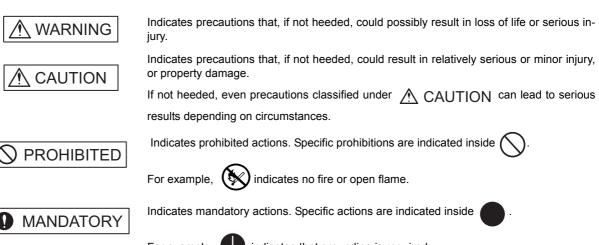
- The following table lists the related manuals. Refer to these manuals as required.
- Before using, be sure you understand the product conditions, including specifications and usage restrictions.


Manual Name	Manual Number	Contents
Machine Controller MP2100/MP2100M User's Manual	SIEPC88070001	Describes the functions, specifications, setup procedures, and operating methods of the MP2100/MP2100M.
Machine Controller MP2200 User's Manual	SIEPC88070014	Describes the functions, specifications, setup procedures, and operating methods of the MP2200.
Machine Controller MP2300 Basic Module User's Manual	SIEPC88070003	Describes the functions, specifications, setup procedures, and operating methods of the MP2300.
Machine Controller MP2300S Basic Module User's Manual	SIEPC88073200	Describes the functions, specifications, setup procedures, and operating methods of the MP2300S.
Machine Controller MP2310 Basic Module User's Manual	SIEPC88073201	Describes the functions, specifications, setup procedures, and operating methods of the MP2310.
Machine Controller MP2400 User's Manual	SIJPC88074200	Describes the functions, specifications, setup procedures, and operating methods of the MP2400.
Machine Controller MP2500/MP2500M/MP2500D/ MP2500MD User's Manual	SIEPC88075200	Describes the functions, specifications, setup procedures, and operating methods of the MP2500/MP2500M/MP2500D/MP2500MD.
Machine Controller MP2000 series SVB/SVB-01 Motion Module User's Manual	SIEPC88070033	Describes the functions, specifications, and application methods of the MP2000-series Motion Module that is built into the SVB and SVB-01 Module.
Machine Controller MP2000 Series Motion Module SVA-01 User's Manual	SIEPC88070032	Describes the functions, specifications, and operating methods of MP2000-series Motion Module SVA-01.
Machine Controller MP2000 Series Pulse Output Motion Module PO-01 User's Manual	SIEPC88070028	Describes the functions, specifications, and operating methods of MP2000-series Motion Module PO-01.
Machine Controller MP2000 Series Communication Module User's Manual	SIEPC88070004	Describes the functions, specifications, and application methods of the MP2000 series Communication Modules.
Engineering Tool for Machine Controller MP2000 Series MPE720 Version 6 User's Manual	SIEPC88070030	Describes the installation and operation of the programming software MPE720 for MP2000 series.
Machine Controller MP900/MP2000 Series MPE720 Software for Programming Device User's Manual	SIEPC88070005	Describes the installation and operation of the programming software MPE720 for MP900/MP2000 series.
Machine Controller MP900/MP2000 Series User's Manual, Ladder Programming	SIEZ-C887-1.2	Describes the processing instructions used in MP900/MP2000 series Machine Controller ladder programs.
Machine Controller MP900/MP2000 Series New Ladder Editor User's Manual Programming Manual	SIEZ-C887-13.1	Describes the programming instructions of the New Ladder Editor, which assists MP900/MP2000-series design and mainte- nance.
Machine Controller MP900/MP2000 Series New Ladder Editor User's Manual Operation	SIEZ-C887-13.2	Describes the operating methods of the New Ladder Editor, which assists MP900/ MP2000-series design and maintenance.

Visual Aids

The following aids are used to indicate certain types of information for easier reference.

Indicates important information that should be memorized, including precautions such as alarm displays to avoid damaging the devices.

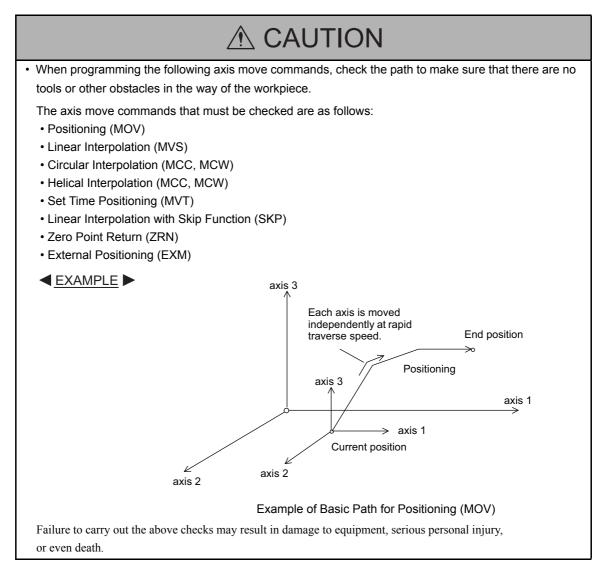

Indicates application examples.

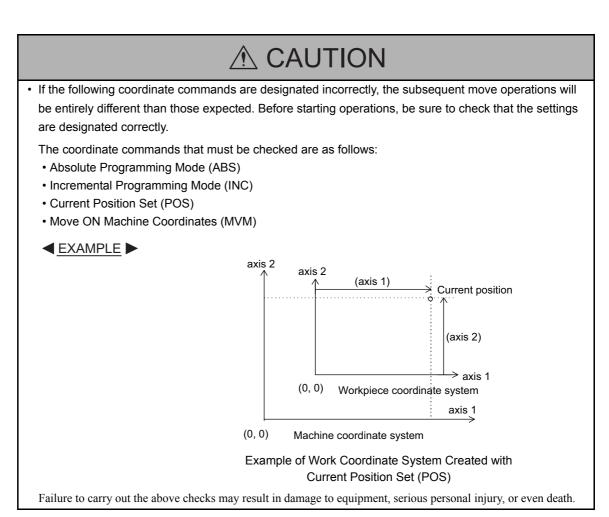
TERMS

Indicates definitions of difficult terms or terms that have not been previously explained in this manual.

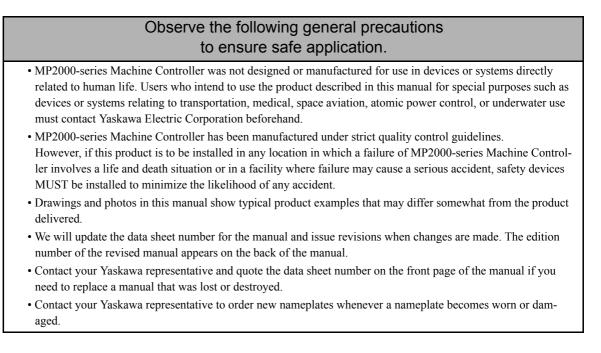
Safety Information

The following conventions are used to indicate precautions in this manual. Information marked as shown below is important for the safety of the user. Always read this information and heed the precautions that are provided. The conventions are as follows:




For example, 🛃 indicates that grounding is required.

Safety Precautions


This section describes important precautions that apply to motion programming. Before programming, always read this manual and all other attached documents to ensure correct programming. Before using the equipment, familiarize yourself with equipment details, safety information, and all other precautions.

Application Precautions

General Precautions

Warranty

(1) Details of Warranty

Warranty Period

The warranty period for a product that was purchased (hereinafter called "delivered product") is one year from the time of delivery to the location specified by the customer or 18 months from the time of shipment from the Yaskawa factory, whichever is sooner.

Warranty Scope

Yaskawa shall replace or repair a defective product free of charge if a defect attributable to Yaskawa occurs during the warranty period above. This warranty does not cover defects caused by the delivered product reaching the end of its service life and replacement of parts that require replacement or that have a limited service life.

This warranty does not cover failures that result from any of the following causes.

- 1. Improper handling, abuse, or use in unsuitable conditions or in environments not described in product catalogs or manuals, or in any separately agreed-upon specifications
- 2. Causes not attributable to the delivered product itself
- 3. Modifications or repairs not performed by Yaskawa
- 4. Abuse of the delivered product in a manner in which it was not originally intended
- 5. Causes that were not foreseeable with the scientific and technological understanding at the time of shipment from Yaskawa
- 6. Events for which Yaskawa is not responsible, such as natural or human-made disasters

(2) Limitations of Liability

- 1. Yaskawa shall in no event be responsible for any damage or loss of opportunity to the customer that arises due to failure of the delivered product.
- 2. Yaskawa shall not be responsible for any programs (including parameter settings) or the results of program execution of the programs provided by the user or by a third party for use with programmable Yaskawa products.
- 3. The information described in product catalogs or manuals is provided for the purpose of the customer purchasing the appropriate product for the intended application. The use thereof does not guarantee that there are no infringements of intellectual property rights or other proprietary rights of Yaskawa or third parties, nor does it construe a license.
- 4. Yaskawa shall not be responsible for any damage arising from infringements of intellectual property rights or other proprietary rights of third parties as a result of using the information described in catalogs or manuals.

(3) Suitability for Use

- 1. It is the customer's responsibility to confirm conformity with any standards, codes, or regulations that apply if the Yaskawa product is used in combination with any other products.
- 2. The customer must confirm that the Yaskawa product is suitable for the systems, machines, and equipment used by the customer.
- 3. Consult with Yaskawa to determine whether use in the following applications is acceptable. If use in the application is acceptable, use the product with extra allowance in ratings and specifications, and provide safety measures to minimize hazards in the event of failure.
 - Outdoor use, use involving potential chemical contamination or electrical interference, or use in conditions or environments not described in product catalogs or manuals
 - Nuclear energy control systems, combustion systems, railroad systems, aviation systems, vehicle systems, medical equipment, amusement machines, and installations subject to separate industry or government regulations
 - Systems, machines, and equipment that may present a risk to life or property
 - Systems that require a high degree of reliability, such as systems that supply gas, water, or electricity, or systems that operate continuously 24 hours a day
 - Other systems that require a similar high degree of safety
- 4. Never use the product for an application involving serious risk to life or property without first ensuring that the system is designed to secure the required level of safety with risk warnings and redundancy, and that the Yaskawa product is properly rated and installed.
- 5. The circuit examples and other application examples described in product catalogs and manuals are for reference. Check the functionality and safety of the actual devices and equipment to be used before using the product.
- 6. Read and understand all use prohibitions and precautions, and operate the Yaskawa product correctly to prevent accidental harm to third parties.

(4) Specifications Change

The names, specifications, appearance, and accessories of products in product catalogs and manuals may be changed at any time based on improvements and other reasons. The next editions of the revised catalogs or manuals will be published with updated code numbers. Consult with your Yaskawa representative to confirm the actual specifications before purchasing a product.

Contents

	About This Manual iii
	Using This Manual iii
	Manuals for MP2000 Series iii
	Related Manuals iv
	Visual Aidsv
	Safety Informationv
	Safety Precautions · · · · · · · · · · · · · ·
	warranty viii
1	Overview
	1.1 What is a Motion Program? 1-2
	1.2 Motion Program Features 1-3
	1.2.1 Execution Method1-3
	1.2.2 Motion Control in Full Synchronization with Sequence Control
	1.2.3 Easy to Realize High-level Motion Control
	1.2.4 Easy-to-Understand Motion Language
	1.2.5 Arithmetic Operations1-4
	1.2.6 Data Transfer from/to Ladder Program
	1.2.7 Memory Usage Reduced by Use of Subprograms
	1.2.8 Parallel Program Execution 1-6
	1.2.9 Program Online Editing 1-6
	1.2.10 Enriched Easy Programming Functions (MPE720 Ver.6.04 or later)
	1.3 Motion Program Execution Sequence1-8
	1.4 Motion Program Execution Registration 1-9
	1.5 Motion Program Execution Timing 1-10
	1.6 Grouping 1-11
	1.7 Application Examples 1-12
	1.7.1 Example 1: Handling System 1-12
	1.7.2 Example 2: Mechanical Parts Inserting Machine
	1.7.3 Example 3: Panel Processing Machine1-13
	1.7.4 Example 4: Metal Sheet Bending Equipment
	1.8 What is a Sequence Program? 1-14
	1.9 Sequence Program Features 1-15
	1.9.1 Execution Method1-15
	1.9.2 Programming Language Commonly Used in Motion Programs 1-15
	1.9.3 Data Transfer from/to Motion Program1-15
	1.9.4 Memory Usage Reduced by Use of Subprograms
	1.9.5 Easy Programming Functions (MPE720 Ver.6.04 or later)1-16

2 Specifications

2.1 MP2000 Series Machine Controller Specifications	2-2
2.1.1 Applicable Machine Controller Models	
2.1.2 Applicable Motion Modules	
2.1.3 List of Machine Controller Specifications	2-3
2.2 Engineering Tool MPE720 Specifications	2-5
2.2.1 Applicable Version Numbers of the Engineering Tool MPE720	2-5
2.2.2 List of Engineering Tool MPE720 Specifications	2-5
2.3 List of Motion Language Commands	2-6
3 Program Development Flow	
3.1 Program Development Flow	3-2
3.2 Program Development Procedure	3-3
3.2.1 Hardware Configuration	
3.2.2 Installing MPE720 Version 6	
3.2.3 Communication Settings	
3.2.4 System Setup	3-3
3.2.5 Creating Project Files	
3.2.6 Group Definitions	
3.2.7 Creating a Motion Program	
3.2.8 Registering the Program Execution	
3.2.9 Transferring the Motion Program	
3.2.10 Debugging the Program	
3.2.12 Executing the Programs	
	011
4 Motion Programs	
4.1 Types of Motion Programs	4-2
4.2 Motion Programs For Each Axis Group	4-2
4.3 Running a Motion Program	4-3
4.3.1 How to Run a Motion Program	
4.3.2 Registering the Program Execution	4-5
4.3.3 Work Registers	4-6
4.4 Advanced Programming	4-11
4.4.1 Indirect Designation of a Program Number Using a Register	
4.4.2 Controlling the Motion Program Directly from an External Device	4-12
4.4.3 Monitor the Motion Program Execution Information Using S Register	4-13
5 Sequence Programs	
5.1 Sequence Program Types	5-2
5.2 How to Run a Sequence Program	5-3
5.2.1 How to Run a Sequence Program	
5.2.2 Registering Program Execution	5-4

5.2.3 Work Register ----- 5-5

6 Variables (Registers)

	6.1 Overview	6-2
	6.1.1 Variable Types	
	6.1.2 Global Variables and Local Variables	
	6.2 Using Variables	6-7
	6.2.1 System Variables (S Registers)	
	6.2.2 Data Variables (M Registers)	
	6.2.3 Input Variables (I Registers)	
	6.2.4 Output Variables (O Registers)	
	6.2.5 C Variables (C Registers)	
	6.2.6 D Variables (D Registers)	
	6.3 How to Use Subscripts i, j	6-15
7	Programming	
	7.1 Motion Program Format	7-2
	7.1.1 Motion Program Structure	7-2
	7.1.2 Block Format	7-2
	7.1.3 Using Constants and Variables	7-7
	7.2 Motion Module Parameters	7-9
	7.2.1 Axis Type Selection	
	7.2.2 Reference Unit	7-9
	7.2.3 Electronic Gear	7-10
	7.2.4 Speed Reference	7-12
	7.2.5 Acceleration/Deceleration Setting	7-12
	7.3 Group Definition	7-13
	7.4 Priority Levels of Operations	7-15
	7.5 Commands and Execution Scans	7-17
	7.5.1 Command Types	7-17
	7.5.2 List of Command Types	7-18
	7.6 Sequence Program Format	7-19
8	Command Reference	
	8.1 Axis Setting Commands	8-3
	8.1.1 Absolute Mode (ABS)	8-3
	8.1.2 Incremental Mode (INC)	
	8.1.3 Acceleration Time Change (ACC)	
	8.1.4 Deceleration Time Change (DCC)	
	8.1.5 S-curve Time Constant Change (SCC)	
	8.1.6 Set Velocity (VEL)	
	8.1.7 Maximum Interpolation Feed Speed Setting (FMX)	
	8.1.8 Interpolation Feed Speed Ratio Setting (IFP)	
	8.1.9 Interpolation Acceleration Time Change (IAC)	8-40

8.1.10 Interpolation Deceleration Time Change (IDC)------8-438.1.11 Set Interpolation Acceleration/Deceleration Mode (ACCMODE) ------8-46

8.2 Axis Move Commands	8-60
8.2.1 Positioning (MOV)	8-60
8.2.2 Linear Interpolation (MVS)	8-64
8.2.3 Clockwise/Counterclockwise Circular Interpolation with Center Position Designation	
(MCW, MCC)	8-69
8.2.4 Clockwise/Counterclockwise Circular Interpolation with Radius Designation (MCW, MCC 8.2.5 Clockwise/Counterclockwise Helical Interpolation with Center Position Designation	-
(MCW, MCC)	
8.2.6 Clockwise/Counterclockwise Helical Interpolation with Radius Designation (MCW, MCC	-
8.2.7 Zero Point Return (ZRN)	
8.2.8 Linear Interpolation with Skip Function (SKP)	
8.2.9 Set Time Positioning (MVT)	
8.2.10 External Positioning (EXM)	
8.3 Axis Control Commands	
8.3.1 Current Position Set (POS)	
8.3.2 Move On Machine Coordinates (MVM)	
8.3.3 Program Current Position Update (PLD)	
8.3.4 In-Position Check (PFN)	
8.3.5 Set In-Position Range (INP)	
8.3.6 Coordinate Plane Setting (PLN)	8-100
8.4 Program Control Commands	- 8-101
8.4.1 Branching Commands (IF ELSE IEND)	8-101
8.4.2 Repeat (WHILE WEND)	8-103
8.4.3 Parallel Execution (PFORK, JOINTO, PJOINT)	8-106
8.4.4 Selective Execution (SFORK, JOINTO, SJOINT)	8-109
8.4.5 Motion Subprogram Call (MSEE)	8-113
8.4.6 Sequence Subprogram Call (SSEE)	8-114
8.4.7 User Function Call From Motion Program (UFC)	8-115
8.4.8 User Function Call from Sequence Program (FUNC)	8-123
8.4.9 Program End (END)	8-124
8.4.10 Subprogram End (RET)	8-125
8.4.11 Dwell Time (TIM)	8-126
8.4.12 I/O Variable Wait (IOW)	8-127
8.4.13 One Scan Wait (EOX)	8-129
8.4.14 Single-block Signal Disabled (SNGD)/Single-block Signal Enabled (SNGE)	8-130
8.5 Arithmetic Operations	- 8-131
8.5.1 Substitute (=)	8-131
8.5.2 Add (+)	8-132
8.5.3 Subtract (-)	
8.5.4 Multiply (*)	8-134
8.5.5 Divide (/)	8-135
8.5.6 Remainder (MOD)	8-136

8.6 Logic Operation	8-137
8.6.1 OR ()	8-137
8.6.2 AND (&)	8-139
8.6.3 XOR (^)	8-140
8.6.4 NOT (!)	8-141
8.7 Data Comparisons	8-142
8.7.1 Data Comparison Commands (==, <>, >, <, >=, <=)	
8.8 Data Operations	
8.8.1 Bit Right Shift (SFR)	
8.8.2 Bit Left Shift (SFL)	
8.8.3 Block Move (BLK)	
8.8.4 Clear (CLR)	
8.8.5 ASCII Conversion 1 (ASCII)	
8.9 Basic Functions	
8.9.1 Sine (SIN)	
8.9.2 Cosine (COS)	
8.9.3 Tangent (TAN)	
8.9.4 Arc Sine (ASN)	
8.9.5 Arc Cosine (ACS)	
8.9.6 Arc Tangent (ATN)	
8.9.7 Square Root (SQT)	
8.9.8 BCD to Binary (BIN)	
8.9.9 Binary to BCD (BCD)	
8.9.10 Set Bit (S{ })	
8.9.11 Reset Bit (R{ })	
8.9.12 Rising Pulse (PON)	
8.9.13 Falling Pulse (NON)	
8.9.14 ON-Delay Timer (TON): Counting unit: 0.01 second	
8.9.15 OFF-Delay Timer (TOF): Counting unit: 0.01 second	
8.10 C-Language Control Commands	8-172
8.10.1 C-Language Task Control (CTSK)	
8.10.2 C-Language Function Call (CFUNC)	
Engineering Tool MPE720	
9.1 Motion Editor	9-2
9.1.1 Overview	9-2
9.1.2 Names and Descriptions of Motion Editor Window Components	
9.2 Command Input Assistant Function	9-6
9.2.1 Overview	
9.2.2 Motion Command Assist Dialog Box Details	
9.3 Program Execution Registration Function	9-12
9.3.1 Overview	
9.3.2 Program Execution Registry Screen Dialog Box Details	
o o , , , , , , , , , ,	• • •

9

	9.4 Debug Function	9-15
	9.4.1 Overview	9-15
	9.4.2 Motion Editor Window during Debugging	9-16
	9.5 Motion Task Manager	9-22
	9.5.1 Overview	9-22
	9.5.2 Motion Task Manager Window Details	9-23
	9.6 Drive Control Panel	9-24
	9.6.1 Overview	9-24
	9.6.2 Drive Control Panel Details	9-26
	9.7 Test Run Function	9-28
	9.7.1 Overview	9-28
	9.7.2 Test Run Window Details	9-29
	9.8 Axis Status and Alarm Monitor	9-31
	9.8.1 Overview	9-31
	9.8.2 Monitor Window Details	9-33
10	Troubleshooting	
	10.1 Troubleshooting	10-2
	10.1.1 Basic Flow of Troubleshooting	10-2
	10.2 Troubleshooting for Motion Programs	10-3
	10.2.1 Error Investigation Flow	
	10.2.2 Problem Starting a Motion Program	10-4
	10.2.3 Confirming the Alarm Code	10-9
	10.2.4 Motion Program Alarm Codes	10-15
	10.3 Troubleshooting for Sequence Programs	10-17
	10.3.1 Error Investigation Flow	10-17
	10.3.2 Problem Starting a Sequence Program	10-18
٨٠٠٠	aandiaaa	

Appendices

	A-2
A.1 Axis Setting Commands	
A.2 Axis Move Commands	A-3
A.3 Control Commands	A-5
A.4 Program Control Commands	A-6
A.5 Arithmetic Operations	A-8
A.6 Logical Operations	A-8
A.7 Data Comparison	A-9
A.8 Data Operations	A-9
A.9 Basic Functions	A-10
A.10 C-Language Control Commands	A-11

В	Sample Programs	- A-12
	B.1 Programs for Controlling Motion Program Execution	A-13
	B.2 Parallel Processing	A-15
	B.3 Motion Program for Speed Control	A-16
	B.4 Simple Synchronized Operation Using a Virtual Axis	A-17
	B.5 Sequence Programs	A-19
С	Differences between MP900 Series and MP2000 Series Machine Controllers -	- A-21
	C.1 Motion Programs	A-21
	C.2 Sequence Programs	A-21
	C.3 Motion Programming Commands	A-22
	C.4 Group Definitions	A-22
	C.5 Debug Function	A-23
	C.6 Motion Program Alarms	A-23
D	Precautions	- A-24
	D.1 General Precautions	A-24
	D.2 Precautions on Motion Parameter Settings	A-25

Index

Revision History

1

Overview

This chapter introduces motion programs and describes their features for those who are unfamiliar with them.

1.1 What is a Motion Program?	1-2
1.2 Motion Program Features 1.2.1 Execution Method 1.2.2 Motion Control in Full Synchronization with Sequence Control 1.2.3 Easy to Realize High-level Motion Control 1.2.4 Easy-to-Understand Motion Language 1.2.5 Arithmetic Operations 1.2.6 Data Transfer from/to Ladder Program 1.2.7 Memory Usage Reduced by Use of Subprograms 1.2.8 Parallel Program Execution 1.2.9 Program Online Editing 1.2.10 Enriched Easy Programming Functions (MPE720 Ver.6.04 or later)	1-3 1-4 1-4 1-4 1-5 1-6 1-6
1.3 Motion Program Execution Sequence	1-8
1.4 Motion Program Execution Registration	1-9
1.5 Motion Program Execution Timing	1-10
1.6 Grouping	1-11
1.7 Application Examples 1.7.1 Example 1: Handling System 1.7.2 Example 2: Mechanical Parts Inserting Machine 1.7.3 Example 3: Panel Processing Machine 1.7.4 Example 4: Metal Sheet Bending Equipment	1-12 1-12 1-13
1.8 What is a Sequence Program?	1-14
1.9 Sequence Program Features 1.9.1 Execution Method 1.9.2 Programming Language Commonly Used in Motion Programs 1.9.3 Data Transfer from/to Motion Program 1.9.4 Memory Usage Reduced by Use of Subprograms 1.9.5 Easy Programming Functions (MPE720 Ver.6.04 or later)	1-15 1-15 1-15 1-16

1

1.1 What is a Motion Program?

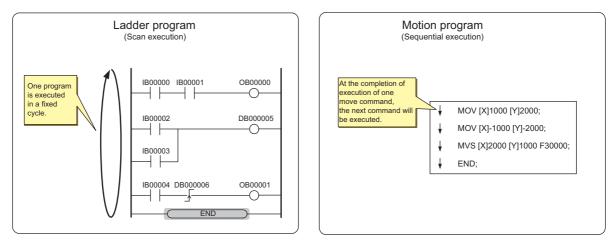
The motion program is a program written in motion language, Yaskawa's unique textual language. A motion program can be executed either by coding an MSEE command in a ladder program or by registering the motion program in the program execution registry screen dialog box for the M-EXECUTOR Module.

Apart from ladder programs, up to 256 motion programs can be created. An example of a motion program is shown below.

Engineering Manager -	Motion Editor MP2300 MP2300 Offline Local[MPM001]]
	·····································
PT#:- CPU#:-	
Group1	│ D) D) C)
00001 00002 00000 00003 00001 00004 00002 00005 00003 00006 00004 00007 00005 00008 00006 00009 00007 00010 00008 00011 00009 00012 00010 00011 00012	"MPM001"; * OW803C=3; "AXIS X ZERO RETURN MODE [3: C PHASE]" OW80BC=3; "AXIS Y ZERO RETURN MODE [3: C PHASE]" VEL [X]1000 [Y]1000; "SPEED FOR POSING" ACC [X]100 [Y]100; "ACCELERATION TIME" DCC[X]100 [Y]100; "DECELERATION TIME" 0L803E=100; "AXIS X APPROACH SPEED" 0L8040=50; "AXIS X CREEP SPEED" 0L8042=10000; "AXIS Y ZERO RETURN TRAVEL DISTANCE" 0L80BE=100; "AXIS Y APPROACH SPEED" 0L80BE=100; "AXIS Y ZERO RETURN TRAVEL DISTANCE" 0L802=10000; "AXIS Y ZERO RETURN TRAVEL DISTANCE" ZRN [X]00 [Y]00; "COMMAND FOR ZERO RETURN"
Line Block	
Number of CP steps:13	
1 DBG 2 ABT 3	4 IN 5 OVR 6 SP 7 BP 8 GO 9 10BRK 11RGL 12
For Help, press F1	CAP NUM

The features of motion programs are described starting from the next page.

Note: The M-EXECUTOR Module can not be used with the following modules and Machine Controllers: MP2300, CPU-01, CPU-02


1.2 Motion Program Features

1.2.1 Execution Method

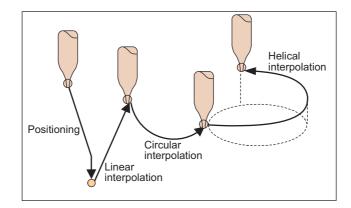
A motion program employs an execution method that differs from the ladder program.


With a ladder program, processing from the program start to an END command is completed within one scan. With a motion program, the processing requested by one command normally requires more than one scan. Also, the commands are executed sequentially, in the order they are coded.

In this manual, the execution method of ladder program is referred to as Scan Execution, and that of a motion program as Sequential Execution.

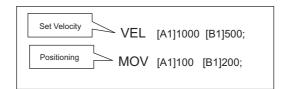
1.2.2 Motion Control in Full Synchronization with Sequence Control

The process written in a motion program is executed in full synchronization with high-speed scans of the MP2000-series Machine Controller. The axis movement will start within one scan after the start request from the ladder program, without any time lag to start the motion program.



1

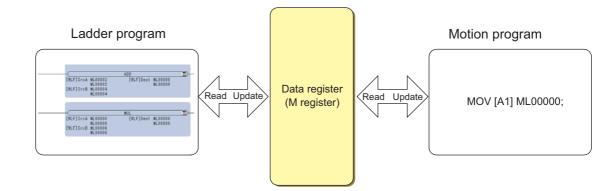
1.2.3 Easy to Realize High-level Motion Control


1.2.3 Easy to Realize High-level Motion Control

In addition to basic motion control, motion control that involves complicated movements can be easily realized by using motion programs.

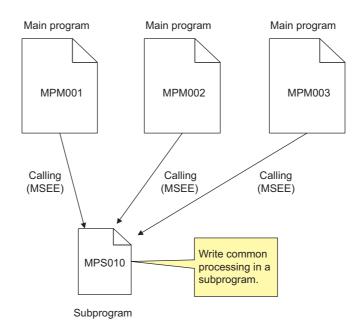
1.2.4 Easy-to-Understand Motion Language

A motion program employs intuitive motion language commands such as VEL to set a velocity and MOV for positioning.

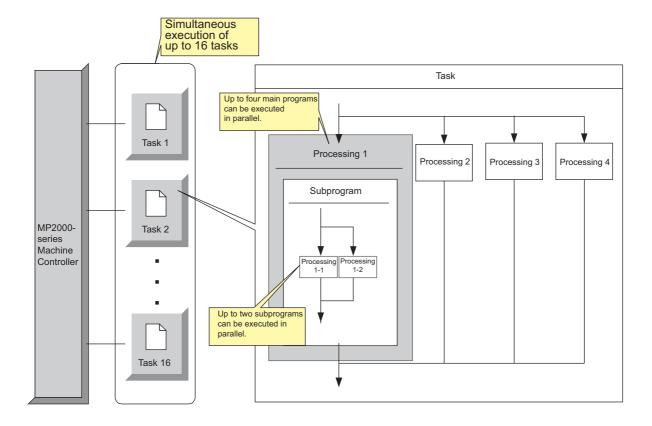

1.2.5 Arithmetic Operations

The motion language includes commands for arithmetic operations and logical operations. These commands allow you to include various calculations, such as calculation of target position in a motion program.

```
DL00000 = DL00002 + DW00004;
DL00000 = DW00002 * DL00004;
MW00000 = MW00000 & 00FFH;
MF00000 = SIN(30.0);
```

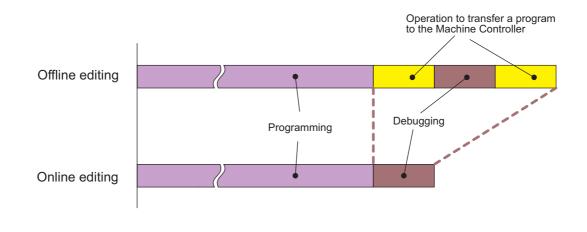

1.2.6 Data Transfer from/to Ladder Program

Data can be transferred between a ladder program and motion program. Data registers (M registers) are used to transfer the data. In this way, a value updated in a ladder program can be used in a motion program, and vice versa


1.2.7 Memory Usage Reduced by Use of Subprograms

Subroutines (subprograms) can be created within a motion program. The number of program steps can be minimized by creating a subprogram that includes a set of commands to perform a repeated or regular task, thus reducing memory usage.

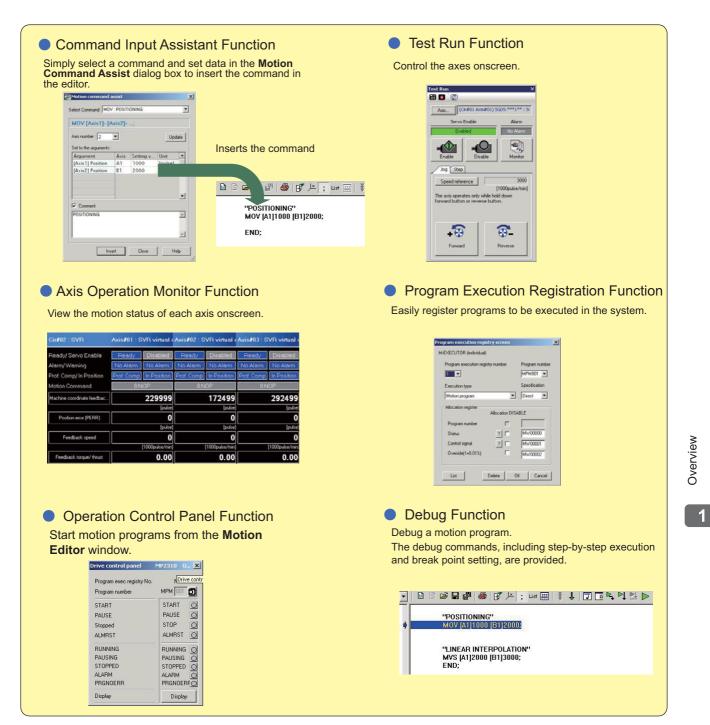
1.2.8 Parallel Program Execution


With a single MP2000-series Machine Controller, up to 16 tasks can be simultaneously executed using motion programs. With one motion program, up to four main programs can be simultaneously executed. Additionally, up to two subprograms can be simultaneously executed by calling subprograms from the main program. Multiple different movements can be simultaneously controlled by using such the parallel program execution function.

1.2.9 Program Online Editing

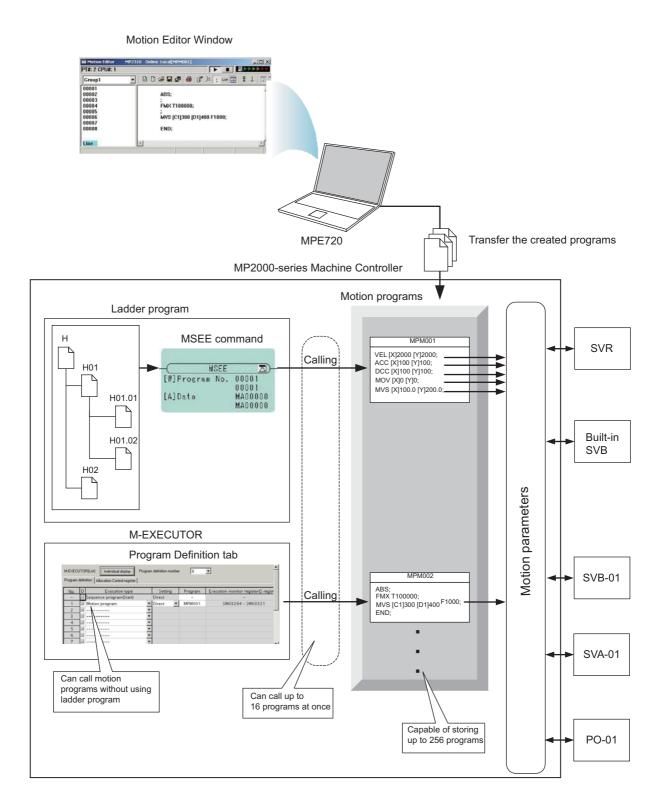
Motion programs can be edited online in the same way as ladder programs.

Online editing refers to editing programs with the programming device logged on to the Machine Controller. In online editing mode, the operation to save the edited program automatically transfers the saved program to the Machine Controller. Thus, an operation to transfer to the Machine Controller is not required and program development efficiency is improved.



Online editing is disabled while a motion program is running.

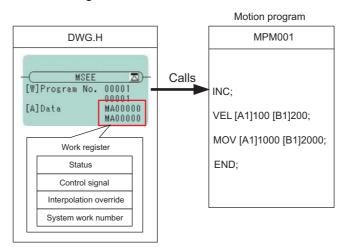
1.2.10 Enriched Easy Programming Functions (MPE720 Ver.6.04 or later)


The engineering tool MPE720 Ver.6 for MP2000-series Machine Controllers is provided with the following easy programming functions.

1.3 Motion Program Execution Sequence

The motion programs created on the MPE720 **Motion Editor** window are transferred to the MP2000-series Machine Controller. The transferred motion programs can be called by MSEE commands coded in the ladder program, or from the execution registry screen dialog box of the M-EXECUTOR Module. Motion commands are sent to the motion module via the motion parameters to move axes.

The following diagram illustrates how motion programs created using the MPE720 are executed.

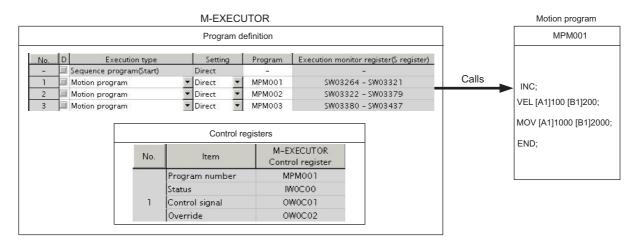


1.4 Motion Program Execution Registration

Execution of motion programs can be registered in two ways.

Calling a Motion Program from the Ladder Program

Code an MSEE command in an H drawing to call the motion program to run. An MSEE work register is used to start/stop the called motion program. Motion programs can be called from any H drawing: parent drawing, child drawing, or grandchild drawing.

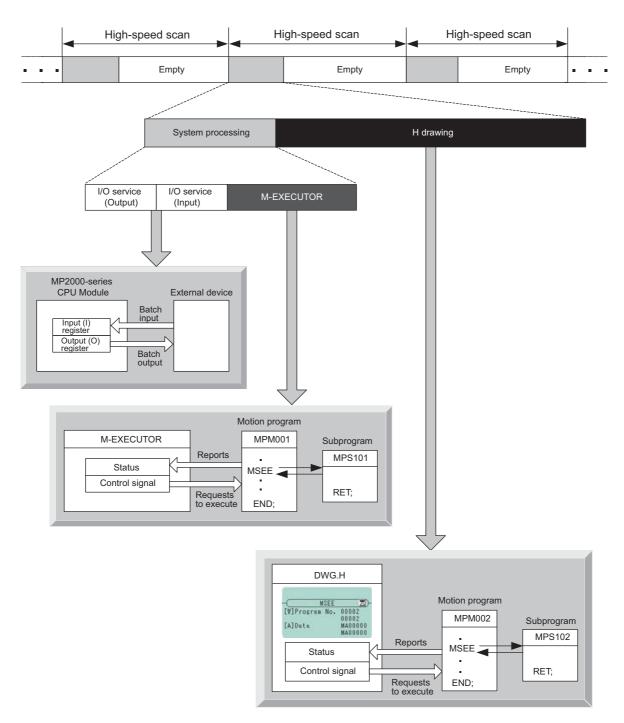


INFO

In this manual, the high-speed processing drawing of a ladder program is referred to as H drawing.

Registering Motion Programs in M-EXECUTOR

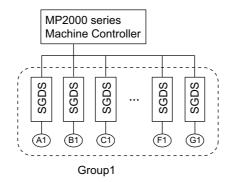
Register motion programs in the M-EXECUTOR program execution definition. A control register (I/O register) is used to start or stop the registered motion program.

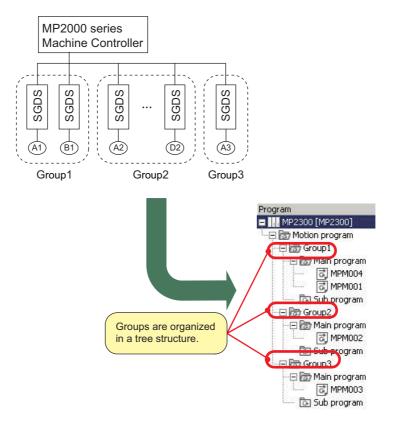


M-EXECUTOR is a software module to execute motion programs and sequence programs.

1.5 Motion Program Execution Timing

Motion programs are executed in full synchronization with MP2000 high-speed scans. In every high-speed scan cycle, I/O services are performed first, and the motion program registered in M-EXECUTOR is executed. Next, the motion program initiated in the MSEE command coded in the DWG.H is executed at the timing of the MSEE command execution.


The following diagram illustrates motion program execution timing.

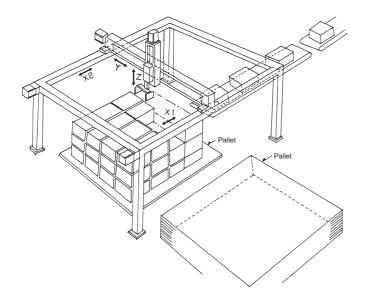

1.6 Grouping

The axes involved in related operations are organized into individual groups. Motion programs can be created for each group. This allows one MP2000-series Machine Controller to independently control multiple machines using group operation. Group operation can be single group operation or multiple group operation. Definitions for axes to be grouped together are made under *Group Definitions*.

Single Group Operation

Multiple Group Operation

1.7.1 Example 1: Handling System

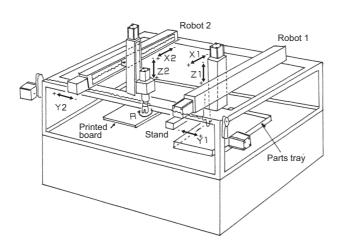

1.7 Application Examples

Motion programs can be used for operations of various systems. Some application examples are shown below.

1.7.1 Example 1: Handling System

Outline

- To stack a specified number of cardboard boxes on a pallet and transport them to the next process
- The system operation includes three axes motion control for the palletizing process and an automatic pallet feeding sequence.

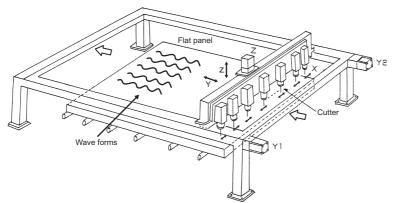

Control points

- Moves X1 and X2 axes in synchronization using a virtual axis.
- Realizes smooth movements by using interpolation.
- Palletizes by calculating the position data with the motion program according to predefined conditions (box dimensions, the number of boxes in a horizontal row, the number of boxes in a vertical row, and the number of boxes in a stack.

1.7.2 Example 2: Mechanical Parts Inserting Machine

Outline

- To insert parts, such as connectors, in a printed board.
- The handling robot takes out the parts and brings them to the stand. The inserting robot inserts the parts in the specified position and angle on the board.

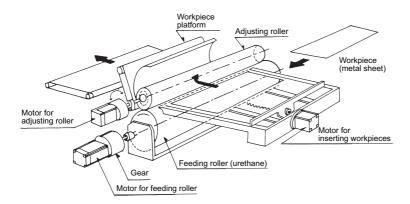

Control points

- Two groups of axes are organized, and programs are created for each group, so that each robot is independently controlled.
- The tact time can be shortened by using two-axes or three-axes linear interpolation.

1.7.3 Example 3: Panel Processing Machine

Outline

- To draw waveforms on a flat panel made of construction material.
- More than ten cutters are mounted in series on the X axis, and the width of the pattern can be easily changed.


Control points

- Moves X and Y axes in circular interpolation to draw waveforms.
- Moves Y1 and Y2 axes in synchronization using a vertical axis.

1.7.4 Example 4: Metal Sheet Bending Equipment

Outline

- To bend a metal sheet
- A metal sheet can be bent into various shapes by changing the adjusting axis while feeding a sheet using the rolling axis.

Control points

- Controls two axes, a linear axis and rotational axis, in linear interpolation.
- Switches the motion program to be called according to the process.

1.8 What is a Sequence Program?

The sequence program is a scan execution type program written in the language commonly used for the motion program.

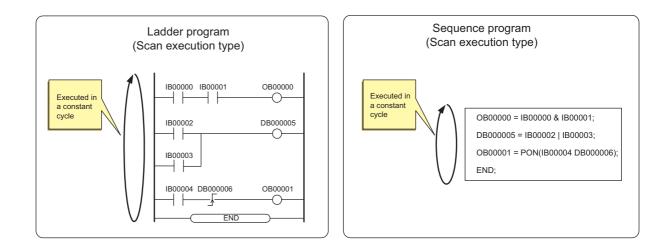
An application to cyclically check a status, such as an interlock, can be created by using a sequence program. A sequence program can be executed by calling from the program execution registry screen dialog box of M-EXECUTOR Module.

Note: The M-EXECUTOR Module can not be used with the following modules and Machine Controllers: MP2300, CPU-01, CPU-02

A total of up to 256 sequence and motion programs can be created. An example of a sequence program is shown below.

Motion Editor	MP2310 Online Local[SPM002]	x
PT#: 2 CPU#: 1		
		h (
00001 00002 00003 00000 00004 00002 00005 00001 00006 00002 00007 00008 00009 00003 00010 00014 00011 00004 00012 00004 00013 00014 00015 00006 00016 00007 00017 00007	"SPM001"; ; IF SB000001==1; "1 SCAN ON AFTER H START" "CLEAR"; CLR DW00 W32; IEND; "ON PULSE; IF DB000002==1; "[A1 GROUP1] SERVO ON"; OB80000=1; "[B1 GROUP1] SERVO ON";; OB80800=1; IEND; END;	
Line Block	4	<u> </u>
		11.

The features of sequence programs are described, starting from the next page.

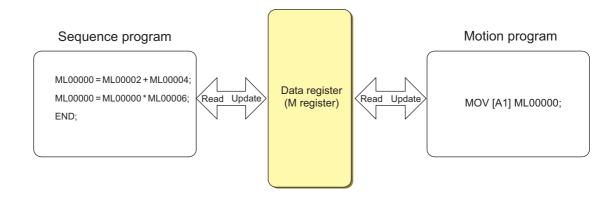

1.9 Sequence Program Features

1.9.1 Execution Method

A sequence program employs the same execution method as the ladder program.

A sequence program is a cyclically executed scan execution type program. Processing from the program start to an END command is completed within one scan.

Sequence programs can be used by registering them in the program execution registry screen dialog box of M-EXECUTOR Module.

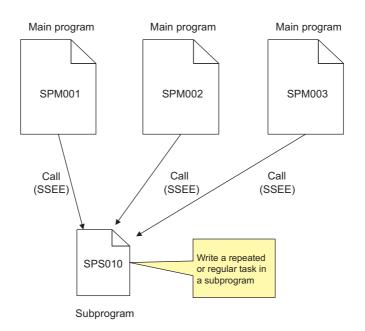


1.9.2 Programming Language Commonly Used in Motion Programs

A sequence program employs the same motion language as a motion program. The motion language commands that can be used in sequence programs, however, are limited to sequence commands, such as math commands. Commands for motion control, such as axis move commands, cannot be used. The use of sequence programs allows you to create an application for sequence control without using a ladder program.

1.9.3 Data Transfer from/to Motion Program

Data can be transferred between a sequence program and a motion program. Data registers (M registers) are used to transfer the data. In this way, data updated in the sequence program can be used in the motion program, and vice versa.



1.9.4 Memory Usage Reduced by Use of Subprograms

1.9.4 Memory Usage Reduced by Use of Subprograms

Subroutines (subprograms) can be created within a sequence program.

The number of program steps can be minimized by creating a subprogram that includes a set of commands to perform a repeated or regular task, thus reducing memory usage.

1.9.5 Easy Programming Functions (MPE720 Ver.6.04 or later)

The following easy programming functions can also be used for sequence programs.

imply select a command and set command Assist dialog box to inse the editor.		Debug a sequence program. The debug commands, including step-by-step execution and break point setting, are provided.					
	Inserts the command	PT#: 2 CPU#: 1 Group1 * 00001 00000 00002 00001 00003 00002 00004 00003 00005 00006 00006 00007 00008 00005	10 Online Local(MPM003)				

1-16

2

Specifications

This chapter describes the relevant specifications of motion program and engineering tool MPE720.

2.1 MP2000 Series Machine Controller Specifications	2-2
2.1.1 Applicable Machine Controller Models	
2.1.3 List of Machine Controller Specifications	2-3
2.2 Engineering Tool MPE720 Specifications	2-5
2.3 List of Motion Language Commands	

2

2.1.1 Applicable Machine Controller Models

2.1 MP2000 Series Machine Controller Specifications

2.1.1 Applicable Machine Controller Models

Motion programs can be used with the following MP2000-series Machine Controller models.

- MP2100
- MP2100M
- MP2200/CPU-01
- MP2200/CPU-02
- MP2200/CPU-03
- MP2200/CPU-04
- MP2300
- MP2300S
- MP2310
- MP2400
- MP2500
- MP2500D
- MP2500M
- MP2500MD
- MPU-01

With the exception of MP2300, CPU-01 and CPU-02, both motion programs and sequence programs can be used. If using the M-EXECUTOR module or sequence programs with MP2100 or MP2100M, the programming tools with following versions are required.

MP2000 Series Controller	Applicable Version			
MP2100	Ver 2.66 or later			
MP2100M				

MPE720	Applicable Version
MPE720 Ver 5	MPE720 Ver 5.44 or later
MPE720 Ver 6	MPE720 Ver 6.10 or later MPE720 Ver 6.10 Lite or later

2.1.2 Applicable Motion Modules

The following motion modules support motion programs.

The axes connected to the following motion modules can be controlled using motion programs.

- Built-in SVB (Built in MP2100, MP2100M, MP2300, MP2300S, MP2310, MP2400, and MP2500, MP2500D, MP2500MD as a standard feature)
- SVR (Mounted on all models of MP2000-series Machine Controllers as standard)
- SVA-01
- SVB-01
- PO-01

		MP2100, MP2100M	MP2300	MP2300S	MP2400	MP2200 /CPU-01	MP2310	MP2200 /CPU-02	MP2200 /CPU-03, MP2200 /CPU-04, MPU-01	Remarks
Program Capacity		5.5 MB				7.5 MB		11.5 MB		Total user program capacity including lad- der programs, motion programs, and sequence programs.
		Applicable N/A Applicable								-
Ladder Program	Start Processing	64 drawings max.								-
	Interrupt Processing	64 drawings max.								-
adder	High-speed Processing	200 drawings max.								-
Ľ	Low-speed Processing	500 drawings max.								-
	User function	500 drawings max.								-
		Applicable								-
	Number of Programs	256 programs max.								Up to a total of 256 motion programs and sequence program.
	Number of Groups	Eight groups								Up to 16 axes can be set for one group.
	Number of Tasks	16 tasks								Number of motion programs that can be executed simulta- neously.
	Number of Parallel Processes (Per Task)	Eight parallel processes								Parallel execution of four main programs × parallel execution of two subprograms.
	Execution Method	 By writing an MSEE instruction in the ladder program By using an M-EXECUTOR Module (Excluding MP2300, CPU-01 and CPU-02) 								_
ogram	Starting Method	The program starts running at the rising edge of control signal bit 0 (Program start request).								-
P	Override	Can be set in the range from 0.01% to 327.67%.								—
Motion Progra	Operation Mode	ABS (absolute) and INC (incremental) mode								Mode switching by use of the exclusive command (ABS/INC).
	Reference Unit	 Built-in SVB, SVB-01, and SVR Module: pulse, mm, deg, inch, μm SVA-01 and PO-01 Module: pulse, mm, deg, inch 								-
	Min	• E pulse								
	Min. Reference Unit	1 • mm, deg, inch, μm 1, 0.1, 0.01, 0.001, 0.00001							-	
	Reference Range	-2147483648 to +2147483647 (32-bit with sign)								-
	Number of Simultaneously Controlled Axes (Per Task)	16 axes max.								-

2.1.3 List of Machine Controller Specifications

2

2.1.3 List of Machine Controller Specifications

		MP2100, MP2100M	MP2300	MP2300S	MP2400	MP2200 /CPU-01	MP2310	MP2200 /CPU-02	MP2200 /CPU-03, MP2200 /CPU-04, MPU-01	Remarks
		Applicable	N/A	Applicable	e	N/A	Applica- ble	N/A	Applica- ble	-
	Number of Programs	256 program (The execut or low-spee	Up to a total of 256 motion programs and sequence.							
Program	Number of Tasks	16 tasks ma	Number of sequence programs that can be executed simulta- neously.							
Sequence Program	Number of Parallel Processes (Per Task)	None								-
	Execution Method	By using the M-EXECUTOR Module								-
	Start Method	Started by the system.								Started by the system by registering pro- grams in the M- EXECUTOR module.
	M Register	Accessible (65535 words)								Memory backed up by battery.
	S Register	Accessible (8192 word)								Memory backed up by battery.
ers	I Register	Accessible (32768 words and motion monitoring parameters)								_
gist	O Register	Accessible (32768 words and motion setting parameters)								-
Re	C Register	Accessible (16384 words)								-
Accessible Registers	D Register	Accessible	Internal register unique to each draw- ing. Can be used by only the correspond- ing drawing.							
	# Register	Accessible (words) (# register c	_							

2.2 Engineering Tool MPE720 Specifications

2.2.1 Applicable Version Numbers of the Engineering Tool MPE720

Motions programs and/or sequence programs can be created or edited on the following engineering tool MPE720 versions.

- MPE720 Ver.5 (Compatible with MP2000-series Machine Controller models excluding MP2400)
- MPE720 Ver.6 (Compatible with all models of MP2000-series Machine Controllers)
- MPE720 Ver.6 Lite (Compatible only with MP2400)

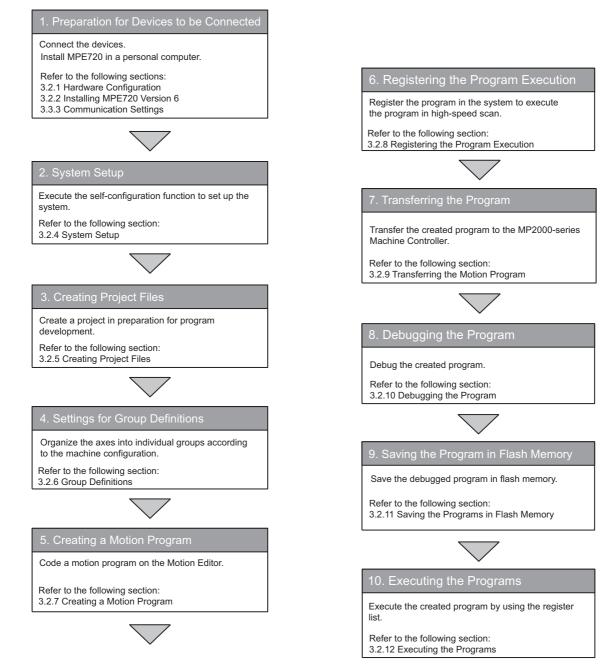
The above engineering tool software can be installed on one personal computer.

2.2.2 List of Engineering Tool MPE720 Specifications

		MPE720 Ver.5	MPE720 Ver.6	MPE720 Ver.6 Lite	David
		(CPMC-MPE720)	(CPMC-MPE770)	(CPMC-MPE770L)	Remarks
	MP2100	Compatible	•	Not compatible	-
_	MP2100M	Compatible	Compatible		-
Machine Controller Model	MP2200/CPU-01	Compatible		Not compatible	-
ŗ	MP2200/CPU-02	Compatible		Not compatible	-
olle	MP2200/CPU-03	Compatible		Not compatible	-
ontr	MP2200/CPU-04	Compatible		Not compatible	-
ŭ	MP2300	Compatible		Not compatible	-
Jine	MP2300S	Compatible		Not compatible	-
lacl	MP2310	Compatible		Not compatible	-
2	MP2400	Not compatible	Compatible		-
	MPU-01	Compatible		Not compatible	-
ns	Ladder Program	Supported		Not supported	-
grar	Motion Program	Supported			-
Programs	Sequence Program	Supported			_
	mmand Input Assistant	Not provided	Provided (Ver.6.04 c	or later)	_
	gram Execution gistration Function	Provided (Ver.5.38 or later)	Provided (Ver. 6.04	or later)	Not supported by MP2300, CPU-01, CPU-02
Del	oug Function	Provided			-
Mo	tion Task Manager	Provided			-
Driv	ve Control Panel	Provided (Ver.5.38 or later)	Provided (Ver.6.04 or later)		Not supported by MP2300, CPU-01, CPU-02
Tes	t Run Function	Not provided	Provided (Ver.6.04 c	or later)	-
	s Operation Monitor/ rm Monitor Function	Not provided	Provided (Ver.6.04 c	or later)	-

2.3 List of Motion Language Commands

Туре	Command	Name	Туре	Commands	Name
	ABS	Absolute Mode		=	Substitute
	INC	Incremental Mode	0 _	+	Add
S	ACC	Acceleration Time Change		-	Subtract
and	DCC	Deceleration Time Change		*	Multiply
Axis Set Commands	SCC	S-curve Time Constant Change	Arithmetic Operation	/	Divide
Cor	VEL	Set Speed		MOD	Remainder
Set	FMX	Maximum Interpolation Feed Speed			OR (Logical OR)
lis 6	IFP	Interpolation Feed Speed Ratio Setting	on al	&	AND (Logical AND)
Ax	IAC	Interpolation Acceleration Time Change	Logical Operation	٨	XOR (Logical exclusive OR)
	IDC	Interpolation Deceleration Time Change		!	NOT (Inversion)
	MOV	Positioning		==	Match
sp	MVS	Linear Interpolation		<>	Mismatch
nan	MCW	Clockwise Circular/Helical Interpolation	lisor	>	Greater than
Axis Move Commands	MCC	Counterclockwise Circular/Helical Interpolation	Data Comparison	<	Less than
ove	ZRN	Zero Point Return		>=	Greater than or equal to
S	SKP	Linear Interpolation with SKIP Function		<=	Less than or equal to
Axi	MVT	Set Time Positioning	uo	SFR	Right Shift
	EXM	External Positioning	Operation	SFL	Left Shift
ds	POS	Current Position Set	Dpe	BLK	Block Move
าลท	MVM	Move On Machine Coordinates	Data (CLR	Clear
uma	PLN	Coordinate Plane Setting	Da	ASCII	ASCII Conversion 1
ŏ	PLD	Program Current Position Update		SIN	Sine
Control Commands	PFN	In-Position Check		COS	Cosine
Cor	INP	Set In-Position Check Width		TAN	Tangent
	IF ELSE IEND	Branch	1	ASN	Arc Sine
	WHILE WEND	Repeat		ACS	Arc Cosine
	PFORK,		suc	ATN	Arc Tangent
	JOINTO,	Parallel Execution	Basic Functions	SQT	Square Root
	PJOINT		Fun	BIN	BCD to Binary
ds	SFORK,		sic	BCD	Binary to BCD
าลท	JOINTO,	Selective Execution	Ba	S{ }	Set Bit
uma	SJOINT			R{ }	Reset Bit
ŏ	MSEE	Subroutine (motion subprogram) Call		PON	Rising Pulse
ntro	SSEE	Subroutine (sequence subprogram) Call		NON	Falling Pulse
Program Control Command	UFC	User Function Call from Motion Program		TON	On-Delay Timer
am		-		TOF	Off-Delay Timer
ogr	FUNC	User Function Call from Sequence Program	<u>s</u>		C Language Task
P	END	Program End	and	CTSK	Control
	RET	Subprogram End	Language ol Commands		
	TIM	Dwell Time	ang Col		
	IOW	I/O Variable Wait		CFUNC	C Language Function
	EOX	One Scan Wait	C L Control		Call
	SNGD/SNGE	Disable/Enable Single Block			


Program Development Flow

This chapter describes the procedures from system setup to operation start using the programming tool MPE720 version 6.

3.1 Program Development Flow	3-2
3.2 Program Development Procedur	e3-3
3.2.1 Hardware Configuration	3-3
3.2.2 Installing MPE720 Version 6	3-3
3.2.3 Communication Settings	3-3
3.2.4 System Setup	3-3
3.2.5 Creating Project Files	3-4
3.2.6 Group Definitions	3-5
3.2.7 Creating a Motion Program	3-6
3.2.8 Registering the Program Execution	ח 3-7
3.2.9 Transferring the Motion Program -	3-10
3.2.10 Debugging the Program	3-12
3.2.11 Saving the Programs in Flash Me	mory 3-13
3.2.12 Executing the Programs	3-14

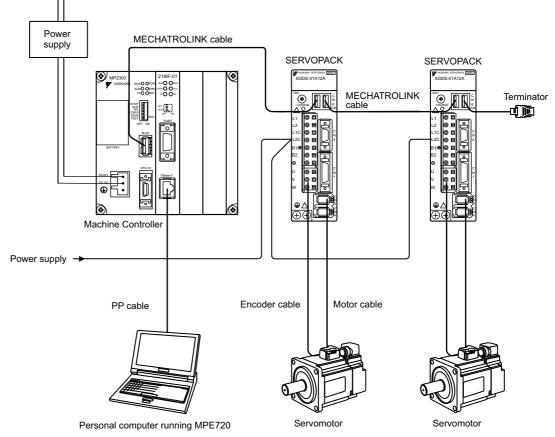
3.1 Program Development Flow

In this chapter, motion program development procedures are described according to the following flowchart.

Note: 1. The development procedure for sequence programs is basically the same as that for motion programs. For this reason, descriptions of the sequence program development flow are omitted.

2. The above flowchart shows an example of program development. To use programs for the actual system, settings for the external devices are required.

■Motion Program to be Created


In this chapter, the following motion program is used to explain the program development flow. The motion program contains only three lines for the simple operation of moving an axis 150,000 pulses from the current position and then stopping.

INC;	"INCREMENTAL MODE"
MOV [A1]150000 [B1]150000;	"2 AXES 150000 PULSES POSITIONING"
END;	

3.2 Program Development Procedure

3.2.1 Hardware Configuration

The program development procedure is explained using the following system configuration.

Note: In the system configuration above, set the station numbers of the two SERVOPACKs to 1 and 2.

3.2.2 Installing MPE720 Version 6

Install MPE720 Ver.6 in a personal computer.

For information on the installation procedure, refer to *Engineering Tool for MP2000 Series Machine Controller MPE720 Version 6 User's Manual* (manual no.: SIEPC88070030).

3.2.3 Communication Settings

Set the conditions for communications between the computer on which MPE720 Ver.6 is installed and the MP2000-series Machine Controller.

For information on the communication settings, refer to *Engineering Tool for MP2000 Series Machine Controller MPE720 Version 6 User's Manual* (manual no.: SIEPC88070030).

3.2.4 System Setup

Use the self-configuration function to setup the system. The self-configuration function automatically recognizes the modules installed on the MP2000-series Machine Controller and the devices connected to the Machine Controller through the MECHATROLINK connection. This function allows you to quickly and easily set up the system. The self-configuration can be executed either when the power to the Machine Controller turns ON or by using MPE720.

For information on how to execute self-configuration, refer to the user's manual for the Machine Controller to be used.

3.2.5 Creating Project Files

3.2.5 Creating Project Files

1. Double-click the MPE720 Ver.6 icon on the computer desktop to launch the MPE720 Ver. 6.

2. Click New under Project.

Ele Edk Ye Milline	w gnline gom	ple Qebuş Window Help		YASKAWA ELECTRIC CORPORATION	-
etup Program					
der • 0 X		Sule configuration			
100 - V /	stort	-	and the second	Warman and a state of the state	
gram	r C	Project		Help	h
		\frown			
		New	Communications Setting	Help	
		Open	Connection (2:Ethernet(LP) IP192.168.1.1)		
	1000	Close	Disconnection		
	History		History		
	and the second		A DESCRIPTION OF THE OWNER.		
			a successive comments		
	-				
dy dy	1			CAP N	

3. Specify the file name, file saving destination folder, and Machine Controller model. Then click the **Create** button.

Create New Proj	ect		<u>?</u> ×
Save in:	(MP2300	- 📰 👈 💽	
istory History Desktop		Select the file saving destination folder.	
My Documents		Select the file name.	
My Computer	File name: Save as type:	MP2300 Cree Project File (*:YMW) Cano	
My Network P	Controller		P
		Select the MP2000-series Machine Controller model.	

3.2.6 Group Definitions

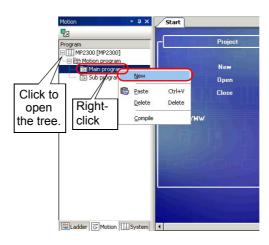
Before creating a motion program, organize the axes into individual groups according to the machine configuration.

1. Click the Motion tab to display Motion program in the subwindow.

III MPE720 Ver.6 - MP2300 [MP2300] - [5	tart1		_ 🗆 X
	Sepna Muqow Reb		- #×
Offline MP2300 C:\Documents and S	ettings\Administrator\My Documents\MP2300\MP23	U.YMW YASKA	WA ELECTRIC CORPORATION
Setup Programming Monitor System Scantime setting Module o Motion - # X Star			• ×
Program (I) MP2300 (MP2300)	Project		Help
(to Coll Motion program)	Motion program appears here.	tions Setting oction mection	Help
History MP2	, 300.YHW		
		60 0 61	
1			ere janne
			10115
Ladder Motion System			
Ready			CAP NUM SCRL

2. Right-click Motion program in the subwindow. Select Group Definition from the drop-down menu.

3. Click **OK**. For details on group definitions, refer to 7.3 Group Definition.


roup Defi roup List — Io. of Grou			ecificat ol Axis N	ion[Group Jo. 3	1]
No.	Group Name	Axis	Circuit	Axis No.	Logical Axis Name
01 Gro	up1	01	1	1	A1
		02	1	2	B1
		03	1	3	C1
		ОК	-	Cano	el Help

3.2.7 Creating a Motion Program

3.2.7 Creating a Motion Program

Start the Motion Editor to create a motion program.

1. Programs are displayed under **Motion program** in the subwindow. Right-click **Main program**. Select **New** from the drop-down menu.

2. Click OK.

Program No.	4PM001	
Configuration	E File privilege	0, 1
Detail definition	Read	0
	Write	1
	D register	32
OK Cancel		

3. Enter the sample motion program provided in 3.1 Program Development Flow.

Motion Editor	MP2300	MP2300	Offline Local[MPM001]	
PT#:- CPU#:-				
Group1	•	🖻 B	😂 🖬 🖉 🕌 🗗 🗡 ; Lat 🧱 🕴	
00001 00000 00002 00001 00003 00002			INC; MOV [A1]150000 [B1]150000; END;	"INCREMENTAL MODE" Z "2 AXES 150000 PULSES POSITIONING"
Line Block	01	ज		

4. Click the **Save** icon () on the toolbar of the **Motion Editor** window to start compiling. The motion program will be automatically saved after compiling is completed.

IMPORTANT

Note that the motion program will not be automatically saved if the Error List dialog box appears during compiling.

3.2.8 Registering the Program Execution

Call the created motion program from the H drawing using an MSEE command. For details, refer to 4.3.2 Registering the Program Execution.

1. Click the Ladder tab in the subwindow to display Ladder program.

III MPE720 Ver.6 - MP2300 [MP2300] - [Start]		_ D X
Ele Edit Yew Online Compile Debug Window Help		- 6×
Offline MP2300 C:\Documents and Settings\Administrator\My Documents\MP23	00\MP2300.YMW YASKAW	A ELECTRIC CORPORATION
Setup Programming Monitor Transfer Utility System Sourise setting Mosile configuration LSSer • JJ X Start		÷ X
Propert Pro	Communications Setting Connection Disconnection	Неір
MP2300 YMW		
Ready Motion [[]]System]		CAP NUM SCRL

2. Right-click **High-speed** under **Ladder program** in the subwindow. Select **New** from the drop-down menu.

3. Click OK.

Program No. H Program Name M	ain Program		
Configuration	🗉 File privilege	0,1	1
Detail definition	Read	0	1
	Write	1	
	🗉 Use register num	32, 0, 0	
	D register	32	
	Work register	0	-
	# register	0	

3.2.8 Registering the Program Execution

Create the ladder program shown below. After the ladder program has been created, compile the program by pressing the F8 key on the keyboard or clicking the icon on the toolbar.

	sample for motion program contro	
	axis A1, B1 servo on	
2000	sv-on MB000000 ↓ ↓	A1~Servo ON OB80000
0000 NL-1		
INC.		B1~Servo ON OB80800
	program start start on-pulse	start
0001	MB000001 DB000040	DB000010
0003 NL-1		\bigcirc
	program hold	8. DP
	hold MB000002	hold DB000011
0002 0006 NL-1		
	program abort	
	abort MB000003	abort DB000012
0003 0008		
NL-1	program and alarm reset	
	reset MB000004	reset DB000015
0004		
NL-1	mation program call	
	motion program call	
0012		
NL-1	AlData DA00000	
	run off-pulse DB000000 DB000041	stop DB000042
0013		
NL-1		
0007		
0016 NL-1	DB000042	
	treatment after motion program stopped	
0008 0017 NL-1		
0009	END	
0018 NL-1		

• Make sure that bit 0 of motion monitoring parameter IW 00 (Operation Ready) is ON before turning ON the Servo ON command MB000000.

• The Servo ON command will not be accepted if the Operation Ready bit is OFF.

The motion programs can be registered to run by registering the programs in the M-EXECUTOR program execution definition, without creating the ladder program described on the previous page.

The procedure to register motion programs to the program definition of M-EXECUTOR is described below. Before using this procedure, be sure to carry out the operation described in *3.2.9 Transferring the Motion Program*.

1. Click the **1** icon on the toolbar in the **Motion Editor** window where the motion program is created.

Motion Editor	MP2310 Online Local[MPM001]	
PT#: 3 CPU#: 1		
Group1	_	
00001 00002 00000 00003 00004 00001 00005 00002	"INCREMENTAL MODE" INC; "POSITIONING" MOV [A1]150000 [B1]150000; END;	
Line Block	I	*

2. The Program execution registry screen dialog box will open. Click OK to register the program.

Program execution registry	number Prog	am numb
1 💌	MPN	1001 💌
Execution type	Spec	ification
Motion program	▼ Dire	ct 👱
Allocation register	Allocation DISABLE	
Program number		
Status	? 🔽 📔	
Control signal	? 🔽 🗌	
0verride(1=0.01%)		

3

3-9

3.2.9 Transferring the Motion Program

3.2.9 Transferring the Motion Program

Transfer the motion program to the MP2000-series Machine Controller. If the program is created on a computer using MPE720 Version 6 and the Machine Controller connected online, this operation will not be required.

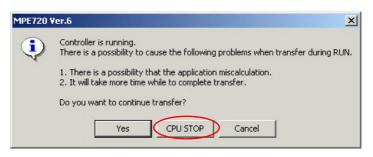
1. Click Communications Setting in the following window.

