AC Servo Drives
Σ-V Series
USER'S MANUAL
Setup
Rotational Motor
SGDV SERVOPACK
SGMJV/SGMAV/SGMPS/SGMGV/SGMSV/SGMCS Servomotors
About this Manual

This manual describes procedures required for installation, wiring, and connecting Σ-V Series servo drives, including a JOG operation for servomotors not connected to machinery.

Be sure to refer to this manual and perform setup operations correctly.

Keep this manual in a location where it can be accessed for reference whenever required.

Description of Technical Terms

The following table shows the meanings of terms used in this manual.

<table>
<thead>
<tr>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Servomotor</td>
<td>Σ-V Series SGMJV, SGMAV, SGMPS, SGMGV, SGMSV, or SGMCS (Direct Drive) servomotor</td>
</tr>
<tr>
<td>SERVOPACK</td>
<td>Σ-V Series SGDV SERVOPACK</td>
</tr>
<tr>
<td>Servo Drive</td>
<td>A set including a servomotor and SERVOPACK (i.e., a servo amplifier)</td>
</tr>
<tr>
<td>Servo System</td>
<td>A servo control system that includes the combination of a servo drive with a host controller and peripheral devices</td>
</tr>
<tr>
<td>Analog pulse model</td>
<td>Analog voltage and pulse-train reference used for SERVOPACK interface.</td>
</tr>
<tr>
<td>M-II model</td>
<td>MECHATROLINK-II communications reference used for SERVOPACK interface.</td>
</tr>
<tr>
<td>M-III model</td>
<td>MECHATROLINK-III communications reference used for SERVOPACK interface.</td>
</tr>
<tr>
<td>Command option attachable type</td>
<td>SERVOPACK for which a command option module can be installed.</td>
</tr>
</tbody>
</table>

IMPORTANT Explanations

The following icon is displayed for explanations requiring special attention.

- Indicates important information that should be memorized, as well as precautions, such as alarm displays, that do not involve potential damage to equipment.

Notation Used in this Manual

In this manual, the names of reverse signals (ones that are valid when low) are written with a forward slash (/) before the signal name, as shown in the following example:

Example

S-ON = /S-ON
Manuals Related to the Σ-V Series

Refer to the following manuals as required.

<table>
<thead>
<tr>
<th>Name</th>
<th>Selecting Models and Peripheral Devices</th>
<th>Ratings and Specifications</th>
<th>System Design</th>
<th>Panels and Wiring</th>
<th>Trial Operation</th>
<th>Trial Operation and Servo Adjustment</th>
<th>Maintenance and Inspection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σ-V Series Product Catalog (KAEP S800000 42)</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Σ-V Series User's Manual Design and Maintenance Rotational Motor/Analog Voltage and Pulse Train Reference (SIEP S800000 45) | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |*
| Σ-V Series User's Manual Design and Maintenance Rotational Motor/MECHATROLINK-II Communications Reference (SIEP S800000 46) | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |*
| Σ-V Series User's Manual MECHATROLINK-II Command (SIEP S800000 54) | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |*
| Σ-V Series User's Manual Design and Maintenance Rotational Motor/Command Option Attachable Type (SIEP S800000 60) | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |*
<table>
<thead>
<tr>
<th>Name</th>
<th>Selecting Models and Peripheral Devices</th>
<th>Ratings and Specifications</th>
<th>System Design</th>
<th>Panels and Wiring</th>
<th>Trial Operation</th>
<th>Trial Operation and Servo Adjustment</th>
<th>Maintenance and Inspection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σ-V Series User’s Manual MECHATROLINK-III Command (SIEP S800000 63)</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Σ-V Series User’s Manual Design and Maintenance Rotational Motor/ MECHATROLINK-III Communications Reference (SIEP S800000 64)</td>
<td></td>
<td>✓ ✓ ✓</td>
<td>✓ ✓ *</td>
<td>✓ ✓ *</td>
<td>✓ ✓ *</td>
<td>✓ ✓ *</td>
<td></td>
</tr>
<tr>
<td>Σ-V Series User’s Manual Indexer Module (SIEP C720829 02)</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓ ✓</td>
<td>✓ ✓ *</td>
<td>✓ ✓ *</td>
<td>✓ ✓ *</td>
<td>✓ ✓ *</td>
<td></td>
</tr>
<tr>
<td>Σ-V Series User’s Manual EtherCAT (CoE) Network Module (SIEP C720829 04)</td>
<td></td>
<td>✓ ✓ ✓</td>
<td>✓ ✓ *</td>
<td>✓ ✓ *</td>
<td>✓ ✓ *</td>
<td>✓ ✓ *</td>
<td></td>
</tr>
<tr>
<td>AC SERVOMOTOR Safety Precautions (TOBP C230200 00)</td>
<td></td>
<td>✓ ✓ ✓</td>
<td></td>
</tr>
<tr>
<td>Σ-V Series AC SERVOPACK SGDV Safety Precautions (TOBP C710800 10)</td>
<td>✓</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td></td>
</tr>
<tr>
<td>Σ-V Series Option Module Safety Precautions (TOBP C720829 00)</td>
<td></td>
<td>✓ ✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td></td>
</tr>
<tr>
<td>Σ-V Series Command Option Module Installation Guide (TOBP C720829 01)</td>
<td></td>
<td>✓ ✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td>✓ ✓</td>
<td></td>
</tr>
</tbody>
</table>
Refer to these manuals for troubleshooting of problems which may occur during setup.
(Troubleshooting which is common for command option modules is described in Σ-V Series User's Manual Design and Maintenance Rotational Motor/Command Option Attachable Type (SIEP S800000 60).

<table>
<thead>
<tr>
<th>Name</th>
<th>Selecting Models and Peripheral Devices</th>
<th>Ratings and Specifications</th>
<th>System Design</th>
<th>Panels and Wiring</th>
<th>Trial Operation</th>
<th>Trial Operation and Servo Adjustment</th>
<th>Maintenance and Inspection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Σ-V Series Indexer Module Installation Guide (TOBP C720829 02)</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Σ-V Series Feedback Option Module Installation Guide (TOBP C720829 03)</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Σ Series Digital Operator Safety Precautions (TOBP C730800 00)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
Safety Information

The following conventions are used to indicate precautions in this manual. Failure to heed precautions provided in this manual can result in serious or possibly even fatal injury or damage to the products or to related equipment and systems.

⚠️ WARNING
Indicates precautions that, if not heeded, could possibly result in loss of life or serious injury.

⚠️ CAUTION
Indicates precautions that, if not heeded, could result in relatively serious or minor injury, damage to the product, or faulty operation. In some situations, the precautions indicated could have serious consequences if not heeded.

🚫 PROHIBITED
Indicates prohibited actions that must not be performed. For example, this symbol would be used to indicate that fire is prohibited as follows: 🚫

⚠️ MANDATORY
Indicates compulsory actions that must be performed. For example, this symbol would be used as follows to indicate that grounding is compulsory: ⚪️
Safety Precautions

These safety precautions are very important. Read them before performing any procedures such as checking products on delivery, storage and transportation, installation, wiring, operation and inspection, or disposal. Be sure to always observe these precautions thoroughly.

⚠️ WARNING

- Never touch any rotating motor parts while the motor is running. Failure to observe this warning may result in injury.
- Before starting operation with a machine connected, make sure that an emergency stop can be applied at any time. Failure to observe this warning may result in injury or damage to the product.
- Never touch the inside of the SERVOPACKs. Failure to observe this warning may result in electric shock.
- Do not remove the cover of the power supply terminals while the power is ON. Failure to observe this warning may result in electric shock.
- After the power is turned OFF or after a voltage resistance test, do not touch terminals while the CHARGE lamp is ON. Residual voltage may cause electric shock.
- Follow the procedures and instructions provided in this manual for trial operation. Failure to do so may result not only in faulty operation and damage to equipment, but also in personal injury.
- The multi-turn output range for the Σ-V Series absolute position detecting system is different from that of earlier systems (15-bit and 12-bit encoders). In particular, change the system to configure the Σ series infinite-length positioning system with the Σ-V Series.
- The multi-turn limit value need not be changed except for special applications. Changing it inappropriately or unintentionally can be dangerous.
- If the Multi-turn Limit Disagreement alarm occurs, check the setting of parameter Pn205 in the SERVOPACK to be sure that it is correct. If Fn013 is executed when an incorrect value is set in Pn205, an incorrect value will be set in the encoder. The alarm will disappear even if an incorrect value is set, but incorrect positions will be detected, resulting in a dangerous situation where the machine will move to unexpected positions.
- Do not remove the front cover, cables, connectors, or optional items from the upper front of the SERVOPACK while the power is ON. Failure to observe this warning may result in electric shock.
- Do not damage, press, exert excessive force on, or place heavy objects on the cables. Failure to observe this warning may result in electric shock, stopping operation of the product, or fire.
- Do not modify the product. Failure to observe this warning may result in injury, fire, or damage to the product.
• Provide an appropriate braking device on the machine side to ensure safety. The holding brake on a servomotor with a brake is not a braking device for ensuring safety. Failure to observe this warning may result in injury.

• Do not come close to the machine immediately after resetting a momentary power loss. The machine may restart unexpectedly. Take appropriate measures to ensure safety against an unexpected restart. Failure to observe this warning may result in injury.

• Connect the ground terminal according to local electrical codes (100 Ω or less for a SERVOPACK with a 100, 200 V power supply. 10 Ω or less for a SERVOPACK with a 400 V power supply.) Improper grounding may result in electric shock or fire.

• Installation, disassembly, or repair must be performed only by authorized personnel. Failure to observe this warning may result in electric shock or injury.

• The person who designs a system using the safety function (Hard Wire Baseblock function) must have full knowledge of the related safety standards and full understanding of the instructions in Σ-V Series User’s Manual Design and Maintenance (SIEP S800000 45/46/60/64). Failure to observe this warning may result in injury or damage to the product.

Storage and Transportation

• Do not store or install the product in the following locations. Failure to observe this caution may result in fire, electric shock, or damage to the product.
 - Locations subject to direct sunlight
 - Locations subject to temperatures outside the range specified in the storage/installation temperature conditions
 - Locations subject to humidity outside the range specified in the storage/installation humidity conditions
 - Locations subject to condensation as the result of extreme changes in temperature
 - Locations subject to corrosive or flammable gases
 - Locations subject to dust, salts, or iron dust
 - Locations subject to exposure to water, oil, or chemicals
 - Locations subject to shock or vibration

• Do not hold the product by the cables, motor shaft or detector while transporting it. Failure to observe this caution may result in injury or malfunction.

• Do not place any load exceeding the limit specified on the packing box. Failure to observe this caution may result in injury or malfunction.
Storage and Transportation (cont’d)

⚠️ CAUTION

• If disinfectants or insecticides must be used to treat packing materials such as wooden frames, pallets, or plywood, the packing materials must be treated before the product is packaged, and methods other than fumigation must be used.
 Example: Heat treatment, where materials are kiln-dried to a core temperature of 56°C for 30 minutes or more.
If the electronic products, which include stand-alone products and products installed in machines, are packed with fumigated wooden materials, the electrical components may be greatly damaged by the gases or fumes resulting from the fumigation process. In particular, disinfectants containing halogen, which includes chlorine, fluorine, bromine, or iodine can contribute to the erosion of the capacitors.

Installation

⚠️ CAUTION

• Never use the product in an environment subject to water, corrosive gases, inflammable gases, or combustibles.
 Failure to observe this caution may result in electric shock or fire.
 • Do not step on or place a heavy object on the product.
 Failure to observe this caution may result in injury.
 • Do not cover the inlet or outlet ports and prevent any foreign objects from entering the product.
 Failure to observe this caution may cause internal elements to deteriorate resulting in malfunction or fire.
 • Be sure to install the product in the correct direction.
 Failure to observe this caution may result in malfunction.
 • Provide the specified clearances between the SERVOPACK and the control panel or with other devices.
 Failure to observe this caution may result in fire or malfunction.
 • Do not apply any strong impact.
 Failure to observe this caution may result in malfunction.
Wiring

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Be sure to wire correctly and securely. Failure to observe this caution may result in motor overrun, injury, or malfunction.</td>
</tr>
<tr>
<td>• Do not connect a commercial power supply to the U, V, or W terminals for the servomotor connection. Failure to observe this caution may result in injury or fire.</td>
</tr>
<tr>
<td>• Securely connect the main circuit power supply terminals and servomotor connection terminals. Failure to observe this caution may result in fire.</td>
</tr>
<tr>
<td>• Do not bundle or run the main circuit cables together with the I/O signal cables or the encoder cables in the same duct. Keep them separated by at least 30 cm. Failure to do so may result in malfunction.</td>
</tr>
<tr>
<td>• Use shielded twisted-pair wires or multi-core shielded twisted-pair wires for I/O signal cables and the encoder cables.</td>
</tr>
<tr>
<td>• I/O signal cables must be no longer than 3 m, encoder cables must be no longer than 50 m, and control power supply (+24 V, 0 V) cables for a 400 V input SERVOPACK must be no longer than 10 m.</td>
</tr>
<tr>
<td>• Do not touch the power terminals while the CHARGE lamp is ON after turning power OFF because high voltage may still remain in the SERVOPACK. Make sure the charge indicator is off first before starting an inspection.</td>
</tr>
<tr>
<td>• Observe the following precautions when wiring main circuit terminals.</td>
</tr>
<tr>
<td>• Remove detachable main circuit terminals from the SERVOPACK prior to wiring.</td>
</tr>
<tr>
<td>• Insert only one main circuit cable per opening in the main circuit terminals.</td>
</tr>
<tr>
<td>• Make sure that no part of the core wire comes into contact with (i.e., short-circuit) adjacent wires.</td>
</tr>
<tr>
<td>• Install a battery at either the host controller or the battery unit of the encoder, but not both. It is dangerous to install batteries at both ends simultaneously, because that sets up a loop circuit between the batteries.</td>
</tr>
<tr>
<td>• Always use the specified power supply voltage. An incorrect voltage may result in fire or malfunction.</td>
</tr>
<tr>
<td>• Take appropriate measures to ensure that the input power supply is supplied within the specified voltage fluctuation range. Be particularly careful in places where the power supply is unstable. An incorrect power supply may result in damage to the product.</td>
</tr>
<tr>
<td>• Install external breakers or other safety devices against short-circuiting in external wiring. Failure to observe this caution may result in fire.</td>
</tr>
<tr>
<td>• Take appropriate and sufficient countermeasures for each form of potential interference when installing systems in the following locations.</td>
</tr>
<tr>
<td>• Locations subject to static electricity or other forms of noise</td>
</tr>
<tr>
<td>• Locations subject to strong electromagnetic fields and magnetic fields</td>
</tr>
<tr>
<td>• Locations subject to possible exposure to radioactivity</td>
</tr>
<tr>
<td>• Locations close to power supplies</td>
</tr>
<tr>
<td>Failure to observe this caution may result in damage to the product.</td>
</tr>
</tbody>
</table>
Wiring (cont’d)

