
Machine Controller MP2000 Series

MANUAL NO. SIE-C887-1.2D

USER'S MANUAL
LADDER PROGRAMMING

1

2

3

4

5

6

7

Introduction to Ladder
 Programming

Specifications for Ladder
 Programs

Ladder Program Development
Flow

Programming

Instructions

Features of the MPE720
 Engineering Tool

Troubleshooting

System Registers

CP (Previous) Ladder Instructions
 and New Ladder Instructions

Sample Programming

Format for EXPRESSION
 Instruction

Precautions

AppB

AppA

AppC

AppD

AppE

Copyright © 1998 YASKAWA ELECTRIC CORPORATION

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, mechanical, electronic, photocopying, recording, or other-
wise, without the prior written permission of Yaskawa. No patent liability is assumed with respect to
the use of the information contained herein. Moreover, because Yaskawa is constantly striving to
improve its high-quality products, the information contained in this manual is subject to change without
notice. Every precaution has been taken in the preparation of this manual. Nevertheless, Yaskawa
assumes no responsibility for errors or omissions. Neither is any liability assumed for damages result-
ing from the use of the information contained in this publication.

iii

About this Manual

This manual provides comprehensive information on ladder programming for MP2000-series
Machine Controllers. It provides the following information on MP2000-series Machine Controllers.

• Introduction to Ladder Programming
• Specifications
• Program Development Flow
• Programming
• Instructions
• MPE720 Engineering Tool
• Troubleshooting

This manual provides information on MP2000-series Machine Controllers and MPE720 version 6.
For information on the MP900-series Machine Controllers and MPE720 version 5, refer to the
appropriate manuals for them.

Read this manual carefully to ensure the proper use of the MP2000-series Machine Controllers.
Keep this manual in a safe place so that it can be referred to whenever necessary.

Using this Manual

Intended Audience

This manual is intended for the following users.
• Those responsible for designing the MP2000-series Machine Controller system
• Those responsible for writing the MP2000-series Machine Controller ladder programs

MPE720 Engineering Tool Version Number

In this manual, the operation of the MPE720 is described using screen captures of MPE720 version 6.
For this reason, the screen captures and some descriptions may differ for MPE720 version 5.

Abbreviations

The following abbreviation is used in this manual.
• MP2000: A generic term for the MP2100, MP2100M, MP2101, MP2101M, MP2101T, MP2101TM, MP2200,

MP2300, MP2300S, MP2310, MP2400, MP2500/M/B/MB, and MPU-01.

MP2000-series Manuals

The MP2000 Series includes the MP2100, MP2100M, MP2101, MP2101M, MP2101T, MP2101TM,
MP2200, MP2300, MP2300S, MP2310, MP2400, MPU-01, MP2500/M/B/MB, and MPU-01.
There are many manuals available for one or more of these Machine Controllers. A list of the
related manuals is provided on the following page. Refer to these manuals as required.

iv

Related Manuals

The following manuals are related to the MP2000 Series. Refer to these manuals as required.

Manual Name Manual Number Description
Machine Controller MP210 /MP210 M
User’s Manual, Design and Maintenance SIEP C880700 01 Describes the functions, specifications, setup procedures, and

operating methods of the MP2100/MP2100M.

Machine Controller MP2200 User’s Manual SIEP C880700 14 Describes the functions, specifications, setup procedures, and
operating methods of the MP2200.

Machine Controller MP2300 Basic Module
User’s Manual SIEP C880700 03 Describes the functions, specifications, setup procedures, and

operating methods of the MP2300.
Machine Controller MP2300S Basic Module
User’s Manual SIEP C880732 00 Describes the functions, specifications, setup procedures, and

operating methods of the MP2300S.
Machine Controller MP2310 Basic Module
User’s Manual SIEP C880732 01 Describes the functions, specifications, setup procedures, and

operating methods of the MP2310.

Machine Controller MP2400 User’s Manual SIEP C880742 00 Describes the functions, specifications, setup procedures, and
operating methods of the MP2400.

Machine Controller MP2500/MP2500M/
MP2500D/MP2500MD User’s Manual SIEP C880752 00 Describes how to use the MP2500, MP2500M, MP2500D, and

MP2500MD Machine Controllers.
Machine Controller MP2000 Series
Built-in SVB/SVB-01 Motion Module
User’s Manual

SIEP C880700 33 Describes the SVB Module that is built into an MP2000-series
Machine Controller and the SVB-1 Optional Module.

Machine Controller MP2000 Series
SVC-01 Motion Module User’s Manual SIEP C880700 41 Describes the SVC-01 SVA Motion Module for MP2000-series

Machine Controllers.
Machine Controller MP2000 Series
SVA-01 Motion Module User’s Manual SIEP C880700 32 Describes the SVA-01 SVA Motion Module for MP2000-series

Machine Controllers.
Machine Controller MP2000 Series
Pulse Output Motion Module PO-01
User’s Manual

SIEP C880700 28 Describes the PO-01 Pulse Output Motion Module for MP2000-
series Machine Controllers.

Machine Controller MP2000 Series
Communication Module User’s Manual SIEP C880700 04 Describes the Communications Modules that can be connected to

MP2000-series Machine Controllers.
Machine Controller MP2000 Series
262IF-01 FL-net Communication Module
User’s Manual

SIEP C880700 36 Describes the 262IF-01 FL-net Communications Module for
MP2000-series Machine Controllers.

Machine Controller MP2000 Series
263IF-01 EtherNet/IP Communication
Module User’s Manual

SIEP C880700 39 Describes the 263IF-01 EtherNet/IP Communications Module for
MP2000-series Machine Controllers.

Machine Controller MP2000 Series
I/O Module User’s Manual SIEP C880700 34 Describes the I/O Modules that can be connected to MP2000-

series Machine Controllers.
Machine Controller MP2000 Series
Analog Input/Analog Output Module
AI-01/AO-01 User’s Manual

SIEP C880700 26 Describes the AI-01 Analog Input Module and AO-01 Analog
Output Module for MP2000-series Machine Controllers.

Machine Controller MP2000 Series
Counter Module CNTR-01 User’s Manual SIEP C880700 27 Describes the CNTR-01 Counter Module for MP2000-series

Machine Controllers.
Machine Controller MP2000 Series
MPU-01 Multiple-CPU Module
User’s Manual

SIEP C880781 05 Describes the MPU-01 Multiple-CPU Module for MP2000-series
Machine Controllers.

Machine Controller MP2000 Series
User’s Manual for Motion Programming SIEP C880700 38 Describes the instructions that are used in motion programming for

MP2000-series Machine Controllers.
Engineering Tool for MP2000 Series
Machine Controller MPE720 Version 6
User’s Manual

SIEP C880700 30 Describes how to install and operate the MPE720 version 6 Engi-
neering Tool for MP2000-series Machine Controllers.

Machine Controller MP900/MP2000 Series
MPE720 Software for Programming Device
User’s Manual

SIEP C880700 05 Describes how to install and operate the MPE720 programming
device software for MP900/MP2000-series Machine Controllers.

Machine Controller MP2000 Series
Embedded C-Language Programming
Package Development Guide

SIEP C880700 25
Describes how to develop, design, and maintain embedded C-lan-
guage application programs for MP2000-series Machine Control-
lers.

Machine Controller MP900/MP2000 Series
New Ladder Editor User’s Manual SIEZ-C887-13.2 Describes the operating methods of the New Ladder Editor, which

assists MP900/MP2000-series design and maintenance.

v

Machine Controller MP900/MP2000 Series
Distributed I/O Module User’s Manual,
MECHATROLINK System

SIE-C887-5.1 Describes MECHATROLINK distributed I/O for MP900/
MP2000-series Machine Controllers.

Machine Controller MP900/MP2000 Series
User’s Manual, For Linear Servomotors SIEP C880700 06 Describes the connection methods, setting methods, and other

information for Linear Servomotors.
AC Servo Drives Σ-V Series User’s Manual,
Setup, Rotational Motor SIEP S800000 43 Describes the installation, wiring, connections, and trial operation

of the Σ-V Series Servo Drives and Rotational Servomotors.
AC Servo Drives Σ-V Series User’s Manual,
Setup, Linear Motor SIEP S800000 44 Describes the installation, wiring, connections, and trial operation

of the Σ-V Series Servo Drives and Linear Servomotors.
AC Servo Drives Σ-V Series User’s Manual,
Design and Maintenance, Analog-voltage,
Pulse-string Reference, Rotational Motor

SIEP S800000 45 Describes the design and maintenance of the Σ-V Series Analog
Servo Drives and Rotational Servomotors.

AC Servo Drives Σ-V Series User’s Manual,
Design and Maintenance, Analog-voltage/
Pulse-string Reference, Linear Motor

SIEP S800000 47 Describes the design and maintenance of the Σ-V Series Analog
Servo Drives and Linear Servomotors.

AC Servo Drives Σ-V Series User’s Manual,
Design and Maintenance,
MECHATROLINK-II Communications
Reference, Rotational Motor

SIEP S800000 46
Describes the design and maintenance of the Σ-V Series MECHA-
TROLINK-II Communications-reference Servo Drives and Rota-
tional Servomotors.

AC Servo Drives Σ-V Series User’s Manual,
Design and Maintenance,
MECHATROLINK-II Communications
Reference, Linear Motor

SIEP S800000 48
Describes the design and maintenance of the Σ-V Series MECHA-
TROLINK-II Communications-reference Servo Drives and Linear
Servomotors.

AC Servo Drives Σ-V Series User’s Manual,
MECHATROLINK-II Commands SIEP S800000 54

Describes the MECHATROLINK-II communications commands
of the Σ-V Series Servo Drives with MECHATROLINK-II com-
munications references.

AC Servo Drives Σ-V Series User’s Manual,
Operation of Digital Operator SIEPS 800000 55 Describes operating procedures of the Digital Operator for Σ-V

Series Servo Drives.

Manual Name Manual Number Description

vi

Visual Aids

The following visual aids are used to indicate certain types of information for easier reference. Use these to help you
understand the different types of information.

• Indicates information that must be remembered.
Also indicates alarm displays and other minor precautions that will not result in machine damage.

• Indicates supplemental information and convenient information to remember.

• Indicates concrete examples.

• Indicates definitions of difficult terms or terms that have not been previously explained in this manual.

Copyrights

Safety Information

The following signal words and marks are used to indicate safety precautions in this manual. Information marked as
shown below is important for safety. Always read this information and heed the precautions that are provided.

• DeviceNet is a registered trademark of the ODVA (Open DeviceNet Venders Association).
• PROFIBUS is a trademark of the PROFIBUS User Organization.
• Ethernet is a registered trademark of the Xerox Corporation.
• MPLINK is a registered trademark of Yaskawa Electric Corporation.
• Microsoft, Windows, Windows NT, and Internet Explorer are trademarks or registered trademarks of the

Microsoft Corporation.
• Pentium is a registered trademark of the Intel Corporation.
• MECHATROLINK is a trademark of the MECHATROLINK Members Association.
• Other product names and company names are the trademarks or registered trademarks of the respective com-

pany. “TM” and the ® mark do not appear with product or company names in this manual.

IMPORTANT

INFO

EXAMPLE

TERMS

Indicates precautions that, if not heeded, could possibly result in loss of life or serious injury.

Indicates precautions that, if not heeded, could result in relatively serious or minor injury, or
property damage.
If not heeded, even precautions classified as cautions () can lead to serious results depending on
circumstances.

Indicates prohibited actions. For example, indicates prohibition of open flame.

Indicates mandatory actions. For example, indicates that grounding is required.

WARNING

CAUTION CAUTION

PROHIBITED

MANDATORY

vii

Safety Precautions

This section provides important precautions that must be observed in ladder programming. Before you start to program,
carefully read all of this manual and all other provided manuals and make sure that you program the MP2000-series
Machine Controller correctly. You must be completely familiar with the MP2000-series Machine Controllers, safety
information, and all safety precautions before you attempt to use the Machine Controller.

Storage and Transportation

Other General Precautions

If disinfectants or insecticides must be used to treat packing materials such as wooden frames, pallets, or
plywood, the packing materials must be treated before the product is packaged, and methods other than
fumigation must be used.
Example: Heat treatment, where materials are kiln-dried to a core temperature of 56°C for 30 minutes or
more.
If the electronic products, which include stand-alone products and products installed in machines, are packed with
fumigated wooden materials, the electrical components may be greatly damaged by the gases or fumes resulting from
the fumigation process. In particular, disinfectants containing halogen, which includes chlorine, fluorine, bromine, or
iodine can contribute to the erosion of the capacitors.

Observe the following general precautions to ensure safe application.
 The MP2000-series Machine Controllers were not designed or manufactured for use in devices or systems
directly related to human life.
Users who intend to use products that are described in this manual for special purposes such as devices or sys-
tems relating to transportation, medical, space aviation, atomic power control, or underwater use must contact
Yaskawa Electric Corporation beforehand.
The MP2000-series Machine Controllers have been manufactured under strict quality control guidelines. However,
if an MP2000-series Machine Controller is to be installed in any location in which a failure of the MP2000-series
Machine Controllers could involve a life and death situation or in a facility where failure may cause a serious acci-
dent, safety devices MUST be installed to minimize the likelihood of any serious accident.
The products shown in illustrations in this manual are sometimes shown without covers or protective guards.
Always replace the cover or protective guard as specified first, and then operate the products in accordance with
the manual.
The drawings that are presented in this manual are typical examples and may not match the product you received.
If the manual must be ordered due to loss or damage, inform your nearest Yaskawa representative or one of the
offices listed on the back of this manual.
Contact your nearest Yaskawa representative or one of the offices listed on the back of this manual to order a new
nameplate whenever a nameplate becomes worn or damaged.

CAUTION

viii

Warranty

(1) Details of Warranty

Warranty Period

The warranty period for a product that was purchased (hereinafter called “delivered product”) is one year from the time
of delivery to the location specified by the customer or 18 months from the time of shipment from the Yaskawa factory,
whichever is sooner.