🔡 MPE720 Ver.6 - MP2300 [MP2300] - [[Start]		
Elle Edit View Online Compile	Debug Window Help		- 8×
Offline MP2300 C:\Documents and	Settings\Administrator\My Documents	MP2300.YMW YASKAWA ELECTRIC CO	ORPORATION
	Transfer Utility configuration		
Ladder • # ×	Start H : Main Program		
Program [] [] MP2300 [MP2300]	Project		Help
	New	Communications Setting	Help
H : Main Program	Open	Connection	
- ⊞ El Start	Close	Disconnection	
Interrupt	History		
- ⊕ 🖹 Function	MP2300.YMW		
	2310.YMW		
	MP2300.YMW		
	and there have been a		
	Contraction of the local data	A State of the second se	
	Statement and a statement of the		
Ladder G Motion System			• •
Ready			CAP NUM SCRL

2. Select the communication port selected in *3.2.3 Communication Settings*, and click the **Connection** button.

Communications Setting	×
Set the communication setting	Connection
Communication port	Setting
	Cancel
	Detail >>

3. Offline will change to Online. Select Transfer - Write into controller.

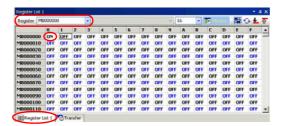

MPE720 Ver.6 - MP2300 [MP2300] - [9	5tart]		_0×
Eile Edit View Online Compile	Debug Window Help		- 8×
Online MP2300 C:\Documents and S	ettings\Administrator\My Documents\/	MP2300.YMW 3:Ethernet IP192.16	8.1.1 CPU-RUN 🛛 —— 🕅
Setup Programming Monitor	Transfer Utility		
Write into controller Read from contro	oller Save to flash Transfer		÷ ×
	start		
Program	Project		Help
P MP2300 [MP2300]			
E Indder program	New	Communications Setting	Help
- · · · · · · · E in Low-speed	Open	Connection [3:Ethernet IP192.168.1.1]	
・ 田 回 Start ・ 田 回 Interrupt	Close	Disconnection	
E E Function	History		
	MP2300.YMW		
	2310.YMW		
	MP2300.YMW		
		비가 좋다. 그는 그는 그는 그는 그는 것이 좋다.	
	and the second se		
	the second s		
Ladder G Motion System	1		
Ready	p		CAP NUM SCRL

4. Click the Individual button, and then select the Program check box. Click the Start button.

<u>S</u> tart	0%
Batch Children Individua System Configuration Program Register Comment	Save to flash after transferring to the controller.
	1

- When **Individual** transfer is selected, the same file in the Machine Controller will be overwritten with the selected project file data.
- When **Batch** transfer is selected, the MP2000-series Machine Controller's RAM will be cleared before transfer, and all project file data will be written in the RAM.
- 5. Click the CPU STOP button to start transfer.

6. Click the Yes button in the following dialog box to restart the Machine Controller.



3.2.10 Debugging the Program

3.2.10 Debugging the Program

Debug the created program. For details on debugging, refer to 9.4 Debug Function.

1. Click the **Register List 1** tab to display the register list. Specify register MB000000. Set MP000000 to ON as follows to turn the servo ON.

When using the M-EXECUTOR as described in 3.2.8 *Registering the Program Execution*, directly set the motion setting parameter to turn the servo ON.

2. Click the **Debug Mode** icon (**\frac{1}{5}**) on the toolbar.

Engineering Mana			MP2300	Online Lo	ical[MPM00	1]]				_ 0
			lot 🖬 🛱	IA 8 18	S					
PT#: 3 CPU#: 1						~		• ا		
Group1	- [) 🛛 🗲	🖬 🗗 🕷	j ⊮ /×	; List 🛄	(₹)↓		5 5 2 5	• II 🔳	12 B. D
00001 00000 00002 00001 00003 00002		INC MC EN	V [A1]150	00 (B1)15)	000;		ICREMEI DSITION	NTAL MODE ING''		
Line <mark>Block</mark>	4				_	1		1	rr	
DBG 2ABT	3	4 IN	5 OVR	6 SP	7 BP	8G0	9	10BRK	11RGL	12
ior Hole, proce E1										AU INA

3. The Motion Editor will enter debug mode.

Engineering Manager - [N	1otion Editor	MP2300	Online Local	[MPM001]]				_	
📑 File Edit View Debug	Window							_	Ð×
086888	🔁 KEP DIS	dt 🖬 🖬 🕯	🕂 🕼 Ros						
PT#: 3 CPU#: 1						1			
Group1 🔹	🗈 🖻 🚅 🖡	3 d ⁹ 🍜	⊮ /× ;	ust 🧱 🖡	1 🖸 🗖	▶ ▶ ⊵ 🕨		12 🕩	I C
00001 00000 🔹	INC:				"INCREMI	NTAL MODE			
00002 00001 00003 00002		/ [A1]15000) [81]1500();	"POSITIO				
00002 00001	MO\	/ [A1]15000) (B1)1500();					-
00002 00001 00003 00002 Line Block Debug Mode >>> Suspend	MO\	/ [A1]1500();			"POSITIO	ving"			
00002 00001 00003 00002 Line Block	MO\	/ [A1]1500();); 7 BP 8 G	"POSITIO		11 <mark>RGL</mark>	12	

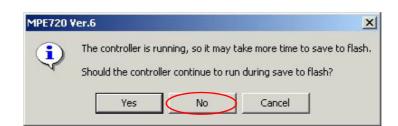
4. Click the **Step In** icon () to execute the program line by line, and check the programmed movements. For details on debugging, refer to *9.4 Debug Function*.

Engineering N	1anager	- [Motic	n Editor	MP2300	Online Loca	I[MPM001]	1					
Tile Edit Vi	ew Debu	ug Wind	ow									8 ×
	8 %	Þ 🔒	CRO DIS REF LST	Hot H H	🕂 😭 ROS							
PT#: 3 CPU#:	1								<u>न</u> ।		2. >> >>	
Group1		- 🖻	B 🗳	8 8 6	· ⊮ ⊬ ;	List 🔛	₹ ↓		🔊 🛯 🖹 🗗			
00001 00000			IN					ICREMEN	NTAL MODE			4
00002 00001		÷ 📃	M	DV [A1]150	10 [B1]1500	0;	"P	OSITIONI	NG"			
00003 00002			EN	ID;								
Line Block		4										F
Debug Mode >>>	Suspend											
DBG 2AB	T 3		4 IN	5 OVR	6 SP	7 BP	8 GO	9	10BRK	11RGL	12	
For Help, press F1									[NUM	

5. Debug the program until the END command. When the debugging operation is completed, turn the servo OFF.

3.2.11 Saving the Programs in Flash Memory

Save the data in the MP2000-series Machine Controller's RAM to the flash memory.


1. Select *Transfer - Save to flash* in the following window.

Online MP2300 C:\Documents and S			IP2300.YMW Ethernet IP192.168.1.1 CPU-F	RUN
Setup Programming Monitor Write into controller Read from contro	oller Save to flas			
ider - 4 ×	Start			;
) 🚘	r Caller	Project		
MP2300 [MP2300] militader program militader program	n St	New	Communications Setting	
H : Main Program	The Bear No.5	Open	Connection [3:Ethernet IP192.168.1.1]	
- 🕀 🛅 Start		Close	Disconnection	1 48.4
田田 Interrupt 田田 Function 田 Function	History			
	MP2300.YMW			
	2310.YMW			
	MP2300.YMW			
	Art			

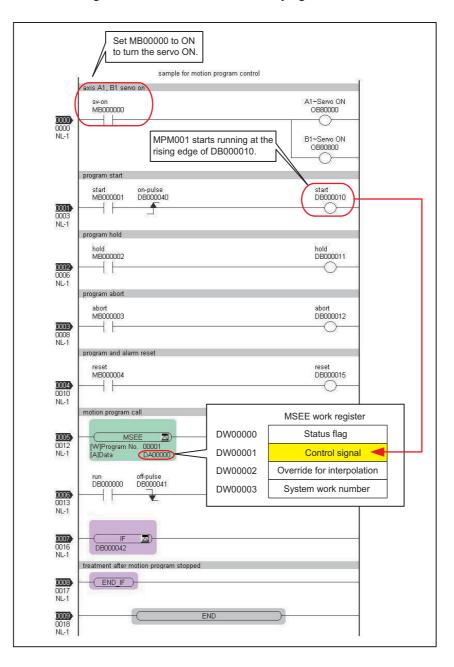
2. Click the **Start** button.

\triangleright	Writing target controller : MP2300	(Ethernet IP192.1	68.1.1)	
<u>S</u> tart		0%		
			Options	Close

3. Click the CPU STOP button to start saving.

4. Click the Yes button in the following dialog box to restart the Machine Controller.

3.2.12 Executing the Programs


3.2.12 Executing the Programs

Execute the created programs to operate the actual machine. Turn the Program Start Request bit to ON using the control signal to execute the motion program.

1. Click the **Register List 1** tab to display the register list. Specify register MB000000. Set MB000000 to ON to turn the servo ON.

Register ME	000000)		•						- 1	6	- (D 190	iger .	雷く	<u>+</u>	Ŷ
	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F	
MB000000	(ON)	OFF	OFF	OFF	OFF	Ξ											
MB000010	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	
MB000020	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	
MB000030	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	
MB000040	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	
MB000050	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	
MB000060	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	
MB000070	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	
MB000080	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	
MB000090	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	
MB000100	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	
MB000110	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	

2. Set MB000001 in the register list to ON to execute motion program MPM001.

4

Motion Programs

This chapter describes motion program types and how to run them.

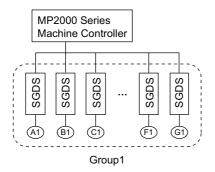
4.1 Types of Motion Programs	4-2
4.2 Motion Programs For Each Axis Group	4-2
4.3 Running a Motion Program	4-3 4-5
 4.4 Advanced Programming 4.4.1 Indirect Designation of a Program Number Using a Register 4.4.2 Controlling the Motion Program Directly from an External Device 4.4.3 Monitor the Motion Program Execution Information Using S Register 	4-11 4-12

4.1 Types of Motion Programs

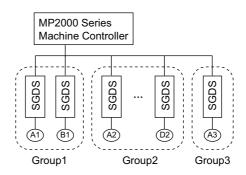
There are two motion program types, as listed below.

Туре	Designation Method	Features	No. of Programs
Main Program	MPM□□□ □□□= 1 to 256)	Called from the M-EXECUTOR program execution definitionCalled from DWG.H	Up to 256 programs including following programs can be created. • Motion main program
Subprogram	MPS□□□ (□□□= 1 to 256)	• Called from the main program	Motion subprogramSequence main programSequence subprogram

The program numbers of motion programs are managed in the same manner as the sequence program numbers. Assign a unique number for each program number.


- Program number of Motion program MPMDDD, MPSDDD
- Program number of Sequence program SPMDDD, SPSDDD
- The MP2000-series Machine Controllers can execute up to 16 motion programs simultaneously. An alarm (no system work error) will occur if 17 or more programs are executed simultaneously.
 - No system work error: Bit E of the leading word in the MSEE work registers

4.2 Motion Programs For Each Axis Group

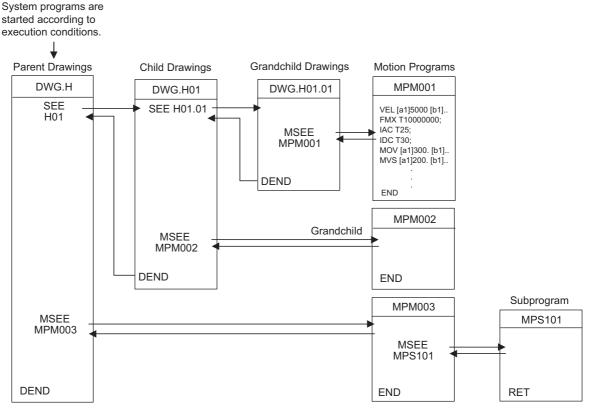

With motion programs, the axes that have related operations are organized into individual groups, and programs can be created for each group. This allows one MP2000-series Machine Controller to independently control multiple machines using group operation. Group operation can be single group operation or multiple group operation. Definitions for axes to be grouped together are made under *Group Definitions*.

For information on the group definition setting window, refer to 7.3 Group Definition.

Multiple Group Operation

4.3 Running a Motion Program

4.3.1 How to Run a Motion Program


To run the created motion programs, the user must register them in the system. The motion programs registered in the system can be referenced in the high-speed scan cycle.

Motion programs can be run in two ways, depending on how they were registered in the system:

- Calling it from the ladder program using a MSEE command
- Registering it to the M-EXECUTOR program execution definition
- Now, this section explains each way to run a motion program:

(1) Calling the Motion Program from the Ladder Program Using a MSEE command

After creating a motion program, embed an MSEE command (Motion Program Call command) in the H drawings. Motion programs can be called from any parent, child, or grandchild drawing in an H drawing. The following figure shows an example of motion program execution.

H drawing ladder commands are executed in hierarchical order i.e., parent drawings, child drawings, then grandchild drawings in each high-speed scan cycle.

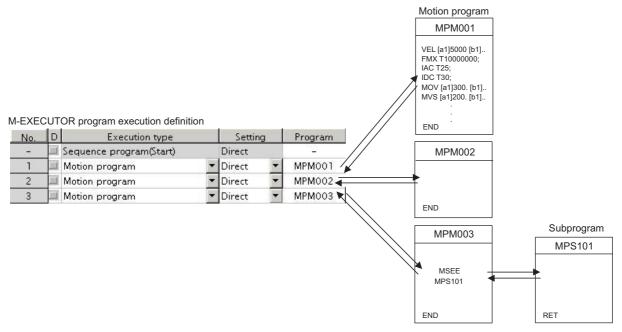
To start up the motion program, after the MSEE command is incorporated, use a control signal to turn ON the request for the program operation startup.

Motion programs are also called in each scan cycle, but unlike ladder programs, all motion programs cannot be executed in one scan. For this reason, motion programs are executed and controlled by special system's motion management function.

IMPORTANT

When running a motion program, pay attention to the followings:.

- The motion program registered in M-EXECUTOR cannot be executed using a MSEE command.
- Multiple motion programs with the same number cannot be executed using a MSEE command.
- A subroutine (MPSDDD) cannot be executed from a MSEE command in a ladder.
- It can only be referenced from a motion program (MPM \square \square , MPS \square \square).
- A sequence program (SPMDDD, SPSDDD) cannot be executed from a MSEE command in a ladder.


4.3.1 How to Run a Motion Program

(2) Registering it to the M-EXECUTOR Program Execution Definition

After creating a motion program, register it in the M-EXECUTOR program execution definition screen.

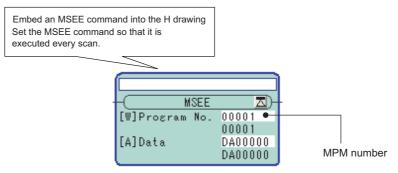
The programs registered in the M-EXECUTOR program execution definition screen are executed in ascending numeric order.

The execution example is shown in the figure below.

To start up the motion program, after the motion program registration, use a control signal to turn ON the request for the program operation startup.

The motion program registered in M-EXECUTOR is executed at a scan cycle, but similar to a ladder, the whole program cannot be executed at a single scan. In case of the motion program, a motion management function in the system carries out an execution control exclusive for the motion programs.

IMPORTANT


When registering a motion program to M-EXECUTOR, pay attention to the followings:

- Multiple motion programs with the same number cannot be registered.
- Multiple motion programs with the same number cannot be referenced using an indirect designation.

4.3.2 Registering the Program Execution

Programs can be registered in the two following ways. The following examples shows when the motion program MPM001 is registered.

(1) Embedding an MSEE command in the Ladder Program

(2) Registering MPM001 in the M-EXECUTOR

M-EXE	ECUTOR MP2310 Online Loc		er MPM001			<u> </u>
PT#: 2 (CPU#: 1			RACK#0	1 Slot #00 0C00-0C3F 🖳 🕨	
	UTOR(List) Individual display I definition Allocation Control register	Program	efinition number	8	×	<u>*</u>
No.	D Execution type		Setting	Program	Execution monitor register(S register)	
-	Sequence program(Start)		Direct		_ ` _ `	
1	Motion program	-	Direct 💌	MPM001	SW03264 - SW03321	
2		-				
3		-				
4		-				
5		-				
6		-				
7		-				
8		-				
 ▲						• •

4.3.3 Work Registers

When registering motion programs as described in *4.3.2 Registering the Program Execution*, a work register to control and monitor the program execution is assigned for each registered program. The work registers are used to send instructions to the motion programs from the motion program control program, and to get the motion program status.

(1) For a Motion Program Called from the Ladder Program Using an MSEE Command

Four words of the register (MA \square \square \square or DA \square \square \square) that are specified for Data of the MSEE command are used as the work register.

			Work Register	Register No. in the Example	Contents	I/O
MSEE		-	1st word	DW00000	Status flag	Output
[W]Program No.			2nd word	DW00001	Control signal	Input
[A]Data	00001 DA00000	◀───	3rd word	DW00002	Override for interpolation	Input
	DA00000		4th word	DW00003	System work number	Input

(2) For a Motion Program Registered in an M-EXECUTOR Program Execution Definition

The M-EXECUTOR control registers are used as the work registers. The M-EXECUTOR control registers are automatically defined by the system.

Program	definition Allocation Contr	ol register				
No.	ltem	M-EXECUTOR Control register	Work Registers (M-EXECUTOR Control Registers)	Register No. in the Example	Contents	I/O
	Program number	MPM001	Status	IW0C00	Status flag	Output
	Status	IW0C00				
1	Control signal	OW0C01	Control signal	OW0C01	Control signal	Input
	Override	OW0C02	Override	OW0C02	Override for interpolation	Input

The details of the work registers are described from the next page.

(a) Status Flag

Bit No		Status	Description				
			This bit is ON while the motion program is running.				
	Bit 0	Program running	0: The motion program is being stopped				
			1: The motion program is running				
	D 11.4		This bit is ON while the motion program is paused by Program Pause Request.				
0 to 3	Bit 1	Program paused	0: The program is not paused by Program Pause Request.				
			1: The program is paused by Program Pause Request.				
	Bit 2 Program stopped by stop request Bit 3 (Reserved)		This bit is ON while the motion program is stopped by Program Stop Request.				
			0: The program is not stopped by Program Stop Request.				
			1: The program is stopped by Program Stop Request.				
	ыгэ	(Reserved)					
		Single program block	This bit is ON while a single program block operation is stopped during debug- ging.				
	Bit 4	operation stopped	0: Other than single block operation stop				
4 to 7			1: Single block operation stop				
+ 10 7	Bit 5	(Reserved)	-				
	Bit 6 (Reserved)		-				
	Bit 7	(Reserved)	_				
			This bit is ON while a program alarm is occurring.				
	Bit 8		When this bit turns ON, the details of the error are written in the error informa-				
		Program alarm	tion screen and S register.				
			0: No program alarm				
			1: A program alarm is occurring.				
			This bit is ON while the program is stopped during a break point during debug-				
8 to B	Bit 9	Stopped by break point	ging.				
			0: Not stopped at break point				
		(Decerved)	1: Stopped at break point				
	Bit A	(Reserved)	- This bit is ON subils debugging the metion program.				
	Bit B	In debug mode	This bit is ON while debugging the motion program. 0: Normal operation mode				
	DILD	in debug mode	1: Debug mode				
			Reports the running program type: Motion program or sequence program				
	Bit C	Program type	0: Motion program				
		U = 217 -	1: Sequence program				
			This bit turns ON when the Program Operation Start Request is ON.				
	Bit D	Start request signal	0: Program Operation Start Request OFF				
		history	1: Program Operation Start Request ON				
			This bit turns ON when the system work required to execute the motion pro-				
C to F		No system work error	gram is not assigned, or when an MSEE command is embedded in a drawing				
	Bit E	Scanning error	other than the H drawing.				
		Ŭ	0: No system work error is not occurring. 1: No system work error is occurring.				
			This bit turns ON when the specified motion program number is outside the				
			range.				
	Bit F	Main program number	Motion program number range: 1 to 256				
	-	exceeded error	0: Within the range				
			1: Outside the range				

(b) Control Signal

→ -: Signals with this indication must be kept ON until they are accepted by the system.

----: Signals with this indication should be ON for one high-speed scan.

Bit	No	Status	Description
	Bit 0	Program operation start request	Request to start a motion program. When this bit status changes from OFF to ON, the motion program will start running. However, this bit is disabled whenever an alarm is occurring in the motion program.0: Program Operation Start Request OFF1: Program Operation Start Request ON
0 to 3	Bit 1	Program pause request	 Request to pause a motion program. Resetting this bit to 0 after pausing the motion program will restart the program from the point it was stopped. 0: Program Pause Request OFF (Cancel the pause request) 1: Program Pause Request ON
	Bit 2	Program stop request	Request to stop a running motion program. Turning this bit ON while the axis is moving will cause a motion program alarm. 0: Program Stop Request OFF, 1: Program Stop Request ON
	Bit 3	Program single block mode selection	Request for program single block mode. Use this bit instead of the debugging operation 0: Program Single Block Mode Selection OFF 1: Program Single Block Mode Selection ON
	Bit 4 Program single block start request		Changing this bit status from OFF to ON will start the program single block operation (step-by-step operation). This bit is valid when the control signal bit 3 (Program single block mode selection) is ON. 0: Program Single Block Start Request OFF 1: Program Single Block Start Request ON
4 to 7	Bit 5	Program reset and alarm reset request	Request to reset a motion program and a alarm. 0: Program reset and Alarm Reset Request OFF, 1: Program reset and Alarm Reset Request ON
	Bit 6 Program continuous operation start request		 Request to restart a program that has been stopped by a motion program alarm or the Program Stop Request, from the point it was stopped. 0: Program Continuous Operation Start Request OFF 1: Program Continuous Operation Start Request ON
	Bit 7	(Reserved)	-
	Bit 8	Skip 1 information	Turning this bit ON while moving the axis using an SKP command (when SS1 is selected for the skip input signal) will decelerate the axis to a stop and cancel the moving amount that remains. 0: SS1 signal OFF, 1: SS1 signal ON
8 to B	Bit 9	Skip 2 information	Turning this bit ON while moving the axis using an SKP command (when SS2 is selected for the skip input signal) will decelerate the axis to a stop and cancel the moving amount that remains. 0: SS2 signal OFF, 1: SS2 signal ON
	Bit A	(Reserved)	-
	Bit B	(Reserved)	-
	Bit C	(Reserved)	-
	Bit D	System work number setting	Turn this bit ON to specify the system work number. 0: Do not specify the system work number, 1: Specify the system work number
C to F	Bit E	Override setting for interpolation	Turn this bit ON to enable the interpolation override.0: Disable the interpolation override.1: Enable the interpolation override.
	Bit F	(Reserved)	-

(c) Interpolation Override

Set the override value for execution of an interpolation command MVS, MCW, MCC, or SKP. Interpolation override refers to change the output ratio of the speed reference for axis movement executed by an interpolation related command.

Interpolation override is enabled when the bit E (Override setting for interpolation) of the control signal is ON.

- Setting range of interpolation override: 0 to 32767
- Unit: 1 = 0.01%

(d) System Work Number

When using an MSEE command to call a motion program from the ladder program, set the system work number to call the motion program. The set system work number is valid when the bit D (System work number setting) is ON.

- Setting range: 1 to 16
- Note: 1. When using the M-EXECUTOR, the system work number cannot be set. A system work number that is same as the definition number is used.
 - 2. Do not specify the system work number for the M-EXECUTOR by the MSEE command when using both the MSEE command and the M-EXECUTER. Doing so will cause a no system work error. System work number for the M-EXECUTOR: 0 to the number set in **Program definition number**.

4.3.3 Work Registers

· Timing Chart for Motion Program Control Signals

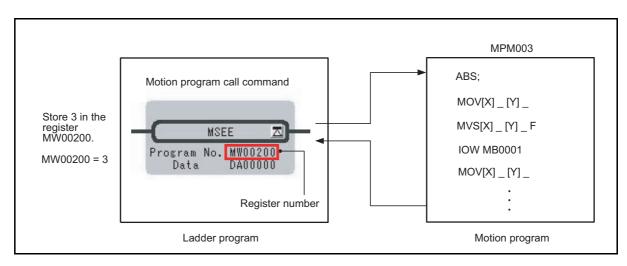
The following figure shows an example of a timing chart for motion program control signals.

 Program Operation Start Request Control signal: Operation start request Status: Operating Distribution Pause Request Control signal: Operation start request Control signal: Pause request Status: Operating One scan Status: Paused Distribution Stop Request Control signal: Operation start request Control signal: Stop request Control signal: Alarm clear Status: Operating Status: Stopped One scan Status: Alarm One scan Distribution (Interpolation related commands) Distribution (Positioning related commands) Distribution (Zero point return)

IMPORTANT

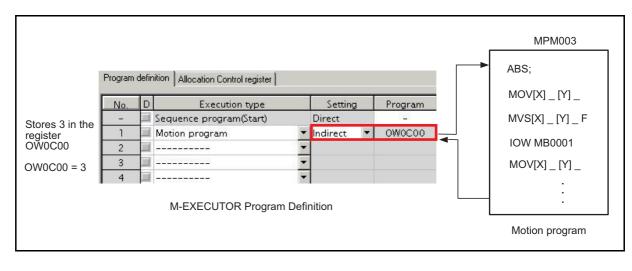
- Turning ON the Stop Request while the axis is being moved by a motion command will cause an alarm.
 Turning ON the Stop Request while the axis is being moved by an interpolation related command will immediately stop the axis.
 Use the Pause Request to decelerate the axis to a stop.
- During execution of the Zero Point Return (ZRN) command, Pause Requests will not be accepted. Use the Stop Request to stop the zero point return operation.

A program example for motion program control is given in *B.1 Programs for Controlling Motion Program Exe*cution.


4.4 Advanced Programming

4.4.1 Indirect Designation of a Program Number Using a Register

This method calls the program (MPM $\square\square\square$) that matches the value stored in the register.

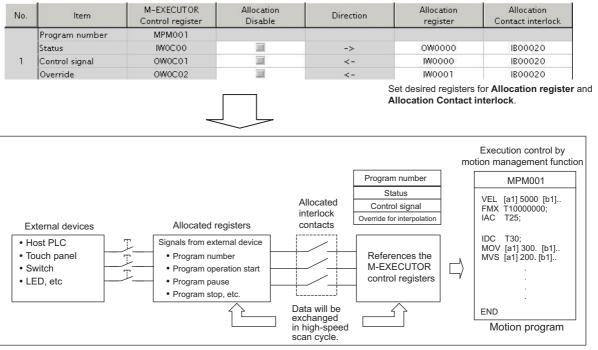

(1) When Using a Motion Program called by a MSEE Command from the Ladder Program

Specify a register (M or D register) to be used for the indirect designation in the **Program No.** of the MSEE command.

(2) For a Motion Program Registered in the M-EXECUTOR Program Execution Definition

Select **Indirect** under **Setting**. The register to be used for indirect designation will be assigned automatically by the system.

4.4.2 Controlling the Motion Program Directly from an External Device


4.4.2 Controlling the Motion Program Directly from an External Device

The M-EXECUTOR Module has a function used to allocate the M-EXECUTOR's control register to a desired register.

With this function, data can automatically be exchanged between the M-EXECUTOR's control register and the I/ O register connected to an external device. Thus, this function allows an external device to directly control the motion program.

The following diagram shows a setting example for this function.

M-EXECUTOR Register Allocation window

The allocated interlock contact is used as an interlock for motion program execution. Always allocate an interlock contact in Allocation Contact interlock when allocating a register in Allocation register.

The following processes are executed according to the ON/OFF status of the allocated interlock contact.

- When the allocated interlock contact is ON, the allocated register exchanges data with the M-EXECUTOR control register in a high-speed scan cycle, and motion program execution is enabled during the data exchange.
- When the allocated interlock contact is OFF, the allocated register does not exchange data with the M-EXECUTOR control register, and motion program execution is disabled.
- When the **Allocation Contact interlock** is changed from ON to OFF while the motion program is running, the motion program will stop running and the axes will stop moving. At this moment, the motion program alarm "1Bh: Emergency Stop Command in Execution" will occur, and bit 8 (Program alarm occurring) of the status flag will turn ON.

Use the following procedure to restart the motion program.

- 1. Set the interlock contact from OFF to ON.
- 2. Set bit 5 (Program reset and alarm reset request) of the control signal to ON.
- 3. Confirm that bit 8 (Program alarm) of the status flag turns OFF.
- 4. Set bit 5 (Program reset and alarm reset request) of the control signal to OFF.
- 5. Set bit 0 (Program operation start request) of the control signal to ON.

INFO

4.4.3 Monitor the Motion Program Execution Information Using S Register

Using S register (SW03200 to SW04191) allows you to monitor the motion program execution information.

The way to monitor the execution information for a motion program registered in the M-EXECUTOR program execution definition differs from that for a motion program referenced by an MSEE command from a ladder program.

The way to monitor it in each case is shown as follows:

(1) A Motion Program Referenced by an MSEE Command from a Ladder Program

When a motion program is referenced by an MSEE command from a ladder program, the way differs, depending on the "Bit D" setting (system work number setting) of the motion program control signal, as follows:

(a) The motion program control signal "Bit D, System Work Number Setting" = ON

The execution information is reported to "Program Information Using Work n" register (SW03264 to SW04191). For example, when "System Work Number" = 1, the motion program execution information can be monitored in SW03264 to SW03321 "Program Information Using Work 1."

(b) The motion program control signal "Bit D, System Work Number Setting" = OFF

The used system work is automatically decided by system. Thus, to check which work is used, refer to "Running Program Number" (= SW03200 to SW03215). For example, when you want to monitor the motion program MPM001 and SW03202 = 1, as used the work number = 3, the execution information for the motion program MPM001 can be monitored in "Program Information Using Work 3" (= SW03380 to SW03437).

(2) A Motion Program Registered in the M-EXECUTOR Program Execution Definition

For motion programs registered in the **Program definition** tab page of the M-EXECUTOR, the system work numbers to be used are the same as for the Program execution registry number registered in the M-EXECUTOR Module.

For example, a motion program is registered as "Definition No." = 3, the used system work number is "System Work" = 3. In this case, the execution information for the motion program can be monitored in "Program Information Using Work 3" (= SW03380 to SW03437).

For more information on the register area of the motion program execution information, refer to the subsequent pages.

4.4.3 Monitor the Motion Program Execution Information Using S Register

(a) Register Areas for Motion Program Execution Information

M	lotion program execution info	rmati	on	Executing program number
SW03200	Executing program numbe	er	SW03200	Program number used by work 1
	(No. of main program currer	ntly	SW03201	Program number used by work 2
SW03216		16W 16W	SW03202	Program number used by work 3
SW03232		1000	``. SW03203	Program number used by work 4
	Executing Program Bit (Executing when corresponding	J	`\``\ SW03204	Program number used by work 5
0)4/00040	bit is ON)	16W	`,``, SW03205	Program number used by work 6
SW03248	Reserved by the system.	16W	, , , SW03206	Program number used by work 7
SW03264	Program information used by work 1	58W	, , , SW03207	Program number used by work 8
SW03222	Program information used by		\$W03208	Program number used by work 9
	work 2	58W	`\SW03209	Program number used by work 10
SW03380	Program information used by	58W	, SW03210	Program number used by work 11
SW03438	work 3		SW03211	Program number used by work 12
0000400	Program information used by work 4	58W	SW03212	Program number used by work 13
SW03496	Program information used by		`SW03213	Program number used by work 14
	work 5	58W	SW03214	Program number used by work 15
SW03554	Program information used by work 6	58W	SW03215	Program number used by work 16
SW03612	Program information used by work 7	58W		
SW03670	Program information used by	58W		Executing program bit
SW03728	Program information used by		SW03232	MPD016 (Bit15) to MPD001 (Bit0)
	work 9	58W	SW03233	MPD032 (Bit15) to MPD017 (Bit0)
SW03786	Program information used by	58W	SW03234	MPD048 (Bit15) to MPD033 (Bit0)
SW03844	work 10		SW03235	MP□054 (Bit15) to MP□049 (Bit0)
	Program information used by work 11	58W	SW03236	MP□080 (Bit15) to MP□055 (Bit0)
SW03902	Program information used by		SW03237	MPD096 (Bit15) to MPD081 (Bit0)
	work 12	58W	SW03238	MPD112 (Bit15) to MPD097 (Bit0)
SW03960	Program information used by work 13	58W	SW03239	MPD128 (Bit15) to MPD113 (Bit0)
SW04018	Descretion used by		SW03240	MPD144 (Bit15) to MPD129 (Bit0)
	work 14	58W	SW03241	MPD160 (Bit15) to MPD145 (Bit0)
SW04076	Program information used by	58\//	SW03242	MPD176 (Bit15) to MPD161 (Bit0)
	work 15	5000	SW03243	MPD192 (Bit15) to MPD177 (Bit0)
SW04134	Program information used by	58W	SW03244	MPD208 (Bit15) to MPD193 (Bit0)
SW04192	work 16		SW03245	MPD224 (Bit15) to MPD209 (Bit0)
0110-102	Reserved by the system. 9	28W	SW03246	MPD240 (Bit15) to MPD225 (Bit0)
			SW03247	MPD256 (Bit15) to MPD241 (Bit0)
SW05120	Reserved by the system.	64W		Note: □ indicates M or S.

(b) Details of Program Information Used by Work n

\vdash	Description of the later of			
	Program control signal			Executing program numbe
	Parallel 0 information	3W		Executing block number
	Parallel 1 information	3W		Alarm code
	Parallel 2 information	3W		
	Parallel 3 information	3W		
	Parallel 4 information	3W	-	
	Parallel 5 information	3W	-	
	Parallel 6 information	3W		
	Parallel 7 information	3W	-	
L	ogical axis #1 program current position	2W		
L	ogical axis #2 program current position	2W	-	
L	ogical axis #3 program current position	2W		
L	ogical axis #4 program current position	2W		
L	ogical axis #5 program current position	2W	-	
L	ogical axis #6 program current position	2W		
L	ogical axis #7 program current position	2W		
L	ogical axis #8 program current position	2W		
L	ogical axis #9 program current position	2W		
L	ogical axis #10 program current position	2W		
L	ogical axis #11 program current position	2W		
L	ogical axis #12 program current position	2W		
L	ogical axis #13 program current position	2W]	
L	ogical axis #14 program current position	2W		
L	ogical axis #15 program current position	2W		
L	ogical axis #16 program current position	2W]	

Program information used by work n

For a list of S registers, refer (2) Using S Register in 10.2.3 Confirming the Alarm Code.

Sequence Programs

This chapter describes sequence program types and how to run them.

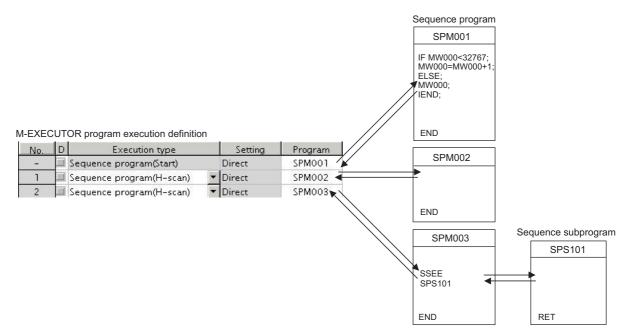
5.1 Sequence Program Types	5-2
5.2 How to Run a Sequence Program	5-3
5.2.1 How to Run a Sequence Program	5-3
5.2.2 Registering Program Execution	5-4
5.2.3 Work Register	5-5

5.1 Sequence Program Types

Sequence programs are of the following two types.

Category	Designation Method	Features	Number of Programs
Main Program	SPM□□□ □□□= 1 to 256	Calling from the M-EXECU- TOR program execution defini- tion	Up to 256 programs of the following types can be created: • Main motion program
Subprogram	SPS□□□ □□□= 1 to 256	Calling from the main program	Sub motion programMain sequence programSub sequence program

The program numbers of sequence programs are managed in the same manner as the motion program numbers. Assign a different number for each program number.


• Motion program MPMDDD: Program number of MPSDDD

• Sequence program SPM .: Program number of SPS

5.2 How to Run a Sequence Program

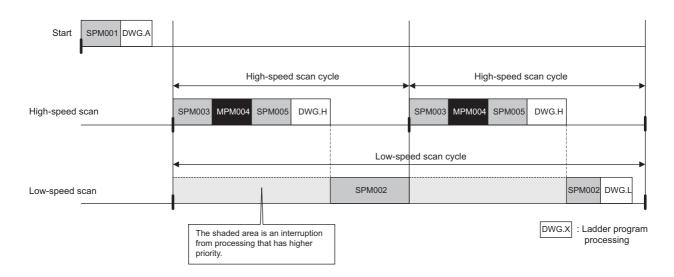
5.2.1 How to Run a Sequence Program

A sequence program is executed by registering it in the **Program definition** tab page of the M-EXECUTOR.

When the execution type is set to **Sequence Program (H scan)** or **Sequence Program (L scan)**, the program is executed at the time the definition is saved. When the execution type is set to **Sequence Program (Start)**, the program is executed when the power supply is turned ON again next time.

An operation example of running a sequence program is shown below.

(1) M-EXECUTOR Program Definition Tab Page


#: 2 C	CPU#: 1					RACK#01	Slot #00	0C00-0C3F	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	
EXECL	JTOR(List)	Individual display	rogram	definition n	iumber	8	•			
ogram (definition],	Allocation Control register								
No.	D	D Execution type		Setting		Program	Execution n	nonitor register	tor register(S register)	
-	🔲 Seque	ence program(Start)		Direct		SPM001		÷		
1	Seque	ence program(L-scan)	-	Direct		SPM002				
2	🔳 Seque	ence program(H-scan)	-	Direct		SPM003		-		
3	🔲 Motio	n program	•	Direct	-	MPM004	SWC	3380 - SW034	137	
4	Seque	ence program(H-scan)	-	Direct		SPM005		-		
5			-							
6	I		-							
7	I		-							
8			-							

5.2.2 Registering Program Execution

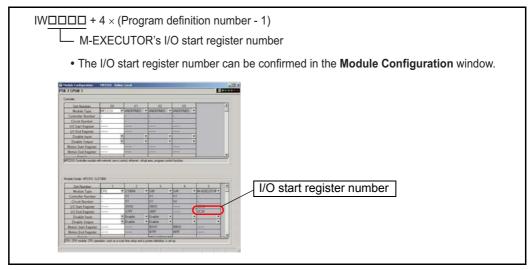
(2) Execution Timing

The following diagram illustrates program execution timing.

As shown in the following diagram, the programs are executed in the order they are registered in the **Program definition** tab page.

5.2.2 Registering Program Execution

Register the programs to run as shown below. The following screenshot shows an example of registering the sequence program SPM001 to run in a high-speed scan cycle.


	Register t	he progra	am to run.	
		\Box		
Engineering Manager - [M-EXECUTOR MP231	10 Online Local	1]		_ 🗆 🗵
Tile View Window				_ 8 ×
🗅 🔲 🎒 🔐 X 🖻 🖻 🎎 🖬 🖬	🛱 🖾 🗗 ROS			
PT#: 2 CPU#: 1	F	RACK 101 S	lot #00 0C00-0C3	
M-EXECUTOR(List) Individual display Program de	finition number	8	1	_
Program definition Allocation Control register			1	
No. D Execution type		rogram E	Execution monitor regi	ster(S register)
	rect	+	÷	
1 🔲 (Sequence program(L-scan) 🔻 Di	rect SF	PM001	<u></u>	
2 💌				
3 💌				
4 💌				
5 🔲 💌				
6 💌				
7 🔲 🔽				
8				
				L I
For Help, press F1				

Only the direct designation is available for sequence programs. The indirect designation cannot be used.

5.2.3 Work Register

A status flag to monitor program status is assigned to the sequence program in 5.2.2 Registering Program Execution. The status flag of a sequence program can be obtained by the following equation.

(1) Status Flag of Sequence Program

Bit No		Status	Description
0 to 3	Bit 0	Program running	This bit is ON while the sequence program is running. 0: The sequence program is being stopped, 1: The sequence program is running.
	Bit 1	(Reserved)	-
	Bit 2	(Reserved)	-
	Bit 3	(Reserved)	-
4 to 7	Bit 4	(Reserved)	-
	Bit 5	(Reserved)	-
	Bit 6	(Reserved)	-
	Bit 7	(Reserved)	-
8 to B	Bit 8	Program alarm is occurring	 This bit turns ON when any of the following errors occur while calling the sequence program using an SSEE command. This bit turns OFF when the error is corrected. The called program is not registered. The called program is not a sequence program. The called program is not a subprogram. (The main program is called.) The called program number exceeded the set range. Over nested O: No program alarm (Normal), 1: Program alarm occurring
	Bit 9	Stopping at break point	This bit is ON when the program is stopped at a break point during debugging. 0: Not stopped at break point, 1: Stopped at break point
	Bit A	(Reserved)	
	Bit B	In debug mode	This bit is ON while the program is running in debug mode. 0: Normal operation mode, 1: Debug mode
C to F	Bit C	Program type	Reports the running program type: Motion program or sequence program 0: Motion program, 1: Sequence program
	Bit D	Start request history	This bit is ON while the sequence program is running. 0: Sequence program stopped, 1: Sequence program running
	Bit E	(Reserved)	-
	Bit F	(Reserved)	-

Variables (Registers)

This chapter describes the details of variables that can be used in both motion programs and sequence programs.

6.1 Overview	6-2
6.1.1 Variable Types	6-2
6.1.2 Global Variables and Local Variables	6-4
6.2 Using Variables	6-7
6.2.1 System Variables (S Registers)	6-7
6.2.2 Data Variables (M Registers)	6-8
6.2.3 Input Variables (I Registers)	6-9
6.2.4 Output Variables (O Registers)	6-11
6.2.5 C Variables (C Registers)	6-13
6.2.6 D Variables (D Registers)	6-14
6.3 How to Use Subscripts i, j	6-15

6.1.1 Variable Types

6.1 Overview

This section summarizes the variables used in motion programs.

6.1.1 Variable Types

In a motion program and a sequence program, variables can be coded in place of numeric values. When variables are used in actual operations, the numeric values stored in the variable area are retrieved.

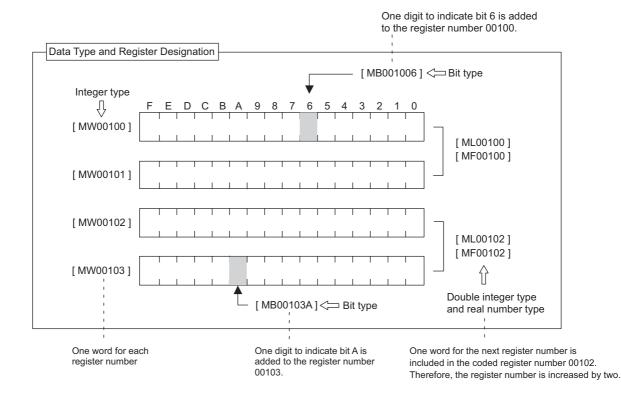
(1) Types of Variable (Registers)

The seven types of register shown in the following table can be used as variables in a motion program and a sequence program. S, M, I, O, and C registers are global variables that can be used by both motion programs and sequence programs. D registers are local variables that are defined for each program and cannot be used by other programs.

Туре	Name	Designation Method	Range	Description	Character- istic
S	System Registers	SB,SW,SL,SFnnnnn	SW00000 to SW08191	Registers that can be referenced by the sys- tem. Register number nnnn is a decimal expres- sion.	
М	Data Registers	MB,MW,ML,MFnnnnn	MW00000 to MW65534	Registers common to all programs. Used as interfaces between programs. Register number nnnn is a decimal expres- sion.	
I	Input Registers	IB,IW,IL,IFhhhh	IW0000 to IW7FFF	Registers used for input data. Register number hhhh is a hexadecimal expression. The register numbers 8000 and onward are used as motion monitoring parameters.	Common to programs
0	Output Registers	OB,OW,OL,OFhhhh	OW0000 to OW7FFF	Registers used for output data. Register number hhhh is a hexadecimal expression. The register numbers 8000 and onward are used as motion setting parameters.	
С	Constant Registers	CB,CW,CL,CFnnnnn	CW00000 to CW16383	Registers that can be referenced only by a program. Register number nnnn is a decimal expression.	
D	D Registers	DB,DW,DL,DFnnnnn	DW00000 to DW16383	Internal registers unique to each program. Can only be used by the corresponding pro- gram. The actual range to be used is specified by the user on the MPE720. Register number nnnn is a decimal expres- sion.	Unique to a program

Table 6.1 Types of Variable	le 6.1 Type	es of Variable
-----------------------------	-------------	----------------

IMPORTANT


The # registers cannot be used in motion programs or sequence programs. If a # register is used in a motion program or sequence program, a syntax error will occur when saving the program.

(2) Data Types

As shown in the following table, the data types are bit, integer, double integer, and real number data. Use them as required.

Symbol	Data Type	Numeric Range	Remarks
В	Bit	ON (1), OFF (0)	Used to determine the relay sequence and the ON/OFF condition.
W	Integer	-32768 to +32767 (8000H to 7FFFH)	Used for arithmetic operations. The parentheses () show its use in logic operations.
L	Double Integer	-2147483648 to +2147483647 (80000000H to 7FFFFFFH)	Used for arithmetic operations. The parentheses () show its use in logic operations.
F	Real Number	$\pm (1.175\text{E}-38 \text{ to } 3.402\text{E}+38)$	Used for high-level arithmetic operations.

Table 6.2 Data Types

Variables (Registers)

6.1.2 Global Variables and Local Variables

(1) Global Variables

Global variables can be used in common by ladder logic programs, user functions, and the drawings in motion programs and sequence programs. In other words, the calculated results for a given ladder logic program can be used by other user functions and motion programs. The global variable size is stored by the system for each variable. (See the following illustration.)

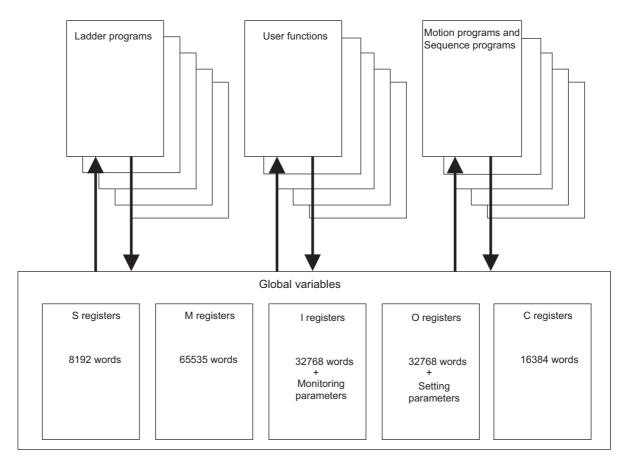
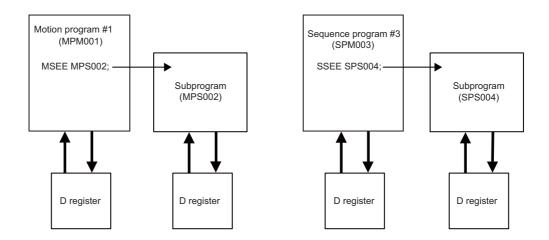
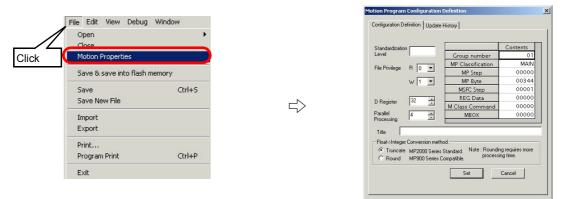



Fig. 6.1 Global Variables

(2) Local Variables

Local variables are used locally by each program. They cannot be used by other programs. Local variables are stored in the corresponding program memory.

The number of local variables (D registers) to be used in each program can be specified in the **Program Property** window or **Motion Program Configuration Definition** window. Up to 16384 words can be used for one drawing.


 \Rightarrow

Program Name		
Configuration	E File privilege	0,1
 Detail definition 	Read	0
Modified history	Write	1
	D register	32

Program Property window

Motion Program Configuration Definition window

registers cannot be used in motion programs or sequence programs.

6.1.2 Global Variables and Local Variables

IMPORTANT

Precautions for Variable Operations

Storing data in a variable of a different data type will result in:

	• Use a Substitute command (=).						
Format	• Write a destination register on the left and the operation on the right.						
	MW00100 = MW00101 + MW00102;						
Variable	 When real number data is stored in an integer type variable. MW00100 = MF00200; The real number data is converted into integer (00001) (1.234) data and stored in the destination register. Note: Be careful to avoid a round-off error, caused when storing real number data into an integer type variable. Specify the round-off method when storing the real number in an integer type variable in the Motion Program Configuration Definition window. MW00100 = MF00200 + MF00202; (0124) (123.48) (0.02) The operation result will differ depending 						
Variable Operations	 (0123) (123.49) (0.01) on the variable values to be calculated. When real number data is stored in a double integer type variable. ML00100 = MF00200; The real number data is converted to integer (65432) (65432.1) data and stored in the destination register. When double integer data is stored in an integer type variable. MW00100 = ML00200; The lower 16 bits of double integer data are (-00001) (65535) stored in the destination register as they are. When integer data is stored in a double integer type variable. ML00100 = MW00200; The lower 16 bits of couble integer data are (-00001) (65535) stored in the destination register as they are. When integer data is stored in a double integer type variable. ML00100 = MW00200; The integer data is converted to double integer (0001234) (1234) data and stored in the destination register. 						
Operations that Cause Syntax Errors	 When integer data is stored in a bit type variable, MB000100 = 123; => Syntax error MB000100 = MW00100; => Syntax error 						

6.2 Using Variables

This section explains how to use variables.

6.2.1 System Variables (S Registers)

(1) Overview

System variables (S registers) are provided by the MP2000-series Machine Controller system. They can be used to read system error information, the operation status, and so on. S registers are global variables that can be used in any motion program and sequence program. For details, refer to the user's manual for the Machine Controller to be used.

(2) Description

S registers are designated as follows:

SB000000 to SB08191F SW00000 to SW08191 SL00000 to SL08190 SF00000 to SF08190

The variable number is expressed as a decimal. When bits are specified, the bit number is expressed in hexadecimal.

(3) Programming Examples

▲ EXAMPLE

Bit Designation

OB000010 = SB000402|SB000403;

Integer Designation

MW00100 = SW00041;

• Double Integer Designation

ML00100 = SL00062;

IMPORTANT

The system registers (S) are used exclusively for reading. If they are written to, system operations cannot be guaranteed.

6.2.2 Data Variables (M Registers)

(1) Overview

M registers are general-purpose variables that can be used in ladder logic programs, user functions, motion programs, and sequence programs. These are global variables that can be used as interfaces between motion programs, sequence programs, and ladder logic programs.

(2) Description

M registers are designated as follows:

```
MB000000 to MB65534F
MW00000 to MW65534
ML00000 to ML65533
MF00000 to MF65533
```

The M register can be used as a variable for each type of operation and substituted for the operation result, or specified as the variable for the positioning coordinate value or the speed. The variable number is expressed as a decimal.

(3) Programming Examples

(a) Specifying the Position and Speed in Axis Move Commands as Variables

▲ EXAMPLE

Parameter Reference unit = mm	
When decimal point position = 3	
ML00100=100000;	
ML00102=200000:	\rightarrow 100.000 mm
	\rightarrow 200.000 mm
ML00104=300000;	\rightarrow 300.000 mm
ML00106=500000;	
	\rightarrow 500.000 mm/min
MVS [X]ML00100 [Y]ML00102 [Z]ML00104 FML00106;	

(b) Using Variables in Operations

EXAMPLE

Bit Designation

MB001001=IB00100 & IB00201;

• Integer Designation

MW00101=(MW00101 | MW00102) & FF0CH;

• Double Integer Designation

ML00200=((MI00202*ML00204) / ML00206)*3;

• Real Number Designation

MF00200=((MF00202*MF00204) / MF00206)*3.14;

IMPORTANT

When the travel distance coordinate values or speed is designated as a variable in the following motion commands, double integer data must be used.

MOV, MVS, MCW/MCC, ZRN, SKP, MVT, EXM, POS, ACC, SCC, IAC, IDC, IFP, FMX, INP, VEL

6.2.3 Input Variables (I Registers)

(1) Overview

These variables are used by input data and the servo monitor parameters. Although servo parameters can also be used for writing data, the values can not be guaranteed.

(2) Description

I registers are designated as follows:

IW0000 to IW7FFF: Input data	
IW8000 to IWFFFF: Motion monitoring	parameters

(a) Register Numbers of Input Data

Depends on the address specified in the module configuration definition.

(b) Register Numbers of Motion Monitor Parameter

The number of controlled axes depends on the module type. The following indicates the number of controlled axes for each module and the maximum number of modules.

		Max. Number of Modules That Can Be Mounted on One Machine Controller									
Motion Module	Number of Axes Controlled by One Module	MP2100	MP2100M	MP2200	MP2300	MP2300S	MP2310	MP2400	MP2500(D)	MP2500M	MP2500MD
MP2000 Series Built-in SVB	16 max. *1	1	1	-	1	1	1	1	1	1	1
MP2100M/MP2500M SVB-01	16 max. *1	Ι	1	Ι	-	Ι	-	-	-	1	1
Optional Module SVB-01	16 max. ^{*1}										
Optional Module SVA-01	2	_	14 *2 *3	16 *3	2	1	3	-	_	_	14 *2 *3
Optional Module PO-01	4										

Table 6.3	Number of Axes	Controlled by	y One Module
-----------	----------------	---------------	--------------

* 1. The number of axes controlled by one built-in SVB or SVB-01 depends on the MECHATROLINK definitions.

* 2. With MP2100M and MP2500MD, an expansion rack is required to use optional modules (SVB-01, SVA-01, and PO-01).

* 3. The maximum number of optional modules (SVB-01, SVA-01, and PO-01) that can be mounted on MP2100M, MP2200, or MP2500MD with an expansion rack.

6

6.2.3 Input Variables (I Registers)

Axis No. Circuit No.	Axis 1	Axis 2	Axis 3	Axis 4	Axis 5	••	Axis 16
1	8000 to 807F	8080 to 80FF	8100 to 817F	8180 to 81FF	8200 to 827F	••	8780 to 87FF
2	8800 to 887F	8880 to 88FF	8900 to 897F	8980 to 89FF	8A00 to 8A7F	••	8F80 to 8FFF
3	9000 to 907F	9080 to 90FF	9100 to 917F	9180 to 91FF	9200 to 9A7F	••	9780 to 97FF
4	9800 to 987F	9880 to 98FF	9900 to 997F	9980 to 99FF	9A00 to 997F	••	9F80 to 9FFF
5	A000 to A07F	A080 to A0FF	A100 to A17F	A180 to A1FF	A200 to A27F	••	A780 to A7FF
6	A800 to A87F	A880 to A8FF	A800 to A87F	A980 to A9FF	AA00 to AA7F	••	AF80 to AFFF
7	B000 to B07F	B080 to B0FF	B100 to B17F	B180 to B1FF	B200 to B27F	••	B780 to B7FF
8	B800 to B87F	B880 to B8FF	B900 to B97F	B980 to B9FF	BA00 to BA7F	••	BF80 to BFFF
9	C000 to C07F	C080 to C0FF	C100 to C17F	C180 to C1FF	C200 to C27F	••	C780 to C7FF
10	C800 to C87F	C880 to C8FF	C900 to C97F	C980 to C9FF	CA00 to CA7F	••	CF80 to CFFF
11	D000 to D07F	D080 to D0FF	D100 to D17F	D180 to D1FF	D200 to D27F	••	D780 to D7FF
12	D800 to D87F	D880 to D8FF	D900 to D97F	D980 to D9FF	DA00 to DA7F	••	DF80 to DFFF
13	E000 to E07F	E080 to E0FF	E100 to E17F	E180 to E1FF	E200 to E27F	••	E780 to E7FF
14	E800 to E87F	E880 to E8FF	E900 to E97F	E980 to E9FF	EA00 to A97F	••	EF80 to EFFF
15	F000 to F07F	F080 to F0FF	F100 to F17F	F180 to F1FF	F200 to F27F	••	F780 to EFFF
16	F800 to F87F	F880 to F8FF	F900 to F97F	F980 to F9FF	F900 to F97F	••	FF80 to FFFF
<u>-</u>	↑	•		•			

Table 6.4	Register	Numbers	of Motion	Parameter
-----------	----------	---------	-----------	-----------

Module number offset

The register numbers for each axis of the motion monitor parameters can be obtained by the following equation. The register start number of the motion monitor parameter = IW8000 + (Circuit No. -1) × 800h + (Axis No. -1) × 80h

(3) Programming Examples

The Input data and servo monitor parameters are read out and referenced.

EXAMPLE ► • Bit Designation

MB01000 = IB0010 & IB00105;

• Integer Designation

MW0100 = IW8008;

Double Integer Designation

ML0100 = IL8004;

6.2.4 Output Variables (O Registers)

(1) Overview

These variables are used for output data and servo setting parameters.

(2) Description

O registers are designated as follows:

OW0000 to OW7FFF: Output data	
OW8000 to OWFFFF: Motion setting pa	arameter

(a) Register Numbers of Output Data

Depends on the address specified in the module configuration definition.

(b) Register Numbers of Motion Setting Parameter

The number of controlled axes depends on the module type. The following indicates the number of controlled axes for each module and the maximum number of modules.

		Max. Number of Modules That Can Be Mounted on One Machine Controller											
Motion Module	Number of Axes Controlled by One Module	MP2100	MP2100M	MP2200	MP2300	MP2300S	MP2310	MP2400	MP2500(D)	MP2500M	MP2500MD		
MP2000 Series Built-in SVB	16 max. *1	1	1	-	1	1	1	1	1	1	1		
MP2100M/MP2500M SVB-01	16 max. *1	_	1	-	-	-	_	-	_	1	1		
Optional Module SVB-01	16 max. *1										14		
Optional Module SVA-01	2	_	-	-	14 *2 *3	16 *3	2	1	3	-	_	_	*2 *3
Optional Module PO-01	4												

Table 6.5 Number of Axes Controlled by One Module

* 1. The number of axes controlled by one built-in SVB or SVB-01 depends on the MECHATROLINK definitions.

* 2. With MP2100M and MP2500MD, an expansion rack is required to use optional modules (SVB-01, SVA-01, and PO-01).

* 3. The maximum number of optional modules (SVB-01, SVA-01, and PO-01) that can be mounted on MP2100M, MP2200, or MP2500MD with an expansion rack.

6

6.2.4 Output Variables (O Registers)

Axis No. Circuit No.	Axis 1	Axis 2	Axis 3	Axis 4	Axis 5	••	Axis 16
1	8000 to 807F	8080 to 80FF	8100 to 817F	8180 to 81FF	8200 to 827F	••	8780 to 87FF
2	8800 to 887F	8880 to 88FF	8900 to 897F	8980 to 89FF	8A00 to 8A7F	••	8F80 to 8FFF
3	9000 to 907F	9080 to 90FF	9100 to 917F	9180 to 91FF	9200 to 9A7F	••	9780 to 97FF
4	9800 to 987F	9880 to 98FF	9900 to 997F	9980 to 99FF	9A00 to 997F	••	9F80 to 9FFF
5	A000 to A07F	A080 to A0FF	A100 to A17F	A180 to A1FF	A200 to A27F	••	A780 to A7FF
6	A800 to A87F	A880 to A8FF	A800 to A87F	A980 to A9FF	AA00 to AA7F	••	AF80 to AFFF
7	B000 to B07F	B080 to B0FF	B100 to B17F	B180 to B1FF	B200 to B27F	••	B780 to B7FF
8	B800 to B87F	B880 to B8FF	B900 to B97F	B980 to B9FF	BA00 to BA7F	••	BF80 to BFFF
9	C000 to C07F	C080 to C0FF	C100 to C17F	C180 to C1FF	C200 to C27F	••	C780 to C7FF
10	C800 to C87F	C880 to C8FF	C900 to C97F	C980 to C9FF	CA00 to CA7F	••	CF80 to CFFF
11	D000 to D07F	D080 to D0FF	D100 to D17F	D180 to D1FF	D200 to D27F	••	D780 to D7FF
12	D800 to D87F	D880 to D8FF	D900 to D97F	D980 to D9FF	DA00 to DA7F	••	DF80 to DFFF
13	E000 to E07F	E080 to E0FF	E100 to E17F	E180 to E1FF	E200 to E27F	••	E780 to E7FF
14	E800 to E87F	E880 to E8FF	E900 to E97F	E980 to E9FF	EA00 to A97F	••	EF80 to EFFF
15	F000 to F07F	F080 to F0FF	F100 to F17F	F180 to F1FF	F200 to F27F	••	F780 to EFFF
16	F800 to F87F	F880 to F8FF	F900 to F97F	F980 to F9FF	F900 to F97F	••	FF80 to FFFF
	↑	•	•	•	•	•	•

Table 6.6 R	Register Numbers	of Motion P	arameter
-------------	------------------	-------------	----------

Module number offset

The register numbers for each axis of motion setting parameters can be obtained by the following equation.

The register start number of the motion setting parameter = OW8000 + (Circuit No. -1) × 800h + (Axis No. -1) × 80h

(3) Programming Examples

The output data and motion setting parameters are written in.

▲ EXAMPLE

• Bit Designation

OB01000=MB001000 & IB00100;

• Integer Designation

OW8008=MW00100;

• Double Integer Designation

OL8010=ML00100+ML00200;

6.2.5 C Variables (C Registers)

(1) Overview

C registers are variables to be referenced from programs. They cannot be used to write.

(2) Description

C registers are designated as follows:

CW00000 to CW16383

C registers cannot be written from programs.

(3) Programming Examples

▲ EXAMPLE

Using Variables in Operations.

• Bit Designation

MB001000=CB001001;

• Integer Designation

MW00100=CW00100;

• Double Integer Designation

ML00100=CL00100;

• Real Number Designation

MF00100=CF00100;

6

6.2.6 D Variables (D Registers)

6.2.6 D Variables (D Registers)

(1) Overview

D variables can be used only by the relevant program using specific internal registers for each motion program and sequence program.

(2) Description

D registers are designated as follows:

DW00000 to DW16383 (Maximum)

The D register can be used as a variable for each type of operation and substituted for the operation result, or specified as the variable for the positioning coordinate value or the speed. The variable number is expressed as a decimal.

The size is specified in the program configuration definition (Motion Properties), and the default is 32words max.

(3) Programming Examples

(a) Specifying the Position and Speed in Axis Move Commands as Variables

EXAMPLE

Parameter Reference unit = mm	
When decimal point position = 3	
DL00100=100000;	\rightarrow 100.000 mm
DL00102=200000;	$\rightarrow~200.000~\text{mm}$
DL00104=300000;	\rightarrow 300.000 mm
DL00106=500000;	$\rightarrow~$ 500.000 mm/min
MVS [A1]DL00100 [B1]DL00102 [C1]DL00104 FDL00106;	

(b) Using Variables in Operations

• Bit Designation

DB001000=IB01001 & MB000101;

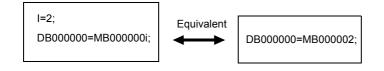
• Integer Designation

DW00102= (CW00103 | DW00104) & DW00105;

- Double Integer Designation
- DL00106= (DL00108*ML00011) / ML00200;
- Real Number Designation

DF00200= (MF00202*DF00202)*3.14;

IMPORTANT


When the travel distance coordinate value or speed is designated as a variable in the following motion commands, double integer data must be used.

MOV, MVS, MCW/MCC, ZRN, SKP, MVT, EXM, POS, ACC, DCC, SCC, IAC, IDC, IFP, FMX, INP, VEL

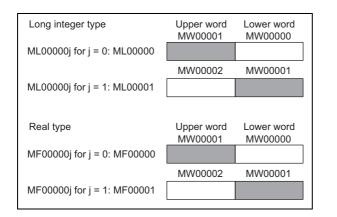
6.3 How to Use Subscripts i, j

Two type of registers (i, j) are available as dedicated registers to modify the relay and register numbers. Both i and j have the same function. They are used when you want to handle a register number as a variable. An example for each register data type is given as explanation.


(1) Bit Type Attached with a Subscript

The result is a register number added with i or j value.

For example, MB000000i for i=2 is the same as MB000002. Also, MB000000j for j=27 is the same as MB00001B.


(2) Integer Type Attached with a Subscript

The result is a register number added with i or j value.

For example, MW00010i for i=3 is the same as MW00013. Also, MW00001j for j=30 is the same as MW00031.

(3) Long Integer or Real Type Attached with a Subscript

The result is a register number with an added i or j value.

For example, "ML00000j for j=1" is the same as ML00001. Also, "MF00000j for j=1" is the same as MF00001.

For double integer registers and real number registers, one word of register number and one word of one added register number are used. Be careful to avoid overlapping one with the other when using subscripts. For ML00000j when j = 0 and ML00000j when j = 1, for example, one word of MW00001 will be overlapped.

Program example using subscript is as follows.


```
:

ML00200 = 0 ;

J = 0 ;

WHILE J < 100 ;

ML00200 = ML00200 + ML00100j ;

J = J + 2 ;

WEND ;

:

:
```

The left program uses a subscript j and calculates the total amount of 50 registers from ML00100 to ML00198, and stores the total amount in ML00200.

6

• The following versions of system software and programming tool MPE720 are required to use subscripts i and j.

MP2000 Series Machine Controller	Required Version		MPE720	Required Version
			MPE720 Ver.5	Ver.5.41 or later
All models	Ver.2.63 or later	2.63 or later	MPE720 Ver.6	Ver.6.06 or later
				Ver.6.06 Lite or later

• Both upper and lower case letters can be used for subscripts i and j.

i – 0:	
<u>i</u> = 0;	
<u>l</u> = 0;	
DW00000 = MW00000 <u>i</u> ;	
DW00000 = MW00000 <u>I</u> ;	

Programming

This chapter describes the rules for creating motion programs and sequence programs.

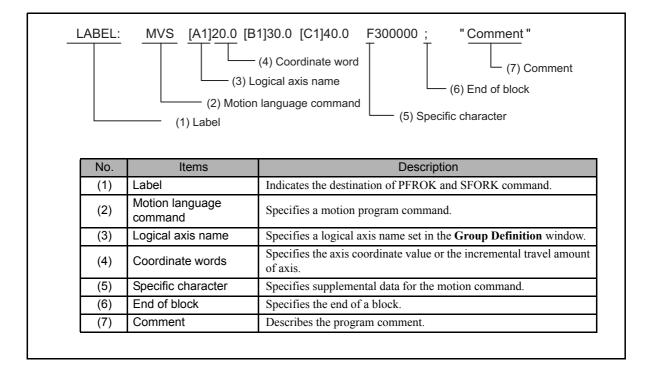
7.1 Motion Program Format	7-2
7.1.1 Motion Program Structure	7-2
7.1.2 Block Format	7-2
7.1.3 Using Constants and Variables	7-7
7.2 Motion Module Parameters	7-9
7.2.1 Axis Type Selection	7-9
7.2.2 Reference Unit	
7.2.3 Electronic Gear	7-10
7.2.4 Speed Reference	
7.2.5 Acceleration/Deceleration Setting	7-12
7.3 Group Definition	7-13
7.4 Priority Levels of Operations	7-15
7.5 Commands and Execution Scans	7-17
7.5.1 Command Types	
7.5.2 List of Command Types	
7.6 Sequence Program Format	7-19

7

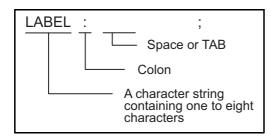
7.1 Motion Program Format

7.1.1 Motion Program Structure

A motion program contains a program number, arbitrary comment, program body, and END command. The process executed by a motion program is coded in the program body. The motion program basic structure is shown below.


🚂 Engineering Manager		
File Edit View Debug Wine	dow	
<u>□</u> □∎∌ # % •		
Motion Editor MP23	310 Online Local[MPM001]	
PT#: 2 CPU#: 1		
Group1	📔 🗈 🗃 🖶 🎒 🍯 🗊 🛌 Program number and comment]
00001	MPM001 "ANY COMMENT;	1
00002		
00004 00005 00000 00006	LABEL: MVS[A1]20.0 [B1]30.0 [C1]40.0 F30000; "COMMENT"	
00007 00008 00009 00001	END;	body
1DBG 2ABT 3	4IN 50VR 6SP 7BP 8G0 9 10BRK 11RGL 12	
For Help, press F1	CAP NUM	

One line of program number and comment can be omitted.


7.1.2 Block Format

One block is one process execution unit. The program body consists of one or more than one block. The format of one block is shown below. The details of each item are described from the next page.

(1) Label

A label consists of a character string containing from one to eight alphanumeric characters or symbols, a colon [:], and a space or TAB.

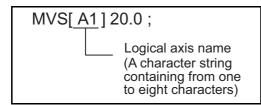
Туре	Available Characters
Letters	A to Z, a to z
Numbers	0 to 9
Symbols	_ (hyphen)

Note: Numbers cannot be used at the heads of labels.

A label is required when using a Parallel Fork command (PFORK) or Selective Fork command (SFORK) command. If a PFORK or SFORK command is not used, the label description is not required.

EXAMPLE

Label Coding Example


PFORK LAB1, LAB2; *LAB1:* ZRN [A1]0 [B1]0 [C1]0; JOINTO LAB3; *LAB2:* MVS [D1]100.0 [E1]200.0 [F1]300.0; JOINTO LAB3; LAB3: PJOINT;

(2) Motion Language Commands

Code a motion language command. Refer to *Chapter 8 Command Reference* or *Appendix A Motion Language Commands* for information on motion language commands.

(3) Logical Axis Name

Code a logical axis name set in the **Group Definition** window. The logical axis name must be enclosed in brackets [].

Туре	Available Characters
Letters	A to Z, a to z
Numbers	0 to 9

(4) Coordinate Words

A coordinate word is a numerical value or a variable to be coded after an axis name. A coordinate word specifies the reference position, speed, acceleration/deceleration rate, and other items.

· Using Numbers for a Coordinate Word

Write a numerical value after an axis name to directly specify the coordinate word.

Both integers and real numbers can be used for a numerical value. However, special care must be taken when using integers.

When the reference unit is set to 0.001 mm and the reference position "1000 (integer numbers)" is written in the coordinate word, for example, the Machine Controller interprets it as 1.000 mm. When writing "1.000 (real numbers)," the Machine Controller interprets it as it is (1.000 mm).

EXAMPLE

MVS	[A1] 1000 ;	$\rightarrow 1.000 \text{ mm}$
or		
MVS	[A1] 1.000 ;	\rightarrow 1.000 mm
or		
MVS	[A1] 1. ;	$\rightarrow 1.000 \text{ mm}$
	[],	

· Using a Variable for a Coordinate Word

Write a double integer type variable after an axis name to indirectly specify the coordinate word.

When the reference unit is set to 0.001 mm with indirect designation using a variable, and the register value is set to 1000, the Machine Controller interprets the coordinate word as 1.000 mm in the same way as for an integer value set in the above example.

EXAMPLE

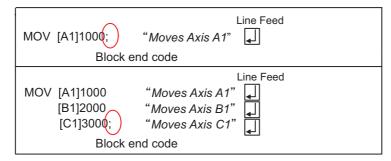
The coordinate word unit depends on the command and motion module settings. Refer to 7.2.2 Reference Unit for information on the coordinate word unit.

(5) Specific Characters

The meaning and application examples of each specific character are listed below. Refer to the Reference Section indicated in the following table for details of each specific character.