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Do not reverse the polarity of the battery when connecting it. Failure to observe this caution may result in damage to the battery, the SERVO-PACK, or cause an explosion.</td>
</tr>
<tr>
<td>• Wiring or inspection must be performed by a technical expert.</td>
</tr>
<tr>
<td>• Use a 24 VDC power supply with double insulation or reinforced insulation.</td>
</tr>
<tr>
<td>• Failures caused by incorrect wiring or wrong voltage application in the brake circuit may damage the equipment or cause an accident resulting in death or injury. Follow the procedures and instructions for wiring and trial operation precisely as described in this manual.</td>
</tr>
<tr>
<td>• Leakage current may increase depending on the type of noise filter and the grounding conditions. When using a detector or a breaker for leakage current, select the appropriate one by considering the type of noise filter and the grounding conditions. For details, contact the manufacturer of the noise filter.</td>
</tr>
<tr>
<td>• Incorrect wiring or incorrect voltage application to the output circuit may cause short-circuit. The above failures will prevent the holding brake from working, which may damage the machine or cause an accident resulting in death or injury.</td>
</tr>
<tr>
<td>• Inverting the polarity of the brake signal (/BK), i.e. positive logic, will prevent the holding brake from working in case of its signal line disconnection. If this setting is absolutely necessary, check the operation and confirm that there are no safety problems.</td>
</tr>
</tbody>
</table>

Operation

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Conduct trial operations on the servomotor alone, with the motor shaft disconnected from the machine to avoid accidents. Failure to observe this caution may result in injury.</td>
</tr>
<tr>
<td>• During trial operation, confirm that the holding brake works correctly. Furthermore, secure system safety against problems such as signal line disconnection.</td>
</tr>
<tr>
<td>• Before starting operation with a machine connected, change the settings to match the parameters of the machine. Starting operation without matching the proper settings may cause the machine to run out of control or malfunction.</td>
</tr>
<tr>
<td>• Do not frequently turn power ON and OFF.</td>
</tr>
<tr>
<td>• Frequently turning power ON and OFF causes elements inside the SERVOPACK to deteriorate. Do not use the servo drive with an application that requires frequently turning power ON and OFF.</td>
</tr>
<tr>
<td>• After the actual operation starts, the allowable interval for turning power ON and OFF is one hour or longer.</td>
</tr>
</tbody>
</table>
Operation (cont’d)

⚠ CAUTION

- When using JOG operations (Fn002) origin search operations (Fn003), or EasyFFT operations (Fn206), the dynamic brake function does not work for reverse overtravel or forward overtravel. Take necessary precautions. Failure to observe this caution may result in damage to the product.
- When using the servomotor for a vertical axis, install safety devices to prevent workpieces from falling due to alarms or overtravels. Set the servomotor so that it will stop in the zero clamp state when overtravel occurs. Failure to observe this caution may cause workpieces to fall due to overtravel.
- When not using turning-less function, set to the correct moment of inertia ratio (Pn103). Setting to an incorrect moment of inertia ratio may cause vibration.
- Do not touch the SERVOPACK heatsinks, regenerative resistor, or servomotor while power is ON or soon after the power is turned OFF. Failure to observe this caution may result in burns due to high temperatures.
- Do not make any extreme adjustments or setting changes of parameters. Failure to observe this caution may result in injury or damage to the product due to unstable operation.
- When an alarm occurs, remove the cause, reset the alarm after confirming safety, and then resume operation. Failure to observe this caution may result in damage to the product, fire, or injury.
- Do not use the holding brake of the servomotor for braking. Failure to observe this caution may result in malfunction.
- Always use the servomotor and SERVOPACK in one of the specified combinations. Failure to observe this caution may result in fire or malfunction.
- The servomotor stopping method of turning the main-circuit or control-circuit power OFF without turning the servo OFF during operation can not be set in Parameter Pn001. Use the following method to stop the servomotor:
 - When turning the main-circuit power OFF without turning the servo OFF: The servomotor will be stopped by dynamic braking (DB).
 - When turning the control-circuit power OFF without turning the servo OFF: The stopping method will vary depending on the SERVOPACK model. Refer to the Σ-V Series User’s Manual Design and Maintenance for details.
Maintenance and Inspection

⚠️ CAUTION

- Do not disassemble the SERVOPACK. Failure to observe this caution may result in electric shock or injury.
- Do not attempt to change wiring while the power is ON. Failure to observe this caution may result in electric shock or injury.
- When replacing the SERVOPACK, resume operation only after copying the previous SERVOPACK parameters to the new SERVOPACK. Failure to observe this caution may result in damage to the product.
- Be sure to eliminate static electricity before operating buttons and switches inside the front cover. Failure to observe this caution may result in damage to the product.

Disposal

⚠️ CAUTION

- When disposing of the products, treat them as ordinary industrial waste.

General Precautions

Observe the following general precautions to ensure safe application.

- The products shown in illustrations in this manual are sometimes shown without covers or protective guards. Always replace the cover or protective guard as specified first, and then operate the products in accordance with the manual.
- The drawings presented in this manual are typical examples and may not match the product you received.
- If the manual must be ordered due to loss or damage, inform your nearest Yaskawa representative or one of the offices listed on the back of this manual.
Warranty

(1) Details of Warranty

■ Warranty Period

The warranty period for a product that was purchased (hereinafter called "delivered product") is one year from the time of delivery to the location specified by the customer or 18 months from the time of shipment from the Yaskawa factory, whichever is sooner.

■ Warranty Scope

Yaskawa shall replace or repair a defective product free of charge if a defect attributable to Yaskawa occurs during the warranty period above. This warranty does not cover defects caused by the delivered product reaching the end of its service life and replacement of parts that require replacement or that have a limited service life.

This warranty does not cover failures that result from any of the following causes.

1. Improper handling, abuse, or use in unsuitable conditions or in environments not described in product catalogs or manuals, or in any separately agreed-upon specifications
2. Causes not attributable to the delivered product itself
3. Modifications or repairs not performed by Yaskawa
4. Abuse of the delivered product in a manner in which it was not originally intended
5. Causes that were not foreseeable with the scientific and technological understanding at the time of shipment from Yaskawa
6. Events for which Yaskawa is not responsible, such as natural or human-made disasters

(2) Limitations of Liability

1. Yaskawa shall in no event be responsible for any damage or loss of opportunity to the customer that arises due to failure of the delivered product.
2. Yaskawa shall not be responsible for any programs (including parameter settings) or the results of program execution of the programs provided by the user or by a third party for use with programmable Yaskawa products.
3. The information described in product catalogs or manuals is provided for the purpose of the customer purchasing the appropriate product for the intended application. The use thereof does not guarantee that there are no infringements of intellectual property rights or other proprietary rights of Yaskawa or third parties, nor does it construe a license.
4. Yaskawa shall not be responsible for any damage arising from infringements of intellectual property rights or other proprietary rights of third parties as a result of using the information described in catalogs or manuals.
(3) Suitability for Use

1. It is the customer’s responsibility to confirm conformity with any standards, codes, or regulations that apply if the Yaskawa product is used in combination with any other products.

2. The customer must confirm that the Yaskawa product is suitable for the systems, machines, and equipment used by the customer.

3. Consult with Yaskawa to determine whether use in the following applications is acceptable. If use in the application is acceptable, use the product with extra allowance in ratings and specifications, and provide safety measures to minimize hazards in the event of failure.
 - Outdoor use, use involving potential chemical contamination or electrical interference, or use in conditions or environments not described in product catalogs or manuals
 - Nuclear energy control systems, combustion systems, railroad systems, aviation systems, vehicle systems, medical equipment, amusement machines, and installations subject to separate industry or government regulations
 - Systems, machines, and equipment that may present a risk to life or property
 - Systems that require a high degree of reliability, such as systems that supply gas, water, or electricity, or systems that operate continuously 24 hours a day
 - Other systems that require a similar high degree of safety

4. Never use the product for an application involving serious risk to life or property without first ensuring that the system is designed to secure the required level of safety with risk warnings and redundancy, and that the Yaskawa product is properly rated and installed.

5. The circuit examples and other application examples described in product catalogs and manuals are for reference. Check the functionality and safety of the actual devices and equipment to be used before using the product.

6. Read and understand all use prohibitions and precautions, and operate the Yaskawa product correctly to prevent accidental harm to third parties.

(4) Specifications Change

The names, specifications, appearance, and accessories of products in product catalogs and manuals may be changed at any time based on improvements and other reasons. The next editions of the revised catalogs or manuals will be published with updated code numbers. Consult with your Yaskawa representative to confirm the actual specifications before purchasing a product.
Applicable Standards

North American Safety Standards (UL)

![UL Logo]

- **SERVOPACK**
 - UL508C (E147823)
- **Servomotor**
 - UL1004 (E165827)

* Underwriters Laboratories Inc.

European Standards

![CE Logo]

<table>
<thead>
<tr>
<th>Model</th>
<th>Low Voltage Directive</th>
<th>EMC Directive</th>
<th>Safety Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERVOPACK</td>
<td>EN50178 EN61800-5-1</td>
<td>EN55011 group 1 class A, EN61800-3</td>
<td>EN954-1 IEC61508-1 to 4</td>
</tr>
<tr>
<td>Servomotor</td>
<td>IEC60034-1 IEC60034-5 IEC60034-8 IEC60034-9</td>
<td>EN55011 group 1 class A, EN61800-3</td>
<td>EN61800-3 EN61000-6-2</td>
</tr>
</tbody>
</table>

Note: Because SERVOPACKs and servomotors are built into machines, certification is required after installation in the user’s product.
Contents

About this Manual ... iii
Safety Precautions ... viii
Warranty ... xv
Applicable Standards .. xvii

1 Overview of Setup .. 1-1

2 Installation .. 2-1
 2.1 Installation Environment and Applicable Standards 2-2
 2.1.1 Servomotor Installation Environment 2-2
 2.1.2 SERVOPACK Installation Environment 2-3
 2.1.3 Installation Conditions for Applicable Standards 2-4
 2.2 Servomotor Installation .. 2-5
 2.2.1 Orientation ... 2-5
 2.2.2 Installation Standards .. 2-5
 2.2.3 Connecting Servomotor to Machine 2-6
 2.2.4 Protective Structure .. 2-7
 2.2.5 Other Precautions .. 2-8
 2.3 SERVOPACK Installation .. 2-9
 2.3.1 Orientation ... 2-9
 2.3.2 Installation Standards .. 2-11
 2.4 EMC Installation Conditions ... 2-13
 2.4.1 SGDV-††††01† (Analog Pulse Model) 2-13
 2.4.2 SGDV-††††11† (M-II Model) 2-21
 2.4.3 SGDV-††††21† (M-III Model) 2-29
 2.4.4 SGDV-††††E1A SERVOPACK (Command Option Attachable Type) 2-37
 2.4.5 Other Precautions .. 2-37

3 Wiring and Connection .. 3-1
 3.1 Precautions for Wiring .. 3-2
 3.2 System Configuration Diagram .. 3-3
 3.2.1 Connecting to SGDV-††††01† SERVOPACK (Analog Pulse Model) ... 3-3
 3.2.2 Connecting to SGDV-††††11† SERVOPACK (M-II Model) 3-7
 3.2.3 Connecting to SGDV-††††21† SERVOPACK (M-III Model) 3-11
 3.2.4 Connecting to SGDV-††††E1A SERVOPACK (Command Option Attachable Type) 3-15
 3.3 Main Circuit Wiring ... 3-19
 3.3.1 Names and Functions of Main Circuit Terminals 3-19
 3.3.2 SERVOPACK Main Circuit Wire Size 3-20
 3.3.3 Typical Main Circuit Wiring Examples 3-24
 3.3.4 Wiring the Main Circuit Terminal Connector (Spring Type) 3-28
 3.4 Connecting Regenerative Resistors 3-31
 3.4.1 Connecting Regenerative Resistor 3-31
4 Safety Function ... 4-1
4.1 Outline .. 4-2
4.2 Hard Wire Base Block (HWBB) Function 4-3
4.3 Safety Function Signal (CN8) Names and Functions 4-4
4.4 Precautions When Not Using the Safety Function 4-4
4.5 Connecting a Safety Function Device 4-5

5 Trial Operation (Checking Servomotor Operation) 5-1
5.1 Outline .. 5-2
5.2 Inspection and Checking before Trial Operation 5-2
5.3 JOG Operation Using a Panel Operator 5-5
5.4 JOG Operation Using a Digital Operator 5-7
5.5 JOG Operation Using SigmaWin+ 5-10

Revision History
This chapter describes how to set up the Σ-V series of servo drives.
This chapter describes the flow of the setup procedure from installation until a JOG operation. A panel operator, a digital operator, and SigmaWin+, (which is an engineering tool that can be used with a PC) are available to set up a servo drive. The panel operator is included with the SERVOPACK of analog pulse models, and the digital operator and SigmaWin+ are sold separately.