Warranty Scope

Yaskawa shall replace or repair a defective product free of charge if a defect attributable to Yaskawa occurs during the
warranty period above. This warranty does not cover defects caused by the delivered product reaching the end of its
service life and replacement of parts that require replacement or that have a limited service life.
This warranty does not cover failures that result from any of the following causes.
1. Improper handling, abuse, or use in unsuitable conditions or in environments not described in product catalogs or

manuals, or in any separately agreed-upon specifications
2. Causes not attributable to the delivered product itself
3. Modifications or repairs not performed by Yaskawa
4. Abuse of the delivered product in a manner in which it was not originally intended
5. Causes that were not foreseeable with the scientific and technological understanding at the time of shipment from

Yaskawa
6. Events for which Yaskawa is not responsible, such as natural or human-made disasters

(2) Limitations of Liability

1. Yaskawa shall in no event be responsible for any damage or loss of opportunity to the customer that arises due to
failure of the delivered product.

2. Yaskawa shall not be responsible for any programs (including parameter settings) or the results of program execu-
tion of the programs provided by the user or by a third party for use with programmable Yaskawa products.

3. The information described in product catalogs or manuals is provided for the purpose of the customer purchasing
the appropriate product for the intended application. The use thereof does not guarantee that there are no infringe-
ments of intellectual property rights or other proprietary rights of Yaskawa or third parties, nor does it construe a
license.

4. Yaskawa shall not be responsible for any damage arising from infringements of intellectual property rights or other
proprietary rights of third parties as a result of using the information described in catalogs or manuals.

ix

(3) Suitability for Use

1. It is the customer’s responsibility to confirm conformity with any standards, codes, or regulations that apply if the
Yaskawa product is used in combination with any other products.

2. The customer must confirm that the Yaskawa product is suitable for the systems, machines, and equipment used by
the customer.

3. Consult with Yaskawa to determine whether use in the following applications is acceptable. If use in the application
is acceptable, use the product with extra allowance in ratings and specifications, and provide safety measures to
minimize hazards in the event of failure.

• Outdoor use, use involving potential chemical contamination or electrical interference, or use in conditions or
environments not described in product catalogs or manuals

• Nuclear energy control systems, combustion systems, railroad systems, aviation systems, vehicle systems,
medical equipment, amusement machines, and installations subject to separate industry or government regula-
tions

• Systems, machines, and equipment that may present a risk to life or property
• Systems that require a high degree of reliability, such as systems that supply gas, water, or electricity, or sys-

tems that operate continuously 24 hours a day
• Other systems that require a similar high degree of safety

4. Never use the product for an application involving serious risk to life or property without first ensuring that the sys-
tem is designed to secure the required level of safety with risk warnings and redundancy, and that the Yaskawa
product is properly rated and installed.

5. The circuit examples and other application examples described in product catalogs and manuals are for reference.
Check the functionality and safety of the actual devices and equipment to be used before using the product.

6. Read and understand all use prohibitions and precautions, and operate the Yaskawa product correctly to prevent
accidental harm to third parties.

(4) Specifications Change

The names, specifications, appearance, and accessories of products in product catalogs and manuals may be changed at
any time based on improvements and other reasons. The next editions of the revised catalogs or manuals will be pub-
lished with updated code numbers. Consult with your Yaskawa representative to confirm the actual specifications
before purchasing a product.

x

Contents
About this Manual- iii
Using this Manual- iii
MP2000-series Manuals - iii
Safety Information - vi
Safety Precautions - vii
Warranty - viii

1 Introduction to Ladder Programming - 1-1

1.1 What Is a Ladder Program?- 1-2

1.2 Features of Ladder Programming for MP2000-series Machine Controllers - - - - - 1-3
1.2.1 Types of Ladder Drawings and Their Different Execution Timing - 1-3
1.2.2 Program Modules - 1-4
1.2.3 Programming Complicated Numeric Operations - 1-4
1.2.4 Communications Control with External Devices - 1-5
1.2.5 Complete Synchronization with Motion Control - 1-5

2 Specifications for Ladder Programs- 2-1

2.1 MP2000-series Machine Controller Specifications - 2-2
2.1.1 Applicable Machine Controllers - 2-2
2.1.2 Machine Controller Program Specifications - 2-3

2.2 Engineering Tool Specifications - 2-4
2.2.1 Applicable Engineering Tool- 2-4
2.2.2 MPE720 Version 6 Engineering Tool Specifications - 2-4

2.3 Ladder Programming Instructions - 2-5

3 Ladder Program Development Flow - 3-1

3.1 Ladder Program Design Procedures - 3-2
3.1.1 Connecting the Hardware - 3-3
3.1.2 Installing MPE720 Version 6 - 3-4
3.1.3 Communications Settings - 3-4
3.1.4 System Startup- 3-4
3.1.5 Creating a Project- 3-5
3.1.6 Creating Ladder Programs - 3-6
3.1.7 Transferring Ladder Programs - 3-9
3.1.8 Checking the Operation of the Ladder Programs - 3-11
3.1.9 Saving the Ladder Programs to Flash Memory - 3-14

4 Programming - 4-1

4.1 Ladder Program Editor - 4-2

4.2 Ladder Drawings - 4-3
4.2.1 Types of Ladder Drawings - 4-3
4.2.2 Controlling the Execution of Drawings - 4-5

4.3 User Functions- 4-7
4.3.1 What Is a User Function? - 4-7
4.3.2 Creating User Functions - 4-9
4.3.3 Calling a User Function - 4-12

xi

4.4 Registers (Variables)- 4-13
4.4.1 What Are Registers? - 4-13
4.4.2 Register Types - 4-14
4.4.3 Data Types - 4-17
4.4.4 Index Registers (i, j)- 4-19

4.5 Table Data - 4-21
4.5.1 What Is Table Data? - 4-21
4.5.2 Creating Table Data- 4-21

4.6 Transferring Data - 4-23

4.7 Setting the High-speed/Low-speed Scan Times- 4-24

4.8 Advanced Programming - 4-25
4.8.1 Motion Programs- 4-25
4.8.2 C-language Programs - 4-26
4.8.3 Security - 4-27
4.8.4 Tracing - 4-28

5 Instructions - 5-1

5.1 How to Read the Instructions - 5-4

5.2 Relay Circuit Instructions- 5-5
5.2.1 NO Contact (NOC) - 5-5
5.2.2 NC Contact (NCC)- 5-6
5.2.3 10-ms ON-Delay Timer (TON[10ms]) - 5-7
5.2.4 10-ms OFF-Delay Timer (TOFF[10ms]) - 5-9
5.2.5 1-s ON-Delay Timer (TON[1s]) - 5-11
5.2.6 1-s OFF-Delay Timer (TOFF[1s]) - 5-13
5.2.7 Rising-edge Pulses (ON-PLS) - 5-15
5.2.8 Falling-edge Pulses (OFF-PLS) - 5-17
5.2.9 Coil (COIL) - 5-19
5.2.10 Set Coil (S-COIL) - 5-20
5.2.11 Reset Coil (R-COIL) - 5-21

5.3 Numeric Operation Instructions - 5-22
5.3.1 Store (STORE) - 5-22
5.3.2 Add (ADD (+)) - 5-24
5.3.3 Extended Add (ADDX (++)) - 5-26
5.3.4 Subtract (SUB (−)) - 5-28
5.3.5 Extended Subtract (SUBX (− −)) - 5-30
5.3.6 Multiply (MUL (x)) - 5-32
5.3.7 Divide (DIV (÷)) - 5-34
5.3.8 Integer Remainder (MOD) - 5-36
5.3.9 Real Remainder (REM) - 5-38
5.3.10 Increment (INC)- 5-40
5.3.11 Decrement (DEC) - 5-42
5.3.12 Add Time (TMADD) - 5-44
5.3.13 Subtract Time (TMSUB) - 5-46
5.3.14 Spend Time (SPEND) - 5-48
5.3.15 Invert Sign (INV) - 5-51
5.3.16 One’s Complement (COM) - 5-52
5.3.17 Absolute Value (ABS)- 5-53
5.3.18 Binary Conversion (BIN)- 5-54
5.3.19 BCD Conversion (BCD) - 5-55
5.3.20 Parity Conversion (PARITY) - 5-56
5.3.21 ASCII Conversion 1 (ASCII) - 5-57
5.3.22 ASCII Conversion 2 (BINASC) - 5-59
5.3.23 ASCII Conversion 3 (ASCBIN) - 5-61

xii

5.4 Logic Operations and Comparison Instructions - 5-63
5.4.1 Inclusive AND (AND) - 5-63
5.4.2 Inclusive OR (OR) - 5-65
5.4.3 Exclusive OR (XOR) - 5-67
5.4.4 Less Than (<)- 5-69
5.4.5 Less Than or Equal (≤) - 5-70
5.4.6 Equal (=) - 5-71
5.4.7 Not Equal (≠) - 5-72
5.4.8 Greater Than or Equal (≥) - 5-73
5.4.9 Greater Than (>)- 5-74
5.4.10 Range Check (RCHK) - 5-75

5.5 Program Control Instructions - 5-77
5.5.1 Call Sequence Program (SEE)- 5-77
5.5.2 Call Motion Program (MSEE)- 5-78
5.5.3 Call User Function (FUNC) - 5-80
5.5.4 Direct Input String (INS) - 5-81
5.5.5 Direct Output String (OUTS) - 5-84
5.5.6 Call Extended Program (XCALL) - 5-87
5.5.7 WHILE Construct (WHILE, END_WHILE) - 5-88
5.5.8 FOR Construct (FOR, END_FOR) - 5-91
5.5.9 IF Construct (IF, END_IF) - 5-93
5.5.10 IF-ELSE Construct (IF, ELSE, END_IF)- 5-95
5.5.11 Expression (EXPRESSION)- 5-97

5.6 Basic Function Instructions - 5-99
5.6.1 Square Root (SQRT)- 5-99
5.6.2 Sine (SIN) - 5-101
5.6.3 Cosine (COS)- 5-103
5.6.4 Tangent (TAN) - 5-105
5.6.5 Arc Sine (ASIN) - 5-106
5.6.6 Arc Cosine (ACOS)- 5-107
5.6.7 Arc Tangent (ATAN) - 5-108
5.6.8 Exponential (EXP) - 5-109
5.6.9 Natural Logarithm (LN) - 5-110
5.6.10 Common Logarithm (LOG) - 5-111

5.7 Data Shift Instructions - 5-112
5.7.1 Bit Rotate Left (ROTL)- 5-112
5.7.2 Bit Rotate Right (ROTR) - 5-114
5.7.3 Move Bit (MOVB) - 5-116
5.7.4 Move Word (MOVW)- 5-118
5.7.5 Exchange (XCHG) - 5-120
5.7.6 Table Initialization (SETW)- 5-122
5.7.7 Byte-to-word Expansion (BEXTD) - 5-124
5.7.8 Word-to-byte Compression (BPRESS) - 5-126
5.7.9 Binary Search (BSRCH) - 5-128
5.7.10 Sort (SORT) - 5-130
5.7.11 Bit Shift Left (SHFTL) - 5-132
5.7.12 Bit Shift Right (SHFTR) - 5-134
5.7.13 Copy Word (COPYW) - 5-136
5.7.14 Byte Swap (BSWAP)- 5-138

5.8 DDC Instructions - 5-139
5.8.1 Dead Zone A (DZA) - 5-139
5.8.2 Dead Zone B (DZB) - 5-141
5.8.3 Upper/Lower Limit (LIMIT) - 5-143
5.8.4 PI Control (PI) - 5-145
5.8.5 PD Control (PD) - 5-150
5.8.6 PID Control (PID) - 5-156

xiii

5.8.7 First-order Lag (LAG)- 5-161
5.8.8 Phase Lead Lag (LLAG) - 5-164
5.8.9 Function Generator (FGN) - 5-167
5.8.10 Inverse Function Generator (IFGN) - 5-172
5.8.11 Linear Accelerator/Decelerator 1 (LAU) - 5-177
5.8.12 Linear Accelerator/Decelerator 2 (SLAU) - 5-184
5.8.13 Pulse Width Modulation (PWM)- 5-194

5.9 Table Manipulation Instructions - 5-197
5.9.1 Read Table Block (TBLBR)- 5-197
5.9.2 Write Table Block (TBLBW) - 5-200
5.9.3 Search for Table Row (TBLSRL) - 5-203
5.9.4 Search for Table Column (TBLSRC) - 5-206
5.9.5 Clear Table Block (TBLCL) - 5-209
5.9.6 Move Table Block (TBLMV) - 5-212
5.9.7 Read Queue Table (QTBLR and QTBLRI) - 5-215
5.9.8 Write Queue Table (QTBLW and QTBLWI)- 5-219
5.9.9 Clear Queue Table Pointers (QTBLCL) - 5-223

5.10 System Function Instructions - 5-225
5.10.1 Counter (COUNTER) - 5-225
5.10.2 First-in First-out (FINFOUT) - 5-228
5.10.3 Trace (TRACE) - 5-232
5.10.4 Read Data Trace (DTRC-RD) - 5-234
5.10.5 Read Inverter Trace (ITRC-RD) - 5-238
5.10.6 Send Message (MSG-SND) - 5-241
5.10.7 Receive Message (MSG-RCV) - 5-253
5.10.8 Write Inverter Parameter (ICNS-WR)- 5-261
5.10.9 Read Inverter Parameter (ICNS-RD) - 5-266
5.10.10 Write SERVOPACK Parameter (MLNK-SVW)- 5-270
5.10.11 Write Motion Register (MOTREG-W) - 5-275
5.10.12 Read Motion Register (MOTREG-R) - 5-278

5.11 C-language Control Instructions - 5-281
5.11.1 Call C-language Function (C-FUNC) - 5-281
5.11.2 C-language Task Control (TSK-CTRL) - 5-283