Character	Meaning	Application Examples	Reference Section
F	Interpolation feed speed	MVS [A1]1000 [B1]2000 <i>F</i> 3000000; MVS [A1]1000 [B1]2000 <i>F</i> ML00000;	8.2.2 Linear Interpolation (MVS)
	Max. interpolation feed speed	FMX <i>T</i> 30000000; FMX <i>T</i> ML00000;	8.1.7 Maximum Interpolation Feed Speed Setting (FMX)
Time Settings T Number of turns for circular interpolation		TIM T 100; TIM T MW00000; MVT [A1]1000 [B1]2000 T 100; MVT [A1]1000 [B1]2000 T ML00000; IAC T 100; IAC T ML00000; IDC T 100; IDC T ML00000;	 8.4.11 Dwell Time (TIM) 8.2.9 Set Time Positioning (MVT) 8.1.9 Interpolation Acceleration Time Change (IAC) 8.1.10 Interpolation Deceleration Time Change (IDC)
		MCW [A1]1000 [B1]2000 U500 V500 7 2 F3000000; MCW [A1]1000 [B1]2000 U500 V500 7 ML00000 F3000000;	8.2.3 Clockwise/Counterclockwise Circular Interpolation with Center Position Designa- tion (MCW, MCC) 8.2.4 Clockwise/Counterclockwise Circular Interpolation with Radius Designation (MCW, MCC)
R	Radius of circle	MCW [A1]1000 [B1]2000 R 500 F3000000; MCW [A1]1000 [B1]2000 R ML00000 F3000000;	8.2.3 Clockwise/Counterclockwise Circular Interpolation with Center Position Designa- tion (MCW, MCC) 8.2.4 Clockwise/Counterclockwise Circular Interpolation with Radius Designation (MCW, MCC)
U	Circle center point coordinate 1 (horizontal ax- is)	MCW [A1]1000 [B1]2000 <i>U</i> 500 V500 T2 F3000000; MCW [A1]1000 [B1]2000 <i>U</i> ML00000 V500 T2 F3000000;	8.2.3 Clockwise/Counterclockwise Circular Interpolation with Center Position Designa- tion (MCW, MCC) 8.2.4 Clockwise/Counterclockwise Circular Interpolation with Radius Designation (MCW, MCC)
V	Circle center point coordinate 2 (vertical axis)	MCW [A1]1000 [B1]2000 U500 V 500 T2 F3000000; MCW [A1]1000 [B1]2000 U500 V ML00000 T2 F3000000;	8.2.3 Clockwise/Counterclockwise Circular Interpolation with Center Position Designa- tion (MCW, MCC) 8.2.4 Clockwise/Counterclockwise Circular Interpolation with Radius Designation (MCW, MCC)
Р	Interpolation feed speed specified by percentage	IFP P 50; IFP P ML00000;	8.1.8 Interpolation Feed Speed Ratio Set- ting (IFP)
SS	Skip signal selection	SKP [A1]1000 [B1]2000 F3000000 SS 1; SKP [A1]1000 [B1]2000 F3000000 SS 2;	8.2.8 Linear Interpolation with Skip Func- tion (SKP)
D	Movement amount for external positioning	EXM [A1]1000 D 1000; EXM [A1]1000 D ML00000;	8.2.10 External Positioning (EXM)
N	Number of shifts	SFR MB001000 N 5 W10; SFR MB001000 M MW00000 W10;	8.8.1 Bit Right Shift (SFR) 8.8.2 Bit Left Shift (SFL)
w	Bit width	BLK MW00100 DW00100 W 10; BLK MW00100 DW00100 W MW00000;	8.8.1 Bit Right Shift (SFR) 8.8.2 Bit Left Shift (SFL) 8.8.3 Block Move (BLK) 8.8.4 Clear (CLR)

7


7.1.2 Block Format

Character	Meaning	Application Examples	Reference Section	
MPS	Motion subprogram number	MSEE MPS 002;	8.4.5 Motion Subprogram Call (MSEE)	
SPS	Sequence subprogram number	SSEE SPS 002;	8.4.6 Sequence Subprogram Call (SSEE)	

(6) End of Block

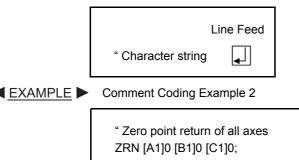
Insert a semi-colon at the end of block. There is no limitation on the number of lines in a block. Code the end of a block to specify its end.

Always insert Line Feed after the end of a block.

(7) Comments

Either of the following two formats can be used.

Code a Character String Enclosed in Double Quotation Marks


A character string enclosed in double quotation marks is interpret as a comment.

" Character string "

ZRN [A1]0 [B1]0 [C1]0; " Zero point return of all axes " MVS [A1]100.0 [B1]200.0 [C1]300.0; " 3-axis linear interpolation "

· Code a Character String after One Double Quotation Mark

The characters from the double quotation mark to a Line Feed (until the Enter key is pressed) are interpret as a comment.

" 3-axis linear interpolation MVS [A1]100.0 [B1]200.0 [C1]300.0;

7.1.3 Using Constants and Variables

(1) Constants

The constants that can be used in motion programs are listed below.

Classification	Range	Coding Examples
Decimal Integers	-2147483648 to 2147483647	823, -2493, 123k, 123K
Hexadecimal Integers	00000000H to FFFFFFFFH	FFFABCDEH, 2345H, FH
Real Numbers	-214748.3648 to 214748.3647 Change according to the setting of the num- ber of digits below the decimal point	763.0, 824.2, 234.56, -321.12345

• The – (minus) sign cannot be omitted, but the + (plus) sign can.

[A1]+123	⇒	[A1]123	-
[A1]-123	⇒	[A1]-123	

• A decimal integer value is multiplied by 1000 by adding K to the value. For a value such as position reference, adding a K in place of three zeros makes it easy to read.

[A1]123k	⇒	[A1]123000
[A1]123K	⇒	[A1]123000

(2) Variables

The variables that can be used in motion programs are listed below.

Classification	Variable Type	Data Type			
Classification		Bit	Word	Long	Floating point
	S register	SB	SW	SL	SF
	M register	MB	MW	ML	MF
Global Variables	I register	IB	IW	IL	IF
	O register	OB	OW	OL	OF
	C register	СВ	CW	CL	CF
Local Variables	D register	DB	DW	DL	DF

Refer to Chapter 6 Variables (Registers) for details on variables.

<u> EXAMPLE</u>

A variable coding example is shown below.

M B 1 2 3 4 5 F	
	Bit position: Valid only with bit data
	Variable number
	Data type: B, W, L, or F
	Variable type: S, M, I, O, C, or D

7.1.3 Using Constants and Variables

 \bigvee

$0 \ (\text{zero}) \ \text{cannot} \ \text{be} \ \text{omitted} \ \text{in all constants} \ \text{and} \ \text{variables}.$

Examples Where 0 (zero) Can be Omitted

[A1]00123	=> [A1]123
[A1]MW00010	=> [A1]MW10
[A1]100.000	=> [A1]100.

Examples Where 0 (zero) Cannot be Omitted

MPM001;(Program number coded at the head of program) MSEE MPS002;

7.2 Motion Module Parameters

Motion control using motion programs is determined according to the settings of the motion module parameters. Set the motion module parameters referring to the connected machine before running motion programs. This chapter describes the minimum settings of motion module parameters required for motion control using motion programs.

7.2.1 Axis Type Selection

There are two types of position control: Finite length position control for return and other operations that are performed only within a specified range, and infinite length position control, which is used for moving in one direction only. Infinite length position control can reset the position to 0 after one rotation, e.g, belt conveyors, or move in one direction only, without resetting position after one rotation. The axis type selection sets which of these types of position control is to be used.

Parameter Type	Parameter No. (Register No.)	Name	Description	Default Value
Motion Fixed Parameters	No. 1, bit 0	Function Selec- tion Flag 1, Axis Selection	 Specify the position control method for the controlled axis. O: Finite Length Axis Set a finite length axis if control is performed within a limited length or for an axis that uses infinite length control in one moving direction only without resetting the position every rotation. 1: Infinite Length Axis Set an infinite length axis for an axis that uses infinite length control while resetting the position every rotation. 	0
	No. 10	Infinite Length Axis Reset Posi- tion (POSMAX)	Set the reset position of the position data when an infinite length axis has been set for the axis type using the reference unit.	360000

The details of the Axis Type Selection are listed in the following table.

7.2.2 Reference Unit

The unit of position reference that is input from a motion program is called a reference unit, and is a pulse, mm, deg, inch, or μ m. The reference unit is specified in Reference Unit Selection (motion fixed parameter 4).

The minimum reference unit that can be specified is determined by the setting of Number of Digits below Decimal Point (motion fixed parameter 5).

Motion Fixed Parame-	Motion Fixed Parameter 4: Reference Unit Selection				
ter 5: Number of Digits below Decimal Point	0: pulse	1: mm	2: deg	3: inch	4: μm
0: 0 digits		1 mm	1 deg	1 inch	1µm
1: 1 digits		0.1 mm	0.1 deg	0.1 inch	0.1 µm
2: 2 digits	1 pulse*	0.01 mm	0.01 deg	0.01 inch	0.01µm
3: 3 digits	i puise.	0.001 mm	0.001 deg	0.001 inch	0.001 µm
4: 4 digits		0.0001 mm	0.0001 deg	0.0001 inch	0.0001µm
5: 5 digits		0.00001 mm	0.00001 deg	0.0001 inch	0.00001µm

Minimum reference unit

* When "pulse" is selected, the motion fixed parameter 5 (number of digits below decimal point) is invalid.

Programming

7.2.3 Electronic Gear

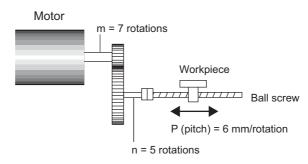
The range of reference positions for an axis move command are as follows:

Motion Fixed	Motion Fixed Parameter 4: Reference Unit Selection					
Parameter 5: Num- ber of Digits below Decimal Point	0: pulse	1: mm, 2: deg, 3: inch, 4μm				
0: 0 digit	-2147483648 to 2147483647	-2147483648 to 2147483647				
1: 1 digit	-2147483648 to 2147483647	-214748364.8 to 214748364.7				
2: 2 digits	-2147483648 to 2147483647	-21474836.48 to 21474836.47				
3: 3 digits	-2147483648 to 2147483647	-2147483.648 to 2147483.647				
4: 4 digits	-2147483648 to 2147483647	-214748.3648 to 214748.3647				
5: 5 digits	-2147483648 to 2147483647	-21474.83648 to 21474.83647				

7.2.3 Electronic Gear

In contrast to the reference unit input to the Machine Controller, the moving unit in the mechanical system is called the "output unit." The electronic gear converts position or speed units from reference units to output units for the mechanical system without going through an actual mechanism, such as a gear.

When the axis of the motor has rotated m times and the mechanical configuration allows the axis at the load to rotate n times, this electronic gear function can be used to make the reference unit equal to the output unit.

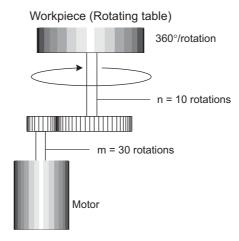

- The electronic gear function is enabled when the following settings are made:
 - Fixed Parameter 6: Travel Distance per Machine Rotation
 - Fixed Parameter 8: Servo Motor Gear Ratio
 - Fixed Parameter 9: Machine Gear Ratio

Note: The electronic gear is disabled when the pulse is specified for the Reference Unit Selection.

The following setting example uses ball screw and rotating table workpieces.

(1) Parameter Setting Example Using Ball Screw

- Machine specifications: Ball screw axis rotates 5 times for every 7 rotations of the motor axis (Refer to the following figure.)
- Reference unit: 0.001 mm



To move the workpiece 0.001 mm for 1 reference unit input under the conditions outlined above, i.e., 1 reference unit = 1 output unit, set the fixed parameters 6, 8, and 9 as follows:

- Fixed Parameter 6: Travel Distance per Machine Rotation = 6 mm/0.001 mm = 6000 (reference units)
- Fixed Parameter 8: Servo Motor Gear Ratio = m = 7
- Fixed Parameter 9: Machine Gear Ratio = n = 5 Note: Set the SERVOPACK gear ratio to 1:1.

(2) Parameter Setting Example Using Rotating Table

- Machine specifications: Rotating table axis rotates 10 times for every 30 rotations of the motor axis (Refer to the following figure.)
- Reference unit: 0.1°

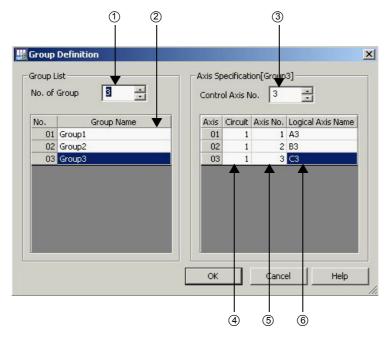
To rotate the table 0.1° for 1 reference unit input under the conditions outlined above, i.e., 1 reference unit = 1 output unit, set the fixed parameters 6, 8, and 9 as follows:

- Fixed Parameter 6: Travel Distance per Machine Rotation = $360 \times / 0.1 \times = 3600$ (reference units)
- Fixed Parameter 8: Servo Motor Gear Ratio = m = 30
- Fixed Parameter 9: Machine Gear Ratio = n = 10
 - Note: 1. The gear ratio for fixed parameters 8 and 9 (m/n) may be constant, e.g., m = 3 and n = 1.
 - 2. Set the SERVOPACK gear ratio to 1:1.

7.2.4 Speed Reference

The unit for the speed coded in a motion program can be selected: Reference unit/s, 10^n reference unit/min., 0.01% of rated speed, or 0.0001% of rated speed. Use bits 0 to 3 (Speed unit selection) of the motion setting parameter OW DD3 to select the unit.

Motion Setting Parameter	Speed Unit	Coordinate Word Designation Method
	0: Reference unit/s	Designate a movement amount per second in reference units.
OW□□03, bits 0 to 3: Speed unit selection	1: 10 ⁿ reference unit/ min.	Designate a movement amount per minute in reference units. When the reference unit is a pulse: The designated value is multiplied by 1000. Example: Reference unit = pulse VEL [A1]1000; Speed reference = 1,000,000 [pulses/min.]. When the reference unit is not a pulse: The designated value is handled as: Example) Reference unit = mm VEL [A1]1000; Number of digits below decimal point n = 3
		Speed reference = $1000 \times 10^3 [0.001 \text{ mm/min}]$
	2: 0.01%	Designates the speed in percentage of the rated speed in units of 0.01%.
	3: 0.0001%	Designates the speed in percentage of the rated speed in units of 0.0001%.


7.2.5 Acceleration/Deceleration Setting

The unit for the acceleration/deceleration rate coded in a motion program can be selected: Reference unit/s² or ms. Use bits 4 to 7 (Acceleration/deceleration degree unit selection) of the motion setting parameter $OW\square\square 03$ to select the unit.

Motion Setting Parameter	Speed Unit	Coordinate Word Designation Method
OW□□03, bits 4 to 7 Acceleration/deceler-	0: Reference unit/s ²	Designates the acceleration/deceleration rate per second in units of reference unit/s ² .
ation degree unit selection	1: ms	Designates the acceleration/deceleration time in units of ms.

7.3 Group Definition

Axes to be grouped together are defined in the **Group Definition** window. This section describes the components of the **Group Definition** window.

1 No. of Group

Set a number for operation as a group.

Set it to 1 for operation as one group.

Set it to the number of groups for operation with multiple groups.

② Group Name

Define a group name.

③ Control Axis No.

Set the number of axes controlled in the group.

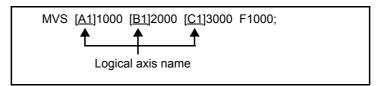
④ Circuit

Set a line number for the motion module used. The line number can be checked in the module configuration definition.

Slot Number	1	2		3		4		5	
Module Type	CPU	218IFA	•	SVB	•	SVR	•	M-EXECUTO	DR 🔻
Controller Number	-	01		01 🔻		01		-	
Circuit Number		01		01		02		-	
I/O Start Register		0000	0000 0800				0000		
I/O End Register		07FF		OBFF				0C3F	
Disable Input		Enable	-	Enable	-		-		-
Disable Output		Enable	-	Enable	-		-		•
Motion Start Register				8000		8800			
Motion End Register		8		87FF		8FFF			
Details				MECHATRO	DLINK				
Status	Running	Running		Running		Running		Running	

Line number

5 Axis No.


Set an axis number for the axis used.

The axis number can be checked in the detailed screen of the used motion module.

Axi	s number							
Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 Axis 6	SERVOPACK SGDS-***1** Version 00 Iters Setup Parameters SERVOPACK Monitor	20 💌 Servo Type Rotar, 🕈		_				
Axis 3 Axis 4	Name	Input Data				Double	-click	
Axis 5 Axis 6	 ction of operation modes 	Vormal operation mode 🔻						
1	Function selection flag 1	0000 0000 0000 0000	Slot Number	1	2	3	4	5
2	Function selection flag 2	0000 0000 0000 0000	Module Type	CPU 🔻	218IFA -	SVB 🔻	SVR 🔻	M-EXECUTO
4	Reference unit selection	pulse 🔻	Controller Number	-	01	01	01	-
5	Number of digits below decimal point	3	Circuit Number		01	01	02	-
6	Travel distance per machine rotation	10000	I/O Start Register		0000	0800		0000
			I/O End Register		07FF	OBFF		0C3F
			Disable Input	-	Enable 🔻	Enable 🔻	-	
			Disable Output	-	Enable 🔻	Enable 🔻	-	
			Motion Start Register			8000	8800	
			Motion End Register			87FF	8FFF	
			Details			MECHATROLINK		
			Status	Running	Running	Running	Running	Running

6 Logical Axis Name

Define a name for the specified axis number. The name defined here is used when programming a motion program.

7.4 Priority Levels of Operations

A priority level is assigned to each operator used in an operation written in motion language. For an operation involving three or more items, specify the priority level by using (). The priority levels of operators are shown below.

	High-			► Low					
Operator		Priority Level							
Operator	1	2	3	4					
Parentheses	0								
NOT		!							
AND			&						
OR									
XOR				^					
				+					
Arithmetic operation				-					
				*					
				/					

• Arithmetic Operation Example

■ EXAMPLE ►

Operation example

MW00100 = 1 + 2;

With this operation, 1 + 2 is calculated, and the result of 3 is stored in MW00100.

• Example of operation involving three items or more

```
MW00100 = 1 + (2 * 3);
```

With this operation, 2 * 3 is calculated first, and 1 is added to the result of 6. The final result of 7 is then stored in MW00100. Therefore, MW00100 = 7

Precautions on operations involving three items or more

For example, with the operation below,

MW00100 = 1 + 2 * 3;

1 + 2 is calculated first according to the priority level shown above, and then the result of 3 is multiplied by 3. The final result of 9 is then stored in MW00100. Therefore, MW00100 = 9.

Logical Operation Example

Operation example

MW00100 = 0001H | 0002H;

With this operation, OR operation of 0001H and 0002H are executed, and the result is stored in MW00100.

• Example of operation involving three or more items

MW00100 = (1111H | 2222H) & 00FFH;

With this operation, OR operation of 1111H and 2222H are executed first, and the AND operation of the OR result and 00FFH is calculated. The AND result is then stored in MW00100. Therefore, MW00100 = 0033H

Precautions on operations involving three or more items For example, with the following operation,

MW00100 = 1111H | 2222H & 00FFH;

With this operation, the AND operation of 2222H and 00FFH is executed first. Then, the OR operation of the AND result and 1111H is executed. The OR result is then stored in MW00100. Therefore, MW00100 = 1133H

7.5 Commands and Execution Scans

7.5.1 Command Types

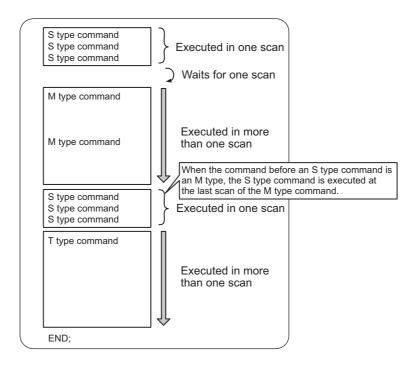
There are three motion language command types. The number of scans required to execute a command will differ depending on the command type. The following table shows the number of scans required to execute each type of command.

Command Type	Command	Number of Scans Required to Execute a Command		
S type	Operation commands	One scan		
M type	Axis move commands	More than one scan		
T type	Timer related commands	wore than one scan		

The details of each command type follow:

• S Type Commands

S type commands, including operation commands, are executed in one scan. A program in which S type commands are continuously coded is executed within one scan.


• M Type Commands

M type commands, including axis move commands, are executed in more than one scan. One scan is required to switch from the S type command to the M type command.

• T Type Commands

T type commands, including timer related commands, are executed in more than one scan.

The following diagram shows the number of scans required to execute each command type.

7.5.2 List of Command Types

7.5.2 List of Command Types

The following table lists the command types.

Classification	Command	S Type	М Туре	Т Туре	Classification	Command	S Type	М Туре	Т Туре
	ABS	✓ · · · · · ·) [=	✓		
	INC	✓				+	✓		
	ACC		✓		Arithmetic Operation	_	✓		
	DCC		✓			*	✓		
	SCC		✓			1	✓		
Axis Setting	VEL		✓			MOD	✓		
Commands	FMX	✓					√		
	IFP	✓			Logical	&	\checkmark		
	IAC	✓			Operation	٨	\checkmark		
	IDC	√				!	\checkmark		
	ACCMODE	√				==	\checkmark		
	MOV		✓			<>	\checkmark		
	MVS		✓		Data	>	\checkmark		
	MCW		✓		Comparison	<	\checkmark		
Axis Move	MCC		✓			>=	✓		
Commands	ZRN		✓			<=	✓		
	SKP		✓		Data Operations	SFR	✓		
	MVT		✓			SFL	✓		
	EXM		✓			BLK	✓		
	POS	✓				CLR	✓		
	MVM	✓				ASCII	✓		
Control	PLN	✓				SIN	✓		
Commands	PLD	✓				COS	✓		
	PFN		✓			TAN	✓		
	INP		✓			ASN	\checkmark		
	IF								
	ELSE	\checkmark				ACS	\checkmark		
	IEND								
	WHILE	~				ATN	~		
	WEND	•							
	PFORK								
	JOINTO	\checkmark			Basic	SQT	~		
	PJOINT				Functions				
	SFORK	/				DIN	/		
Program	JOINTO SJOINT	~				BIN	\checkmark		
Control	MSEE	✓				BCD	✓		
Commands	SSEE	v √				S{ }	▼ ✓		
	UFC	¥	✓				▼ ✓		
	FUNC	✓	Ý			R{ } PON	✓ ✓		
	END	✓ ✓				NON	✓ ✓		
	RET	▼ ✓				TON	 ✓ 		
	TIM	Ŷ		~		TOR	 ✓ 		
	IOW			✓ ✓		IUF	v		
	EOX			◆ ✓	С	CTSK	\checkmark		
-				¥	Language Control				
	SNGD/ SNGE	~			Commands	CFUNC	~		

7.6 Sequence Program Format

The format of a sequence program is the same as that for a motion program.

However, the motion language commands that can be used in a sequence program are limited. For the commands that can be used in sequence programs, refer to *Appendix A Motion Language Commands*.

7

Command Reference

This chapter describes the motion language commands.

8.1 Axis Setting Commands	8-3
8.1.1 Absolute Mode (ABS)	8-3
8.1.2 Incremental Mode (INC)	
8.1.3 Acceleration Time Change (ACC)	8-11
8.1.4 Deceleration Time Change (DCC)	8-17
8.1.5 S-curve Time Constant Change (SCC)	8-23
8.1.6 Set Velocity (VEL)	
8.1.7 Maximum Interpolation Feed Speed Setting (FMX)	
8.1.8 Interpolation Feed Speed Ratio Setting (IFP)	8-37
8.1.9 Interpolation Acceleration Time Change (IAC)	
8.1.10 Interpolation Deceleration Time Change (IDC)	
8.1.11 Set Interpolation Acceleration/Deceleration Mode (ACCMODE)	8-40
8.2 Axis Move Commands	8-60
8.2.1 Positioning (MOV)	8-60
8.2.2 Linear Interpolation (MVS)	
8.2.3 Clockwise/Counterclockwise Circular Interpolation with Center Position	
Designation (MCW, MCC)	8-69
8.2.4 Clockwise/Counterclockwise Circular Interpolation with Radius Designation	
(MCW, MCC)	8-75
8.2.5 Clockwise/Counterclockwise Helical Interpolation with Center Position	
Designation (MCW, MCC)	8-79
8.2.6 Clockwise/Counterclockwise Helical Interpolation with Radius	
Designation (MCW, MCC)	
8.2.7 Zero Point Return (ZRN)	
8.2.8 Linear Interpolation with Skip Function (SKP)	8-86
8.2.9 Set Time Positioning (MVT)	
8.3 Axis Control Commands	8-92
8.3.1 Current Position Set (POS)	8-92
8.3.2 Move On Machine Coordinates (MVM)	8-94
8.3.3 Program Current Position Update (PLD)	8-95
8.3.4 In-Position Check (PFN)	8-96
8.3.5 Set In-Position Range (INP)	
8.3.6 Coordinate Plane Setting (PLN)	8-100

8.4 Program Control Commands	8-101
8.4.1 Branching Commands (IF ELSE IEND)	8-101
8.4.2 Repeat (WHILE WEND)	8-103
8.4.3 Parallel Execution (PFORK, JOINTO, PJOINT)	
8.4.4 Selective Execution (SFORK, JOINTO, SJOINT)	
8.4.5 Motion Subprogram Call (MSEE)	
8.4.6 Sequence Subprogram Call (SSEE)	
8.4.7 User Function Call From Motion Program (UFC)	
8.4.8 User Function Call from Sequence Program (FUNC)	
8.4.9 Program End (END)	
8.4.10 Subprogram End (RET)	
8.4.11 Dwell Time (TIM)	
8.4.12 I/O Variable Wait (IOW)	
8.4.14 Single-block Signal Disabled (SNGD)/Single-block Signal Enabled (SNGE)	
8.5 Arithmetic Operations	
8.5.1 Substitute (=)	
8.5.2 Add (+)	
8.5.3 Subtract (-)	
8.5.4 Multiply (*)	
8.5.5 Divide (/)	
8.5.6 Remainder (MOD)	8-136
8.6 Logic Operation	8-137
8.6.1 OR ()	
8.6.2 AND (&)	
8.6.3 XOR (^)	
8.6.4 NOT (!)	
8.7 Data Comparisons	
8.7.1 Data Comparison Commands (==, <>, >, <, >=, <=)	
8.8 Data Operations	8-144
8.8.1 Bit Right Shift (SFR)	8-144
8.8.2 Bit Left Shift (SFL)	
8.8.3 Block Move (BLK)	8-146
8.8.4 Clear (CLR)	8-147
8.8.5 ASCII Conversion 1 (ASCII)	8-148
8.9 Basic Functions	8 150
8.9.1 Sine (SIN)	
8.9.3 Tangent (TAN)	
8.9.4 Arc Sine (ASN)	
8.9.5 Arc Cosine (ACS)	
8.9.6 Arc Tangent (ATN)	
8.9.7 Square Root (SQT)	
8.9.8 BCD to Binary (BIN)	
8.9.9 Binary to BCD (BCD)	
8.9.10 Set Bit (S{ })	
8.9.11 Reset Bit (R{ })	
8.9.12 Rising Pulse (PON)	
8.9.13 Falling Pulse (NON)	
8.9.14 ON-Delay Timer (TON): Counting unit: 0.01 second	
8.9.15 OFF-Delay Timer (TOF): Counting unit: 0.01 second	
8.10 C-Language Control Commands	
8.10.1 C-Language Task Control (CTSK)	
8.10.2 C-Language Function Call (CFUNC)	8-174

8.1 Axis Setting Commands

This section describes the axis setting commands.

8.1.1 Absolute Mode (ABS)

Motion Programs	Sequence Programs
Available	Not Available

 CAUTION
 The movement of a coordinate word designated in ABS mode is entirely different from that of the same coordinate word designated in INC mode. Before starting operations, be sure to check that the ABS or INC command is specified correctly. Failure to carry out this check may result in damage to equipment, serious personal injury, or even death.

(1) Overview

The Absolute Mode (ABS) command causes the coordinate words that control axis movement to be treated as a target position.

Once ABS mode has been executed, it remains in effect until Incremental Mode (INC) is next executed. ABS mode is the default mode when the program operation is started.

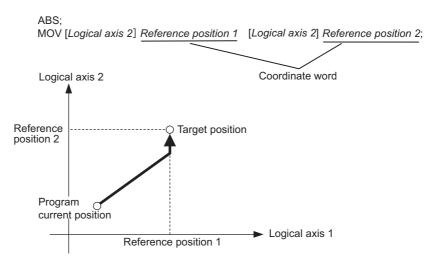


Fig. 8.1 Movement Mode: Absolute Mode (ABS)

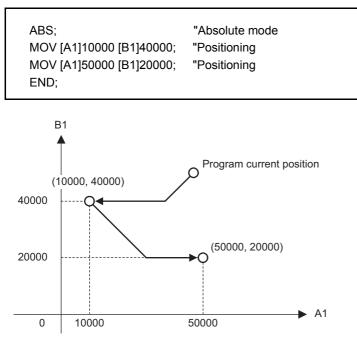
In this manual, the coordinate word that follows the logical axis name for the axis move command is expressed as "reference position" or "position reference value."

TERMS

Program Current Position

The position on the work coordinate system when an axis is started moving by execution of an axis move command. And, the work coordinate system is the coordinate system used in motion programs. For information on the work coordinate system, refer to *8.3.1 Current Position Set (POS)*.

8.1.1 Absolute Mode (ABS)


(2) Format

- To code an individual ABS command ABS;
- To code an ABS command in the same block with an axis move command ABS MOV [Logical axis name 1] [Logical axis name 2] ;

(3) Programming Example

An ABS command programming example is given below.

<u> EXAMPLE</u>

(4) Supplemental Information on ABS Command

(a) Related Motion Parameters

Motion setting parameters and ABS commands have no relation. The movement mode (ABS mode/INC mode) for axis move commands is control data exclusively reserved for motion programs, and no motion setting parameter can be used to specify these modes.

• Note that the movement mode (ABS mode/INC mode) for axis move commands is totally different from the position reference type specified by the motion setting parameter OWDD09, bit 5.

• When executing a motion program, set bit 5 (position reference type) of motion setting parameter OW 09 to 0 (incremental addition mode) regardless of the movement mode setting.

(b) Finite-length Axis and Infinite-length Axis

The position reference value of a coordinate word for a finite-length axis must be handled differently from one for an infinite-length axis.

The following table shows how to designate the position reference values for a finite-length axis and infinite-length axis.

Axis Type	Movement Mode for Axis Move Command	Position Reference Value Designation Method
Finite-	ABS Mode	Designate the target position for the position reference value.
length Axis	INC Mode	Designate the relative movement amount for the position reference value.
Infinite- length Axis	ABS Mode	Designate the target position in the range between 0 to POSMAX for the position reference value. The position reference value indicates the movement direction: Positive direction with a positive value, and negative direction with a negative value.
	INC Mode	Designate the relative movement amount for the position reference value.

• Use bit 0 (Axis selection) of motion fixed parameter 1 (Function selection flag 1) to select a finite-length axis or infinite-length axis.

Select a finite-length axis or infinite-length axis according to the machine configuration. For details on how to set motion parameters, refer to the manual for the motion module to be used.

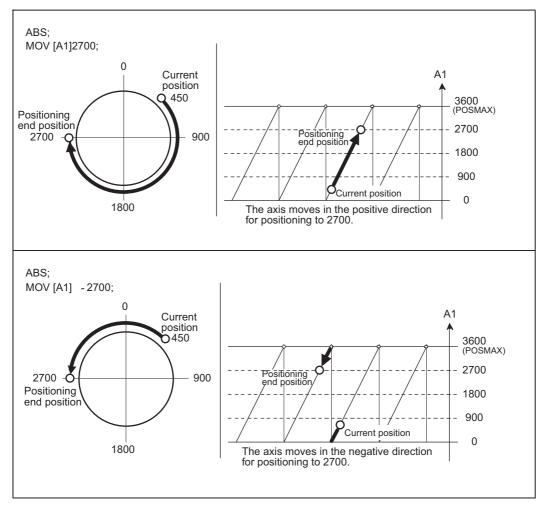
• Use the motion fixed parameter 10 (Infinite length axis reset position) to set POSMAX.

The motions of the finite-length axis and infinite-length axis in ABS mode are shown below. For the motions in INC mode, refer to 8.1.2 Incremental Mode (INC).

· When Selecting ABS Mode for a Finite-length Axis

Specify the target position for the position reference value.

The following diagrams illustrate the axis motions when specifying the position reference values 2000 and -2000 from the current position (1000).

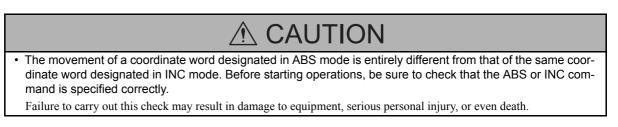

ABS; MOV [A1]2000;				
		Current position	Positioning end position	→ A1
-2000	0	1000	2000	
ABS; MOV [A1] - 2000;				
Positioning end position		Current position		→ A1
-2000	0	1000	2000	,

8.1.1 Absolute Mode (ABS)

· When Selecting ABS Mode for an Infinite-length Axis

Specify the target position in the range between 0 to POSMAX for the position reference value. The position reference value indicates the movement direction: Positive direction with a positive value, and negative direction with a negative value.

The following diagrams illustrate the axis motions when specifying the position reference values 2700 and -2700 from the current position 450 for the infinite-length axis, with POSMAX set to 3600.


- When the position reference value +0 is specified for an infinite-length axis in ABS mode, the axis moves in the negative direction.

Specify the POSMAX value for the position reference value to move the axis in the positive direction.

• If the target position (the absolute value of the position reference value) exceeds the POSMAX value for an infinitelength axis in ABS mode, an alarm will occur in the motion program.

8.1.2 Incremental Mode (INC)

Motion Programs	Sequence Programs
Available	Not Available

(1) Overview

The Incremental Mode (INC) command causes the coordinate words that control axis movement to be treated as a relative movement amount.

Once INC mode has been executed, it remains in effect until the next time the Absolute Mode (ABS) is executed. ABS mode is the default mode when the program operation starts.

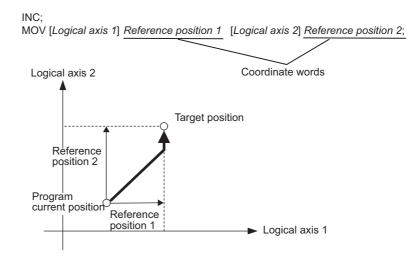


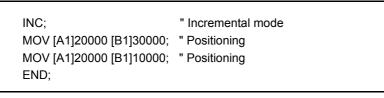
Fig. 8.3 Movement Mode of Incremental Mode (INC)

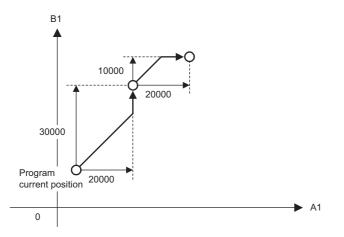
In this manual, the coordinate word that follows the logical axis name for the axis move command is expressed as "reference position" or "position reference value."

Program Current Position

The position on the work coordinate system when an axis is started moving by execution of an axis move command. And, the work coordinate system is the coordinate system used in motion programs. For information on the work coordinate system, refer to *8.3.1 Current Position Set (POS)*.

8.1.2 Incremental Mode (INC)


(2) Format


- To code an individual INC command INC;
- To code an INC command in the same block with an axis move command INC MOV [Logical axis name 1] | [Logical axis name 2] ;

(3) Programming Example

An INC command programming example is given below.

EXAMPLE ►

(4) Supplemental Information on INC Command

(a) Related Motion Parameters

Motion setting parameters and INC commands have no relation.

The movement mode (ABS mode/INC mode) for axis move commands is control data exclusively reserved for motion programs, and no motion setting parameter can be used to specify these modes.

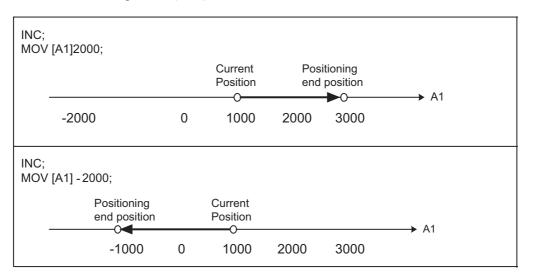
(b) Finite-length Axis and Infinite-length Axis

The position reference value of a coordinate word for a finite-length axis must be handled differently from one for an infinite-length axis.

The following table shows how to designate the position reference values for a finite-length axis and infinite-length axis.

Axis Type	Movement Mode for Axis Move Command	Position Reference Value Designation Method
Finite-	ABS Mode	Designate the target position for the position reference value.
length Axis	INC Mode	Designate the relative movement amount for the position reference value.
Infinite- length Axis	ABS Mode	Designate the target position in the range between 0 to POSMAX for the position reference value. The position reference value indicates the movement direction: Positive direction with a positive value, and negative direction with a negative value.
	INC Mode	Designate the relative movement amount for the position reference value.

• Use bit 0 (Axis selection) of motion fixed parameter 1 (Function selection flag 1) to select a finite-length axis or infinite-length axis.

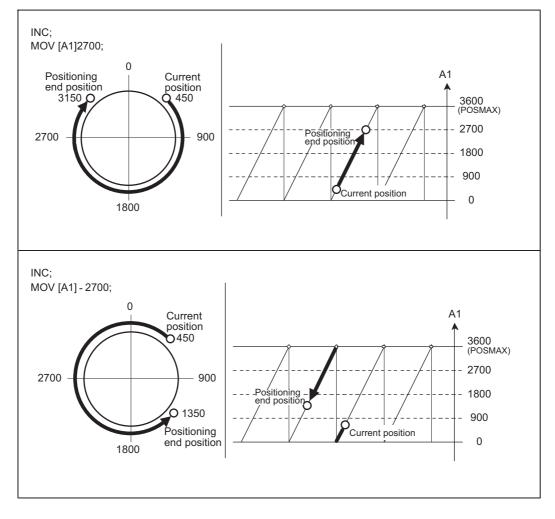

Select a finite-length axis or infinite-length axis according to the machine configuration. For details on how to set motion parameters, refer to the manual for the motion module to be used.

• Use the motion fixed parameter 10 (Infinite length axis reset position) to set POSMAX.

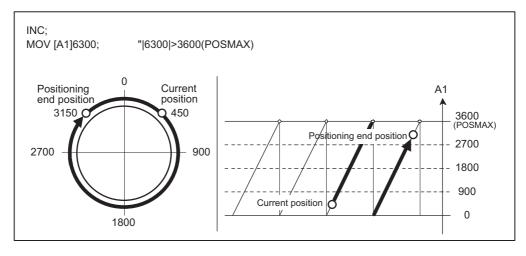
The motions of the finite-length axis and infinite-length axis in INC mode are shown below. For the motions in ABS mode, refer to 8.1.1 Absolute Mode (ABS).

• When Selecting INC Mode for a Finite-length Axis

Specify the relative movement amount for the position reference value. The following diagrams illustrate the axis motions when specifying the position reference values 2000 and -2000 from the current position (1000).


8

8.1.2 Incremental Mode (INC)


· When Selecting INC Mode for Infinite-length Axis

Specify the relative movement amount for the position reference value.

The following diagrams illustrate the axis motions when specifying the position reference values 2700 and -2700 from the current position 450 for the infinite-length axis, with POSMAX set to 3600.

• If the absolute value of the position reference value (coordinate word) exceeds the POSMAX value, the position reference value (coordinate word) is used for the relative movement amount to move the axis in INC mode.

8.1.3 Acceleration Time Change (ACC)

Motion Programs	Sequence Programs
Applicable	Not applicable

(1) Overview

The Acceleration Time Change command (ACC) changes the acceleration time or acceleration rate of the axis for which one of the following axis move commands is executed.

- Positioning (MOV)
- Set Time Positioning (MVT)
- External Positioning (EXM)

The acceleration time for up to 16 axes can be changed at once. The acceleration time of any axis unspecified in the command block is not changed.

The acceleration time changed by the ACC command remains until it is reset by the next ACC command.

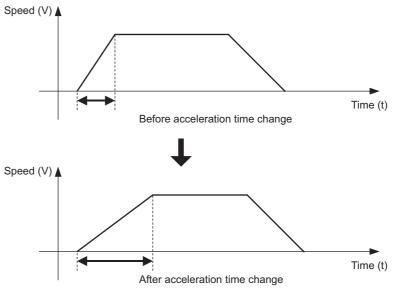


Fig. 8.5 Acceleration Time Change (ACC)

• The Acceleration Time Change command (ACC) changes the acceleration time for positioning related commands MOV, EXM, and MVT. Use an IAC command to set the acceleration time for interpolation related commands, MVS, MCW, MCC, and SKP.

 All motion modules, except the PO-01 module, support ACC, DCC, and SCC commands. Use of these commands with the PO-01 module requires the following combination of MP2000-series Machine Controller and PO-01 module versions.

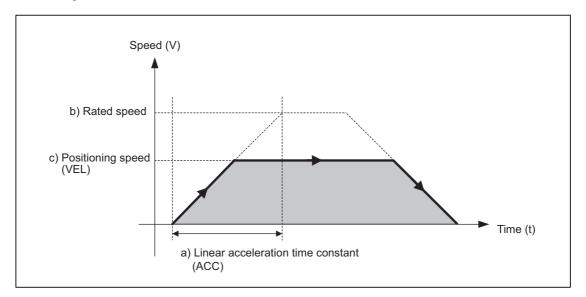
MP2000 Series Version Number	PO-01 Module Version Number
Ver.2.46 or later	Ver.1.06 or later

8.1.3 Acceleration Time Change (ACC)

(2) Format

ACC [Logical axis name 1] Acceleration time [Logical axis name 2] Acceleration time [Logical axis name 3] Acceleration time ...;

Item	Unit	Data That Can Be Used
Acceleration	ms or reference unit/s ²	· Directly specified value
time or acceleration rete	Note: Use bits 4 to 7 of the motion setting parameter OW□□03 (Acceleration/deceleration degree unit selection) to set the unit.	Double integer register (Indirect designation)


(3) Setting Items for ACC Command

Either acceleration time (ms) or acceleration rate (reference $unit/s^2$) can be selected for the unit of set value for ACC command.

Motion setting parameter OWDD03, bits 4 to 7 (Acceleration/deceleration degree unit selection)

Parameter Name	Acceleration/Deceleration Unit
Function setting 1, Acceleration/deceleration degree unit selection	0: Reference unit/s ² 1: ms (default)

Motion Image

a) Linear acceleration time constant

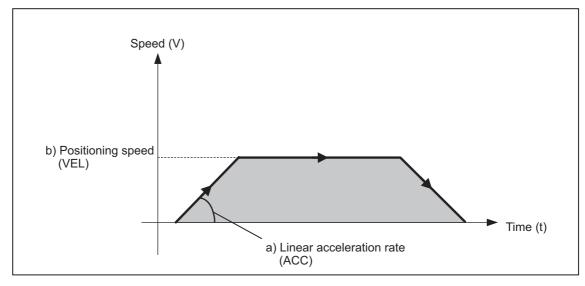
Set the linear acceleration time constant (the time required to reach the rated speed from 0) for the ACC command. The reference range is as follows.

1 to 32767 (ms)

b) Rated speed

Set the rated speed of each axis using the motion fixed parameter 34 (Rated motor speed). For details, refer to the manual for the motion module to be used.

c) Positioning speed


The speed for positioning related commands MOV, MVT, or EXM.

Set the positioning speed of each axis using the Set Velocity command (VEL).

For the Set Time Positioning command (MVT), the positioning speed is not the reference value of the VEL command. The Set Time Positioning command (MVT) changes the positioning speed according to the set positioning time and the amount of movement.

Motion Image

a) Linear acceleration rate

Set the value of the linear acceleration rate for the ACC command. The reference range is as follows.

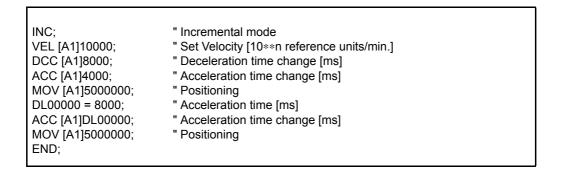
1 to 2^{31} -1 (reference unit/s²)

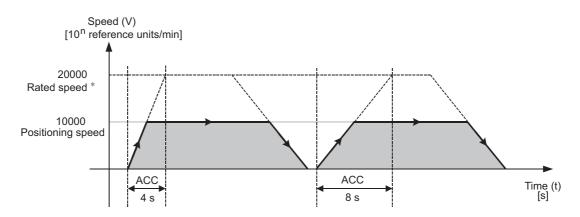
b) Positioning speed

The speed of positioning related commands, MOV, MVT, or EXM. Set the positioning speed of each axis using the Set Velocity command (VEL).

For the Set Time Positioning command (MVT), the positioning speed is not the reference value of the VEL command. The Set Time Positioning command (MVT) changes the positioning speed according to the set positioning time and the amount of movement.

8.1.3 Acceleration Time Change (ACC)


(4) Programming Examples


ACC command programming examples are shown below.

▲ EXAMPLE

 When bits 4 to 7 (Acceleration/deceleration degree unit selection) of OW□□03 are set to 1 (ms)

The following example shows when the MOV command is executed to accelerate axis A1 from static to the rated speed in four seconds, and when the MOV command is executed to accelerate axis A1 in eight seconds.

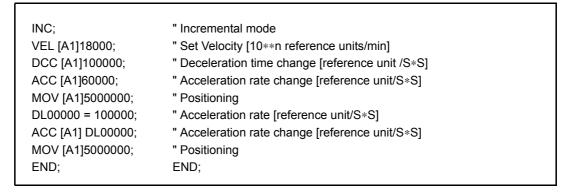

* The unit of rated speed (min⁻¹) must be converted to the same unit used for positioning speed (10ⁿ reference units/min).

Fig. 8.6 Acceleration Time Change (ACC) Command Programming Example 1: When Acceleration/Deceleration Degree Unit Selection is Set to 1 (ms)

<u> EXAMPLE</u>

 When bits 4 to 7 of OW□□03 (Acceleration/deceleration degree unit selection) are set to 0 (reference unit/s²)

The following example shows when the MOV command is executed to accelerate the axis A1 at the rate of $60.000 \text{ (mm/s}^2)$, and when the MOV command is executed to accelerate axis A1 at the rate of $100.000 \text{ (mm/s}^2)$. In this example, one reference unit is set to 0.001 mm.

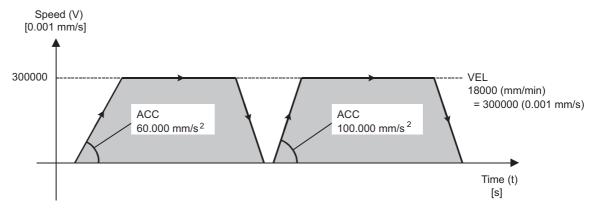


Fig. 8.7 Acceleration Time Change Command (ACC) Programming Example 2: When Acceleration/Deceleration Degree Unit Selection is Set to 0 (Reference unit/s²)

(5) Supplemental Information on ACC Command

(a) Related Motion Parameters

ACC changes the acceleration time of the following motion setting parameter.

Parameter	r Name	Register No.	Description
Straight Line Acceleration Tim		OL□□36	Sets the linear acceleration rate or linear acceleration time constant.

The acceleration time can be changed by directly changing the setting of the motion setting parameter $OL\square\square36$ (Straight line acceleration time constant) instead of executing an ACC command. Refer to the following table for details on how to directly change the acceleration time setting.

Motion and setting procedure of acceleration time for positioning related commands are as follows.

Motion Module	Motion	Setting Procedure
SVA-01, PO-01, SVR	The axis moves according to the accelera- tion time of motion setting parameter $OL\square\square36$ (Straight line acceleration/ acceleration time constant).	Set an acceleration time to motion setting parameter OL□□36 (Straight line acceleration/acceleration time constant).
SVB-01, Built-in SVB	The axis moves at the acceleration rate of the SERVOPACK parameter.	Set an acceleration time using motion setting parameter OL 236. Then, use bit 10 (ACC: Change acceleration time) of motion setting parameter OW 208 (Motion command) to write the new acceleration time into the SERVOPACK. *

* The built-in SVB and SVB-01 modules have a function that can automatically write the setting of motion setting parameter OL DD36 (Straight line acceleration/acceleration time constant) into the SERVOPACK parameters. When this automatic writing function is enabled, you do not need to use bit 10 (ACC: Change acceleration time) of motion setting parameter OW DD08.

For the automatic writing function, refer to 11.6 Parameters That Are Automatically Updated in Machine Controller MP2000 Series Built-in SVB/SVB-01 Motion Module User's Manual (manual number: SIEPC88070033).

(b) Setting Acceleration Time and Deceleration Time

With the following combination of motion module and SERVOPACK model, the acceleration time and deceleration time cannot be set individually. If you set the acceleration time, the deceleration time will be automatically set. With SERVOPACK models other than those listed below, the acceleration times and deceleration times can be set individually using ACC and DCC commands.

Motion Module	SERVOPACK Model	Description
SVB-01,	SGD-N	• With a built-in SVB or SVB-01 module, the axis moves at the acceleration/decelera- tion rate of the SERVOPACK parameter.
Built-in SVB	SGDB-N	• SGD-N and SGDB-N SERVOPACKs uses same parameter to set both acceleration time and deceleration time.

8.1.4 Deceleration Time Change (DCC)

Motion Programs	Sequence Programs
Applicable	Not applicable

(1) Overview

INFO

The Deceleration Time Change command (DCC) changes the deceleration time or deceleration rate of the axis for which one of the following axis move commands is executed.

- Positioning (MOV)
- Set Time Positioning (MVT)
- External Positioning (EXM)

The deceleration time for up to 16 axes can be changed at once. The deceleration time of any axis unspecified in the command block is not changed.

The deceleration time changed by the DCC command remains until it is reset by the next DCC command.

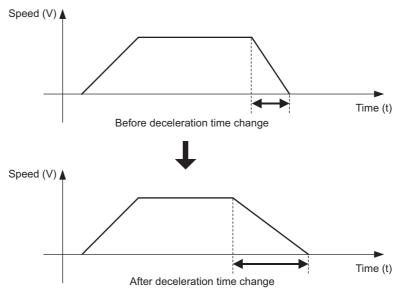


Fig. 8.8 Deceleration Time Change (DCC)

- The Deceleration Time Change command (DCC) changes the deceleration time for positioning related commands MOV, EXM, and MVT. Use the IDC command to set the interpolation related commands MVS, MCW, MCC, and SKP.
- All motion modules, except the PO-01 module, support ACC, DCC, and SCC commands. Use of these commands with the PO-01 module requires the following combination of MP2000-series Machine Controller and PO-01 module versions.

MP2000 Series Version Number	PO-01 Version Number
Ver.2.46 or later	Ver.1.06 or later

8.1.4 Deceleration Time Change (DCC)

rate

(2) Format

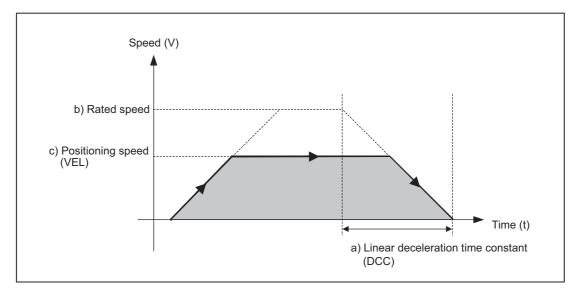
 Item
 Unit
 Data That Can Be Used

 Deceleration
 ms or reference unit/s²
 • Directly specified value

 or
 Note: Use bits 4 to 7 of the motion setting parameter OW□□03 (Acceleration/deceleration degree
 • Duble integer register (Indirect designation)

(3) Setting Items for the DCC Command

Either deceleration time (ms) or deceleration rate (reference $unit/s^2$) can be selected for the unit of set value for the DCC command.


Motion setting parameter OWDD03, bit 4 to 7 (Acceleration/deceleration degree unit selection)

unit selection) to set the unit.

Parameter Name	Acceleration/Deceleration Unit
Function setting 1, Acceleration/deceleration degree unit selection	0: Reference unit/s ² 1: ms (default)

 When bits 4 to 7 (Acceleration/deceleration degree unit selection) of OW□□03 are set to 1 (ms)

Motion Image

a) Linear deceleration time constant

Set the linear deceleration time constant (the time required to decelerate to 0 from the rated speed) for DCC command. The reference range is as follows.

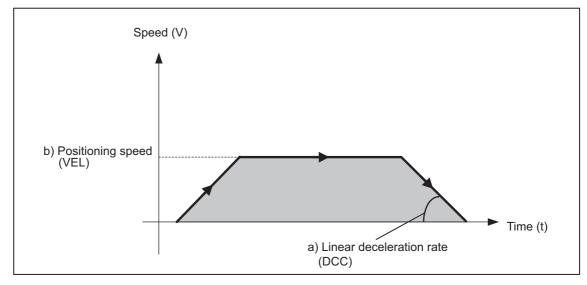
1 to 32767 (ms)

b) Rated speed

Set the rated speed of each axis using motion fixed parameter 34 (Rated motor speed). For details, refer to the manual for the motion module to be used.

c) Positioning speed

The speed for positioning related commands MOV, MVT, or EXM.


Set the positioning speed of each axis using the Set Velocity command (VEL).

For the Set Time Positioning command (MVT), the positioning speed is not the reference value of the VEL command. The Set Time Positioning command (MVT) changes the positioning speed according to the set positioning time and the amount of movement.

 When bits 4 to 7 (Acceleration/deceleration degree unit selection) of OW□□03 are set to 0 (reference unit/s²)

Motion Image

a) Linear deceleration rate

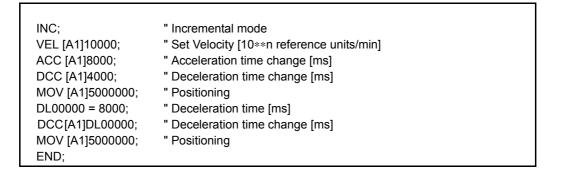
Set the linear acceleration rate value for the DCC command. The reference range is as follows.

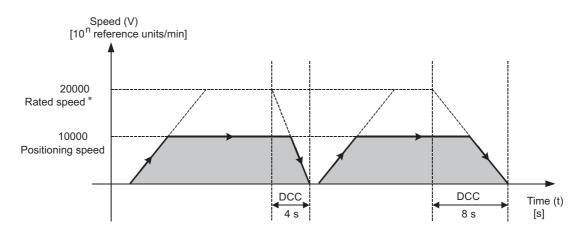
1 to 2^{31} -1 (reference unit/s²)

b) Positioning speed

The speed of positioning related value commands MOV, MVT, or EXM. Set the positioning speed of each axis using the Set Velocity command (VEL).

For the Set Time Positioning command (MVT), the positioning speed is not the reference value of the VEL command. The Set Time Positioning command (MVT) changes the positioning speed according to the set positioning time and the amount of movement. 8.1.4 Deceleration Time Change (DCC)


(4) Programming Examples


DCC command programming examples are shown below.

▲ EXAMPLE

• When bits 4 to 7 (Acceleration/deceleration degree unit selection) of OW□□03 are set to 1 (ms).

The following example shows when the MOV command is executed to decelerate axis A1 from the rated speed to 0 in four seconds, and when the MOV command is executed to decelerate the axis from the rated speed to 0 in eight seconds.

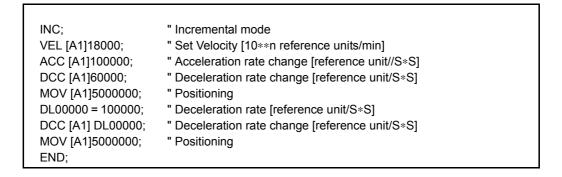

* The unit of rated speed (min⁻¹) must be converted to the same unit used for positioning speed (10ⁿ reference units/min).

Fig. 8.9 Deceleration Time Change (DCC) Command Programming Example 1: When Acceleration/Deceleration Degree Unit Selection is Set to 1 (ms).

▲ EXAMPLE

 When bits 4 to 7 (Acceleration/deceleration degree unit selection) of OW□□03 are set to 0 (reference unit/s²)

The following example shows when the MOV command is executed to decelerate axis A1 at the rate of $60.000 \text{ (mm/s}^2)$ and when the MOV command is executed to decelerate the axis A1 at the rate of $100.000 \text{ (mm/s}^2)$. In this example, one reference unit is 0.001 mm.

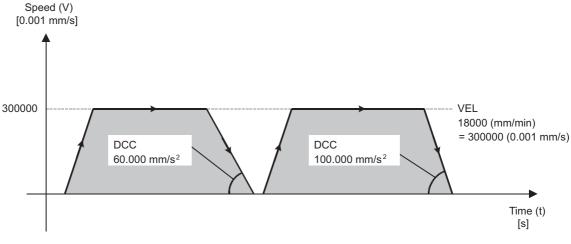


Fig. 8.10 Deceleration Time Change Command (DCC) Programming Example 2: When Acceleration/Deceleration Degree Unit Selection is Set to 0 (Reference unit/s²)

(5) Supplemental Information on DCC Command

(a) Related Motion Parameters

DCC changes the deceleration time of the following motion setting parameter.

Parameter Name	Register No.	Description
Straight Line Deceleration/ Deceleration Time Constant	OLDD38	Sets the linear deceleration rate or linear deceleration time constant.

The deceleration time can be changed by directly changing the setting of the motion setting parameter $OL\square\square38$ (Straight line deceleration/deceleration time constant) instead of executing an DCC command. Refer to the following table for details on how to directly change the deceleration time setting.

Motion and setting procedure of acceleration time for positioning related commands are as follows.

Motion Module	Motion	Setting Procedure
SVA-01, PO-01, SVR	The axis moves according to the decelera- tion time of motion setting parameter OLD38 (Straight line deceleration/ deceleration time constant).	Set a deceleration time to motion setting parameter OL□□38 (Straight line deceleration/deceleration time constant).
SVB-01, Built-in SVB	The axis moves at the deceleration rate of the SERVOPACK parameter.	Set a deceleration time using motion setting parameter $OL\square\square38$. Then, use bit 11 (ACC: Change deceleration time) of motion setting parameter $OW\square\square08$ (Motion command) to write the new acceleration time into the SERVOPACK. *

* The built-in SVB and SVB-01 modules have a function that can automatically write the setting of motion setting parameter OL 38 (Straight line deceleration/deceleration time constant) into the SERVOPACK parameters. When this automatic writing function is enabled, you do not need to use bit 11 (ACC: Change deceleration time) of motion setting parameter OW 08.

For the automatic writing function, refer to 11.6 Parameters That Are Automatically Updated in Machine Controller MP2000 Series Built-in SVB/SVB-01 Motion Module User's Manual (manual number: SIEPC88070033).

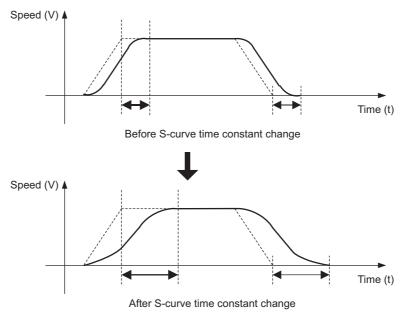
(b) Setting Acceleration Time and Deceleration Time

With the following combination of motion module and SERVOPACK model, the acceleration time and deceleration time cannot be set individually. If you set the acceleration time, the deceleration time will be automatically set. With SERVOPACK models other than those listed below, the acceleration times and deceleration times can be set individually using ACC and DCC commands.

Motion Module	SERVOPACK Model	Description
SVB-01,	SGD-N	• With a built-in SVB or SVB-01 module, the axis moves at the acceleration/decelera- tion rate of the SERVOPACK parameter.
Built-in SVB	SGDB-N	 SGD-N and SGDB-N SERVOPACKs uses same parameter to set both acceleration time and deceleration time.

8.1.5 S-curve Time Constant Change (SCC)

Motion Programs	Sequence Programs
Applicable	Not applicable


(1) Overview

The S-curve Time Constant Change command (SCC) changes the S-curve time constant of each axis for which an axis move command is executed.

The S-curve time constant is the parameter for the S-curve acceleration/deceleration function that suppresses mechanical vibration during acceleration/deceleration.

The S-curve time constant for up to 16 axes can be changed at once. The S-curve time constant of any axis unspecified in the command block is not changed.

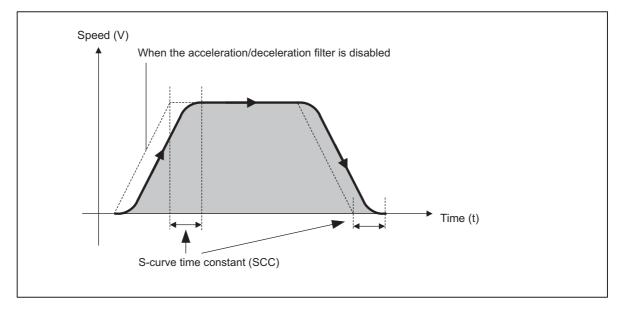
The S-curve time constant changed by the SCC command remains until it is reset by the next SCC command.

All motion modules, except the PO-01 module, support ACC, DCC, and SCC commands.

Use of these commands with PO-01 module requires the following combination of Machine Controller and PO-01 module version numbers.

MP2000 Series Version Number	PO-01 Version Number
Ver.2.46 or later	Ver.1.06 or later

(2) Format


SCC [Logical axis name 1] S-curve time constant [Logical axis name 2] S-curve time constant ...;

Item	Unit	Data That Can Be Used
S-curve time constant	ms	 Directly designated value Double integer register (indirect designation)

8.1.5 S-curve Time Constant Change (SCC)

(3) Setting Items for SCC Command

Motion Image

Specify a numerical value or register for the S-curve time constant of each axis using an SCC command. The reference range of the S-curve time constant depends on the motion module to be used:

- For SVA-01, PO-01, and SVR modules, the reference range is specified by motion setting parameter OWDD3A (Filter time constant).
- For built-in SVB and SVB-01 modules, the reference range is specified by the SERVOPACK parameter Average Movement Time.

The following table shows the reference range of S-curve time constants for each motion module model.

Motion Module	SCC Command Reference Range (ms)	Remarks
SVA-01	0 to 6553	-
SVB-01,	0 to 510	With the SGD-N, SGDB-N, SGDH+NS110/NS115, SGDS, SGDX, or SGDV SERVOPACK
Built-in SVB	-	With the SGDJ SERVOPACK, the S-curve acceleration/deceleration can- not be used since the SERVOPACK does not have a parameter for Aver- age Movement Time.
PO-01	0 to 6553	-
SVR	0 to 6553	-

• If a reference value of more than 6553 ms is input, a motion program alarm will occur regardless of the motion module model.

• If a reference value exceeds the upper limit (511 to 6553 ms) when using a built-in SVB or SVB-01 module, bit 1 of motion monitoring parameter ILDD02 is set to 1 (Set parameter error), and the upper limit (510 ms) is set for the Average Movement Time of the SERVOPACK parameter.

(4) Programming Examples

▲ EXAMPLE

An SCC command programming example is given below.

The following example shows when a MOV command with an S-curve time constant of 250 ms and a MOV command with an S-curve time constant of 500 ms are executed.

The parameters are set as follows for execution of this program.

- Motion setting parameter OW \square 03, bits 0 to 3 (Speed unit selection) = 0 (reference unit/s)
- Motion setting parameter OW□□03, bits 4 to 7 (Acceleration/deceleration degree unit selection) = 0 (reference unit/s²)

INC;	" Incremental mode
VEL [A1]10000;	" Set Velocity [reference unit/S]
ACC [A1]20000;	" Acceleration rate change [reference unit/S*S]
DCC [A1]20000;	" Deceleration rate change [reference unit/S*S]
SCC [A1]250;	" S-curve time constant change [ms]
MOV [A1]20000;	" Positioning
DL00000 = 500;	" S-curve time constant [ms]
SCC [A1]DL00000;	" S-curve time constant change [ms]
MOV [A1]20000;	" Positioning
END;	

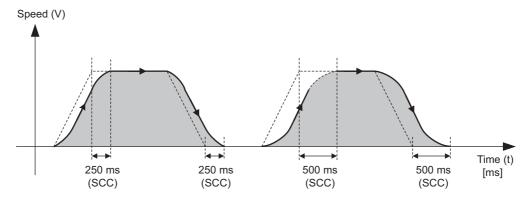


Fig. 8.12 S-curve Time Change Command Programming Example

8.1.5 S-curve Time Constant Change (SCC)

(5) Supplemental Information on SCC Command

(a) Related Motion Parameters

SCC command changes the S-curve time constant of the following motion setting parameter.

Parameter Name	Register No.	Description
Filter time constant	OW□□3A	 Sets the acceleration/deceleration filter time constant (1 = 0.1 ms). Change the filter time constant after confirming that bit 0 of motion monitoring parameter IW□□0C is set to 1 (discharging completed). Change the filter time constant after selecting a filter type using bits 8 to B of motion setting parameter OW□□03 (Filter type selection).

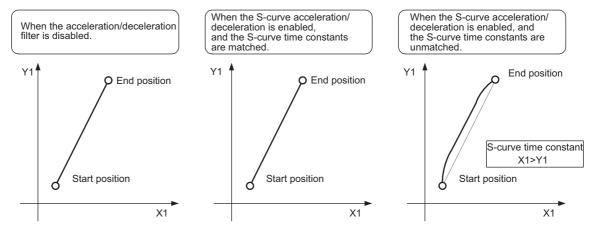
The S-curve time constant can be changed by directly changing the motion setting parameter $OW\square\square 3A$ (filter time constant) instead of executing an SCC command. Refer to the following table for information on how to directly change the S-curve time constant.

Motion and setting procedure of S-curve time constant are as follows.

Motion Module	Motion	Setting Procedure
SVA-01, PO-01, SVR	When S-curve acceleration/deceleration is enabled, the axis moves according to the S-curve time constant set in motion set- ting parameter OWDD3A (Filter time constant).	Set the S-curve time constant to motion setting parameter $OW\square\square 3A$ (filter time constant).
SVB-01, Built-in SVB	When the S-curve acceleration/decelera- tion is enabled, the axis moves according to the Average Movement Filter Time Constant of the SERVOPACK parameter.	Set the S-curve time constant using the motion setting parameter $OW\square\square 3A$ (filter time constant). Then, execute 12 (change filter time constant) of motion setting parameter $OW\square\square 08$ (Motion command) to write the set S-curve time constant into the SERVOPACK.*

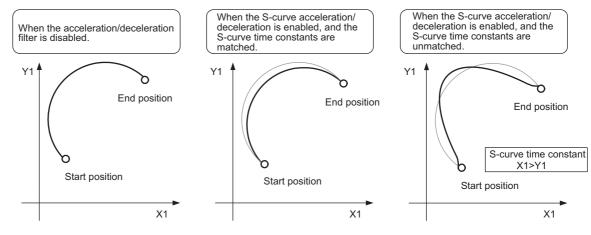
* The built-in SVB and SVB-01 modules can automatically write the setting of motion setting parameter OW□□3A into Average Movement Filter Time Constant of the SERVOPACK parameter.

When this automatic writing function is enabled, you do not need to execute 12 of motion setting parameter $OW\square\square 08$.


For the automatic writing function, refer to 11.6 Parameters That Are Automatically Updated in Machine Controller MP2000 Series Built-in SVB/SVB-01 Motion Module User's Manual (manual number: SIEPC88070033).

(b) Movement Path by Interpolation Command and S-Curve Acceleration/Deceleration

The S-curve acceleration/deceleration influences the movement path by using the interpolation related command MVS. MCW, MCC, or SKP.


- To achieve the same motion path as when the S-curve acceleration/deceleration is disabled for linear interpolation, set the same S-curve time constant for all the axes involved in interpolation.
- When the S-curve acceleration/deceleration is enabled for circular interpolation, the motion path will not be the same as when the S-curve acceleration/deceleration is disabled.
- · Axis Movement Path by Linear Interpolation

<u> EXAMPLE</u>

· Axis Movement Path by Circular Interpolation

▲ EXAMPLE

Command Reference

8.1.5 S-curve Time Constant Change (SCC)

(c) Filter Type Selection

Before enabling the S-curve acceleration/deceleration, set the filter type of each axis by setting bit 8 to B (Filter type selection) of OWDD03 to 2: (Moving Average Filter).

Parameter Name	Register No.	Filter Type
Function setting 1, Filter type selection	OW□□03, bit 8 to B	0: No filter (default)1: Exponential acceleration/deceleration filter2: Moving average filter

When a built-in SVB or SVB-01 module is used and the function for automatically writing the parameters into the SERVOPACK is disabled, execute 13 (change filter type) of the motion setting parameter $OW\square\square 08$ (Motion commands) to write the set filter type into the SERVOPACK.

An example of programming to change the filter type using a motion program is shown below.

Note: When using an SVA-01, PO-01, or SVR module, the following program is not necessary.When using an SVB or SVB-01 module, the following program can be omitted by enabling the function to write parameters into the SERVOPACK.

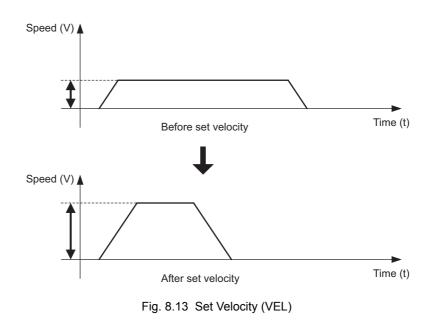
:	
:	
" Verify if changing the filter type	is allowed
IOW IW8008 == 0;	' Wait for response No motion command in execution
IOW IB800C0 == 1;	" Wait for response Discharging completed
" Select the filter type Moving Av	rerage Filter
DW00000 = OW8003 & F0FFH;	" Holds information other than Filter Type Selection
OW8003 = DW00000 0200H;	" Filter type = Moving average filter
" Write the filter type from the bu	ilt-in SVB/SVB-01 module into the SERVOPACK
OW8008 = 13;	" Request to change filter type
IOW IW8008 == 13;	" Wait for response Processing SCC
IOW IB80098 == 1;	" Wait for response Command execution completed
OW8008 = 0;	" Clears the request
IOW IW8008 == 0;	" Wait for response No motion command in execution
:	
:	

Refer to 11.6 Parameters That Are Automatically Updated in Machine Controller MP2000 Series Built-in SVB/SVB-01 Motion Module User's Manual (manual number: SIEPC88070033) for information on the built-in SVB/SVB-01 module function for automatically writing parameters into the SERVOPACK.

8.1.6 Set Velocity (VEL)

Motion Programs	Sequence Programs
Applicable	Not applicable

(1) Overview


The Set Velocity command (VEL) changes the feed speed of each axis for the following axis move commands.

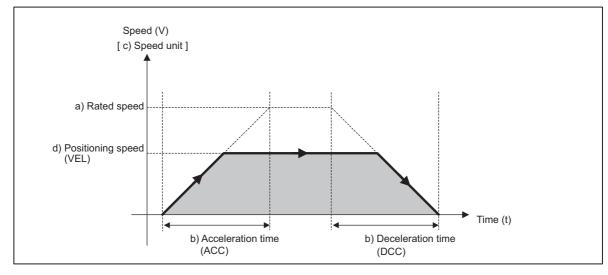
- Positioning (MOV)
- External positioning (EXM)

In this manual, the above axis move commands and the Set Time Positioning command (MVT) are referred to as positioning related commands, and the feed speed of positioning related commands is referred to as positioning speed.

The positioning speed for up to 16 axes can be changed at once. The positioning speed of an axis unspecified in the VEL command block is not changed.

The axis positioning speed changed by a VEL command remains until it is reset by the next VEL command or it is changed by executing the Set Time Positioning command.

The Set Velocity command (VEL) sets the positioning speed for positioning related commands (MOV and EXM). Use F designation or IFP command to set the feed speed for interpolation related commands (MVS, MCW, MCC, and SKP).