CAUTION

- An alarm or warning may be generated if communications are executed with the host controller during operation using SigmaWin+ or the digital operator. If an alarm or warning is generated, the process currently being executed may be aborted and the system may stop.

Be sure to read 5.2 Inspection and Checking before Trial Operation.

IMPORTANT

<table>
<thead>
<tr>
<th>Operation</th>
<th>Reference (in this manual)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Install the servomotor and SERVOPACK.</td>
<td>Chapter 2 Installation</td>
</tr>
<tr>
<td>Perform the required wiring and connections for a JOG operation.</td>
<td>Chapter 3 Wiring and Connection</td>
</tr>
<tr>
<td>Perform a JOG operation for the servomotor using</td>
<td></td>
</tr>
<tr>
<td>• the panel operator</td>
<td></td>
</tr>
<tr>
<td>• the digital operator, or</td>
<td></td>
</tr>
<tr>
<td>• SigmaWin+</td>
<td></td>
</tr>
<tr>
<td>Chapter 5 Trial Operation (Checking Servomotor Operation)</td>
<td></td>
</tr>
<tr>
<td>• Trial Operation Using the Panel Operator</td>
<td></td>
</tr>
<tr>
<td>→ 5.3 JOG Operation Using a Panel Operator</td>
<td></td>
</tr>
<tr>
<td>• Trial Operation Using the Digital Operator</td>
<td></td>
</tr>
<tr>
<td>→ 5.4 JOG Operation Using a Digital Operator</td>
<td></td>
</tr>
<tr>
<td>• Trial Operation Using SigmaWin+</td>
<td></td>
</tr>
<tr>
<td>→ 5.5 JOG Operation Using SigmaWin+</td>
<td></td>
</tr>
</tbody>
</table>

* Trial operation using the panel operator is available with analog pulse models only.
This chapter describes how to install the servomotor and the SERVOPACK.

2.1 Installation Environment and Applicable Standards 2-2
 2.1.1 Servomotor Installation Environment 2-2
 2.1.2 SERVOPACK Installation Environment 2-3
 2.1.3 Installation Conditions for Applicable Standards 2-4

2.2 Servomotor Installation ... 2-5
 2.2.1 Orientation .. 2-5
 2.2.2 Installation Standards .. 2-5
 2.2.3 Connecting Servomotor to Machine 2-6
 2.2.4 Protective Structure .. 2-7
 2.2.5 Other Precautions ... 2-8

2.3 SERVOPACK Installation ... 2-9
 2.3.1 Orientation .. 2-9
 2.3.2 Installation Standards .. 2-11

2.4 EMC Installation Conditions ... 2-13
 2.4.1 SGDV-□□□□01□ (Analog Pulse Model) 2-13
 2.4.2 SGDV-□□□□11□ (M-II Model) .. 2-21
 2.4.3 SGDV-□□□□21□ (M-III Model) 2-29
 2.4.4 SGDV-□□□□E1A (Command Option Attachable Type) 2-37
 2.4.5 Other Precautions ... 2-37
2.1 Installation Environment and Applicable Standards

The installation environment and the applicable standards for servomotors and SERVOPACKs are described in this section.

2.1.1 Servomotor Installation Environment

- Ambient temperature: 0 to 40°C
- Ambient humidity: 80% RH or less (with no condensation)
- Altitude: 1, 000 m or less
- Vibration resistance

The servomotor will withstand the following vibration acceleration in three directions: vertical, side to side, and front to back.

<table>
<thead>
<tr>
<th>Servomotor Model</th>
<th>Vibration Acceleration at Flange</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGMJV, SGMAV, SGMP, SGMCS-02 to -35</td>
<td>49 m/s²</td>
</tr>
<tr>
<td>SGMGV-03 to -44, SGMPS-10 to -50</td>
<td>49 m/s² (Front to back direction: 24.5 m/s²)</td>
</tr>
<tr>
<td>SGMGV-55 to -1E, SGMCS-45 to -2Z</td>
<td>24.5 m/s²</td>
</tr>
<tr>
<td>SGMSV-70</td>
<td>14.7 m/s²</td>
</tr>
</tbody>
</table>

- Shock resistance: 490 m/s² at servomotor flange
- Installation site: An environment that satisfies the following conditions
 - Indoors and free of corrosive or explosive gases
 - Well-ventilated and free of dust and moisture
 - Facilitates inspection and cleaning
 - Free of high magnetic field
2.1.2 SERVOPACK Installation Environment

- Surrounding air temperature: 0 to 55°C
- Ambient humidity: 90% RH or less (with no condensation)
- Altitude: 1,000 m or less
- Vibration resistance: 4.9 m/s²
- Shock resistance: 19.6 m/s²

Installation Precautions

• Mounting in a Control Panel
 To prevent the temperature around the SERVOPACK from exceeding 55°C, take into account the size of the control panel, the layout of the SERVOPACK, and the cooling method. For details, refer to 2.3 SERVOPACK Installation.

• Mounting Near a Heating Unit
 To prevent the temperature around the SERVOPACK from exceeding 55°C, suppress radiant heat from the heating unit and temperature rise due to convection.

• Mounting Near a Vibration Source
 To prevent vibration from being transmitted to the SERVOPACK, install a vibration isolator underneath the SERVOPACK.

• Mounting to a Location Exposed to Corrosive Gas
 Take measures to prevent exposure to corrosive gas. Corrosive gases will not immediately affect the SERVOPACK, but will eventually cause electronic components and contactor-related devices to malfunction.

• Other Locations
 Do not mount the SERVOPACK in locations subject to high temperatures, high humidity, dripping water, cutting oil, dust, iron filings, or radiation.

<Note>
When storing the SERVOPACK with the power OFF, store it in an environment with the following temperature and humidity:

- -20 to +85°C, 90% RH or less. (with no condensation)
2.1.3 Installation Conditions for Applicable Standards

<table>
<thead>
<tr>
<th>Applicable Standards</th>
<th>UL508C, EN50178, EN55011 group 1 class A, EN61000-6-2, EN61800-3, EN61800-5-1, EN954-1, IEC61508-1 to 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Conditions</td>
<td>Overvoltage Category: III
Pollution degree: 2
Protection class: IP10</td>
</tr>
<tr>
<td>Installation Conditions</td>
<td>UL Standard and Low Voltage Directive:
Satisfy the conditions outlined in ΣV Series AC SERVOPACK SGDV Safety Precautions (TOBP C710800 10)
EMC Directive:
Certification is required after installation in the user’s machine under the conditions outlined in 2.4 EMC Installation Conditions of this manual.</td>
</tr>
</tbody>
</table>
2.2 Servomotor Installation

2.2.1 Orientation

Servomotors can be installed either horizontally or vertically. Servomotors with gears can be installed only horizontally, depending on gear lubrication conditions. Refer to Σ-V Series Product Catalog (KAEP S800000 42) for details.

2.2.2 Installation Standards

The motor rated specifications (rated output, rated torque, and rated speed) are the continuous allowable values at an ambient temperature of 40°C when servomotors are installed with heat sinks. For more information on heat sinks, refer to Σ-V Series Product Catalog (KAEP S800000 42).

When a motor is mounted on a small surface, the motor temperature may rise considerably because of the limited heat radiating abilities of the surface. To restrict the temperature rise, you should either mount a heat sink or limit the electrical, thermal, and mechanical stress on the motor (derating). Refer to Σ-V Series Product Catalog (KAEP S800000 42) for the relation between heat sink size and derating. The data in the catalog is given only for reference, as the actual temperature rise depends on how the heat sink (motor mounting section) is fixed on the installation surface and what material is used for the motor mounting section. Always check the actual motor temperature.

If the servomotor is covered, or if a heating element is installed near the servomotor, the motor temperature may rise considerably. In this case, take following countermeasures.

- Reduce the load ratio.
- Reconsider the motor heating conditions.
- Install a cooling fan to forcibly cool the motor.
2.2.3 Connecting Servomotor to Machine

The end of the motor shaft is coated with anticorrosive paint. Thoroughly remove the paint prior to installation.

Align the shaft of the servomotor with the shaft of the machine, and then couple the shafts. Install the servomotor so that alignment accuracy falls within the following range. Vibration will damage the bearings or encoders if the shafts are not properly aligned.

Do not allow direct impact to be applied to the shafts when installing the coupling as the encoder mounted on the opposite end of the shaft may be damaged.

Alignment Accuracy

Measure this distance at four different positions on the circumference. The difference between the maximum and minimum measurements must be 0.03 mm or less.

(Turn together with coupling.)
2.2.4 Protective Structure

The servomotor protective structure* is described below.

<table>
<thead>
<tr>
<th>Model</th>
<th>Without Gears</th>
<th>With Gears</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGMJV, SGMAV</td>
<td>IP65</td>
<td>IP55</td>
</tr>
<tr>
<td>SGMPS</td>
<td>IP55</td>
<td>IP55</td>
</tr>
<tr>
<td></td>
<td>IP67 (Optional)</td>
<td></td>
</tr>
<tr>
<td>SGMGV</td>
<td>IP67</td>
<td>–</td>
</tr>
<tr>
<td>SGMSV</td>
<td>IP67 (SGMSV-70 servomotor only: IP22)</td>
<td>–</td>
</tr>
<tr>
<td>SGMCS-02 to -35</td>
<td>IP42 (expect for gaps on the rotating section of the shaft)</td>
<td>–</td>
</tr>
<tr>
<td>SGMCS-45 to -2Z</td>
<td>IP44</td>
<td>–</td>
</tr>
</tbody>
</table>

* Except through shaft section. The protective structure specifications can be satisfied only when using a specified cable.

When the through shaft section is subject to oil exposure, refer to 2.2.5 Other Precautions.
2.2.5 Other Precautions

- **Handling Oil and Water**

 If the servomotor is used in a location that is subject to water or oil mist, use a servomotor with an oil seal to seal the through shaft section. Precautions on using a servomotor with an oil seal are described below.

 - Put the oil surface under the oil seal lip.
 - Use an oil seal in favorably lubricated condition.
 - When using a servomotor with its shaft upward direction, be sure that oil will not stay in the oil seal lips.

- **Cable Stress**

 Make sure there are no bends or tension on the motor main circuit cables and encoder cables. Be especially careful to wire encoder cables so that they are not subject to stress because the core wires are very thin at only 0.2 or 0.3 mm².

- **Connectors**

 Observe the following precautions:

 - Make sure there is no foreign matters such as dust and metal chips in the connector before connecting.
 - When the connectors are connected to the motor, be sure to connect the end of motor main circuit cables before connecting the encoder cable’s end. If the encoder cable’s end is connected, the encoder may break because of the voltage differences between FG.
 - Make sure of the pin arrangement.
 - Do not apply shock to resin connectors. Otherwise, they may be damaged.
 - When handling a servomotor with its cables connected, hold the servomotor or the connectors and cables will be damaged.
 - Fix the connector to SGMJV, SGMAV, SGMPS-01/-02/-04 or SGMGV-03/-05 servomotors with screws. Make sure that the connector is securely fixed with screws. If not, the protective construction specifications may not be satisfied.
 - Be sure not to apply stress on the connector. The connector may be damaged by stress.

- **Radial and Thrust loads**

 Design the mechanical system so thrust and radial loads applied to the servomotor shaft end during operation fall within the allowable ranges of each motor. Refer to Σ-V Series Product Catalog (KAEP S800000 42) for the allowable ranges.
2.3 SERVOPACK Installation

2.3.1 Orientation

The SERVOPACK is available in models that are base-mounted, models that are rack-mounted, and models that are duct-ventilated. In any case, mount the SERVOPACK with a vertical orientation.

Firmly secure the SERVOPACK to the mounting surface, using either two or four mounting holes depending on the SERVOPACK capacity.

Note: For SERVOPACKs of command option attachable type, installation conditions may differ depending on the attached option module. For details, refer to the user’s manual for each option module.

- Base-mounted

- Rack-mounted
• Duct-ventilated
2.3.2 Installation Standards

Observe the standards for mounting SERVOPACKs in control panels, including those for the mounting SERVOPACKs side by side in one control panel as shown in the following illustration.

Note: For SERVOPACKs of command option attachable type, installation conditions may differ depending on the attached option module. For details, refer to the user’s manual for each option module.

• SERVOPACK Mounting Orientation
Mount the SERVOPACK vertically to the wall, with the front panel (the side with the panel operator display) facing out.

• Cooling
Refer to the following diagram and leave sufficient space for cooling by fans and natural convection.

• Mounting SERVOPACKs Side by Side in a Control Panel

Leave sufficient space on each side and at the top and the bottom of each SERVOPACK. The width on each side varies in accordance with the models of the SERVOPACKs used.

<table>
<thead>
<tr>
<th>SERVOPACK Model</th>
<th>Side</th>
<th>Top and bottom</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGDV-</td>
<td>Left</td>
<td>Right</td>
</tr>
<tr>
<td>R70F, R90F, 2R1F, R70A, R90A, 1R6A, 2R8A</td>
<td>1 mm or more</td>
<td></td>
</tr>
<tr>
<td>2R8F, 3R8A, 5R5A, 7R6A</td>
<td>1 mm or more</td>
<td>10 mm or more</td>
</tr>
<tr>
<td>120A, 180A, 200A, 330A, 470A, 550A, 590A, 780A, 1R9D, 3R5D, 5R4D, 8R4D, 120D, 170D, 210D, 260D, 280D, 370D</td>
<td>10 mm or more</td>
<td>40 mm or more</td>
</tr>
</tbody>
</table>

Also install cooling fans above the SERVOPACKs to disperse local pockets of warmer air around the SERVOPACKs.
• Inside the Control Panel

The conditions inside the control panel should be the same as the environmental conditions of the SERVOPACK. Refer to 2.1.2 SERVOPACK Installation Environment.