6 Features of the MPE720 Engineering Tool - 6-1

6.1 Ladder Program Runtime Monitoring - 6-2

6.2 Searching/Replacing- 6-3

6.3 Cross References- 6-4

6.4 Checking for Multiple Coils - 6-5

6.5 Forcing Coils ON and OFF - 6-5

6.6 Viewing Called Programs - 6-6

6.7 Register Lists - 6-6

6.8 Tuning Panel - 6-7

6.9 Enabling and Disabling Ladder Programs - 6-8

6.10 Compiling for MPE720 Version 5 - 6-9

7 Troubleshooting- 7-1

7.1 Basic Flow of Troubleshooting - 7-2

xiv

7.2 Indicator Status - 7-3

7.3 Problem Classifications- 7-4
7.3.1 Overview - 7-4
7.3.2 Error Checking Flowchart for MP2000-series Machine Controllers - - - - - - - - - - - - - - - - - - - 7-5

7.4 Detailed Troubleshooting- 7-6
7.4.1 Operation Errors- 7-6
7.4.2 I/O Errors- 7-9
7.4.3 Watchdog Timer Errors - 7-10
7.4.4 Module Synchronization Errors - 7-10
7.4.5 System Errors - 7-11

Appendix A System Registers - A-1

A.1 System Service Registers - A-2

A.2 System Status - A-6

A.3 System Error Status - A-7

A.4 Overview of User Operation Error Status - A-9

A.5 System Service Execution Status- A-11

A.6 Detailed User Operation Error Status - A-11

A.7 System I/O Error Status - A-12

A.8 CF Card-related System Registers
(MP2200-series CPU-02 and CPU-03 only)- A-13

A.9 Interrupt Status - A-14
A.9.1 Interrupt Status List - A-14
A.9.2 Details on Interrupting Module - A-14

A.10 Module Information- A-15

A.11 MPU-01 System Status - A-16

A.12 Motion Program Information - A-17

Appendix B CP (Previous) Ladder Instructions and New Ladder Instructions - - - B-1

B.1 Correspondence between CP (Previous) Ladder Instructions and New Ladder
Instructions- B-2

B.2 Converting CP (Previous) Ladder Programs to New Ladder Programs - - - - - - B-3

Appendix C Sample Programming- C-1

C.1 Jogging from the Control Panel - C-2

C.2 Motion Program Control - C-3

C.3 Simple Synchronized Operation of Two Axes with a Virtual Axis - - - - - - - - - - - C-4

C.4 Transferring Project Files to Different Models - C-6

Appendix D Format for EXPRESSION Instruction - D-1

D.1 Elements That You Can Use in Numeric Expressions - - - - - - - - - - - - - - - - - - D-2

xv

D.2 National Limitations - D-5
D.2.1 Arithmetic Operators - D-5
D.2.2 Comparison Operators - D-5
D.2.3 Logic Operators - D-5
D.2.4 Substitution Operator - D-6
D.2.5 Functions - D-6
D.2.6 Others - D-6

Appendix E Precautions - E-1

E.1 General Precautions- E-2

E.2 Precautions on Motion Parameters - E-2

Index - Index-1

Revision History

1-1

In
tro

du
ct

io
n

to
 L

ad
de

r P
ro

gr
am

m
in

g

1

1
Introduction to Ladder Programming

This chapter gives an overview of ladder programming and describes its features.

1.1 What Is a Ladder Program? - 1-2

1.2 Features of Ladder Programming for MP2000-series Machine Controllers - - - - - 1-3
1.2.1 Types of Ladder Drawings and Their Different Execution Timing - 1-3
1.2.2 Program Modules - 1-4
1.2.3 Programming Complicated Numeric Operations - 1-4
1.2.4 Communications Control with External Devices - 1-5
1.2.5 Complete Synchronization with Motion Control - 1-5

1.1 What Is a Ladder Program?

1-2

1.1 What Is a Ladder Program?
A ladder program uses ladder instructions and registers to symbolically represent electrical circuits that consist of
switches, timers, lamps, and other devices.

Ladder programming allows you to easily program large, complex circuits.
Each of the ladder programs that you create is executed in a single scan and then executed repeatedly at fixed
intervals.

Switch
Lamp

Ladder Program

Illustration of a Circuit
Timer

Execution is
repeated at a
fixed interval.

Ladder Programming Example

1.2 Features of Ladder Programming for MP2000-series Machine Controllers

1.2.1 Types of Ladder Drawings and Their Different Execution Timing

1-3

In
tro

du
ct

io
n

to
 L

ad
de

r P
ro

gr
am

m
in

g

1

1.2 Features of Ladder Programming for MP2000-series Machine
Controllers

This section describes the features of ladder programming.

1.2.1 Types of Ladder Drawings and Their Different Execution Timing
Ladder programs are managed in units of drawings (DWG). These are called ladder drawings.
In the MP2000-series Machine Controllers, ladder drawings are executed at various times, as illustrated in the follow-
ing figure.
Processing can be executed at the appropriate time by programming it in the appropriate ladder drawing.

Drawing Execution Timing

The drawings with lower numbers have higher execution priority.

Interrupt
signalPower ON

High-speed
scan cycle

Low-speed scan cycle

Processed during
idle time of the
high-speed scan.

High-speed
scan cycle

High-speed
scan cycle

Interrupt signal

DWG.A
→ Executed only when power
 is turned ON.

DWG.H
→ Executed in the high-speed
 scan cycle.

DWG.L
→ Executed in the low-speed
 scan cycle.

DWG.I
→ Executed only when an
 interrupt signal is detected.

On standby while
drawings of higher
priority are processed.

:

Priority Ladder Drawing Execution Timing (Processing Example)

1 (High) DWG.A This drawing is executed only once when the power supply is turned ON
(e.g., for data initialization).

2 () DWG.I This drawing is executed when an interrupt signal is detected (e.g., for
interrupt processing for external signals).

3 () DWG.H This drawing is executed every high-speed scan cycle (e.g., for motion
control).

4 (Low) DWG.L This drawing is executed every low-speed scan cycle (e.g., for touch
panel display processing).

↓

↓

1.2 Features of Ladder Programming for MP2000-series Machine Controllers

1.2.2 Program Modules

1-4

1.2.2 Program Modules
The main program can be separated into modular units to suit different processing requirements, such as child draw-
ings, grandchild drawings, and functions, to make the program easier to read.

1.2.3 Programming Complicated Numeric Operations
Complicated calculations written over several lines can be written easily within a single EXPRESSION instruction.
Variables, structures, and basic functions, such as those for sine and cosine calculations, can be programmed using
familiar C-like expressions.
You can display the current value inside expressions in the same way as you can for other ladder language instructions.

H: Main program

H: Main program

Automatic operation processing

Manual operation processing

Difference numeric processing

Manual operation processing

Difference numeric processing

END

Automatic operation
processing drawing

Modularization

SEE instruction

Manual operation
processing drawing

SEE instruction
FUNC

instruction

SEE instruction
FUNC

instruction

Difference numeric
processing functionManual operation

processing drawing

1.2 Features of Ladder Programming for MP2000-series Machine Controllers

1.2.4 Communications Control with External Devices

1-5

In
tro

du
ct

io
n

to
 L

ad
de

r P
ro

gr
am

m
in

g

1

1.2.4 Communications Control with External Devices
The MSG-SND and MSG-RCV ladder instructions support various protocols and can be used to control communica-
tions with many external devices, such as a touch panels or host PLCs. This allows external devices to access registers
in the Machine Controller.

Instead of using a ladder program, the Machine Controller can also communicate with external devices by using I/O message
communications or automatic reception.
Refer to Chapter 6 Ethernet Communications in the Machine Controller MP2310 Basic Module User’s Manual (Manual No.:
SIEP C880732 01) for details.

1.2.5 Complete Synchronization with Motion Control
Ladder programs that are started in the high-speed scan are processed in complete synchronization with motion control
processing. This allows you to call and process a motion program that performs complicated motion control synchro-
nously with a ladder program.

MP2000-series Machine Controller

• MSG-SND instruction
(Send Message)

• MSG-RCV instruction
(Receive Message)

Ladder Program

Touch Panel

PLC

Registers

External Device

INFO

Sequence Control

Ladder Program (High-speed Scan)

Motion control is processed in
complete synchronization with

the high-speed scan.

Motion Control
(Motion Module)

Completely
synchronized

control

Position
control

Speed
control

Torque
control

M
ot

io
n

pa
ra

m
et

er
s

Motion Program

Setting
motion

parameters

Start of a Motion
Program

2-1

S
pe

ci
fic

at
io

ns
 fo

r L
ad

de
r P

ro
gr

am
s

2

2
Specifications for Ladder Programs

This chapter gives the specifications for ladder programs.

2.1 MP2000-series Machine Controller Specifications - 2-2
2.1.1 Applicable Machine Controllers - 2-2
2.1.2 Machine Controller Program Specifications - 2-3

2.2 Engineering Tool Specifications - 2-4
2.2.1 Applicable Engineering Tool - 2-4
2.2.2 MPE720 Version 6 Engineering Tool Specifications - 2-4

2.3 Ladder Programming Instructions - 2-5

2.1 MP2000-series Machine Controller Specifications

2.1.1 Applicable Machine Controllers

2-2

2.1 MP2000-series Machine Controller Specifications
2.1.1 Applicable Machine Controllers

You can use ladder programs with the following MP2000-series Machine Controllers.
• MP2100
• MP2100M
• MP2101
• MP2101M
• MP2101T
• MP2101TM
• MP2200 with CPU-01
• MP2200 with CPU-02
• MP2200 with CPU-03
• MP2200 with CPU-04
• MP2300
• MP2300S
• MP2310
• MP2500
• MP2500B
• MP2500M
• MP2500MB
• MPU-01

The MP2400 supports only motion programs and sequence programs.
You cannot use ladder programs with it.INFO

2.1 MP2000-series Machine Controller Specifications

2.1.2 Machine Controller Program Specifications

2-3

S
pe

ci
fic

at
io

ns
 fo

r L
ad

de
r P

ro
gr

am
s

2

2.1.2 Machine Controller Program Specifications

∗ 1. This is the total capacity for ladder programs and motion programs.
∗ 2. This is supported only for version 2.66 or higher.
∗ 3. The # registers can be used only when ladder programs are used.

Machine Controller
MP2100
and
MP2100M

MP2300 MP2300S
MP2200
with
CPU-01

MP2310
MP2200
with
CPU-02

MP2101, MP2101M,
MP2101T, MP2101TM,
MP2200 with CPU-03,
MP2200 with CPU-04,
and MPU-01

Program Capacity*1 5.5 MB 7.5 MB 11.5 MB

La
dd

er
 P

ro
gr

am
s

Applicable Models Applicable*2 NA Applicable
Startup Processing 64 drawings max. including parent drawings, operation error drawings, child drawings, and grandchild drawings
Interrupt
Processing 64 drawings max. including parent drawings, operation error drawings, child drawings, and grandchild drawings

High-speed Scan
Processing

200 drawings max. including parent drawings, operation error drawings, child drawings, and grandchild draw-
ings

Low-speed Scan
Processing

500 drawings max. including parent drawings, operation error drawings, child drawings, and grandchild draw-
ings

User Functions 500 drawings max.
Maximum Number
of Steps 1,000 steps per drawing

M
ot

io
n

P
ro

gr
am

s

Applicable Models Applicable

Number of
Programs 256 programs max. including motion programs and sequence programs

Number of Groups 8 groups (Up to 16 axes can be set in one group.)

Number of Tasks 16 tasks max. (This is the number of simultaneously executable motion programs.)

Number of Parallel
Forks per Task 8 (4 main program forks × 2 subprogram forks)

S
eq

ue
nc

e
P

ro
gr

am
s Applicable Models NA Applicable Applicable NA Applicable NA Applicable

Number of
Programs 256 programs max. including motion programs and sequence programs

Number of Tasks 16 tasks max. (This is the number of simultaneously executable sequence programs.)

A
cc

es
si

bl
e

R
eg

is
te

rs

M Registers
Applicable (65,535 words)
These registers are backed up with a battery.*3

S Registers
Applicable (8,192 words)
These registers are backed up with a battery.*3

I Registers Applicable (32,768 words + motion monitor parameters)
O Registers Applicable (32,768 words + motion setting parameters)
C Registers Applicable (16,384 words)

D Registers Applicable (Can be specified to between 0 and 16,384 words.)
These registers are unique to each drawing (DWG). They can be used within each drawing.

Registers
Applicable (Can be specified to between 0 and 16,384 words.)
These are internal registers that are unique to each drawing (DWG). They can be referenced within each draw-
ing.

Capacity of Table Data
Backed Up by a Battery None 1 MB 3 MB

2.2 Engineering Tool Specifications

2.2.1 Applicable Engineering Tool

2-4

2.2 Engineering Tool Specifications
This section gives the specifications for programs for the Engineering Tool.

2.2.1 Applicable Engineering Tool
You can create ladder programs with the following Engineering Tool.

• MPE720 version 5 for all MP2000-series Machine Controllers except for the MP2400
• MPE720 version 6 for all MP2000-series Machine Controllers

In addition to the Engineering Tool, you can also use the following Support Tools to monitor Machine Controller information
and transfer data.
• MPLOGGER (Control Information Monitoring Tool)
• MPLoader (Data Transfer Tool)
• MPLoadMaker (Automatic Transfer Data Creation Tool)
You can install the Engineering Tool and Support Tools in one PC to use them.

2.2.2 MPE720 Version 6 Engineering Tool Specifications
The following table shows the relationship between the Engineering Tool and the Machine Controller.

The following table shows the relationship between the Engineering Tool and the programs.