(2) Format

Item	Unit	Usable Data
Positioning speed	10 ⁿ reference unit/min, Reference unit/s, 0.01% (percentage of rated speed), or 0.0001% (percentage of rated speed) Note: Use bits 0 to 3 (Speed unit selection) of motion setting parameter OW□□03 to select a setting unit.	Directly specified value Double integer register (Indirect designation

8.1.6 Set Velocity (VEL)

(3) Setting Items for VEL Command

Motion Image

a) Rated speed

Use motion fixed parameter 34 (Rated motor speed) to set the rated speed of each axis. For details, refer to the manual for the motion module to be used.

b) Acceleration time/Deceleration time

Use the Acceleration Time Change (ACC)/Deceleration Time Change (DCC) command to set the acceleration/deceleration time for each axis.

The time set by executing ACC command is the time required to reach the rated speed.

c) Speed unit

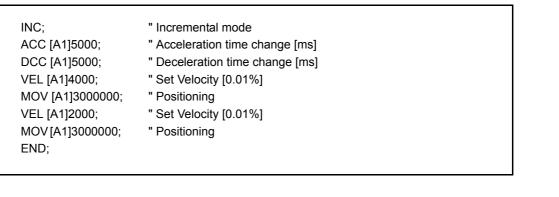
Use bits 0 to 3 (Speed unit selection) of motion setting parameter $OW\square\square 03$ to set the speed unit for each axis. The default is 10^n reference units/min.

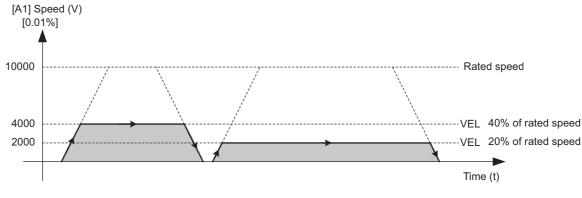
Parameter Name	Register No.	Speed Unit	Reference Range
		0: Reference units/s	0 to 2^{31} -1 (reference units/s)
		1:10 ⁿ reference units/min	0 to 2^{31} -1 (10 ⁿ reference units/min)
Function setting 1, Speed unit selection	$OW \square \square 03,$ bit 0 to 3	2: 0.01% (percentage of rated speed)	0 to 32767 (0.01%)
		3: 0.0001% (percentage of rated speed)	0 to 3276700 (0.0001%)

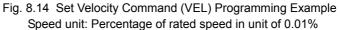
The setting unit for VEL command when 10^{n} reference units/min is selected for the speed unit is determined by the motion fixed parameter 4: Reference unit selection.

Motion Fixed Parameter	Speed Unit:	
4: Reference Unit Selection	10 ⁿ reference units/ min	Remarks
	111111	
pulse	1 = 1000 pulses/min	
mm	1 = 1 mm/min	• When pulse is selected for reference unit: $n = 3$
deg	1 = 1 deg/min	• When a reference unit other than pulse is selected: n = Motion fixed parameter 5: Number of digits below
inch	1 = 1 inches/min	decimal point
μm	$1 = 1 \mu m/min$	*

d) Positioning speed


Specify a numerical value or register using a VEL command.


(4) Programming Examples


A VEL command programming example is shown below.

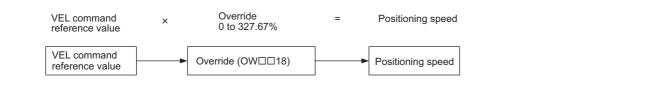
This example shows execution of a MOV command with the positioning speed specified as 40% of rated speed and a MOV command with the positioning speed specified as 20% of rated speed.

(5) Supplemental Information on VEL Command

(a) Related Motion Parameters

VEL command changes the positioning speed of the following motion setting parameter.

Parameter Name	Register No.	Description
Speed reference setting	$OL\square\square10$	Sets the speed reference value.


The positioning speed can be changed by directly changing the setting of motion setting parameter $OL\square\square10$ (Speed reference setting) instead of executing the VEL command.

8.1.6 Set Velocity (VEL)

(b) Override

Motion setting parameter OW 18 (Override) can be used to specify a percentage of positioning speed specified by a VEL command to be output (output ratio).

The default setting of motion setting parameter OW□□18 is 10000 (100.00%).

TERMS

Override

Override often means "to invalidate." In this manual, however, it should be taken to mean "changing" the set value.

Motion setting parameter OWDD18 (Override) can be changed while an axis is moving.

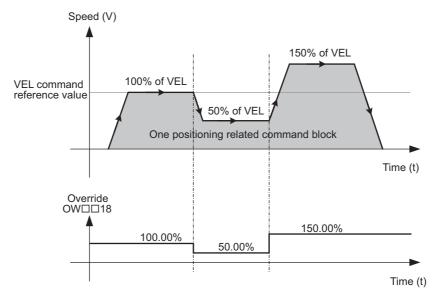


Fig. 8.15 OWDD18 (Override) and Positioning Related Command

- The SVR module does not have motion setting parameter OWDD18 (Override).
- For the Set Time Positioning command (MVT), the positioning speed used for override is not the VEL command reference value. The positioning speed changed by executing the Set Time Positioning command (MVT) is used for override.
- When using an override for the Set Time Positioning command (MVT), the positioning will not complete within the specified time.

The MP2000 system calculates the positioning speed at execution of the Set Time Positioning command (MVT) assuming the override to be 100%.

• The speed unit of the rated speed specified by the motion fixed parameter is different from the speed unit used for VEL command coded in a motion program.

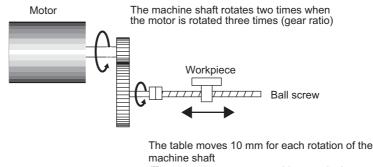
Speed	Speed Unit
Motion fixed parameter 34: Rated motor speed	rotations/min
Set Velocity command (VEL)	reference units/s, 10 ⁿ reference units/min, 0.01%, 0.0001%

Refer to (c) Motor Speed Specifications to calculate the rated speed according to the speed unit for the Set Velocity command (VEL).

(c) Motor Speed Specifications

In addition to the VEL command reference range, the motor rated speed and max. speed must be taken into consideration to decide the set value for the VEL command. To avoid causing an overspeed, check the speed specifications of your motor before setting a value for the VEL command.

For rotational motors, the speed specifications are expressed in unit of rotations per specified time of period.


The rated speed when the speed unit is 10^{n} reference units/min is calculated according to the motion fixed parameter settings.

· Parameter Setting Example: When Electronic Gear is Enabled

Note: When motion fixed parameter 4 (Reference unit selection) is set to a unit other than pulse, the electronic gear is valid.

Motion fixed parameters

- No. 4: Reference unit selection = mm
- No. 5: Number of digits below decimal point = 3
- No. 6: Travel distance per machine rotation = 10000 reference units
- No. 8: Servo motor gear ratio: 3
- No. 9: Machine gear ratio = 2
- No. 34: Rated motor speed = 3000 rotations/min

(Travel amount per one machine rotation)

When the electronic gear is enabled, n of the speed unit 10^n reference units/min is the number of digits below the decimal point. Therefore, the speed unit is:

 10^{n} reference units/min = $10^{3} \cdot 0.001$ mm/min = [mm/min]

The machine shaft rotation speed when the motor rotates at the rated speed:

Rated speed [rotations/min] $\times\,\text{Gear}$ ratio

= 3000 × (2/3) = 2000 [rotations/min]

To convert the number of rotations of the machine shaft into a reference unit (0.001 mm),

Travel distance per machine rotation [0.001 mm/rotation] × 2000 [rotation/min]

= 10000 × 2000 = 20000000 [0.001mm/min]

Because the speed unit is [mm/min],

20000000[0.001mm/min] = 20000[mm/min]

- Continues to the next page -

- Continued from the previous page -

 Parameter Setting Example: When the Electronic Gear is Disabled and an SVA-01 Module is Used Note: When motion fixed parameter 4 (Reference unit selection) is set to pulse, the electronic gear is invalid.

Motion Fixed Parameters

- No. 4: Reference unit selection = pulse
- No. 22: Pulse counting mode selection = $A/B \times 4 (\times 4)$
- No. 34: Rated motor speed = 3000 rotations per min
- No. 36: Number of pulses per motor rotation (before multiplication) = 16384
 pulses/rotation

When the electronic gear is disabled, n of the speed unit 10^n reference units/min is 3. Therefore, the speed unit is:

[10ⁿ reference units/min] = [10³ pulse/min] = [1000 pulses/min]

To convert the motor rated speed into pulses,

Rated motor speed [rotations/min] \times (Number of pulses per motor rotation [pulse/rotation] \times multiplier) = 3000 \times (16384 \times 4) = 196608000 [pulses/min]

Because the speed unit is 1000 pulses/min,

196608000 [pulses/min] = 196608 [1000 pulses/min]

 Parameter Setting Example: When the Electronic Gear is Disabled and a Built-in SVB, SVB-01, PO-01, or SVR Module is Used

Note: When motion fixed parameter 4 (Reference unit selection) is set to pulse, the electronic gear is invalid.

Motion Fixed parameters

- No. 4: Reference unit selection = pulse
- No. 34: Rated motor speed = 3000 rotations/min
- No. 36: Number of pulses per motor rotation = 65536 pulses/rotation

When the electronic gear is disabled, n of the speed unit 10^n reference units/min is 3. Therefore, the speed unit is:

[10ⁿ reference units/min] = [10³ pulses/min] = [1000 pulses/min]

To convert the motor rated speed into pulses,

Rated motor speed [rotations/min] × Number of pulses per motor rotation [pulses/rotation]

= 3000 × 65536 = 196608000 [pulses/min]

Because the speed unit is 1000 pulses/min,

196608000 [pulses/min] = 196608 [1000pulses/min]

Motion fixed parameters other than those mentioned in the examples may be required to be correctly set for the correct axis motions.

For details on each parameter and information on how to set them in accordance with the connected machine, refer to the relevant motion module manual.

8.1.7 Maximum Interpolation Feed Speed Setting (FMX)

Motion Programs	Sequence Programs
Applicable	Not applicable

(1) Overview

The Maximum Interpolation Feed Speed Setting command (FMX) sets the maximum feed speed for interpolation related commands MVS, MCW, MCC, and SKP. The maximum speed set by FMX command execution remains in effect until it is reset by the next FMX command.

The maximum feed speed for interpolation is not yet set at the moment the program operation starts. It is necessary to execute an FMX command before executing any of the following interpolation related commands.

- Linear Interpolation command (MVS)
- Circular Interpolation command (MCW, MCC)
- Helical Interpolation command (MCW, MCC)
- SKP command (Linear interpolation with skip function) (SKP)
- Interpolation Feed Speed Ratio Setting command (IFP)
- Interpolation Acceleration Time Change command (IAC)
- Interpolation Deceleration Time Change command (IDC)

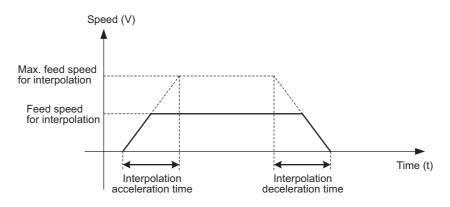
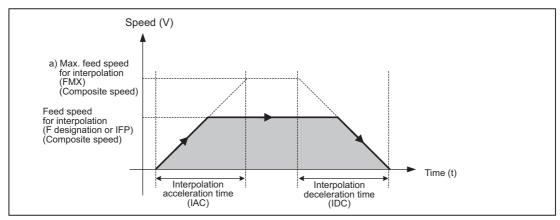


Fig. 8.16 Maximum Interpolation Feed Speed Setting Command (FMX)

• Execution of any interpolation related command is subject to the preset maximum feed speed for interpolation. For example, the Interpolation Acceleration Time Change command (IAC) and the Interpolation Deceleration Time Change (IDC) set the time required to reach the maximum feed speed for interpolation from the speed of 0.

• Executing an interpolation related command MVS, MCW, MCC, SKP, IFP, IAC, or IDC without first having executed an FMX command will cause an alarm in the motion program.

(2) Format


INFO

K <u>T In</u>	terpolat	ion max. feed speed	
lt	em	Unit	Usable Data
Max. f speed interpo	for	Reference units/min	 Directly designated value Double integer type register (Indirect designation)

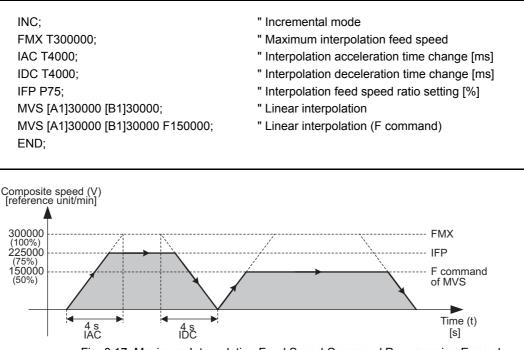
8.1.7 Maximum Interpolation Feed Speed Setting (FMX)

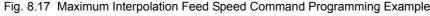
(3) Setting Items for FMX Command

Motion Image

a) Max. feed speed for interpolation

Specify a numerical value or register following to character T in the FMX command block. The maximum feed speed reference range is as follows.


1 to 2^{31} -1 (reference units/min)


The maximum feed speed for interpolation is the control data used for all interpolation related commands. Therefore, an FMX command must be coded at the beginning of the motion program when using an interpolation command MVS, MCW, MCC, or SKP.

(4) Programming Examples

An FMX command programming example is shown below.

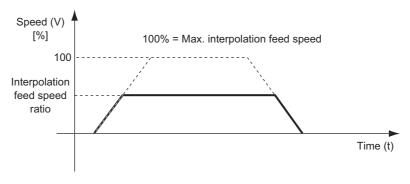
(5) Supplemental Information on FMX Command

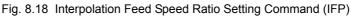
(a) Related Motion Parameters

There are no motion setting parameters related to the FMX command. The maximum feed speed for interpolation specified by executing an FMX command is the control data exclusively reserved for motion programs, and cannot be specified by using a motion setting parameter.

8.1.8 Interpolation Feed Speed Ratio Setting (IFP)

Motion Programs	Sequence Programs
Applicable	Not applicable


(1) Overview


The Interpolation Feed Speed Ratio Setting command (IFP) sets the feed speed for the following axis move commands as a percentage of the maximum feed speed for interpolation.

- Linear Interpolation command (MVS)
- Circular Interpolation command (MCW, MCC)
- Helical Interpolation command (MCW, MCC)
- SKP command (Linear interpolation with skip function) (SKP)

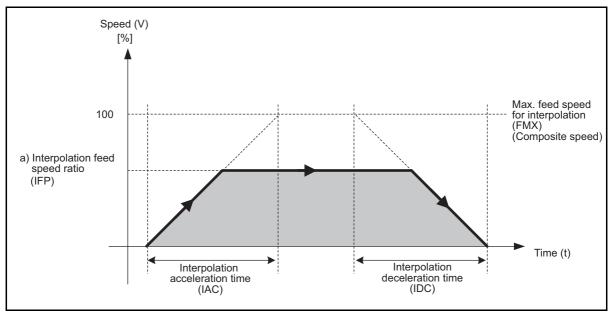
In this manual, the above axis move commands are referred to as Interpolation Related Commands, and the feed speed of Interpolation Related Commands is referred to as the Interpolation Feed Speed. The interpolation feed speed set by IFP command execution remains in effect until it is reset by the next IFP command.

The interpolation feed speed is not set when the program operation starts. It is necessary to set an interpolation feed speed by executing the Interpolation Feed Speed Ratio Setting (IFP) or F designation before executing any interpolation related commands.

- Specify the maximum feed speed for interpolation by executing the Maximum Interpolation Feed Speed Setting command (FMX) before executing the IFP command. Executing the IFP command without first having specified the maximum feed speed will cause an alarm in the motion program.
- F designations can be used to specify the interpolation feed speed by writing a numerical value or register following to a character F for interpolation related commands. Specify the interpolation feed speed in reference units/min.
- If an IFP command is executed after F designation, the interpolation feed speed specified by the F designation will be cancelled. If an F designation is executed after IFP command execution, the interpolation feed speed specified by the IFP command will be cancelled as well.
- Executing an interpolation related command without first having specified the interpolation feed speed will cause an alarm in the motion program.
- The Interpolation Feed Speed Ratio Setting command (IFP) sets the feed speed for interpolation related commands MVS, MCW, MCC, and SKP. Use the VEL command to set the feed speed for positioning related commands MOV and EXM.

8.1.8 Interpolation Feed Speed Ratio Setting (IFP)

(2) Format


P <u>P</u>	Interpola	tion feed speed ratio;	
	Item	Unit	Usable Data
	erpolation d speed o	%	 Directly designated value Double integer type register (Indirect designation)

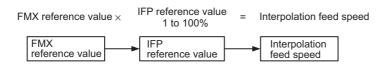
IFP command cannot be coded in the same block used for an interpolation command MVS, MCW, MCC, or SKP.

(3) Setting Items for IFP Command

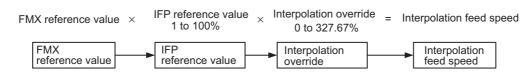
a) Interpolation feed speed ratio

Specify a numerical value or register following to character P in the IFP command block.

The IFP command sets a percentage of the maximum interpolation feed speed (FMX) as the interpolation feed speed.


The interpolation feed speed is a composite speed of all the axes specified for an interpolation related command MVS, MCW, MCC, or SKP.

The interpolation feed speed ratio reference range is as follows.


1 to 100 (%)

You can select whether or not to apply an interpolation override to the interpolation feed speed. Refer to *4.3.3 Work Registers* for information on how to use the interpolation override.

· When not using an interpolation override

• When using an interpolation override

INFO

- The interpolation feed speed can be specified by using either an IFP command or F designation.
- Refer to b) Interpolation feed speed in (3) Setting Items for MVS Command in 8.2.2 Linear Interpolation (MVS) for details.
- If a value higher than 100 (%) is specified for the IFP reference value (%), an alarm will occur in the motion program.
- If an interpolation override applied interpolation feed speed exceeds the FMX reference value, the actual output value of the interpolation feed speed will be reset to the FMX reference value.

(4) Programming Examples

An IFP command programming example is shown below.

▲ EXAMPLE

INC;	" Incremental mode
FMX T300000;	" Maximum interpolation feed speed setting [reference unit/min]
IAC T4000;	" Interpolation acceleration time change [ms]
IDC T4000;	" Interpolation deceleration time change [ms]
IFP P75;	" Interpolation feed speed ratio setting [%]
MVS [A1]30000 [B1]30000;	" Linear interpolation
DL00000 = 50;	" Interpolation feed speed ratio [%]
IFP PDL00000;	" Interpolation feed speed ratio setting [%]
MVS [A1]30000 [B1]30000;	" Linear interpolation
END;	

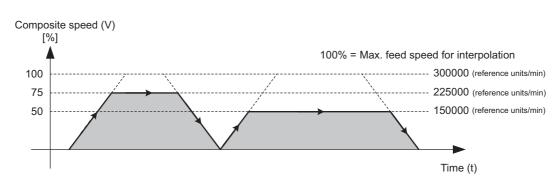


Fig. 8.19 Interpolation Feed Speed Ratio Setting Command (IFP)

(5) Supplemental Information on IFP Command

(a) Related Motion Parameters

There is no motion setting parameter related to the IFP command.

The interpolation feed speed ratio specified by executing an IFP command is the control data exclusively reserved for motion programs, and cannot be specified by using a motion setting parameter.

8.1.9 Interpolation Acceleration Time Change (IAC)

8.1.9 Interpolation Acceleration Time Change (IAC)

Motion Programs	Sequence Programs
Applicable	Not applicable

(1) Overview

The Interpolation Acceleration Time Change command (IAC) changes the acceleration time for the following axis move commands.

- Linear Interpolation command (MVS)
- Circular Interpolation command (MCW, MCC)
- Helical Interpolation command (MCW, MCC)
- SKP command (Linear interpolation with skip function) (SKP)

In this manual, the above axis move commands are referred to as interpolation related commands. The Maximum Interpolation Feed Speed Setting command (FMX) must be executed before executing the IAC command. The acceleration time changed by the IAC command remains until it is reset by the next IAC command.

The interpolation acceleration time is 0 ms when the program starts running.

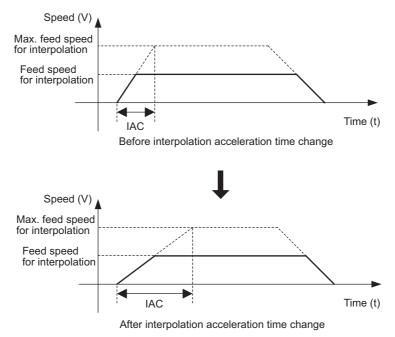


Fig. 8.20 Interpolation Acceleration Time Change Command (IAC)

The Interpolation Acceleration Time Change command (IAC) changes the acceleration time for interpolation related commands MVS, MCW, MCC, and SKP.

Use ACC command to set the acceleration time for positioning related commands MOV, EXM, and MVT.

(2) Format

IAC	T Interpolat	tion acceleration time;	
[Item	Unit	Usable Data
ſ	Interpolation	ms	· Directly designated value
	acceleration time		\cdot Double integer type register (Indirect designation)

(3) Setting Items for IAC Command

Motion Image

a) Interpolation acceleration time

Specify a numerical value or register following to character T in the IAC command block. The time set by executing an IAC command is the time required to reach the maximum feed speed from the speed of 0.

The interpolation acceleration time reference range is as follows.

0 to 32767 (ms)

(4) Programming Examples

An IAC command programming example is shown below.

▲<u>EXAMPLE</u>

INC;	" Incremental mode
FMX T300000;	" Maximum interpolation feed speed setting [reference unit/min]
IDC T4000;	" Interpolation deceleration time change [ms]
IAC T2000;	" Interpolation acceleration time change [ms]
MVS [A1]30000 [B1]30000 F150000;	" Linear interpolation
DL00000 = 4000;	" Interpolation acceleration time [ms]
IAC TDL00000;	" Interpolation acceleration time change [ms]
MVS [A1]30000 [B1]30000;	" Linear interpolation
END;	

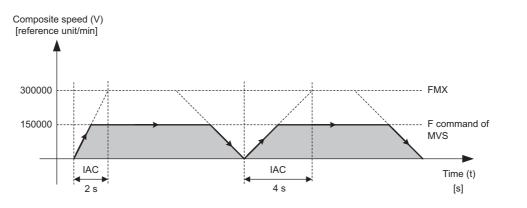


Fig. 8.21 Interpolation Acceleration Time Change Command Programming Example

8

8.1.9 Interpolation Acceleration Time Change (IAC)

(5) Supplemental Information on IAC Command

(a) Related Motion Parameters

There is no motion setting parameter related to the IAC command.

The interpolation acceleration time specified by executing the IAC command is the control data exclusively reserved for motion programs, and cannot be specified by using a motion setting parameter.

8.1.10 Interpolation Deceleration Time Change (IDC)

Motion Programs	Sequence Programs
Applicable	Not applicable

(1) Overview

The Interpolation Deceleration Time Change command (IDC) changes the deceleration time for the following axis move commands.

- Linear Interpolation command (MVS)
- Circular Interpolation command (MCW, MCC)
- Helical Interpolation command (MCW, MCC)
- SKP command (Linear interpolation with skip function) (SKP)

In this manual, the above axis move commands are referred to as interpolation related commands.

The Maximum Interpolation Feed Speed Setting command (FMX) must be executed before executing the IDC command. The deceleration time changed by the IDC command remains until it is reset by the next IDC command.

The interpolation deceleration time is 0 ms when the program starts running.

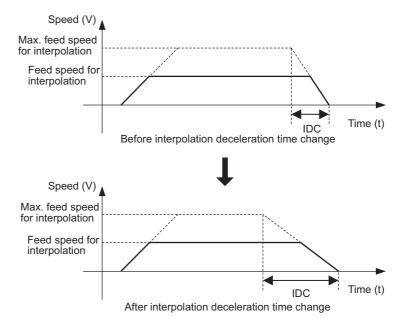
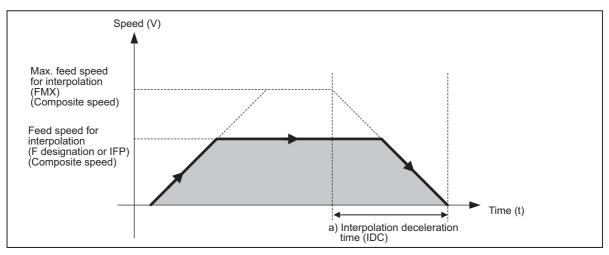


Fig. 8.22 Interpolation Deceleration Time Change Command (IDC)

The Interpolation Deceleration Time Change command (IDC) sets the deceleration time for interpolation related commands MVS, MCW, MCC, and SKP.

Use the DCC command to set the deceleration time for positioning related commands MOV, EXM, and MVT.


8.1.10 Interpolation Deceleration Time Change (IDC)

(2) Format

DC	T Interpolat	tion deceleration time	;
1	Item	Unit	Usable Data
	Interpolation deceleration time	ms	 Directly designated value Double integer type register (Indirect designation)

(3) Setting Items for IDC Command

Motion Image

a) Interpolation deceleration time

Specify a numerical value or register following to T in the IDC command block.

The time set by executing the IDC command is the time to decelerate from the maximum feed speed for interpolation to the speed of 0.

The interpolation deceleration time reference range is as follows.

0 to 32767 (ms)

(4) Programming Examples

▲ EXAMPLE

An IDC command programming example is shown below.

INC;	" Incremental mode
FMX T300000;	" Maximum interpolation feed speed setting [reference unit/min]
IAC T4000;	" Interpolation acceleration time change [ms]
IDC T2000;	" Interpolation deceleration time change [ms]
MVS [A1]30000 [B1]30000 F150000;	" Linear interpolation
DL00000 = 4000;	" Interpolation deceleration time [ms]
IDC TDL00000;	" Interpolation deceleration time change [ms]
MVS [A1]30000 [B1]30000;	" Linear interpolation
END;	

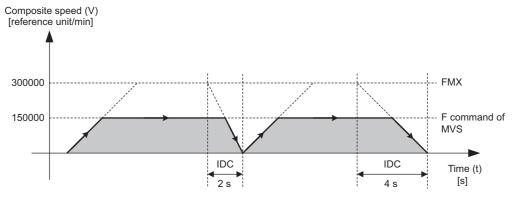


Fig. 8.23 Interpolation Deceleration Time Change Command Programming Example

(5) Supplemental Information on IDC Command

(a) Related Motion Parameters

There is no motion setting parameter related to the IDC command. The interpolation deceleration time set by executing the IDC command is the control data exclusively reserved for motion programs, and cannot be set by using a motion setting parameter. 8.1.11 Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

8.1.11 Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

Motion Programs	Sequence Programs
Applicable	Not applicable

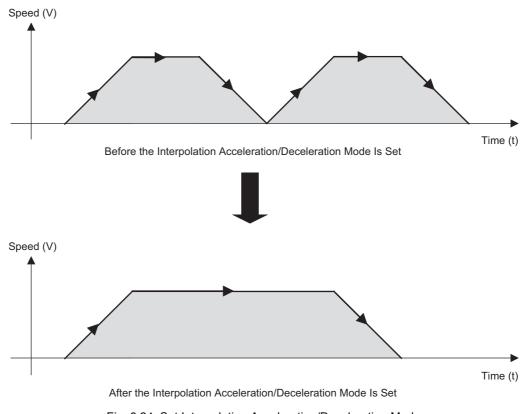
(1) Overview

The Set Interpolation Acceleration/Deceleration Mode (ACCMODE) command sets the acceleration/deceleration mode for the following interpolation commands. You can use the Set Interpolation Acceleration/Deceleration Mode (ACCMODE) command to connect the speeds between continuous interpolation commands.

- Linear Interpolation command (MVS)
- Circular Interpolation command (MCW, MCC)
- Helical Interpolation command (MCW, MCC)
- SKP command (Linear interpolation with skip function) (SKP)

The interpolation acceleration/deceleration mode set by the ACCMODE command remains in effect until it is changed by another ACCMODE command.

The interpolation acceleration/deceleration mode is set to the default mode (interpolation acceleration/deceleration mode 0) when program operation starts.



1. The interpolation acceleration/deceleration mode cannot be changed between continuous interpolation blocks. Change the interpolation acceleration/deceleration mode only after the axes decelerate to a stop.

2. If the interpolation acceleration/deceleration mode is set out of range, the operation depends on the version of the CPU Module.

Software Version	MPE720 Version 6.36 or Later	MPE720 Version 6.35 or Earlier
CPU Module Ver- sion 2.86 or Later	A motion program alarm (31 hex: Address M out of range) will occur when an interpolation command is executed.	A motion program alarm (31 hex: Not registered) will occur when an interpola- tion command is executed.
CPU Module Ver- sion 2.85 or Earlier	An alarm will not occur even when an interpolation command is executed. The current interpolation acceleration/deceleration mode will be retained.	

3. When the PFORK command is used, the interpolation acceleration/deceleration mode setting before branching to the forks is inherited by all of the forks. After branching, you can set the interpolation acceleration/deceleration mode for each fork independently.

Fig. 8.24 Set Interpolation Acceleration/Deceleration Mode

(2) Format

The format of the ACCMODE command is as follows:

ACCMODE Minterpolation_acceleration_deceleration_mode;

Item	Unit	Usable Data
Interpolation acceleration/ deceleration mode	_	Directly designated value (0 to 4)

(3) Setting Items for ACCMODE Command

This section describes the settings for the ACCMODE command.

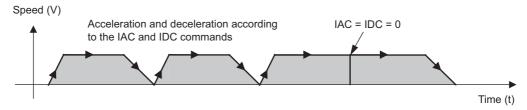
The interpolation acceleration/deceleration mode is set by specifying a numerical value after the character "M" in the ACCMODE command.

There are five interpolation acceleration/deceleration modes.

- Interpolation acceleration/deceleration mode 0 (default mode)
- Interpolation acceleration/deceleration mode 1 (acceleration/deceleration mode with continuous process control signal monitoring)
- Interpolation acceleration/deceleration mode 2 (acceleration/deceleration mode with interpolation overlapping)
- Interpolation acceleration/deceleration mode 3 with continuous deceleration for minute blocks (acceleration/deceleration mode with continuous process control signal monitoring)
- Interpolation acceleration/deceleration mode 4 (acceleration/deceleration mode with next block speed specification)

8

8.1.11 Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

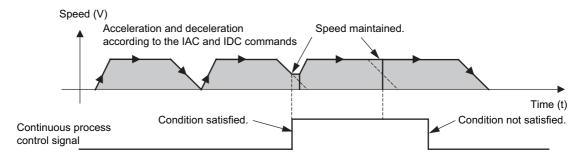

(4) ACCMODE Details

This section describes the five interpolation acceleration/deceleration modes of the ACCMODE command.

(a) Interpolation Acceleration/Deceleration Mode 0 (Default Mode) Details

In this mode, acceleration and deceleration are performed according to the acceleration/deceleration times set with the IAC and IDC commands.

This is the default mode when program operation starts.


Format

Use the following code format to select interpolation acceleration/deceleration mode 0. ACCMODE M0;

(b) Interpolation Acceleration/Deceleration Mode 1 (Acceleration/Deceleration Mode with Continuous Process Control Signal Monitoring) Details

This mode monitors a continuous process control signal and performs continuous processing between consecutive interpolation blocks when the specified conditions are satisfied.

This mode can be used only when the same axes are used for all consecutive interpolation blocks.

Format

Use the following format to select interpolation acceleration/deceleration mode 1. ACCMODE M1;

MVS [Logical_axis_name_1] Reference_position Finterpolation_feed_speed TWcontinuous_process_control_signal;

Or

ACCMODE M1;

MVS [Logical_axis_name_1] Reference_position Finterpolation_feed_speed FWcontinuous_process_control_signal;

Item	Unit	Usable Data
Continuous process con- trol signal	_	All bit data registers (excluding #, C, and D registers)

Note: The format is the same for the MCC, MCW, and SKP commands.

If the characters "TW" or "FW" are added to the interpolation command, continuous process control signal monitoring is performed. The bit data register specified with the characters "TW" or "FW" is used as the continuous process control signal.

If the characters "TW" or "FW" are not added to the interpolation command, or if the conditions are not satisfied, the continuous process control signal is not monitored and acceleration/deceleration is performed according to the acceleration/deceleration times set with the IAC and IDC commands.

The characters "TW" and "FW" are valid only for interpolation acceleration/deceleration modes 1 and 3 (acceleration/ deceleration modes with continuous process control signal monitoring). In other modes, the operation depends on the software version of the CPU Module.

Software Version	MPE720 Version 6.36 or Later	MPE720 Version 6.35 or Earlier
CPU Module Ver- sion 2.86 or Later	A motion program alarm (32 hex: Speci- fied address error) will occur when an interpolation command is executed.	A motion program alarm (32 hex: Not registered) will occur when an interpola- tion command is executed.
CPU Module Ver- sion 2.85 or Earlier	An alarm will not occur even when an interpolation command is executed. The TW or FW address is ignored and the interpolation command is executed.	

The characters "TW" designate monitoring the continuous process control signal with positive logic.

Continuous Process Control Signal	Operation Summary	
ON	The deceleration time specified with the IDC command is ignored. The current speed is maintained and pulse distribution is completed with a deceleration time of 0 ms.	
OFF	The axis decelerates to a stop according to the deceleration time specified with the IDC command.	

The characters "FW" designate monitoring the continuous process control signal with negative logic.

Continuous Process Control Signal	Operation Summary
ON	The axis decelerates to a stop according to the deceleration time specified with the IDC command.
OFF	The deceleration time specified with the IDC command is ignored. The current speed is maintained and distribution is completed with a deceleration time of 0 ms.

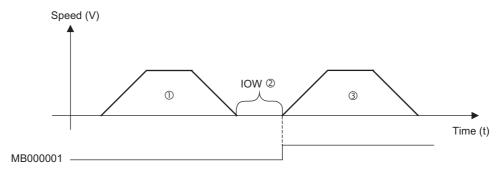
IMPORTANT

If you specify a travel distance that is insufficient to perform continuous processing with the set deceleration time, unexpected operation may occur. Also specify a sufficient travel distance.

Programming Examples

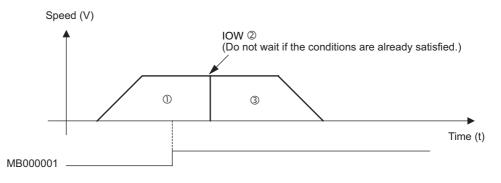
The following example programming uses interpolation acceleration/deceleration mode 1 (acceleration/ deceleration mode with continuous process control signal monitoring).

FMX T30000000; ABS; IAC T1000; IDC T1000; ACCMODE M1; MVS [A1]4000 F50000 TWMB000001; "①" IOW MB000001=1; "②" MVS [A1]8000; "③"

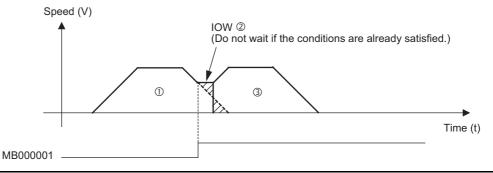

END;

The following examples show how to combine the MVS command and interpolation acceleration/deceleration mode 1.

When the Continuous Process Control Signal Turns ON after Distribution for MVS Command
 Is Completed


The next block is executed after the axis decelerates to a stop for the MVS command O.

For the MVS command ③, acceleration begins when the speed is 0 (reference units/min).


When the Continuous Process Control Signal Turns ON during Distribution for MVS (before Deceleration)

MVS ③ is executed at the same speed from MVS ① without decelerating.

When the Continuous Process Control Signal Turns ON during Distribution for MVS (during Deceleration)

MVS ③ is executed with the same speed as when the continuous process signal turned ON.

- 1. If the reference speed for MVS ③ is higher than for MVS ①, the end speed of ① is used for the start speed of ③. The axis then accelerates to the specified speed.
- 2. If the reference speed for MVS \Im is lower than for MVS \mathbb{O} , the end speed of \mathbb{O} is used for the start speed of \Im . The axis then decelerates to the specified speed.
- 3. If the travel distance for MVS ③ is shorter than the deceleration distance, distribution is finished during the deceleration of ③.

Additional Information

Refer to the following additional information for details on operation in the acceleration/deceleration mode with continuous process control signal monitoring.

Request Temporary Stop Operation

Temporary Stop Request before the Interpolation Distribution for the Next Block Begins The axis decelerates according to the interpolation deceleration time specified with the IDC command. No continuous processing to the next interpolation block is performed.

Temporary Stop Request after the Interpolation Distribution for the Next Block Begins The axis decelerates according to interpolation deceleration time specified with the IDC command for both the previous block and the next block.

After the temporary stop request is removed, distribution of the remaining distance is performed for both the previous block and the next block.

Request Stop Operation

The interpolation block for the axis in motion stops immediately.

Program Single-block Mode Operation

No continuous processing to the next interpolation block is performed.

· Debug Mode Operation

No continuous processing to the next interpolation block is performed.

Operation When the Next Block Is Not an Interpolation Command Block

No continuous processing to the next block is performed.

Acceleration begins from a speed of 0 for the next block.

· Operation When the Interpolation Deceleration Time (IDC) Is Set to 0 ms

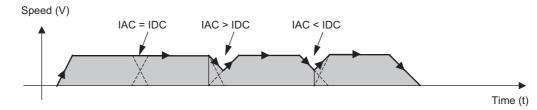
Continuous processing to the next interpolation block is performed, regardless of the status of the continuous process control signal.

Continuous Operation during Parallel Execution (PFORK)

Continuous processing is not performed across a PFORK command.

Set the commands so that processing for this mode ends during each fork.

8


8.1.11 Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

(c) Interpolation Acceleration/Deceleration Mode 2 (Acceleration/Deceleration Mode with Interpolation Overlapping) Details

In this mode, the distribution for each interpolation block is made to overlap by starting acceleration for the next interpolation block during the deceleration for the current interpolation block for continuous processing between consecutive interpolation blocks.

Each block accelerates and decelerates according to the acceleration times and deceleration times that are set with the IAC and IDC commands.

This mode is valid for the MVS, MCW, and MCC commands.

Format

ACCMODE M2;

MVS [Logical_axis_name_1] Reference_position Finterpolation_feed_speed Dinterpolation_overlap_distance;

Item	Unit	Usable Data
Interpolation overlap dis- tance	Reference units	Directly designated valueIndirect designation with a double-length integer register

Note: The interpolation overlap distance can be omitted.

The format is the same for the MCC and MCW commands.

In this mode, you can add the character "D" to an interpolation command to specify the maximum distance for the interpolation distribution to overlap.

When the character "D" is added to an interpolation command in this mode, distribution for the next interpolation block begins when the remaining travel distance for the current interpolation block falls below the interpolation overlap distance. If 0 (reference units) is specified for the interpolation overlap distance, distribution for the next interpolation block begins when the current interpolation block begins deceleration.

If the character "D" is not specified for the interpolation command, the last interpolation overlap distance specified in the motion program is used.

The interpolation overlap distance is set to 0 (reference units) when program operation starts.

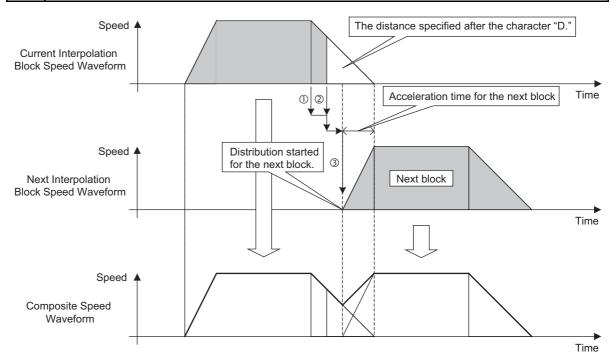
IMPORTANT

A compiling error will occur if the character "D" is used with MPE720 version 6. MPE720 version 6 does not support character "D."

1. The character "D" is valid only in interpolation acceleration/deceleration mode 2.

In other interpolation acceleration/deceleration modes, the operation depends on the software version of the CPU Module.

Software Version	MPE720 Version 7.24 or Later	MPE720 Version 7.23 or Earlier
CPU Module Ver- sion 2.86 or Later	A motion program alarm (32 hex: Speci- fied address error) will occur when an interpolation command is executed.	A motion program alarm (32 hex: Not registered) will occur when an interpola- tion command is executed.
CPU Module Ver- sion 2.85 or Earlier	An alarm will not occur even when an interpolation command is executed. The D address is ignored and the interpolation command is executed.	


2. The valid range for the interpolation overlap distance is 0 to 2,147,483,647 (reference units). If a negative value is specified, the absolute value is used.

- 3. Interpolation acceleration/deceleration mode 2 can be used only with the following versions.
 - CPU Module version: Version 2.84 or later
 - MPE720 version: Version 7.10 or later

• Conditions to Begin Distribution for the Next Interpolation Block

Distribution for the next interpolation block begins when all of the following conditions are satisfied.

No.	Condition
1	Not in Program Single-block Mode.
2	Control signal bit 1 (Request Temporary Stop) is OFF.
3	No PFN commands have been added to the interpolation commands.
4	The interpolation block must have started deceleration. (Refer to the timing of ① in the following figure.)
5	The remaining distance for the interpolation block is less than the interpolation overlap distance that was specified after the character "D." (Refer to the timing of O in the following figure.)
6	The remaining deceleration time of the current interpolation block is less than the acceleration time of the next interpolation block. (Refer to the timing of \Im in the following figure.)

Programming Examples

A programming example for the acceleration/deceleration mode with interpolation overlapping is given below.

FMX T300000; INC; IAC T1000; IDC T2000;

ACCMODE M2;

```
MW00010 = 30;

MVS[A1]20000 [B1]10000 F200000; "Linear interpolation ①"

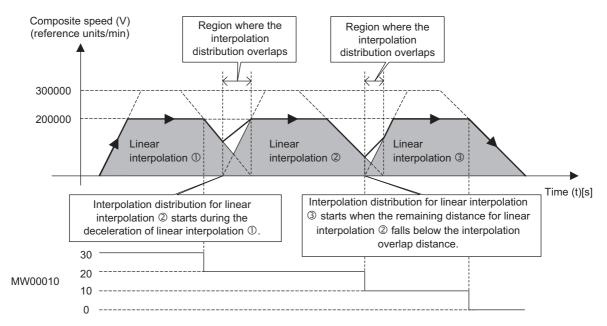
MW00010 = 20;

MVS[A1]10000 [B1]-20000 D100; "Linear interpolation ②"

MW00010 = 10;

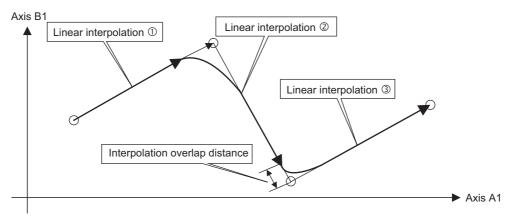
MVS[A1]20000 [B1]10000; "Linear interpolation ③"

MW00010 = 0;
```


```
END;
```

8.1.11 Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

In processing for ACCMODE2, execution moves to the next execution block in the program when deceleration occurs for the interpolation block or when the interpolation overlap distance becomes equal to or less than the specified interpolation overlap distance.


S-type commands (e.g., operation commands) that occur during continuous processing for interpolation blocks are executed when program execution moves to the next block.

The speed waveform for the programming example is given below.

The interpolated path for the above programming example is given below.

As shown in the figure below, some interpolation block end points (i.e., the start point for the next interpolation block) do not pass through the movement path because the distribution for the next interpolation block starts during deceleration of the current interpolation block.

Additional Information

Refer to the following additional information for details on operation in the acceleration/deceleration mode with interpolation overlapping.

Request Temporary Stop Operation

Before distribution for the next interpolation block begins, the interpolation block for axes currently in motion decelerates in the deceleration time specified with the IDC command.

However, no continuous processing to the next interpolation block is performed.

After distribution for the next interpolation block begins, each interpolation block decelerates in the deceleration time specified with the IDC command.

Request Stop Operation

Each interpolation block stops immediately.

Program Single-block Mode Operation

No continuous processing to the next interpolation block is performed.

· Debug Mode Operation

No continuous processing to the next interpolation block is performed.

Operation When the Next Block Is Not an Interpolation Command Block

No continuous processing to the next block is performed.

Acceleration begins from a speed of 0 for the next block.

Continuous Operation during Parallel Execution (PFORK)

This mode cannot be used across a PFORK command.

Adjust the timing of pulse distribution for the interpolation block with the PFN command so that processing (i.e., pulse distribution) for this mode is completed within each fork.

Operation for Execution of T-type Commands

If a T-type command (e.g., a timer command) is executed in continuous processing for an interpolation block, the distribution timing in the next interpolation block will be changed.

(d) Interpolation Acceleration/Deceleration Mode 3 (Acceleration/Deceleration Mode with Continuous Process Control Signal Monitoring) Details

In the same way as in interpolation acceleration/deceleration mode 1 (acceleration/deceleration mode with continuous process control signal monitoring), interpolation acceleration/deceleration mode 3 (acceleration/deceleration mode with continuous process control signal monitoring) monitors a continuous process control signal and performs continuous processing between consecutive interpolation blocks when the specified conditions are satisfied.

However, opposed to interpolation acceleration/deceleration mode 1 (acceleration/deceleration mode with continuous process control signal monitoring), when continuous processing is performed for a minute block with a minute travel distance, deceleration is performed as much as possible to the specified speed in continuous processing between consecutive interpolation blocks.

A minute block is an interpolation bock with a travel distance that is too small for the distance required to decelerate to a stop at the specified deceleration rate from the speed for continuous processing operation.

8.1.11 Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

Format

Use the following format when interpolation acceleration/deceleration mode 3 (acceleration/deceleration mode with continuous process control signal monitoring) is set. Refer to (b) Interpolation Acceleration/Deceleration Mode 1 (Acceleration/Deceleration Mode with Continuous Process Control Signal Monitoring) Details for details on continuous processing control signals.

ACCMODE M3

MVS [Logical_axis_name_1] Reference_position ... Finterpolation_feed_speed TWcontinuous_process_control_signal;

Or

ACCMODE M3

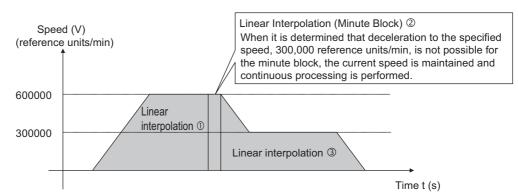
MVS [Logical_axis_name_1] Reference_position ... Finterpolation_feed_speed FWcontinuous_process_control_signal;

Note: The format is the same for the MCC, MCW, and SKP commands.

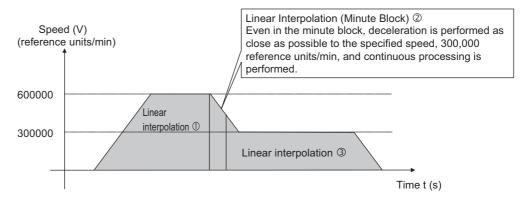
The characters "TW" and "FW" are valid only for this mode and for interpolation acceleration/deceleration mode 1 (acceleration/deceleration mode with continuous process control signal monitoring). In other modes, the operation when the characters "TW" or "FW" are specified depends on the software version of the CPU Module.

Software Version	MPE720 Version 6.36 or Later	MPE720 Version 6.35 or Earlier
CPU Module Version 2.86 or Later	An alarm (32 hex: Specified address error) will occur when an interpolation command is executed.	An alarm (32 hex: No registered) will occur when an interpolation command is executed.
CPU Module Version 2.85 or Earlier	An alarm will not occur even when an interpolation command is executed. The TW or FW address is ignored and the interpolation command is executed.	

Programming Examples


The difference between interpolation acceleration/deceleration modes 1 and 2 for the MVS command is described below.

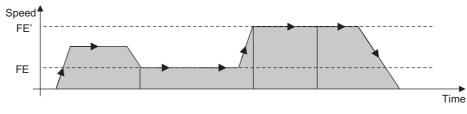
INC; FMX T1000000; IAC T5000; IDC T5000; MB1000=1; // Continuous control signal bit //Interpolation acceleration/deceleration mode (ACCMODE M1 or ACCMODE M3 executed.) ACCMODE M1; // ACCMODE M1 or ACCMODE M3 MVS [A1]100000 F600000 TWMB1000; // Linear interpolation ① MVS [A1]5000 F300000 TWMB1000; // Linear interpolation (minute block) ② MVS [A1]100000 F300000 FWMB1000; // Linear interpolation ③


END;

The speed waveform for the programming example is given below.

• Operation in Interpolation Acceleration/Deceleration Mode

· Operation in Interpolation Acceleration/Deceleration Mode


Additional Information

Additional information on interpolation acceleration/deceleration mode 3 (acceleration/deceleration mode with continuous process control signal monitoring) is the same as the additional information for interpolation acceleration/deceleration mode 1.

(e) Interpolation Acceleration/Deceleration Mode 4 (Acceleration/Deceleration Mode with Next Block Speed Specification) Details

In interpolation acceleration/deceleration mode 4 (acceleration/deceleration mode with next block speed specification), the final speed is specified for each interpolation block and continuous processing to the next interpolation block is performed at the specified speed.

This mode can be used only when the same axes are used for all consecutive interpolation blocks.

Format

Use the following format to select interpolation acceleration/deceleration mode 4.

ACCMODE M4

MVS [Logical_axis_name_1] Reference_position ... Finterpolation_feed_speed FEfinal_interpolation_feed_speed;

Item	Unit	Usable Data
Final interpolation feed speed	Reference units/min	Indirect designation with a double-length integer registerDirectly designated value

8

8.1.11 Set Interpolation Acceleration/Deceleration Mode (ACCMODE)

Note: The final interpolation feed speed can be omitted. The format is the same for the MCC, MCW, and SKP commands.

In this mode, you can add the characters "FE" to an interpolation command to specify the final speed for the interpolation block.

If you add the characters "FE" to an interpolation command, pulse distribution is adjusted so that the interpolation block ends at the specified final interpolation feed speed.

If the specified final interpolation feed speed is 0 (speed units), continuous processing is not performed and the axes decelerate to a stop.

If the characters "FE" are not specified for the interpolation command, the final interpolation feed speed that was last specified in the motion program is used.

The final interpolation feed speed is 0 (speed units) when program operation starts.

IMPORTANT

1. The characters "FE" are valid only for this mode. In other interpolation acceleration/deceleration modes, a motion program alarm will occur.

2. The valid range for the final interpolation feed speed is 0 to 2,147,483,647 (speed units). A compiler error will occur if a negative number is specified.

This mode can be used with the following or later versions.

- CPU Module version: Version 2.86
- MPE720 version: Version 6.36

Programming Example

```
      FMX T6000000;

      IAC T1000;

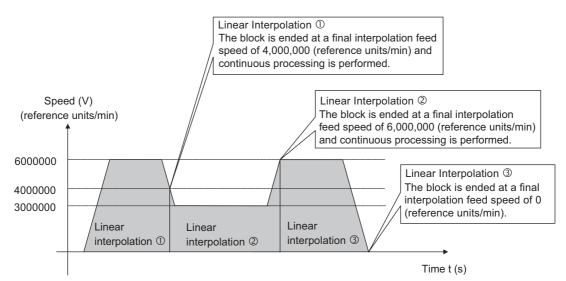
      IDC T1000;

      INC;

      ACCMODE M4;

      MVS [A1]300000 F6000000 FE4000000;

      "Linear interpolation ①"


      MVS [A1]300000 F6000000 FE6000000;

      "Linear interpolation ②"

      MVS [A1]300000 F6000000 FE0;
```

END;

The speed waveform for the programming is given below.

Additional Information

Refer to the following additional information for details on operation in the acceleration/deceleration mode with next block speed specification.

Request Temporary Stop Operation

If a temporary stop is requested, the axes decelerate to a stop at the set deceleration rates. If the travel distance is insufficient, a quick stop is performed at the target position.

· Request Stop Operation

The interpolation block stops immediately.

· Operation When Final Interpolation Feed Speed Is Not Reached

Acceleration or deceleration to the final interpolation feed speed is continued and an immediate stop is performed when the travel distance is reached.

If the next block is an interpolation command, continuous processing is performed when the immediate stop occurs.

Program Single-block Mode Operation

No continuous processing to the next interpolation block is performed.

· Debug Mode Operation

No continuous processing to the next interpolation block is performed.

· Operation When the Next Block Is Not an Interpolation Command Block

No continuous processing to the next block is performed. Acceleration begins from a speed of 0 for the next block.

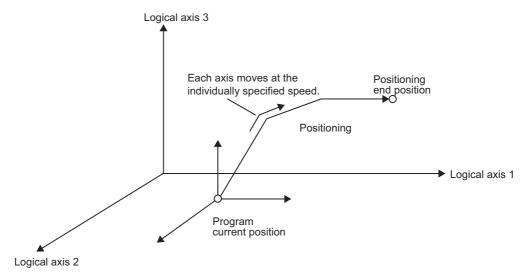
Continuous Operation during Parallel Execution (PFORK)

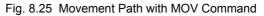
Continuous processing is not performed across a PFORK command. Set the commands so that processing for this mode ends during each fork. 8.2.1 Positioning (MOV)

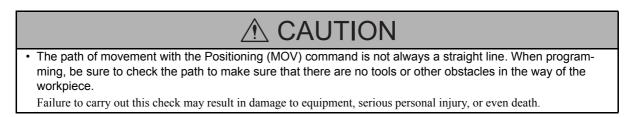
8.2 Axis Move Commands

This chapter described axis move commands.

8.2.1 Positioning (MOV)


Motion Programs	Sequence Programs
Applicable	Not Applicable


(1) Overview

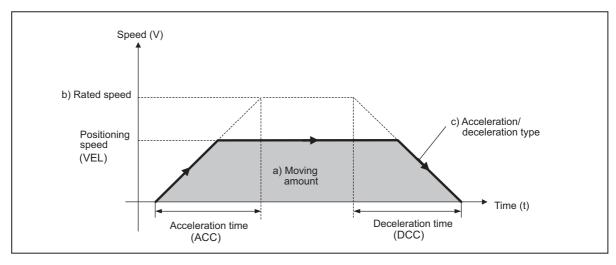

The Positioning (MOV) command independently moves each axis from the current position to the end position at positioning speed.

Up to16 axes can be moved simultaneously. Any axis not specified in the command will not be moved.

The path of movement with the MOV command is different from the linear travel.

(2) Format

 MOV
 [Logical axis name 1] Reference position
 [Logical axis name 2] Reference position
 [Logical axis name 3] Reference position...;


 Item
 Unit
 Usable Data

 Reference
 Reference unit
 • Directly designated value

 • Double integer type register (Indirect designation)

(3) Setting Items for MOV Command

Motion Image

a) Moving amount

The moving amount of each axis differs depending on the movement mode, ABS mode or INC mode.

Moving amount in ABS mode

The difference between the program current position and the reference position.

• Moving amount in INC mode

The reference position is used as the moving amount.

Refer to 7.2.2 Reference Unit for information on the moving amount unit.

b) Rated speed

Use motion fixed parameter 34 (Rated motor speed) to set the rated speed of each axis. For details, refer to the relevant motion module manual.

c) Acceleration/deceleration type

The acceleration/deceleration for a MOV command can be selected from the following three types. It can be selected according to the combination of the following settings:

Motion setting parameter OW 03, bit 4 to 7: Acceleration/deceleration degree unit selection Motion setting parameter OW 03, bit 8 to B: Filter type selection

(a) No acceleration/deceleration

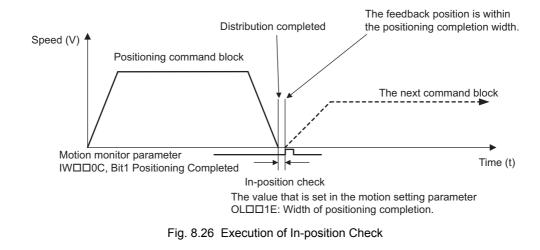
Movement with both the acceleration time and deceleration time set to 0

Setting Method	Movement Path
• OWDD03, bit 4 to 7: Acceleration/deceleration degree unit selection = 1 (ms)	
• OW \square 03, bit 8 to B: Filter type selection = 0 (No filter)	
• Set the ACC command to 0.	
• Set the DCC command to 0.	

(b) Single-step linear acceleration/deceleration

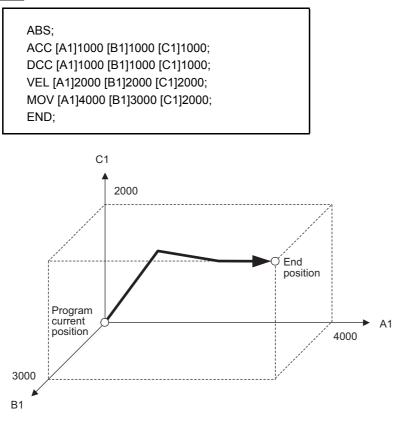
Movement with a constant acceleration/deceleration speed

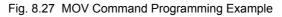
Setting Method	Movement Path
 OW□□03, bit 4 to 7: Acceleration/deceleration degree unit selection = 1 (ms) OW□□03, bit 8 to B: Filter type selection = 0 (No filter) Set the ACC command to a value other than 0. Set the DCC command to a value other than 0. 	


(c) S-curve acceleration/deceleration

Movement at S-curved acceleration/deceleration speed

Setting Method	Movement Path
• OW \square 03, bit 4 to 7: Acceleration/deceleration degree unit selection = 1	
 (ms) OW□□03, bit 8 to B: Filter type selection = 2 (Moving average filter) 	
• Set the ACC command to a value other than 0.	
• Set the DCC command to a value other than 0.	
• Set the SCC command to a value other than 0.	


For axis movement with a MOV command, an in-position check is executed to verify that the axis enters the positioning completion range. After the in-position check, the next move command block will be executed. The following diagram illustrates the in-position execution.



(4) Programming Examples

A programming example for a MOV command in ABS mode is shown below.

<u> EXAMPLE</u>

8

8.2.2 Linear Interpolation (MVS)

8.2.2 Linear Interpolation (MVS)

Motion Programs	Sequence Programs
Applicable	Not applicable

(1) Overview

The Linear Interpolation command (MVS) moves each axis on a straight line from the program current position to the end position at the specified interpolation feed speed. Up to 16 axes can be moved simultaneously. Any axis not specified in the command will not be moved.

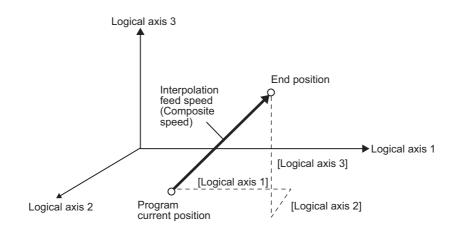


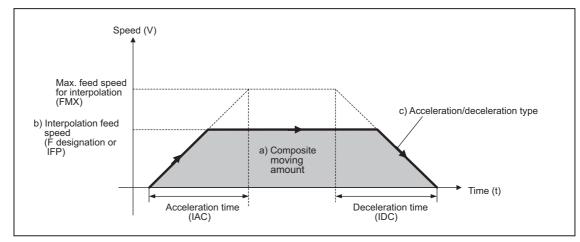
Fig. 8.28 Movement Path with MVS Command

Linear Interpolation (MVS) can be executed for either linear axes or rotary axes. If rotary axes are included, however, the linear interpolation path will not be in straight line. When programming, be sure to check the path to make sure that there are no tools or other obstacles in the way of the workpiece.
 Failure to carry out this check may result in damage to equipment, serious personal injury, or even death.

For axis movement with the MVS command, an in-position check is not automatically executed. Use the PFN command to execute an in-position check if required.

(2) Format

MVS [Logical axis name 1] Reference position [Logical axis name 2] Reference position [Logical axis name 3] Reference position ...


F Interpolation feed speed ;

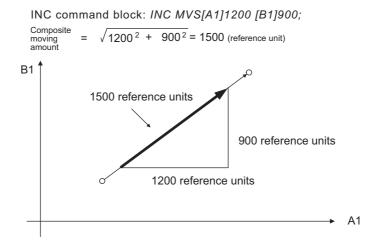
Item	Unit	Usable Data
Reference position	Reference unit	Directly designated value
Interpolation feed speed	Reference units/min	· Double integer type register (Indirect designation)

Note: The interpolation feed speed can be omitted.

(3) Setting Items for MVS Command

Motion Image

a) Composite moving amount


The composite moving amount differs depending on the movement mode: ABS mode or INC mode.

• Composite moving amount in ABS mode

The difference between the program current position and the reference position

· Composite movement amount in ABS mode

The reference position is used as the moving amount.

Refer to 7.2.2 Reference Unit for information on the moving amount unit.

8

b) Interpolation feed speed (F command or IFP)

[reference units/min].

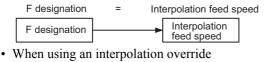
Specify a numerical value or register following to character F in the MVS command block (F designation). The specified interpolation feed speed is treated as a composite speed for all the specified axes. The reference range is between 1 reference unit/min and the maximum feed speed for interpolation (FMX)

For the INC command block INC MVS[A1]1200 [B1]900 F500; B1 Interpolation feed speed 500 reference units/min reference units 1200 reference units

The feed speed of each axis is calculated using the following formula.

- The feed speed of each axis [reference units/min]
 - = <u>moving amount of each axis [reference units]</u> × interpolation feed speed [reference units/min]

For example, the feed speed of each axis in above condition is calculated as following.


Interpolation feed speed (the value of F) = 500 [reference units/min]

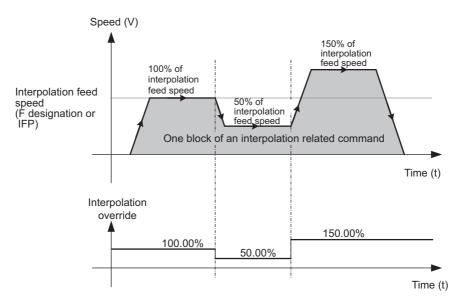
Composite moving amount = $\sqrt{1200^2 + 900^2}$ = 1500 [reference units]

- The feed speed of A1 axis = $\frac{1200}{1500} \times 500 = 400$ [reference units/min]
- The feed speed of B1 axis = $\frac{900}{1500} \times 500 = 300$ [reference units/min]

You can select whether or not to apply an interpolation override to the F designation. Refer to *4.3.3 Work Registers* for information on how to use an interpolation override.

· When not using an interpolation override

F designation × Interpolation override = Interpolation feed speed 0 to 327.67%


F designation

The interpolation feed speed can also be specified as a percentage of the maximum feed speed for interpolation (FMX).

Refer to 8.1.8 Interpolation Feed Speed Ratio Setting (IFP) for information how to specify an interpolation feed speed as a percentage of the maximum feed speed for interpolation.

- If a value higher than the FMX reference value (reference units/min) is specified for an F designation (reference units/ min), a motion alarm will occur.
- If the interpolation override applied interpolation feed speed exceeds the FMX value, the output value of the interpolation feed speed will be reset to the FMX reference value.
- When the interpolation feed speed is not specified in the command block, the interpolation feed speed specified in the previous command block will be applied.

The interpolation override can be changed during axis movement.

Fig. 8.29 Interpolation Override and Interpolation Related Command

c) Acceleration/deceleration type

The acceleration/deceleration for an MVS command can be selected from the following three types. It can be selected according to the combination of settings of IAC, IDC, and SCC commands and motion parameter $OW\square\square 03$, bit 8 to B: Filter type selection.

(a) No acceleration/deceleration

Movement with both the acceleration time and deceleration time set to 0

Setting Method	Movement Path
 OW□□03, bit 8 to B: Filter type selection = 0 (No filter) Set the IAC command to 0. Set the IDC command to 0. 	

(b) Single-step linear acceleration/deceleration

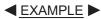
Movement with a constant acceleration/deceleration speed

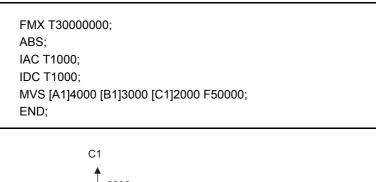
Setting Method	Movement Path
 OW□□03, bit 8 to B: Filter type selection = 0 (No filter) Set the IAC command to a value other than 0. Set the IDC command to a value other than 0. 	

(c) S-curve acceleration/deceleration

Movement at S-curved acceleration/deceleration speed

Setting Method	Movement Path
 OW□□03, bit 8 to B: Filter type selection = 2 (Moving average filter) Set the IAC command to a value other than 0. Set the IDC command to a value other than 0. Set the SCC command to a value other than 0. 	


8.2.2 Linear Interpolation (MVS)



- Code a FMX command to specify the maximum feed speed for interpolation at the beginning of motion program. Otherwise, a motion program alarm will occur at execution of the MVS command.
- If the acceleration/deceleration time is not specified, the default time of 0 ms is applied.
- For axis movement with the MVS command, an in-position check is not automatically executed. Use the PFN command to execute an in-position check if required.

(4) Programming Examples

A programming example of an MVS command in ABS mode is shown below.

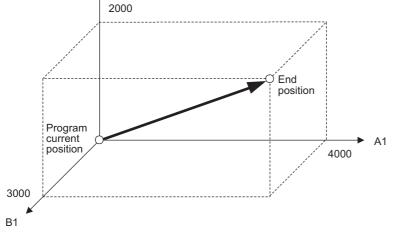
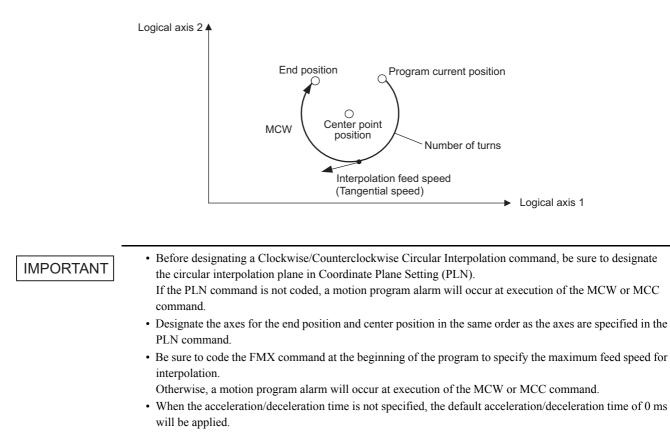


Fig. 8.30 MVS Command Programming Example


8.2.3 Clockwise/Counterclockwise Circular Interpolation with Center Position Designation (MCW, MCC)

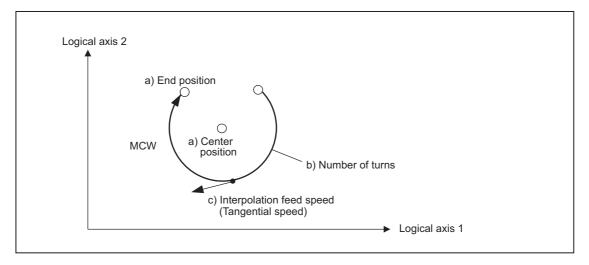
Motion Programs	Sequence Programs
Applicable	Not applicable

(1) Overview

The Clockwise/Counterclockwise Circular Interpolation with Center Position Designation command (MCW, MCC) moves two axes simultaneously from the program current position to the end position on the designated plane at the interpolation feed speed on the circle determined by the center position.

- MCW: Circular Interpolation command for Clockwise (CW)
- MCC: Circular Interpolation command for Counterclockwise (CCW)

For axis movement with the MCW or MCC command, an in-position check is not automatically executed. Use the PFN command to execute an in-position check if required.


8.2.3 Clockwise/Counterclockwise Circular Interpolation with Center Position Designation (MCW, MCC)

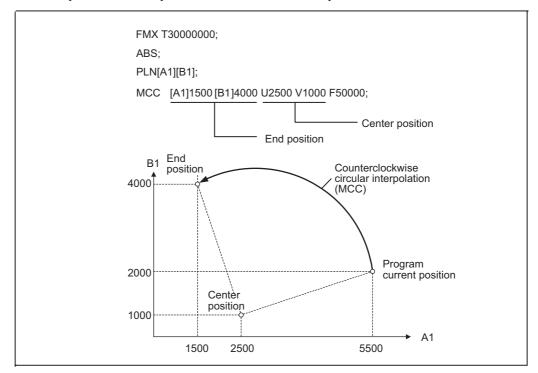
(2) Format

Item	Unit	Usable Data	
End position	Reference unit	Directly designated value	
Center point position	Reference unit	Double integer register (Indirect designation)	
Number of turns	Number of times of turn		
nterpolation feed speed	Reference units/min		

(3) Setting Items for MCW and MCC Commands

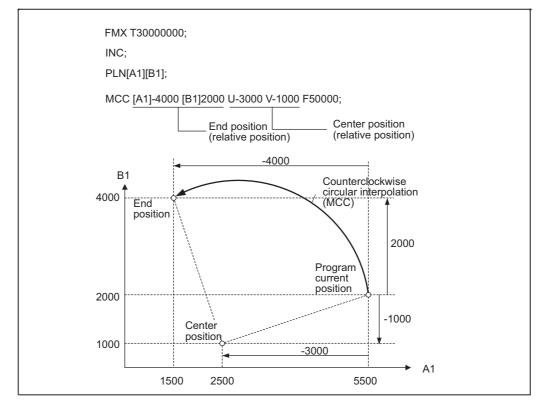
Motion Image

a) End position and Center point position


End position: Specify a numerical value or register following to a logical axis name.

Center position: Specify a numerical value or register following to character U and V in the MCW or MCC command block.

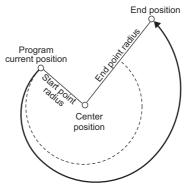
The actual end position and center position for the reference positions will differ, depending on the movement mode: ABS mode or INC mode.


• In ABS Mode

The center position and end position are treated as absolute positions.

• In INC Mode

The center position and end position are treated as relative positions from the program current position.

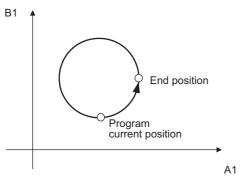


8

8.2.3 Clockwise/Counterclockwise Circular Interpolation with Center Position Designation (MCW, MCC)

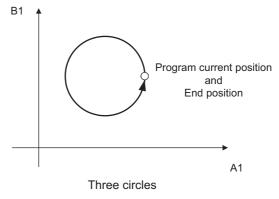
IMPORTANT

Special care must be taken with regard to the start point radius, and end point radius, because the circular interpolation path will become as shown below if the start point radius is not equal to the end point radius.


b) Number of turns

Specify a numerical value or register following to character T in the MCW or MCC command block. Specifying the number of turns will implement multiple circular movements. Specifying a negative value for the number of turns will cause a motion program alarm. The number of circular movements determined by the specified number of turns will differ depending on the relationship between the program current position and end position as shown below.

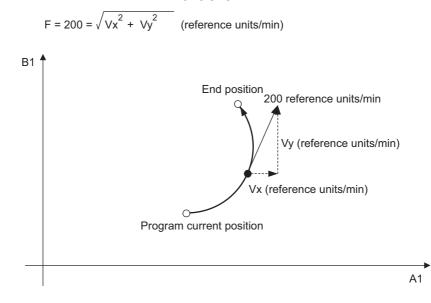
EXAMPLE


• When the number of turns is set to 2

When Program current position ≠ End position

Two circles + 1/4 circle

Program current position = End position



c) Interpolation feed speed

For circular interpolation (MCW, MCC), the specified interpolation feed speed is treated as the speed of a tangential direction.

The reference range is between 1 and the maximum interpolation feed speed (FMX) [reference unit/min].