The SGDV-□□□□□□B SERVOPACKs have an Installation Environment monitor (Un022). With this monitor, operation conditions in the installation environment can be observed and measured.

The value shown on this monitor should be equal to or less than 100% for optimum operating conditions.
If this value is over 100%, one of the following measures must be taken to ensure safe operation and a long product life.

Improve air circulation around SERVOPACKs.
Minimum Air Circulation Rate
 Top (10 mm): 0.5 m/s
 Bottom (10 mm): 0.2 m/s

To improve the air circulation to meet these minimum standards and to lower the percentage shown on the monitor, widen the space between the SERVOPACKs or lower the temperature of the surrounding air.

<Note>
For every increase of 10°C, the percentage shown on the monitor will also increase by approximately ten.
2.4 EMC Installation Conditions

This section describes the recommended installation conditions that satisfy EMC guidelines for each model of the SGDV SERVOPACK. The conditions required for the standard type (base-mounted) of SERVOPACK are described. Refer to this section for other SERVOPACK models such as the rack-mounted types as well.

This section describes the EMC installation conditions satisfied in test conditions prepared by Yaskawa. The actual EMC level may differ depending on the actual system’s configuration, wiring, and other conditions. However, because this product is built-in, check that the following conditions are still met after being installed in the user’s product.

The applicable standards are EN55011 group 1 class A, EN61800-3, and EN61000-6-2.

2.4.1 SGDV-□□□□01□ (Analog Pulse Model)

- Single-phase 100 V
 - SGDV-□□□□F01A (□□□□ = R70, R90, 2R1, 2R8)
Three-phase 200 V

- SGDV-□□□□01□ (□□□□ = R70, R90, 1R6, 2R8)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Cable Name</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>I/O signal cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>②</td>
<td>Safety signal cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>③</td>
<td>Motor main circuit cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>④</td>
<td>Encoder cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>⑤</td>
<td>Main circuit cable</td>
<td>Shield cable</td>
</tr>
</tbody>
</table>
■ Three-phase 200 V

- SGD­V­□­□­□­A01A (□­□­□ = R70, R90, 1R6, 2R8, 3R8, 5R5, 7R6)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Cable Name</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>I/O signal cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>②</td>
<td>Safety signal cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>③</td>
<td>Motor main circuit</td>
<td>Shield cable</td>
</tr>
<tr>
<td>④</td>
<td>Encoder cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>⑤</td>
<td>Main circuit cable</td>
<td>Shield cable</td>
</tr>
</tbody>
</table>

Power supply: Three-phase 200 VAC
2 Installation

2.4.1 SGDV-□□□□01□ (Analog Pulse Model)

- Three-phase 200 V
 - SGDV-□□□□A01A (□□□□ = 120)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Cable Name</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>I/O signal cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>②</td>
<td>Safety signal cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>③</td>
<td>Motor main circuit cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>④</td>
<td>Encoder cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>⑤</td>
<td>Main circuit cable</td>
<td>Shield cable</td>
</tr>
</tbody>
</table>
2.4 EMC Installation Conditions

- Three-phase 200 V
 - SGDV-□□□□A01A (□□□□ = 180, 200, 330)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Cable Name</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>I/O signal cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>②</td>
<td>Safety signal cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>③</td>
<td>Motor main circuit cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>④</td>
<td>Encoder cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>⑤</td>
<td>Main circuit cable</td>
<td>Shield cable</td>
</tr>
</tbody>
</table>
2 Installation

2.4.1 SGDV-□□□□01□ (Analog Pulse Model)

■ Three-phase 200 V

- SGDV-□□□□A01A (□□□□ = 470, 550, 590, 780)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Cable Name</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>I/O signal cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>②</td>
<td>Safety signal cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>③</td>
<td>Motor main circuit cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>④</td>
<td>Encoder cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>⑤</td>
<td>Main circuit cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>⑥</td>
<td>Regenerative resistor unit cable</td>
<td>Non-shield cable</td>
</tr>
<tr>
<td>⑦</td>
<td>Cooling fan cable</td>
<td>Shield cable</td>
</tr>
</tbody>
</table>
3. Three-phase 400 V

- SGDV-□□□D01A (□□□ = 1R9, 3R5, 5R4, 8R4, 120, 170)

*1. Products that have received CE marking are recommended for the 24 VDC power supply.

*2. Install the following noise filter on the power line between the single-phase 200 V power supply and the 24 VDC power supply. Model number: FN2070-6/07 (SCHAFFNER)

*3. For more information on this filter, refer to Σ-V Series Product Catalog. (KAEP S800000 42)
Three-phase 400 V

- SGDV-□□□D01A (□□□ = 210, 260, 280, 370)

*1. Products that have received CE marking are recommended for the 24 VDC power supply.

*2. Install the following noise filter on the power line between the single-phase 200 V power supply and the 24 VDC power supply.
Model number: FN2070-6/07 (SCHAFFNER)

*3. For more information on this filter, refer to Σ-V Series Product Catalog. (KAEP S800000 42)
2.4.2 SGDV-□□□□11□ (M-II Model)

- Single-phase 100 V
 - SGDV-□□□□F11A (□□□□ = R70, R90, 2R1, 2R8)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Cable Name</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>I/O signal cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>②</td>
<td>Safety signal cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>③</td>
<td>Motor main circuit cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>④</td>
<td>Encoder cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>⑤</td>
<td>Main circuit cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>⑥</td>
<td>MECHATROLINK-II communication cable</td>
<td>Shield cable</td>
</tr>
</tbody>
</table>
Three-phase 200 V

- SGDV-□□□□A11B (□□□□ = R70, R90, 1R6, 2R8)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Cable Name</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>I/O signal cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>②</td>
<td>Safety signal cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>③</td>
<td>Motor main circuit cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>④</td>
<td>Encoder cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>⑤</td>
<td>Main circuit cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>⑥</td>
<td>MECHATROLINK-II communication cable</td>
<td>Shield cable</td>
</tr>
</tbody>
</table>

[Diagram of the electrical connection showing various components and their connections, including power supply, noise filter, surge absorber, Servopack, brake, servomotor, encoder, controller, and safety unit.]
Three-phase 200 V

- SGDV-□□□A11A (□□□ = R70, R90, 1R6, 2R8, 3R8, 5R5, 7R6)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Cable Name</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>I/O signal cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>②</td>
<td>Safety signal cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>③</td>
<td>Motor main circuit cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>④</td>
<td>Encoder cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>⑤</td>
<td>Main circuit cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>⑥</td>
<td>MECHATROLINK-II communication cable</td>
<td>Shield cable</td>
</tr>
</tbody>
</table>
Three-phase 200 V

- SGDVA11A (□□□□ = 120)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Cable Name</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>I/O signal cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>②</td>
<td>Safety signal cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>③</td>
<td>Motor main circuit cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>④</td>
<td>Encoder cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>⑤</td>
<td>Main circuit cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>⑥</td>
<td>MECHATROLINK-II communication cable</td>
<td>Shield cable</td>
</tr>
</tbody>
</table>
2.4 EMC Installation Conditions

- Three-phase 200 V
 - SGDV-□□□□A11A (□□□□ = 180, 200, 330)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Cable Name</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>I/O signal cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>②</td>
<td>Safety signal cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>③</td>
<td>Motor main circuit cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>④</td>
<td>Encoder cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>⑤</td>
<td>Main circuit cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>⑥</td>
<td>MECHATROLINK-II communication cable</td>
<td>Shield cable</td>
</tr>
</tbody>
</table>
2 Installation

2.4.2 SGDV-□□□11□ (M-II Model)

- Three-phase 200 V
 - SGDV-□□□A11A (□□□ = 470, 550, 590, 780)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Cable Name</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>I/O signal cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>②</td>
<td>Safety signal cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>③</td>
<td>Motor main circuit cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>④</td>
<td>Encoder cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>⑤</td>
<td>Main circuit cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>⑥</td>
<td>Regenerative resistor unit cable</td>
<td>Non-shield cable</td>
</tr>
<tr>
<td>⑦</td>
<td>Cooling fan cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>⑧</td>
<td>MECHATROLINK-II communication cable</td>
<td>Shield cable</td>
</tr>
</tbody>
</table>
Three-phase 400 V

- SGDV-[]-[]-[] D11A ([]-[] = 1R9, 3R5, 5R4, 8R4, 120, 170)

*1. Products that have received CE marking are recommended for the 24 VDC power supply.

*2. Install the following noise filter on the power line between the single-phase 200 V power supply and the 24 VDC power supply.
Model number: FN2070-6/07 (SCHAEFFNER)

*3. For more information on this filter, refer to Σ-V Series Product Catalog. (KAEP S800000 42)
2. Installation

2.4.2 SGDV-
†††††† (M-II Model)

- Three-phase 400 V

- SGDV-□□□D11A (□□□ = 210, 260, 280, 370)

![Diagram of electrical connections]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Cable Name</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>I/O signal cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>②</td>
<td>Safety signal cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>③</td>
<td>Motor main circuit cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>④</td>
<td>Encoder cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>⑤</td>
<td>Control power cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>⑥</td>
<td>Main circuit cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>⑦</td>
<td>Regenerative resistor unit cable</td>
<td>Non-shield cable</td>
</tr>
<tr>
<td>⑧</td>
<td>MECHATROLINK-II communication cable</td>
<td>Shield cable</td>
</tr>
</tbody>
</table>

*1. Products that have received CE marking are recommended for the 24 VDC power supply.

*2. Install the following noise filter on the power line between the single-phase 200 V power supply and the 24 VDC power supply. Model number: FN2070-6/07 (SCHAFFNER)

*3. For more information on this filter, refer to Σ-V Series Product Catalog. (KAEP S800000 42)
2.4.3 SGDVF21□(M-III Model)

- Single-phase 100 V
 - SGDVF21□ □□□ = R70, R90, 2R1, 2R8

Table: Cable Name and Specification

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Cable Name</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>I/O signal cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>②</td>
<td>Safety signal cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>③</td>
<td>Motor main circuit cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>④</td>
<td>Encoder cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>⑤</td>
<td>Main circuit cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>⑥</td>
<td>MECHATROLINK-III communication cable</td>
<td>Shield cable</td>
</tr>
</tbody>
</table>

![Diagram](image_url)
2 Installation

2.4.3 SGDV-□□□□21□ (M-III Model)

- Three-phase 200 V

 - SGDV-□□□□A21B (□□□□ = R70, R90, 1R6, 2R8)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Cable Name</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>I/O signal cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>②</td>
<td>Safety signal cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>③</td>
<td>Motor main circuit cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>④</td>
<td>Encoder cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>⑤</td>
<td>Main circuit cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>⑥</td>
<td>MECHATROLINK-III communication cable</td>
<td>Shield cable</td>
</tr>
</tbody>
</table>
2.4 EMC Installation Conditions

- Three-phase 200 V

 • SGDV-口口口A21A (口口口 = R70, R90, 1R6, 2R8, 3R8, 5R5, 7R6)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Cable Name</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>I/O signal cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>②</td>
<td>Safety signal cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>③</td>
<td>Motor main circuit cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>④</td>
<td>Encoder cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>⑤</td>
<td>Main circuit cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>⑥</td>
<td>MECHATROLINK-III communication cable</td>
<td>Shield cable</td>
</tr>
</tbody>
</table>
2.4.3 SGDV-□□□□21□ (M-III Model)

- Three-phase 200 V
 - SGDV-□□□□A21A (□□□□ = 120)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Cable Name</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>I/O signal cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>②</td>
<td>Safety signal cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>③</td>
<td>Motor main circuit cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>④</td>
<td>Encoder cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>⑤</td>
<td>Main circuit cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>⑥</td>
<td>MECHATROLINK-III communication cable</td>
<td>Shield cable</td>
</tr>
</tbody>
</table>
2.4 EMC Installation Conditions

- Three-phase 200 V
 - SGDVA21A (A21A = 180, 200, 330)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Cable Name</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>I/O signal cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>②</td>
<td>Safety signal cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>③</td>
<td>Motor main circuit cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>④</td>
<td>Encoder cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>⑤</td>
<td>Main circuit cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>⑥</td>
<td>MECHATROLINK-III communication cable</td>
<td>Shield cable</td>
</tr>
</tbody>
</table>

Diagram

- Power supply: Three-phase 200 VAC
- Noise filter
- Surge absorber
- Shield box
- Brake Power Supply
- SERVOPACK U, V, W
- L1, L2, L3
- L1C, L2C
- CN2
- CN6A, CN6B
- CN1, CN8
- Clamp
- Clamp
- Core
- Clamp
- Two turn
- Host controller
- Safety unit
- Brake Power Supply
- Brake
- Servomotor
- Encoder
- Core
- Clamp
- One turn
- Core
- Clamp
- Two turn
- Core
- Clamp
- Surge absorber
- Noise filter
- Shield box
- Brake
- Servomotor
- Encoder
- Core
- Clamp
- One turn
- Core
- Clamp
- Two turn
- Core
- Clamp
- Host controller
- Safety unit
- Brake
- Servomotor
- Encoder
- Core
- Clamp
- One turn
- Core
- Clamp
- Two turn
- Core
- Clamp
- Shield box
- Brake
- Servomotor
- Encoder
- Core
- Clamp
- One turn
- Core
- Clamp
- Two turn
- Core
- Clamp
- Shield box
2.4.3 SGDV-Model (M-III Model)

- **Three-phase 200 V**
 - SGDV-ModelA21A (Model = 470, 550, 590, 780)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Cable Name</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>I/O signal cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>②</td>
<td>Safety signal cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>③</td>
<td>Motor main circuit cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>④</td>
<td>Encoder cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>⑤</td>
<td>Main circuit cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>⑥</td>
<td>Regenerative resistor unit cable</td>
<td>Non-shield cable</td>
</tr>
<tr>
<td>⑦</td>
<td>Cooling fan cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>⑧</td>
<td>MECHATROLINK-III communication cable</td>
<td>Shield cable</td>
</tr>
</tbody>
</table>
2.4 EMC Installation Conditions

- **Three-phase 400 V**
 - SGDV-□□□□D21A (□□□□ = 1R9, 3R5, 5R4, 8R4, 120, 170)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Cable Name</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>I/O signal cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>②</td>
<td>Safety signal cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>③</td>
<td>Motor main circuit cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>④</td>
<td>Encoder cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>⑤</td>
<td>Control power cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>⑥</td>
<td>Main circuit cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>⑦</td>
<td>MECHATROLINK-III communication cable</td>
<td>Shield cable</td>
</tr>
</tbody>
</table>

*1. Products that have received CE marking are recommended for the 24 VDC power supply.
*2. Install the following noise filter on the power line between the single-phase 200 V power supply and the 24 VDC power supply.
 Model number: FN2070-6/07 (SCHAEFFNER)
*3. For more information on this filter, refer to Σ-V Series Product Catalog (literature no.: KAEP S800000 42).
2 Installation

2.4.3 SGDV-□□□□21 (M-III Model)

- Three-phase 400 V

 - SGDV-□□□□D21A (□□□□ = 210, 260, 280, 370)

> Products that have received CE marking are recommended for the 24 VDC power supply.