INFO

Machine Controller MPE720 Version 6
(CPMC-MPE770) Remarks

MP2100 Applicable –
MP2100M Applicable –
MP2101 Applicable Applicable with MPE720 version 6.24 or higher
MP2101M Applicable Applicable with MPE720 version 6.24 or higher
MP2101T Applicable Applicable with MPE720 version 6.24 or higher
MP2101TM Applicable Applicable with MPE720 version 6.24 or higher
MP2200 with CPU-01 Applicable –
MP2200 with CPU-02 Applicable –
MP2200 with CPU-03 Applicable Applicable with MPE720 version 6.20 or higher
MP2200 with CPU-04 Applicable Applicable with MPE720 version 6.22 or higher
MP2300 Applicable –
MP2300S Applicable Applicable with MPE720 version 6.04 or higher
MP2310 Applicable Applicable with MPE720 version 6.04 or higher
MPU-01 Applicable Applicable with MPE720 version 6.23 or higher

Program MPE720 Version 6
(CPMC-MPE770) Remarks

Ladder Programs Applicable –
Motion Programs Applicable –
Sequence Programs Applicable –

2.3 Ladder Programming Instructions

2-5

S
pe

ci
fic

at
io

ns
 fo

r L
ad

de
r P

ro
gr

am
s

2

2.3 Ladder Programming Instructions
The following table lists the ladder programming instructions.
Refer to the reference sections for details on individual instructions.

Type Symbol Function Reference

R
el

ay
 C

irc
ui

t I
ns

tru
ct

io
ns

NOC NO Contact 5.2.1

NCC NC Contact 5.2.2

TON[10 ms] 10-ms ON-Delay Timer 5.2.3

TOFF[10 ms] 10-ms OFF-Delay Timer 5.2.4

TON[1 s] 1-s ON-Delay Timer 5.2.5

TOFF[1 s] 1-s OFF-Delay Timer 5.2.6

ON-PLS Rising-edge Pulses 5.2.7

OFF-PLS Falling-edge Pulses 5.2.8

COIL Coil 5.2.9

S-COIL Set Coil 5.2.10

R-COIL Reset Coil 5.2.11

N
um

er
ic

 O
pe

ra
tio

n
In

st
ru

ct
io

ns

STORE Store 5.3.1

ADD Add 5.3.2

ADDX Extended Add 5.3.3

SUB Subtract 5.3.4

SUBX Extended Subtract 5.3.5

MUL Multiply 5.3.6

DIV Divide 5.3.7

MOD Integer Remainder 5.3.8

REM Real Remainder 5.3.9

INC Increment 5.3.10

DEC Decrement 5.3.11

TMADD Add Time 5.3.12

TMSUB Subtract Time 5.3.13

SPEND Spend Time 5.3.14

INV Invert Sign 5.3.15

COM One’s Complement 5.3.16

ABS Absolute Value 5.3.17

BIN Binary Conversion 5.3.18

BCD BCD Conversion 5.3.19

PARITY Parity Conversion 5.3.20

ASCII ASCII Conversion 1 5.3.21

BINASC ASCII Conversion 2 5.3.22

ASCBIN ASCII Conversion 3 5.3.23

Lo
gi

c
O

pe
ra

tio
n

In
st

ru
ct

io
ns

AND Inclusive AND 5.4.1

OR Inclusive OR 5.4.2

XOR Exclusive OR 5.4.3

< Less Than 5.4.4

≤ Less Than or Equal 5.4.5

= Equal 5.4.6

≠ Not Equal 5.4.7

≥ Greater Than or Equal 5.4.8

> Greater Than 5.4.9

RCHK Range Check 5.4.10

2.3 Ladder Programming Instructions

2-6

P
ro

gr
am

 C
on

tro
l I

ns
tru

ct
io

ns
SEE Call Sequence Subprogram 5.5.1

MSEE Call Motion Program 5.5.2

FUNC Call User Function 5.5.3

INS Direct Input String 5.5.4

OUTS Direct Output String 5.5.5

XCALL Call Extended Program 5.5.6

WHILE
END_WHILE WHILE construct 5.5.7

FOR
END_FOR FOR construct 5.5.8

IF
END_IF IF construct 5.5.9

IF
ELSE
END_IF

IF ELSE construct 5.5.10

EXPRESSION Expression 5.5.11

B
as

ic
 F

un
ct

io
n

In
st

ru
ct

io
ns

SQRT Square Root 5.6.1

SIN Sine 5.6.2

COS Cosine 5.6.3

TAN Tangent 5.6.4

ASIN Arc Sine 5.6.5

ACOS Arc Cosine 5.6.6

ATAN Arc Tangent 5.6.7

EXP Exponential 5.6.8

LN Natural Logarithm 5.6.9

LOG Common Logarithm 5.6.10

D
at

a
M

an
ip

ul
at

io
n

In
st

ru
ct

io
ns

ROTL Bit Rotate Left 5.7.1

ROTR Bit Rotate Right 5.7.2

MOVB Move Bit 5.7.3

MOVW Move Word 5.7.4

XCHG Exchange 5.7.5

SETW Table Initialization 5.7.6

BEXTD Byte-to-word Expansion 5.7.7

BPRESS Word-to-byte Compression 5.7.8

BSRCH Binary Search 5.7.9

SORT Sort 5.7.10

SHFTL Bit Shift Left 5.7.11

SHFTR Bit Shift Right 5.7.12

COPYW Copy Word 5.7.13

BSWAP Byte Swap 5.7.14

D
D

C
 In

st
ru

ct
io

ns

DZA Dead Zone A 5.8.1

DZB Dead Zone B 5.8.2

LIMIT Upper/Lower Limit 5.8.3

PI PI Control 5.8.4

PD PD Control 5.8.5

PID PID Control 5.8.6

LAG First Order Lag 5.8.7

LLAG Phase Lead Lag 5.8.8

FGN Function Generator 5.8.9

IFGN Inverse Function Generator 5.8.10

LAU Linear Accelerator/Decelerator 1 5.8.11

SLAU Linear Accelerator/Decelerator 2 5.8.12

PWM Pulse Width Modulation 5.8.13

Type Symbol Function Reference

2.3 Ladder Programming Instructions

2-7

S
pe

ci
fic

at
io

ns
 fo

r L
ad

de
r P

ro
gr

am
s

2

Ta
bl

e
M

an
ip

ul
at

io
n

In
st

ru
ct

io
ns

TBLBR Read Table Block 5.9.1

TBLBW Write Table Block 5.9.2

TBLSRL Search Table Row 5.9.3

TBLSRC Search Table Column 5.9.4

TBLCL Clear Table Block 5.9.5

TBLMV Move Table Block 5.9.6

QTBLR Read Queue Table 5.9.7

QTBLRI Read Queue Table with Pointer Incre-
ment

5.9.7

QTBLW Write Queue Table 5.9.8

QTBLWI Write Queue Table with Pointer Incre-
ment

5.9.8

QTBLCL Clear Queue Table Pointer 5.9.9

St
an

da
rd

 S
ys

te
m

 F
un

ct
io

n
In

st
ru

ct
io

ns

COUNTER Counter 5.10.1

FINFOUT First-in First-out 5.10.2

TRACE Trace 5.10.3

DTRC-RD Read Data Trace 5.10.4

ITRC-RD Read Inverter Trace 5.10.5

MSG-SND Send Message 5.10.6

MSG-RCV Receive Message 5.10.7

ICNS-WR Write Inverter Parameters 5.10.8

ICNS-RD Read Inverter Parameters 5.10.9

MLNK-SVW Write SERVOPACK Parameters 5.10.10

MOTREG-W Write Motion Register 5.10.11

MOTREG-R Read Motion Register 5.10.12

C
-la

ng
ua

ge
 C

on
tro

l
In

st
ru

ct
io

ns

C-FUNC Call User C-language Function 5.11.1

TSK-CTRL Control User C-language Task 5.11.2

Type Symbol Function Reference

3-1

La
dd

er
 P

ro
gr

am
 D

ev
el

op
m

en
t F

lo
w

3

3
Ladder Program Development Flow

This chapter describes the development flow for ladder programs.

3.1 Ladder Program Design Procedures - 3-2
3.1.1 Connecting the Hardware - 3-3
3.1.2 Installing MPE720 Version 6 - 3-4
3.1.3 Communications Settings - 3-4
3.1.4 System Startup - 3-4
3.1.5 Creating a Project - 3-5
3.1.6 Creating Ladder Programs - 3-6
3.1.7 Transferring Ladder Programs - 3-9
3.1.8 Checking the Operation of the Ladder Programs - 3-11
3.1.9 Saving the Ladder Programs to Flash Memory - 3-14

3.1 Ladder Program Design Procedures

3-2

3.1 Ladder Program Design Procedures
This section describes the design procedures for ladder programs as outlined below.

The above flowchart is an example of the ladder program design process. Settings to interface the external devices
must be completed to use programs on the actual system.

 Creating a Project

Create a project before you start ladder program
development.

 Preparation for Devices to Be Connected

Assemble and wire all devices to be connected.
Install MPE720 on a PC.

 System Startup

Perform self configuration and start the system.

 Transferring Ladder Programs

Transfer the ladder programs that you created to
the MP2000-series Machine Controllers.

 Checking the Operation of the Ladder Programs

Check the operation of the ladder programs.

 Saving the Ladder Programs to Flash Memory

Save the debugged ladder programs to flash memory.

 Creating Ladder Programs

Enter the ladder programs in the Ladder Editor.

Refer to 3.1.1 Connecting the Hardware.
Refer to 3.1.2 Installing MPE720 Version 6.
Refer to 3.1.3 Communications Settings.

Refer to 3.1.4 System Startup.

Refer to 3.1.5 Creating a Project.

Refer to 3.1.6 Creating Ladder Programs.

Refer to 3.1.7 Transferring Ladder Programs.

Refer to 3.1.8 Checking the Operation of the Ladder
Programs.

Refer to 3.1.9 Saving the Ladder Programs to Flash
Memory.

3.1 Ladder Program Design Procedures

3.1.1 Connecting the Hardware

3-3

La
dd

er
 P

ro
gr

am
 D

ev
el

op
m

en
t F

lo
w

3

3.1.1 Connecting the Hardware
The flow of ladder program development that is described in this chapter is based on the following system configura-
tion.

∗ In this chapter, M registers in the Machine Controller are used to simulate virtual I/O devices in the example system.
In practice, the input and output signals would be connected to I/O Modules on the Machine Controller, and the ladder program
would be created using I and O registers.

Virtual I/O Devices*
(Entered on MPE720.)

SW1 SW2 SW3

MB00000 MB00001

Lamp 1 Lamp 2

MB00010 MB00011

Ethernet cable

PC running MPE720

24-VDC

power supply

Machine Controller

MB00002

DC24V

DC 0V

MP2300
YASKAWA

TEST

RDY

ALM
TX

RUN

ERR
BAT

MON
CNFG

INT
SUP

STOP

SW1

OFF ON

BATTERY

CPU I/O

M-I/II

218IF-01
ERR

COL

RX

RUN

STRX

TX

INIT
TEST

ONOFF

PORT

10Base-T

O
pt

io
na

l M
od

ul
e

O
pt

io
na

l M
od

ul
e

3.1 Ladder Program Design Procedures

3.1.2 Installing MPE720 Version 6

3-4

3.1.2 Installing MPE720 Version 6
Install MPE720 version 6 on a PC.
Refer to the Engineering Tool for MP2000 Series Machine Controller MPE720 Version 6 User’s Manual (SIEP
C880700 30) for the installation procedure.

3.1.3 Communications Settings
After you install MPE720 version 6 on the PC, set up communications between the MP2000-series Machine Controller
and the PC.
Refer to the Engineering Tool for MP2000 Series Machine Controller MPE720 Version 6 User’s Manual (SIEP
C880700 30) for the communications setup procedure.

3.1.4 System Startup
Set up the system by performing self configuration. Self configuration automatically recognizes the Modules that are
installed in the MP2000-series Machine Controller and the devices that are connected through the MECHATROLINK
connector. This allows you to quickly and easily set up the system. You can perform self configuration by using the
DIP switch on the Machine Controller or by using the MPE720.
Refer to the user’s manual for your Machine Controller for details on self configuration.

3.1 Ladder Program Design Procedures

3.1.5 Creating a Project

3-5

La
dd

er
 P

ro
gr

am
 D

ev
el

op
m

en
t F

lo
w

3

3.1.5 Creating a Project
Use the following procedure to create a project.

1. Double-click the following icon on the PC desktop to start MPE720 version 6.

2. When MPE720 version 6 starts, select New on the Start Tab Page.

3. Specify the file name, file storage location, and Machine Controller model, and then click the Create
Button.

Specify the file storage location.

Specify the model of the
MP2000-series Machine Controller.

Specify the file name.

3.1 Ladder Program Design Procedures

3.1.6 Creating Ladder Programs

3-6

3.1.6 Creating Ladder Programs
Start the Ladder Editor and use the following procedure to create a ladder program.

1. In the pane on the left, expand the tree under Ladder program. Right-click High-speed and select
New from the menu.

2. Click the OK Button.

Expand.

Right-click.

Select.

3.1 Ladder Program Design Procedures

3.1.6 Creating Ladder Programs

3-7

La
dd

er
 P

ro
gr

am
 D

ev
el

op
m

en
t F

lo
w

3

3. Create the ladder program in the Ladder Editor that you started.

Ladder programs are entered by inserting rungs, then instructions, and finally parameters for the instructions.
The following example shows how to insert an NO Contact instruction.

Right-click the tab with the row number, and select Insert Rung.

Drag the instruction to insert (here, the NO Contact instruction under the relay instructions) from the Ladder
Instructions Pane to the inserted rung.

Click the portion of the instruction with a question mark and enter the parameter (MB00000) from the key-
board.

The types and number of instruction parameters depend on the instruction. Refer to Chapter 5 Instructions for
details on individual instructions.

Right-click.

Select.

Drag and drop.

3.1 Ladder Program Design Procedures

3.1.6 Creating Ladder Programs

3-8

Repeat steps 1 to 3 until you have created the entire ladder program. The following figures show examples of
a ladder program and its timing chart.

The ladder program example that is shown above uses M registers for switches and lamps.
When you enter a ladder program for an actual system, use the appropriate I and O registers.