MCC command block: MCC[A1]- [B1]- F200;

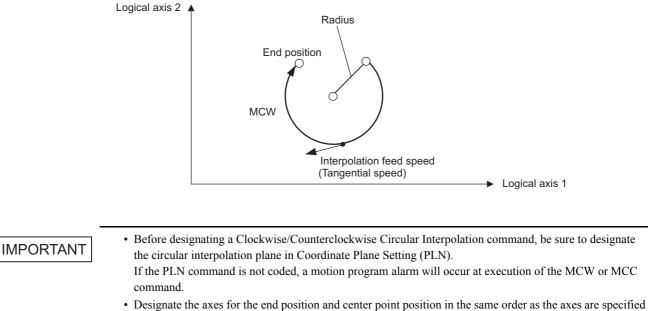
8.2.3 Clockwise/Counterclockwise Circular Interpolation with Center Position Designation (MCW, MCC)

(4) Programming Examples

<u> EXAMPLE</u>

A programming example of circular interpolation (MCW, MCC) in ABS mode is shown below. The MCW commands turns axes clockwise, while MCC commands counterclockwise.

Turning Direction	Programming Example
	ABS; FMX T3000000; PLN [A1][B1]; MCW [A1]0 [B1]0 U1000 V0 F2000; "MCW (clockwise)" END; B1
Clockwise (MCW)	End position (0,0) Center position (1000,0) Program current position Clockwise circular interpolation (MCW) Fig. 8.32 Center Position Designated Clockwise Circular Interpolation (MCW)
Counter- clockwise (MCC)	ABS; FMX T30000000; PLN [A1][B1]; MCC [A1]0 [B1]0 U1000 V0 F2000; "MCC (Counterclockwise)" END; B1


8.2.4 Clockwise/Counterclockwise Circular Interpolation with Radius Designation (MCW, MCC)

Motion Programs	Sequence Programs
Applicable	Not applicable

(1) Overview

The Clockwise/Counterclockwise Circular Interpolation with Radius Designation command (MCW, MCC) moves two axes simultaneously from the program current position to the end position on the designated plane at the interpolation speed on the circle determined by the radius.

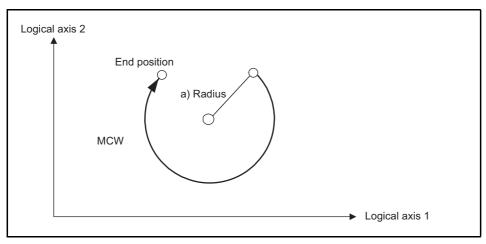
- MCW: Circular Interpolation command for Clockwise (CW)
- MCC: Circular Interpolation command for Counterclockwise (CCW)

- Designate the axes for the end position and center point position in the same order as the axes are specified in the PLN command.
- Be sure to code the FMX command at the beginning of the program to specify the maximum feed speed for interpolation.
- Otherwise, a motion program alarm will occur at execution of the MCW or MCC command.
- When the acceleration/deceleration time is not specified, the default acceleration/deceleration time of 0 ms will be applied.

For axis movement with the MCW or MCC command, an in-position check is not automatically executed. Use the PFN command to execute an in-position check if required.

8.2.4 Clockwise/Counterclockwise Circular Interpolation with Radius Designation (MCW, MCC)

(2) Format


MCW [Logical axis name 1] End position [Logical axis name 2] End position R Radius F Interpolation speed ;

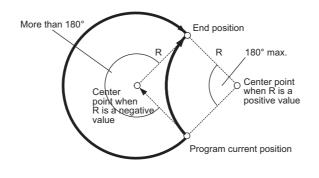
Item	Unit	Usable Data
End position	Reference unit	Directly designated value
Radius	Reference unit	· Double integer type register (Indirect designation)
nterpolation feed speed	Reference units/min	

2. With radius designating circular interpolation, the number of turns cannot be specified.

(3) Setting Items for MCW and MCC Commands

Motion Image

a) Radius


Specify a numerical value or register following to character R in the MCW or MCC command block. The circular interpolation path will differ depending on the radius reference value as follows.

With the MCW command block MCW [A1] - [B1] - R -;

If R > 0: Circular interpolation with an arc angle of 180° or less

If R < 0: Circular interpolation with an arc angle of more than 180°

If R = 0: A motion program alarm will occur.

With the radius designating circular interpolation, the number of turns cannot be specified.

(4) Programming Examples

<u> EXAMPLE</u>

Programming examples of the circular interpolation command (MCW, MCC) in ABS mode are shown below. The turning direction is specified by MCW (clockwise) and MCC (counterclockwise), and the arc angle is specified by the radius reference value.

Turning Direction	Arc Angle	Programming Example	
	180° or less (Radius reference value > 0)	ABS; FMX T30000000; PLN [A1][B1]; MCW [A1]1000 [B1]1000 R1000 F2000; "MCW (Clockwise)" END; B1 Clockwise circular interpolation (MCW) End position (1000,1000) Arc angle 180° or less Program current position (0,0) Fig. 8.34 Radius Designating Clockwise Circular Interpolation Command (MCW)	
Clockwise (MCW)	180° or more (Radius reference value < 0)	ABS; FMX T3000000; PLN [A1][B1]; MCW [A1]1000 [B1]1000 R-1000 F2000; "MCW (Clockwise)" END;	

8.2.4 Clockwise/Counterclockwise Circular Interpolation with Radius Designation (MCW, MCC)

Turning Direction	Arc Angle	Programming Example
	180° or less (Radius reference value > 0)	ABS; FMX T30000000; PLN [A1][B1]; MCC [A1]1000 [B1]1000 R1000 F2000; "MCC (Counterclockwise)" END; B1 Center point (0,1000) Radius = 1000 Program current position (0,0) Fig. 8.36 Radius Designating Counterclockwise Circular Interpolation Command (MCC)
Counter- clockwise (MCC)	180° or more (Radius reference value < 0)	ABS; FMX T3000000; PLN [A1][B1]; MCC [A1]1000 [B1]1000 R-1000 F2000; "MCC (Counterclockwise)" END; B1 Center point (1000,1000) Center point (1000,0) Program current position (0,0) Fig. 8.37 Radius Designating Counterclockwise Circular Interpolation Command (MCC)

8.2.5 Clockwise/Counterclockwise Helical Interpolation with Center Position Designation (MCW, MCC)

Motion Programs	Sequence Programs
Applicable	Not applicable

(1) Overview

The Clockwise/Counterclockwise Helical Interpolation with Center Position Designation command (MCW, MCC) simultaneously executes a linear interpolation movement while moving on the circle (circular interpolation) determined by the designated center point position.

The helical interpolation feed speed is calculated by using the tangential speed for circular interpolation and composite speed for linear interpolation.

- MCW: Helical Interpolation command for Clockwise (CW)
- MCC: Helical Interpolation command for Counterclockwise (CCW)

• The linear interpolation axis specified for a Clockwise/Counterclockwise Helical Interpolation (MCW, MCC) command can be either a linear axis or a rotary axis. Depending on the axis movement in the linear interpolation portion, the helical interpolation path may not be a helical shape. When programming, be sure to check the path to make sure that there are no tools or other obstacles in the way of the workpiece. Failure to carry out this check may result in damage to equipment, serious personal injury, or even death.

IMPORTANT

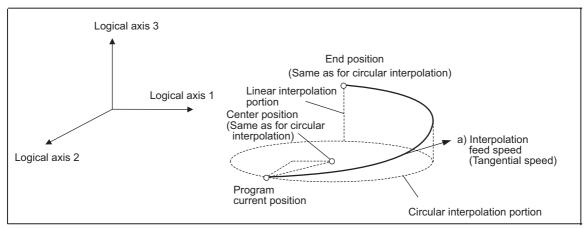
- Be sure to specify the plane for circular interpolation by using the Coordinate Plane Setting command (PLN) before executing the Helical Interpolation command (MCW or MCC).
- Use logical axis 1 and logical axis 2 to specify the end positions and center points of circle of the horizontal and vertical axes of the designated plane.
- Specify the axes for the end position and center position in the same order as the axes are specified in the PLN command.
- Any axis that has not been specified in the plane designation can be specified as a linear interpolation axis. The axis does not need to be at right angles to the interpolation plane.

For an axis movement initiated by execution of the helical interpolation command MCW or MCC, an in-position check to check whether the axis enters the positioning completion range will not be executed. Use the PFN command to execute an in-position check if required.

8.2.5 Clockwise/Counterclockwise Helical Interpolation with Center Position Designation (MCW, MCC)

(2) Format

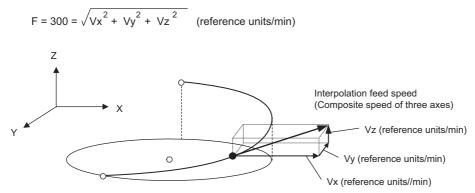
MCW [Logical axis name 1] End position [Logical axis name 2] End position U Center point position V Center point position


[Logical axis name 3] End position for linear interpolation T Number of turns F Interpolation feed speed ;

Item	Unit	Usable Data
End position	Reference unit	· Directly designated value
Center point position	Reference unit	· Double integer type register (Indirect designation)
Number of turns	Number of times of turn	
Interpolation feed speed	Reference unit/min	

Note: The number of turns and interpolation feed speed can be omitted.

(3) Setting Items for MCW and MCC Commands


Motion Image

a) Interpolation feed speed

For the helical interpolation commands (MCW and MCC), the interpolation feed speed is calculated with the tangential speed for circular interpolation and the composite speed for the linear interpolation axis.

MCC command block: MCC [X]- [Y]- U- V- [Z]- F300;

(4) Programming Examples

▲ EXAMPLE

A programming example of a clockwise helical interpolation command (MCC) in ABS mode is shown below.

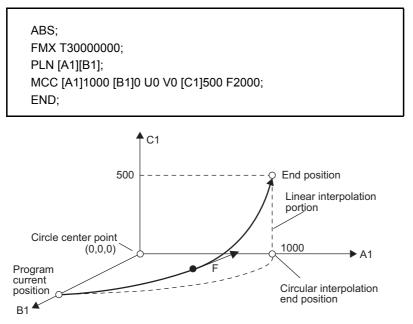


Fig. 8.38 Center Point Position Designating Clockwise Helical Interpolation Command (MCC) Programming Example

8.2.6 Clockwise/Counterclockwise Helical Interpolation with Radius Designation (MCW, MCC)

8.2.6 Clockwise/Counterclockwise Helical Interpolation with Radius Designation (MCW, MCC)

Motion Programs	Sequence Programs
Applicable	Not applicable

(1) Overview

The Clockwise/Counterclockwise Helical Interpolation with Radius Designation command (MCW, MCC) simultaneously executes a linear interpolation movement while moving on the circle (circular interpolation) determined by the designated radius.

The helical interpolation feed speed is calculated by using the tangential speed for circular interpolation and the composite speed for linear interpolation.

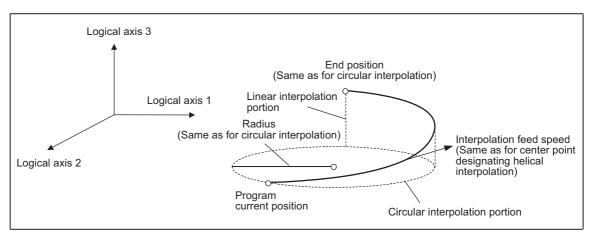
- MCW: Helical Interpolation command for Clockwise (CW)
- MCC: Helical Interpolation command for Counterclockwise (CCW)

• The linear interpolation axis specified for a Clockwise/Counterclockwise Helical Interpolation (MCW, MCC) command can be either a linear axis or a rotary axis. Depending on the axis movement in the linear interpolation portion, the helical interpolation path may not be a helical shape. When programming, be sure to check the path to make sure that there are no tools or other obstacles in the way of the workpiece. Failure to carry out this check may result in damage to equipment, serious personal injury, or even death.

IMPORTANT

• Be sure to specify the plane for circular interpolation by using the Coordinate Plane Setting command (PLN) before executing the Helical Interpolation command (MCW or MCC).

- Use logical axis 1 and logical axis 2 to specify the end positions and center points of circle of the horizontal and vertical axes of the designated plane.
- Specify the axes for the end position and center position in the same order as the axes are specified in the PLN command.
- Any axis that has not been specified in the plane designation can be specified as a linear interpolation axis. The axis does not need to be at right angles to the interpolation plane.


For an axis movement initiated by execution of the helical interpolation command MCW or MCC, an in-position check to check whether the axis enters the positioning completion range will not be executed. Use the PFN command to execute an in-position check if required.

(2) Format

	[Logical axi	is name 3] End position for linear interpolation F Interpolat	ion feed speed
Item	Unit	Usable Data	
End position	Reference unit	Directly designated value	
Center point position	Reference unit	Double integer type register (Indirect designation)	
Radius	Reference unit		
Interpolation feed speed	Reference units/min		

(3) Setting Items for MCW and MCC Commands

Motion Image

The designation methods of the radius and end position for the radius designating helical interpolation command are the same as for the radius designating circular interpolation command.

Additionally, the designation method of the interpolation feed speed is the same as for the center position designating helical interpolation command.

(4) Programming Examples

▲ EXAMPLE

A programming example of a radius designating counterclockwise helical interpolation command (MCC) is shown below.

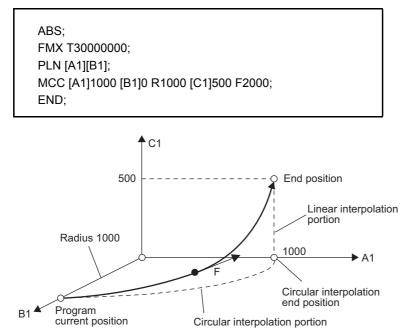
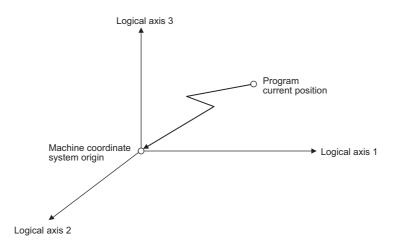


Fig. 8.39 Radius Designating Counterclockwise Helical Interpolation Command (MCC)


8.2.7 Zero Point Return (ZRN)

8.2.7 Zero Point Return (ZRN)

Motion Programs	Sequence Programs
Available	Not Available

(1) Overview

The Zero Point Return (ZRN) command executes the zero point return operation. Up to 16 axes can be designated simultaneously. An axis unspecified in the command block will not move. The resulting stop position is set as the machine coordinate origin.

When the ZRN command is executed, the returned position is set as the machine coordinate origin. At the same time, the work coordinate system previously set by Current Position Set (POS) is cancelled.

After the ZRN command has been executed, the machine coordinate system will be the same as the work coordinate system. Until the next time that Current Position Set (POS) is executed, Move ON Machine Coordinates (MVM) will be ineffective, even if it is designated.

Refer to 8.3.1 Current Position Set (POS) for details of the machine coordinate system and work coordinate system.

IMPORTANT

Request for temporary stop of program is disabled during ZRN command execution. To stop the operation on the way, execute request for stop of program.

Refer to 4.3.3 Work Registers for information on Program Pause Request and Program Stop Request signals.

(2) Format

ZRN [Logical axis name 1] 0 [Logical axis name 2] 0 [Logical axis name 3] 0 ... ;

Note: Always code "0" after each logical axis name.

(3) Setting Items for ZRN Command

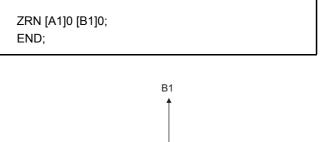
(a) Zero Point Return Methods

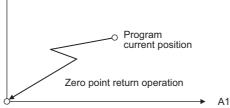
Use motion setting parameter $OW\square\square 3C$ (Zero point return method) to set the zero point return method for each axis.

The table below lists the available zero point return methods.

Refer to the relevant motion module manual for details on each method.

Zero Point Return Method	Setting (OW□□3C)	SVA-01	SVB-01/ Built-in SVB	PO-01
DEC1 + Phase-C pulse	0	Available	Available	N/A
ZERO signal	1	Available	Available	N/A
DEC1 + ZERO signal	2	Available	Available	Available
Phase-C pulse	3	Available	Available	N/A
DEC2 + ZERO signal	4	Available	N/A	Available
DEC1 + LMT + ZERO signal	5	Available	N/A	Available
DEC2 + Phase-C signal	6	Available	N/A	N/A
DEC1 + LMT + Phase-C signal	7	Available	N/A	N/A
C pulse only	11	Available	Available	N/A
P-OT & Phase-C pulse	12	Available	Available	N/A
P-OT	13	Available	Available	N/A
HOME LS & Phase-C pulse	14	Available	Available	N/A
HOME LS	15	Available	Available	N/A
N-OT & Phase-C pulse	16	Available	Available	N/A
N-OT	17	Available	Available	N/A
INPUT & Phase-C pulse	18	Available	Available	N/A
INPUT	19	Available	Available	N/A


(b) Zero Point Return Speed


The zero point return speed depends on the applied zero point return method. For details, refer to the relevant motion module manual.

(4) Programming Examples

▲ EXAMPLE

A programming example of a ZRN command in ABS mode is shown below.

The stop position is set to the machine coordinate origin (0, 0).

8.2.8 Linear Interpolation with Skip Function (SKP)

8.2.8 Linear Interpolation with Skip Function (SKP)

Motion Programs	Sequence Programs
Applicable	Not applicable

(1) Overview

The Linear Interpolation with Skip Function command (SKP) is an extended command of the Linear Interpolation command (MVS). When the skip input signal is turned ON during axis movement by a SKP command, the moving axis is decelerated to a stop and the remaining travel distance is cancelled.

A use of a SKP command enables the programming of motion control that can respond to external conditions. The skip signal is input to the control signal for the MSEE command or the control register of M-EXECUTOR.

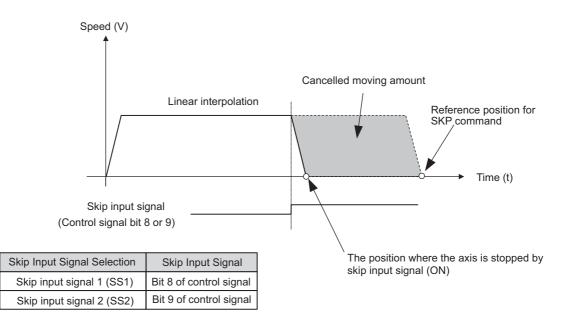
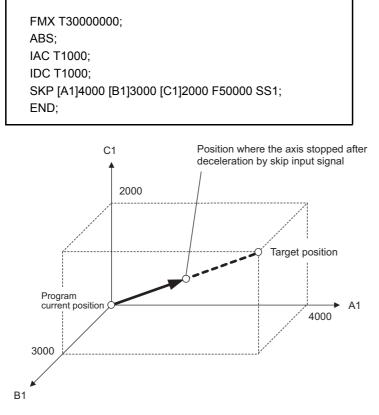
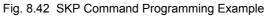


Fig. 8.41 Axis Movement by SKP Command

IMPORTANT

The moving axis decelerates to a stop when the skip input signal is turned ON. The SKP command, however, remains in effect until the positioning completion signal is turned ON.


(2) Format


		F Interpolation feed speed SS Skip input signal se
Item	Unit	Usable Data
Reference position	Reference unit	Directly designated value
Interpolation feed speed	Reference unit/min	Double integer type register (Indirect designation)
Skip input signal selection		Directly designated number 1 or 2
	-	Double integer type register (Indirect designation)

(3) Programming Examples

▲ EXAMPLE ▶

A programming example of a SKP command in ABS mode is shown below.

8.2.9 Set Time Positioning (MVT)

8.2.9 Set Time Positioning (MVT)

Motion Programs	Sequence Programs
Applicable	Not applicable

(1) Overview

The Set Time Positioning command (MVT) is an extended Positioning command (MOV).

The MVT command can simultaneously move up to 16 axes. An axis unspecified in the MVT command block will not move.

With the MVT command, the feed speed of each axis is adjusted to complete positioning in the specified time. The MVT command does not use an interpolation operation, and there is no restriction on completing the positioning for all the specified axes simultaneously.

There is a time lag caused by the acceleration/deceleration setting.

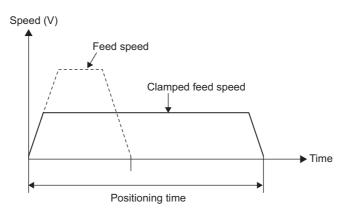
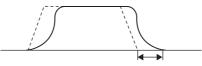



Fig. 8.43 Axis Movement with MVT Command

If an override is used, positioning will not complete in the specified time. If a filter is used, the positioning time will be delayed by the filter time constant.

Filter time constant

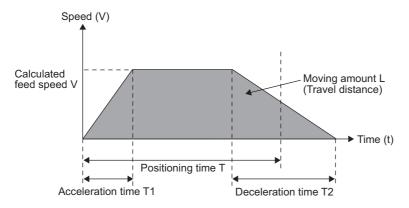
Fig. 8.44 Positioning Time Delay When a Filter is used

If the positioning time is set to 0, an alarm will occur in the motion program. If the moving amount of any of the specified axes is set to 0, an alarm will occur in the motion program.

(2) Format


 MVT
 [Logical axis name 1] Reference position
 [Logical axis name 2] Reference position
 [Logical axis name 3] Reference position
 ...

 T
 Positioning time
 T
 Position ing time
 Position ing time
 T
 Position ing time
 Position ing time


The positioning time reference range is between 1 and 2147483647 (ms).

Inside the MP2000 Machine Controller, the feed speed during MVT command execution is calculated according to the specified positioning time and moving amount.

This calculation does not include acceleration (acceleration = 0) as shown below.

The actual operation when the acceleration time T1 is less than the deceleration time T2 will be as shown below.

The feed speed set by VEL command will be changed accordingly. After executing the MVT command, reset the feed speed by using VEL command.

An in-position check is executed for axis movement by MVT command execution, as well as for MOV command execution, to verify that the axis enters the positioning completed range.

(3) Programming Examples

■ EXAMPLE ►

A programming example of an MVT command in ABS mode is shown below.

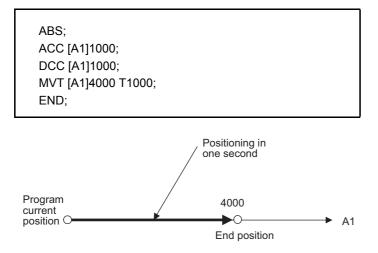
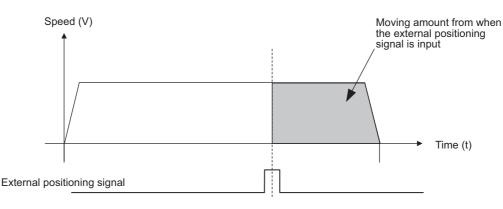


Fig. 8.45 MVT Command Programming Example


8.2.10 External Positioning (EXM)

8.2.10 External Positioning (EXM)

Motion Programs	Sequence Programs
Applicable	Not applicable

(1) Overview

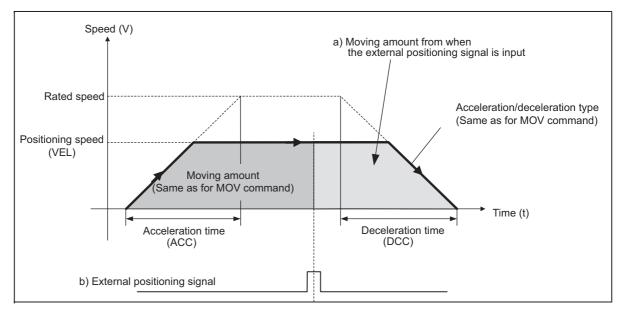
The External Positioning command (EXM) is an extended Positioning command (MOV). The EXM command executes positioning by using an incremental value to move the axis the specified moving amount when the external positioning signal is turned ON. If the external positioning signal is not turned ON, the axis completes positioning at the reference position specified in the EXM command block. Only one axis can be specified in an EXM command block.

Fig. 8.46 Movement by EXM Command

When a negative value is specified for the moving amount, the axis decelerates to a stop and then moves in the negative direction.

IMPORTANT

• For the external positioning signal, refer to the relevant motion module manual.


- The External Positioning command (EXM) cannot be used with a PO-01 module. If used, an alarm will occur in the motion program.
- Special care must be taken to use the external latch input signal, because it is also used for the zero point return operation.

(2) Format

 Image: Image: EXM
 Image: I

(3) Setting Items for EXM Command

Motion Image

a) Moving amount from when the external positioning signal is input

Set the moving amount using an incremental value after the external positioning signal is turned ON. The reference range is between -2147483648 to +2147483647 (reference unit).

b) External positioning signal

Use bits 4 to 7 (External positioning signal setting) of motion setting parameter $OW\square\square04$ (Function setting 2) to select the external positioning signal.

For details, refer to the relevant motion module manual.

The PO-01 module does not have the external positioning function.

(4) Programming Examples

▲ EXAMPLE

A programming example of EXM command in ABS mode is shown below.

ABS;	
ACC [A1]1000;	
DCC [A1]1000;	
VEL [A1]2000;	
DL00000 = 1000;	
EXM [A1]4000 DDL00000;	
END;	

8.3.1 Current Position Set (POS)

8.3 Axis Control Commands

This section describes the axis control commands.

8.3.1 Current Position Set (POS)

Motion Programs	Sequence Programs
Applicable	Not applicable

· Care is required with the Current Position Set (POS) command.

The Current Position Set (POS) command is used to create new work coordinate system values. If POS is specified incorrectly, subsequent move operations will be entirely different. Before starting operations, be sure to check that the work coordinate system is specified correctly.

Failure to carry out this check may result in damage to equipment, serious personal injury, or even death.

(1) Overview

The Current Position Set command (POS) changes the current position to a desired coordinate value to create a new coordinate system. In this manual, the newly set coordinate system is referred to as the "work coordinate system" while the original coordinate system of machine is referred to as the "machine coordinate system." Move commands coded after a POS command will be executed to move axes in the work coordinate system.

Coordinate System	Description	Remarks
Machine Coordi- nate System	Original coordinate system of machine	The position for zero point return is the origin (0).
Work Coordinate System	Coordinate system constructed by the user defined position	A new coordinate system constructed by POS command execution

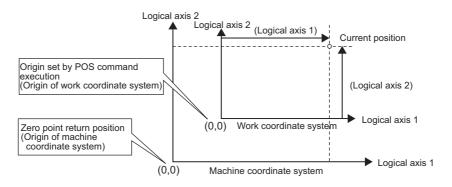


Fig. 8.47 Work Coordinate System Setting by POS Command

The work coordinate system can be changed as often as desired by using the POS command. The machine coordinate system must be set in advance. The machine coordinate system is not affected by the POS command. Up to 16 axes can be designated in a POS command block. The work coordinate system for an axis not designated in the POS command block will not be constructed or updated.

Move commands in a work coordinate system cannot exceed the maximum programmable value when converted to coordinates in the machine coordinate system.

The following table shows the setting status of the machine coordinate system and the work coordinate system. Table 8.1 Coordinate System Setting Timing

	Motion Fixed Parameter 30: Encoder Selection		
Coordinate System Setting Timing	0 or 2: Incremental Encoder/Absolute Encoder (Incremental Encoder is Used)	1: Absolute Encoder	
After power ON	Machine coordinate system: Default setting *1 Work coordinate system: Cancelled *3	Machine coordinate system: Yes *2 Work coordinate system: Cancelled	
After Zero Point Return command (ZRN)	Machine coordinate system: Set Work coordinate system: Cancelled	Work coordinate system: Cancelled	
After POS command	Work coordinate system: Set	Work coordinate system: Set	
After Zero Point Set (ZSET) command	Machine coordinate system: Set	Machine coordinate system: Set	

* 1. Default setting: The current position is set as the machine coordinate origin when the power is turned ON. If the Zero Point Return operation is then not executed, the software limit switch function will not be effective.

- * 2. Yes: The machine coordinate origin is set using the position information in the absolute position detection encoder.
- * 3. Cancelled: The previously set work coordinate system is cancelled, and the work coordinate system is the same as the machine coordinate system.

For infinite-length axes, set a value within the range of 0 to POSMAX.
 If a value outside the setting range is set for any infinite-length axis, an alarm will occur in the motion program.

• When the zero point return operation is executed without using a ZRN command, such as zero point return operation executed from the ladder program, the work coordinate system will not be cancelled.

(2) Format

IMPORTANT

)S [Logical axis name 1] Coordinate axis [Logical axis name 2] Coordinate axis ;			
Item	Unit	Usable Data	
		Directly designated value	
Coordinate axis Reference unit	Double integer type register (Indirect designation)		

(3) Programming Examples

EXAMPLE

A POS command programming example is shown below.

ABS;	" Absolute mode
MOV [A1]1000 [B1]2000;	" Positioning
POS [A1]0 [B1]0; MOV [A1]3000 [B1]4000;	" Set work coordinate system " Positioning
DL00000 = IL8010; DL00002 = IL8090; POS [A1]DL00000 [B1]DL00002;	" Get Machine Coordinate System Calculated Position (CPOS) of Axis A1 " Get Machine Coordinate System Calculated Position (CPOS of Axis B1 " Cancel work coordinate system
END;	

8.3.2 Move On Machine Coordinates (MVM)

Motion Programs	Sequence Programs
Applicable	Not applicable

The Move ON Machine Coordinates (MVM) command is used to position the coordinate positions in a
machine coordinate system. If the machine coordinate origin is designated without being verified, unexpected move operations will result. Before starting operations, be sure to check that the position designated
in the machine coordinate system is correct.

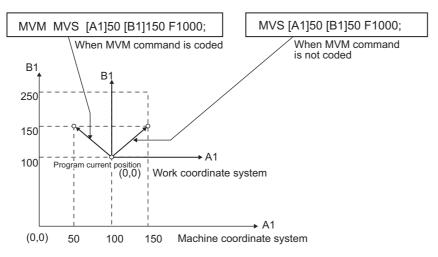
Failure to carry out this check may result in damage to equipment, serious personal injury, or even death.

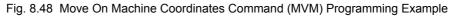
(1) Overview

The Move ON Machine Coordinates (MVM) command is used to move axes in a machine coordinate system after a work coordinate system that is different from the machine coordinate system has been set by Current Position Set (POS).

Specifying an MVM command for an axis move command temporarily moves the axis to the absolute coordinate position in the machine coordinate system. During execution of an MVM command, the axis moves in ABS mode regardless of the movement mode setting.

The MVM command is valid only in the MVM command coded block. For example, the axis moves in the work coordinate system in the linear interpolation (MVS) in the next block or following blocks.


(2) Format


```
MVM MOV ...... ;
or
MVM MVS ..... ;
```

(3) Programming Examples

<u> EXAMPLE</u>

An MVM command programming example is shown below.

8.3.3 Program Current Position Update (PLD)

Motion Programs	Sequence Programs
Applicable	Not applicable

(1) Overview

The Program Current Position Update command (PLD) updates a program current position that has been shifted by a manual intervention, etc.

If an axis movement is executed outside a motion program while the motion program is running (such as when an axis is moved by JOG, STEP, or a user function), the program current position will not be updated. If the motion program is executed in this status, the axis will move to the position shifted for the moving amount by manual intervention. To solve this problem, a PLD command is used to update the program current position.

(2) Format

PLD [Logical axis name 1] [Logical axis name 2] [Logical axis name 3] ... ;

(3) Programming Examples

PLD programming examples are shown below.

(a) Manual intervention while the motion program is running

▲ EXAMPLE

MOV [A1]1000;" Axis [A1] is moved by JOG during this command block is being executed.PLD [A1];" Updates the program current position.MOV [A1]2000;

(b) Axis is moved within the motion program user function

EXAMPLE

MOV [A1]1000;	
UFC FNC10 MB000000 IW0100 MB000020;	" Axis [A1] is moved by a user function
<u>PLD [A1];</u>	" Updates the program current position.
MOV [A1]2000;	

The PLD command can be executed by the user in some applications. The PLD command cannot be used in some of the applications where manual intervention is required while the motion program is running.

8.3.4 In-Position Check (PFN)

8.3.4 In-Position Check (PFN)

Motion Programs	Sequence Programs
Applicable	Not applicable

(1) Overview

The In-Position Check command (PFN) verifies whether the axis being moved by an interpolation related command enters the NEAR position range (NEAR signal output width).

For an axis that is being moved by interpolation related command MVS, MCW, MCC, or SKP, an in-position check is normally not executed. Use a PFN command to verify that the axis enters the NEAR position range.

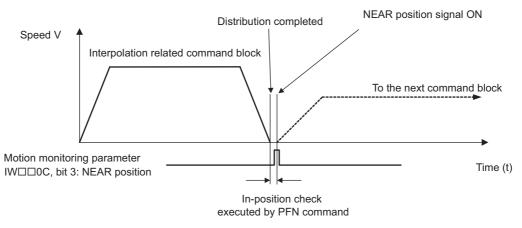
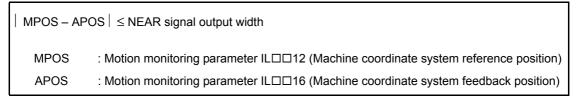



Fig. 8.49 In-position Check Executed by PFN Command

Bit 3 (NEAR position) of motion monitoring parameter IWDD0C turns ON when the following condition is satisfied.

Use INP command to set the NEAR signal output width.

If the NEAR signal output width is set to 0, bit 3 of motion monitoring parameter $IW\square\square OC$ turns ON when the distribution of the reference value, including the filter, is completed.

(2) Format

- When coding a PFN command in the interpolation related command block MVS [Logical axis name 1] - [Logical axis name 2] - [Logical axis name 3] ... PFN;
- When coding a PFN command independently PFN [Logical axis name 1] [Logical axis name 2] [Logical axis name 3]...;

(3) Programming Examples

PFN command programming examples are shown below.

(a) When coding a PFN command in the interpolation related command block

▲ EXAMPLE

MVS [A1]1000 F20000 PFN; MOV [A1]3000; END;

(b) When coding a PFN command independently

<u>
EXAMPLE</u>

MVS [A1]1000 F20000; PFN [A1]; MOV [A1]3000; END;

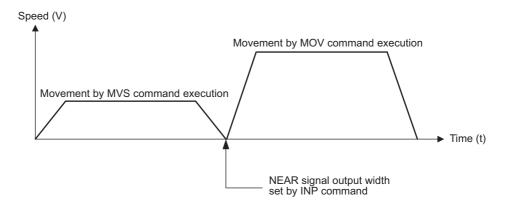


Fig. 8.50 PFN Command Programming Example

8.3.5 Set In-Position Range (INP)

8.3.5 Set In-Position Range (INP)

Motion Programs	Sequence Programs
Applicable	Not applicable

(1) Overview

The Set In-Position Range command (INP) is used to set the NEAR signal output width (in-position check width). Up to 16 axes can be designated in an INP command block. Motion setting parameter $OL\square\square 20$ (NEAR signal output width) for each designated axis is updated.

The reference range is between 1 and 65535 (reference unit).

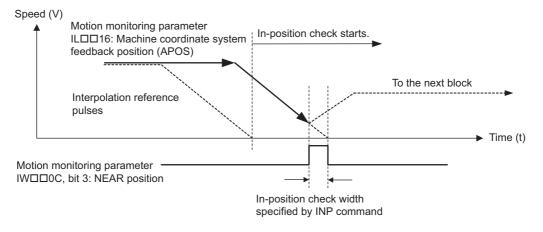


Fig. 8.51 INP Command

The SVR module does not have motion setting parameter $OL\square\square 20$ (NEAR signal output width). With the SVR module, the NEAR signal output width is treated as 0 (zero).

(2) Format

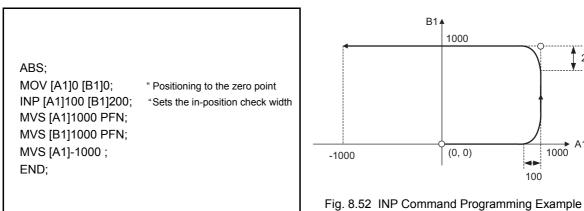
 INP
 [Logical axis name 1] NEAR signal output width
 [Logical axis name 2] NEAR signal output width ... ;

 Item
 Unit
 Usable Data

 NEAR signal output width
 Reference unit
 • Directly designated value

 • Double integer type register (Indirect designation)

200


→ A1

100

(3) Programming Examples

■ EXAMPLE ►

An INP command programming example is shown below.

8.3.6 Coordinate Plane Setting (PLN)

8.3.6 Coordinate Plane Setting (PLN)

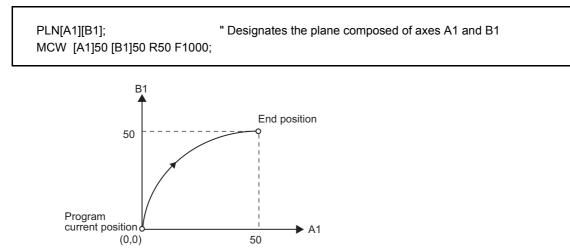
Motion Programs	Sequence Programs
Applicable	Not applicable

(1) Overview

The Coordinate Plane Setting command (PLN) defines two logical axes set in the parameters to designate a coordinate plane. Always execute a PLN command before executing a Circular Interpolation command (MCW, MCC) and Helical Interpolation command (MCW, MCC).

The designated coordinate plane remains in effect until it is reset by another PLN command or until the END command.

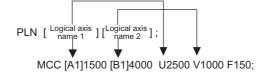
(2) Format


Horizontal axis name Vertical axis name PLN [Logical axis name 1] [Logical axis name 2];

Designate two axes of a coordinate plane.

(3) Programming Examples

<u> EXAMPLE</u>

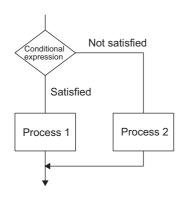

A PLN command programming example is shown below.

Designate an end position and a center position for circular interpolation and helical interpolation in the same order used to specify the axes in the PLN command block.

Sequence Programs

Applicable

8.4 Program Control Commands


This section describes program control commands including branching commands and repeat commands.

8.4.1 Branching Commands (IF ELSE IEND)

The branching commands IF ELSE IEND execute the block between IF and ELSE when a conditional expression is satisfied. If the conditional expression is not satisfied, the block between ELSE and IEND is executed. ELSE can be omitted. If it is omitted and the conditional expression is not satisfied, execution will continue from the block after IEND.

Motion Programs

Applicable

IMPORTANT

Nesting of the branching commands IF ELSE IEND is restricted to a maximum of eight levels.

(2) Format

```
IF (conditional_expression);
… (Process_1)
ELSE;
… (Process_2)
IEND;
```

8.4.1 Branching Commands (IF ELSE IEND)

The conditional expressions that can be used for the branching commands are as follows.

(a) Bit Data Comparison

	• Use $==$ (MATCH) command for data comparison.	
Format	• Specify a register on the left, and 0 or 1 on the right.	
Format	IF MB000000 == 0; "MB000000 = 0	
	IF MB000000 == 1; "MB000000 = 1	
• &, , and ! (AND, OR, and NOT) can be used.		
Operations in	IF (MB000000 & MB000001) == 1; "MB000000=1 AND MB000001=1	
Conditional	IF (MB000000 & !MB000001) == 1; "MB000000=1 AND MB000001=0	
Expression	IF (MB000000 MB000001) == 1; "MB000000=1 OR MB000001=1	
	IF (MB000000 !MB000001) == 1; "MB000000=1 OR MB000001=0	
	• When a <> (MISMATCH) is used:	
	IF MB000000 <> 0; => Syntax error	
	• When a numerical value is specified on the left, or a register is specified on the right:	
IF 1 =	IF 1 == MB000000; => Syntax error	
Syntax Error	IF MB000000 == MB000001; => Syntax error	
Examples	• No data comparison command:	
	IF MB000000; => Syntax error	
	IF (0); => Syntax error	
	• When more than one data comparison command is used:	
	IF (MB000000 == 0) & (MB000001 == 1); $=>$ Syntax error	

(b) Integer/Double Integer/Real Number Data Comparison

)2	
IF (MW00000 < 0) & (MW000001 > 0); => Syntax error	

(3) Programming Examples

<u> EXAMPLE</u>

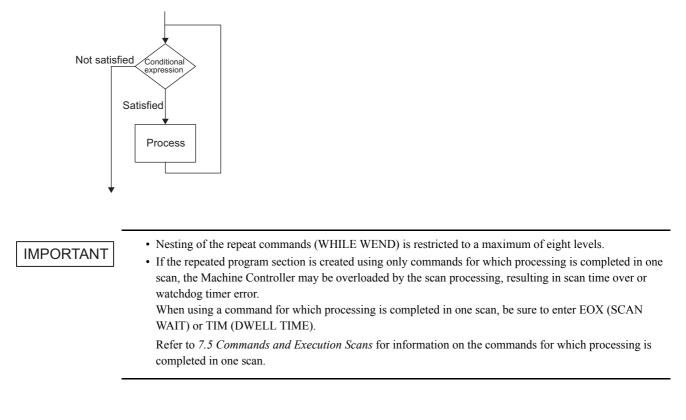
A programming example of branching commands (IF ELSE IEND) is shown below.

```
IF MB000000== 1;

MOV [A1] 10000; " If MB000000 is ON, A1 starts positioning.

ELSE;

MOV [B1] 10000; " If MB000000 is OFF, B1 starts positioning.


IEND;
```

8.4.2 Repeat (WHILE WEND)

Motion Programs	Sequence Programs
Applicable	Applicable

(1) Overview

The Repeat commands (WHILE WEND) repeatedly execute the blocks from WHILE and WEND as long as the conditional expression is satisfied. When the conditional expression is no longer satisfied, program execution will jump to the block after WEND.

(2) Format

WHILE (condit	tional_expression) ;
;	
(Process) ;	
;	
WEND ;	" End of Repeat

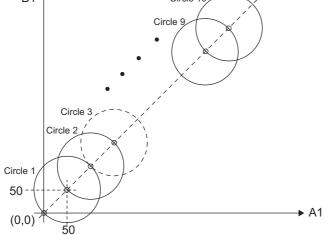
8.4.2 Repeat (WHILE WEND)

The conditional expressions that can be used for repeat commands are as follows.

(a) Bit Data Comparison

Format	 Use == (MATCH) command for data comparison. Specify a register on the left, and 0 or 1 on the right. WHILE MB000000 == 0; "MB000000 = 0 WHILE MB000000 == 1; "MB000000 = 1
Operations in Conditional Expression	• &, , and ! (AND, OR, and NOT) can be used. WHILE (MB000000 & MB000001) == 1; "MB000000=1 AND MB000001=1 WHILE (MB000000 & !MB000001) == 1; "MB000000=1 OR MB000001=0 WHILE (MB000000 !MB000001) == 1; "MB000000=1 OR MB000001=0
Syntax Error Examples	 When a ◇ (MISMATCH) is used: WHILE MB000000 <> 0; => Syntax error When a numerical value is specified on the left, or a register is specified on the right: WHILE 1 == MB000000; => Syntax error WHILE MB000000 == MB000001; => Syntax error No data comparison command: WHILE MB000000; => Syntax error WHILE (0); => Syntax error When more than one data comparison command is used: WHILE (MB000000 == 0) & (MB000001 == 1); => Syntax error

(b) Integer/Double Integer/Real Number Data Comparison

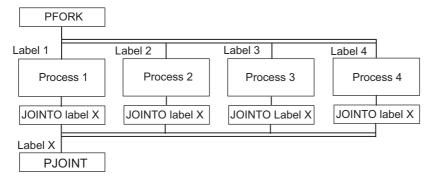

	• All data comparison commands (==, $<>$, $>$, $<$, $>=$, $<=$) can be used.	
	• Specify a register either on the left or right.	
Format	WHILE MW00000 == 3; "MW00000 = 3	
	WHILE ML00000 <> ML00002; "ML00000 ≠ ML00002	
	WHILE 1.23456 >= MF00000; "1.23456 ≥ MF00000	
0	Arithmetic operations and logic operations can be used.	
Operations in Conditional WHILE MW00000 == (MW00001/3); "MW00000 = (MW00001 ÷ 3)		
	WHILE (ML00000 & F0000000H) <> ML00002; "(ML00000 ∧ F0000000H) ≠ ML00002	
Expression	WHILE 1.23456 >= (MF00000 * MF00002); "1.23456 ≥ (MF00000 × MF00002)	
	• When a constant is specified both on the left and right:	
	WHILE 0 == 3; => Syntax error	
	WHILE (3.14*2*1000) > 9000.0; => Syntax error	
Syntax Error		
Examples		
	WHILE (-1); => Syntax error	
	When more than one data comparison command is used:	
WHILE (MW00000 < 0) & (MW000001 > 0); => Syntax error		

(3) Programming Examples

A programming example of a repeat command (WHILE WEND) is shown below. With this program example, 10 circles will be drawn.

<u> EXAMPLE</u>

8.4.3 Parallel Execution (PFORK, JOINTO, PJOINT)


8.4.3 Parallel Execution (PFORK, JOINTO, PJOINT)

Motion Programs	Sequence Programs
Applicable	Not applicable

(1) Overview

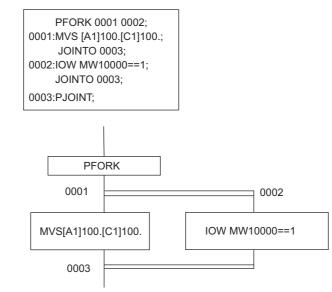
The Parallel Fork (PFORK) command performs parallel execution for blocks with the designated labels. After each parallel process has been executed, execution is merged at the label designated by the JOINTO command. A maximum of four parallel processes can be designated.

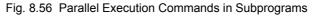
For further in formation on the labels, refer to 7.1.2 (1) Label.

Fig. 8.55 Designating Parallel Execution Commands (PFORK, JOINTO, PJOINT)

With the above commands, the labelled blocks (process1, process2, process3,...) designated by the PFORK command are executed in parallel. After each parallel process has been executed, execution is merged at the label designated by the JOINTO commands.

These commands enable the designation of any combination of commands for parallel execution, such as axis move commands and sequence commands, or axis move commands and another axis move commands.


(a) Commands Designated Before PFORK


Values set by commands designated before the PFORK command, e.g., FMX, ABS/INC, F designation, IFP, PLN, IAC/IDC, are effective in processes executed in parallel for the parallel execution commands. Commands can also be used to set different values in each of the parallel processes. After merging, processing will continue using the values set in the leftmost process.

(b) Parallel Execution Commands in Subprograms

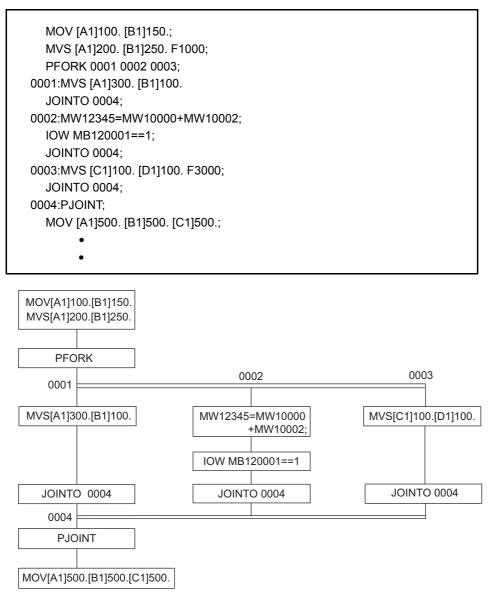
The following restrictions apply to the parallel execution commands in subprograms:

- A maximum of two parallel processes are possible in a subprogram.
- An MSEE command can be coded only in the blocks designated by the first label.

IMPORTANT

If the same label is used more than once in a program, an error will result ("Duplicate labels are defined"). If the number of PFORK branches and the number of labels are different, an error will result.

(2) Format


```
PFORK Label1 Label 2 Label 3 .....
Label 1: Process 1
JOINTO Label X;
Label 2: Process 2
JOINTO Label X;
Label 3: Process 3
JOINTO Label X;
Label X: PJOINT
```

8.4.3 Parallel Execution (PFORK, JOINTO, PJOINT)

(3) Programming Examples

▲ EXAMPLE

A programming example of parallel execution commands (PFORK, JOINTO, PJOINT) is shown below.

8.4.4 Selective Execution (SFORK, JOINTO, SJOINT)

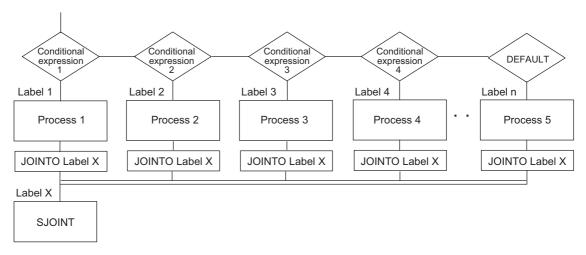
Motion Programs	Sequence Programs
Applicable	Applicable

(1) Overview

The Selective Execution commands (SFORK, JOINTO, SJOINT) execute labelled blocks following question marks (?) when the designated conditional expressions are satisfied. After each parallel process has been executed, execution is merged at the block with the label designated by the JOINTO commands. Up to 16 conditional expressions including DEFAULT can be designated.

If not all the designated conditional expressions are satisfied, the labelled block following DEFAULT? is executed.

DEFAULT can be designated only in the last conditional expression.


DEFAULT designation can be omitted in motion programs, but not in sequence programs.

• With MP2000 series Machine Controller, the system version number must be Ver.2.66 or later to use the SFORK command in sequence programs. There is no limitation in the system version number for using the SFORK command in motion programs.

• The following versions of programming tool MPE720 are required to designate DEFAULT.

MP2000 Series Machine Controller	Required Version	MPE720	Required Version
All models	Any version number	MPE720 Ver.5	MPE720 Ver.5.41 or later
		MPE720 Ver.6	MPE720 Ver.6.06 or later MPE720 Ver.6.06 Lite or later

• The conditional expressions are examined in order from conditional expression 1. Even when more than one conditional expression is satisfied, processing is executed from the label that first satisfies the conditional expression.

• When using an SFORK command in motion programs, be sure to code conditions that will be satisfied. If a condition is not satisfied, processing will remain in wait status at the SFORK command block until the condition is satisfied.

8.4.4 Selective Execution (SFORK, JOINTO, SJOINT)

(2) Format

```
SFORK Conditional expression 1 ? Label1, Conditional expression 2 ? Label 2, Conditional expression 3 ?
Label 3, Conditional expression 4 ? Label 4,
...., DEFAULT? Label n;
   Label 1: Process 1
             JOINTO Label X
   Label 2: Process 2
             JOINTO Label X
   Label 3: Process 3
             JOINTO Label X
   Label 4: Process 4
             JOINTO Label X
              ٠
              •
   Label n: Process n
             JOINTO Label X
   Label X: SJOINT
```

The conditional expressions that can be used for selective execution command (SFORK) are as follows.

(a) Bit Type Data Comparison

Format	 Use == (MATCH) command for data comparison. Specify a register on the left, and 0 or 1 on the right. MB000000 == 0? Label "MB000000 = 0 MB000000 == 1? Label "MB000000 = 1
Operations in Conditional Expressions	 &, , and ! (AND, OR, and NOT) can be used. (MB000000 & MB000001) == 1? Label "MB000000 =1 AND MB000001 = 1 (MB000000 & !MB000001) == 1? Label "MB000000 =1 AND MB000001 = 0 (MB000000 MB000001) == 1? Label "MB000000 =1 OR MB000001 = 1 (MB000000 !MB000001) == 1? Label "MB000000 =1 OR MB000001 = 0
Syntax Error Examples	 When <> (MISMATCH) is used: MB000000 <> 0? Label => Syntax error When a numerical value is specified on the left, or a register is specified on the right: 1 == MB000000? Label => Syntax error MB000000 == MB000001? Label => Syntax error No data comparison command: MB000000? Label => Syntax error (0)? Label => Syntax error When more than one data comparison command is used: (MB000000 == 0) & (MB000001 == 1)? Label => Syntax error

	• All data comparison commands (==, <>, >, <, >=, <=) can be used.				
	• Specify a register either on the left or right.				
Format	MW00000 == 3? Label "MW00000 = 3				
	ML00000 <> ML00002? Label "ML00000 ≠ ML00002				
	1.23456 >= MF00000? Label "1.23456 ≥ MF00000				
Operations in	 Arithmetic operation and logic operation can be used. 				
Operations in	MW00000 == (MW00001/3)? Label "MW00000 = (MW00001 ÷ 3)				
Conditional	(ML00000 & F0000000H) <> ML00002? Label "(ML00000 ∧ F0000000H) ≠ ML00002				
Expression	1.23456 >= (MF00000 * MF00002)? Label "1.23456 ≥ (MF00000 MF00002)				
	• When a constant is specified both on the left and right:				
	0 == 3? Label => Syntax error				
	(3.14*2*1000) > 9000.0? Label => Syntax error				
Syntax Error	• No data comparison command:				
Examples	MW000000? Label => Syntax error				
	(-1)? <i>Label</i> => Syntax error				
	When more than one data comparison command is specified				
	(MW00000 < 0) & (MW000001 > 0)? Label => Syntax error				

(b) Integer/Double Integer/Real Number Data Comparison

8.4.4 Selective Execution (SFORK, JOINTO, SJOINT)

(3) Programming Examples

A programming example of selective execution commands (SFORK, JOINTO, SJOINT) is shown below.

<u> EXAMPLE</u>

MOV [A1]100.[B1]150.; MVS [A1]200.[B1]250.F1000; SFORK MW00100==1 ? 0001,MW00100==2 ? 0002,MW00100==3 ? 0003,DEFAULT ? 0004; 0001:MVS [A1]300.[B1]100.F3000; JOINTO 0005 0002:MVS [A1]300.[C1]100.F3000; JOINTO 0005 0003:MVS [C1]300.[S]100.F3000; JOINTO 0005 0004:JOINTO 0005; 0005:SJOINT; MOV[A1]500.[B1]500.[C1]500.

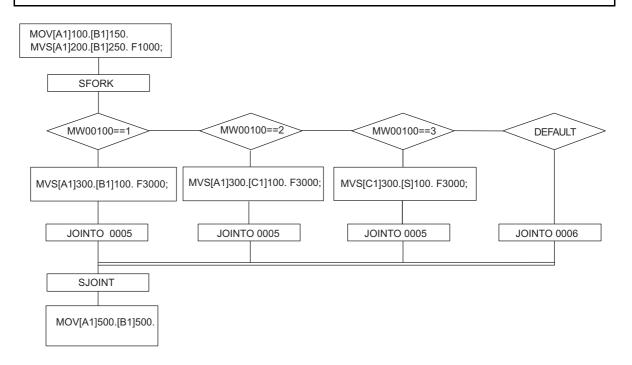
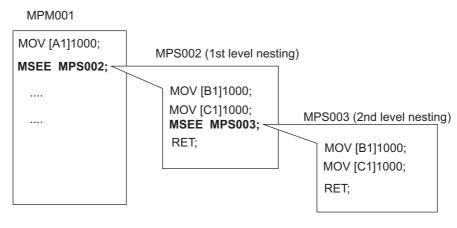


Fig. 8.59 Selective Execution Command (SFORK, JOINT, SJOINT) Programming Example


8.4.5 Motion Subprogram Call (MSEE)

Motion Programs	Sequence Programs
Applicable	Not applicable

(1) Overview

The Motion Subprogram Call command (MSEE) can call a subprogram that has been stored in the motion program memory from the motion program.

Nesting of the subprogram call command (MSEE) is restricted to a maximum of eight levels.

A subprogram return command (RET) must be coded at the end of the subprogram.

IMPORTANT

Restrictions on Subprograms

The following restrictions apply to motion program coding within a subprogram.

- · A maximum of two parallel executions with a PFORK command
- If the program number of a main program is called by an MSEE command, the program will not be executed.

(2) Format

MSEE MPS Subprogram number;					
Item	Unit	Usable Data			
Subprogram number –		A number between 001 and 256			

(3) Programming Examples

A programming example of the MSEE command to call the motion subprogram MPS101 is shown below.

▲<u>EXAMPLE</u>

MSEE <u>MPS101;</u> Subprogram number designation 8.4.6 Sequence Subprogram Call (SSEE)

8.4.6 Sequence Subprogram Call (SSEE)

Motion Programs	Sequence Programs
Not applicable	Applicable

(1) Overview

The Sequence Subprogram Call command (SSEE) calls a subprogram that has been stored in the sequence program memory from the sequence program.

Nesting of the subprogram call command is restricted to a maximum of eight levels.

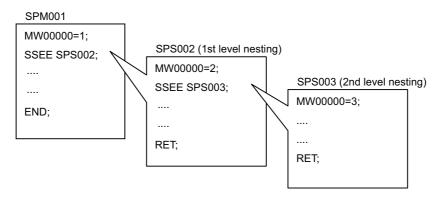


Fig. 8.61 Subprograms

A subprogram return command (RET) must be coded at the end of a subprogram.

IMPORTANT

Restrictions on Subprograms

The following restriction applies to sequence program coding within a subprogram.

• If a main program is called by the SSEE command, the program will not be executed.

(2) Format

SEE SPS Subprogram nu	ımber ;		
Item	Unit	Usable Data	

(3) Programming Examples

A programming example of the SSEE command to call the subprogram SPS101 is shown below.

▲<u>EXAMPLE</u>

SSEE <u>SPS101;</u> Subprogram number designation

8.4.7 User Function Call From Motion Program (UFC)

Motion Programs	Sequence Programs	
Applicable	Not applicable	

(1) Overview

The User Function Call From Motion Program command (UFC) calls a user function (ladder program) from a motion program.

When execution of the called user function is completed, the block after the UFC command block will be executed.

IMPORTANT

For the user function called from the motion program, output bit YB000000 is used for completion judgement (Complete Bit).

- When YB000000 = OFF at the completion of execution of user function:
- Execution of the user function is recognized as incomplete, and the user function will be called again during the next scan.
- When YB000000 = ON at the completion of execution of user function:
- Execution of the user function is recognized as complete, and the block after the UFC command block will be executed.

(2) Format

UFC Function name Input data, Input address, Output data;

Item Unit		Usable Data	
Function name –		ASCII 8 bytes	
Input data –		Max: 16 data items (Minimum: 1 data item)	
Input address	-	Max: 1 address	
Output data *	-	Max:16 data items (Minimum: 1 data item)	

* The input address can be omitted. [UFC Input data, Output data;] is used if there is no input address. The minimum requirement is one input data item and one output data item.

8.4.7 User Function Call From Motion Program (UFC)

(3) Programming Examples

A UFC command programming example is shown below.

▲ EXAMPLE

UFC <u>KANSUU</u> <u>MB000000 IW0010 MB000002</u>, <u>MA00100</u>, <u>MB000001 MW00200 ML00201</u>; Function Input data Input address Output data name

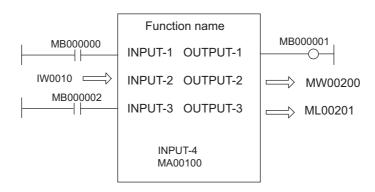
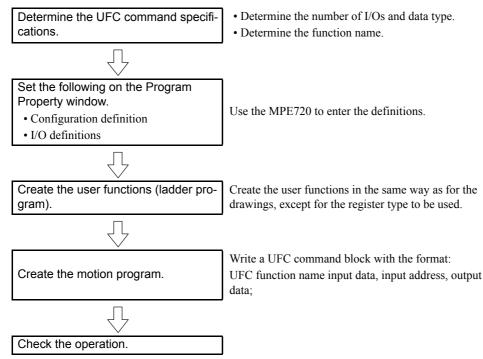
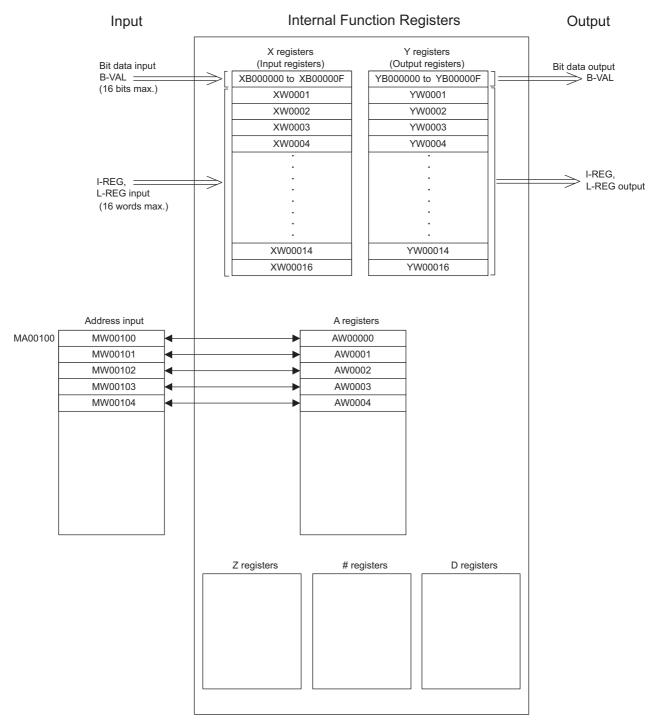



Fig. 8.62 User Function Call Command (UFC)

(4) UFC Command Creation Procedure

Use the following procedure to create a UFC command.


(5) Register Types Used Within User Functions

The data types are as follows.

Data	Data Type		
BIT Bit			
WORD	Integer		
LONG	Double integer		
FLOAT Real number			

(6) Relationship between I/O Registers and Internal Function Registers

The correspondence between the I/O registers designated by the UFC command and the function registers is shown below.

Command Reference

8.4.7 User Function Call From Motion Program (UFC)

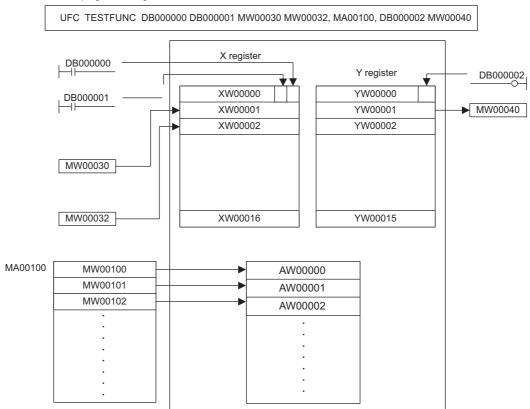

The following 11 types of register can be used in each function.

Table 8.2 Function Registers

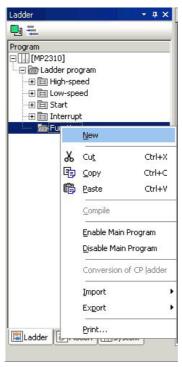
Туре	Name			Characteristics
x	Function input register	XB, XW, XL, XFnnnnn	Input to a function Bit input: XB000000 to XB0000F Integer input: YW00001 to XW00016 Double integer input: XL00001 to XL00015 Register number nnnnn is a decimal expres- sion.	
Y	Function output register	YB, YW, YL, YFnnnnn	Input to a function Bit input: YB000000 to YB0000F Integer input: YW00001 to YW00016 Double integer input: YL00001 to YL00015 Register number nnnnn is a decimal expression	
z	Internal function register	ZB, ZW, ZL, ZFnnnnn	Internal register unique to each function Can be used by the function for internal pro- cesses. Register number nnnnn is a decimal expres- sion.	
A	External function register	AB, AW, AL, AFnnnnn	External registers that use the address input value as the base address. For linking with S, M, I, O, #, and DAnnnnn Register number nnnnn is a decimal expres- sion.	Unique to each function
#	# register	#B, #W, #L, #Fnnnnn (#Annnnn)	Registers that can be referenced only by a pro- gram. Can be referenced only the corresponding drawing. The actual range to be used is specified by the user using the MPE720. Register number nnnnn is a decimal expres- sion.	
D	D register	DB, DW, DL, DFnnnnn (DAnnnnn)	Registers unique to each drawing Can be referenced only by the corresponding drawing. The actual range to be used is specified by the user using the MPE720. Register number nnnnn is a decimal expres- sion.	
S	System register	SB, SW, SL, SFnnnnn (SAnnnn)		
М	Data register	MB, MW, ML, MFnn- nnn (MAnnnnn)	Same as the drawing registers. These registers are used for both drawings and	Common to all
Ι	Input register	IB, IW, IL, IFhhhh (IAhhhh)	functions. Care must be taken in using them to reference the same function from drawings	drawings
0	Output register	OB, OW, OL, OFhhhh (OAhhhh)	with different priority levels.	
С	Constant register	CB, CW, CL, CFnnnnn (CAnnnnn)		

Note: SA, MA, IA, OA, DA, #A, and CA can also be used inside functions.

An example of the transfer of I/O registers is shown below.

Motion program coding

8.4.7 User Function Call From Motion Program (UFC)


(7) Creating User Functions

The procedure for creating the user function of the following specifications is described below.

Specifications	Motion Program	
Designate the servo axis No. and speed data, and set this in the motion setting parameter $OL\square\square10$: Speed reference setting.	MW00030 = Servo axis No. (1 or 2) ML00032 = Rapid traverse speed UFC FUNC-T1 MW00030 ML00032,,DB000001;	

Use the following procedure to create the user function.

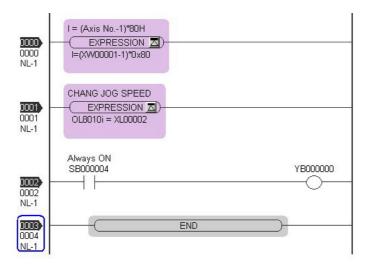
1. Open the Ladder subwindow. Right-click Function under Ladder program. Click New in the pop-up menu that will appear.

2. Enter *FUNC-T1* in the **Program Name** input field in the **Create New Program** dialog box, and then click **OK**.

Program No. FUNC Program Name	-T1		<u>.</u>
Configuration I/O definition Detail definition	BIT B-VAL	FUNO Bit B-VAL	
OK Cancel		Help	<< Detail

3. A blank ladder program field will appear in the Ladder subwindow. Right-click FUNC-T1 to select Property from the pop-up menu.

Program			
[III] [MP2310] [III] Ladder program [III] Ladder program [III] Low-speed [III] Low-speed [III] Start [III] Interrupt [III] Function [III] Function	1	New	
		Open	
		Open[Other]	
	X	Cu <u>t</u>	Ctrl+X
	•	⊆ору	Ctrl+C
	6	Paste	Ctrl+V
		Delete	Delete
		Rename	
		⊆ompile	
		Set the Passwo	rd
		Cancel the Pas	sword
		Enable/ Disable	
		Conversion of (CP (adder
		Import	
		Export	
		Property	
Ladder G Motion		Print	


4. In the **Program Property** window, click **Function input definition** under **I/O definition** to set the number of function inputs and data type, and click **Function output definition** to set the number of function outputs and data type.

Example: For the UFC command block UFC FUNC-T1 MW00030 ML00032,,DB000001;, the settings in the **Program Property** window are as shown below.

🛄 Program Property	🛛 🛄 Program Property 🔀
Program No. FUNC-T1 Program Name	Program No. FUNC-T1 Program Name
Configuration I/O definition Function input definition Function output definition Function output definition Detail definition Modified history	Configuration ☐ I/O definition Function input definition Function output definition Function output definition Punction output definition Detail definition Modified history
Close	Close
OK Cancel Help << Detail	OK Cancel Help << Detail

8.4.7 User Function Call From Motion Program (UFC)

5. Close the **DWG Configuration Definition** window, and edit the user function program in the ladder program edit window.

6. From the Compile menu, select Compile F8.

Online MP2310	C	mpile Option			Wassing With Bern	< aprox 5391 105	P) IP192.168.1.1 (And a second second second second
🛛 🖸 🖬 및 👖 🖬 🗿 🖸	98° C	ompile <u>Al</u> l Programs	F ₹ 1	-0 =>		$= \neq \geq >$	- 🖧 📑 🖬 📧	1 X O
06699 266 🕅	8 9	ompile F8	10 8	99	🛄 🖥 : 💬	🔶 🕨 🗉	à 🛍 🎍 🙃	🏦 🖳 💂
Eile Edit View Online Program	Compile	<u>Debug Windo</u>	w Help					- 8:
MPE720 Ver.6 - [MP2310] - [FUNC-T1]								

7. In the Motion Editor window, create a program to call user function FUNC-T1.

MW00030 = 1:	
ML00032 = 500;	
UFC FUNC-T1 MW	0030 ML00032, , DB000001;
END;	

The user function that is called from the motion program is created. Execute the motion program to check the operation.

8.4.8 User Function Call from Sequence Program (FUNC)

Motion Programs	Sequence Programs
Not applicable	Applicable

(1) Overview

The User Function Call from Sequence Program command (FUNC) calls user functions (ladder programs) from the sequence program.

(2) Format

Output a	ata 1 Output data	a 2 Output data 3 ;
Item	Unit	Usable Data
Function name	-	ASCII 8 bytes
Input data	-	Max: 16 data items (minimum: 1 data item)
Input address	-	Max: 1 address
Output data	-	Max: 16 data items (minimum: 1 data item)

(At least one item each for input data and output data must be described.) The input address can be omitted.

When the input address is omitted, describe only the comma (,).

2. The FUNC command calls a user function. The execution proceeds to the next block after the FUNC command whether or not the user function execution has been completed.

(3) Programming Examples

A FUNC command programming example is shown below.

In this example, three input data items, one input address, and three output data items are described.

▲ EXAMPLE

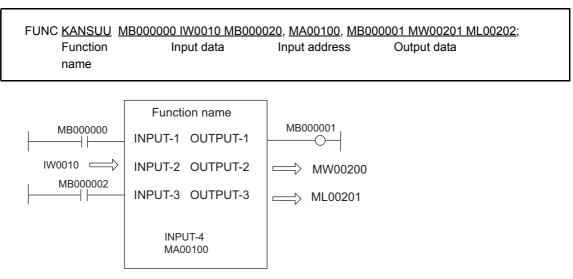


Fig. 8.64 User Function Call Command (FUNC) Programming Example

8.4.9 Program End (END)

8.4.9 Program End (END)

Motion Programs	Sequence Programs
Applicable	Applicable

(1) Overview

The Program End command (END) ends program operation.

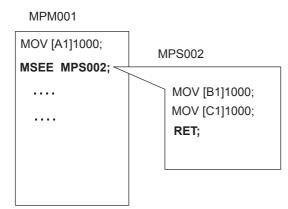
No other commands can be coded in the same block as the END command.

Program operation ends after execution of the END command block.

If there is a move command in the previous block, the program operation ends after the in-position check is completed.

(2) Format

END; Program end


8.4.10 Subprogram End (RET)

Motion Programs	Sequence Programs
Applicable	Applicable

(1) Overview

The Subprogram End command (RET) ends subprogram operation.

After operation of the called subprogram is ended by the RET command, execution proceeds to the block after the Motion Subprogram Call command (MSEE) or Sequence Subprogram Call command (SSEE) in the main program or subprogram that called the subprogram.

(2) Format

RET;

Subprogram end

8.4.11 Dwell Time (TIM)

Motion Programs	Sequence Programs
Applicable	Not applicable

(1) Overview

The Dwell Time command (TIM) causes execution to pause for a specified period of time before the start of execution of the next command block.

A period of time between 0.00 to 600.00 seconds can be specified.

(2) Format

1 T Dwell tim	<u>e</u> ;	
Item	Unit	Usable Data
Dwell time	0.01 s	 Directly designated value Integer type register (Indirect designation)

(3) Programming Examples

A TIM command programming example is shown below.

▲ EXAMPLE

The TIM command is executed after positioning has been completed.