> Install the following noise filter on the power line between the single-phase 200 V power supply and the 24 VDC power supply.

 Model number: FN2070-6/07 (SCHAFFNER)

> For more information on this filter, refer to ΣV Series Product Catalog (literature no.: KAEP S800000 42).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Cable Name</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>I/O signal cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>②</td>
<td>Safety signal cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>③</td>
<td>Motor main circuit cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>④</td>
<td>Encoder cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>⑤</td>
<td>Control power cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>⑥</td>
<td>Main circuit cable</td>
<td>Shield cable</td>
</tr>
<tr>
<td>⑦</td>
<td>Regenerative resistor unit cable</td>
<td>Non-shield cable</td>
</tr>
<tr>
<td>⑧</td>
<td>MECHATROLINK-III communication cable</td>
<td>Shield cable</td>
</tr>
</tbody>
</table>

*1. Products that have received CE marking are recommended for the 24 VDC power supply.

*2. Install the following noise filter on the power line between the single-phase 200 V power supply and the 24 VDC power supply.

 Model number: FN2070-6/07 (SCHAFFNER)

*3. For more information on this filter, refer to ΣV Series Product Catalog (literature no.: KAEP S800000 42).
2.4.4 SGDV-□□□□E1A (Command Option Attachable Type)

For SERVOPACKs of command option attachable type, EMC installation conditions may differ depending on the attached option module. For details, refer to the user’s manual for each option module.

2.4.5 Other Precautions

- Attachment Methods of Ferrite Cores

<table>
<thead>
<tr>
<th></th>
<th>One turn</th>
<th>Two turn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferrite core</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cable</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Recommended Ferrite Core

<table>
<thead>
<tr>
<th>Cable Name</th>
<th>Ferrite Core Model</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor main circuit cable</td>
<td>ESD-SR-250</td>
<td>NEC TOKIN Corp.</td>
</tr>
</tbody>
</table>

- Recommended Noise Filter and Surge Absorber

For more information on recommended noise filters and surge absorbers, refer to ΣV Series Product Catalog (literature no.: KAEP S800000 42).

- Fixing the Cable

Fix and ground the cable shield using a piece of conductive metal.

 - Example of Cable Clamp

- Shield Box

A shield box, which is a closed metallic enclosure, is effective as reinforced shielding against electromagnetic interference (EMI) from SERVOPACKs. The structure of the box should allow the main body, door, and cooling unit to be attached to the ground. The box opening should be as small as possible.

<Note>

Do not connect the digital operator and the analog monitor cable to the SERVOPACK during operations. Connect them only when the machinery is stopped during maintenance.
Wiring and Connection

This chapter describes how to set up the wiring and connections required for trial operation.
For more information on the wiring and connection, refer to the following manuals.

 Analog Voltage and Pulse Train Reference (SIEP S800000 45)
 MECHATROLINK-II Communications Reference (SIEP S800000 46)
 Command Option Attachable Type (SIEP S800000 60)
 MECHATROLINK-III Communications Reference (SIEP S800000 64)

3.1 Precautions for Wiring .. 3-2
3.2 System Configuration Diagram 3-3
 3.2.1 Connecting to SGDV-01 SERVOPACK
 (Analog Pulse Model) ... 3-3
 3.2.2 Connecting to SGDV-11 SERVOPACK
 (M-II Model) ... 3-7
 3.2.3 Connecting to SGDV-21 SERVO-PACK (M-III Model) 3-11
 3.2.4 Connecting to SGDV-E1A SERVOPACK
 (Command Option Attachable Type) 3-15
3.3 Main Circuit Wiring .. 3-19
 3.3.1 Names and Functions of Main Circuit Terminals 3-19
 3.3.2 SERVOPACK Main Circuit Wire Size 3-20
 3.3.3 Typical Main Circuit Wiring Examples 3-24
 3.3.4 Wiring the Main Circuit Terminal Connector
 (Spring Type) .. 3-28
3.4 Connecting Regenerative Resistors 3-31
 3.4.1 Connecting Regenerative Resistor 3-31
3.1 Precautions for Wiring

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Be sure to wire correctly and securely. Failure to observe this caution may result in motor overrun, injury, or malfunction.</td>
</tr>
<tr>
<td>• Do not bundle or run the main circuit cables together with the I/O signal cables or the encoder cables in the same duct. Keep them separated by at least 30 cm. Failure to do so may result in malfunction.</td>
</tr>
<tr>
<td>• Use shielded twisted-pair wires or multi-core shielded twisted-pair wires for I/O signal cables and the encoder cables.</td>
</tr>
<tr>
<td>• I/O signal cables must be no longer than 3 m, encoder cables must be no longer than 50 m, and control power supply (+24 V, 0 V) cables for a 400 V input SERVOPACK must be no longer than 10 m.</td>
</tr>
<tr>
<td>• Do not touch the power terminals while the CHARGE lamp is ON after turning power OFF because high voltage may still remain in the SERVOPACK. Make sure the charge indicator is off first before starting an inspection.</td>
</tr>
<tr>
<td>• Leakage current may increase depending on the type of noise filter and the grounding conditions. When using a detector or a breaker for leakage current, select the appropriate one by considering the type of noise filter and the grounding conditions. For details, contact the manufacturer of the noise filter.</td>
</tr>
<tr>
<td>• Incorrect wiring or incorrect voltage application to the output circuit may cause short-circuit. The above failures will prevent the holding brake from working, which may damage the machine or cause an accident resulting in death or injury.</td>
</tr>
<tr>
<td>• Inverting the polarity of the brake signal (/BK), i.e. positive logic, will prevent the holding brake from working in case of its signal line disconnection. If this setting is absolutely necessary, check the operation and confirm that there are no safety problems.</td>
</tr>
</tbody>
</table>
3.2 System Configuration Diagram

3.2.1 Connecting to SGDV-□□□□01□ SERVOPACK (Analog Pulse Model)

- SGDV-□□□□F01A

*1. Use a 24 VDC power supply. (not included)

*2. Before connecting an external regenerative resistor to the SERVOPACK, refer to 3.4 Connecting Regenerative Resistors.
3. Wiring and Connection

3.2.1 Connecting to SGDV-□□□□01□ SERVOPACK (Analog Pulse Model)

SGDV-□□□□A01□

- **Using a Three-phase, 200-V Power Supply**

 - **Power supply**
 - Three-phase 200 VAC

![Diagram of wiring connections]

- **Molded-case circuit breaker (MCCB)**
 - Protects the power supply line by shutting the circuit OFF when overcurrent is detected.

- **Noise filter**
 - Used to eliminate external noise from the power line.

- **Magnetic contactor**
 - Turns the servo ON and OFF.
 - Install a surge absorber.

- **Regenerative resistor**
 - Used for a servomotor with a brake.

- **Brake power supply**
 - Used for a servomotor with a brake.

- **Motor main circuit cable**
- **Encoder cable**

- **Connection cable for digital operator**
- **Connection cable for personal computer**
- **I/O signal cable**

- **Battery case**
 - (when an absolute encoder is used.)

- **Digital operator**
- **Personal computer**
- **Host controller**
- **Safety function devices**
- **I/O signal cable**
- **Connection cable for personal computer**
- **Connection cable for digital operator**
- **Connection cable for personal computer**

- **SGMJV/SGMAV/SGMPS/SGMGV/SGMSV Servomotor**

*1. Use a 24 VDC power supply. (not included)

*2. Before connecting an external regenerative resistor to the SERVOPACK, refer to 3.4 Connecting Regenerative Resistors.
• Using a Single-phase, 200-V Power Supply

The Σ-V Series SERVOPACK for a 200-V power supply input has input specifications for a three-phase power supply, but some models can also be used with a single-phase 200-V power supply. For details, refer to Σ-V Series User’s Manual Design and Maintenance Rotational Motor/Analog Voltage and Pulse Train Reference (SIEP S800000 45).

*1. Use a 24 VDC power supply. (not included)
*2. Before connecting an external regenerative resistor to the SERVOPACK, refer to 3.4 Connecting Regenerative Resistors.
3 Wiring and Connection

3.2.1 Connecting to SGDVT01A SERVOPACK (Analog Pulse Model)

SGDV-T01A

- Use a 24 VDC power supply with double insulation or reinforced insulation. (The power supply is not included)
- Before connecting an external regenerative resistor to the SERVOPACK, refer to 3.4 Connecting Regenerative Resistors.
- Use a following power supply for 90 V brake. For details, refer to Σ-V series Product Catalog (KAEP S800000 42).
 - For 200 V input voltage: LPSE-2H01-E
 - For 100 V input voltage: LPDE-1H01-E
3.2.2 Connecting to SGDVF11A SERVOPACK (M-II Model)

- **SGDV-□□□□F11A**

Power supply
- Single-phase 100 VAC

Molded-case circuit breaker (MCCB)
- Protects the power supply line by shutting the circuit OFF when overcurrent is detected.

Noise filter
- Used to eliminate external noise from the power line.

Regenerative resistor
- Used for a servomotor with a brake.

Brake power supply
- Used for a servomotor with a brake.

Magnetic contactor
- Turns the servo ON and OFF. Install a surge absorber.

Battery case
- (when an absolute encoder is used.)

I/O signal cable
- Used to eliminate external noise from the power line.

Motor main circuit cable
- Connect to the MECHATROLINK-II

Encoder cable
- Connection cable for digital operator
- Connection cable for personal computer
- Digital operator
- Personal computer
- Host controller
- Safety function devices

*1. Use a 24 VDC power supply. (not included.)
*2. Before connecting an external regenerative resistor to the SERVOPACK, refer to 3.4 Connecting Regenerative Resistors.
3 Wiring and Connection

3.2.2 Connecting to SGDV-□□□□11□ SERVOPACK (M-II Model)

- SGDV-□□□□A11□

 - Using a Three-phase, 200-V Power Supply

*1. Use a 24 VDC power supply. (not included.)
*2. Before connecting an external regenerative resistor to the SERVOPACK, refer to 3.4 Connecting Regenerative Resistors.
• Using a Single-phase, 200-V Power Supply

The Σ-V Series SERVOPACK for a 200-V power supply input has input specifications for a three-phase power supply, but some models can also be used with a single-phase 200-V power supply. For details, refer to Σ-V Series User’s Manual Design and Maintenance Rotational Motor/MECHATROLINK-II Communications Reference (SIEP S800000 46).

*1. Use a 24 VDC power supply. (not included.)

*2. Before connecting an external regenerative resistor to the SERVOPACK, refer to 3.4 Connecting Regenerative Resistors.
3.2.2 Connecting to SGDVC11 Servopack (M-II Model)

- Use a 24 VDC power supply with double insulation or reinforced insulation. (The power supply is not included)
- Before connecting an external regenerative resistor to the SERVOPACK, refer to 3.4 Connecting Regenerative Resistors.
- Use a following power supply for 90 V brake. For details, refer to Σ-V series Product Catalog (KAEP S800000 42).
 - For 200 V input voltage: LPSE-2H01-E
 - For 100 V input voltage: LPDE-1H01-E
3.2.3 Connecting to SGDVF21A SERVOPACK (M-III Model)

- **SGDV-F21A**

![System Configuration Diagram]

- Use a 24 VDC power supply (not included.).
- Before connecting an external regenerative resistor to the SERVOPACK, refer to 3.4 Connecting Regenerative Resistors.
3 Wiring and Connection

3.2.3 Connecting to SGDV-□□□□21□ SERVOPACK (M-III Model)

- Using a Three-phase, 200-V Power Supply

- Use a Three-phase, 200-V Power Supply

- Before connecting an external regenerative resistor to the SERVOPACK, refer to 3.4 Connecting Regenerative Resistors.

- *1. Use a 24 VDC power supply (not included.).

- *2. Before connecting an external regenerative resistor to the SERVOPACK, refer to 3.4 Connecting Regenerative Resistors.
3.2 System Configuration Diagram

- Using a Single-phase, 200-V Power Supply

The Σ-V Series SERVOPACK for a 200-V power supply input has input specifications for a three-phase power supply, but some models can also be used with a single-phase 200-V power supply. For details, refer to Σ-V Series User’s Manual Design and Maintenance Rotational Motor/MECHATROLINK-III Communications Reference (manual no.: SIEP S800000 64).