4. While displaying the ladder program, select Compile - Compile from the menu bar to compile the pro-
gram. When the compilation is finished, the ladder program will be saved automatically.

If an error is displayed in the Output Pane during compilation, the ladder program will not be saved.

5 s

ON

OFF

ON

OFF

SW1 (MB00000) ON

OFF

SW2 (MB00001)

Lamp 1 (MB00010)

AND Circuit Operation

SW3 (MB00002)
ON

OFF

Timer Circuit Operation

Timer (DW00000)

Lamp 2 (MB00011) ON

OFF

5

0

IMPORTANT

3.1 Ladder Program Design Procedures

3.1.7 Transferring Ladder Programs

3-9

La
dd

er
 P

ro
gr

am
 D

ev
el

op
m

en
t F

lo
w

3

3.1.7 Transferring Ladder Programs
Use the following procedure to transfer the ladder program to the MP2000-series Machine Controller. This procedure
is not necessary if you created the ladder program online.

1. Select Communications Setting on the Start Tab Page.

2. Select the desired communications port in the Communications Setting Box, and then click the Con-
nection Button.

3. Wait for the MPE720 to go online, and then select Transfer − Write into controller.

3.1 Ladder Program Design Procedures

3.1.7 Transferring Ladder Programs

3-10

4. Click the Individual Button, then select the Program Check Box. Click the Start Button.

• When an individual transfer is selected, the same file in the Machine Controller will be overwritten with the selected project
file data.

• When a batch transfer is selected, the RAM in the MP2000-series Machine Controller will be cleared before the transfer, and
all project file data will be written in the RAM.

5. Click the CPU STOP Button. The transfer will start.

INFO

3.1 Ladder Program Design Procedures

3.1.8 Checking the Operation of the Ladder Programs

3-11

La
dd

er
 P

ro
gr

am
 D

ev
el

op
m

en
t F

lo
w

3

3.1.8 Checking the Operation of the Ladder Programs
This section provides procedures to check the ladder program that was created in 3.1.6 Creating Ladder Programs.
Confirm that your program operates correctly by manipulating registers with the Register List, and by checking the
runtime monitor in the Register List and Ladder Editor.

(1) Preparations for Checking Operation

1. Open the ladder program that was transferred.

2. Click the Register List 1 Tab, and then enter “MB000000” in the Register Box.
If the Register List 1 Tab is not visible, select View − Register List − Register List 1 from the menu
bar. The tab will be displayed and the register list will be opened.

Double-click.

Click.

Enter “MB000000.”

3.1 Ladder Program Design Procedures

3.1.8 Checking the Operation of the Ladder Programs

3-12

(2) Confirming the Operation of the 0000th Line (AND Circuit)

1. Set MB000000 to ON in the Register List. Confirm that the NO contact for MB000000 in the Ladder
Editor changes to blue.

When a coil or contact is highlighted in blue, it means that it is ON.

2. Set MB000001 to ON in the Register List. Confirm the following points.

• In the Ladder Editor, the NO contact for MB000001 and coil for MB000010 must be blue.
• In the Register List, MB000010 must be ON.

If no problems occur in the above procedure, then this concludes checking the operation of the 0000th line.

Input ON.

Confirm that the contact changes to blue.

 Confirm that the coil changes to blue.

 Confirm that the contact changes to blue.

Input ON.

 Confirm that the register is ON.

3.1 Ladder Program Design Procedures

3.1.8 Checking the Operation of the Ladder Programs

3-13

La
dd

er
 P

ro
gr

am
 D

ev
el

op
m

en
t F

lo
w

3

(3) Confirming the Operation of the 0001st Line (Timer Circuit)

Set MB000002 to ON in the Register List. Confirm the following points.
The DW00000 timer must increment every second.

　　　　　　

 After five seconds, the coil for MB000011 must turn blue in the Ladder Editor.
 In the Register List, MB000011 must be ON for step .

If no problems occur in the above procedure, then this concludes checking the operation of the 0001st line.

Input ON.

 Confirm that the value
 increments every second.

 Confirm that the coil changes to blue.

 Confirm that the register is ON.

3.1 Ladder Program Design Procedures

3.1.9 Saving the Ladder Programs to Flash Memory

3-14

3.1.9 Saving the Ladder Programs to Flash Memory
Use the following procedure to save the data from the RAM in the MP2000-series Machine Controller to the flash
memory in the MP2000-series Machine Controller.

1. Select Transfer − Save to flash from the following window.

2. Click the Start Button.

3. Click the CPU STOP Button. The transfer will start.

4. Click the Yes Button in the following dialog box. The Machine Controller will switch to RUN Mode.

4-1

P
ro

gr
am

m
in

g
4

4
Programming

This chapter describes ladder programming methods and the elements that are necessary for ladder
programming.

4.1 Ladder Program Editor - 4-2

4.2 Ladder Drawings - 4-3
4.2.1 Types of Ladder Drawings - 4-3
4.2.2 Controlling the Execution of Drawings - 4-5

4.3 User Functions - 4-7
4.3.1 What Is a User Function? - 4-7
4.3.2 Creating User Functions - 4-9
4.3.3 Calling a User Function - 4-12

4.4 Registers (Variables) - 4-13
4.4.1 What Are Registers? - 4-13
4.4.2 Register Types - 4-14
4.4.3 Data Types - 4-17
4.4.4 Index Registers (i, j) - 4-19

4.5 Table Data - 4-21
4.5.1 What Is Table Data? - 4-21
4.5.2 Creating Table Data - 4-21

4.6 Transferring Data - 4-23

4.7 Setting the High-speed/Low-speed Scan Times - 4-24

4.8 Advanced Programming - 4-25
4.8.1 Motion Programs - 4-25
4.8.2 C-language Programs - 4-26
4.8.3 Security - 4-27
4.8.4 Tracing - 4-28

4.1 Ladder Program Editor

4-2

4.1 Ladder Program Editor
On the MPE720 version 6 Engineering Tool, the following panes are displayed to edit a ladder program. These
panes are used to create and edit ladder programs.

Ladder Pane

Ladder programs are displayed by drawing.
Refer to 4.2 Ladder Drawings for details on drawings.

Ladder Program Editing Tab Page

This tab page is used to edit ladder programs.

Variables Pane

This pane displays variables. Refer to 4.4 Registers (Variables) for details on variables.
In addition to the panes and tab page that were just described, various other panes, tab pages, and tool bars
also exist.
Refer to the Engineering Tool for MP2000 Series Machine Controller MPE720 Version 6 User’s Manual
(SIEP C880700 30) for details on MPE720 version 6.

Ladder Pane Variables PaneLadder Program Editing Tab Page

4.2 Ladder Drawings

4.2.1 Types of Ladder Drawings

4-3

P
ro

gr
am

m
in

g
4

4.2 Ladder Drawings
Ladder programs are managed as drawings (ladder drawings) that are identified by their drawing numbers (DWG
numbers).
The ladder drawings form the basis of the ladder programs.

4.2.1 Types of Ladder Drawings

(1) Types and Priorities of Drawings

There are the following types of ladder drawings: parent drawings, child drawings, grandchild drawings, and operation
error drawings.

• Parent Drawings
These drawings are automatically executed by the system when the execution conditions that are listed in the fol-
lowing table are met.

• Child Drawings
These drawings are executed when they are called from a parent drawing with a Call Program (SEE) instruction.

• Grandchild Drawings
These drawings are executed when they are called from a child drawing with a Call Program (SEE) instruction.

• Operation Error Drawings
These drawings are automatically executed by the system when an operation error occurs.

There are also five different types of drawings based on their role.
The following table gives the priority and parent drawing execution conditions for each type of drawing.

∗ Drawings with lower numbers have higher priority.

The breakdown of the number of drawings in each category is given in the following table.

Priority* Drawing Type Role Parent Drawing Execution Condition Maximum Number
of Drawings

1 DWG.A Startup
processing

Power ON
(Processed once when the power supply is turned ON.) 64

2 DWG.I Interrupt
processing

External interrupt
(Executed when a DI interrupt or counter match inter-
rupt is received from an Optional Module.)

64

3 DWG.H High-speed scan
processing

Started at fixed intervals.
(Executed every high-speed scan.) 200

4 DWG.L Low-speed scan
processing

Started at fixed intervals.
(Executed every low-speed scan.) 500

– Functions User functions
Function call
(Executed when called with a FUNC instruction from a
drawing.)

500

Drawing
Number of Drawings

DWG.A DWG.I DWG.H DWG.L

Parent drawings 1 drawing 1 drawing 1 drawing 1 drawing

Operation error drawings 1 drawing 1 drawing 1 drawing 1 drawing
Child drawings Total of 62

drawings max.
Total of 62
drawings max.

Total of 198
drawings max.

Total of 498
drawings max.Grandchild drawings

4.2 Ladder Drawings

4.2.1 Types of Ladder Drawings

4-4

(2) Hierarchical Configuration of Drawings

Each process program is organized in a parent-child-grandchild hierarchy.
The parent drawing first must call a child drawing, and then the child drawing must call a grandchild drawing. This is
called the hierarchical configuration of drawings.
A parent drawing cannot call a child drawing with a different drawing type. Similarly, a child drawing cannot call a
grandchild drawing from a different drawing type. A parent drawing cannot call a grandchild drawing directly.
You can call functions from any drawing regardless of the drawing type or hierarchy.
The hierarchy of drawings is shown below using DWG.A drawings as an example.

DWG.X YY .ZZ

Parent drawing type (A, I, H, or L)

Child drawing number (01 to 99)

Grandchild drawing number (01 to 99)

DWG.X 00

Parent drawing type (A, I, H, or L)
of the drawing where the error occurs

Drawing name:

The following notation is used for operation error drawings.

A

Parent
drawing

A01 A01.01

A01.02

A02 A02.01

Child
drawings

Grandchild
drawings

Functions

FUNC01

FUNC02

FUNC03

Fixed value (00)

4.2 Ladder Drawings

4.2.2 Controlling the Execution of Drawings

4-5

P
ro

gr
am

m
in

g
4

4.2.2 Controlling the Execution of Drawings

(1) Controlling the Execution of Drawings

Drawings are executed based on their priorities, as shown in the following figure.

The parent drawing of each drawing is automatically called and executed by the system.

(2) Scheduling the Execution of Scan Process Drawings

All scan process drawings are not executed at the same time. The following figure shows how execution time is allo-
cated to them based on their priority levels.

∗ This time is used to execute internal system processing, such as self-diagnosis.

The low-speed scan is executed during the time that is not used by the high-speed scans. Set the time of the high-speed
scan to approximately twice the total execution time of the high-speed drawings (DWG.H).

Power ON

DWG.A
Startup drawing

DWG.H
High-speed scan
process drawings

DWG.L
Low-speed scan
process drawings

Every high-speed scan

Batch outputs Batch outputs

Batch inputs Batch inputs

Every low-speed scan Operation error Interrupt signal

DWG.X00
Operation error drawing

X: A, H, or L

Execution is continued from
the point before the error.

DWG.I
Interrupt process drawing

Execution is continued
from the point before
the interrupt.

Background*

DWG.L

DWG.H

High-speed scan High-speed scan

Low-speed scan

High-speed scan High-speed scan

: Execution in progress

4.2 Ladder Drawings

4.2.2 Controlling the Execution of Drawings

4-6

(3) Execution Processing of Drawings

The execution processing for drawings is executed by calling the drawings from the top to the bottom, following the
hierarchy of the drawings. The hierarchy of drawings is shown below using DWG.A drawings as an example.

The parent drawing is automatically called and executed by the system.
Child drawings and grandchild drawings are executed by calling them from a parent drawing or a child drawing using
the Call Program (SEE) instruction.
You can call functions from any drawing. You can also call functions from other functions.
If an operation error occurs, the operation error drawing for the drawing type will be started automatically.

Execution is started by the system program
when the execution condition is met.

Parent Drawing

H H01

H02

H00

H01.01

FUNC 01

Child Drawings Grandchild Drawings

Function

Execution is
automatically
started by the
system.An operation

error occurs.

SEE
H01

SEE
H02

END END

END

END

END

END

SEE
H01.H01

FUNC
01

4.3 User Functions

4.3.1 What Is a User Function?

4-7

P
ro

gr
am

m
in

g
4

4.3 User Functions
4.3.1 What Is a User Function?

(1) Overview of User Functions

A user function contains a function definition (program number and I/O definitions) and processing instructions that
are defined by the user.
The following figure shows an example of a function definition.

The processing to be performed by a function is created using a ladder program.
Functions are executed when they are called from a parent, child, or grandchild drawing with the FUNC instruction.
You can call a user function freely from any drawing. You can also simultaneously call the same function from differ-
ent types or different levels of drawings. You can also call user functions from other user functions.
The use of functions provides the following advantages.

• Easy user program modularization
• Easy user programming and program maintenance

User functions can be called from any programs, any number of times.
When you call a user function, consider what values could be in the variables in each function, and perform
initialization as needed.
Refer to 4.4.2 (3) Precautions When Using Local Registers within a User Function for details.

Program Number

Function Input Definition
• Number of inputs
• Data type
• Comments

Function Input Definition
• Number of inputs
• Data types
• Comments

Function Address Definition
• Presence of definition
• Comments

IMPORTANT

4.3 User Functions

4.3.1 What Is a User Function?

4-8

(2) Relationship between I/O Data for a Function and Registers in the Function

The X, Y, Z, and D registers are initialized to different values when a function is called.
Refer to 4.4.2 (3) Precautions When Using Local Registers within a User Function for details.

The S, M, I, O, and C registers can also be accessed from within a function.

XB000000 to XB00000F

XW00001

XW00002

XW00003

XW00015

XW00016

YB000000 to YB00000F

YW00001

YW00002

YW00003

YW00015

YW00016

X Registers
(Function Input Registers)

Y Registers
(Function Output Registers)

Z Registers # Registers D Registers

AW00000

AW00001

AW00002

AW00003

A Registers
(Function External Registers)

MW00100

MW00101

MW00102

MW00103

Address Inputs

MA00100

Registers within a User Function

Bit data inputs
(16 bits max.)