Speed (V)

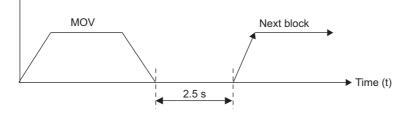


Fig. 8.65 Dwell Time Command (TIM) Programming Example

8.4.12 I/O Variable Wait (IOW)

Motion Programs	Sequence Programs
Applicable	Not applicable

(1) Overview

The I/O Variable Wait command (IOW) causes execution to wait until the status specified by the conditional expression is satisfied. When the condition is satisfied, execution proceeds to the next block.

(2) Format

W	IB00001&II	B00002 == 1;
	Α	
Item	Description	Usable Data
А	Conditional expression	 All integer type, double integer type, and real number type registers (Excluding # and C registers) The above registers with subscript Subscript registers Constants

The conditional expressions that can be used in the IOW command block are as follows.

(a) Bit Data Comparison

	• Use $= = (MATCH)$ command for data comparison.		
Formant	• Specify a register on the left, and 0 or 1 on the right.		
	IOW MB000000 == 0; "MB000000 = 0 IOW MB000000 == 1; "MB000000 = 1		
Operations in Conditional Expression	 &, , and ! (AND, OR, NOT) can be used. IOW (MB000000 & MB000001) == 1; "MB000000 =1 AND MB000001 = 1 IOW (MB000000 & !MB000001) == 1; "MB000000 =1 AND MB000001 = 0 IOW (MB000000 MB000001) == 1; "MB000000 = 1 OR MB000001 = 1 IOW (MB000000 !MB000001) == 1; "MB000000 = 1 OR MB000001 = 0 		
Syntax Error Examples	 IOW (MB000000 !MB000001) == 1; "MB000000 = 1 OR MB000001 = 0 • When <> (MISMATCH) is used: IOW MB000000 <> 0; => Syntax error • When a numerical value is specified on the left, or a register is specified on the right: IOW 1 == MB000000; => Syntax error IOW MB000000 == MB000001; => Syntax error • No data comparison command: IOW MB000000; => Syntax error IOW (0); => Syntax error • When more than one data comparison command is used: IOW (MB000000 == 0) & (MB000001 == 1); => Syntax error 		

8.4.12 I/O Variable Wait (IOW)

(b) Integer/Double Integer/Real Number Data Comparison

	• All data comparison commands (==, <>, >, <, >=, <=) can be used.		
	• Specify a register either on the left or right.		
Format	IOW MW00000 == 3; "MW00000 = 3		
	IOW ML00000 <> ML00002; "ML00000 ≠ ML00002		
	IOW 1.23456 >= MF00000; "1.23456 ≥ MF00000		
On anotiona in	Arithmetic operations and logic operations can be used.		
Operations in Conditional	IOW MW00000 == (MW00001/3); "MW00000 = (MW00001 ÷ 3)		
Expression	IOW (ML00000 & F0000000H) <> ML00002; "(ML00000 ∧ F0000000H) ≠ ML00002		
	IOW 1.23456 >= (MF00000 * MF00002); $"1.23456 \ge (MF00000 \times MF00002)$		
	When a constant is specified both on the left and right:		
	IOW 0 == 3; => Syntax error		
	IOW (3.14*2*1000) > 9000.0; => Syntax error		
Syntax Error	No data comparison command:		
Examples	IOW MW000000; => Syntax error		
	IOW (-1); => Syntax error		
	• When more than one data comparison command is used:		
	IOW (MW00000 < 0) & (MW000001 > 0); => Syntax error		

(3) Programming Examples

An IOW command programming example is shown below.

<u> EXAMPLE</u>

IOW (MB001001&MB001002)== 1; MOV [A1]1000;

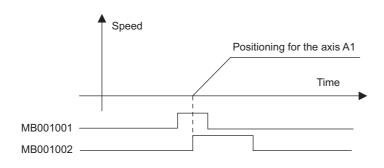


Fig. 8.66 I/O Variable Wait Command (IOW) Programming Example

8.4.13 One Scan Wait (EOX)

Motion Programs	Sequence Programs
Applicable	Not applicable

(1) Overview

The One Scan Wait command (EOX) causes program execution to be suspended for one scan. The block after EOX command will be executed in the next scan.

(2) Format

EOX;

(3) Programming Examples

An EOX command programming example is shown below.

(a) Used in Combination with Sequence Commands

▲ EXAMPLE

MW00000=100; OB00010=1;	First scan
EOX; OB00011=0;	Second scan

(b) Used with a WHILE Command

▲ EXAMPLE ▶

WHILE OB00010==1;	
EOX;	
WEND;	

8.4.14 Single-block Signal Disabled (SNGD)/Single-block Signal Enabled (SNGE)

8.4.14 Single-block Signal Disabled (SNGD)/Single-block Signal Enabled (SNGE)

Motion Programs	Sequence Programs
Applicable	Not applicable

(1) Overview

The Single-block Signal Disabled command (SNGD) and the Single-block Signal Enabled command (SNGE) are used to specify whether to disable or enable the single step operation when debugging a program. Regardless of the single-block operation mode setting, the blocks enclosed between SNGD and SGNE commands are executed continuously without single-block stops.

Single-block operation mode

In single-block operation mode, a stop is executed for each block.

(2) Format

SNGD; Blocks to be continuously executed SNGE;

(3) Programming Examples

<u>EXAMPLE</u>

The programming example of SNGD and SNGE commands is shown below.

```
MVS [A1]0 [B1]0;

SNGD;

MVS [A1]100 [B1]200; "1"

MB000101 = 1; "2"

MB000102 = 1; "3"

SNGE;

MB000103 = 1;
```

In the above example, the blocks 1 to 3 enclosed between SNGD and SNGE commands are executed continuously without single-block stops regardless of the single-block operation mode setting.

8.5 Arithmetic Operations

This section explains the arithmetic operation commands. For priority levels of Arithmetic Operation, refer to 7.4 *Priority Levels of Operations*.

8.5.1 Substitute (=)

Motion Programs	Sequence Programs
Applicable	Applicable

(1) Overview

The operation result on the right side of the expression is substituted in the register on the left side.

(2) Format

A	В	
Item	Description	Usable Data
A	Result	 All bit type, integer type, double integer type, real number type registers (Excluding # and C registers) The above registers with subscript Subscript registers
В	Math expression	 All bit type, integer type, double integer type, real number type registers (Excluding # and C registers) The above registers with subscript Subscript registers Constants

(3) Programming Examples

Substitute (=) command programming examples are shown below.

<u> EXAMPLE</u>

Туре	Motion Programs/ Sequence Programs	Ladder Programs
В	MB001000=1;	SB000004 MB001000
W	MW00100=12345;	
L	ML00100=1234567;	-(
F	MF00100=1.2345;	-(

8.5.2 Add (+)

8.5.2 Add (+)

Motion Programs	Sequence Programs
Applicable	Applicable

(1) Overview

ADD (+) performs integer and real number addition on the right side and stores the result in the register on the left side. With mixed integers and real numbers, the data type on the left side is also stored.

(2) Format

Ą	В	C
Item	Description	Usable Registers
А	Data output	 All integer type, double integer type, real number type registers (Excluding # and C registers) The above registers with subscript Subscript registers
В	Data input	• All integer type, double integer type, real number type registers (Excluding # and C registers)
С	Data to add	 The above registers with subscript Subscript registers Constants

(3) Programming Examples

Add (+) command programming examples are shown below.

■<u>EXAMPLE</u>

Туре	Motion Programs/ Sequence Programs	Ladder Programs
В	_	-
w	MW00101=MW00100+12345;	ADD
L	ML00106=ML00102+ML00104;	ADD
F	MF00202=MF00200+1.23456;	ADD

IMPORTANT

With an operation where the variables are of different data types, the result will be stored according to the data type on the left side.

For details, refer to 6.1.2 Global Variables and Local Variables.

8.5.3 Subtract (-)

Motion Programs	Sequence Programs
Applicable	Applicable

(1) Overview

Subtract (-) performs integer and real number subtraction on the right side and stores the result in the register on the left side. With mixed integers and real numbers, the data type on the left side is stored.

(2) Format

А	В	С
Item	Description	Usable Registers
А	Data output	 All integer type, double integer type, real number type registers (Excluding # and C registers) The above registers with subscript Subscript registers
В	Data input	• All integer type, double integer type, real number type registers (Excluding # and C registers)
С	Data to subtract	 The above registers with subscript Subscript registers Constants

(3) Programming Examples

Subtract (-) command programming examples are shown below.

▲ EXAMPLE

Туре	Motion Programs/ Sequence Programs	Ladder Programs
В	_	-
w	MW00101=MW00100-12345;	
L	ML00106=ML00102-ML00104;	
F	MF00202=MF00200-1.23456;	

8.5.4 Multiply (*)

8.5.4 Multiply (*)

Motion programs	Sequence Programs	
Applicable	Applicable	

(1) Overview

Multiply (*) performs integer and real number multiplication on the right side and stores the result in the register on the left side. With mixed integers and real numbers, the data type on the left side is stored.

(2) Format

А	В	С
Item	Description	Usable Registers
А	Data output	 All integer type, double integer type, real number type registers (Excluding # and C registers) The above registers with subscript Subscript registers
В	Data input	• All integer type, double integer type, real number type registers (Excluding # and C registers)
С	Data to multiply	 The above registers with subscript Subscript registers Constants

(3) Programming Examples

Multiply (*) command programming examples are shown below.

▲ <u>EXAMPLE</u>

Туре	Motion Programs/ Sequence Programs	Ladder Programs
В	_	_
w	MW00102=MW00100*MW00101	
L	ML00106=ML00102*ML00104;	(WLF]SrcA ML00102 [WLF]Dest ML00106 [WLF]SrcB ML00104
F	MF00202=MF00200*1.23456;	

8.5.5 Divide (/)

Motion Programs	Sequence Programs
Applicable	Applicable

(1) Overview

Divide (/) performs integer and real number division on the right side and stores the result in the register on the left side. With mixed integers and real numbers, the data type on the left side is stored.

(2) Format

А	В	С
Item	Description	Usable Registers
nem	Description	
A	Data output	 All integer type, double integer type, real number type registers (Excluding # and C registers) The above registers with subscript Subscript registers
В	Data input	• All integer type, double integer type, real number type registers (Excluding # and C registers)
С	Data to divide	 The above registers with subscript Subscript registers Constants

(3) Programming Examples

Divide (/) command programming examples are shown below.

▲ EXAMPLE

Туре	Motion Programs/ Sequence Programs	Ladder Programs
В	_	-
w	MW00102=MW00100/MW00101;	DIV
L	ML00106=ML00102/ML00104;	
F	MF00202=MF00200/1.23456;	[WLF]SrcA MF00200 [WLF]Dest MF00202 [WLF]SrcB 1.234560E+000

8.5.6 Remainder (MOD)

8.5.6 Remainder (MOD)

Motion Programs	Sequence Programs
Applicable	Applicable

(1) Overview

When specified in the next block after Divide, MOD stores the remainder of the division in the specified variable. The remainder is stored as the data type on the left side.

(2) Format

IW00001 = 1000 / 999; IW00002 = MOD;			
A Item	Description	Usable Registers	
A	Data output	 All integer and double integer type registers (Excluding # and C registers) The above registers with subscript 	

(3) Programming Examples

MOD command programming examples are shown below.

<u> EXAMPLE</u>

Туре	Motion Programs/ Sequence Programs	Ladder Programs
В	-	-
w	MW00101=MW00100/3; MW00102=MOD;	DIV [WLF]SrcA MW00100 [WLF]Dest MW00101 [WLF]SrcB 00003 MOD [WL]Dest MW00102
L	ML00106=ML00102/ML00104; ML00108=MOD;	DIV [WLF]SrcA ML00102 [WLF]SrcB ML00104 [WLF]SrcB ML00104 [WLF]Dest ML00108
F	-	-

Example: Double integers

ML00106=ML00100*ML00102/ML00104; (173575) (100000) (60000) (34567) ML00108=MOD; (32975)

IMPORTANT

The MOD command must be specified in the next block after Divide. If it is not executed in the next block after Divide, the operation result cannot be guaranteed.

8.6 Logic Operation

This section explains the commands used to perform bit and integer logic operations.

Although operations that combine math operations are also possible, real number operations cannot be performed.

For priority levels of arithmetic operations, refer to 7.4 Priority Levels of Operations.

8.6.1 OR (|)

Motion Programs	Sequence Programs
Applicable	Applicable

(1) Overview

OR performs a logical OR for the immediately preceding operation result and the specified registers, and returns the operation result. Real number registers cannot be used.

Table 8.3 Logical OR Truth Table (A=B|C)

В	С	А
0	0	0
0	1	1
1	0	1
1	1	1

(2) Format

А	В	C
Item	Description	Usable Registers
A	Data output	 All bit type, integer type, and double integer type registers (Excluding # and C registers) The above registers with subscript Subscript registers
B, C	Data input	 All bit type, integer type, and double integer type registers (Excluding # and C registers) The above registers with subscript Subscript registers Constants

8.6.1 OR (|)

(3) Programming Examples

Logical OR(|) command programming examples are shown below.

▲<u>EXAMPLE</u>

Туре	Motion Programs/ Sequence Programs	Ladder Programs
В	MB001000=MB001010 MB001011;	MB001010 MB001010 MB001011
W	MW00100=MW00101 MW00102	OR
L	ML00106=ML00102 ML00104;	OR [WL]SrcA ML00102 [WL]Dest ML00106 [WL]SrcB ML00104
F	_	_

8.6.2 AND (&)

Motion Programs	Sequence Programs
Applicable	Applicable

(1) Overview

AND (&) performs a logical AND for the immediately preceding operation result and the specified registers, and then returns the operation result. Real number registers cannot be used.

Table 8.4 Logical AND Truth Table (A=B&C)

В	С	A
0	0	0
0	1	0
1	0	0
1	1	1

(2) Format

А	В	C
Item	Description	Usable Registers
A	Data output	 All bit type, integer type, and double integer type registers (Excluding # and C registers) The above registers with subscript Subscript registers
 Subscript registers All bit type, integer type, and double integer type registers (Excluding # and C isters) B, C Data input The above registers with subscript Subscript registers Constants 		

(3) Programming Examples

The AND (&) command programming examples are shown below.

EXAMPLE ►

Туре	Motion Programs/ Sequence Programs	Ladder Programs
В	MB001000=MB001010&MB001011	MB001010 MB001011 MB001000
w	MW00101=MW00100&00FFH;	-(<u>AND</u>)- [WL]SrcA MW00100 [WL]Dest MW00101 [WL]SrcB H00FF
L	ML00106=ML00102&ML00104	AND
F	_	_

8.6.3 XOR (^)

8.6.3 XOR (^)

Motion Programs	Sequence Programs
Applicable	Applicable

(1) Overview

XOR (^) performs an exclusive logical OR for the immediately preceding operation result and the specified registers, and then returns the operation result. Real number registers cannot be used.

Table 8.5 Exclusive Logical OR Truth Table (A= B ^ C)

В	С	A
0	0	0
0	1	1
1	0	1
1	1	0

(2) Format

A	В	C
Item	Description	Usable Registers
А	Data output	 All integer and double integer type registers (Excluding # and C registers) The above registers with subscript Subscript registers
BÅCC	Data input	 All integer and double integer type registers (Excluding # and C registers) The above registers with subscript Subscript registers Constants

(3) Programming Examples

The XOR (^) command programming examples are shown below.

<u> EXAMPLE</u>

Туре	Motion Programs/Sequence Programs	Ladder Programs
В	_	-
w	MW00101=MW00100 ^ 00FFH;	-(<u>XOR</u>)- [WL]SrcA MW00100 [WL]Dest MW00101 [WL]SrcB H00FF
L	ML00106=ML00102 ^ ML00104;	(WL]SrcA ML00102 [WL]Dest ML00106 [WL]SrcB ML00104
F	-	-

8.6.4 NOT (!)

Motion Programs	Sequence Programs
Applicable	Applicable

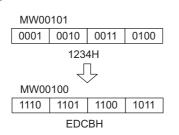
(1) Overview

NOT inverts the data in the specified register and returns the operation result. Real number registers cannot be used.

(2) Format

А	В	
Item	Description	Usable Registers
A	Data output	 All bit type, integer type, and double integer type registers (Excluding # and C registers) The above registers with subscript Subscript registers
В	Data input	 All bit type, integer type, and double integer type registers (Excluding # and C registers) The above registers with subscript Subscript registers Constants*

* Bit constants cannot be specified.


(3) Programming Examples

Logical NOT (!) programming examples are shown below.

▲ EXAMPLE

Туре	Motion Programs/ Sequence Programs	Ladder Programs
В	MB001000=!MB001010;	MB001010 MB001000
w	MW00100=!MW00101;	(<u>COM</u>) [WL]Src MW00101 [WL]Dest MW00100
L	ML00100=!ML00102	(WL]Src ML00102 [WL]Dest ML00100
F	_	-

Example: MW00100=!MW00101;

Command Reference

8.7.1 Data Comparison Commands (==, <>, >, <, >=, <=)

8.7 Data Comparisons

This section explains the data comparison commands that are used for conditional expressions.

8.7.1 Data Comparison Commands (==, <>, >, <, >=, <=)

Motion Programs	Sequence Programs
Applicable	Applicable

(1) Overview

These commands are used to determine conditional expressions for commands such as branching commands (IF), repeat commands (WHILE), and I/O WAIT (IOW).

Comparison Command	Meaning
= =	Match
<>	Mismatch
>	Greater than
<	Less than
>=	Greater than or equal to
<=	Less than or equal to

The following six comparison commands are provided.

(2) Format

	A	
Item	Description	Usable Registers
А	Conditional expression	 All bit type[*], integer type, double integer type, and real number type registers (Excluding # and C registers) The above registers with subscript Subscript registers

(3) Programming Examples

Data comparison command programming examples are shown below.

<u> EXAMPLE</u>

Туре	Motion Programs/ Sequence Programs	Ladder Programs
В	IF MB001000==1;	-()- MB001000 == true
W	IF MW00100<>10;	
L	IF ML00100>10000;	-(<u>IF</u>)- ML00100 > 10000
F	IF MF00100>=3.0;	

The conditional expressions that can be used with data comparison commands are as shown below.

(a) Bit Data Comparison

	• Use $==$ (MATCH) command for data comparison.
Format	• Specify a register on the left, and 0 or 1 on the right.
i offici	IF MB000000 == 0; "MB000000 = 0
	IF MB000000 == 1; "MB000000 = 1
	• &, , ! (AND, OR, NOT) can be used.
Operations in	IF (MB000000 & MB000001) == 1; "MB000000=1 AND MB000001=1
Conditional	IF (MB000000 & !MB000001) == 1; "MB000000=1 AND MB000001=0
Expression	IF (MB000000 MB000001) == 1; "MB000000=1 OR MB000001=1
	IF (MB000000 !MB000001) == 1; "MB000000=1 OR MB000001=0
	• When \diamond (MISMATCH) is used:
	IF MB000000 <> 0; => Syntax error
	• When a numerical value is specified on the left, and a register on the right:
	IF 1 == MB000000; => Syntax error
Syntax	IF MB000000 == MB000001; => Syntax error
Error	• No data comparison command:
Examples	IF MB000000; => Syntax error
	IF (0); => Syntax error
	• When more than one data comparison command is used:
	IF (MB000000 == 0) & (MB000001 == 1); $=>$ Syntax error

(b) Integer/Double Integer/Real Number Data Comparison

Format	 All data comparison commands (==, <>, >, <, >=, <=) can be used. Specify a register either on the left or right. IF MW00000 == 3; "MW00000 = 3 IF ML00000 <> ML00002; "ML00000 ≠ ML00002 IF 1.23456 >= MF00000; "1.23456 ≥ MF00000 		
Operations in Conditional Expression	 Arithmetic operations and logic operations can be used. IF MW00000 == (MW00001/3); "MW00000 = (MW00001 ÷ 3) IF (ML00000 & F0000000H) <> ML00002; "(ML00000 ∧ F0000000H) ≠ ML00002 IF 1.23456 >= (MF00000 * MF00002); "1.23456 ≥ (MF00000 × MF00002) 		
Syntax Error Examples	 When a constant is specified both on the left and right: IF 0 == 3; => Syntax error IF (3.14*2*1000) > 9000.0; => Syntax error No data comparison command: IF MW000000; => Syntax error IF (-1); => Syntax error When more than one data comparison command is used: IF (MW00000 < 0) & (MW000001 > 0); => Syntax error 		

8.8.1 Bit Right Shift (SFR)

8.8 Data Operations

This section describes the data operation commands that are used to shift, transfer, and initialize data.

8.8.1 Bit Right Shift (SFR)

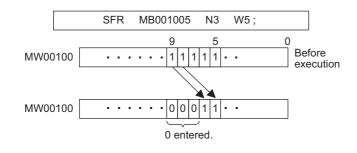
Motion Programs	Sequence Programs
Applicable	Applicable

(1) Overview

The SFR command shifts a bit string designated by the leading bit number and bit width the specified number of shifts to the right.

(2) Format

	A B C	
		<u>-</u>
Item	Description	Usable Registers
		 All bit type registers (Excluding # and C registers)
А	Leading bit	• The above registers with subscript
		Subscript registers
В	Number of bits	• All integer type registers (Excluding # and C registers)
Б	to be shifted	The above registers with subscript
0	Diturialth	Subscript registers
С	Bit width	• Constants


(3) Programming Examples

SFR command programming examples are shown below.

EXAMPLE

Туре	Motion Programs/ Sequence Programs	Ladder Programs
В	_	-
w	SFR MB001000 N5 W10;	-(<u>SHFTR</u>)- [B]Adr MB001000 [W]Width 00010 [W]Num 00005
L	-	-
F	_	-

Example: Five bits with MB001005 (bit 5 of MW00100) as the leading bit are shifted three bits to the right.

With the SFR command, if the number of shifts is greater than the bit width, all data with the specified bit width will be set to 0.

8.8.2 Bit Left Shift (SFL)

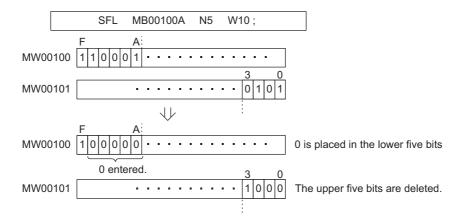
Motion Programs	Sequence Programs
Applicable	Applicable

(1) Overview

The SFL command shifts a bit string designated by the leading bit number and bit width the specified number of shifts to the left.

(2) Format

A B C				
Item	Description	Usable Registers		
A	Leading bit	All bit type registers (Excluding # and C registers)The above registers with subscriptSubscript registers		
В	Number of bits to be shifted	All integer type registers (Excluding # and C registers)The above registers with subscript		
С	Bit width	Subscript registersConstants		


(3) Programming Examples

SFL command programming examples are shown below.

▲ EXAMPLE

Туре	Motion Programs/ Sequence Programs	Ladder Programs
В	_	-
w	SFL MB001000 N5 W10;	
L	-	_
F	-	-

Examples: Ten bits with MB00100A (bit A of MW00100) as the leading bit are shifted five bits to the left.

With the SFL command, if the number of shifts is greater than the bit width, all data with the specified bit width will be set to 0.

8.8.3 Block Move (BLK)

Motion Programs	Sequence Programs	
Applicable	Applicable	

(1) Overview

The BLK command moves the specified number of words from the beginning of the source register to the beginning of the destination register.

(2) Format

	A B	2
Item	Description	Usable Registers
А	Source leading reg- ister	All integer type registers (Excluding # and C registers)The above registers with subscriptSubscript registers
В	Destination leading register	All integer type registers (Excluding # and C registers)The above registers with subscript
С	Number of blocks to be moved	Subscript registersConstants

(3) Programming Examples

BLK command programming examples are shown below.

▲ EXAMPLE

Туре	Motion Programs/ Sequence Programs	Ladder Programs		
В	_	-		
W	BLK MW00100 DW00100 W10;	(W]Src MW00100 [W]Dest DW00100 [W]Width 00010		
L	_	_		
F	_	_		

Example: MW00100 to MW00109 are moved to MW00200 to MW00209.

As long as the source registers and destination registers are not overlapped, the source data is moved to the destination registers as it is. If overlapped, the source data may not be moved to the destination registers as it is.

8.8.4 Clear (CLR)

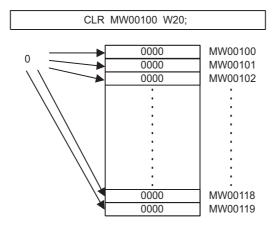
Motion Programs	Sequence Programs	
Applicable	Applicable	

(1) Overview

The CLR command clears the specified number of blocks from the leading data clear register, i.e., sets it to 0.

(2) Format

	A B		
Item	Description	Usable Registers	
A	Leading register whose data is cleared	 All integer type registers (Excluding # and C registers) The above registers with subscript Subscript registers 	
В	Number of blocks	 All integer type registers (Excluding # and C registers) The above registers with subscript Subscript registers Constants 	


(3) Programming Examples

CLR command programming examples are shown below.

▲ EXAMPLE

Туре	Motion Programs/ Sequence Programs	Ladder Programs	
В	-	_	
w	CLR MW00100 W10;	SETW C [W]Dest MW00100 [W]Data 00000 [W]Width 00010	
L	-	_	
F	-	_	

Example: The data of registers from MW00100 to MW00119 are cleared to 0.

8.8.5 ASCII Conversion 1 (ASCII)

8.8.5 ASCII Conversion 1 (ASCII)

Motion Programs	Sequence Programs	
Applicable	Applicable	

(1) Overview

The ASCII command converts the character string specified during command execution into ASCII code and stores it in the specified register (integer register). Upper and lower case letters can be distinguished from each other.

The first character and the second character are stored respectively in the lower byte and upper byte of the first word in order. If the number of characters in the string is odd, the upper byte of the last word in the storage destination register becomes 0. The number of input characters is up to 32.

Note: The following versions of system software and programming tool MPE720 are required to use an ASCII command.

MP2000 Series Machine Controller			MPE720	Applicable Version Numbers
	Ver2.60 or later		MPE720 Ver.5	MPE720 Ver.5.38 or later
All models			MPE720 Ver.6	MPE720 Ver.6.04 or later MPE720 Ver.6.04Lite or later

(2) Format

ASCII	'ABCDEFG'	MW00200;	
	А	В	
Item	Des	scription	Usable Registers
А	Character str	ing	ASCII characters
В	Storage register number		Integer type registers (Excluding # and C registers)

The following tables show the characters that can be used in the ASCII command.

(a) Usable Characters

Item	ASCII Characters
Alphanumeric Characters	a to z, A to Z, 0 to 9
Symbols	Space, ! # \$ % & () * + , / : ; < => ? @ [] //] ^_` { } ~

(b) Usable Characters

Item	ASCII Characters
Single Quotation	ſ
Double Quotation	κ.
Double Slash	//

(3) Programming Examples

ASCII command programming examples are shown below.

(a) Storing the character string "ABCD" in MW00100 to MW00101

▲ EXAMPLE

ASCII 'ABC	D' MW00100;		
	Upper Byte	Lower Byte	
MW00100	42H('B')	41H('A')	MW00100 = 4241H
MW00101	44H('D')	43H('C')	MW00101 = 4443H

(b) Storing the character string "ABCDEFG" in MW00100 to MW00103

■ EXAMPLE ►

ASCII 'ABCDEFG' MW00100;					
	Linner Dute	Lower Duto			
	Upper Byte	Lower Byte			
MW00100	42H('B')	41H('A')	MW00100 = 4241H		
MW00101	44H('D')	43H('C')	MW00101 = 4443H		
MW00102	46H('F')	45H('E')	MW00102 = 4645H		
MW00103	00H	47H('G')	MW00103 = 0047H		
↑ 0 will be entered in					

the remaining byte.

Command Reference

8.9.1 Sine (SIN)

8.9 Basic Functions

This section describes the basic function commands, including trigonometric functions, square roots, binary data conversion, and BCD data conversion.

8.9.1 Sine (SIN)

Motion Programs	Sequence Programs	
Applicable	Applicable	

(1) Overview

The Sine command (SIN) returns the sine of integer or real number data as the operation result. Double integer data cannot be used.

(2) Format

А	В		
Item	Description	Unit	Usable Registers
A	Sine value output	_	 All integer and real number type registers (Excluding # and C registers) The above registers with subscript Subscript registers
В	Angle input	Degree (°)*	 All integer and real number type registers (Excluding # and C registers) The above registers with subscript Subscript registers Constants

* The input units and output results are different for integer and real number data.

• Integer Data

Integer data can be used within a range of -327.68 to 327.67 degrees. The immediately preceding operation result (integer data) is used as the input, and the operation result is returned in an integer register (input unit1 = 0.01 degrees). The operation result is multiplied by 10000 before being output.

Real Number Data

The command will uses the immediately preceding operation result (real number data) as input, and return the sine in a real number register (unit = degrees).

Example:

Integer Data	Real Number Data	
MW00102 = SIN (MW00100) ;	Equivalent => 0.5=SIN30°	MF00102 = SIN (MF00100) ;
(05000) (03000)		(0.5) (30.0)

IMPORTANT

If integer data is input outside the range of -327.68 to 327.67 degrees, a correct result cannot be obtained.

(3) Programming Examples

SIN command programming examples are shown below.

▲ EXAMPLE

Туре	Motion Programs/ Sequence Programs	Ladder Programs
В	-	-
W	MW00102=SIN(MW00100);	_(
L	-	-
F	DF00202=SIN(DF00200);	SIN SIN WF]Src DF00200 [WF]Dest DF00202

8.9.2 Cosine (COS)

8.9.2 Cosine (COS)

Motion Programs	Sequence Programs
Applicable	Applicable

(1) Overview

The cosine command (COS) returns the cosine of integer or real number data as the operation result. Double integer data cannot be used.

(2) Format

А	E	3	
Item	Description	Unit	Usable Registers
A	Cosine val- ue output	-	 All integer and real number type registers (Excluding # and C registers) The above registers with subscript Subscript registers
В	Angle input	Degree (°)*	 All integer and real number type registers (Excluding # and C registers) The above registers with subscript Subscript registers Constants

* The input units and output results are different for integer and real number data.

• Integer Data

Integer data can be used within a range of -327.68 to 327.67 degrees. The immediately preceding operation result (integer data) is used as input, and the operation result is returned in an integer register (input unit 1 = 0.01 degrees). The operation result is multiplied by 10000 before being output.

• Real Number Data

The command uses the immediately preceding operation result (real number data) as input, and returns the cosine in a real number register (unit = degrees).

Example:

Integer Data	Real Number Data	
MW00102 = COS (MW00100) ;	Equivalent	MF00102 = COS (MF00100) ;
(05000) (06000)	=> 0.5=COS60°	(0.5) (60.0)

IMPORTANT

If integer data is input outside the range of -327.68 to 327.67 degrees, a correct result cannot be obtained.

(3) Programming Examples

COS command programming examples are shown below.

EXAMPLE

Туре	Motion Programs/ Sequence Programs	Ladder Programs
В	-	-
W	MW00102=COS(MW00100);	COS
L	_	-
F	DF00202=COS(DF00200);	-(COS Z)- [WF]Src DF00200 [WF]Dest DF00202

8.9.3 Tangent (TAN)

Motion Programs	Sequence Programs
Applicable	Applicable

(1) Overview

The TAN command uses the specified variable or constant (unit = degrees) as input and returns the tangent in a real number register.

(2) Format

А	В		
Item	Description	Unit	Usable Registers
A	Tangent value output	_	 All real number type registers (Excluding # and C registers) The above registers with subscript Subscript registers
В	Angle input	Degree (°)*	 All real number type registers (Excluding # and C registers) The above registers with subscript Subscript registers Constants

* Example: Calculates the tangent of the input value ($\theta = 45.0^{\circ}$): TAN (θ) = 1.0

IMPORTANT

The TAN command can use only real number data. If bits, integers, or double integers are specified, an error will result at compilation.

(3) Programming Examples

TAN command programming examples are shown below.

▲ EXAMPLE

Туре	Motion Programs/ Sequence Programs	Ladder Programs
В	_	-
W	-	-
L	-	-
F	DF00202=TAN(DF00200);	

8.9.4 Arc Sine (ASN)

8.9.4 Arc Sine (ASN)

Motion Programs	Sequence Programs
Applicable	Applicable

(1) Overview

The ASN command uses the specified variable or constant as input and returns the arc sine (unit = degrees) in a real number register.

(2) Format

А	В		
Item	Description	Unit	Usable Registers
А	Angle output	Degree (°)*	 All real number type registers (Excluding # and C registers) The above registers with subscript Subscript registers
В	Sine value input	_	 All real number type registers (Excluding # and C registers) The above registers with subscript Subscript registers Constants

* Example: Calculates the arc sine of the input value (0.5): ASN (0.5) = 30.0 degrees.

MF00202=ASN(MF00200); (30.0) (0.5)

IMPORTANT

The ASN command can use only real number data. If bits, integers, or double integers are specified, an error will result at compilation.

(3) Programming Examples

ASN command programming examples are shown below.

▲ <u>EXAMPLE</u>

Туре	Motion Programs/ Sequence Programs	Ladder Programs
В	-	-
W	-	-
L	_	-
F	DF00202=ASN(DF00200);	ASIN DF00200 [F]Dest DF00202

8.9.5 Arc Cosine (ACS)

Motion Programs	Sequence Programs
Applicable	Applicable

(1) Overview

The ACS command uses the specified variable or constant as input and returns the arc cosine (unit = degrees) in a real number register.

(2) Format

А	B		
Item	Description	Unit	Usable Registers
A	Angle output	Degree (°) [*]	 All real number type registers (Excluding # and C registers) The above registers with subscript Subscript registers
В	Cosine value input	_	 All real number type registers (Excluding # and C registers) The above registers with subscript Subscript registers Constants

* Example: Calculates the arc cosine of the input value (0.5): ACS (0.5) = 60.0 degrees.

IMPORTANT

The ACS command can use only real number data. If bits, integers, or double integers are specified, an error will result at compilation.

(3) Programming Examples

ACS command programming examples are shown below.

▲ EXAMPLE

Туре	Motion Programs/ Sequence Programs	Ladder Programs
В	_	-
W	-	-
L	-	_
F	DF00202=ACS(DF00200);	ACOS

8.9.6 Arc Tangent (ATN)

Motion Programs	Sequence Programs
Applicable	Applicable

(1) Overview

The ATN command returns the arc tangent of integer or real number data as the operation result. Double integer data cannot be used.

(2) Format

А	В		
Item	Description	Unit	Usable Registers
A	Angle output	Degree (°)*	 All integer and real number type registers (Excluding # and C registers) The above registers with subscript Subscript registers
В	Tangent value input	_	 All integer and real number type registers (Excluding # and C registers) The above registers with subscript Subscript registers Constants

* The input units and output results are different for integer and real number data.

• Integer Data

Integer data can be used within a range of -327.68 to 327.67 degrees. The immediately preceding operation result (integer data) is used as the input, and the operation result is returned in an integer register (input unit 1 = 0.01 degrees). The operation result is multiplied by 100 before being output.

• Real Number Data

The command uses the immediately preceding operation result (real number data) as input, and returns the arc tangent in a real number register.

Example:

Integer Data		Real Number Data
MW00100 = ATN (MW00102);	Equivalent	MF00100 = ATN (MF00102);
(04500) (00100)	=> 45=ATN(1.0)	(45.0) (1.0)

(3) Programming Examples

ATN command programming examples are shown below.

▲ EXAMPLE

Туре	Motion Programs/ Sequence Programs	Ladder Programs
В	_	_
w	MW00102=ATN(MW00100);	-(ATAN Z)- [WF]Src MW00100 [WF]Dest MW00102
L	_	-
F	DF00202=ATN(DF00200);	-(<u>ATAN</u> ∑)- [WF]Src DF00200 [WF]Dest DF00202

8.9.7 Square Root (SQT)

Motion Programs	Sequence Programs
Applicable	Applicable

(1) Overview

The SQT command returns the square root of an integer or real number as the operation result. Double integer data cannot be used.

(2) Format

10010	0 = SQT (100); _
А	В	
Item	Description	Usable Registers
A	Root value output	 All integer and real number type registers (Excluding # and C registers) The above registers with subscript Subscript registers
В	Data input	 All integer and real number type registers (Excluding # and C registers) The above registers with subscript Subscript registers Constants

Note: The input units and output results are different for integer and real number data.

• Integer Data

The result is different from that obtained for the mathematical square root, and is calculated using the following formula:

 $32768 * \text{sign}(B) * \sqrt{|B|/32768}$

sign(B): Sign for data input |B|: Absolute value of data input

That is to say, the output is the result of the mathematically expressed square root multiplied by 32768. When the input is a negative number, an absolute square root is calculated, and the negative number is taken as the operation result. The operation error is a maximum of ± 2 .

• Real Number Data

The SQT command uses the immediately preceding operation result (real number data) as input and returns the square root in a real number register.

Example:

Input Value	Integer Data	Real Number Data
Positive value input	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	MF00100 = SQT (MF00102); (8.0) (64.0)
Negative value input	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	MF00100 = SQT (MF00102); (-8.0) (-64.0)

8.9.7 Square Root (SQT)

(3) Programming Examples

SQT command programming examples are shown below.

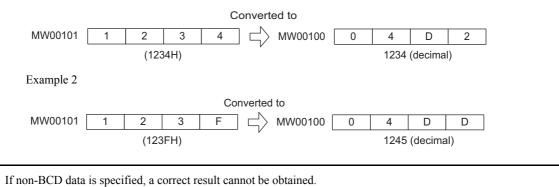
▲ EXAMPLE

Туре	Motion Programs/ Sequence Programs	Ladder Programs
В	_	-
w	MW00102=SQT(MW00100);	
L	_	-
F	DF00202=SQT(DF00200);	-(

8.9.8 BCD to Binary (BIN)

Motion Programs	Sequence Programs
Applicable	Applicable

(1) Overview


The BCD to Binary (BIN) command converts BCD data to binary data.

Only integer data can be used. If a non-BCD data is specified, a correct result cannot be obtained.

(2) Format

А	В	
Item	Description	Usable Registers
A	Binary data output	 All integer and double integer type registers (Excluding # and C registers) The above registers with subscript Subscript registers
В	BCD data input	 All integer and double integer type registers (Excluding # and C registers) The above registers with subscript Subscript registers Constants

Note: Example 1

(3) Programming Examples

BIN command programming examples are shown below.

EXAMPLE

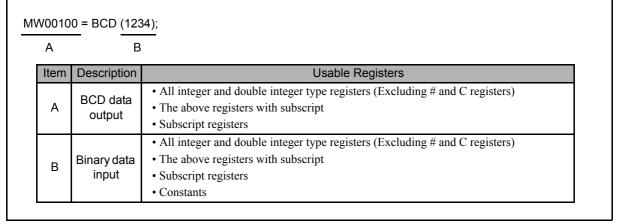
INFO

Туре	Motion Programs/ Sequence Programs	Ladder Programs
В	-	-
W	MW00101=BIN(MW00100);	(WL]Src MW00100 [WL]Dest MW00101
L	ML00102=BIN(ML00100);	-(BIN)- [WL]Src ML00100 [WL]Dest ML00102
F	_	-

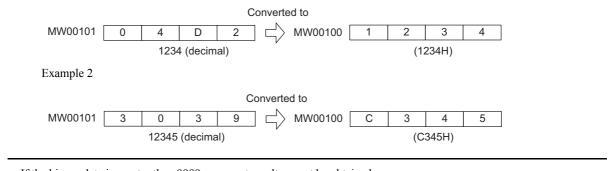
8

8.9.9 Binary to BCD (BCD)

8.9.9 Binary to BCD (BCD)


Motion Programs	Sequence Programs
Applicable	Applicable

(1) Overview


The Binary to BCD (BCD) command converts binary data to BCD data.

Only integer data can be used. If the binary data is 9999 or higher or is a negative value, a correct result cannot be obtained.

(2) Format

Note: Example 1

INFO

If the binary data is greater than 9999, a correct result cannot be obtained.

(3) Programming Examples

BCD command programming examples are shown below.

EXAMPLE

Туре	Motion Programs/ Sequence Programs	Ladder Programs
В	_	-
W	MW00101=BCD(MW00100);	-(BCD
L	ML00102=BCD(ML00100);	-(<u>BCD</u>)- [WL]Src ML00100 [WL]Dest ML00102
F	-	-

8.9.10 Set Bit (S{ })

Motion Programs	Sequence Programs
Applicable	Applicable

(1) Overview

This command turns ON the specified bit if the logical operation result is true. It does not turn OFF the specified bit, even if the logical operation result is false.

(2) Format

1	4	В	
Item	Description	Usable Registers	
А	Specified bit	All bit type registers (Excluding # and C registers)The above registers with subscript	
В	Logic expression	 All bit type registers (Excluding # and C registers) The above registers with subscript Constants 	

(3) Programming Examples

The Set Bit command (S{ }) programming examples are shown below.

▲ EXAMPLE

Туре	Motion Programs/ Sequence Programs	Ladder Programs
В	S{MB001000}=MB001010& MB001011;	MB001010 MB001011 MB001000
W	_	_
L	_	_
F	_	_

8.9.11 Reset Bit (R{ })

Motion Programs	Sequence Programs
Applicable	Applicable

(1) Overview

This command turns OFF the specified bit if the logical operation result is true. It does not turn ON the specified bit, even if the logical operation result is false.

(2) Format

А		В	
Item	Description	Usable Registers	
А	Specified bit	All bit type registers (Excluding # and C registers)The above registers with subscript	
В	Logic expression	 All bit type registers (Excluding # and C registers) The above registers with subscript Constants 	

(3) Programming Examples

Reset Bit command ($R\{ \}$) programming examples are shown below.

<u> EXAMPLE</u>

Туре	Motion Programs/ Sequence Programs	Ladder Programs
В	R{MB001000}=MB001010& MB001011;	MB001010 MB001011 MB001000
W	_	-
L	_	_
F	_	-

8.9.12 Rising Pulse (PON)

Motion Programs	Sequence Programs
Not applicable	Applicable

(1) Overview

The PON command is ON during one scan of bit output when the bit input status changes from OFF to ON. The register that stores the previous bit output value is used as a work of PON processing. Set the registers that are not used for other processes.

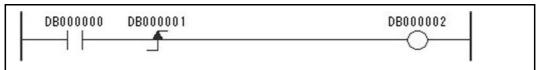
Note: The following versions of system software and programming tool MPE720 are required to use PON commands.

MP2000 Series Machine Controller	Required Version	MPE720	Required Version
	Ver.2.60 or later	MPE720 Ver.5	MPE720 Ver.5.38 or later
All models		MPE720 Ver.6	MPE720 Ver.6.04 or later MPE720 Ver.6.04 Lite or later

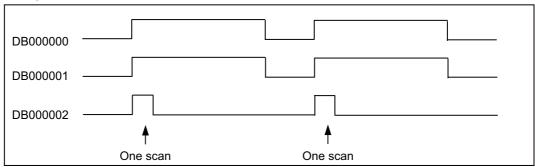
(2) Format

	= PON (DB000000 DB00000	'),
Ą	B C	
Item	Description	Usable Registers
A	Bit output	Bit type registers (Excluding # and C registers)The above registers with subscript
В	Bit input	 All bit type registers The above registers with subscript
С	To store the previous bit output value	 Bit type registers (Excluding # and C registers) The above registers with subscript

8.9.12 Rising Pulse (PON)

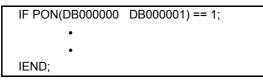

(3) Programming Examples

The PON command programming examples are shown below.

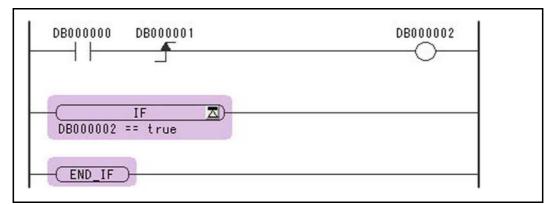

(a) Outputting to a Coil

<u> EXAMPLE</u>

- DB000002=PON(DB000000 DB000001);
- Ladder equivalent circuit



· Timing chart



(b) Using a PON Command Combined with an IF Command

▲ EXAMPLE

· Ladder equivalent circuit

· Timing chart

8.9.13 Falling Pulse (NON)

Motion Programs	Sequence Programs
Not applicable	Applicable

(1) Overview

Falling Pulse (NON) is ON during one scan of bit output when the bit input status changes from ON to OFF. The register that stores the previous bit output value is used as a work of NON processing. Set the registers that are not used for other processes.

Note: The following versions of system software and programming tool MPE720 are required to use NON commands.

MP2000 Series Machine Controller	Required Version		MPE720	Required Version
	Is Ver.2.60 or later		MPE720 Ver.5	MPE720 Ver.5.38 or later
All models			MPE720 Ver.6	MPE720 Ver.6.04 or later
				MPE720 Ver.6.04 Lite or later

(2) Format

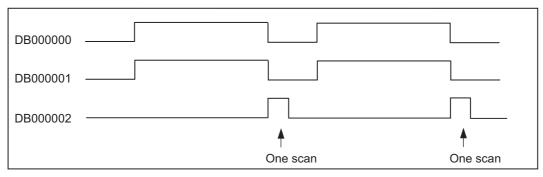
Ą	B C	
Item	Description	Usable Registers
А	Bit output	Bit type registers (Excluding # and C registers)The above registers with subscript
В	Bit input	 All bit type registers The above registers with subscript
С	To store the previous bit output value	 Bit type registers (Excluding # and C registers) The above registers with subscript

8.9.13 Falling Pulse (NON)

(3) Programming Examples

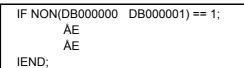
NON command programming examples are shown below.

(a) Outputting to a Coil

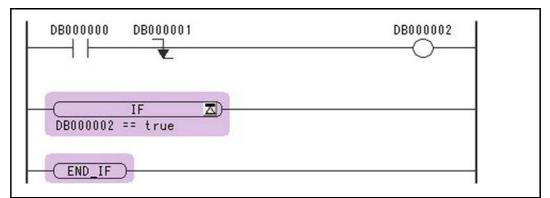

DB000002=NON(DB000000 DB000001);

· Ladder equivalent circuit

▲<u>EXAMPLE</u>



• Timing chart



(b) Using a NON Command Combined with an IF Command

▲ EXAMPLE

• Ladder equivalent circuit

• Timing chart

DB000000		
DB000001		
Processing in IF command		
In IF command	▲ Executed only for one scan	Executed only for one scan

8

8.9.14 ON-Delay Timer (TON): Counting unit: 0.01 second

8.9.14 ON-Delay Timer (TON): Counting unit: 0.01 second

Motion Programs	Sequence Programs
Not applicable	Applicable

(1) Overview

The TON command counts the milliseconds (in units of 10 ms) when the bit input is ON. When the counted value is equal to the set value, the bit output will turn ON. If the bit input turns OFF during counting, the timer operation will stop. After the bit input turns ON again, counting starts again from the beginning (0). In the registers for counting, the actual count (in units of 10 ms) is stored.

Note: The following versions of system software and programming tool MPE720 are required to use TON commands.

MP2000 Series Machine Controller	Required Version	•	MPE720	Required Version
	Ver.2.60 or later		MPE720 Ver.5	MPE720 Ver.5.38 or later
All models			MPE720 Ver.6	MPE720 Ver.6.04 or later MPE720 Ver.6.04Lite or later

(2) Format

۱.	В	С	D
em	Descr	iption	Usable Registers
А	Bit output		Bit type registers (Excluding # and C registers)The above registers with subscript
В	Bit input		 All bit type registers The above registers with subscript
С	Set value		 All integer type registers The above registers with subscript Constants (0 to 65535 (655.35 s): Every 10 ms)
D	Register for tim	er counting	All integer type registersThe above registers with subscript

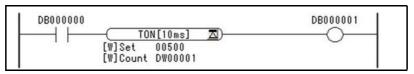
IMPORTANT

• Milliseconds are not counted while the debugging operation is stopped.

Counting starts again from the current counted value after the debugging operation restarts.

• Be sure to designate bit input "DBxxxxx&."

(3) Programming Examples


TON command programming examples are shown below.

DB000001=DB000000 & TON (500 DW00001);

↑ Set to 5 seconds.

· Ladder equivalent circuit

· Timing chart

DB000000		
DB000001	500	
DW00001	5.00 s - Ts (Ts = Scan set value)	

8

8.9.15 OFF-Delay Timer (TOF): Counting unit: 0.01 second

8.9.15 OFF-Delay Timer (TOF): Counting unit: 0.01 second

Motion Programs	Sequence Programs
Not applicable	Applicable

(1) Overview

The TOF command counts the milliseconds (in units of 10 ms) when the bit input is OFF. When the counted value is equal to the set value, the bit output will turn OFF. If the bit input turns ON during counting, the timer operation will stop. After the bit input turns OFF again, counting starts again from the beginning (0). In the registers for counting, the actual count (in units of 10 ms) is stored.

Note: The following versions of system software and programming tool MPE720 are required to use TOF commands.

MP2000 Series Machine Controller	Required Version		MPE720	Required Version
			MPE720 Ver.5	MPE720 Ver.5.38 or later
All models	Ver. 2.60 or later	Ī	MPE720 Ver.6	MPE720 Ver.6.04 or later
				MPE720 Ver.6.04Lite or later

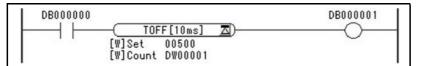
(2) Format

		TOF (500 DW		
А	В	С	D	
Item	Desc	ription	Usable Registers	
А	Bit output		Bit type registers (Excluding # and C registers)The above registers with subscript	sters)
В	Bit input		 All bit type registers The above registers with subscript	
С	Set value		 All integer type registers The above registers with subscript Constants (0 to 65535 (655.35 s): Every 10 	0 ms)
D	Register for tim	er counting	 All integer type registers The above registers with subscript	

IMPORTANT

• Milliseconds are not counted while the debugging operation is stopped.

Counting starts again from the current counted value after the debugging operation restarts.


• Be sure to designate bit input "DBxxxxx&."

(3) Programming Examples

TOF command programming examples are shown below.

EXAMPLE ►

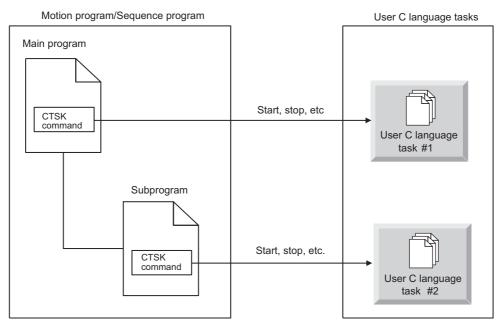
- DB000001=DB000000 & TOF (500 DW00001);
- Ladder equivalent circuit

· Timing chart

DB000000	
DB000001	
DW00001 0	5.00 s - Ts (Ts = Scan set value)

8

8.10.1 C-Language Task Control (CTSK)


8.10 C-Language Control Commands

8.10.1 C-Language Task Control (CTSK)

Motion Programs	Sequence Programs
Applicable	Applicable

(1) Overview

The C-Language Task Control command (CTSK) is used to control operations, including start and stop, of user C-language tasks.

Note: The following versions of system software and programming tool MPE720 are required to use CTSK commands.

MP2000 Series Machine Controller	Required Version	MPE720	Required Version
		MPE720 Ver.5	MPE720 Ver.5.38 or later
All models	Ver. 2.60 or later	MPE720 Ver.6	MPE720 Ver.6.04 or later
		WFE720 Vel.0	MPE720 Ver.6.04Lite or later

The Machine Controller MP2000 series embedded C-language package is required to use user C-language tasks. For details, refer to *Machine Controller MP2000 Series Embedded C-Language Programming Package Development Guide* (manual no.: SIEP C880700 25).

(2) Format

CTSK EXECUTE TYPE, C_NAME, COMPLETE ERROR ERR_CODE;

I/O Defini-	No.	Name	I/O Desig-		Description			
tion	4	EVEQUITE	nation B-VAL					
	1	EXECUTE	B-VAL		execution of CTSK function.			
					task control type.			
				1: WAKEUP	Wakes up the task from the WAIT status.			
Input	2	TYPE	I-REG	2: RESET	Valid only for sequence programs (low scan) Exits and deletes the task once, and then creates and starts a task. The started task then enters the WAIT status.			
				3: SUSPEND	Interrupts the task and moves the task to the SUSPEND status.			
			4: RESUME	Moves the task from the SUSPEND status to the READY status.				
	3 C_NAME Address input			Designates the leading register number (MW/DW address) of the registers where the user C-language task name (project name) is stored.				
	1	COMPLETE	B-VAL	Completes exe	cution of CTSK function			
	2	ERROR	B-VAL	Error occurren	ce (The contents of error is reported to ERR_CODE.)			
				Error code 0x00000000 0x0000006F	No error DWG (drawing) type error • CTSK function was executed by a sequence program (start drawing)			
Output				0x00000091	 TYPE setting error TYPE set value is out of the range. The task was neither in the WAIT nor WAIT-SUSPEND status when the task control type WAKEUP was executed. The task was neither in the WAIT nor READY status when the task control type SUSPEND was executed. 			
	3	ERR_CODE	L-REG	0x00000094	The task designated in C_NAME does not exist.			
		_		0x00000096 C_NAME register over the upper/lower limit Note: This can be detected also when EXECUTE input is OFF				
				0xFFFFFDD	µITRON detection error (Invalid ID number)*			
				0xFFFFFFCC	µITRON detection error (Task not registered)*			
				0xFFFFFFC1	 μITRON detection error (Illegal object status)* The task is in DORMANT status. RESUME was commanded to a task that was not in SUSPEND status. 			
				0xFFFFFBB	μITRON detection error (Context error)*Cannot issue from the task independent context.			
				0xFFFFFB7	µITRON detection error (Queue overflow)*			

* The µITRON detection errors will not occur normally because the system manages them.

- Note: 1. The EXECUTE input is not used for the signal rising edge, but treated as level. This is to implement task control in every scan cycle.
 - 2. The task controls except for RESET can be executed by motion programs, sequence programs for highspeed scan drawing, and sequence programs for low-speed scan drawing. They cannot be executed by sequence programs for start drawing.
 - 3. The task control type RESET can be executed only by sequence programs for low-speed scan drawing.

(3) Programming Examples

A CTSK command programming example is shown below.

EXAMPLE ►

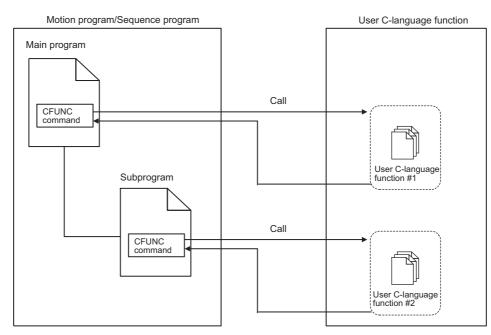
 ASCII 'ctask1' DW00010;
 "User C-language task name

 DW00013 = 0000H;
 "NULL code

 DW00002 = 1;
 "WAKEUP

 DB000001 = 1;
 "Execute the task control

 CTSK DB000001 DW00002, DA00010, DB000002 DB000003 DL00004;


8

8.10.2 C-Language Function Call (CFUNC)

8.10.2 C-Language Function Call (CFUNC)

(1) Overview

The C-Language Function Call command (CFUNC) calls the user C-language task.

Note: The following versions of system software and programming tool MPE720 are required to use CFUNC commands.

MP2000 Series Machine Controller	Required Version		MPE720	Required Version
			MPE720 Ver.5	MPE720 Ver.5.38 or later
All models	Ver.2.60 or later	ΙT	MPE720 Ver.6	MPE720 Ver.6.04 or later
				MPE720 Ver.6.04Lite or later

The Machine Controller MP2000 series embedded C-language package is required to use user C-language tasks. For details, refer to *Machine Controller MP2000 Series Embedded C-Language Programming Package Development Guide* (manual no.: SIEP C880700 25).

(2) Format

CFUNC EXECUTE OPTION1 OPTION2, C_NAME C_ARG1 C_ARG2, COMPLETE ERROR C_RETURN;

I/O Defini- tion	No.	Name	I/O Designation	Description				
	1	EXECUTE	B-VAL	Designates execution of CFUNC function				
	2	OPTION1	I-REG	Option designation 1 (For future use)				
	3	OPTION2	I-REG	Option designation 2 (For future use)				
Input	Input 4 C_NAME Address input		Address input	Designates the leading register No. (MW/DW address) of the registers where the user c-language function name is stored.				
	5	C_ARG.1	Address input	Designates the leading register No. (MW/DW address) to be set for the user C-language function 1st argument.				
	6	C_ARG.2	Address input	Designates the leading register No. (MW/DW address) to be set for the user C-language function 2nd argument.				
	1	COMPLETE	B-VAL	Completes execution of the CFUNC function				
Output	2	ERROR	B-VAL	 Error occurrence C_NAME, C_ARG.1, C_ARG.2 register over the upper/lower limit (The sizes of C_ARG.1 and C_ARG.2 are not taken into consider- ation.) Note: Detected also when the EXECUTE input is OFF. The function designated in C_NAME does not exist. 				
	3	C_RETURN	L-REG	Stores the return value of user C-language function as it is.				

(3) Programming Examples

The CFUNC command programming example is shown below.

<u> EXAMPLE</u>

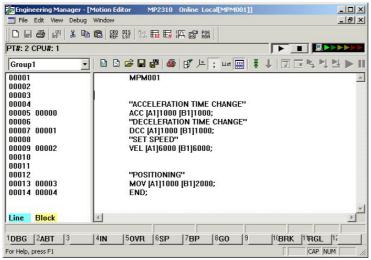
```
ASCII 'cfunc1' DW00010;"User C-language function nameDW00013 = 0000H;"NULL codeDB000000 = 1;"Execute the user C-language functionCFUNC DB000000 0 0,DA00010 DA00002 DA00004, DB000003 DB000004DL00016;
```

Engineering Tool MPE720

This chapter describes the engineering tool MP720, for creating and editing motion programs and sequence programs.

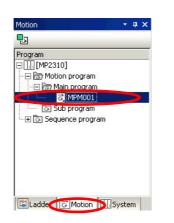
9.1 Motion Editor	9-2
9.2 Command Input Assistant Function	9-6
9.3 Program Execution Registration Function	9-12
9.4 Debug Function	9-15
9.5 Motion Task Manager 9.5.1 Overview	9-22
9.6 Drive Control Panel	9-24
9.7 Test Run Function	9-28
9.8 Axis Status and Alarm Monitor 9.8.1 Overview	9-31

9.1.1 Overview


9.1 Motion Editor

This section describes the Motion Editor.

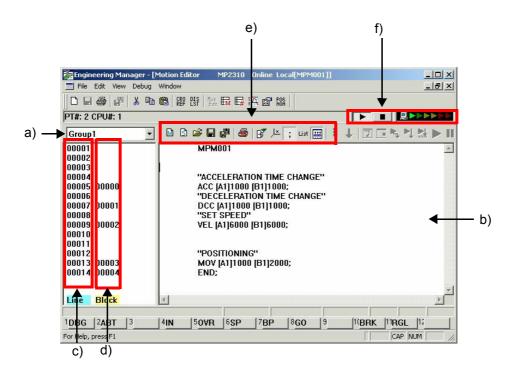
9.1.1 Overview


The Motion Editor is a programming tool that is required to create and edit motion programs and sequence programs.

It has the full range of functions required to create and edit these programs, including text editing, compiling (saving), debugging, and monitoring.

There are two ways to start the Motion Editor:

• Double-click the program in the Motion subwindow.


PT#: 2 CPU#: 1							
Group1	•	M 5	🖻 🖬 🛔	M 🌆 E	『 上 ;	List 🔛	- R.
00001	E	ND;					
Line							

• Click the Lot icon on the toolbar of the Engineering Manager window.

Motion Editor	MP231	0 Online	e Local[MPM001]					
PT#: 2 CPU#: 1									>>>
Group1	•		F	d" 🍜	B 1	×[; ∟	ist 🔛	₹ ↑	
00001		END;							*
									-
Line		4							*
									11

9.1.2 Names and Descriptions of Motion Editor Window Components

a) Group selection (Only for motion programs)

The group names set in the **Group Definition** dialog box are displayed in the drop-down menu. Select a group for which the editing program is to be used.

Group1	•
Group1	
Group2	
Group2 Group3	

b) Program editing window

A text editor for programming.

c) Line

Displays program text lines.

d) Block

Displays program blocks.

When an alarm is generated in the motion program, the block where the alarm is generated is reported.

^{9.1.2} Names and Descriptions of Motion Editor Window Components

e) Tool icons

The following table shows the icons used to edit programs.

Function	Icon	Key Operation	Description
Cut	ж	Ctrl + X	Deletes the selected range and stores the deleted range in the Clipboard.
Сору	台	Ctrl + C	Reproduces the selected range in the Clipboard.
Paste	퀩	Ctrl + V	Pastes the materials stored in the Clipboard.
Position Monitor	POS	-	Displays the Position Monitor dialog box.
New File (Motion programs)		_	Opens a new motion program file.
New File (Sequence programs)	5	-	Opens a new sequence program file.
Open	1	-	Displays the File List dialog box.
Save		Ctrl + S	Saves the editing program to the hard disk of the computer. During online editing, the editing program will be not only be saved to the hard disk but also downloaded (transferred) to the Machine Controller.
Save & Save to Flash	an N	_	 Consecutively executes the following operations. Saves the editing program to the hard disk of the computer. Downloads the editing program to the Machine Controller. Saves the downloaded program to the flash memory. All programs downloaded to the Machine Controller will be saved to the flash memory.
Print		Ctrl + P	Prints out the editing program.
Motion Command Assist	•••	F12	Displays the Motion Command Assist dialog box.
Position Teach	Ļ۲	_	Displays the Position Teach dialog box. The work coordinate system current position of the axis desig- nated in the Position Teach dialog box will be inserted on the Motion Editor.
Add/Not Add a Semicolon	•	-	Used to select whether or not to allow use of the ENT key to add a semicolon (;).
Open Error List Dialog Box	List	-	Displays the list of save errors (compile errors).
Automatic Scroll	***	-	Used to select whether or not to scroll the screen in line with the executing line of the program during program execution.

f) Monitor tab and status bar

Used to monitor programs.

Function	Button/ Status Bar	Key Opera- tion	Description
Monitoring Tab		_	Sets whether or not to monitor programs. When the moving button is selected (), the exe- cuting program line is displayed in real time.
Monitoring Status Bar		_	Indicates the program monitoring status.

9.2.1 Overview

9.2 Command Input Assistant Function

This section describes the motion command input assistant function.

9.2.1 Overview

The command input assistant function helps a programmer to create a required motion program.

The motion commands are written in a textual language called motion language, and each command needs to be written in the specified format. The **Motion command assist** dialog box is provided to make it easy to correctly select and code the commands.

The following versions of MPE720 support the command input assistant function.

MPE720	Supported Version
MPE720 Ver.5	Not supported
MPE720 Ver.6	Ver.6.04 or later Ver.6.04 Lite or later

Note: The command input assistant function can be used for all models of MP2000-series Machine Controllers.

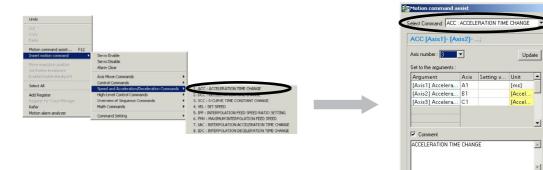
The **Motion command assist** dialog box can be opened from the **Motion Editor** window. There are two ways to open the **Motion command assist** dialog box, as described on the next page.

et to the arguments :				
lrgument j	Axis	Setting v	Unit	
_	A1		[pulse]	1
Axis2] Position	81		[Refer	_
Axis3] Position	C1		[Refer	
				•

-

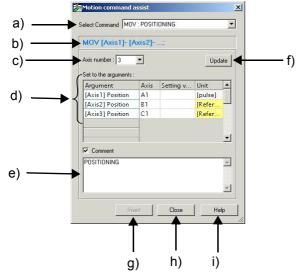
•

4 -

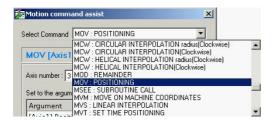

t Close Help

In

• Select Motion command assist from the pop-up menu when you right-click the Motion Editor window, or press the function key F12.


Indo	Select Command ACC	ACCEL	ERATION TIME	CHANGE	
ut	ACC [Axis1]- [A	cis2]-			
opy aste	Axis number : 3	-		Upd	Jate
	Set to the arguments :				
otion command assist F12	Argument	Axis	Setting v	Unit	
ert motion command 🔹 🕨	[Axis1] Accelera	A1	1	[ms]	1
	[Axis2] Accelera	B1		[Accel	-
ve execution position	[Axis3] Accelera	C1		[Accel	
:/Delete Breakpoint					
able/Disable Breakpoint	8	-			
lect All	Comment				
d Desister	ACCELERATION TIM	e chan	GE		N
ld Register					
gister for Trace Manager					
fer					-

• From the right-click menu, select Insert motion command, then select the command you want to insert.


9.2.2 Motion Command Assist Dialog Box Details

9.2.2 Motion Command Assist Dialog Box Details

a) Select command (Command options)

Click the arrow to open the drop-down menu that contains the commands that can be inserted.

b) Command format

Displays the programming format of the selected command.

c) Axis number (Number of axes to be controlled)

For axis move commands, the number of axes to be controlled can be selected in the range from 1 to the number of axes set in the **Group Definition** dialog box.

When the number of axes to be controlled is fixed, the fixed number of axes is displayed in the shaded box (unavailable option).

EXAMPLE

MOV: Positioning ··· Select the	e number of axes to be controlled.
Axis number : 3	
Set to the arg 2	
3	
EXM: External positioning ••• 1	The number of axes to be controller is fixed.
Axis number : 1	

d) Set to the arguments

Set the parameters for the selected command. The setting items are listed below.

Item	Description						
ArgumentDisplays the parameter names to be set as the arguments. The displayed parameter names cannot be edited.							
	For the arguments that can be omitted, [Can be omitted] is displayed.						
Axis	Displays the logical axis names. Change the logical axes as required.						
Setting value	Enter a constant or register as the set value.						
Unit	Displays the parameter setting unit. The setting units cannot be edited.						

The logical axis names displayed in the **Axis** column are defined in the **Group Definition** dialog box. The setting units in the **Unit** column are displayed according to the motion parameter settings of each axis. If a setting unit has not been specified, the corresponding **Unit** cell is displayed in yellow. Place the mouse pointer on the **Unit** cell and click the mouse. The help balloon will pop up. Follow the help balloon messages to set the motion parameters.

When the selected command requires neither the settings of number of axes to be controlled nor parameters, the program input field will appear as shown below. Enter the command block referring to the command format displayed above.

Input program	12	A110000000	
+			<u> </u>
4			¥
Comment			
ADD			^

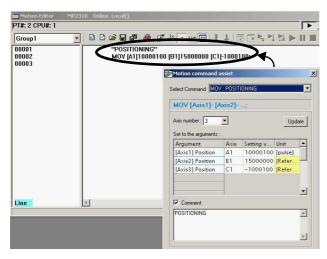
9.2.2 Motion Command Assist Dialog Box Details

e) Comment check box and Comment input field

Selecting the **Comment** check box allows you to insert a comment above the command line. When the **Comment** check box is cleared, the comment input field will be shaded and comments cannot be inserted.

The comment inserting position cannot be changed.

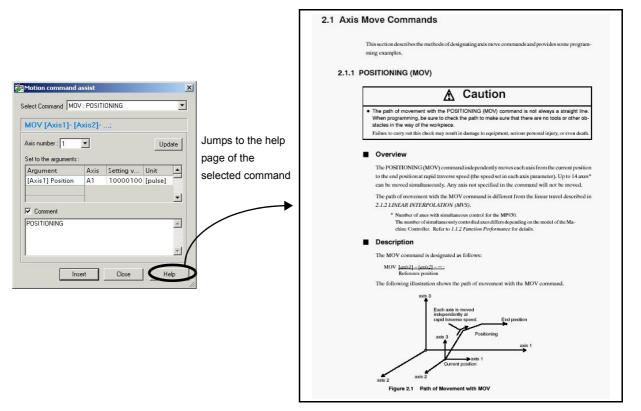
f) Update button


Click the Update button to refresh the display in the Motion command assist dialog box.

After changing the setting of a unit related motion parameter, click the Update button to refresh the display.

g) Insert button

Click the **Insert** button to insert the command edited in the **Motion command assist** dialog box at the pointer position in the **Motion Editor** window.



h) Close button

Click the Close button to close the Motion command assist dialog box.

i) Help button

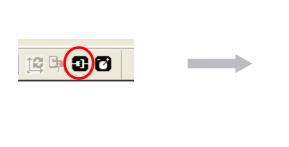
Click the Help button to display a description of the selected command.

9.3.1 Overview

9.3 Program Execution Registration Function

This section describes the program execution registration function of M-EXECUTOR.

9.3.1 Overview


The created motion programs and sequence programs need to be registered in the MP2000 system to run. The Program execution registry screen dialog box is provided to make it easy to register the created motion programs and sequence programs in the MP2000 system.

The following versions of MPE720 support the program execution registration function.

MPE720	Supported Version
MPE720 Ver.5	Ver5.38 or later
MPE720 Ver.6	Ver6.04 or later Ver6.04 Lite or later

There are two ways to open the Program execution registry screen dialog box:

• Click the **1** icon in the **Motion Editor** window.

Program execution reg	istry number	Program numbe
1		MPM001 💌
Execution type		Specification
Motion program	-	Direct 💌
Allocation register —	Allocation D19	GABLE
Program number	Г	
Status	? 🔽	
Control signal	? 🔽	
Override(1=0.01%)		

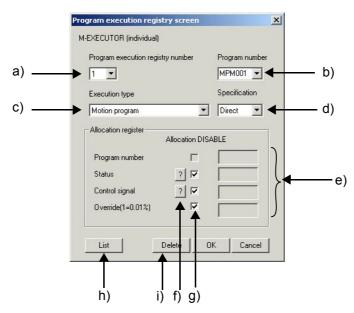
Program execution r

istrv number

Allocation DISABLE Г ? 🔽 ? 🔽

Delete OK Cancel

×


Program numbe MPM001 -Specification Direct

-

• Open the M-EXECUTOR details window from the Module Configuration Definition window, and then click the Individual display icon.

5 M-EXECUTOR▼ -	M-EXECUTOR(List) Individual display Program definition number 8 Program definition Allocation Control register	M-EXECUTOR (individual) Program execution regineration (individual)
-	No. D Execution type Setting Program	
0000	- Sequence program(Start) Direct -	Motion program
0C3F	1	Allocation register
•	4	Program number
		Status
		Control signal
Running		Override(1=0.01%)
		List

9.3.2 Program Execution Registry Screen Dialog Box Details

a) Program execution registry number

Select the program execution registration number. Programs will be executed in order, from the smallest program execution registration number.

b) Program number

Set the program number.

c) Execution type

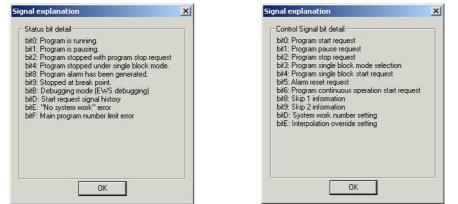
Select a program execution type from the drop-down menu:

Execution Type	Program to be Executed	Execution Conditions
Sequence program (Start)		At power ON (Executed once at power ON.)
Sequence program (L scan)	Sequence programs	Cyclic start (Executed in low-speed scan cycle.)
Sequence program (H scan)		Cyclic start (Executed in high-speed scan cycle.)
Motion program	Motion programs	When the Program operation start request bit of con- trol signal turns ON. (Executed when the Program operation start request bit turns ON.)

d) Specification

Select the program designation method: Direct or Indirect The applicable designation methods differ depending on whether the program is a motion program or a sequence program.