- Use a 24 VDC power supply (not included.).
- Before connecting an external regenerative resistor to the SERVOPACK, refer to 3.4 Connecting Regenerative Resistors.
3.2.3 Connecting to SGDV-D21A SERVOPACK (M-III Model)

- **SGDV-D21A**

 - Use a 24 VDC power supply with double insulation or reinforced insulation (The power supply is not included).
 - Before connecting an external regenerative resistor to the SERVOPACK, refer to 3.4 Connecting Regenerative Resistors.
 - Use a following power supply for 90 V brake. For details, refer to ΣV series Product Catalog (literature no.: KAEP S80000 42).
 - For 200 V input voltage: LPSE-2H01-E
 - For 100 V input voltage: LPDE-1H01-E
3.2 System Configuration Diagram

3.2.4 Connecting to SGDV-□□□□E1A SERVOPACK (Command Option Attachable Type)

- **SGDV-□□□□FE1A**

![Diagram of SGDV-□□□□FE1A SERVOPACK]

- *1. Use a 24-VDC power supply. (not included.)*
- *2. Before connecting an external regenerative resistor to the SERVOPACK, refer to 3.4 Connecting Regenerative Resistors.*
- *3. For connection to the command option module, refer to the user’s manual of the corresponding option module.*
3 Wiring and Connection

3.2.4 Connecting to SGDV-□□□□E1A SERVOPACK (Command Option Attachable Type)

- Using a Three-phase, 200-V Power Supply

![Diagram of power supply and connection components]

- Use a 24-VDC power supply. (not included.)
- Before connecting an external regenerative resistor to the SERVOPACK, refer to 3.4 Connecting Regenerative Resistors.
- For connection to the command option module, refer to the user’s manual of the corresponding option module.
3.2 System Configuration Diagram

- Using a Single-phase, 200-V Power Supply

The Σ-V Series SERVOPACK for a 200-V power supply input has input specifications for a three-phase power supply, but some models can also be used with a single-phase 200-V power supply. For details, refer to Σ-V Series User’s Manual Design and Maintenance Rotational Motor/Command Option Attachable Type (SIEP S800000 60).

![System Configuration Diagram]

- Use a 24-VDC power supply. (not included.)
- Before connecting an external regenerative resistor to the SERVOPACK, refer to 3.4 Connecting Regenerative Resistors.
- For connection to the command option module, refer to the user’s manual of the corresponding option module.
3 Wiring and Connection

3.2.4 Connecting to SGDV-□□□□E1A SERVOPACK (Command Option Attachable Type)

SGDV-□□□□DE1A

- Use a 24-VDC power supply with double insulation or reinforced insulation. (The power supply is not included)
- Before connecting an external regenerative resistor to the SERVOPACK, refer to 3.4 Connecting Regenerative Resistors.
- Use a following power supply for 90-V brake. For details, refer to Σ-V series Product Catalog (KAEP S800000 42).
 - For 200-V input voltage: LPSE-2H01-E
 - For 100-V input voltage: LPDE-1H01-E
- For connection to the command option module, refer to the user’s manual of the corresponding option module.
3.3 Main Circuit Wiring

The names, specifications, and functions of the main circuit terminals required for trial operation are given below.

3.3.1 Names and Functions of Main Circuit Terminals

<table>
<thead>
<tr>
<th>Name</th>
<th>Terminal Symbols</th>
<th>Model SGDV-□□□□□□</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main circuit input terminals</td>
<td>L1, L2</td>
<td>□□□F</td>
<td>Single-phase 100 to 115 V, +10% to -15% (50/60 Hz)</td>
</tr>
<tr>
<td></td>
<td>L1, L2, L3</td>
<td>□□□A</td>
<td>Three-phase 200 to 230 V, +10% to -15% (50/60 Hz)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>□□□D</td>
<td>Three-phase 380 to 480 V, +10% to -15% (50/60 Hz)</td>
</tr>
<tr>
<td>Control power input terminals</td>
<td>L1C, L2C</td>
<td>□□□F</td>
<td>Single-phase 100 to 115 V, +10% to -15% (50/60 Hz)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>□□□A</td>
<td>Single-phase 200 to 230 V, +10% to -15% (50/60 Hz)</td>
</tr>
<tr>
<td></td>
<td>24V, 0V</td>
<td>□□□D</td>
<td>24 VDC, ±15%</td>
</tr>
</tbody>
</table>
3.3.2 SERVOPACK Main Circuit Wire Size

This section describes the SERVOPACK Main Circuit Wire Size.

#### Name	Terminal Symbols	Model SGDV-□□□□	Description
External regenerative resistor terminals	B1/ B2, or B1, B2	R70F, R90F, 2R1F, 2R8F, R70A, R90A, 1R6A, 2R8A	If the regenerative capacity is insufficient, connect an external regenerative resistor (option) between B1/ B2 and B2.
	3R8A, 5R5A, 7R6A, 120A, 180A, 200A, 330A, 1R9D, 3R5D, 5R4D, 8R4D, 120D, 170D	If the internal regenerative resistor is insufficient, remove the wire between B2 and B3 and connect an external regenerative resistor (option) between B1/ B2, or B1 and B2.	
DC reactor connection terminals for power supply harmonic suppression | 1, 2 | 1A 2D | Normally short 1 and 2. If a countermeasure against power supply harmonic waves is needed, connect a DC reactor between 1 and 2.
Main circuit plus terminals | B1/ B1 | □□□□A □□□□D | Use when DC power supply input is used.
Main circuit minus terminals | 2 or 2 | □□□□A □□□□D | Use when DC power supply input is used.
Servomotor connection terminals | U, V, W | Use for connecting to the servomotor.
Ground terminals (× 2) | | Use for connecting the power supply ground terminal and servomotor ground terminal.

IMPORTANT

1. Wire sizes are selected for three cables per bundle at 40°C surrounding air temperature with the rated current.
2. Use a wire with a minimum withstand voltage of 600 V for the main circuit.
3. If cables are bundled in PVC or metal ducts, take into account the reduction of the allowable current.
4. Use a heat-resistant wire under high surrounding air or panel temperatures, where polyvinyl chloride insulated wires will rapidly deteriorate.
3.3 Main Circuit Wiring

Wire Types

Use the following type of wire for main circuit.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>Allowable Conductor Temperature °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV</td>
<td>600 V polyvinyl chloride insulated wire</td>
<td>60</td>
</tr>
<tr>
<td>HIV</td>
<td>600 V grade heat-resistant polyvinyl chloride insulated wire</td>
<td>75</td>
</tr>
</tbody>
</table>

The following table shows the wire sizes and allowable currents for three wires. Use wires with specifications equal to or less than those shown in the table.

- **600 V grade heat-resistant polyvinyl chloride insulated wire (HIV)**

<table>
<thead>
<tr>
<th>AWG Size</th>
<th>Nominal Cross Section Diameter (mm²)</th>
<th>Configuration (Number of Wires/mm²)</th>
<th>Conductive Resistance (Ω/km)</th>
<th>Allowable Current at Surrounding Air Temperature (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30°C</td>
</tr>
<tr>
<td>20</td>
<td>0.5</td>
<td>19/0.18</td>
<td>39.5</td>
<td>6.6</td>
</tr>
<tr>
<td>19</td>
<td>0.75</td>
<td>30/0.18</td>
<td>26.0</td>
<td>8.8</td>
</tr>
<tr>
<td>18</td>
<td>0.9</td>
<td>37/0.18</td>
<td>24.4</td>
<td>9.0</td>
</tr>
<tr>
<td>16</td>
<td>1.25</td>
<td>50/0.18</td>
<td>15.6</td>
<td>12.0</td>
</tr>
<tr>
<td>14</td>
<td>2.0</td>
<td>7/0.6</td>
<td>9.53</td>
<td>23</td>
</tr>
<tr>
<td>12</td>
<td>3.5</td>
<td>7/0.8</td>
<td>5.41</td>
<td>33</td>
</tr>
<tr>
<td>10</td>
<td>5.5</td>
<td>7/1.0</td>
<td>3.47</td>
<td>43</td>
</tr>
<tr>
<td>8</td>
<td>8.0</td>
<td>7/1.2</td>
<td>2.41</td>
<td>55</td>
</tr>
<tr>
<td>6</td>
<td>14.0</td>
<td>7/1.6</td>
<td>1.35</td>
<td>79</td>
</tr>
<tr>
<td>4</td>
<td>22.0</td>
<td>7/2.0</td>
<td>0.85</td>
<td>91</td>
</tr>
</tbody>
</table>

Note: The values in the table are for reference only.
3 Wiring and Connection

3.3.2 SERVOPACK Main Circuit Wire Size

Single-phase, 100 V

<table>
<thead>
<tr>
<th>External Terminal Name</th>
<th>Terminal Symbols</th>
<th>SERVOPACK Model SGDV-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>R70</td>
</tr>
<tr>
<td>Main circuit power input terminals</td>
<td>L1, L2</td>
<td>HIV1.25</td>
</tr>
<tr>
<td>Control power input terminals</td>
<td>L1C, L2C</td>
<td>HIV1.25</td>
</tr>
<tr>
<td>Servomotor connection terminals</td>
<td>U, V, W</td>
<td>HIV1.25</td>
</tr>
<tr>
<td>External regenerative resistor connection terminals</td>
<td>B1/Ω, B2</td>
<td>HIV1.25</td>
</tr>
<tr>
<td>Ground terminal</td>
<td>⚡</td>
<td>HIV2.0 or higher</td>
</tr>
</tbody>
</table>

Three-phase, 200 V

<table>
<thead>
<tr>
<th>External Terminal Name</th>
<th>Terminal Symbols</th>
<th>SERVOPACK Model SGDV-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>R70</td>
</tr>
<tr>
<td>Main circuit power input terminals</td>
<td>L1, L2, L3</td>
<td>HIV1.25</td>
</tr>
<tr>
<td>Control power input terminals</td>
<td>L1C, L2C</td>
<td>HIV1.25</td>
</tr>
<tr>
<td>Servomotor connection terminals</td>
<td>U, V, W</td>
<td>HIV1.25</td>
</tr>
<tr>
<td>External regenerative resistor connection terminals</td>
<td>B1/Ω, B2</td>
<td>HIV1.25</td>
</tr>
<tr>
<td>Ground terminal</td>
<td>⚡</td>
<td>HIV2.0 or higher</td>
</tr>
</tbody>
</table>
Three-phase, 400 V

<table>
<thead>
<tr>
<th>External Terminal Name</th>
<th>Terminal Symbols</th>
<th>SERVOPACK Model SGDV-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main circuit power input terminals</td>
<td>L1, L2, L3</td>
<td>HIV 1.25, HIV 2.0, HIV 3.5, HIV 5.5, HIV 8.0, HIV 14.0</td>
</tr>
<tr>
<td>Control power input terminals</td>
<td>24V, 0V</td>
<td>HIV 1.25</td>
</tr>
<tr>
<td>Servomotor connection terminals</td>
<td>U, V, W</td>
<td>HIV 1.25, HIV 2.0, HIV 3.5, HIV 5.5, HIV 8.0, HIV 14.0</td>
</tr>
<tr>
<td>External regenerative resistor connection terminals</td>
<td>B1/2, B2 (B1, B2)</td>
<td>HIV 1.25, HIV 2.0, HIV 3.5, HIV 5.5, HIV 8.0</td>
</tr>
<tr>
<td>Ground terminal</td>
<td>⬤</td>
<td>HIV 2.0 or higher</td>
</tr>
</tbody>
</table>
3.3.3 Typical Main Circuit Wiring Examples

The following wiring examples show the Σ-V Series SGDV SERVOPACK (Analog pulse model).

- **Single-phase 100 V, SGDV-□□□F (SGDV-R70F, R90F, 2R1F, 2R8F)**
Three-phase 200 V, SGDV-□□□□A

For SGDV-R70A, -R90A, -1R6A, -2R8A, terminals B2 and B3 are not short-circuited.

- SGDV-470A, 550A, 590A, 780A
3.3.3 Typical Main Circuit Wiring Examples

Three-phase 400 V, SGDV-□□□□D

- SGDV-1R9D, 3R5D, 5R4D, 8R4D, 120D, 170D

![Wiring diagram for three-phase 400 V, SGDV-□□□□D](image)

- 1QF: Molded-case circuit breaker
- 1FIL: Noise filter
- 1KM: Magnetic contactor (for control power supply)
- 2KM: Magnetic contactor (for main power supply)
- 1Ry: Relay
- 1PL: Indicator lamp
- 1SA: Surge absorber
- 2SA: Surge absorber
- 3SA: Surge absorber
- 1D: Flywheel diode

SGDV-210D, 260D, 280D, 370D

![Wiring diagram for SGDV-210D, 260D, 280D, 370D](image)

- 1QF: Molded-case circuit breaker
- 1FIL: Noise filter
- 1KM: Magnetic contactor (for control power supply)
- 2KM: Magnetic contactor (for main power supply)
- 1Ry: Relay
- 1PL: Indicator lamp
- 1SA: Surge absorber
- 2SA: Surge absorber
- 3SA: Surge absorber
- 1D: Flywheel diode
Precautions When Using More Than One SERVOPACK

This section shows an example of the wiring when more than one SERVOPACK is used and the precautions.

- Wiring Example (Analog pulse model)

Connect the alarm output (ALM) terminals for the three SERVOPACKs in series to enable alarm detection relay 1RY to operate.

When the alarm occurs, the ALM output signal transistor is turned OFF.