Data inputs
• Word data
• Long data
• Float data

(16 words max.)

Bit data outputs
(16 bits max.)

Data outputs
• Word data
• Long data
• Float data

(16 words max.)

IMPORTANT

INFO

4.3 User Functions

4.3.2 Creating User Functions

4-9

P
ro

gr
am

m
in

g
4

4.3.2 Creating User Functions
This section describes how to create a user function that has, as an example, the following specifications.

Procedure to Create a User Function

1. In the pane on the left, expand the tree under Ladder program. Right-click Function and select New
from the menu.

2. Enter “FUNC01” in the Program No. Box.

Function Definition Item Name Remarks
Program Number FUNC01
Function Input Value IN Integer data
Function Output Value 1 OUT1 Integer data
Function Output Value 2 OUT2 Integer data
Processing Details
Multiply the function input value (IN) by 2 and output it to function output value 1 (OUT1).
Multiply the function input value (IN) by 3 and output it to function output value 2 (OUT2).

Select.

Enter “FUNC01.”

4.3 User Functions

4.3.2 Creating User Functions

4-10

3. Select Function input definition under I/O definition and enter the following information.

4. Select Function output definition under I/O definition and enter the following information.

5. Click the OK Button. This concludes setting the function definition.

Enter.

Enter.

Click.

4.3 User Functions

4.3.2 Creating User Functions

4-11

P
ro

gr
am

m
in

g
4

6. Create the following ladder program in the drawing of the FUNC01 user function that was created in
step 5.

7. Compile the user function to conclude the creation of the user function.

4.3 User Functions

4.3.3 Calling a User Function

4-12

4.3.3 Calling a User Function
You can call a user function by using a FUNC instruction in the ladder drawing.
This section describes how to call the user function that was created in the previous section from the high-speed draw-
ing (DWG.H).

Example for Calling the FUNC01 User Function from DWG.H

Program a FUNC instruction in DWG.H as shown below.

This diagram shows a conceptual image of what the programming shown above accomplishes.

In this example, when DW00000 in DWG.H is set to 10, DW00001 becomes 20 and DW00002 becomes 30, demon-
strating that the user function was called correctly.

Input defined in
the user function

Output defined in
the user function

Program number of
the user function to call

XB000000 to XB00000F

XW00001

XW00002

XW00016

YB000000 to YB00000F

YW00003

YW00016

X Registers
(Function Input Registers)

Y Registers
(Function Output Registers)

Registers within the FUNC01 User Function

DW00001

Values that are set Undefined values

DW00002

YW00001

YW00002

DW00000
×2

×3

IN OUT1

OUT2

4.4 Registers (Variables)

4.4.1 What Are Registers?

4-13

P
ro

gr
am

m
in

g
4

4.4 Registers (Variables)
4.4.1 What Are Registers?

Registers are areas that store data within the Machine Controller. Variables are registers with labels (variable names).
There are two kinds of registers: global registers that are shared between all programs, and local registers that are used
only by a specific program.

(1) Global Registers

Global registers are variables that are shared by ladder programs, user functions, motion programs, and sequence pro-
grams. Memory space for global registers is reserved by the system for each register type.

(2) Local Registers

Local registers can be used within a specific drawing. They cannot be used in other drawings.

Ladder programs User functions
Motion programs/

sequence programs

S registers

8,192 words

M registers

65,535 words

I registers

32,768 words +
Monitor parameters

O registers

32,768 words +
Setting parameters

C registers

16,384 words

Global Registers

Parent drawing
H

Child drawing
H01

User function
FUNC01

User function
FUNC02

registers
D registers

registers
D registers

X registers
Y registers
Z registers
registers
D registers

X registers
Y registers
Z registers
registers
D registers

Local Registers

4.4 Registers (Variables)

4.4.2 Register Types

4-14

4.4.2 Register Types

(1) Global Registers

Global registers are variables that are shared by ladder programs, user functions, motion programs, and sequence pro-
grams. In other words, the operation results of a ladder program can be used by other user functions, motion programs,
or sequence programs.

n: decimal digit, h: hexadecimal digit

Type Name Designation
Method Usable Range Description

S System registers
(S registers)

SBnnnnnh,
SWnnnnn,
SLnnnnn,
SFnnnnn,
SAnnnnn

SW00000 to
SW08191

These registers are prepared by the system. They report the
status of the Machine Controller and other information.
The system clears the registers from SW00000 to
SW00049 to 0 at startup.
They have a battery backup.

M Data registers
(M registers)

MBnnnnnh,
MWnnnnn,
MLnnnnn,
MFnnnnn,
MAnnnnn

MW00000 to
MW65534

These registers are used as interfaces between programs.
They have a battery backup.

I Input registers
(I registers)

IBhhhhh, IWh-
hhh, ILhhhh,
IFhhhh

IW0000 to
IW7FFF These registers are used for input data.

IW8000 to
IWFFFF

These registers store the motion monitor parameters.
These registers are used for Motion Modules.

O Output registers
(O registers)

OBhhhhh, OWh-
hhh, OLhhhh,
OFhhhh

OW0000 to
OW0FFF These registers are used for output data.

OW8000 to
OWFFFF

These registers store the motion setting parameters.
These registers are used for Motion Modules.

C Constant registers
(C registers)

CBnnnnnh,
CWnnnnn,
CLnnnnn,
CFnnnnn,
CAnnnnn

CW00000 to
CW16383

These registers can be read in programs but they cannot be
written.
The values are set from the MPE720.

4.4 Registers (Variables)

4.4.2 Register Types

4-15

P
ro

gr
am

m
in

g
4

(2) Local Registers

Local registers are valid within only one specific program. The local registers in other programs cannot be accessed.
You specify the usable range of local registers from the MPE720.

 n: decimal digit, h: hexadecimal digit

Local Registers within a User Function

In addition to the # registers and D registers, there are local registers that can be used only within user functions.

 n: decimal digit, h: hexadecimal digit

User functions can be called from any programs, any number of times.
When you call a user function, consider what values could be in the local registers, and perform initialization
as needed.
Refer to 4.4.2 (3) Precautions When Using Local Registers within a User Function for details.

Type Name Designation Method Description

registers
#Bnnnnnh, #Wnnnn,
#Lnnnnn, #Fnnnnn,
#Annnnn

These registers can be read in programs but they cannot be writ-
ten. The values are set from the MPE720.

D D registers
DBnnnnnh, DWnnnn,
DLnnnnn, DFnnnnn,
DAnnnnn

These registers can be used for general purposes within a program.
By default, 32 words are reserved for each program.
The default values after startup depend on the setting of the D
Register Clear when Start Option. For details, refer to Setting
the D Register Clear When Start Option.

Type Name Designation Method Description

X Function input registers XBnnnnnh, XWnnnnn,
XLnnnnn, XFnnnnn

These registers are used for inputs to functions.
Bit inputs: XB000000 to XB00000F
Integer inputs: XW00001 to XW00016
Double-length integers: XL00001 to XL00015
Real numbers: XF00001 to XF00015

Y Function output
registers

YBnnnnnh, YWnnnnn,
YLnnnnn, YFnnnnn

These registers are used for outputs from functions.
Bit outputs: YB000000 to YB00000F
Integer outputs: YW00001 to YW00016
Double-length integers: YL00001 to YL00015
Real numbers: YF00001 to YF00015

Z Function internal
registers

ZBnnnnnh, ZWnnnnn,
ZLnnnnn, ZFnnnnn

These are internal registers that are unique within each function.
You can use them for internal processing in functions.

A Function external
registers

ABnnnnnh, AWnnnnn,
ALnnnnn, AFnnnnn

These are external registers that use the address input values as the
base addresses.
When the address input value of an M or D register is provided by
the source of the function call, then the registers of the source of
the function call can be accessed from inside the function by using
that address as the base.

IMPORTANT

4.4 Registers (Variables)

4.4.2 Register Types

4-16

(3) Precautions When Using Local Registers within a User Function

When you call a user function, consider what values should be in the local registers, and perform initialization as
needed.

Setting the D Register Clear When Start Option

1. Select File − Environment Setting from the MPE720 Version 6 Window.

2. Select Setup − System Setting.

3. Select Enable or Disable for the D Register Clear when Start Option.

Set Values
Disable: The initial values will be uncertain.
Enable: The initial values will be 0.

Name Precaution

X registers (function
input registers)

If input values are not set, the values will be uncertain.
Do not use X registers that are outside of the range that is specified in the input definitions.

Y registers (function out-
put registers)

If output values are not set, the values will be uncertain.
Always set the values of the range of Y registers that is specified in the output definitions.

Z registers (function
internal registers)

When the function is called, the previously set values will be lost and the values will be uncertain.
These registers are not appropriate for instructions if the previous value must be retained.
Use them only after initializing them within the function.

registers These are constant registers. Their values cannot be changed.

D registers

When the function is called, the previously set values are preserved.
If a previous value is not necessary, initialize the value or use a Z register instead. D registers retain
the data until the power is turned OFF.
The default values after startup depend on the setting of the D Register Clear when Start Option. For
details, refer to Setting the D Register Clear When Start Option.

4.4 Registers (Variables)

4.4.3 Data Types

4-17

P
ro

gr
am

m
in

g
4

4.4.3 Data Types

(1) List of Data Types

There are various data types that you can use depending on the purpose of the application: bit, integer, double-length
integer, real number, and address.

The MP3000-series Machine Controllers do not have separate registers for each data type. As shown in the fol-
lowing figure, the same address will access the same register even if the data type is different.
For example, MB001003, a bit address, and the MW00100, an integer address, have different data types, but
they both access the same register, MW00100.

Symbol Data Type Range of Values Remarks
B Bit 1 (ON) or 0 (OFF) Used in relay circuits and to determine ON/OFF status.

W Integer -32,768 to 32,767 (8000 to 7FFF hex) Used for numeric operations. The values in parentheses on
the left are for logical operations.

L Double-length
integer

-2,147,483,648 to 2,147,483,647
(80000000 to 7FFFFFFF hex)

Used for numeric operations. The values in parentheses on
the left are for logical operations.

F Single-preci-
sion real number ±(1.175E-38 to 3.402E+38) or 0 Used for numeric operations.

A Address 0 to 32,767 Used only as pointers for addressing.

IMPORTANT

MW00100

MW00101

MW00102

MW00103

ML00100
MF00100

ML00102
MF00102

0123456789ABCDEF

MA00101

Integer data type

Double-length integer or
real number data type

MB001003

[MB00103B]

Bit data type

Address data type

Bit data type

The addressed register (00102) and the
following register (00103) are combined
as a 2-word area. Therefore the register
addresses are specified at intervals of 2.

An extra digit that specifies the bit (3) is appended
to the end of the register address (00100).One word is allocated for each register address.

A continuous data area is addressed,
with the specified register address
(00101) as the first address.

Data Types and Register Designations

4.4 Registers (Variables)

4.4.3 Data Types

4-18

(2) Precautions for Operations Using Different Data Types

If you perform an operation using different data types, the results will be different depending on the data type of the
storage register, as described below.

[a] Storing Real Number Data in an Integer Register

MW00100 = MF00200: The real number data is converted to integer data and stored in the destination register.
 (00001) (1.234)

There may be rounding error due to storing a real number in an integer register.
Whether numbers are rounded or truncated when converting a real number to an integer can be set in the properties
of the drawing. (See below.)

MW00100 = MF00200 + MF00202:
 (0124) (123.48) (0.02) The result of the operation may be different depending on the value of the variable.
 (0123) (123.49) (0.01)

[b] Storing Real Number Data in a Double-length Integer Register

ML00100 = MF00200: The real number data is converted to integer data and stored in the destination register.
 (65432) (65432.1)

[c] Storing Double-length Integer Data in an Integer Register

MW00100 = ML00200: The lower 16 bits of the double-length integer data are stored without change.
 (-00001) (65535)

[d] Storing Integer Data in a Double-length Integer Register

ML00100 = MW00200: The integer data is converted to double-length integer data and stored in the destination register.
 (0001234) (1234)

Setting for Real Number Casting

The casting method (truncating or rounding) can be set in the detailed definitions in the Program Property Dialog Box.
The method to use for real number casting is set for each drawing.

4.4 Registers (Variables)

4.4.4 Index Registers (i, j)

4-19

P
ro

gr
am

m
in

g
4

4.4.4 Index Registers (i, j)
There are two index registers, i and j, that are used to modify relay and register addresses. The functions of i and j are
identical.
There are index registers for each program type, as shown in the following figure.

∗ Motion programs and sequence programs have separate i and j registers for each task.
Functions reference the i and j registers that belong to the calling drawing.
For example, a function called by DWG.H will reference the i and j registers for DWG.H.

The operation for each register data type is described next.

[a] Attaching an Index to a Bit Register

[b] Attaching an Index to an Integer Register

[c] Attaching an Index to a Double-length Integer or a Real Number Register

i and j registers i and j registers i and j registers

DWG.H DWG.L
Motion

program*

i and j registers

Sequence
program*

i and j registers

DWG.A

i and j registers

DWG.I

If i = 2,
DB000000 = MB00000i. DB000000 = MB00002

Using an index is the same as adding
the value of i or j to the register address.
For example, if i = 2, MB00000i is
the same as MB00002.

Equivalent

If i = 30,
DW000000 = MW00001i. DW000000 = MW00031

Using an index is the same as adding
the value of i or j to the register address.
For example, if i = 30, MW00001i is
the same as MW00031.

Equivalent

Using an index is the same as adding the value of i or
j to the register address.
For example, if j = 1, ML00000j is the same as ML00001.
Similarly, if j = 1, MF00000j is the same as MF00001.
In the case of double-length integers and real numbers, the
one-word area of the register address and the one-word
area of the register address + 1 are used together. Be
careful of overlapping areas when indexing
double-length integer or real number register
addresses. For example, when using ML00000j with
both j = 0 and j = 1, the one-word area of MW00001 will
overlap.