Designa- tion Method	Motion Programs	Sequence Programs	Description
Direct	Applicable	Applicable	Designate the program number. Example: MPM001, SPM002
Indirect	Applicable	N/A	Designate the register number that stores the program number. Example: OW0C0C (When 1 is stored in OW0C0C, MPM001 is exe- cuted.)


9.3.2 Program Execution Registry Screen Dialog Box Details

e) Register allocation

Allocate the registers. The allocated registers exchange data in real time with the M-EXECUTOR control registers. I, O, and M registers can be allocated.

f) Status, Control signal (🧾 icons)

Click the corresponding icon to display the bit assignment of the status flag or control signal.

g) Allocation DISABLE

Click to select or clear the corresponding check box to enable or disable the allocated register. When the check box is cleared, the allocated register is enabled.

h) List button

Click the List button to display the M-EXECUTOR (list) window.

i) Delete button

Delete the definition.

9.4 Debug Function

This section describes the debug function.

9.4.1 Overview

The debug function debugs motion programs and sequence programs.

Various functions including program pause, break point setting, and step-by-step execution (single block execution) are provided to check the created program operation.

During debugging, the executing program line is highlighted on the screen as shown below.

	ering Mar Idit View				M	P2310	Online	Loca	[MPM001]	1						_ 0 :
					l flot E	. 8	i 🔽 🕬	POS								
РТ#: 2 С	10000	00 -		REF LST	Edt 🚥	M 0.#		HON								
Group1			- 🛛) 🖻 🚘		F 4	• F /	× ;	List 🛄	₹ ↓		₽, ₽	₽ ►			00
00001 0 00002 0 00003 0	00001			M	iov (A ND;	1]900	00;									E
ebug Mode	e >>> Su	spend														
DBG	2 ABT	3		4 IN	5	0VR	6 SF	•	7 BP	8 GO	9	11	BRK	11RGL	. 12	
or Help, pr	ess F1												_	1	AP NUM	

Note: The debug function can be used with all MP2000-series Machine Controller models.

To start debugging, connect the MPE720 online with the Machine Controller, and click the **X** icon on the **Motion Editor** window.

During debugging, the executing program line is highlighted on the screen as shown below.

Before debugging, the programs must be registered in the **Program execution registry screen** dialog box.

9.4.2 Motion Editor Window during Debugging

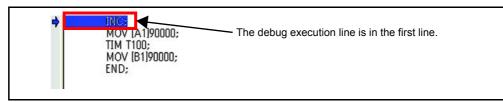
9.4.2 Motion Editor Window during Debugging

	a)	
Engineering Manager - [Mo	otion Editor MP2310 Online Local[MPM001]]	
Tile Edit View Debug W	/indaw	_ 8 ×
	88 ₩ 1931 123 転 転 兵 🕼 103 -	
PT#: 2 CPU#: 1		
Group1	· · · · · · · · · · · · · · · · · · ·	00
00001 00000 0000 00002 00001 00003 00002	INC: MOV [A1]90000; END;	b)
uebug mode >>> Suspend 1 DBG 2 ABT 3	4 IN 5 OVR 6 SP 7 BP 8 GO 9 10BRK 11RGL 12	1
For Help, press F1	CAP NUM	1.

a) Executing program line

The executing program line is highlighted in blue.

If a motion program alarm is generated in the executing program line, the executing program line is highlighted in red. Refer to *10.2.4 Motion Program Alarm Codes* for information on motion program alarms.


b) Tool icons and function keys

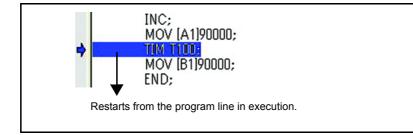
The following table shows the icons, menu commands, and function keys to be used for a debug operation.

Function	lcon	Key Oper- ation	Description	Motion Programs	Sequence Programs
Debug mode	M	F1	Starts the program in debug mode.	Available	Available
Normal run mode	↓	F11	Cancels the debug mode. The program continuously runs in normal run mode.	Available	Available
Shift execution start point	Ы	F6	Shifts the execution start line (start point).	Available	Available
Set/Delete break point	•	F7	Sets or deletes a break point. A break point is described in the program.	Available	Available
Step in	₽	F4	Executes one command block. For an MSEE or SSEE command, execution will jump to the start line of the specified subprogram.	Available	Available
Step over	₽	F5	Executes one command block. For an MSEE or SSEE command, executes the specified subprogram and then executes the next block of the MSEE or SSEE command.	Available	Available
Execute		F8	Continuously executes the motion program lines in debug mode until the break point.	Available	Available
Break	00	F10	Pauses motion program execution in debug mode.	Available	Available
Forced end		F2	Forcibly stops motion program execution.	Available	N/A
Update current position	2 1	_	Updates the current position coordinates.	Available	N/A
Setting the execute task MSEE Call Stack	₽ ⁶	_	Sets the parallel number, nesting level, and task of the selected subprogram.	Available	Available
Set/Delete Breakpoint	_	_	Enables or disables the break point. This command can be selected from the Debug menu or the drop-down menu that will appear when right clicking.	Available	Available
Add Register	_	_	Adds the selected register to the Watch Page of Quick Reference. This command can be selected from the drop-down menu that will appear when right clicking.	Available	Available

• Debug mode 🕴

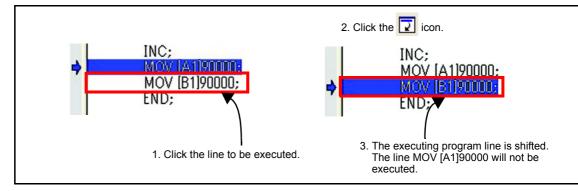
Click this icon to switch the operation mode to the debug mode and start debugging from the first line of the program.

The debug start line when the operation mode is switched to the debug mode differs, depending on whether you are using the motion program or the sequence program:


Motion Programs

- When debug mode is selected for a motion program that is not running Debugging starts from the first line of the program, as shown in the above example.
- When debug mode is selected for a running motion program When the mode is switched to the debug mode while an axis is moving, debugging will start from the next command block after the axis movement completes.
- Sequence Programs
 - When debug mode is selected for a sequence program that is not running. Debugging is not possible in this case.
 - When debug mode is selected for a running sequence program. Debugging starts from the first line of the program, as shown in the above example.

Normal run mode 1


Click this icon to switch the operation mode from debug mode to normal run mode. The debugging will be cancelled and program execution will restart from the currently executing line.

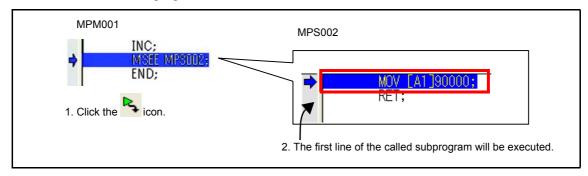
All the break points that have been set will be deleted.

Shift start point <a>[7]

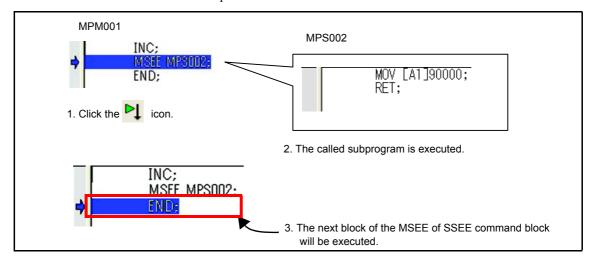

Shift the executing program line to the selected line.

9.4.2 Motion Editor Window during Debugging

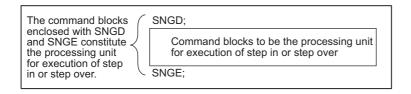
Set/Delete break point


Click this icon to set a break point. A maximum of four break points can be set. Clicking the button of the line for which a break point has been already set will delete the break point.

• Step in 🔩

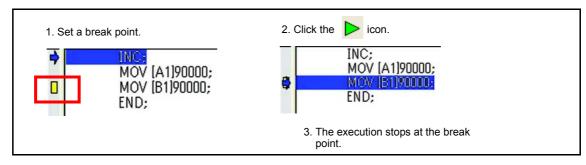

Click this icon to execute one program line.

When this icon is clicked while an MSEE or SSEE command block is being executed, execution will jump to the first line of the called subprogram.

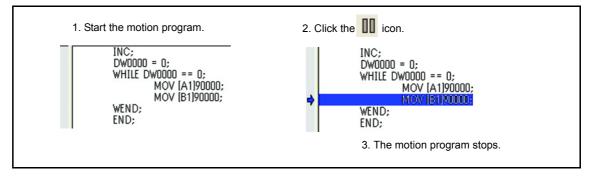


• Step over 🍡

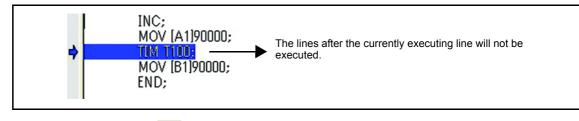
Click this icon to execute one program line. When this icon is clicked while an MSEE or SSEE command block is being executed, the called subprogram will be executed and then execution will proceed to the next block of the MSEE or SSEE command block.



More than one process can be specified as the processing unit for execution of the Step in and Step over by using SNGD and SNGE commands.


• Execute Þ

Click this icon to continuously execute program lines. When the break point is reached, the execution will stop.


• Break 🔟

Click this icon to pause a program in debug mode. To restart the program, click the Execute icon.

Forced end

Click this icon to forcibly end the execution of a program in debug mode.

Update current position

This icon has the same function as the PLD command. While this icon is selected, the operation of the PLD command is processed by the system when using the **Step in**, **Step over**, and **Execute** icons. Refer to *8.3.3 Program Current Position Update (PLD)* for details on PLD command.

9.4.2 Motion Editor Window during Debugging

• Setting the execute task 👫 (Only for subprograms)

Set the subprogram information used for monitoring or debugging subprograms. When the **Setting the exe-cute task** command is selected, the currently running main programs will be displayed. Select the main program that calls the subprogram.

MSEE call stack <a>> (Only for subprograms)

Set more detailed subprogram information than the Setting the execute task command.

	MSEE Call Stack	
Item	Description	
Main program number	Set the main program number that calls the subprogram.	
Fork number	Set the parallel number of the main program that calls the subprogram. Example: Set 3 when monitoring and debugging subprogram MPS004. MPM001 PFORK Label1 Label2 Label3 Label4; Label1: "Parallel 1 MSEE MPS002; JOINTO LabelX; Label2: "Parallel 2 MSEE MPS003; JOINTO LabelX; Label3: "Parallel 3 MSEE MPS004; JOINTO LabelX; Label4: "Parallel 4 MSEE MPS005; JOINTO LabelX; Label4: "Parallel 4 MSEE MPS005; JOINTO LabelX; LabelX: PJOINT; END;	
Nest number	Set the nesting level of the subprogram call. Example: Set 2 when monitoring and debugging subprogram MPS003. MPM001 MW0000=1; MSEE MPS002; MW0000=2; MSEE MPS003; MW0000=3; END; MET; RET; RET;	

Set/Delete Breakpoint

Enables or disables the break point.

Break point enabled _ (Displayed in yellow)	MOV [A1]90000; MOV [B1]90000; END;
Break point disabled _ (Displayed in white)	MOV [A1]90000; MOV [B1]90000; END;
Debug Mindow Debug Window Debug mode Regular mode Go Step Into Step Over Move execution position Step Over Move execution position Step Delete Breakpoint Break Update Current Position Set Motion task Set Call stack Abort	The menu that pops up when right-clicking on the Motion Editor window. Undo Cut. Copy Paste Motion command assist F12 Insert motion command Move execution position Set/Delete Breakpoint Chapter Directionum Select All Add Register Register for Trace Manager Refer Motion alarm analyzer

Add Register

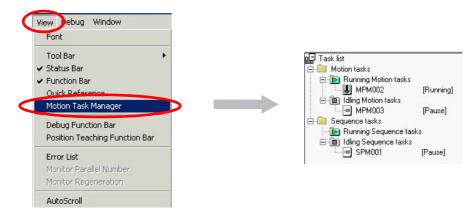
The register displayed on the Motion Editor can be registered to the Watch Page of Quick Reference. The values of the registered registers can be monitored on the Watch Page.

	W000=13
	ND: Cut Copy Paste
	Motion command assist F12 Insert motion command
	Move execution position Set/Delete Breakpoint Enable/Disable Breakpoint
	Select All
	Add Register
	Refer Refer Motion alarm analyzer
2. The register	vill be added to the Watch Page of Quick Reference.
Register List	Watch Page Time Chart
No Po	nister Drawing DSP Type Data

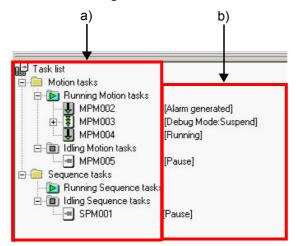
9.5.1 Overview

9.5 Motion Task Manager

This section describes the Motion Task Manager.


9.5.1 Overview

The Motion Task Manager is used to view the list of motion tasks, and to monitor task execution status. The running tasks and idle tasks are displayed in a tree structure in the **Motion Task Manager** window.



Note: The Motion Task Manager can be used with all MP2000-series Machine Controller models.

To start the Motion Task Manager, select View - Motion Task Manager in the Motion Editor window.

9.5.2 Motion Task Manager Window Details

a) Task execution status is displayed in a tree structure

The execution status of each motion program and sequence program is displayed in a tree structure. Double-click the program to open the corresponding program in the **Motion Editor** window.

b) Program status display

The program status is displayed.

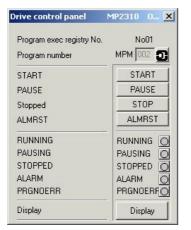
Display	Status	
Pause	The program execution is paused.	
Debug Mode	The program is being debugged.	
Debug Mode: Suspend	The program debugging is suspended at a break point.	
Running	The program is running.	
Alarm generated	An alarm has occurred in the motion program. Place the mouse pointer on the program name to view the alarm details. Engineering f Engineering f During "Program Stop request" (Cause) An axis move command was interrupted by the "Program stop request". [Measure] Turn OFF the "Program stop request" bit of the motion program control word then set the "Alarm reset request" bit. MPM002 [Alarm generated] MPM003 [Debug Mode:Suspend]	

9.6.1 Overview

9.6 Drive Control Panel

This section describes the Drive Control Panel.

9.6.1 Overview


To execute the created motion program, the program needs to be registered in the MP2000 system and the program start request must be issued using the user application.

If you want to run the created motion program before creating the user application, use the **Drive control panel** to carry out the program trial run.

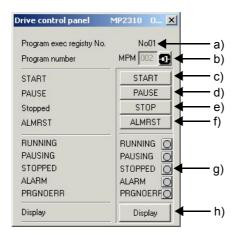
Commands such as program start request, stop request, and alarm reset request can be issued from the **Drive control panel**.

The following versions of MPE720 support the Drive control panel.

MPE720	Supported Version
MPE720 Ver.5	Ver. 5.38 or later
MPE720 Ver.6	Ver. 6.04 or later Ver. 6.04 Lite or later

Note: The **Drive control panel** does not have the break point setting or step-by-step execution (single block execution) functions that the debug function has.

- Be sure the area is safe before starting a motion program by using the Drive control panel. The axes will start moving as the motion program runs.
- Do not overwrite the motion program control register by using a sequence program or ladder program. Doing so may disable the control from the Drive control panel.
- Do not simultaneously execute axes move commands for one axis from more than one program. Doing so may result in an adverse movement of the axis.


Click the **o** icon in the **Motion Editor** window to start the **Drive control panel**.

rive control panel	MP2310 0
Program exec registry No.	No01
Program number	MPM 002
START	START
PAUSE	PAUSE
Stopped	STOP
ALMRST	ALMRST
RUNNING	BUNNING (
PAUSING	PAUSING
STOPPED	STOPPED
ALARM	ALARM
PRGNOERR	PRGNOERF
Display	Display

9.6.2 Drive Control Panel Details

9.6.2 Drive Control Panel Details

a) Program exec registry No.

The program execution registry number of the program for trial run is displayed. The program execution registry number must be set in the **Program execution registry screen** dialog box of the M-EXECUTOR in advance.

b) Program number

The program number for trial run is displayed.

The program number must be set in the **Program execution registry screen** dialog box of M-EXECUTOR in advance.

c) START button

Click the START button to start the trial run.

d) PAUSE button

Click the PAUSE button to pause the trial run.

e) STOP button

Click the STOP button to stop the trial run.

f) ALMRST button

Click the ALMRST button to reset the alarm after an alarm has been generated.

g) Trial run status display

The corresponding status indicator LED lights up to indicate the trial run status.

- RUNNING: Lights up when the START button is clicked.
- PAUSING: Lights up when the PAUSE button is clicked.
- STOPPED: Lights up when the STOP button is clicked.
- ALARM: Lights up when a program alarm occurs.
- PRGNOERR: Lights up when a program number error occurs (the program number is outside the allowable range).

h) Display button

Click the **Display** button to open the **Error information screen** window. Refer to *10.2.4 Motion Program Alarm Codes* for details on the errors and the **Error information screen** window. An example of an error information window is shown below.

Paralle	Alarm code	Alarm name	Program number	Block nui
i	001BH	During "Program Stop request"	MPM002	0
2				
3			2	
4				
irm Content		and double units and the research		
		upted by the Program stop request .		
axis move prrective A		upted by the "Program stop request".		

9.7.1 Overview

9.7 Test Run Function

This section describes the Test Run function.

9.7.1 Overview

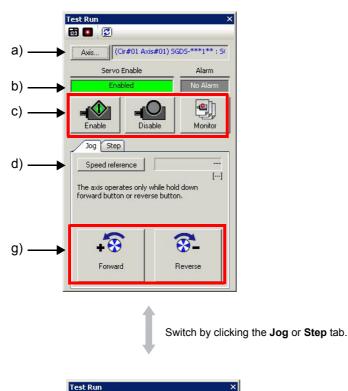
The Test Run function is used to perform a test run of axes that are connected to the MP2000-series Machine Controller from the **Test Run** window. The servo ON, servo OFF, JOG operation, and STEP commands can be executed without using programs.

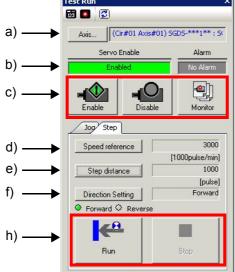
The following versions of MPE720 support the Test Run function.

MPE720	Supported Version
MPE720 Ver.5	Not supported
MPE720 Ver.6	Ver6.04 or later Ver6.04 Lite or later


Note: The Test Run function can be used with all MP2000-series Machine Controller models.

Axis (Cir#01 Axis	#01) SGDS-***1** : S
Servo Enable	Alarm
Enabled	No Alarm
Enable Disat	De Monitor
Jog Step	
Speed reference	
The axis operates only w forward button or revers	
+ 🐼	8 –


- Make sure the area is safe before moving the axes by using the Test Run function.
- Before starting operation, be sure to prepare emergency stop measures to stop axis movement whenever necessary.
- Before moving the axes by using the Test Run function, stop all ladder programs and motion programs that are being executed.


Double-click Test run in the System subwindow to open the Test Run window.

9.7.2 Test Run Window Details

a) Axis

Select the axis for the test run.

b) Servo Enable, Alarm

The servo status (**Enabled** [servo ON] or **Disabled**) [servo OFF] and the axis alarm status (**Alarm** or **No Alarm**) are displayed.

c) Enable, Disable, and Monitor buttons

Click the **Enable** button to turn ON the servo, click the **Disable** button to turn it OFF. Special care must be taken for this operation because it will change the motion setting parameter. Click the **Monitor** button to display the details of an axis alarm.

9.7.2 Test Run Window Details

d) Speed reference

Set the speed reference value. Special care must be taken for this operation because it will change the motion setting parameter.

e) Step distance (In the Step tab page)

Set the step movement amount for step operation. Special care must be taken for this operation because it will change the motion setting parameter.

f) Direction Setting (In the Step tab page)

Click the **Direction Setting** button. The **Direction Setting** dialog box used to set the axis operation direction for step operation will appear.

Select **Forward** or **Reverse** of the **Direction** to specify the axis operation direction. Special care must be taken for this operation because it will change the motion setting parameter.

A repetitive run for step operation can also be set and specified in this dialog box.

		DB80092.
Direction 📀 Forward	C Rever:	se
Repetitive running		
Repeat time	1	times (1 to 100 times)
Repeat stop time	0	sec (0 to 5 sec)
Step is run that forwar	d -> reverse, whe	n and repetition runs forward and reverse. n direction is forward and repeat time is one forward and reverse at run distance(guide)

g) Forward and Reverse buttons (In the Jog tab page) for JOG operation

Click the Forward or Reverse button to start JOG operation.

The specified axis keeps moving in the corresponding direction as long as the button is being pressed. The axis will stop when the button is released.

h) Run and Stop buttons (In the Step tab page) for STEP operation

Click the **Run** button to start one step operation of the specified axis. Unlike with the jog operation, the button does not need to be continuously pressed.

When the **Repetitive running** check box is selected in the **Direction Setting** dialog box, the step operation is repeated for the specified number of times, and then the axis will stop. During a repetitive run, the axis can be stopped by clicking the **Stop** button.

9.8 Axis Status and Alarm Monitor

This section describes the axis operation monitor and axis alarm monitor.

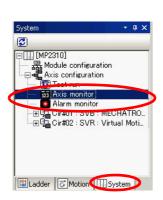
9.8.1 Overview

The **Axis Monitor** displays the operation status of the axes connected to the MP2000-series Machine Controller. The axis status (**Ready/Servo Enable** [Servo ON], **Alarm/Warning**, **Prof. Comp** [Distribution Completed]/**In Position** [Positioning Completed], and **Motion Command**) and the user selected monitoring parameter status are displayed onscreen.

The Alarm Monitor displays the alarm information of the axes connected to the MP2000-series Machine Controller. The following MPE720 versions support the Axis Monitor and Alarm Monitor.

MPE720	Supported Version
MPE720 Ver.5	Not supported
MPE720 Ver.6	Ver. 6.04 or later Ver. 6.04 Lite or later

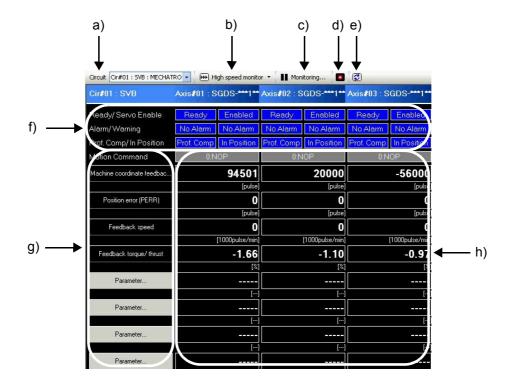
Note: The Axis Monitor and Alarm Monitor functions can be used with all MP2000-series Machine Controller models.


	Ax	is Mon	itor			
Circuit Cir#01 : SVB : MECHAT	IRO - HH H	igh speed monit	or • 🚺 Mon	toring	1	
Cir#01 : SVB	Axis#01 : S	GDS-***1**	Axis#02 S	GDS-***1**	Axis#03 : S	GDS-***1**
Ready/Servo Enable	Ready	Enabled	Ready	Enabled	Ready	Enabled
Alarm/ Warning	No Alerm	No Alarm	No Alarm	No Alarm	No Alarm	No Alarm
Prof. Comp/In Position	Prof. Comp	In Position	Prot. Comp	In Position	Prof. Comp	In Position
Motion Command	0:1	IOP	0:N	IOP	0:N	OP
Machine coordinate feedbac		94501		20000	-56000	
		[pulse]	[pube]		[[pulse	
Position error (PERR)		0	0		0	
		[pulse]	[pulse]		[[pulse]	
Feedback speed		0	0			0
	[1000pulse/min]		(1000pulse/min)		[1000pulse/min]	
Feedback torque/ thrust		-1.66	-1.10		-0.97	
		[%]	[3		(3	
Parameter						
		[]			1 1	
Parameter						
		[…]		[…]		[…
Parameter						
		[]				
Parameter						

Alarm	Monitor

🔁 Manually refresh	Monitoring					
Cir#01 : SVB	Axis#01	Axis#02	Axis#03			
Alarm	No Alarm	No Alarm	No Alarm			
Warning	No Alarm	Occurred	No Alarm			
Cir#02 : SVR	Axis#01	Axis#02	Axis#03	Axis#04	Axis#05	Axis
Alarm	No Alarm	No Alarm	No Alarm	No Alarm	No Alarm	No Al
Warning	No Alarm	No Alarm	No Alarm	No Alarm	No Alarm	No Al
	Axis#09	Axis#10	Axis#11	Axis#12	Axis#13	Axis
	No Alarm	No Alarm	No Alarm	No Alarm	No Alarm	No Al
	No Alarm	No Alarm	No Alarm	No Alarm	No Alarm	No Al

9.8.1 Overview


Double-click **Axis monitor** or **Alarm monitor** in the **System** subwindow to start the axis monitor or alarm monitor.

Circuit Cir#01 : SVB : MECHA	TRO - H	igh speed monitor	 Moni 	toring	2	_
Cir#01 : SVB	Axis#01 : S	GDS-***1***	Axis#02 : S	GDS-***1**	Axis#03 : SGDS	
Ready/ServoEnable	Ready	Enabled	Ready	Enabled	Ready En	abled
Narm/Warning	No Alerm	No Alarm	No Alerm	No Alarm	No Alarm No.	Alerm
Prof. Comp/ In Position	Prof. Comp	In Position	Prof. Comp	In Position	Prof. Comp In P	osition
Motion Command	0.N	IOP	0 N	0P	0:NOP	
Hachine coordinate feedbac.		94501		20000	-5	6000
		(pulse)		[pulse]		[pulse
Position error (PERR)		0		0		0
		(pulse)		[pulse]		(pulse
Feedback speed		0		0		0
		[1000pulse/min]		1000pulse/min]	[1000;	ulse/hiri
Feedback torque/ thrust		-1.66		-1.10	· ·	0.97
		[8]		[%]		[3
Parameter						
		[]		[]		[
Parameter						
		[]		[]		[++
Parameter						
Parameter				() 		
Cir#01 : SVB	Monitoring Axis#01	Axis≢02	Axis#03	-	-	
Alarm	No Alarm	No Alarm	No Alam	1		
Warning	No Alarm	Occurred	No Alam	1		
Cir#02 SVR	Axis#01	Axis#02	Axis#03	Axis#0	4 Axis#05	A
Alarm	No Alerm	No Alarm	No Alam	No Ala	m No Alarm	No
Warning	No Alarm	No Alarm	No Alam	No Ala	m No Alarm	No
	Axis#09	Axis#10	Axis#11	Axis#1	2 Axis#13	A

9.8.2 Monitor Window Details

(1) Axis Monitor

a) Circuit

Select the circuit whose motion monitoring parameters are to be displayed.

b) Monitoring cycle selection

Select the monitoring cycle.

c) Pausing/Starting monitoring

Click this button to start or pause monitoring.

d) Axis alarm monitor

Click this icon to open the Alarm Monitor window.

e) Refresh

Click this icon to refresh the display to the latest axis status.

f) Axis status

Ready/Servo Enable (Servo ON), **Alarm/Warning**, **Prof. Comp** (Distribution Completed)/**In Position** (Positioning Completed), **Motion Command** status are displayed. The display will change according to the status.

9.8.2 Monitor Window Details

g) Motion monitoring parameter selection

A maximum of eight motion monitoring parameters can be selected.

Machine coordinate reference position (APOS), Position error (PERR), Feedback speed, and Feedback torque/thrust are displayed as defaults.

Click the Parameter... button, and select a desired monitoring parameter from the **Monitor** drop-down menu in the **Monitor Parameter** dialog box that will appear as shown below.

Monitoring parameter in Monitor pull-down list

Monitoring Parameters	Register	Unit
Machine coordinate target position (TPOS)	ILxx0E	Reference unit
Target position (CPOS)	ILxx10	Reference unit
Machine coordinate system position (MPOS)	ILxx12	Reference unit
CPOS for 32bit	ILxx14	Reference unit
Machine coordinate feedback position (APOS)	ILxx16	Reference unit
Machine coordinate latch position (LPOS)	ILxx18	Reference unit
Position error (PERR)	ILxx1A	Reference unit
POSMAX number of turns	ILxx1E	rev
Speed reference output monitor	ILxx20	pulse/s
Feedback speed	ILxx40	Selected speed unit
Feedback torque/thrust	ILxx42	Selected torque unit

If you want to set a monitoring parameter not included in the **Monitor** pull-down list, directly enter the register number (IW8000 for example) in the dialog box.

h) Monitoring parameter status

The status of the selected monitoring parameters is displayed.

(2) Alarm Monitor

a)	b)					
😴 Manually refresh	Monitoring					
Cir#01 : SVB	Axis#01	Axis#02	Axis#03			-
Alarm Warning	No Alarm No Alarm	No Alarm Occurred	No Alarm No Alarm			
Cir#02 ; SVR	Axis#01	Axis#02	Axis#03	Axis#04	Axis#05	Axis#(
Alarm	No Alarm	No Alarm	No Alarm	No Alarm	No Alarm	No Al
Warning	No Alarm	No Alarm	No Alarm	No Alarm	No Alarm	No Al
	Axis#09	Axis#10	Axis#11	Axis#12	Axis#13	Axis
	No Alarm	No Alarm	No Alarm	No Alarm	No Alarm	No Al
	No Alarm	No Alarm	No Alarm	No Alarm	No Alarm	No

a) Manually refresh

Click this icon to refresh the alarm and warning information.

b) Pausing/Starting monitoring

Click this button to start or pause monitoring.

c) Alarm and warning display

Displays alarm and warning status.

Display	Axis Status
No Alarm (Blue)	No alarm or warning occurs.
Alarm (Red)	An alarm is occurring.
Warning (Yellow)	A warning is occurring.

10

Troubleshooting

This chapter describes the causes of errors in motion programs and sequence programs, and suggests corrective actions.

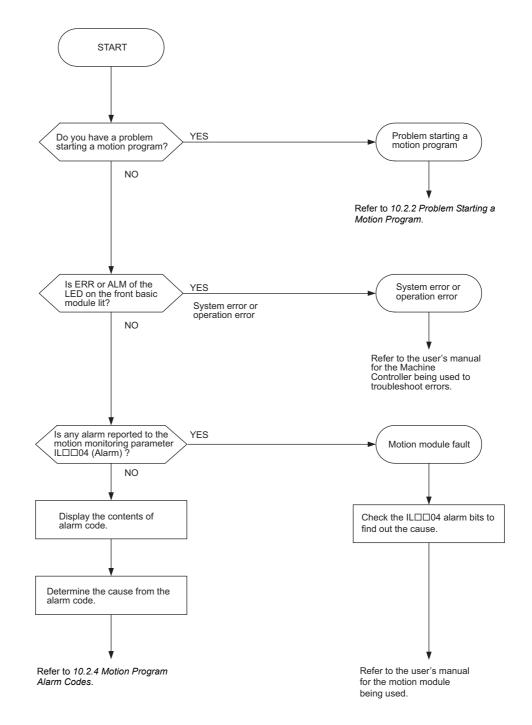
10.1 Troubleshooting	10-2
10.1.1 Basic Flow of Troubleshooting	10-2
10.2 Troubleshooting for Motion Programs	10-3
10.2.1 Error Investigation Flow	10-3
10.2.2 Problem Starting a Motion Program	10-4
10.2.3 Confirming the Alarm Code	10-9
10.2.4 Motion Program Alarm Codes	10-15
10.3 Troubleshooting for Sequence Programs	10-17
10.3.1 Error Investigation Flow	10-17
10.3.2 Problem Starting a Sequence Program	10-18

10.1.1 Basic Flow of Troubleshooting

10.1 Troubleshooting

This section describes troubleshooting methods, and provides a list of motion program and sequence program errors.

10.1.1 Basic Flow of Troubleshooting


When a problem occurs, it is important to quickly find the cause of the problem and get the system running again as soon as possible. The basic troubleshooting flow is illustrated below.

Step 1	Visually confirm the following items.					
Machine n	novement (or status if stopped)					
 Power sup 	pply					
 I/O device 	status					
 Wiring star 	tus					
 Indicator s 	status (LED indicators on each Module)					
 Switch set 	tings (e.g., DIP switches)					
Parameter	r settings and program contents					
	+					
Step 2	Monitor the system to see if the problem changes in response to the following operations.					
 Switching 	the Controller to STOP status					
 Resetting 	alarms					
 Turning th 	e power supply OFF and ON again.					
↓						
Step 3Determine the location of the cause from the results of steps 1 and 2.						
Controller or external?						
 Sequence control or motion control? 						
Software or hardware?						

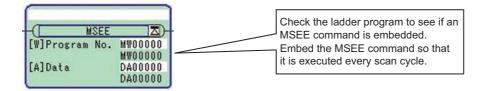
10.2 Troubleshooting for Motion Programs

10.2.1 Error Investigation Flow

If the cause of error may be related to the motion program, refer to the following flowchart to troubleshoot.

10.2.2 Problem Starting a Motion Program

10.2.2 Problem Starting a Motion Program


If a problem exists when starting a motion program, check the following items to find out how to correct the problem.

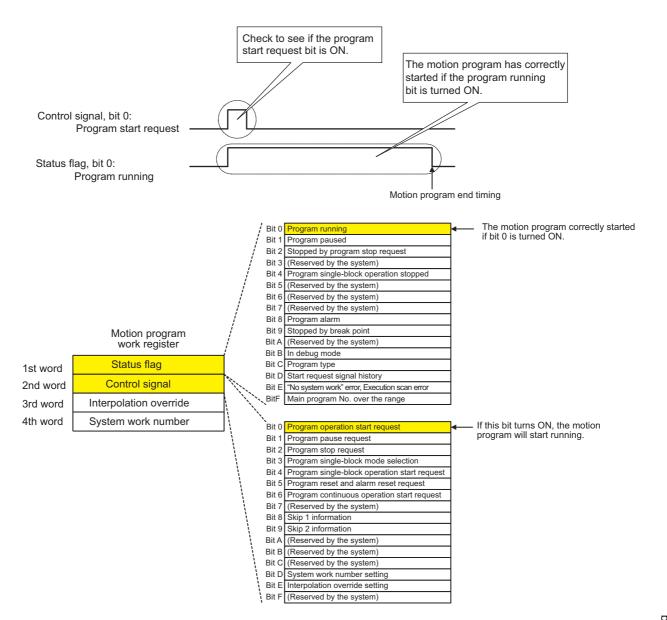
(1) Program Execution Registration to the System

Before starting the motion program, motion programs must be registered to the system used for execution. Two methods can be used to register motion programs: By embedding an MSEE command in H drawing or by registering motion programs to the M-EXECUTOR module.

Refer to 4.3.2 Registering the Program Execution for details on motion program registration methods.

• Embedding an MSEE command in H Drawing

· Registering Motion Programs to M-EXECUTOR

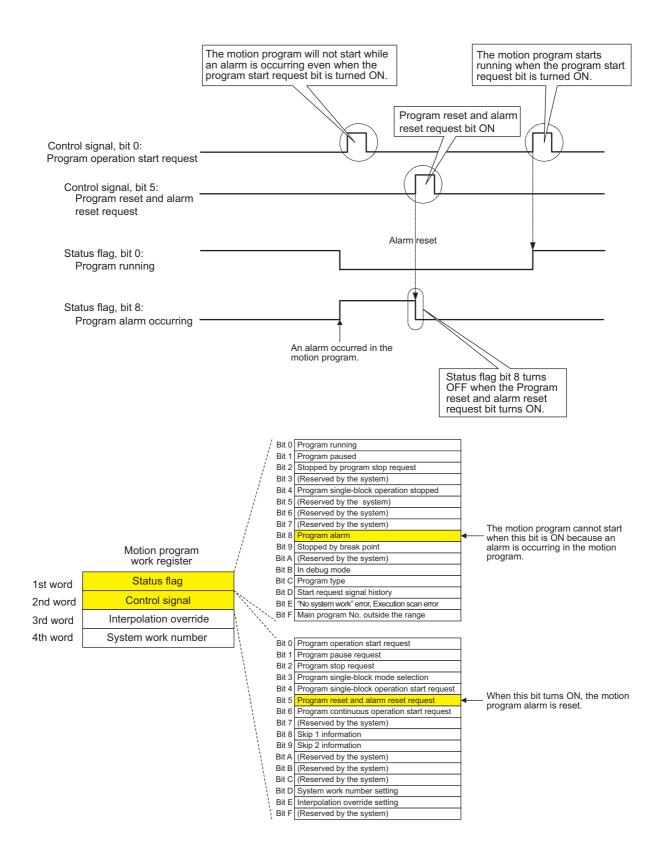

If the check box (lected, the motion p will not start. <u>M-EXECUTOR</u> <u>MP231</u> Online Local PT#: 2 CPU#: 1	program		firm that the designer number is co	
	ogram definition number	8		<u></u>
No. D Execution type - - - - 1 - - - - 2 - - - - 3 - - - - 4 - - - - - 5 - - - - - - 6 -	Setting Direct		n monitor register(S reg - W03264 - SW03321	ister)
 			· · · · · · · · · · · · · · · · · · ·	• ر

(2) Program Start Request Bit of Control Signal and Program Running Status Bit of Status Flag

When the MP2000 system detects a status change in motion program control signal bit 0 (Program start request) from OFF to ON, the motion program will start running. When the motion program successfully starts running, status flag signal bit 0 (Program running) will turn ON. Status flag signal bit 0 (Program running) will turn OFF when the END command in the motion program is executed.

To start the motion program again, turn motion program control signal bit 0 (Program start request) OFF, and then turn it ON again.

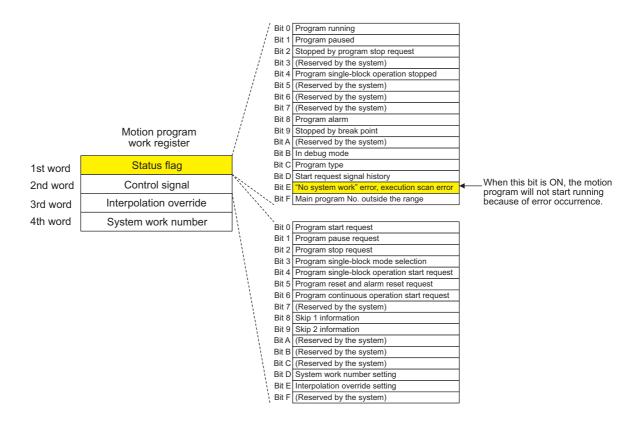
Check the ON/OFF status of these signal by using the data trace function.



10.2.2 Problem Starting a Motion Program

(3) Program Alarm Bit of Status Flag

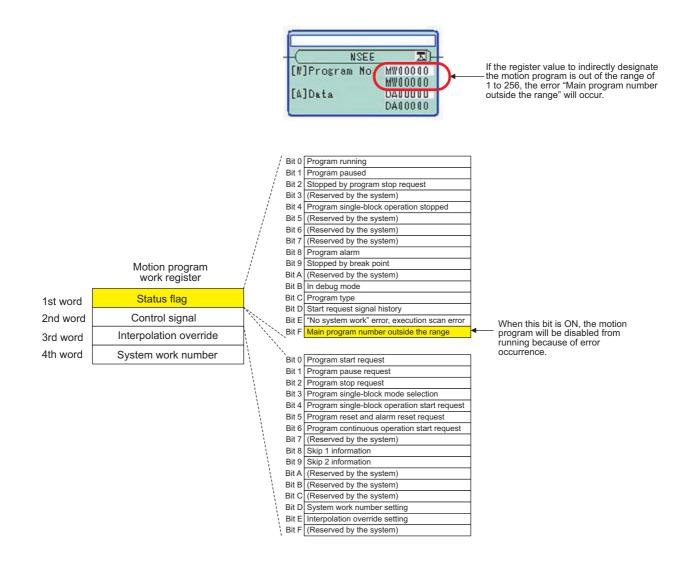
If status flag bit 8 (Program alarm) is ON, the motion program is disabled from running because of the alarm in the motion program.


Remove the cause of the alarm by referring to *10.2.4 Motion Program Alarm Codes*, and then turn ON motion program control signal bit 5 (Program reset and alarm reset request) to reset the alarm. After the alarm is reset, start the motion program again.

(4) "No System Work" Error/Execution Scan Error Bit of Status Flag

If running status flag bit E ("No system work" error/execution scan error) is ON, the motion program will be disabled from running because of error occurrence. In this case, confirm the following items:

- The number of tasks being executed is less than 16.
- The task that the system work number designates is not being executed.
- The MSEE command is embedded in a high-speed scan drawing (DWG.H).



10.2.2 Problem Starting a Motion Program

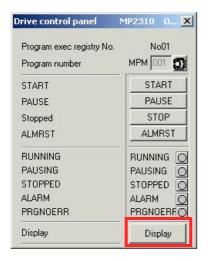
(5) Main Program Number Over the Range Status Flag Bit

When status flag bit F (Main program number outside the range) is ON, the motion program will be disabled from running because of an error. In this case, confirm the following:

• The motion program number designated in the MSEE command is within the range of 1 to 256.

10.2.3 Confirming the Alarm Code

When an alarm occurs in motion programs (status flag bit 8 [Program alarm] is ON), the alarm code indicates the cause of the alarm.

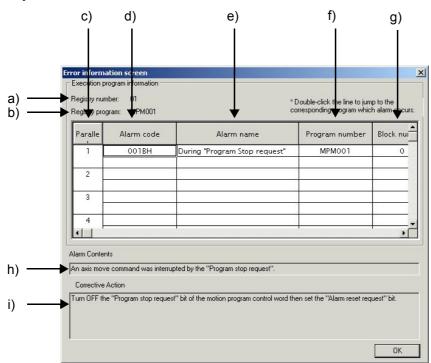

The alarm codes of motion programs can be found by using either of the following:

- Error information screen window
- S register
- (1) Using Error Information Screen Window

There are two ways to open the Error information screen window.

(a) Opening from the Drive Control Panel

Click the **Display** button on the **Drive control panel**.


(b) Opening from the Pop-up Menu when Right-clicking on the Motion Editor Window

Right-click with the cursor on the **Motion Editor** window. Select **Motion alarm analyzer** from the menu that pops up.

Undo		
Cut		
Сору		
Paste		
Motion command assist	F12	
Insert motion command		•
Move execution position		
Set/Delete Breakpoint		
Enable/Disable Breakpoint		
Select All		
Add Register		
Register for Trace Manager		
Refer		
Motion alarm analyzer		

10

10.2.3 Confirming the Alarm Code

The components of the Error information screen window are described below.

a) Registry number

When an alarm occurs in the motion program registered in the **Program Definition** window of the M-EXEC-UTOR, the registry number of the M-EXECUTOR defined in the **Program Definition** window is displayed. When an alarm occurs in the motion program called from the ladder program by an MSEE command, "---" is displayed.

b) Registry program

When an alarm occurs in the motion program registered in the **Program Definition** window of the M-EXEC-UTOR, the motion program name defined in the **Program Definition** window is displayed. When an alarm occurs in the motion program called from the ladder program by an MSEE command, "---" is displayed.

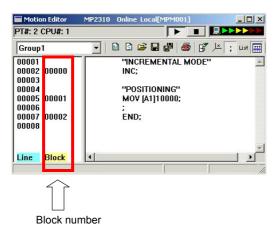
c) Parallel

When parallel execution commands (PFORK) are used in a motion program, more than one alarm may occur at once. Refer to *8.4.3 Parallel Execution (PFORK, JOINTO, PJOINT)* for details on parallel execution commands.

d) Alarm code

Alarm code is displayed.

e) Alarm name


The alarm name is displayed.

f) Program number

The program number where an error occurs is displayed.

g) Block number

The block number where an error occurs is displayed. Double-click the block number to jump to the corresponding program. The block numbers are displayed on the **Motion Editor** window.

h) Alarm Contents

The contents of the alarm are displayed.

i) Corrective Action

The corrective actions for the alarm are displayed.

(2) Using S Register

The motion program alarm codes are stored in the motion program execution information of S registers (SW03200 to SW04191).

The S register number of the motion program alarm code will differ, depending on the system work to be used and the parallel number.

The motion program execution information of S registers (SW03200 to SW04191) is listed on the next page.

Use the following procedure to open the register list of MPE720 Ver.6.

1. Open the **Register List 1** subwindow from the MPE720 Ver.6 window. The **Register List 1** tab is provided on the bottom of the MPE720 Ver.6 window by default.

legister List 1		+ 4 ×
Register	* Ma	nitor 🛛 🧱 😏 Ł 🖗

- 2. Enter the start number SWDDDDD of system registers to view in the **Register** input field. The contents of system registers starting from the entered number will be displayed.

Register 5	V00000	_			-							- Auto		- D	Monitor		¥ 0
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
SW00000	0010	0701	0000	0700	0064	0003	0004	01F4	0000	0000	07D0	0000	0002	0000	07D0	0098	-
SW00016	0109	0034	0029	0002	0263	0000	0000	0000	0000	0000	9720	0077	0000	0078	0000	0000	
SW00032	0000	0000	0000	0000	0000	0000	0000	0000	8083	0000	0000	0000	0000	0000	0000	0000	
5W00048	000C	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	
SW00064	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	
5W00080	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	
SW00096	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	

Note: The default data type setting is decimal. The data type can be changed to hexadecimal: Right-click with the cursor on the list. Select **Hexadecimal** from the menu that pops up.

10

10.2.3 Confirming the Alarm Code

• System Work Number 1 to 8

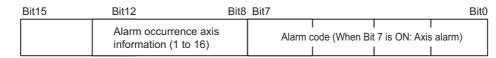
Syst	tem Work Number	System Work 1	System Work 2	System Work 3	System Work 4	System Work 5	System Work 6	System Work 7	System Work 8
Executing	g Main Program No.	SW03200	SW03201	SW03202	SW03203	SW03204	SW03205	SW03206	SW03207
Status		SW03264	SW03322	SW03380	SW03438	SW03496	SW03554	SW03612	SW3670
Control S	Signal	SW03265	SW03323	SW03381	SW03439	SW03497	SW03555	SW03613	SW3671
Describer	Program Number	SW03266	SW03324	SW03382	SW03440	SW03498	SW03556	SW03614	SW3672
Parallel 0	Block Number	SW03267	SW03325	SW03383	SW03441	SW03499	SW03557	SW03615	SW3673
U	Alarm Code	SW03268	SW03326	SW03384	SW03442	SW03500	SW03558	SW03616	SW3674
Devellel	Program Number	SW03269	SW03327	SW03385	SW03443	SW03501	SW03559	SW03617	SW3675
Parallel	Block Number	SW03270	SW03328	SW03386	SW03444	SW03502	SW03560	SW03618	SW3676
	Alarm Code	SW03271	SW03329	SW03387	SW03445	SW03503	SW03561	SW03619	SW3677
Derellel	Program Number	SW03272	SW03330	SW03388	SW03446	SW03504	SW03562	SW03620	SW3678
Parallel 2	Block Number	SW03273	SW03331	SW03389	SW03447	SW03505	SW03563	SW03621	SW3679
-	Alarm Code	SW03274	SW03332	SW03390	SW03448	SW03506	SW03564	SW03622	SW3680
Dorollol	Program Number	SW03275	SW03333	SW03391	SW03449	SW03507	SW03565	SW03623	SW3681
Parallel 3	Block Number	SW03276	SW03334	SW03392	SW03450	SW03508	SW03566	SW03624	SW3682
U	Alarm Code	SW03277	SW03335	SW03393	SW03451	SW03509	SW03567	SW03625	SW3683
Parallel	Program Number	SW03278	SW03336	SW03394	SW03452	SW03510	SW03568	SW03626	SW3684
4	Block Number	SW03279	SW03337	SW03395	SW03453	SW03511	SW03569	SW03627	SW3685
•	Alarm Code	SW03280	SW03338	SW03396	SW03454	SW03512	SW03570	SW03628	SW3686
Parallel	Program Number	SW03281	SW03339	SW03397	SW03455	SW03513	SW03571	SW03629	SW3687
5	Block Number	SW03282	SW03340	SW03398	SW03456	SW03514	SW03572	SW03630	SW3688
U	Alarm Code	SW03283	SW03341	SW03399	SW03457	SW03515	SW03573	SW03631	SW3689
Parallel	Program Number	SW03284	SW03342	SW03400	SW03458	SW03516	SW03574	SW03632	SW3690
6	Block Number	SW03285	SW03343	SW03401	SW03459	SW03517	SW03575	SW03633	SW3691
·	Alarm Code	SW03286	SW03344	SW03402	SW03460	SW03518	SW03576	SW03634	SW3692
Parallel	Program Number	SW03287	SW03345	SW03403	SW03461	SW03519	SW03577	SW03635	SW3693
7	Block Number	SW03288	SW03346	SW03404	SW03462	SW03520	SW03578	SW03636	SW3694
Alarm Code		SW03289	SW03347	SW03405	SW03463	SW03521	SW03579	SW03637	SW3695
Logical a Program	xis #1 Current Position	SL03290	SL03348	SL03406	SL03464	SL03522	SL03580	SL03638	SL3696
Logical a Program	xis #2 Current Position	SL03292	SL03350	SL03408	SL03466	SL03524	SL03582	SL03640	SL3698
Logical a Program	xis #3 Current Position	SL03294	SL03352	SL03410	SL03468	SL03526	SL03584	SL03642	SL3700
Logical a Program	xis #4 Current Position	SL03296	SL03354	SL03412	SL03470	SL03528	SL03586	SL03644	SL3702
Logical a Program	xis #5 Current Position	SL03298	SL03356	SL03414	SL03472	SL03530	SL03588	SL03646	SL3704
	Current Position	SL03300	SL03358	SL03416	SL03474	SL03532	SL03590	SL03648	SL3706
Logical a Program	xis #7 Current Position	SL03302	SL03360	SL03418	SL03476	SL03534	SL03592	SL03650	SL3708
-	Current Position	SL03304	SL03362	SL03420	SL03478	SL03536	SL03594	SL03652	SL3710
•	Current Position	SL03306	SL03364	SL03422	SL03480	SL03538	SL03596	SL03654	SL3712
-	Current Position	SL03308	SL03366	SL03424	SL03482	SL03540	SL03598	SL03656	SL3714
-	Current Position	SL03310	SL03368	SL03426	SL03484	SL03542	SL03600	SL03658	SL3716
Logical a Program	xis #12 Current Position	SL03312	SL03370	SL03428	SL03486	SL03544	SL03602	SL03660	SL3718

System Work Number	System Work 1	System Work 2	System Work 3	System Work 4	System Work 5	System Work 6	System Work 7	System Work 8
Logical axis #13 Program Current Position	SL03314	SL03372	SL03430	SL03488	SL03546	SL03604	SL03662	SL3720
Logical axis #14 Program Current Position	SL03316	SL03374	SL03432	SL03490	SL03548	SL03606	SL03664	SL3722
Logical axis #15 Program Current Position	SL03318	SL03376	SL03434	SL03492	SL03550	SL03608	SL03666	SL3724
Logical axis #16 Program Current Position	SL03320	SL03378	SL03436	SL03494	SL03552	SL03610	SL03668	SL3726

System Word Number 9 to 16

Svs	tem Work Number	System							
-		Work 9	Work 10	Work 11	Work 12	Work 13	Work 14	Work 15	Work 16
Executing	g Main Program No.	SW03208	SW03209	SW03210	SW03211	SW03212	SW03213	SW03214	SW03215
Status		SW03728	SW03786	SW03844	SW03902	SW03960	SW04018	SW04076	SW04134
Control S	Signal	SW03729	SW03787	SW03845	SW03903	SW03961	SW04019	SW04077	SW04135
Derellel	Program Number	SW03730	SW03788	SW03846	SW03904	SW03962	SW04020	SW04078	SW04136
Parallel 0	Block Number	SW03731	SW03789	SW03847	SW03905	SW03963	SW04021	SW04079	SW04137
U	Alarm Code	SW03732	SW03790	SW03848	SW03906	SW03964	SW04022	SW04080	SW04138
6	Program Number	SW03733	SW03791	SW03849	SW03907	SW03965	SW04023	SW04081	SW04139
Parallel	Block Number	SW03734	SW03792	SW03850	SW03908	SW03966	SW04024	SW04082	SW04140
1	Alarm Code	SW03735	SW03793	SW03851	SW03909	SW03967	SW04025	SW04083	SW04141
	Program Number	SW03736	SW03794	SW03852	SW03910	SW03968	SW04026	SW04084	SW04142
Parallel 2	Block Number	SW03737	SW03795	SW03853	SW03911	SW03969	SW04027	SW04085	SW04143
2	Alarm Code	SW03738	SW03796	SW03854	SW03912	SW03970	SW04028	SW04086	SW04144
_	Program Number	SW03739	SW03797	SW03855	SW03913	SW03971	SW04029	SW04087	SW04145
Parallel	Block Number	SW03740	SW03798	SW03856	SW03914	SW03972	SW04030	SW04088	SW04146
3	Alarm Code	SW03741	SW03799	SW03857	SW03915	SW03973	SW04031	SW04089	SW04147
	Program Number	SW03742	SW03800	SW03858	SW03916	SW03974	SW04032	SW04090	SW04148
Parallel	Block Number	SW03743	SW03801	SW03859	SW03917	SW03975	SW04033	SW04091	SW04149
4	Alarm Code	SW03744	SW03802	SW03860	SW03918	SW03976	SW04034	SW04092	SW04150
	Program Number	SW03745	SW03803	SW03861	SW03919	SW03977	SW04035	SW04093	SW04151
Parallel	Block Number	SW03746	SW03804	SW03862	SW03920	SW03978	SW04036	SW04094	SW04152
5	Alarm Code	SW03747	SW03805	SW03863	SW03921	SW03979	SW04037	SW04095	SW04153
	Program Number	SW03748	SW03806	SW03864	SW03922	SW03980	SW04038	SW04096	SW04154
Parallel	Block Number	SW03749	SW03807	SW03865	SW03923	SW03981	SW04039	SW04097	SW04155
6	Alarm Code	SW03750	SW03808	SW03866	SW03924	SW03982	SW04040	SW04098	SW04156
	Program Number	SW03751	SW03809	SW03867	SW03925	SW03983	SW04041	SW04099	SW04157
Parallel	Block Number	SW03752	SW03810	SW03868	SW03926	SW03984	SW04042	SW04100	SW04158
7	Alarm Code	SW03753	SW03811	SW03869	SW03927	SW03985	SW04043	SW04101	SW04159
Logical a Program	xis #1 Current Position	SL03754	SL03812	SL03870	SL03928	SL03986	SL04044	SL04102	SL04160
•	Current Position	SL03756	SL03814	SL03872	SL03930	SL03988	SL04046	SL04104	SL04162
-	Current Position	SL03758	SL03816	SL03874	SL03932	SL03990	SL04048	SL04106	SL04164
0	Current Position	SL03760	SL03818	SL03876	SL03934	SL03992	SL04050	SL04108	SL04166
0	Current Position	SL03762	SL03820	SL03878	SL03936	SL03994	SL04052	SL04110	SL04168
•	Current Position	SL03764	SL03822	SL03880	SL03938	SL03996	SL04054	SL04112	SL04170
Logical a Program	xis #7 Current Position	SL03766	SL03824	SL03882	SL03940	SL03998	SL04056	SL04114	SL04172

10


10.2.3 Confirming the Alarm Code

System Work Number	System Work 9	System Work 10	System Work 11	System Work 12	System Work 13	System Work 14	System Work 15	System Work 16
Logical axis #8 Program Current Position	SL03768	SL03826	SL03884	SL03942	SL04000	SL04058	SL04116	SL04174
Logical axis #9 Program Current Position	SL03770	SL03828	SL03886	SL03944	SL04002	SL04060	SL04118	SL04176
Logical axis #10 Program Current Position	SL03772	SL03830	SL03888	SL03946	SL04004	SL04062	SL04120	SL04178
Logical axis #11 Program Current Position	SL03774	SL03832	SL03890	SL03948	SL04006	SL04064	SL04122	SL04180
Logical axis #12 Program Current Position	SL03776	SL03834	SL03892	SL03950	SL04008	SL04066	SL04124	SL04182
Logical axis #13 Program Current Position	SL03778	SL03836	SL03894	SL03952	SL04010	SL04068	SL04126	SL04184
Logical axis #14 Program Current Position	SL03780	SL03838	SL03896	SL03954	SL04012	SL04070	SL04128	SL04186
Logical axis #15 Program Current Position	SL03782	SL03840	SL03898	SL03956	SL04014	SL04072	SL04130	SL04188
Logical axis #16 Program Current Position	SL03784	SL03842	SL03900	SL03958	SL04016	SL04074	SL04132	SL04190

10.2.4 Motion Program Alarm Codes

(1) Configuration of Motion Program Alarms

The following diagram shows the configuration of alarms.

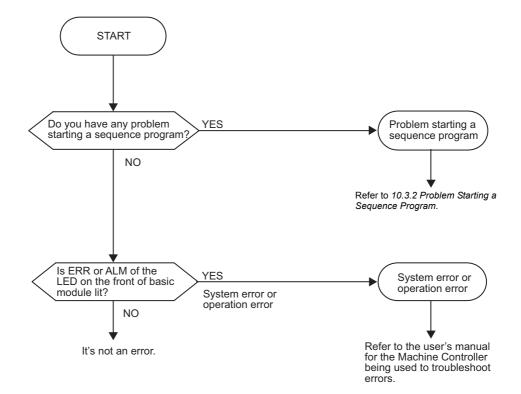
(2) Alarm Code List for Motion Program

The following table shows the alarm codes of motion programs.

Alarm Code	Name	Description	Corrective Actions
02h	Division error	Data divided by 0	Review the motion program.
10h	A circle instead of radius was specified	Turn number was specified instead of radius in the circular arc or helical interpo- lation command.	 Designate a center coordinate instead of a radius to perform the circular arc or helical interpolation command. Never specify the turn number.
11h	Interpolation feeding speed over limit	Interpolation feeding speed exceeded the valid range of the FMX command.	Modify the interpolation feeding speed of the interpolation command
12h	No interpolation feed- ing speed specified	No interpolation feeding speed was speci- fied. (once specified, this can be omitted as in the motion program)	Specify the interpolation feeding speed in the interpolation command.
13h	Range exceeded after converting accelera- tion parameter	Indirect acceleration parameter exceeded the valid range.	Change the indirect register value.
14h	Circular arc length exceeded LONG_MAX	Circular arc length exceeded the valid range in the circular arc or helical interpolation command.	Review the circular arc length in the cir- cular arc or helical interpolation com- mand.
15h	Vertical axis not speci- fied for circular arc plane	Vertical axis was not specified in the circu- lar arc or helical interpolation command.	Use PLN command to specify the axis.
16h	Horizontal axis not specified for circular arc plane	Horizontal axis was not specified in the cir- cular arc or helical interpolation command.	Use PLN command to specify the axis.
17h	Specified axis over limit	Too many axes were configured in the cir- cular arc (two axes) or helical (three axes) interpolation command.	Modify the axis in the circular arc or helical interpolation command.
18h	Turn number over limit	Turn number exceeded the valid range in the circular arc or helical interpolation com- mand.	Modify the turn number in the circular arc or helical interpolation command.
19h	Radius exceeded LONG_MAX	Radius exceeded the valid range in the cir- cular arc or helical interpolation command.	Review the radius in the circular arc or helical interpolation command.
1Ah	Center point error	Improper center point was specified in the circular arc or helical interpolation command.	Specify the center point properly in the circular arc or helical interpolation command.
1Bh	Running emergency stop command	Axis move command stopped due to a pro- gram stop request.	Turn OFF the program stop request for the motion program control signal, and turn ON the alarm reset request.
1Ch	Linear interpolation moving amount exceeded LONG_MAX	Moving amount exceeded the valid range in the linear interpolation command.	Review the moving amount in the linear interpolation command.
1Dh	FMX undefined	FMX command not executed in the motion program containing an interpolation command.	Perform an FMX command. The FMX command is required in each program containing an interpolation command.
1Eh	Address T out of range	Designation exceeded the valid range in the IAC/IDC/FMX commands.	Review the setting in the IAC/IDC/FMX command.

Troubleshooting

10


10.2.4 Motion Program Alarm Codes

1FhAddress P out of rangeDesignation exceeded the valid range in the IFP command.Review the setting in the IFP command.21hPFORK execution errorAmotion command was instructed simulta henusly at the second line in the PFORK of both a source motion program and a subpro agam.Review the source motion program of subprogram.22hIndirect register rangeSpecified register address exceeds the regis ter size range.Review the motion program.23hMoving amount out of rangeAxis moving amount with decimal point for an axis move command exceeded the possi.Review the axis moving amount.80hUse of logical axis prohibitedMultiple motion command instructed agains the same axis at the same time.Modify the fixed parameter "Maxi- mum infinite length axis.81hDesignation exceeded POSMAX in the infinite length axis.Axis moving distance designation exceeded the valid range.*Modify the fixed parameter "Maxi- mum infinite length axis.82hAxis moving distance exceeded TONG_MAXMultiple commands ware executed against a single axis.Review the motion program.84hDuplicated motion command response errorMultiple command response different from that instructed hy the motion command in service.Review the Line another program gara85hVFL setting data out frangeAn instruction in the VFL command mand exceeded the valid range.Review the VFL command. service the low anics at the sarro is not turned ON, turn ON the service.86hINP setting data out frangeAn instruction in the NFL command mand exceeded the valid rang	Alarm Code	Name	Description	Corrective Actions
21hPFORK execution errorneously at the second line in the PFORK of both a source motion program and a subprogram.Review the source motion program or subprogram.22hIndirect register range 	1Fh	Address P out of range		Review the setting in the IFP command.
22herrorter size range.Review the motion program.23hMoving amount out of rangeAxis moving amount with decimal point for axis move command exceeded the possi- ble range.Review the axis moving amount.80hUse of logical axis prohibitedMultiple motion commands instructed against the same axis at the same time.Review the motion program.80hDesignation exceeded prohibitedMoving distance designation exceeded the valid range.Nodify the fixed parameter "Maxi- mum infinite length axis counter" • Review the motion program.81hDesignation exceeded the length axisAxis moving distance designation exceeded the valid range.• Modify the fixed parameter "Maxi- mum infinite length axis counter" • Review the motion program.82hAxis moving distance exceeded LONG_MAXAxis moving distance designation exceeded the valid range.Review the motion program.84hDuplicated motion command response errorMultiple commands ware executed against a single axis.Remove the alam cause from the des- intain axis.85hMotion command response errorA motion command response different from that instruction in the VEL command exceeded the valid range.Review the VEL command.87hVEL setting data out of rangeAn instruction in the VEL command exceeded the valid range.Review the VEL command.88hINP setting data out of rangeAn instruction in the INP command exceeded the valid range.Review the MVT command.89hACC/SCC/DCC set- ting data out of rangeT designation in the MVT command was <br< td=""><td>21h</td><td></td><td>neously at the second line in the PFORK of both a source motion program and a subpro- gram.</td><td></td></br<>	21h		neously at the second line in the PFORK of both a source motion program and a subpro- gram.	
23hMoving amount out of rangean axis move command exceeded the possi- ble range.Review the axis moving amount:80hUse of logical axis prohibitedMultiple motion commands instructed 	22h	е e		Review the motion program.
OUNprohibitedagainst the same axis at the same time.Review the motion program.81hDesignation exceeded POSMAX in the infinite length axisMoving distance designation exceeded POSMAX in the infinite length axis.• Modify the fixed parameter "Maxi- mum infinite length axis counter" • Review the motion program.82hAxis moving distance exceeded LONG_MAXAxis moving distance designation exceeded the valid range.Review the motion program.84hDuplicated motion commandMultiple commands ware executed against a single axis.Check to see whether another program gave a command to the same axis at the same time. If so, review the program.85hMotion command response errorA motion command response different from that instructed by the motion command is reported from a motion module.• Review the VEL command. exceeded the valid range.87hVEL setting data out of rangeAn instruction in the VEL command exceeded the valid range.Review the VEL command.88hINP setting data out of rangeAn instruction in the KLC/SCC/DCC com- mand exceeded the valid range.Review the ACC/SCC/DCC command.89hCommand execution disabledA motion command was executed when a exceeded the valid range.Review the motion program.82hDistribution incompleteA motion command was executed when a motion program.Review the INP command.82hNo time specified in the MVT command isstructed.A motion command was executed when a motion module was instruction in the Distribution from and exceeded the valid range.Review the motion program. </td <td>23h</td> <td>-</td> <td>an axis move command exceeded the possi-</td> <td>Review the axis moving amount.</td>	23h	-	an axis move command exceeded the possi-	Review the axis moving amount.
81hPOSMAX in the infi- nite length axisMoving distance designation exceeded POSMAX in the infinite length axis.mum infinite length axis counter" • Review the motion program.82hAxis moving distance exceeded LONG_MAXAxis moving distance designation exceeded the valid range.Review the motion program.84hDuplicated motion commandMultiple commands ware executed against a single axis.Check to see whether another program gave a command to the same axis at the same time. If so, review the program.85hMotion command response errorA motion command response different from that instructed by the motion command is reported from a motion module.• Remove the alarm cause from the des- tination axis.87hVEL setting data out of rangeAn instruction in the VEL command exceeded the valid range.Review the VEL command.88hINP setting data out of rangeAn instruction in the ACC/SCC/DCC com- mand exceeded the valid range.Review the INP command.84hNo time specified in the MVT command disabledT designation in the ACC/SCC/DCC com- mand exceeded the valid range.Review the MVT command.85hCommand execution disabledA motion command which cannot be exc- cuted by the destination motion module was instructed.Review the motion program.86hDistribution incompleteA motion command was executed when a motion module was not in the Distribution incompleted state.A motion command was executed when a motion command was executed when a motion module was not in the Distribution completed state.87hDistribution incomplet	80h			Review the motion program.
82hexceeded LONG_MAXAxis moving distance designation exceeded the valid range.Review the motion program.84hDuplicated motion commandMultiple commands ware executed against a single axis.Check to see whether another program gave a command to the same axis at the same time. If so, review the program.85hMotion command response errorA motion command response different from that instructed by the motion command is reported from a motion module.• Remove the alarm cause from the des- tination axis.87hVEL setting data out of rangeAn instruction in the VEL command exceeded the valid range.Review the VEL command.88hINP setting data out of rangeAn instruction in the ACC/SCC/DCC com- mand exceeded the valid range.Review the INP command.89hNo time specified in the MVT command disabledT designation in the MVT command was zero.Review the MVT command.8BhCommand execution disabledA motion command which cannot be exe- cuted by the destination module was instructed.Review the motion program so that the motion command wise executed when a motion command was executed when a motion command was executed when a motion command was executed when a motion module was instructed.Review the motion program so that the motion command wise error.80hDistribution incompleteA motion command was executed when a motion module was not in the Distribution Completed state.Review the motion program so that the motion command is executed in the Dis- tribution completed state.80hDistribution incompleted state.A motion command was	81h	POSMAX in the infi-		mum infinite length axis counter"
84hDuplicated motion commandMultiple commands ware executed against a single axis.gave a command to the same axis at the same time. If so, review the program.85hMotion command response errorA motion command response different from that instructed by the motion command is reported from a motion module.• Renove the alarm cause from the des- tination axis.87hVEL setting data out of rangeAn instruction in the VEL command exceeded the valid range.Review the VEL command.88hINP setting data out of rangeAn instruction in the INP command exceeded the valid range.Review the INP command.89hACC/SCC/DCC set- ting data out of rangeAn instruction in the ACC/SCC/DCC com- mand exceeded the valid range.Review the MVT command.8AhNo time specified in the MVT command disabledT designation in the MVT command was zero.Review the motion program.8ChDistribution incompleteA motion command was executed when a motion module was not in the Distribution completed state.Review the motion program so that the motion command was error.	82h	exceeded		
85hMotion command response errorA motion command response different from that instructed by the motion command is reported from a motion module.It ination axis.87hVEL setting data out of rangeAn instruction in the VEL command exceeded the valid range.Review the VEL command.88hINP setting data out of rangeAn instruction in the INP command exceeded the valid range.Review the INP command.89hACC/SCC/DCC set- ting data out of rangeAn instruction in the ACC/SCC/DCC com- mand exceeded the valid range.Review the INP command.89hACC/SCC/DCC set- ting data out of rangeAn instruction in the AVT command exceeded the valid range.Review the ACC/SCC/DCC com- mand exceeded the valid range.80hNo time specified in the MVT commandT designation in the MVT command was zero.Review the MVT command.8BhCommand execution disabledA motion command was executed when a motion module was not in the Distribution completed state.Review the motion program so that the motion command was error.8DhMotion commandMotion module fell into the "Motion com- ropet state.Review the destination axis error.	84h			gave a command to the same axis at the
87hof rangeexceeded the valid range.Review the VEL command.88hINP setting data out of rangeAn instruction in the INP command exceeded the valid range.Review the INP command.89hACC/SCC/DCC set- ting data out of rangeAn instruction in the ACC/SCC/DCC com- mand exceeded the valid range.Review the ACC/SCC/DCC com- mand exceeded the valid range.8AhNo time specified in the MVT commandT designation in the MVT command was zero.Review the MVT command.8BhCommand execution disabledA motion command which cannot be exe- cuted by the destination motion module was instructed.Review the motion program.8ChDistribution incompleteA motion command was executed when a motion module was not in the Distribution Completed state.Review the motion program so that the motion command is executed in the Dis- tribution Completed state.8DhMotion commandMotion module fell into the "Motion com- verticed state.• Release the destination axis error.	85h		that instructed by the motion command is	tination axis.If the servo is not turned ON, turn ON the servo.Check to see whether another program gave a command to the same axis at the same time. If so, review the pro-
oonrangeexceeded the valid range.Review the INP command.89hACC/SCC/DCC set- ting data out of rangeAn instruction in the ACC/SCC/DCC command exceeded the valid range.Review the ACC/SCC/DCC command.8AhNo time specified in the MVT commandT designation in the MVT command was zero.Review the MVT command.8BhCommand execution disabledA motion command which cannot be exe- cuted by the destination motion module was instructed.Review the motion program.8ChDistribution incompleteA motion command was executed when a motion module was not in the Distribution Completed state.Review the motion program so that the motion command is executed in the Dis- tribution completed state.8DhMotion commandMotion module fell into the "Motion com- verticed state.• Release the destination axis error.	87h	U U		Review the VEL command.
891ting data out of rangemand exceeded the valid range.Review the ACC/SCC/DCC command.8AhNo time specified in the MVT commandT designation in the MVT command was zero.Review the MVT command.8BhCommand execution disabledA motion command which cannot be exe- cuted by the destination motion module was instructed.Review the motion program.8ChDistribution incompleteA motion command was executed when a motion module was not in the Distribution Completed state.Review the motion program so that the motion command is executed in the Dis- tribution completed state.8DhMotion commandMotion module fell into the "Motion com- vertice of the time the destination axis error.	88h	-		Review the INP command.
8An the MVT command zero. Review the MVT command. 8Bh Command execution disabled A motion command which cannot be executed by the destination motion module was instructed. Review the motion program. 8Ch Distribution incomplete A motion command was executed when a motion module was not in the Distribution Completed state. Review the motion program so that the motion command is executed in the Distribution completed state. 8Dh Motion command Motion module fell into the "Motion com- • Release the destination axis error.	89h			Review the ACC/SCC/DCC command.
8Bh Command execution disabled cuted by the destination motion module was instructed. Review the motion program. 8Ch Distribution incomplete A motion command was executed when a motion module was not in the Distribution Completed state. Review the motion program so that the motion command is executed in the Distribution completed state. 8Dh Motion command Motion module fell into the "Motion com- • Release the destination axis error.	8Ah		-	Review the MVT command.
8Ch Distribution incomplete motion module was not in the Distribution Completed state. motion command is executed in the Dis- tribution Completed state. 8Dh Motion command Motion module fell into the "Motion com-	8Bh		cuted by the destination motion module was instructed.	
81.16	8Ch		motion module was not in the Distribution	motion command is executed in the Dis- tribution Completed state.
	8Dh			

10.3 Troubleshooting for Sequence Programs

10.3.1 Error Investigation Flow

If the cause of error may be related to the sequence program, refer to the following flowchart to troubleshoot the error.