1QF: Molded-case circuit breaker
1FIL: Noise filter
1KM: Magnetic contactor (for control power supply)
2KM: Magnetic contactor (for main power supply)
1Ry: Relay
1PL: Indicator lamp
1SA: Surge absorber
2SA: Surge absorber
3SA: Surge absorber
1D: Flywheel diode
• Precautions

When using more than one SERVOPACK with a DC power supply, refer to these manuals here for the appropriate wiring, connections, and required settings.

 Design and Maintenance Rotational Motor/Analog Voltage and Pulse Train Reference (SIEP S800000 45)
 Design and Maintenance Rotational Motor/MECHATROLINK-II Communications Reference (SIEP S800000 46)
 Design and Maintenance Rotational Motor/Command Option Attachable Type (SIEP S800000 60)
 Design and Maintenance Rotational Motor/MECHATROLINK-III Communications Reference (SIEP S800000 64)

3.3.4 Wiring the Main Circuit Terminal Connector (Spring Type)

Two types of main circuit terminals are available: a connector type and a terminal screw type.

- SERVOPACKs with terminal screws:
- SERVOPACKs with connectors:
 SGDV-R70F, R90F, 2R1F, 2R8F, R70A, R90A, 1R6A, 2R8A, 3R8A, 5R5A, 7R6A, 120A, 1R9D, 3R5D, 5R4D

A spring connector is used for SERVOPACKs with connectors. The following section describes how to wire the main circuit terminal using a connector.

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Observe the following precautions when wiring main circuit terminal connectors.</td>
</tr>
<tr>
<td>• Do not turn ON the power to the SERVOPACK until all wiring has been completed, including the main circuit terminal connectors.</td>
</tr>
<tr>
<td>• Remove detachable main circuit terminal connectors from the SERVOPACK prior to wiring.</td>
</tr>
<tr>
<td>• Insert only one main circuit cable per opening in the main circuit terminal connector.</td>
</tr>
<tr>
<td>• Make sure that no part of the core wire comes into contact with (i.e., short-circuit) adjacent wires.</td>
</tr>
</tbody>
</table>
3.3 Main Circuit Wiring

Wiring Procedure

1. Remove the main circuit terminal connector from the SERVOPACK.

2. Strip the end of the wires.

 Applicable wire sizes:
 Refer to 3.3.2 SERVOPACK Main Circuit Wire Size.

3. Open the wire terminal on the terminal connector housing with a tool, using the following methods. Either method can be used to open the wire terminal.

 Using a spring opener

 Use the spring opener provided with the SERVOPACK to open the wire terminal as shown in the diagram.

 Note: The spring opener (1981045-1) made by Tyco Electronics AMP K.K. can also be used.
3.3.4 Wiring the Main Circuit Terminal Connector (Spring Type)

- **Using a screwdriver**

 Use a commercially available flat-blade screwdriver with a blade width of 3.0 to 3.5 mm. Insert the screwdriver into the slot and press down firmly to open the wire terminal.

4. Insert the wire core into the opening, and then secure the wire into position by removing the opener or screwdriver to close the opening.

5. Make all the required connections in the same way.

6. Attach the connector to the SERVOPACK.
3.4 Connecting Regenerative Resistors

This section describes how to connect regenerative resistors and set the regenerative resistor capacity. To learn how to select a regenerative resistor, and for detailed specifications, refer to Σ-V Series Product Catalog (KAEP S800000 42).

For more information on how to set the capacity of regenerative resistors, refer to Σ-V Series User’s Manual Design and Maintenance (SIEP S800000 45/46/60/64).

WARNING

- Be sure to connect the regenerative resistor correctly.
 Failure to observe this warning may result in fire or damage to the product.

3.4.1 Connecting Regenerative Resistor

SERVOPACKs: Model SGDV-R70F, R90F, 2R1F, 2R8F, R70A, R90A, 1R6A, 2R8A

Connect an external regenerative resistor between B1/⊕ and B2 terminals. After connecting a resistor, select the capacity.

![Enlarged View](image)
3 Wiring and Connection

3.4.1 Connecting Regenerative Resistor

- SERVOPACKs: Model SGDV-3R8A, 5R5A, 7R6A, 120A, 180A, 200A, 330A, 1R9D, 3R5D, 5R4D, 8R4D, 120D, 170D

Disconnect the wiring between the SERVOPACK’s B2 and B3 terminals and connect an external regenerative resistor between the B1/\(\oplus\) and B2 terminals or between the B1 and B2 terminals.

Note: Be sure to take out the lead wire between the B2 and B3 terminals.

No built-in regenerative resistor is provided, so the external regenerative resistor is required. The regenerative resistor units are as follow:

<table>
<thead>
<tr>
<th>Main Circuit Power Supply</th>
<th>Applicable SERVOPACK Model SGDV</th>
<th>Applicable Regenerative Resistor Unit</th>
<th>Resistance (Ω)</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three-phase 200 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>470A</td>
<td></td>
<td>JUSP-RA04-E</td>
<td>6.25</td>
<td>25 Ω (220 W); 4 resistors in parallel</td>
</tr>
<tr>
<td>550A, 590A, 780A</td>
<td></td>
<td>JUSP-RA05-E</td>
<td>3.13</td>
<td>25 Ω (220 W); 8 resistors in parallel</td>
</tr>
<tr>
<td>Three-phase 400 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210D, 260D</td>
<td></td>
<td>JUSP-RA18-E</td>
<td>18</td>
<td>18 Ω (220 W); 2 resistors in series with 2 in parallel.</td>
</tr>
<tr>
<td>280D, 370D</td>
<td></td>
<td>JUSP-RA19-E</td>
<td>14.25</td>
<td>28.5 Ω (220 W); 2 resistors in series with 4 in parallel.</td>
</tr>
</tbody>
</table>

Connect a regenerative resistor unit between B1/ and B2 terminals.

When using a regenerative resistor unit, set Pn600 to 0 W (factory setting).
This chapter describes the safety functions.

4.1 Outline ... 4-2
4.2 Hard Wire Base Block (HWBB) Function 4-3
4.3 Safety Function Signal (CN8) Names and Functions 4-4
4.4 Precautions When Not Using the Safety Function 4-4
4.5 Connecting a Safety Function Device 4-5
4.1 Outline

The safety function is incorporated in the SERVOPACK to reduce the risk associated with the machine by protecting workers from injury and by securing safe machine operation. Especially when working in hazardous areas inside the safeguard, as for machine maintenance, it can be used to avoid adverse machine movement.

The person who designs a system using the safety function (Hard Wire Baseblock function) must have full knowledge of the related safety standards and full understanding of the following manuals.

 Design and Maintenance Rotational Motor/Analog Voltage and Pulse Train Reference (SIEP S800000 45)
 Design and Maintenance Rotational Motor/MECHATROLINK-II Communications Reference (SIEP S800000 46)
 Design and Maintenance Rotational Motor/Command Option Attachable Type (SIEP S800000 60)
 Design and Maintenance Rotational Motor/MECHATROLINK-III Communications Reference (SIEP S800000 64)
4.2 Hard Wire Base Block (HWBB) Function

The Hard Wire Base Block function (hereinafter referred to as HWBB function) is a safety function designed to baseblock the motor (shut off the motor current) by using the hardwired circuits: Each circuit for two channel input signals blocks the run signal to turn off the power module, and the motor current is shut off. (Refer to the diagram below.)

Note: For safety function signal connections, the input signal is the 0V common and the output signal is the source output. This is opposite to other signals described in this manual. To avoid confusion, the ON and OFF status of signals for safety functions are defined as follows:

ON: The state in which the relay contacts are closed or the transistor is ON and current flows into the signal line.
OFF: The state in which the relay contacts are open or the transistor is OFF and no current flows into the signal line.

⚠️ WARNING

- Perform risk assessment for the system and confirm that the safety requirements with the following standards are fulfilled before using the HWBB function.
 - EN954-1 Category3
 - IEC61508-1 to 4 SIL2
4.3 Safety Function Signal (CN8) Names and Functions

The following table shows the terminal layout of safety function signals (CN8).

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Signal Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1*</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2*</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>/HWBB1-</td>
<td>Hard wire baseblock input 1</td>
</tr>
<tr>
<td>4</td>
<td>/HWBB1+</td>
<td>Hard wire baseblock input 1 when OFF</td>
</tr>
<tr>
<td>5</td>
<td>/HWBB2-</td>
<td>Hard wire baseblock input 2</td>
</tr>
<tr>
<td>6</td>
<td>/HWBB2+</td>
<td>Baseblock (motor current off) when OFF</td>
</tr>
<tr>
<td>7</td>
<td>EDM1-</td>
<td>Monitored circuit status output 1 ON when the /HWBB1 and the /HWBB2 signals are input and the SERVOPACK enters a baseblock state.</td>
</tr>
<tr>
<td>8</td>
<td>EDM1+</td>
<td></td>
</tr>
</tbody>
</table>

* Do not use unused terminals. (connected to the internal circuits)

4.4 Precautions When Not Using the Safety Function

When not using the safety function or when performing a JOG operation, use the SERVOPACK with the safety function jumper connector (JZSP-CVH05-E, provided as an accessory) inserted. If the SERVOPACK is used without the jumper connector inserted into CN8, no current will flow to the motor and no torque will be output.

When Hbb is displayed on the panel operator and digital operator, the motor is base-blocked by the safety function. Check to see if the JZSP-CVH05-E jumper connector is correctly inserted into CN8.
There are the following two types of safety function’s jumper connectors that are provided with the SERVOPACKs. The safety function’s jumper connector must be removed to attach a safety function device. Read the following procedure carefully and then attach the safety function device.

Connect a safety function device using the following procedure.

1. **Remove the servomotor connection terminal connector while pressing the lock.**
 - Applicable SERVOPACKs: SGDV-R70F, -R90F, -2R1F, -R70A, -R90A, -1R6A, -2R8A, -1R9D, -3R5D, -5R4D
 - For SERVOPACK models not listed above, it is not necessary to remove the servomotor connection terminal connector. Go to step 2.
2. **<Using previous model>**

 Slide the lock injector of the safety function’s jumper connector to the SERVOPACK side to unlock and remove the safety function’s jumper connector.

 Note: The safety function’s jumper connector may be damaged if removed while the lock is still on.

 <Using new model>

 Remove the safety function’s jumper connector from CN8.

3. **Connect a safety function device to CN8.**

 Note: When not using the safety function, use the SERVOPACK with the safety function’s jumper connector (JZSP-CVH05-E provided as an accessory) inserted in CN8. If the SERVOPACK is used without the jumper connector inserted into CN8, no current will flow to the servomotor and no torque will be output. In this case, "Hbb" will be displayed on the digital operator.
Trial Operation (Checking Servomotor Operation)

This chapter describes how to perform trial operation.

5.1 Outline ... 5-2
5.2 Inspection and Checking before Trial Operation 5-2
5.3 JOG Operation Using a Panel Operator 5-5
5.4 JOG Operation Using a Digital Operator 5-7
5.5 JOG Operation Using SigmaWin+ 5-10
5.1 Outline

The trial operation described here is a JOG operation for servomotors not connected to machinery (without a load). The purpose of this trial operation is to check whether the SERVOPACK and servomotor are properly connected and whether the servomotor is operating normally.

To conduct trial operation executed from the host controller for the servomotor without load, or for the servomotor connected to the machine, refer to the following manuals.

- Σ-V Series User's Manual Design and Maintenance Rotational Motor/Command Option Attachable Type (SIEP S800000 60)
- Σ-V Series User's Manual Design and Maintenance Rotational Motor/MECHATROLINK-III Communications Reference (SIEP S800000 64)

⚠️ CAUTION

- Conduct trial operation on the servomotor alone with the motor shaft disconnected from the machine to avoid any unexpected accidents. If it is unavoidable to perform trial operation while connected to a machine, then always make sure that an emergency stop can be immediately executed.

5.2 Inspection and Checking before Trial Operation

To ensure safe and correct trial operation, inspect and check the following items before starting trial operation.

Servomotors

Inspect and check the following items, and take appropriate measures before performing trial operation if any problem exists.

- Are all wiring and connections correct?
- Are all nuts and bolts securely tightened?
- If the servomotor has an oil seal, is the seal undamaged and is the motor oiled?
- If the servomotor has a brake, is the brake released beforehand? To release the brake, apply the specified voltage (24 VDC or 90 VDC). The following diagram shows an example of the circuit wiring needed to release the holding brake before a trial operation.
5.2 Inspection and Checking before Trial Operation

Inspect and check the following items, and take appropriate measures before performing trial operation if any problem exists.

- Are all installation, wiring and connections correct?
- Is the correct power supply voltage being supplied to the SERVOPACK?

■ SERVOPACKs

A 24 VDC power supply is not included.
Brake power supply
- Input voltage of 200 V: LPSE-2H01-E
- Input voltage of 100 V: LPDE-1H01-E

Configure the relay circuit to apply the holding brake by the emergency stop.

Relay Circuit Example
Installing the Servomotor and SERVOPACK

Install the servomotor and SERVOPACK according to the installation conditions.

<Note>
- Be sure to secure the servomotor to the equipment, or the servomotor may turn over when it starts rotating.
- Do not connect anything to the servomotor shaft.

Checking the Main Circuit Power Supply, Servomotor, and Encoder Wiring

Once again, check the main circuit power supply, servomotor, and encoder wiring that was described in Chapter 3 Wiring and Connection. Perform a trial operation with the safety function jumper connector (JZSP-CVH05-E, provided as an accessory) inserted into the CN8 connector.
5.3 JOG Operation Using a Panel Operator

This section describes the procedure for executing a JOG operation using a panel operator.

The panel operator is located under the front cover of the SERVOPACK (analog pulse models only).