Double-length Integer

Real Number

If j = 0, ML00000j is ML00000.

If j = 1, ML00000j is ML00001.

If j = 0, MF00000j is MF00000.

If j = 1, MF00000j is MF00001.

Upper word
MW00001

Lower word
MW00000

Upper word
MW00001

MW00002 MW00001

MW00002 MW00001

Lower word
MW00000

4.4 Registers (Variables)

4.4.4 Index Registers (i, j)

4-20

A programming example that uses indexed registers is shown below.
This example uses index j to find the total of the values in 50 registers from ML00100 to ML00198.

4.5 Table Data

4.5.1 What Is Table Data?

4-21

P
ro

gr
am

m
in

g
4

4.5 Table Data
4.5.1 What Is Table Data?

Table data is data that is managed in tabular form. The data is stored separately from the registers.
Data can be copied from a table to registers or from registers to a table by executing table data manipulation instruc-
tions in the ladder program. Tables can also be used to hold data when there is not a sufficient range of registers.

4.5.2 Creating Table Data
Use the following procedure to create table data. The table definition information and column attributes that are set for
table data are listed in the following table.

You can select one of the following table types when you create table data.
• Array type: Specifies a table where all columns have the same attributes.
• Record type: Specifies a table where each column has a different attribute.
You can select one of the following table data storage locations.
• Normal: Refer to 2.1.2 Machine Controller Program Specifications for the maximum program size. The maximum size per

table is 5 MB.
• Battery backup: Refer to 2.1.2 Machine Controller Program Specifications for the maximum size of table data that can be

backed up with the battery. The maximum size per table is 3 MB.

Data

Table data

Read Queue Table Instruction

Registers

Write Queue Table InstructionTBL1

Creating Table Data

Set the table
definition information.

Set the column attributes.

End of Creating Table Data

Table Definition
Information Description

Table Name This is the name of the table.

Table Type Select an array-type or record-type table.

Number of Columns This is the number of columns in the table.
(10,000 columns max.)

Number of Rows This is the number of rows in the table. (10,000 rows max.)

Table Comment This is a comment for the table.

Table Data
Storage Location

Column Attribute Description

Column Name This is the name of the column.

Data Type The data type can be integer, double-length integer, real
number, or text string.

Size This is the length of the data type.

Display Type The display type can be binary, decimal, hexadecimal,
real number, or text string.

Column Comment This is a comment for the column.

Select normal or battery backup.
Refer to 2.1.2 Machine Controller Program Specifications
for details on the maximum size of tables and
which models have battery backup storage.

INFO

4.5 Table Data

4.5.2 Creating Table Data

4-22

Procedure to Create Table Data

1. Select File - Open − Define Data Table − Data Table Map in the Module Configuration Definitions
Window. The Table Data Store Target Dialog Box will be displayed.

2. Select File − Create New from the menu bar. The Table Definition Dialog Box will be displayed. Set the
table definition information and click the OK Button.

3. The Data Table Column Attribute Dialog Box will be displayed. Set the table data column attributes,
and then save them.

If the table is set to an array-type table, set only one row of column attributes.

The Table Data Store Target Dialog Box that was displayed in step 1 will show the table that you created.
This concludes the creation of the data table.

When a table is created, the contents are initialized to 0.
Select the table that was created in the Table Data Store Target Dialog Box, and click the Table Data Button to read or write
table data.
Use the table instructions to perform operations on the table data from a ladder program.

INFO

4.6 Transferring Data

4-23

P
ro

gr
am

m
in

g
4

4.6 Transferring Data
You can perform one of the four operations that are shown in the following figure to transfer data.

 Writing Data to a Machine Controller
You can transfer the project data that was created offline to RAM in the Machine Controller.

 Reading Data from the Machine Controller.
You can transfer data from the Machine Controller to a project on the hard disk of the PC.

 Reading Data from and Writing Data to Projects
You can transfer data between projects on the hard disk of the PC.

 Saving Data to Flash Memory
You can transfer the data in RAM in the Machine Controller to flash memory.

Always save the data to flash memory after you transfer it to the MP2000-series Machine Controller.
Failure to save the data to flash memory will result in losing the data that was transferred when the power is
turned OFF and ON again, causing the Machine Controller to run on the data that was last saved in the flash
memory.

RAM

MP2000-series
Machine Controller

Hard disk in PC

Project

Project

MPE720 version 6
Data can be written to
the Machine Controller.

Data can be read from
the Machine Controller.

Data can be read from
and written to projects.

Flash memory

Data can be saved
to flash memory.

IMPORTANT

4.7 Setting the High-speed/Low-speed Scan Times

4-24

4.7 Setting the High-speed/Low-speed Scan Times
(1) What Are the Scan Times?

With an MP2000-series Machine Controller, both the high-speed scan and low-speed scan can be set. The high-speed
scan time is the cycle at which high-speed drawings are executed. The low-speed scan time is the cycle at which low-
speed drawings are executed. The following table shows the possible set values and default values for each scan time.

The possible set values and default values depend on the model. Refer to the user’s manual for the Module you are
using for details.

(2) Scan Time Set Value Precautions

Observe the following precautions when setting the high-speed scan time and low-speed scan time.
• Set the scan set value so that it is 1.25 times greater than the maximum value.

If the scan set value is too close to the maximum value, the refresh rate of the MPE720 window will noticeably
drop and can cause communications timeout errors to occur. If the maximum value exceeds the scan set
value, a watchdog error may occur and cause the Machine Controller system to shut down.

• If you are using MECHATROLINK-II or MECHATROLINK-III, set values that are an integral multiple of the
communications cycle. If you change the communications cycle, check the scan time set values.

• Do not change the scan set value while the Servo is ON. Never change the scan set values while an axis is in
motion (i.e., while the motor is rotating). Doing so may cause the motor to rotate out of control.

• After changing or setting the scan times, make sure to save the data to flash memory.

(3) Checking and Setting the Scan Times

You can check the current and maximum values of the scan times and the set values of the scan times, and you can set
the scan times in the following dialog box of MPE720 Version 6.0.

Select File − Environment Setting − Setup − Scan Time Setting.

Item Possible Set Values Default
High-speed Scan Time 0.5 to 32 ms (in 0.5-ms increments) 10.0 ms
Low-speed Scan Time 2.0 to 300.0 ms (in 0.5-ms increments) 200.0 ms

4.8 Advanced Programming

4.8.1 Motion Programs

4-25

P
ro

gr
am

m
in

g
4

4.8 Advanced Programming
4.8.1 Motion Programs

A motion program is written in a text-based motion language. In addition to basic motion control and operations,
motion programs can also be used to easily program complex movements, such as linear interpolation and circular
interpolation.
You can execute motion programs either by placing MSEE instructions in ladder programming in high-speed drawings,
or by registering the motion programs in the Program Definition Tab Page for the M-EXECUTOR.

For details on motion programs, refer to the Machine Controller MP2000 Series User’s Manual for Motion Program-
ming (Manual No.: SIEP C880700 38).

MP2000-series Machine Controller

Ladder Programs

MSEE Instruction

Motion Programs

M-EXECUTOR
Program Definition

You can call motion programs
without a ladder program.

Called.

Called.

You can call up
to 16 programs
at the same time.

M
ot

io
n

pa
ra

m
et

er
s

You can create up
to 256 programs.

SVR

Built-in
SVB

SVB-01

SVA-01

PO-01

4.8 Advanced Programming

4.8.2 C-language Programs

4-26

4.8.2 C-language Programs
You can use the MP2000-series Machine Controller Embedded C-language Programming Package to use C-language
functions and C-language tasks in addition to ladder programs and motion programs.
You can call C-language functions and start and stop C-language tasks from the ladder programs.
The following configuration is for using C-language programming.

For details on C-language programming, refer to the Machine Controller MP2000 Series Embedded C-Language Pro-
gramming Package Development Guide (Manual No.: SIEP C880700 25).

MP2000

Ladder language Motion language

External signal

Function called.

C-language
function

Function called.

Task started and stopped.

User-defined
C-language task A

Task started and stopped.

User-defined
C-language task B

Local task made dormant.

Automatically started
at start of H or L scan.

Table data

Can be accessed
from
ladder-language
or C-language
programming.

Can be accessed
from
ladder-language,
motion-language,
or C-language
programming.

Registers

Global variables

Can be accessed only from
C-language programming.

4.8 Advanced Programming

4.8.3 Security

4-27

P
ro

gr
am

m
in

g
4

4.8.3 Security
MPE720 version 6 has the following security features. You can use these security features for data protection by speci-
fying access privileges for individual projects and program drawings.

User Administration (User Name and Password Setting)

You can register and change the name of the users who can open projects.
If the setting is performed while the Machine Controller is online, the setting will provide access privileges to the
Machine Controller.

Project Password Setting

You can set a password for opening a project file.

Program Password Setting

You can set a password for opening ladder programs and motion programs. A password can be set for each program.

Online Security Setting

You can set a security key (i.e., a password) and privilege levels for reading data from a Machine Controller. This
allows you to restrict the ability to read the program data from the Machine Controller or the ability to open the pro-
grams to users who have the specified level of privilege or a higher privilege.

Refer to the Engineering Tool for MP2000 Series Machine Controller MPE720 Version 6 User’s Manual (SIEP
C880700 30) for detailed setting procedures for security.

4.8 Advanced Programming

4.8.4 Tracing

4-28

4.8.4 Tracing
MPE720 version 6 has three trace modes.

Realtime Tracing

You can monitor specified registers on a graph in real time.

Data Tracing

You can have the Machine Controller collect data for specified registers during a specified time period, and perform
operations on that data and plot it on a graph.
This allows you to analyze register data that is acquired during specific time periods to debug ladder programs.

XY Tracing

This trace mode acquires the position data of the X axis and Y axis every scan, and displays the data in a 2-dimensional
graph.

All three modes support exporting the trace data to CSV files.
Use tracing to check operation and to debug the ladder programs and motion programs.

Data Tracing Display Example

Refer to the Engineering Tool for MP2000 Series Machine Controller MPE720 Version 6 User’s Manual (SIEP
C880700 30) for detailed setting procedures for tracing.

5-1

In
st

ru
ct

io
ns

5

5
Instructions

This chapter describes the ladder programming instructions in detail.

5.1 How to Read the Instructions -5-4

5.2 Relay Circuit Instructions -5-5
5.2.1 NO Contact (NOC) - 5-5
5.2.2 NC Contact (NCC) - 5-6
5.2.3 10-ms ON-Delay Timer (TON[10ms]) - 5-7
5.2.4 10-ms OFF-Delay Timer (TOFF[10ms]) - 5-9
5.2.5 1-s ON-Delay Timer (TON[1s]) - 5-11
5.2.6 1-s OFF-Delay Timer (TOFF[1s]) - 5-13
5.2.7 Rising-edge Pulses (ON-PLS) - 5-15
5.2.8 Falling-edge Pulses (OFF-PLS) - 5-17
5.2.9 Coil (COIL) - 5-19
5.2.10 Set Coil (S-COIL) - 5-20
5.2.11 Reset Coil (R-COIL) - 5-21

5.3 Numeric Operation Instructions - 5-22
5.3.1 Store (STORE) - 5-22
5.3.2 Add (ADD (+)) - 5-24
5.3.3 Extended Add (ADDX (++)) - 5-26
5.3.4 Subtract (SUB (−)) - 5-28
5.3.5 Extended Subtract (SUBX (− −)) - 5-30
5.3.6 Multiply (MUL (x)) - 5-32
5.3.7 Divide (DIV (÷)) - 5-34
5.3.8 Integer Remainder (MOD) - 5-36
5.3.9 Real Remainder (REM) - 5-38
5.3.10 Increment (INC) - 5-40
5.3.11 Decrement (DEC) - 5-42
5.3.12 Add Time (TMADD) - 5-44
5.3.13 Subtract Time (TMSUB) - 5-46
5.3.14 Spend Time (SPEND) - 5-48
5.3.15 Invert Sign (INV) - 5-51
5.3.16 One’s Complement (COM) - 5-52
5.3.17 Absolute Value (ABS) - 5-53
5.3.18 Binary Conversion (BIN) - 5-54
5.3.19 BCD Conversion (BCD) - 5-55
5.3.20 Parity Conversion (PARITY) - 5-56
5.3.21 ASCII Conversion 1 (ASCII) - 5-57
5.3.22 ASCII Conversion 2 (BINASC) - 5-59
5.3.23 ASCII Conversion 3 (ASCBIN) - 5-61

5-2

5.4 Logic Operations and Comparison Instructions - - - - - - - - - - - - - - - - - - - 5-63
5.4.1 Inclusive AND (AND) - 5-63
5.4.2 Inclusive OR (OR) - 5-65
5.4.3 Exclusive OR (XOR) - 5-67
5.4.4 Less Than (<) - 5-69
5.4.5 Less Than or Equal (≤) - 5-70
5.4.6 Equal (=) - 5-71
5.4.7 Not Equal (≠) - 5-72
5.4.8 Greater Than or Equal (≥) - 5-73
5.4.9 Greater Than (>) - 5-74
5.4.10 Range Check (RCHK) - 5-75

5.5 Program Control Instructions - 5-77
5.5.1 Call Sequence Program (SEE) - 5-77
5.5.2 Call Motion Program (MSEE) - 5-78
5.5.3 Call User Function (FUNC) - 5-80
5.5.4 Direct Input String (INS) - 5-81
5.5.5 Direct Output String (OUTS) - 5-84
5.5.6 Call Extended Program (XCALL) - 5-87
5.5.7 WHILE Construct (WHILE, END_WHILE) - 5-88
5.5.8 FOR Construct (FOR, END_FOR) - 5-91
5.5.9 IF Construct (IF, END_IF) - 5-93
5.5.10 IF-ELSE Construct (IF, ELSE, END_IF) - 5-95
5.5.11 Expression (EXPRESSION) - 5-97