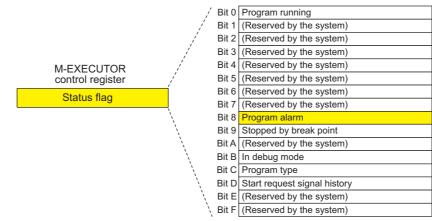
10

10.3.2 Problem Starting a Sequence Program

10.3.2 Problem Starting a Sequence Program

When a problem exists when starting a sequence program, check the following items to find out how to correct it.

(1) Program Execution Registration to the System


Before starting the sequence program, sequence programs must be registered to the system used to execute. Register the sequence programs to the M-EXECUTOR module to register them to the system for execution. Refer to *5.2.2 Registering Program Execution* for information for sequence program registration.

	If the check box (Confirm that the desigr quence program numb	
	/			1		
M-EXECUTOR	MP2310 Online Le			CK#	01 Slot #00 0C00-0C3F	
-1#. Z CPU#. I	//		JEA	UNHI		
M-EXECUTOR(List)	Individu splay Prog	ram definition numbe	r 8	•		-
Program definition	llocati n Control register					
No. D	Execution type	Setting	Program	1 Xee	cution monitor register(S registe	er)
- Seque	nce program(Start)	Direct				_
1 eque	nce program(H-scan)	 Direct 	SPM001		=	
2		-				
3 🗐		•				
4 🗐		-				
5 🔟		•				
6 🗐		-				
7 🔟		*				
8 🗐		•				
						-
1						

(2) Program Alarm Occurring Status Flag Bit

When status flag bit 8 (Program alarm occurring) is ON, the sequence program is disabled from running because of an error occurrence. In this case, check the following items:

- The called program exists.
- The called program is a sequence program.
- The sequence subprogram call command (SSEE) calls a subprogram, but not a main program.
- The sequence program number designated in the SSEE command is within the range of 1 to 256.
- Nesting of sequence subprogram call command (SSEE) is within 8 levels.

Appendices

A Motion Language Commands	A-2
A.1 Axis Setting Commands	A-2
A.2 Axis Move Commands	A-3
A.3 Control Commands	A-5
A.4 Program Control Commands	A-6
A.5 Arithmetic Operations	
A.6 Logical Operations	A-8
A.7 Data Comparison	A-9
A.8 Data Operations	A-9
A.9 Basic Functions	A-10
A.10 C-Language Control Commands	A-11
B Sample Programs	A-12
B.1 Programs for Controlling Motion Program Execution	A-13
B.2 Parallel Processing	
B.3 Motion Program for Speed Control	A-16
B.4 Simple Synchronized Operation Using a Virtual Axis	A-17
B.5 Sequence Programs	A-19
C Differences between MP900 Series and MP2000 Series	es Machine
Controllers	A-21
C.1 Motion Programs	A-21
C.2 Sequence Programs	A-21
C.3 Motion Programming Commands	A-22
C.4 Group Definitions	A-22
C.5 Debug Function	A-23
C.6 Motion Program Alarms	A-23
D Precautions	
D.1 General Precautions	A-24
D.2 Precautions on Motion Parameter Settings	A-25

App

A.1 Axis Setting Commands

A Motion Language Commands

Motion language commands are listed below. Refer to *Chapter 8 Command Reference* for details on each command.

\checkmark	-
Applicable	Not applicable

A.1 Axis Setting Commands

Command	Name	Programming Format	Description	Motion Programs	Sequence Programs
ABS	Absolute Mode	ABS; or ABS MOV [Logical axis name 1] - [Logical axis name 2] - ;	Treats all subsequent coordinate words as absolute values.	~	-
INC	Incremental Mode	INC; or INC MOV [Logical axis name 1] - [Logical axis name 2] - ;	Treats all subsequent coordinate words as incremental values.	~	_
ACC	Acceleration Time Change	ACC [Logical axis name 1]Accelera- tion time [Logical axis name 2] Ac- celeration time [Logical axis name 3] Acceleration time;	Sets the acceleration time for linear acceleration/deceleration for up to 16 axes simultaneously.	~	_
DCC	Deceleration Time Change	DCC [Logical axis name 1] Deceler- ation time [Logical axis name 2] De- celeration time [Logical axis name 3] Deceleration time ··· ;	Sets the deceleration time for a position- ing related command. A maximum of 16 axes can be desig- nated in one command block.	~	-
SCC	S-curve Time Constant Change	SCC [Logical axis name 1] S-curve time constant [Logical axis name 2] S-curve time constant ··· ;	Sets the time constant for moving aver- age acceleration/deceleration for up to 16 axes simultaneously.	~	_
VEL	Set Velocity	VEL [Logical axis name 1] Feed speed [Logical axis name 2] Feed speed [Logical axis name 3] Feed speed ;	Sets the speed for a positioning related command. A maximum of 16 axes can be desig- nated in one command block.	~	-
FMX	Maximum Inter- polation Feed Speed Setting	FMX T Maximum interpolation feed speed ;	Sets the maximum speed during an inter- polation feed. The interpolation acceleration time is the time taken from "0" until this speed is reached.	~	-
IFP	Interpolation Feed Speed Ra- tio Setting	IFP P Interpolation feed speed ratio ;	Sets the speed for an interpolation related command. Designate a percentage of the maximum speed as the interpolation feed speed ratio.	~	-
IAC	Interpolation Ac- celeration Time Change	IAC T Interpolation acceleration time ;	Sets the acceleration time for an interpo- lation related command. Designate the time required to reach the maximum speed from the speed 0 (zero).	~	-
IDC	Interpolation De- celeration Time Change	IDC T Interpolation deceleration time ;	Sets the deceleration time for an interpo- lation related command. Designate the time required to decelerate to the speed 0 (zero) from the maximum speed.	~	_
ACCMODE	Set Interpolation Acceleration/De- celeration Mode	ACCMODE M mode_number;	Sets the acceleration/deceleration mode for interpolation commands. This allows you to specify processing multiple interpolation commands in suc- cession.	~	-

A.2 Axis Move Commands

Com- mand	Name		Programming Format	Description	Motion Programs	Sequence Programs
MOV	Positioning	[Logical axis	I axis name 1] Reference position name 2] Reference position [Logical Reference position … ;	Executes positioning at the specified positioning speed for up to 16 axes.	~	-
MVS	Linear Interpola- tion	[Logical axis	I axis name 1] Reference position name 2] Reference position [Logical Reference position ··· F Interpolation	Executes linear movement at the interpolation feed speed F for up to 16 axes.	~	_
MCW	Clockwise Circular Interpola- tion	Center position designation Radius designation	MCW [Logical axis name 1] End po- sition [Logical axis name 2] End po- sition U Center point position V Center point position T Number of turns F Interpolation speed ; MCW [Logical axis name 1] End po- sition [Logical axis name 2] End po- sition R Radius F Interpolation feed	Executes circular interpolation at tan- gential speed F for two axes simulta- neously following radius R (or		
мсс	Counter- clockwise Circular	Center position designation	speed ; MCC [Logical axis name 1] End po- sition [Logical axis name 2] End po- sition U Center point position V Center point position T Number of turns F Interpolation feed speed ;	designated center point coordinates). With the center point coordinate des- ignation, multiple circles can be des- ignated with T–. (T– can also be omitted.)	~	_
	Interpola- tion	Radius designation	MCC [Logical axis name 1] End po- sition [Logical axis name 2] End po- sition R Radius F Interpolation feed speed ;			
MCW	Clockwise Helical Interpola-	Center position designation	MCW [Logical axis name 1] End po- sition [Logical axis name 2] End po- sition U Center point position V Center point position [Logical axis name 3] Linear interpolation end po- sition T Number of turns F Interpola- tion feed speed ;			
	tion	Radius designation	MCW [Logical axis name 1] End po- sition [Logical axis name 2] End po- sition R Radius [Logical axis name 3] Linear interpolation end position F Interpolation feed speed ;	Moves three axes simultaneously in a combination of circular interpolation and linear interpolation outside the circular interpolation plane. Speed F will be the circular interpolation tan-	✓	_
мсс	Counter- clockwise Helical	Center position designation	MCC [Logical axis name 1] End po- sition [Logical axis name 2] End po- sition U Center point position V Center point position [Logical axis name 3] Linear interpolation end po- sition T Number of turns F Interpola- tion feed speed ;	gential speed. With the center point coordinate des- ignation, the number of turns can be designated with T–. (T– can also be omitted.)	-	
	Interpola- tion	Radius designation	MCC [Logical axis name 1] End po- sition [Logical axis name 2] End po- sition R Radius [Logical axis name 3] Linear interpolation end position F Interpolation feed speed;			

- Continues to the next page -

Арр

A.2 Axis Move Commands

(cont'd)

Com- mand	Name	Programming Format	Description	Motion Programs	Sequence Programs
ZRN	Zero Point Return	ZRN [Logical axis name1]0 [Logical axis name 2]0 [Logical axis name 3] ;	Returns each axis to its zero point.	~	-
SKP	Linear Interpola- tion with Skip Function	SKP [Logical axis name 1] Reference position [Logical axis name 2] Reference position [Logical axis name 3] Reference position … F Interpolation feed speed SS Skip input signal ;	If the SKIP signal turns ON during a linear interpolation operation, skips the remaining movement and proceeds to the next block.	V	_
MVT	Set Time Positioning	MVT [Logical axis name 1] Reference position [Logical axis name 2] Reference position [Logical axis name 3] Reference position ···· T Positioning time (ms);	Executes positioning by clamping the feed speed so that travel can be completed at the designated time.	~	_
EXM	External Positioning	EXM [Logical axis name 1] Reference position D Movement amount from the time the external posi- tioning signal is input ;	When an external positioning signal is input while external positioning is being executed, only the travel dis- tance designated by "D–" is posi- tioned with an incremental value, and then the next command is executed.	~	_

A.3 Control Commands

Com- mand	Name	Programming Format	Description	Motion Programs	Sequence Programs
POS	Current Position Set	POS [Logical axis name 1] Desired coordinate value [Logical axis name 2] Desired coordinate value ;	Changes the current values to the desired coordinate values for up to 16 axes. Subsequent move commands use this new coordinate system.	~	_
MVM	Move on Machine Coordinate	MVM MOV [Logical axis name 1] Reference posi- tion [Logical axis name 2] Reference position [Log- ical axis name 3] Reference position … ;	Goes to the target position on the machine coordinate system. The coordinate system set automatically on completion of the zero point return is called a machine coordi- nate system. This coordinate system is not affected by the POS com- mand.	*	_
PLN	Coordinate Plane Setting	PLN [Logical axis name 1 (vertical axis)] [Logical axis name 2 (horizontal axis)] ;	Designates the coordinate plane to be used for a command requiring a plane designation command.	~	-
PLD	Program Current Position Update	PLD [Logical axis name 1] [Logical axis name 2] … ;	Updates the program current posi- tion for axes shifted by manual intervention. Up to 16 axes can be designated.	~	-
PFN	In-position Check	MVS [Logical axis name 1] - [Logical axis name 2] - ···· PFN ; or MVS [Logical axis name 1] - [Logical axis name 2] - ···· ; PFN [Logical axis name 1] [Logical axis name 2] ; MVS [Logical axis name 1] - [Logical axis name 2] - ···· ;	Proceeds to the next block when the axis that is being moved by an inter- polation related command in the same block or the previous block, enters the in-position check width.	*	_
INP	Set In-position Check Width	INP [Logical axis name 1] NEAR signal output width [Logical axis name 2] NEAR signal output width ··· ;	Sets the NEAR signal output width. The execution of a subsequent inter- polation related command block with a PFN command proceeds to the next block after entering in-posi- tion check width.	~	-

Appendices A.4 Program Control Commands

A.4 Program Control Commands

Com- mand	Name	Programming Format	Description	Motion Programs	Sequence Programs
IF ELSE IEND	Branching Commands	IF (Conditional expression) ; (Process 1) ; ELSE; (Process 2) ; IEND;	Executes process 1 if the conditional expression is satisfied, and executes process 2 if the conditional expression is not satisfied.	V	~
WHILE WEND	Repeat Commands	WHILE (Conditional expression) ; … ; WEND;	Repeatedly executes WHILE to WEND processing for as long as the conditional expression is satisfied.	~	~
PFORK JOINTO PJOINT	Parallel Execution Commands	PFORK Label 1, Label 2, Label 3, …; Label 1: Process 1 ; JOINTO Label X ; Label 2: Process 2 ; JOINTO Label X ; Label 3: Process 3 ; JOINTO Label X ; Label X: PJOINT ;	Executes the blocks designated by the labels in parallel. With a subroutine, a maximum of two labels can be desig- nated. END and RET cannot be used during parallel execution processing.	*	_
SFORK JOINTO SJOINT	Selective Execution Commands	SFORK Conditional expression 1? Label 1, Conditional expression 2? Label 2, Condi- tional expression 3? Label 3, Conditional ex- pression 4? Label 4 ; Label 1: Process 1 ; JOINTO Label X ; Label 2: Process 2 ; JOINTO Label X ; Label 3: Process 3 ; JOINTO Label X ; Label 4: Process 4 ; JOINTO Label X ; ; Label X: SJOINT;	Executes process 1 if conditional expression 1 is satisfied, and executes process 2 if the conditional expres- sion 2 is satisfied.	~	~
MSEE	Motion Subprogram Call	MSEE MPSDDD ;	Executes subprogram MPS	~	_
SSEE	Sequence Subprogram Call	SSEE SPSDDD ;	Executes subprogram SPS	-	~
UFC	User Function Call From Motion Program	UFC User function name Input data, Input address, Output data ;	Calls the user defined function from a motion program.	~	_
FUNC	User Function Call From Sequence Program	FUNC User function name, Input data, Input address, Output data ;	Calls the user defined function from a sequence program.	-	~
END	Program End	END;	Ends the motion program.	~	✓
RET	Subroutine Return	RET;	Ends the subroutine.	~	~

(cont'd)

Com- mand	Name	Programming Format	Description	Motion Programs	Sequence Programs
TIM	Dwell Time	TIM T-	Waits for the period of time specified by T, and then proceeds to the next block.	~	_
IOW	I/O Wait	IOW MB-== ···· ;	Stops execution of the motion pro- gram until the conditional expression given in the command is satisfied.	~	_
EOX	One Scan Wait	EOX;	Divides the execution of consecu- tively coded sequence commands. The command block after EOX will be executed at the next scan.	~	-
SNGD/ SNGE	Single-block Disabled (SNGD)/Single- block Enabled (SNGE)	SNGD; ; SNGE;	Specifies whether to enable or disable single step operation during debug-ging.	√	-

Appendices A.5 Arithmetic Operations

A.5 Arithmetic Operations

Com- mand	Name	Programming Format	Description	Motion Programs	Sequence Programs
=	Substitute	(Result) = (Math expression)	Substitutes operation results. Performs calcula- tions from left to right (with no order of prior- ity).	~	~
+	Add	MW – = MW – + MW – ;	Performs integer and real number addition. Cal- culates combinations of integers and real num- bers as real numbers.	~	~
-	Subtract	MW – = MW – - MW – ;	Performs integer and real number subtraction. Calculates combinations of integers and real numbers as real numbers.	~	~
*	Multiply	MW – = MW – * MW – ;	Performs integer and real number multiplication. Calculates combinations of integers and real numbers as real numbers.	~	~
/	Divide	MW – = MW –/ MW – ;	Performs integer and real number division. Cal- culates combinations of integers and real num- bers as real numbers.	~	~
MOD	Remainder	MW – = MW –/ MW – ; MW – = MOD;	When programmed in the next block after a divi- sion, MOD stores the remainder in the desig- nated register.	~	~

A.6 Logical Operations

Com- mand	Name	Programming Format	Description	Motion Programs	Sequence Programs
I	OR (logical OR)	MB - = MB - MB - ; MB - = MB - 1; MW - = MW - MW - ; MW - = MW - 00FFH;	Performs bit/integer logical OR.	~	~
&	AND (logical AND)	MB = MB - & MB ; MB = MB - & 1; MW = MW - & MW ; MW = MW - & 00FFH;	Performs bit/integer logical AND.	~	~
٨	XOR (logical exclusive OR)	MW – = MW – ^ MW – ; MW – = MW – ^ 00FFH;	Performs integer logical exclusive OR.	~	~
!	NOT (logical complement)	MB -= !MB -; MB -= !1; MW -= !MW -; MW -= !00FFH;	Performs bit/integer logical complement (inverts bits).	~	~

A.7 Data Comparison

Com- mand	Name	Programming Format	Description	Motion Programs	Sequence Programs
==	Match	IF MW – == MW – ; WHILE MW – == MW – ;	Used in an IF or WHILE conditional expression. If the left side and right side match, the condition is "true."	\checkmark	~
\$	Mismatch	IF MW – <> MW – ; WHILE MW – <> MW – ;	Used in an IF or WHILE conditional expression. If the left side and right side do not match, the condition is "true."	~	~
>	Greater Than	IF MW - > MW - ; WHILE MW - > MW - ;	Used in an IF or WHILE conditional expression. If the left side is greater than the right side, the condition is "true."	~	~
۷	Less Than	IF MW – < MW – ; WHILE MW – < MW –	Used in an IF or WHILE conditional expression. If the left side is less than the right side, the condition is "true."	✓	~
>=	Greater Than or Equal To	IF MW - >= MW - ; WHILE MW - >= MW - ;	Used in an IF or WHILE conditional expression. If the left side is greater than or equal to the right side, the condition is "true."	~	~
<=	Less Than or Equal To	IF MW – <= MW – ; WHILE MW – <= MW – ;	Used in an IF or WHILE conditional expression. If the left side is less than or equal to the right side, the condition is "true."	~	~

A.8 Data Operations

Com- mand	Name	Programming Format	Description	Motion Programs	Sequence Programs
SFR	Right Shift	SFR MB – N – W – ;	Shifts the bit variable in the specified num- bers to the right.	~	~
SFL	Left Shift	SFL MB- N- W-;	Shifts the bit variable in the specified num- bers to the left.	~	~
BLK	Block Move	BLK MW- MW- W-;	Copies the areas of specified blocks begin- ning with the specified transfer source to the specified destination.	~	~
CLR	Clear	CLR MW- W-;	Clears the desired area to 0 (zero) beginning with the specified register.	~	~
ASCII	ASCII Convert 1	ASCII 'Character string' MW – ;	Converts the specified characters to ASCII code, and stores to the specified register.	~	~

A.9 Basic Functions

A.9 Basic Functions

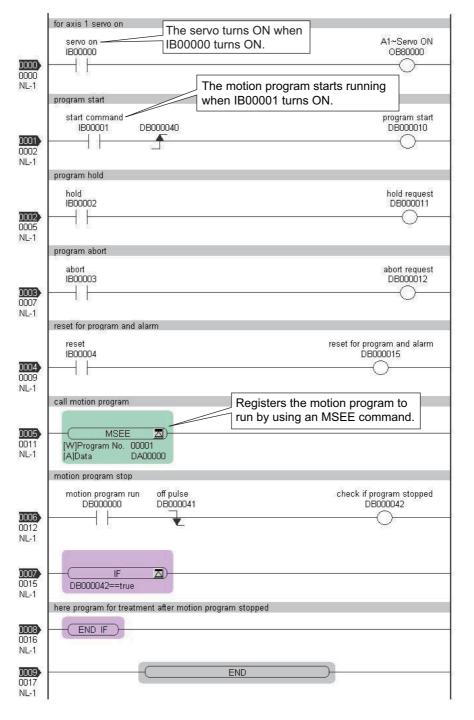
Com- mand	Name	Programming Format	Description	Motion Programs	Sequence Programs
SIN	Sine	SIN (MW –); SIN (90) ;	Obtains the sine of integer or real number data. The specifications differ depending on the data type: Integer or real number.	~	~
COS	Cosine	COS (MW –); COS (90) ;	Obtains the cosine of integer or real number data. The specifications differ depending on the data type: Integer or real number.	~	~
TAN	Tangent	TAN (MF –); TAN (45.0) ;	Obtains the tangent of real number data. Only a real number type register can be designated.	~	~
ASN	Arc Sine	ASN (MF –); ASN (90.0) ;	Obtains the arc sine of the real number data. Only a real number type register can be designated.	~	~
ACS	Arc Cosine	ACS (MF –); ACS (90.0) ;	Obtains the arc cosine of real number data. Only a real number type register can be designated.	~	~
ATN	Arc Tangent	ATN (MW –); ATN (45) ;	Obtains the arc tangent of integer or real number data. The specifications differ depending on the data type: Integer or real number.	~	~
SQT	Square Root	SQT (MW –); SQT (100) ;	Obtains the root of integer or real number data. The specifications differ depending on the data type: Integer or real number.	~	~
BIN	BCD-to- Binary	BIN (MW –);	Converts BCD data to binary data.	~	~
BCD	Binary-to- BCD	BCD (MW –);	Converts binary data to BCD data.	~	~
S{ }	Set Bit	S {MB - } = MB - & MB - ;	If the logical operation result is true, the desig- nated bit turns ON. The designated bit does not turn OFF even if the logical operation result is false.	~	~
R{ }	Reset Bit	R {MB – } = MB – & MB – ;	If the logical operation result is true, the desig- nated bit turns OFF. The designated bit does not turn ON even if the logical operation result is false.	~	~
PON	Rising Pulse	MB – = PON (MB – MB –); or IF PON (MB – MB –) == 1; ; IEND;	The bit output turns ON for one scan when the bit input status changes from OFF to ON.	-	~
NON	Falling Pulse	MB – = NON (MB – MB –); or IF NON (MB – MB –) == 1; ; IEND;	The bit output turns ON for one scan when the bit input status changes from ON to OFF.	Ι	~
TON	ON-Delay Timer	MB – = MB – & TON (– MB –);	Counts the period of time when the bit input is ON. The bit output turns ON when the counted value is equal to the set value. Counting unit: 10 ms.	_	~
TOF	OFF-Delay Timer	MB – = MB – & TOF (– MB –);	Counts the period of time when the bit input is OFF. The bit output turns OFF when the counted value is equal to the set value. Counting unit: 10 ms.	_	~

A.10 C-Language Control Commands

Com- mand	Name	Programming Format	Description	Motion Programs	Sequence Programs
стѕк	C-Language Task Control	CTSK EXECUTE TYPE, C_NAME, COMPLETE ERROR ERR_CODE;	Controls the operations of C-language user task, such as start and stop.	~	~
CFUNC	C-Language Function Call	CFUNC EXECUTE OPTION1 OPTION2, C_NAME C_ARG1 C_ARG2, COMPLETE ERROR C_RETURN;	Calls the C-language user function.	~	~

Арр

B Sample Programs


The following table shows the sample programs.

Sample Programs	Description	Reference Section
Programs to control motion programs	Sample ladder and sequence programs to control motion program.	B.1
Parallel processing	Sample motion program for parallel processing using a PFORK command.	B.2
Speed control by using a motion program	Sample motion program for speed control.	B.3
Simple synchronized operation using a virtual axis	Sample program to move two axes in synchronization using the SVR module.	B.4
Sequence programs	Sample sequence programs for JOG and STEP operations of a single axis servomotor.	B.5

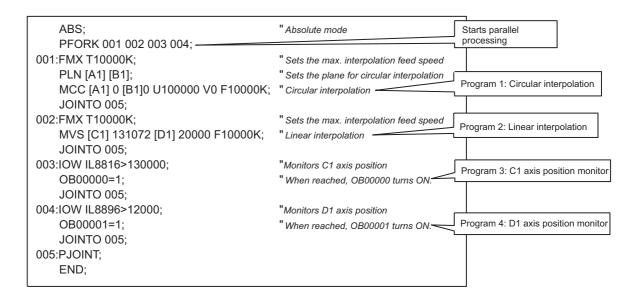
B.1 Programs for Controlling Motion Program Execution

Sample ladder and sequence programs to control execution of motion program are shown below.

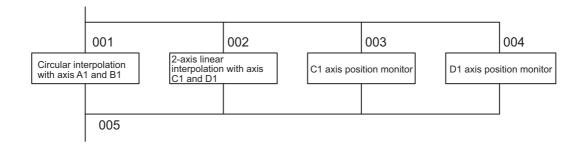
(1) Ladder Program

B.1 Programs for Controlling Motion Program Execution

(2) Sequence Program


" The servo turns ON " Servo ON command ON.				
OB80000 = IB00000;	"Axis 1 servo ON"			
" " Control signal	The motion program starts running when IB00001 turns ON.			
DB000010 = PON(IB00001 MB00000 DB000011 = IB00002; DB000012 = IB00003; DB000015 = IB00004;	0); " Program start " " Pause " " Program stop " " Alarm reset "			
" " Stops the motion program operatio	on			
" IF NON(DB000000 MB000001) == 1; ; IEND;	" Program operation OFF? " " Process when the program operation stops "			
END;				

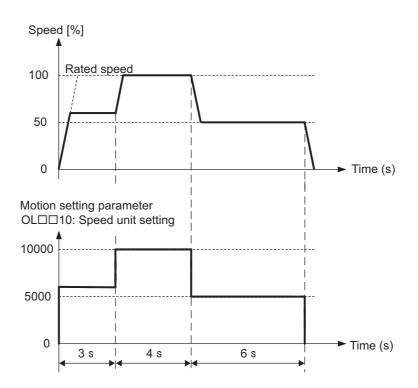
IMPORTANT


No MSEE command can be embedded in sequence programs. In this case, embed an MSEE command in the H drawing.

B.2 Parallel Processing

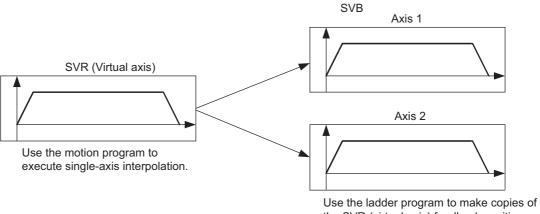
A sample motion program for parallel execution accomplished by using a PFORK command is shown below.

The following diagram illustrates the operations executed by the above sample program.


B.3 Motion Program for Speed Control

A sample motion program for speed control is shown below.

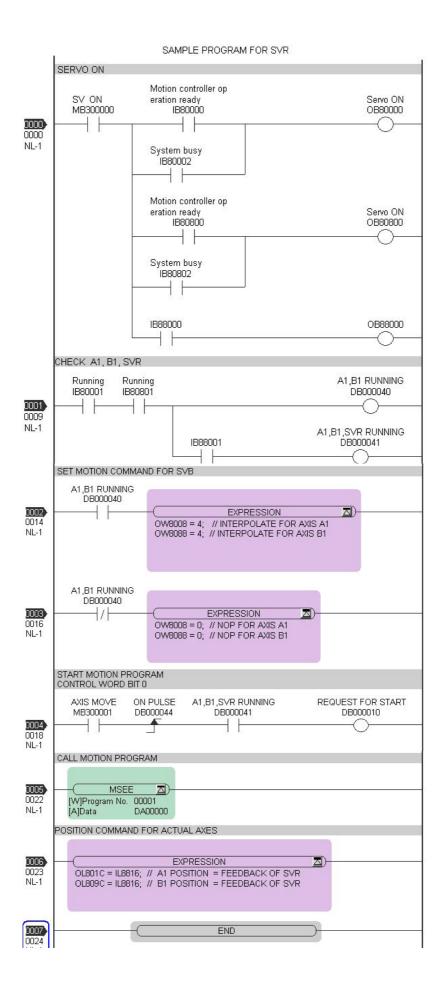
For this sample program, bits 0 to 3 (Speed unit selection) of motion setting parameter $OW\square\square 03$ are set to 0.01% (a percentage of the rated speed).


ŝ,		
	OW8008=23;	"Speed control mode
	OL8010=6000;	"Changes the speed to 60% of rated speed
	TIM T300;	"Waits for three seconds
	OL8010=10000;	"Changes the speed to the rated speed
	TIM T400;	" Waits for four seconds
	OL8010=5000;	"Changes the speed to 50% of rated speed
	TIM T600;	" Waits for six seconds
	OW8008=0;	"Cancels the speed control mode
	END;	

The following diagram illustrates the moving pattern implemented by the above sample program.

B.4 Simple Synchronized Operation Using a Virtual Axis

With this sample program, a motion program is used to move an SVR (virtual axis), and two copies of the SVR feedback position are made by a ladder program for two actual axes to perform a two-axis synchronized operation.


Use the ladder program to make copies of the SVR (virtual axis) feedback position. Axis 1 and Axis 2 use the copied feedback position to perform two-axis synchronized operation.

• Motion Program

FMX T10000K;	"Sets the max. interpolation feed speed. (K=1000)
INC;	"Incremental mode
IAC T500;	"Interpolation acceleration time = 500 ms
IDC T500;	"Interpolation deceleration time = 500 ms
MVS [SVR] 1000K F10000K;	"Interpolation with movement amount 1000000
END;	Interpolation with movement amount 1000000

App

B.4 Simple Synchronized Operation Using a Virtual Axis

B.5 Sequence Programs

In this sample program, sequence programs are used for JOG and STEP operation of servomotor with single axis.

Sequence main program (SPM001)

"SPM001: Main program" SSEE SPS002; "Settings common to all axes SSEE SPS003; "JOG & STEP operation process END;

Sequence subprogram (SPS002)

"SPS002: Settings common to	all axes"
"" " Motion command 0 (No com	nmand) detection
" IF IW8008 == 0; MB300010 = 1; ELSE; MB300010 = 0; IEND;	The Servo turns ON when
"	MB300000 turns ON.
" Servo ON command	
OB80000 = MB300000 & (IB8	0000 IB80002); "Servo ON
" " Alarm reset "	
OB8000F = MB300001;	"Alarm reset
" " Speed unit & Acceleration/d "	eceleration unit selection
" Bit 0 to 3: Speed unit selec	tion (0: reference unit/s, 1: Reference unit/min., 2: Designated in %)
" Bit 4 to 7: Acceleration/dec	eleration unit selection (0: Reference unit /s ² , 1: ms)
DW00010 = OW8003 & FF00 OW8003 = DW00010 0011H	
" " Linear acceleration/decelera	
IF MB300020 == 1; OL8036 = 100; OL8038 = 100; IEND;	"Linear acceleration rate/Acceleration time constant "Linear deceleration rate/Deceleration time constant
RET;	

Арр

Sequence subprogram (SPS003)

```
"SPS003: JOG & STEP operation process "
 JOG operation
IF IB80001 & ( (DB000010 & !DB000011) | (!DB000010 & DB000011) ) == 1;
    DB000000 = 1;
ELSE;
                        Starts JOG operation
                                                            Starts JOG operation
    DB000000 = 0;
                        (forward rotation) when
                                                            (reverse rotation) when
IEND;
                       DB000010 turns ON.
                                                           DB000011 turns ON.
DB000001 = PON( DB000000 DB000050 ) & MB300010; "JOG operation starts
DB000002 = NON( DB000000 DB000051 );
                                                    "JOG operation stops
IF DB000001 == 1;
    OL8010 = 1000;
    OW8008 = 7;
                                                    "Motion command FEED
IEND;
IF DB000002 == 1;
    OW8008 = 0;
                                                    "Motion command NOP
IEND;
" STEP operation
IF IB80001 & ( (DB000012 & !DB000013) | (!DB000012 & DB000013) ) == 1;
    DB000008 = 1;
ELSE:
                                                           Starts STEP operation
                        Starts STEP operation
    DB000008 = 0;
                        (forward rotation) when
                                                           (reverse rotation) when
IEND;
                        DB000012 turns ON.
                                                           DB000013 turns ON.
DB000009 = PON( DB000008 DB000058 ) & MB300010; "STEP operation starts
DB00000A = NON( DB000008 DB000059 );
                                                    "STEP operation stops
IF DB000009 == 1;
    OL8010 = 1000;
                                                 "STEP speed setting
    OW8044 = 1000;
                                                 "STEP moving amount setting (1000 pulses)
    OW8008 = 8;
                                                 "Motion command STEP
IEND;
IF DB00000A == 1;
    OW8008 = 0;
                                                  "Motion command NOP
IEND;
 Reverse rotation selection
OB80092 = ( DB000000 & DB000011 ) | ( DB000008 & DB000013 );"Reverse rotation selection
RET;
```

C Differences between MP900 Series and MP2000 Series Machine Controllers

This section describes motion program differences between the MP900 series and the MP2000 series Machine Controllers.

C.1 Motion Programs

Item	MP900 Series	MP2000 Series	Remarks
Number of tasks	No limitation	16 tasks	Number of simultaneously execut- able programs
Group definition Max. number of axes per group	MP910: 28 axes MP920: 48 axes MP930: 14 axes MP940: 1 axis	16 axes	_
Work size of MSEE command in ladder programs	2 words	4 words	See 4.3.3 Work Registers.
Interpolation override	Always enabled	Enabled or disabled can be selected.	See 4.3.3 Work Registers.
Register for interpolation over- ride value designation	Designated in the Group Definition dialog box.	Designated using the 3rd word of an MSEE work register.	See 4.3.3 Work Registers.
Program execution registration function (M-EXECUTOR Module)	Not supported	Supported	Can not be used with MP2300, CPU-01 or CPU-02.
Nesting of PFORK command (PFORK execution during parallel processing)	Permitted	Prohibited	-
Axis move command in the two parallel subprograms	Prohibited	Permitted	-
Subprogram call (MSEE) from the two parallel subprogram	Permitted	Prohibited	-
Numbers below decimal point when real number data is stored in an integer register	Rounded-off	Cut-down (Truncate) or rounded-off (Rounding)	The default for the MP2000 series is cut-down.

C.2 Sequence Programs

Item	MP900 Series	MP2000 Series	Remarks
Applicable/Not applicable	Not applicable	Applicable	Can not be used with MP2300, CPU-01 or CPU-02.

App

Appendices C.3 Motion Programming Commands

C.3 Motion Programming Commands

Item	MP900 Series	MP2000 Series	Remarks
ACC, DCC	 Executable with SVA-01, SVA-02, and SVB-01 Mod- ules. Unexecutable with PO-01 Module. 	Executable	_
SCC	 Executable with SVB-01. Unexecutable with SVA-01, SVA-02, and PO-01. 	Executable	_
Speed unit for VEL command	10 ⁿ reference units/ min.	Can be selected from: • 10 ⁿ reference units/min. • Reference units/s • 0.01% • 0.0001%	 Depends on the difference in functions between MP900 series Motion Modules and MP2000 series Motion Modules. See 8.1.6 Set Velocity (VEL).
Speed unit for VEL command when the reference unit is set to pulse (10 ⁿ reference units/ min.)	MP920 PO-01 Module: 100 pulses/min. Motion modules other than MP920 PO-01: 1000 pulses/min.	1000 pulses/min.	 Depends on the difference in functions between MP900 series Motion Modules and MP2000 series Motion Modules. See 8.1.6 Set Velocity (VEL).
Acceleration/Deceler- ation rate designation method for ACC and DCC commands	MP930 SVB module: Acceleration/decelera- tion time (ms) calcu- lated on the base of the feed speed Modules other than MP930 SVB Module: Acceleration/decelera- tion time (ms) calcu- lated on the base of the rated speed	Can be selected from followings: • Acceleration/decelera- tion time (ms) calcu- lated on the base of the rated speed • Acceleration/decelera- tion rate (reference unit/s ²)	 Depends on the difference in functions between MP900 series Motion Modules and MP2000 series Motion Modules. See 8.1.3 Acceleration Time Change (ACC) and 8.1.4 Deceleration Time Change (DCC).
Unit of moving amount specified for external positioning command EXM	In unit of pulse	In reference unit	Depends on the difference in functions between MP900 series Motion Modules and MP2000 series Motion Modules.

C.4 Group Definitions

Item	MP900 Series	MP2000 Series	Remarks
Group definition saving operation while online	Prohibited	Permitted	_
Automatic generation of ladder program	Possible (Can be specified in the Group Definition dia- log box.)	Not possible	_

C.5 Debug Function

Item	MP900 Series	MP2000 Series	Remarks
Single-block operation applicable commands	Axis move commands only	All commands	-
Designation to ignore single-block signal	By coding an SNG command for each block that ignores the single-block signal	By executing SNGD and SNDE commands in the enclosed blocks.	See 8.4.14 Single-block Signal Disabled (SNGD)/Single-block Signal Enabled (SNGE).
Number of settable break points	1	4	-

C.6 Motion Program Alarms

Item	MP900 Series	MP2000 Series	Remarks
Motion program alarm storage	Storage designated in the Group Definition dialog box	S register	See 10.2.3 Confirming the Alarm Code.

Арр

D Precautions

D.1 General Precautions

(1) Saving the Changes in Programs to the Flash Memory

After changing an application such as a motion program or sequence program, always save the changed application to the flash memory. If the changed application is not saved to the flash memory and the power to the Machine Controller is turned OFF, the changed application will be lost.

(2) Prohibited Use of Debug Function for a System in Operation

Never use the debug function for a system in operation. Debugging will cause changes in program operation, such as in command execution timing, resulting in malfunction or failure of the system. For debugging, use the exclusive system for debugging.

(3) Differences in Axis Operation When an Alarm Occurs for One or More Axes Specified in an Axis Move Command

If an alarm occurs in one or more axes specified in an axis motion command in an MP2000-series motion program, the axes for which alarms do not occur may not stop. Create the required interlocks in the application. Motion program operation when an alarm occurs for one or more axes specified in an axis move command is described in the following table.

Axis Move Command	Axes for Which Alarms Occur	Axes for Which Alarms Do Not Occur	Motion Program Operation
Positioning (MOV) or Set-time Posi- tioning (MVT)	Stop.	Move to target posi- tions.	References continue to axes without alarms and they move to the target positions.
External Position- ing (EXM) [*]	Stop.	-	References continue until bit 8 (Command Execution Completed) in IW 09 (Motion Command Status) turns ON.
Zero Point Return (ZRN) [*]	Stop.	Move to zero point.	References continue until bit 5 (Zero Point Return (Setting) Completed) in IWDD0C (Position Man- agement Status) turns ON for all specified axes.
Linear Interpolation (MVS), Circular In- terpolation/Helical	Stop.	A motion program alarm (84h: Duplicated Motion Command) occurs and references to all specified axes are stopped.	
Interpolation (MCW and MCC), or Linear Interpola- tion with Skip Function (SKP)	Stop.	Move to target posi- tions.	References continue to axes without alarms and they move to the target positions.

* An alarm does not occur and the motion program execution block does not change to the next block. Therefore, you must execute a program reset or alarm reset request after a program stop request is executed.

D.2 Precautions on Motion Parameter Settings

(1) Set bit 5 (Position reference type) of motion setting parameter OW□□09 to Incremental value add method

When using a motion program, always set bit 5 (Position reference type) of motion setting parameter $OW\square\square 09$ to <u>Incremental value add method</u>. Motion programs manage position information using the incremental value add method. Therefore, operation using a motion program cannot be guaranteed if bit 5 of motion setting parameter $OW\square\square 09$ is set to Absolute value set method.

	Detail		and the second			
	Motion	command control flag				
	bit 0	Holds a command		C ON	OFF	
	bit 1	Interrupt a command		C ON	OFF	
	bit 2	Moving direction (JOG/	'STEP)	C Reverse	Forward	
5VB Definition MP231	bit 3	Zero point return directi	ion selection	C Forward	Reverse	
#: 2 CPU#: 1	bit 4	Latch zone effective se	election	C Enabled	Oisabled	
	bit 5	Position reference type		C Absolute value set method	Incrementa	I value add method
xis 1 💌 SERVOPACK S	G					
Fixed Parameters Setup Parar	G bit 6	Phase compensation ty		C Absolute value set method	• Increment	walue add method
ixed Parameters Setup Parar No. 3 Function setting 1	G bit 6					
ixed Parameters Setup Parar No. 3 Function setting 1	G bit 6		ipe	C Absolute value set method	• Increment	walue add method
Fixed Parameters Setup Parameters Setup Parameters Setup Parameters 3 Function setting 1 4 Function setting 2	G bit 6		ow8005	C Absolute value set method	© Increment	walue add method
ixed Parameters Setup Parar No. 3 Function setting 1 4 Function setting 2 5 Function setting 3	G bit 6		ow8005	C Absolute value set method	© Increment	walue add method
ixed Parameters Setup Param No. 3 Function setting 1 4 Function setting 3 5 Function setting 3 6 Option Setting	G bit 6	Phase compensation ty	0W8005 0W8006 0W8008	C Absolute value set method 0000 0000 0000 0000 0000 H 0000 0000 0	© Increment	walue add method
Fixed Parameters Setup Parameters 3 Function setting 1 4 Function setting 2 5 Function setting 3 6 Option Setting 9 Motion command	G bit 6	Phase compensation ty	0W8005 0W8006 0W8008	C Absolute value set method 0000 0000 0000 0000 0000 H 0000 0000 0	© Increment	walue add method

With a motion program, an ABS or INC command is used to set the absolute mode or incremental mode: Code an ABS command to set the absolute mode (ABS). Code an INC command to set the incremental mode (INC).

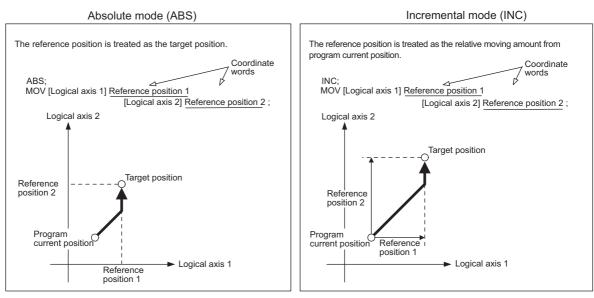
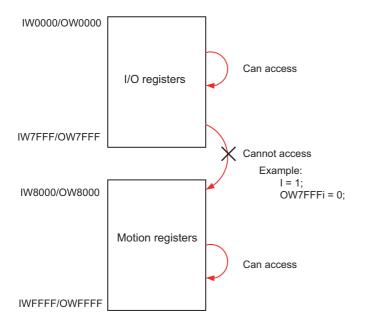
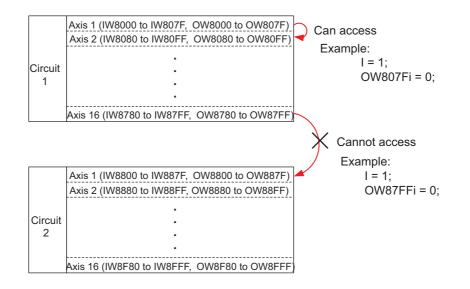



Fig. D.1 Movement Modes for Axis Move Commands

D.2 Precautions on Motion Parameter Settings

(2) Do not access a motion register from the I/O register by using a subscript

I/O registers and motion registers are not assigned to consecutive memory locations. Therefore, when using a subscript, access is limited within the respective register range of I/O register and motion register.

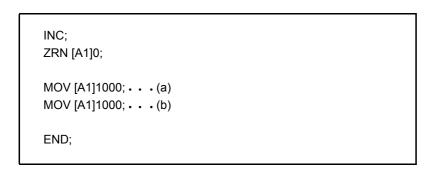


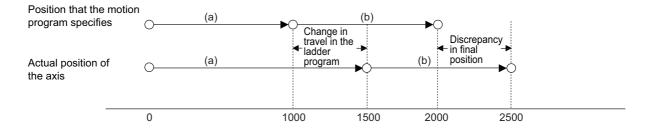
(3) Do not access a motion register of a different circuit by using a subscript

As with the relationship between I/O registers and motion registers, motion registers of different circuits are not assigned to consecutive memory locations.

Therefore, when using a subscript, access is limited within the same motion register range of each circuit. If the circuit numbers of two registers are the same, it is possible to access a register of a different axis.

Circuit No.	Axis 1	Axis 2	•••	Axis 16
1	OW8000 to OW807F	OW8080 to OW80FF	•••	OW8780 to OW87FF
2	OW8800 to OW887F	OW8880 to OW88FF	•••	OW8F80 to OW8FFF
3	OW9000 to OW907F	OW9080 to OW90FF	•••	OW9780 to OW97FF
4	OW9800 to OW987F	OW9880 to OW98FF	•••	OW9F80 to OW9FFF
5	OWA000 to OWA07F	OWA080 to OWA0FF	•••	OWA780 to OWA7FF
6	OWA800 to OWA87F	OWA880 to OWA8FF	•••	OWAF80 to OWAFFF
7	OWB000 to OWB07F	OWB080 to OWB0FF	•••	OWB780 to OWB7FF
8	OWB800 to OWB87F	OWB880 to OWB8FF	•••	OWBF80 to OWBFFF
9	OWC000 to OWC07F	OWC080 to OWC0FF	•••	OWC780 to OWC7FF
10	OWC800 to OWC87F	OWC880 to OWC8FF	•••	OWCF80 to OWCFFF
11	OWD000 to OWD07F	OWD080 to OWD0FF	•••	OWD780 to OWD7FF
12	OWD800 to OWD87F	OWD880 to OWD8FF	•••	OWDF80 to OWDFFF
13	OWE000 to OWE07F	OWE080 to OWE0FF	•••	OWE780 to OWE7FF
14	OWE800 to OWE87F	OWE880 to OWE8FF	•••	OWEF80 to OWEFFF
15	OWF000 to OWF07F	OWF080 to OWF0FF	•••	OWF780 to OWF7FF
16	OWF800 to OWF87F	OWF880 to OWF8FF	•••	OWFF80 to OWFFFF


App


D.2 Precautions on Motion Parameter Settings

(4) Do not change the motion setting parameter OLDD1C "Position reference setting" while axis motion is in progress in a motion program.

If $OL\square\square1C$ "Position reference setting" is changed in another program (e.g. a ladder program) while axis motion is in progress in a motion program, the axes will move in accordance with the change. This will result in a discrepancy between the actual position and the position specified in the motion program. Example:

If the travel distance of the A1 axis specified by $OL\Box\Box1C$ "Position reference setting" in the motion program below is changed from +1000 to +1500 while executing (a) in the motion program, the A1 axis moves to the position +1500. At this point a discrepancy arises in relation to the reference position in the motion program (+1000). Then (b) in the motion program will be executed. As a result, the actual final position of the A1 axis will be at a different position from that specified in the motion program.

Index

Symbols

^	2-6, 8-140
- (subtract)	
!	2-6, 8-141
*	2-6, 8-134
/	
&	2-6, 8-139
# register	
+	
<	
<=	
<	
=	
==	
>	
>=	
	2-6, 8-137

Numerics

0.0001% of rated speed 7-12
0.01% of rated speed 7-12
10n reference unit/min 7-12

Α

ABS2-6, 8-3
ABS mode 8-3
absolute mode (ABS) 8-3
ACC2-6, 8-11
Acceleration Time Change (ACC) 8-11
acceleration time/deceleration time 8-30
acceleration/deceleration degree unit selection 7-12
Acceleration/Deceleration Mode with Continuous Process
Control Signal Monitoring 8-48
Acceleration/Deceleration Mode with Interpolation
Overlapping 8-52
acceleration/deceleration setting 7-12
acceleration/deceleration type 8-61, 8-67
ACCMODE 8-46
ACS2-6, 8-155
add (+) 8-132
Add Register9-21
alarm code 10-12
alarm code list for motion program 10-15
alarm display 9-35
alarm reset request 4-8
allocated interlock contact 4-12
Allocation DISABLE 9-14
Allocation register 4-12
AND (&) 8-139
APOS 8-96
Arc Cosine (ACS) 8-155
Arc Sine (ASN) 8-154
Arc Tangent (ATN) 8-156
arithmetic operations 8-131
ASCII
ASCII code 8-148
ASCII Conversion 1 (ASCII) 8-148
ASN 2-6, 8-154
ATN 2-6, 8-156
axis alarm monitor 9-31, 9-33

axis control commands	8-92
axis move commands	8-60
Axis No	7-14
axis operation monitor	9-31
Axis Operation Monitor function	1-7
Axis Operation Monitor/Alarm Monitor function	2-5
axis setting commands	8-3
axis status	9-33
axis type selection	7-9, 8-5

В

basic flow of troubleshooting	10-2
basic functions	
Batch transfer	
BCD	2-6, 8-150, 8-160
BCD data	
BCD to Binary (BIN)	
BIN	2-6, 8-159
binary data	
binary data conversion	
Binary to BCD (BCD)	8-160
bit	
Bit Left Shift (SFL)	
Bit Right Shift (SFR)	8-144
BLK	
block	7-2, 9-4
block format	
Block Move (BLK)	
block number	10-12
branching commands (IF ELSE IEND)	
Break	9-19
break point setting	1-7
built-in SVB	1-8, 2-2

С

C registers 2-4, 6-13
C variables (C registers) 6-13
C-Language Function Call (CFUNC)8-174
C-Language Task Control (CTSK)8-172
call 1-8
center point position 8-70
center position designation 8-69, 8-79
CFUNC 2-6, 8-174
character
D 7-5
F 7-5
MPS 7-6
N 7-5
Р 7-5
R 7-5
SPS 7-6
SS 7-5
Т 7-5
U 7-5
V 7-5
W 7-5
child drawing 1-9
Circuit 7-13
circular interpolation 1-13
Clear (CLR)8-147
Clockwise/Counterclockwise Circular Interpolation with Center
Position Designation (MCW, MCC) 8-69
Clockwise/Counterclockwise Circular Interpolation with Radius
Designation (MCW, MCC) 8-75
Clockwise/Counterclockwise Helical Interpolation with Center
Position Designation (MCW, MCC) 8-79

Clockwise/Counterclockwise Helical Interpolation w	
Designation (MCW, MCC)	8-82
CLR	
command format	
command input assistant	9-6
Command Input Assistant function	, 1-7, 1-16
command input assistant function	2-5
command types	
comment check box and comment input field	
comments	
communication settings	
compiling	
composite moving amount	
configuration of motion program alarms	10-15
confirming the alarm code	
constant registers	
constants	
control signal	
Coordinate Plane Setting (PLN)	8-100
coordinate words	
COS	
Cosine (COS)	8-152
creating a motion program	3-6
creating project files	3-4
CTSK	2-6, 8-172
Current Position Set (POS)	8-92

D

D registers	
D variables (D registers)	6-14
data comparison commands	8-142
data operations	
data registers	
data types	6-3, 8-116
data variables (M registers)	
DCC	
Debug function	1-7, 1-16, 2-5, 9-15
debug mode	
debugging the program	3-12
Deceleration Time Change (DCC)	8-17
decimal integers	7-7
DEFAULT	
deg	
degree	8-150
direct designation	
divide (/)	8-135
double integer	6-3
Drive control panel	
Drive control panel function	
Dwell Time (TIM)	8-126

Ε

easy programming functions	, 1-16
electronic gear	7-10, 8-33
encoder cable	3-3
END	2-6, 8-124
end of block	7-2, 7-6
end position	8-70
EOX	2-6, 8-129
error code	4-15
Error List dialog box	3-6
Execute	9-19
executing block number	4-15
executing main program No	10-12
executing program line	9-16

executing program number	4-14, 4-15
executing the programs	3-14
execution method	2-3, 2-4
execution registry screen	1-8
execution scans	7-17
Execution type	9-13
EXM	2-6, 8-90
external function register	8-118
External Positioning (EXM)	8-90
external positioning signal	8-91

F

F designation	8-37, 8-66
Falling Pulse (NON)	8-165
filter time constant	8-24
filter type selection	8-28
finite length axis	7-9, 8-5
FMX	2-6, 8-35
Forced end	9-19
Fork number	9-20
FUNC	2-6, 8-123
function input register	8-118
function keys	9-16
function output register	8-118
Function selection flag 1	8-5

G

global variables	6-4, 7-7
grandchild drawing	1-9
group definitions	1-11, 3-5, 7-13
Group Name	7-13
group selection	9-4
groups	1-11

Н

H drawing	1-9
handling system 1	-12
Help button9	-11
hexadecimal integers	7-7
high-speed processing	2-3
high-speed processing drawing	1-9
how to directly change the acceleration time setting 8	-16
how to directly change the deceleration time setting 8	-22

I

I registers2-4, 6-9
I/O services 1-10
I/O Variable Wait (IOW) 8-127
IAC2-6, 8-40
IDC2-6, 8-43
IF ELSE IEND 2-6, 8-101
IFP 2-6, 8-37
in debug mode4-7, 5-5
in-position check 8-62, 8-64
In-Position Check (PFN) 8-96
in-position check width 8-98
INC2-6, 8-7
inch 7-9
incremental mode (INC)8-3, 8-7
indirect designation4-11, 5-4, 9-13
indirect designation of a program number using a register 4-11
Individual transfer 3-11
infinite length axis7-9, 8-5
Infinite Length Axis Reset Position 7-9
infinite length axis reset position (POSMAX) 8-5
INP 2-6, 8-98

input data 6-9
input registers 6-2, 8-118
input variables (I registers) 6-9
installation 3-2
installing MPE720 Version 6 3-3
integer 6-3
internal function register 8-118
interpolation acceleration time 8-41
Interpolation Acceleration Time Change (IAC) 8-40
interpolation deceleration time 8-44
Interpolation Deceleration Time Change (IDC) 8-43
Interpolation Feed Speed 8-37
interpolation feed speed (F command or IFP) 8-66
interpolation feed speed ratio 8-38
Interpolation Feed Speed Ratio Setting (IFP) 8-37
interpolation override 4-9
interpolation related command 8-27
interpolation related commands 8-37
interrupt processing 2-3
IOW2-6, 8-127
, , , , , , , , , , , , , , , , , , ,

J

JOG operation9	-30
JOINTO 8-106, 8-1	09

L

label 7-2
ladder program 1-3
ladder program specifications 2-3
leading register whose data is cleared 8-147
line 9-4
line number 7-13
linear acceleration rate 8-13
linear acceleration time constant 8-12
linear deceleration rate 8-19
linear deceleration time constant 8-18
Linear Interpolation (MVS) 8-64
Linear Interpolation with Skip Function (SKP) 8-86
list of command types 7-18
list of commands 2-6
list of engineering tool MPE720 specifications 2-5
list of machine controller specifications 2-3
local variables 6-4, 7-7
logic operation 8-137
logical axis name 7-2, 7-3, 7-14
low-speed processing 2-3
2.5

Μ

M registers 1-5, 2-4, 6-8
M type commands 7-17
M-EXECUTOR1-9
M-EXECUTOR control register (I/O register) 1-9
M-EXECUTOR Module1-2
M-EXECUTOR program execution definition 4-4
machine coordinate system 8-84, 8-92
main program4-2, 5-2
Main program number 9-20
main program number exceeded error 4-7
max. feed speed for interpolation 8-36
Maximum Interpolation Feed Speed Setting (FMX) 8-35
MCC 2-6, 8-69, 8-75, 8-79
MCW 2-6, 8-69, 8-75, 8-79
mechanical parts inserting machine 1-12
MECHATROLINK cable 3-3
memory backed up by battery 2-4
metal sheet bending equipment 1-13

min. reference unit 2-3
mm 7-9
μm 7-9 MOD 2-6, 8-136
monitor parameters 6-9
monitor tab and status bar 9-5
monitor the motion program execution information using S register 4-13
monitoring parameter status 9-34
Motion Editor 1-7, 1-8, 3-6, 9-2
motion fixed parameters 7-9
motion language 1-2
motion language command 7-2, 7-3
motion module 1-8
motion module parameters 7-9
motion monitor parameter 6-9
motion monitoring parameter selection 9-34
motion parameters
motion program 1-3, 1-9
applicable machine controller models 2-2
applicable machine controller models 2-2 applicable motion modules 2-2
applicable motion modules 2-2 application examples 1-12
axis groups 4-2
data transfer from/to ladder program 1-5
Error information screen window 10-9
error investigation flow 10-3
execution information 4-14
execution method 1-3
execution registration 1-9
execution sequence 1-8
execution timing 1-10
format 7-2
grouping 1-11
how to run a motion program 4-3
motion control 1-4
parallel program execution 1-6
program online editing 1-6
registering the program execution 4-5
S Register10-11
specification 2-3
troubleshooting 10-3
types 4-2
use of subprograms 1-5
motion program alarm codes 10-11
Motion Program Configuration Definition window 6-5
motion program execution timing 1-10
Motion Properties 6-14
motion setting parameter 6-11
Motion Subprogram Call (MSEE)8-113
Motion Task Manager 2-5, 9-22
motor cable 3-3
MOV 2-6, 8-60
Mov On Machine Coordinates (MVM) 8-94
move on machine coordinates (MVM)
acceleration/deceleration 8-27
Moving Average Filter 8-28
MP2100 2-2
MP2100M 2-2
MP2100M
MP2200/CPU-01 2-2 MP2200/CPU-02 2-2
MP2200/CPU-03 2-2
MP2200/CPU-04 2-2
MP23002-2
MP2300S 2-2
MP2310 2-2

MP2400	2-2
MP2500	2-2
MP2500D	2-2
MP2500M	2-2
MP2500MD	2-2
MPE720 Ver.5	2-5
MPE720 Ver.6	
MPE720 Ver.6 Lite	2-5
MPOS	8-96
MPU-01	2-2
ms	7-12
MSEE	
MSEE call stack	9-20
MSEE command	
MSEE work register	
multiple group operation	
multiply (*)	
MVM	
MVS	,
MVT	
141 4 1	2-0, 0-00

Ν

NEAR signal output width	
Nest number	9-20
new project	
no system work error	4-7
NON	2-6, 8-165
Normal run mode	
NOT (!)	8-141
number of axes to be controlled	7-13, 9-9
number of blocks	8-147
number of digits below decimal point	
number of groups	
number of parallel processes	2-3, 2-4
number of programs	
number of simultaneously controlled axes	
number of tasks	
number of turns	· · · ·

0

O registers2-4, 6-11
OFF-Delay Timer (TOF)
counting unit 0.01 second 8-170
ON-Delay Timer (TON)
counting unit 0.01 second 8-168
One Scan Wait (EOX) 8-129
online editing1-6
operation mode2-3
OR () 8-137
organizaing the axes into individual groups3-5
organizing the axes into individual groups3-5
output data 6-11
output registers6-2, 8-118
output variables (O registers) 6-11
override2-3, 8-32
override setting for interpolation 4-8
P

palletizing	1-12
panel processing machine	1-13
Parallel Execution (PFORK, JOINTO, PJOINT)	8-106
parent drawing	1-9
pausing/starting monitoring	9-33, 9-35
PFN	2-6, 8-96
PFORK	8-106
PFORK, JOINTO, PJOINT	2-6

PJOINT	0.107
PLD	
PLD PLN	
PC-01	
PON	
POS	
position reference value	
positioning (MOV)	8-60
positioning related commands	8-29
positioning speed	8-13, 8-19, 8-29
POSMAX	8-5
PP cable	
precautions for variable operations	6-6
Priority Levels of Operations	7-15
problem when starting a motion program	10-4
procedure to create the user function	8-120
program alarm is occurring	
program capacity	
program continuous operation start request	4-8
program control commands	8-101
program control signal	4-15
program current position	8-3 8-95 10-12
Program Current Position Update (PLD)	
program designation method	0.12
program development flow	2.2
program development now	0.4
program end (END)	
program execution registration function	
program execution registry number	4-13, 9-13, 9-26
program information used by work n	4-15
program number	- 9-13, 9-26, 10-12
program numbers of motion programs	4-2
program numbers of sequence programs	5-2
program operation start request	4-8
program pause request	4-8
program paused	4-7
Program Property window	6-5
program running	
program single block mode selection	4-8
program single block start request	4-8
program status	4-15
program stop request	4-8
program stopped by stop request	4-7
program type	
programs created for each group	1-12
pulse	7-9
puise	

R

R{ }	2-6, 8-162
radius	8-76
radius designation	8-75, 8-82
rated speed	8-12, 8-18
real number	6-3, 7-7
reference position	8-3
reference range	2-3
reference unit	2-3, 7-9
reference unit selection	8-30
reference unit/s	7-12
reference unit/s2	7-12
register allocation	9-14
register list	3-2
register start number of the motion monitor parameter	6-10
register start number of the motion setting parameter	
register types used within user functions	
registering MPM001 in the M-EXECUTOR	

registering the program execution 3-7
registering to the M-EXECUTOR program execution definition 4-4
relationship between I/O registers and internal function
registers 8-117
relative movement amount 8-7
remainder (MOD) 8-136
Repeat (WHILE WEND) 8-103
Reset Bit (R{ }) 8-162
RET 2-6, 8-125
Rising Pulse (PON) 8-163

S

S registers2-4, 6-
S type commands 7-1
S-curve acceleration/deceleration 8-62
S-curve time constant 8-23, 8-20
S-curve Time Constant Change (SCC) 8-2
S{}2-6, 8-16
sample program
motion program for speed controlA-10
parallel processing A-1:
programs for controlling motion program execution A-12
sequence programsA-19
simple synchronized operation using a virtual axis A-1'
Save to flash 3-2
saving the programs in flash memory 3-12
Scan Execution 1-:
scan execution type 1-1:
scan execution type program 1-14
scanning error 4-
SCC2-6, 8-22
select command (command options) 9-8
Selective Execution (SFORK, JOINTO, SJOINT) 8-109
self-configuration3-2, 3-2
sequence commands 1-1:
sequence program 1-9
error investigation flow 10-1'
execution 5-5
execution method 1-1:
execution timing 5-4
features 1-1:
format 7-19
how to run a sequence program 5-2
M-EXECUTOR program definition 5-2
motion languages 1-1:
registering program execution
specifications 2-4
transfer from/to motion program 1-1:
troubleshooting 10-1
types 5-2
use of subprograms 1-10
Sequence Subprogram Call (SSEE) 8-114
Sequence Subprogram Can (SSEE)
servomotor 3
SERVOPACK
Set Bit (S{ }) 8-16
Set In-Position Range (INP) 8-99
Set Time Positioning (MVT) 8-8-
set to the arguments9-9
Set Velocity (VEL) 8-29
Set/Delete break point9-18, 9-2
Setting the execute task 9-20
setting the speed reference velue 9-30
SFL2-6, 8-14
SFORK 8-109

SFORK, JOINTO, SJOINT	2-6
SFR	
shift start point	9-17
SIN	- 2-6, 8-150
Sine (SIN)	
single group operation	
single program block operation stopped	4-7
single-block operation mode	8-130
Single-block Signal Disabled (SNGD)/Single-block Signal	
Enabled (SNGE)	
single-step linear acceleration/deceleration	8-62
SJOINT	
Skip 1 information	
Skip 2 information	
skip input signal	
skip input signal 1 (SS1)	8-86
skip input signal 2 (SS2)	8-86
SKP	
SNGD	8-130
SNGD/SNGE	2-6
SNGE	8-130
software limit switch function	8-93
specific characters	7-2, 7-5
speed reference	
speed unit	
Speed unit selection	
SQT	
Square Root (SQT)	
square roots	
SSEE	
start method	
start processing	
start request history	
Status	· · · · ·
status	
status flag	
step distance	
Step in	
STEP operation	
Step over	
step-by-step execution	1-7
stopped at a break point	4-7. 5-5
subprogram	
Subprogram End (RET)	
subroutines (subprograms)	
subscript i	
subscript j	
substitute (=)	
subtract (-)	
SU0414Ct (-)	
SVB-01	
SVR	
synchronization	
syntax error	
system configuration	
system configuration	
system registers	
system setup	
system work	
system work number	
system work number	
system work number setting	4-0, 4-13
Т	

T type commands	 	 	 		7-17
TAN	 	 	 	2-6,8	3-153

Tangent (TAN)	8-153
target position	8-3
Task execution status displayed in a tree structure	9-23
terminator	3-3
test run function	- 1-7, 2-5, 9-28
TIM	2-6, 8-126
TOF	2-6, 8-170
TON	2-6, 8-168
tool icons	9-5, 9-16
transfer	1-8
transferring the motion program	3-10
trigonometric functions	8-150
types of variable	6-2

U

UFC2-6, 8-115	
Update current position 9-19	
user function call 8-115, 8-123	
User Function Call From Motion Program (UFC) 8-115	
User Function Call from Sequence Program (FUNC) 8-123	
user functions2-3, 8-116	

V

variable	6-2
using variables	6-7
variables and data types	7-7
VEL	
virtual axis	1-12

W

warning display	9-35
what is a motion program?	1-2
what is a sequence program?	1-14
WHILE WEND	2-6, 8-103
work coordinate system	8-3, 8-84, 8-92
work register	5-5
work registers	4-6

Χ

XOR (^) 8-140
Z

Zero Point Return (ZRN)	8-84
zero point return methods	8-85
zero point return speed	8-85
ZRN	

Revision History

The revision dates and numbers of the revised manuals are given on the bottom of the back cover.

MANUAL NO. SIEP C880700 38A <	<0>-1
-	WEB revision number
Published in Japan July 2009	Revision number
	Date of publication

Date of Publication	Rev. No.	WEB Rev. No.	Section	Revised Contents
May 2017 <3>	<3>	1	8.1.11	Revision: Descriptions on setting interpolation acceleration/deceleration mode
			8.4.2 (3)	Revision: Programming example of a repeat command
			Back cover	Revision: Address
May 2015		0	Front cover	Revision: Format
			-	Printed version of the user's manual that is available on the web (web version: SIEP C880700 38D<2>-1)
			4.3.3 (2)	Revision: Information on program continuous operation start request
			7.5.2, 8.1.11, Appen- dices A.1	Addition: Information on the ACCMODE command
			Appendices D.1 (3)	Addition: Precaution on motion program operation when an alarm occurs for one or more axes specified in an axis move command
			Back cover	Revision: Format and address
July 2014	<2>	1	1.1, 1.8, 2.1.1, 2.1.3, 2.2.2, C.1, C.2	Addition: Description of CPU-03, CPU-04 and MPU-01
May 2014	0	-	Printed version of the user's manual that is available on the web (web version: SIEP C880700 38B<1>-5)	
			Back cover	Revision: Address
July 2012 <1>	<1>	5	8.2.3 (3)	Revision: Figure and INFO on interpolation feed speed
			Back cover	Revision: Address
November 2011		4	6.2.2 (3), 6.2.6 (3)	Addition: VEL command in the column of important
June 2011		3	8.2.4	Revision: Descriptions on setting items for MCW and MCC commands.
April 2011		2	7.1.2 (5)	Revision: Application example "TIM TML00000" \rightarrow "TIM TMW00000"
November 2010		1	Front cover	Revision: Format
			8.4.11 (2)	Revision: Usable data
			Back cover	Revision: Address, format
September 2010		0	-	Printed version of the user's manual, SIEP C880700 38<0>-2, available on the web.
			All chapters	Based on Japanese user's manual, SIJP C880700 38B<2>, printed in December 2009.
			Preface	Addition: Warranty
			D.2 (4)	Addition: Precautions on the motion parameter
			Back cover	Revision: Address
September 2009	<0>	2	Preface	Addition: Warranty
			Back cover	Revision: Address
July 2009		1	Appendices A.4	Revision: Descriptions in columns of sequence program for Branching command and Repeat command
			Back cover	Revision: Address
September 2008	_	-	-	First edition

Machine Controller MP2000 Series **USER'S MANUAL** for Motion Programming

IRUMA BUSINESS CENTER (SOLUTION CENTER) 480, Kamifujisawa, Iruma, Saitama, 358-8555, Japan Phone: +81-4-2962-5151 Fax: +81-4-2962-6138 http://www.yaskawa.co.jp

YASKAWA AMERICA, INC.

2121, Norman Drive South, Waukegan, IL 60085, U.S.A. Phone: +1-800-YASKAWA (927-5292) or +1-847-887-7000 Fax: +1-847-887-7310 http://www.yaskawa.com

YASKAWA ELÉTRICO DO BRASIL LTDA.

777, Avenida Piraporinha, Diadema, São Paulo, 09950-000, Brasil Phone: +55-11-3585-1100 Fax: +55-11-3585-1187 http://www.yaskawa.com.br

YASKAWA EUROPE GmbH

Hauptstraße 185, 65760 Eschborn, Germany Phone: +49-6196-569-300 Fax: +49-6196-569-398 http://www.yaskawa.eu.com E-mail: info@yaskawa.eu.com

YASKAWA ELECTRIC KOREA CORPORATION

35F, Three IFC, 10 Gukjegeumyung-ro, Yeongdeungpo-gu, Seoul, 07326, Korea Phone: +82-2-784-7844 Fax: +82-2-784-8495 http://www.yaskawa.co.kr

YASKAWA ELECTRIC (SINGAPORE) PTE. LTD.

151, Lorong Chuan, #04-02A, New Tech Park, 556741, Singapore Phone: +65-6282-3003 Fax: +65-6289-3003 http://www.yaskawa.com.sg

YASKAWA ELECTRIC (THAILAND) CO., LTD.

59, 1st-5th Floor, Flourish Building, Soi Ratchadapisek 18, Ratchadapisek Road, Huaykwang, Bangkok, 10310, Thailand Phone: +66-2-017-0099 Fax: +66-2-017-0799 http://www.yaskawa.co.th

YASKAWA ELECTRIC (CHINA) CO., LTD. 22F, One Corporate Avenue, No.222, Hubin Road, Shanghai, 200021, China Phone: +86-21-5385-2200 Fax: +86-21-5385-3299 http://www.yaskawa.com.cn

YASKAWA ELECTRIC (CHINA) CO., LTD. BEIJING OFFICE Room 1011, Tower W3 Oriental Plaza, No.1, East Chang An Ave.,

Dong Cheng District, Beijing, 100738, China Phone: +86-10-8518-4086 Fax: +86-10-8518-4082

YASKAWA ELECTRIC TAIWAN CORPORATION

12F, No. 207, Sec. 3, Beishin Rd., Shindian Dist., New Taipei City 23143, Taiwan Phone: +886-2-8913-1333 Fax: +886-2-8913-1513 or +886-2-8913-1519 http://www.yaskawa.com.tw

YASKAWA ELECTRIC CORPORATION

In the event that the end user of this product is to be the military and said product is to be employed in any weapons systems or the manufacture thereof, the export will fall under the relevant regulations as stipulated in the Foreign Exchange and Foreign Trade Regulations. Therefore, be sure to follow all procedures and submit all relevant documentation according to any and all rules, regulations and laws that may apply. Specifications are subject to change without notice for ongoing product modifications and improvements.

© 2008 YASKAWA ELECTRIC CORPORATION

MANUAL NO. SIEP C880700 38D <3>-1 Published in Japan May 2017 17-4-13