<table>
<thead>
<tr>
<th>Step</th>
<th>Display after operation</th>
<th>Keys</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.Pot</td>
<td></td>
<td>Turn ON the power to the SERVOPACK. The forward run prohibited (P-OT) or reverse run prohibited (N-OT) message is displayed. When the JOG operation is executed, P-OT and N-OT are automatically disabled.</td>
</tr>
<tr>
<td></td>
<td>.not</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Fn000</td>
<td></td>
<td>Press the MODE/SET Key to select the utility function mode.</td>
</tr>
<tr>
<td>3</td>
<td>Fn002</td>
<td></td>
<td>Press the Up (▲) or Down (▼) Cursor Key to select Fn002.</td>
</tr>
<tr>
<td>4</td>
<td>.Jog</td>
<td></td>
<td>Press the DATA/SHIFT Key for approximately one second.</td>
</tr>
<tr>
<td>5</td>
<td>.Jog</td>
<td></td>
<td>Press the MODE/SET Key. The servomotor power will turn ON.</td>
</tr>
</tbody>
</table>
Trial Operation (Checking Servomotor Operation)

Press the Up Cursor Key to rotate the servomotor in the forward direction and press the Down Cursor Key to rotate it in reverse. The servomotor will operate while the key is being pressed. (The factory setting is 500 min⁻¹.)

Confirm that the servomotor operation is correct. At the same time, carefully inspect the servomotor’s condition and check the following points in particular. If a problem is found, correct it.
- Is there any unusual vibration?
- Is there any unusual sound?
- Is the temperature rising unusually high?

Press the MODE/SET Key. The servomotor power will be OFF.
Note: The servomotor can be turned OFF by pressing the DATA/SHIFT Key for approximately one second.

Press the DATA/SHIFT Key for approximately one second. "Fn002" is displayed again.

Press the MODE/SET Key to return to the initial display (step 1).

<table>
<thead>
<tr>
<th>Step</th>
<th>Display after operation</th>
<th>Keys</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>•.UaC</td>
<td></td>
<td>Press the Up Cursor Key to rotate the servomotor in the forward direction and press the Down Cursor Key to rotate it in reverse. The servomotor will operate while the key is being pressed. (The factory setting is 500 min⁻¹.) Confirm that the servomotor operation is correct. At the same time, carefully inspect the servomotor’s condition and check the following points in particular. If a problem is found, correct it. - Is there any unusual vibration? - Is there any unusual sound? - Is the temperature rising unusually high?</td>
</tr>
<tr>
<td>7</td>
<td>•.UaC</td>
<td></td>
<td>Press the MODE/SET Key. The servomotor power will be OFF. Note: The servomotor can be turned OFF by pressing the DATA/SHIFT Key for approximately one second.</td>
</tr>
<tr>
<td>8</td>
<td>Fn002</td>
<td></td>
<td>Press the DATA/SHIFT Key for approximately one second. "Fn002" is displayed again.</td>
</tr>
<tr>
<td>9</td>
<td>•.Pot</td>
<td></td>
<td>Press the MODE/SET Key to return to the initial display (step 1).</td>
</tr>
</tbody>
</table>
5.4 JOG Operation Using a Digital Operator

This section describes the procedure for executing a JOG operation using a digital operator.

Connect the digital operator to the SERVOPACK CN3 connector.

The digital operator can be connected or removed while the SERVOPACK power is ON.

<table>
<thead>
<tr>
<th>Step</th>
<th>Display after operation</th>
<th>Keys</th>
<th>Operation</th>
</tr>
</thead>
</table>
| 1 | **BB** - PRM/MON -
 Un 0 0 0 = 0 0 0 0 0
 Un 0 0 2 = 0 0 0 0 0
 Un 0 0 8 = 0 0 0 0 0 0 0 0 0 0
 Un 0 0 D = 0 0 0 0 0 0 0 0 0 | | Turn ON the power to the SERVO-
 PACK. A message saying that the file list is being loaded will appear and then the parameter/monitor mode will appear. |
| 2 | **BB** - FUNCTION -
 Fn 0 0 0 : Alm History
 Fn 0 0 2 : JOG
 Fn 0 0 3 : Z-Search
 Fn 0 0 4 : Program JOG | Modest ↓
 ↑
 ↓ | Press the Modest Key to view the main menu of the Utility Function mode.
 Press the ↑ Key or ↓ Key to select Fn002. |
Trial Operation (Checking Servomotor Operation) (cont’d)

<table>
<thead>
<tr>
<th>Step</th>
<th>Display after operation</th>
<th>Keys</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>BB − JOG −</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pn304 = 00500</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Un000 = 00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Un002 = 00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Un00D = 0000000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Press the DATA Key. The display changes to the execution display of Fn002.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>RUN − JOG −</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pn304 = 00500</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Un000 = 00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Un002 = 00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Un00D = 0000000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Press the JOG SWCN Key. "RUN" is displayed as the status, and the servomotor power turns ON.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>RUN − JOG −</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pn304 = 00500</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Un000 = 00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Un002 = 00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Un00D = 0000000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Press the ▲ Key to rotate the servomotor in the forward direction and press the ▼ Key to rotate it in reverse. The servomotor will operate while the key is being pressed. (The factory setting is 500 min⁻¹.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Confirm that the servomotor operation is correct. At the same time, carefully inspect the servomotor’s condition and check the following points in particular. If a problem is found, correct it.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Is there any unusual vibration?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Are there any unusual sound?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Is the temperature rising unusually high?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>BB − JOG −</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pn304 = 00500</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Un000 = 00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Un002 = 00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Un00D = 0000000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>After confirming that the servomotor is running correctly, press the JOG SWCN Key. "BB" is displayed as the status, and the servomotor power turns OFF.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>BB − FUNCTION −</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fn000:Alm History</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fn002:JOG</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fn003:Z-Search</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fn004:Program JOG</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Press the FUNCTION Key to return to the main menu of the Utility Function mode.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.4 JOG Operation Using a Digital Operator

Trial Operation (Checking Servomotor Operation)

Alarm Display

An alarm is automatically displayed if a problem occurs for some reason. Check the alarm using the user’s manual for the corresponding SERVOPACK or command option module (refer to "Manuals Related to the \(\Sigma \)-V Series on page iv) and apply the appropriate measures.

<table>
<thead>
<tr>
<th>Step</th>
<th>Display after operation</th>
<th>Keys</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>BB PRM/MON- Un000=00000 Un002=00000 Un008=0000000000 Un00D=0000000000</td>
<td>⏯发动</td>
<td>Press the ⏯发动 Key twice to return to the initial display (step 1).</td>
</tr>
</tbody>
</table>

Error Display

The following messages will be displayed if a communications error occurs between the SERVOPACK and the digital operator due to a connection problem such as poor connector contact. Check the connections and turn the power ON again. If the problem still persists, the digital operator or SERVOPACK must be replaced.

- CPF00 COM-ERR(OP&SV)
- CPF01 COM-ERR(OP&SV)
5.5 JOG Operation Using SigmaWin+

This section describes the procedure for executing a JOG operation using SigmaWin+.

In the following example, test-run procedures are explained using the JOG operation window of Test Run on the main menu of SigmaWin+.

<table>
<thead>
<tr>
<th>Step</th>
<th>Operation</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>• Connect a computer. Use a connection cable to connect a SERVOPACK to a computer which has SigmaWin+ installed.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>• Start SigmaWin+ and open the main window.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1) Turn ON the SERVOPACK.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) Turn ON the computer.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) Double click the YE_Applications folder on the desktop.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4) Double click the SigmaWin+ icon to display the SigmaWin+ startup screen.</td>
<td></td>
</tr>
</tbody>
</table>
5.5 JOG Operation Using SigmaWin+

Trial Operation (Checking Servomotor Operation)

<table>
<thead>
<tr>
<th>Step</th>
<th>Operation</th>
<th>Display</th>
</tr>
</thead>
</table>
| (5) | Once SigmaWin+ is started, the connection window is displayed.
 | Note: is used for operation with no SERVOPACK connected.
 | Click to search for the connected SERVOPACK. | ![Connection Window](image) |
| (6) | Search Condition Setting window is open.
 | Select Σ-V(), and click .
 | A dialog box will open first to tell you a search has started, and then the search result will be shown in the connection window.
 | Note: If the message, “Servopack not found” is displayed, refer to 2.2 Selecting a SERVOPACK of SigmaWin+ English Edition Online Manual (YE_Applications -> Manual). | ![Search Condition Setting Window](image) |
| (7) | Select the SERVOPACK to be connected.
 | Click . (Place the cursor over the SERVOPACK to be connected, and then click on it.)
 | The main window of SigmaWin+ will then open. | ![Main Window](image) |
Trial Operation (Checking Servomotor Operation)

5-12 Trial Operation (Checking Servomotor Operation)

<table>
<thead>
<tr>
<th>Step</th>
<th>Operation</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Run test operation. (1) Select Test Run first, and then select Jog (J) from the menu on the main window.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) Warnings for the JOG operation window will be displayed. Read them and click OK.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) The JOG operation window is open.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Trial Operation (Checking Servomotor Operation)

<table>
<thead>
<tr>
<th>Step</th>
<th>Operation</th>
<th>Display</th>
</tr>
</thead>
</table>
| 4 | • Set the JOG speed
The motor speed is set to 500 [min⁻¹]. Click [EDIT] if you need to change it. | ![JOG Operation Display](image) |
| 5 | • Servo ON
Click [Servo ON]. The display changes from **Servo OFF** to **Servo ON** and is lit in green. | ![JOG Operation Display](image) |
5 Trial Operation (Checking Servomotor Operation)

Refer to the online manual for SigmaWin+ for details. Follow the steps below to view the online manual.

<How to view the online manual>

1. Turn ON the computer.
2. Open the YE_Applications folder.
3. Open the Manual folder.

<table>
<thead>
<tr>
<th>Step</th>
<th>Operation</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>• Start JOG operation.
 When you click Forward the servomotor will rotate in the forward direction. When you click Reverse it will rotate in reverse.
Confirm that the servomotor operation is correct. At the same time, carefully inspect the servomotor’s condition and check the following points in particular. If a problem is found, correct it.
• Is there any unusual vibration?
• Is there any unusual sound?
• Is the temperature rising unusually high?</td>
<td>![JOG Operation]</td>
</tr>
<tr>
<td>7</td>
<td>• Servo OFF
Click Servo OFF
(Screen display will return to the display shown at step 4.)</td>
<td>![Servo OFF]</td>
</tr>
<tr>
<td>8</td>
<td>• Terminate JOG operation.
Click Χ to end JOG operation.
You will return to the main window.</td>
<td>![Servo OFF]</td>
</tr>
</tbody>
</table>
Revision History

The revision dates and numbers of the revised manuals are given at the bottom of the back cover.

MANUAL NO. SIEP S800000 43B <1>

Published in Japan November 2008

<table>
<thead>
<tr>
<th>Date of Publication</th>
<th>Rev. No.</th>
<th>Section</th>
<th>Revised Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>November 2016</td>
<td><12></td>
<td>Back cover</td>
<td>Revision: Address</td>
</tr>
<tr>
<td>May 2015</td>
<td><11></td>
<td>Front cover</td>
<td>Revision: Format</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Back cover</td>
<td>Revision: Address and format</td>
</tr>
<tr>
<td>August 2013</td>
<td><10></td>
<td>Preface, 2.1.3</td>
<td>Revision: Description of Applicable Standards EN55011/A2 changed to EN55011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.4</td>
<td>Revision: Description of EMC Installation Conditions EN55011/A2 changed to EN55011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Back cover</td>
<td>Revision: Address</td>
</tr>
<tr>
<td>January 2013</td>
<td><9></td>
<td>Back cover</td>
<td>Revision: Address</td>
</tr>
<tr>
<td>August 2012</td>
<td><8></td>
<td>Back cover</td>
<td>Revision: Address</td>
</tr>
<tr>
<td>June 2012</td>
<td><7></td>
<td>All chapters</td>
<td>Revision: Model of SERVOPACK with MECHATROLINK-III communications (21A→21□)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.5</td>
<td>Addition: Description of safety function’s jumper connector</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Back cover</td>
<td>Revision: Address</td>
</tr>
<tr>
<td>August 2011</td>
<td><6></td>
<td>Preface</td>
<td>Revision: Warranty</td>
</tr>
<tr>
<td>June 2011</td>
<td><5></td>
<td>Preface</td>
<td>Deletion: Description of “(will be available soon.)”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.2</td>
<td>Revision: Illustration of CD</td>
</tr>
<tr>
<td>March 2011</td>
<td><4></td>
<td>2.3.2, 2.4.1, 2.4.2, 3.2.1, 3.2.2</td>
<td>Addition: Description of SGDV-B SERVOPACKs</td>
</tr>
<tr>
<td>February 2011</td>
<td><3></td>
<td>Front cover</td>
<td>Revision: Format</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Back cover</td>
<td>Revision: Address and format</td>
</tr>
<tr>
<td>November 2008</td>
<td><1></td>
<td>All chapters</td>
<td>Completely revised</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Back cover</td>
<td>Revision: Address</td>
</tr>
<tr>
<td>April 2007</td>
<td></td>
<td>–</td>
<td>First edition</td>
</tr>
</tbody>
</table>
AC Servo Drives
\(\Sigma-V \) Series
USER’S MANUAL
Setup
Rotational Motor

YASKAWA ELECTRIC CORPORATION

In the event that the end user of this product is to be the military and said product is to be employed in any weapons systems or the manufacture thereof, the export will fall under the relevant regulations as stipulated in the Foreign Exchange and Foreign Trade Regulations. Therefore, be sure to follow all procedures and submit all relevant documentation according to any and all rules, regulations and laws that may apply. Specifications are subject to change without notice for ongoing product modifications and improvements.

© 2007-2016 YASKAWA ELECTRIC CORPORATION