5.6 Basic Function Instructions - 5-99
5.6.1 Square Root (SQRT) - 5-99
5.6.2 Sine (SIN) -5-101
5.6.3 Cosine (COS) -5-103
5.6.4 Tangent (TAN) -5-105
5.6.5 Arc Sine (ASIN) -5-106
5.6.6 Arc Cosine (ACOS) -5-107
5.6.7 Arc Tangent (ATAN) -5-108
5.6.8 Exponential (EXP) -5-109
5.6.9 Natural Logarithm (LN) -5-110
5.6.10 Common Logarithm (LOG) - 5-111

5.7 Data Shift Instructions - 5-112
5.7.1 Bit Rotate Left (ROTL) -5-112
5.7.2 Bit Rotate Right (ROTR) -5-114
5.7.3 Move Bit (MOVB) -5-116
5.7.4 Move Word (MOVW) -5-118
5.7.5 Exchange (XCHG) -5-120
5.7.6 Table Initialization (SETW) -5-122
5.7.7 Byte-to-word Expansion (BEXTD) -5-124
5.7.8 Word-to-byte Compression (BPRESS) -5-126
5.7.9 Binary Search (BSRCH) -5-128
5.7.10 Sort (SORT) -5-130
5.7.11 Bit Shift Left (SHFTL) -5-132
5.7.12 Bit Shift Right (SHFTR) -5-134
5.7.13 Copy Word (COPYW) -5-136
5.7.14 Byte Swap (BSWAP) -5-138

5.8 DDC Instructions - 5-139
5.8.1 Dead Zone A (DZA) -5-139
5.8.2 Dead Zone B (DZB) -5-141
5.8.3 Upper/Lower Limit (LIMIT) -5-143
5.8.4 PI Control (PI) -5-145
5.8.5 PD Control (PD) -5-150
5.8.6 PID Control (PID) -5-156

5-3

In
st

ru
ct

io
ns

5

5.8.7 First-order Lag (LAG) - 5-161
5.8.8 Phase Lead Lag (LLAG) - 5-164
5.8.9 Function Generator (FGN) - 5-167
5.8.10 Inverse Function Generator (IFGN) - 5-172
5.8.11 Linear Accelerator/Decelerator 1 (LAU) - 5-177
5.8.12 Linear Accelerator/Decelerator 2 (SLAU) - 5-184
5.8.13 Pulse Width Modulation (PWM) - 5-194

5.9 Table Manipulation Instructions - 5-197
5.9.1 Read Table Block (TBLBR) - 5-197
5.9.2 Write Table Block (TBLBW) - 5-200
5.9.3 Search for Table Row (TBLSRL) - 5-203
5.9.4 Search for Table Column (TBLSRC) - 5-206
5.9.5 Clear Table Block (TBLCL) - 5-209
5.9.6 Move Table Block (TBLMV) - 5-212
5.9.7 Read Queue Table (QTBLR and QTBLRI) - 5-215
5.9.8 Write Queue Table (QTBLW and QTBLWI) - 5-219
5.9.9 Clear Queue Table Pointers (QTBLCL) - 5-223

5.10 System Function Instructions - 5-225
5.10.1 Counter (COUNTER) - 5-225
5.10.2 First-in First-out (FINFOUT) - 5-228
5.10.3 Trace (TRACE) - 5-232
5.10.4 Read Data Trace (DTRC-RD) - 5-234
5.10.5 Read Inverter Trace (ITRC-RD) - 5-238
5.10.6 Send Message (MSG-SND) - 5-241
5.10.7 Receive Message (MSG-RCV) - 5-253
5.10.8 Write Inverter Parameter (ICNS-WR) - 5-261
5.10.9 Read Inverter Parameter (ICNS-RD) - 5-266
5.10.10 Write SERVOPACK Parameter (MLNK-SVW) - 5-270
5.10.11 Write Motion Register (MOTREG-W) - 5-275
5.10.12 Read Motion Register (MOTREG-R) - 5-278

5.11 C-language Control Instructions - 5-281
5.11.1 Call C-language Function (C-FUNC) - 5-281
5.11.2 C-language Task Control (TSK-CTRL) - 5-283

5.1 How to Read the Instructions

5-4

5.1 How to Read the Instructions
This chapter describes each instruction using the following format.

(1) Operation

The operation performed by the instruction is described.
Figures are used to show the operation performed by the instruction.

(2) Format

×: This data type cannot be used.
: All registers with this data type can be used.

(3) Programming Example

This section gives a ladder programming example that uses the instruction.

(4) Additional Information

This section contains additional information about the instruction. It is omitted if there is no additional information that
is required for the instruction.

Parameter Name
Applicable Data Types

B W L F A Index Constant
The name of the parameter
that appears in the ladder
programs is given.

× ×

This area shows how the instruction
appears in a ladder program.

Icon:

Shows the icon used in the MPE720.

Key entry:

Shows the shortcut key combination
used in the Ladder Editor.

5.2 Relay Circuit Instructions

5.2.1 NO Contact (NOC)

5-5

In
st

ru
ct

io
ns

5

5.2 Relay Circuit Instructions
5.2.1 NO Contact (NOC)

(1) Operation

The NOC instruction outputs ON whenever the bit with the specified relay address is 1 (ON).
The NOC instruction outputs OFF when the bit is 0 (OFF).

(2) Format

(3) Programming Example

The DB000001 output coil is ON whenever the DB000000 relay in the NOC instruction is ON.

1 (ON)

0 (OFF)

ON

OFFOutput of the NOC instruction

Relay address Bit

Parameter Name
Applicable Data Types

B W L F A Index Constant
Relay address × × × × × ×

Relay address
Icon:

Key entry:][

5.2 Relay Circuit Instructions

5.2.2 NC Contact (NCC)

5-6

5.2.2 NC Contact (NCC)

(1) Operation

The NCC instruction outputs OFF whenever the bit with the specified relay address is 1 (ON).
The NCC instruction outputs ON when the bit is 0 (OFF).

(2) Format

(3) Programming Example

The DB000001 coil is ON whenever the DB000000 relay in the NCC instruction is OFF.

Relay address
1 (ON)

0 (OFF)

ON

OFFOutput of the NCC instruction

Bit

Parameter Name
Applicable Data Types

B W L F A Index Constant
Relay address × × × × × ×

Relay address
Icon:

Key entry:]/

5.2 Relay Circuit Instructions

5.2.3 10-ms ON-Delay Timer (TON[10ms])

5-7

In
st

ru
ct

io
ns

5

5.2.3 10-ms ON-Delay Timer (TON[10ms])

(1) Operation

The timer counts the time whenever the timer bit input is 1 (ON). The bit output is set to 1 (ON) when the count value
equals the set value.
If the bit input changes to 0 (OFF) during counting, the timer will stop counting. If the bit input changes to 1 (ON)
again, the timer starts counting again from the beginning (i.e., from 0). The actual counted time (in units of 10 ms) is
stored in the Count register.

The counting error is 10 ms or less.

(2) Format

∗ C and # registers cannot be used.

Bit input

Count value

Set value

0

Bit output

1 (ON)
0 (OFF)
1 (ON)
0 (OFF)

TimerBit input →

The set value and count value are in units of 10 ms.

→ Bit output

Parameter Name
Applicable Data Types

B W L F A Index Constant
Set value (Set) × × × × ×
Count value (Count) × * × × × × ×

Icon:

Key entry: [ON

Set value

Count value

5.2 Relay Circuit Instructions

5.2.3 10-ms ON-Delay Timer (TON[10ms])

5-8

(3) Programming Example

In the following programming example, the set value of the TON instruction is 50, and the count value is stored in the
DW00001 register.
The DB000001 coil will turn ON after the DB000000 relay stays ON for 500 ms.

The timing chart is shown below.

DB000000

DB000001

ON
OFF
ON
OFF

DW00001

50

0
500 ms - Ts

(Ts: Scan time set value)

5.2 Relay Circuit Instructions

5.2.4 10-ms OFF-Delay Timer (TOFF[10ms])

5-9

In
st

ru
ct

io
ns

5

5.2.4 10-ms OFF-Delay Timer (TOFF[10ms])

(1) Operation

The timer counts the time whenever the timer bit input is 0 (OFF). The bit output is set to 0 (OFF) when the count value
equals the set value.
If the bit input changes to 0 (OFF) during counting, the timer will stop counting. If the bit input changes to 1 (ON)
again, the timer starts counting again from the beginning (i.e., from 0). The actual counted time (in units of 10 ms) is
stored in the Count register.

The counting error is 10 ms or less.

(2) Format

∗ C and # registers cannot be used.

Bit input

Count value

Set value

0

Bit output

1 (ON)
0 (OFF)

1 (ON)
0 (OFF)

TimerBit input →

The set value and count value are in units of 10 ms.

→ Bit output

Parameter Name
Applicable Data Types

B W L F A Index Constant
Set value (Set) × × × × ×
Count value (Count) × * × × × × ×

Set value

Count value

Icon:

Key entry: [OFF

5.2 Relay Circuit Instructions

5.2.4 10-ms OFF-Delay Timer (TOFF[10ms])

5-10

(3) Programming Example

In the following programming example, the set value of the TOFF instruction is 50, and the count value is stored in the
DW00001 register.
The DB000001 coil will turn OFF after the DB000000 relay stays OFF for 500 ms.

The timing chart is shown below.

DW00001

50

0
500 ms - Ts

(Ts: Scan time set value)

DB000000

DB000001

ON
OFF

ON
OFF

5.2 Relay Circuit Instructions

5.2.5 1-s ON-Delay Timer (TON[1s])

5-11

In
st

ru
ct

io
ns

5

5.2.5 1-s ON-Delay Timer (TON[1s])

(1) Operation

The timer counts the time whenever the timer bit input is 1 (ON). The bit output is set to 1 (ON) when the count value
equals the set value.
If the bit input changes to 0 (OFF) during counting, the timer will stop counting. If the bit input changes to 1 (ON)
again, the timer starts counting again from the beginning (i.e., from 0). The actual counted time (in units of 1 s) is
stored in the Count register.

The counting error is 1 s or less.

(2) Format

∗ C and # registers cannot be used.

Bit input

Count value

Set value

0

Bit output

1 (ON)
0 (OFF)
1 (ON)
0 (OFF)

TimerBit input →

The set value and count value are in units of 1 s.

→ Bit output

Parameter Name
Applicable Data Types

B W L F A Index Constant
Set value (Set) × × × × ×
Count value (Count) × * × × × × ×

Set value

Count value

Icon:

Key entry: [SON

5.2 Relay Circuit Instructions

5.2.5 1-s ON-Delay Timer (TON[1s])

5-12

(3) Programming Example

In the following programming example, the set value of the TON instruction is 5, and the count value is stored in the
DW00001 register.
The DB000001 coil will turn ON after the DB000000 relay stays ON for 5 s.

The timing chart is shown below.

DB000000

DB000001

ON
OFF
ON
OFF

DW00001

5

0
5 s - Ts

(Ts: Scan time set value)

5.2 Relay Circuit Instructions

5.2.6 1-s OFF-Delay Timer (TOFF[1s])

5-13

In
st

ru
ct

io
ns

5

5.2.6 1-s OFF-Delay Timer (TOFF[1s])

(1) Operation

The timer counts the time whenever the timer bit input is 0 (OFF). The bit output is set to 1 (ON) when the count value
equals the set value.
If the bit input changes to 0 (OFF) during counting, the timer will stop counting. If the bit input changes to 1 (ON)
again, the timer starts counting again from the beginning (i.e., from 0). The actual counted time (in units of 1 s) is
stored in the Count register.

The counting error is 1 s or less.

(2) Format

∗ C and # registers cannot be used.

Bit input

Count value

Set value

0

Bit output

1 (ON)
0 (OFF)

1 (ON)
0 (OFF)

TimerBit input →

The set value and count value are in units of 1 s.

→ Bit output

Parameter Name
Applicable Data Types

B W L F A Index Constant
Set value (Set) × × × × ×
Count value (Count) × * × × × × ×

Icon:

Key entry: [SOFF

Set value

Count value

5.2 Relay Circuit Instructions

5.2.6 1-s OFF-Delay Timer (TOFF[1s])

5-14

(3) Programming Example

In the following programming example, the set value of the TOFF instruction is 5, and the count value is stored in the
DW00001 register.
The DB000001 coil will turn OFF after the DB000000 relay stays OFF for 5 s.

The timing chart is shown below.

DW00001

5

0
5 s - Ts

(Ts: Scan time set value)

DB000000

DB000001

ON
OFF

ON
OFF

5.2 Relay Circuit Instructions

5.2.7 Rising-edge Pulses (ON-PLS)

5-15

In
st

ru
ct

io
ns

5

5.2.7 Rising-edge Pulses (ON-PLS)

(1) Operation

The ON-PLS instruction sets the bit output to 1 (ON) for only one scan when the bit input changes from 0 (OFF) to 1
(ON). The previous value of the bit input is saved in the Previous Value Register of the ON-PLS instruction.

The following table shows the relationship between the bit input of the ON-PLS instruction, the Previous Value Regis-
ter, and the bit output.

In the third row of the table, notice how the bit input changes from 0 (OFF) in the Previous Value Register to 1 (ON),
causing the ON-PLS instruction to set the bit output to 1 (ON).

(2) Format

∗ C and # registers cannot be used.
The Previous Value Register holds the previous value of the bit input. Do not use other instructions to set the value
of this register.

Bit Input Previous Value Register ON-PLS Instruction Bit Output
0 (OFF) 0 (OFF) → 0 (OFF)
0 (OFF) 1 (ON) → 0 (OFF)
1 (ON) 0 (OFF) → 1 (ON)
1 (ON) 1 (ON) → 0 (OFF)

Bit input

Bit output

1 (ON)
0 (OFF)

1 (ON)
0 (OFF)

Previous Value
Register

1 (ON)
0 (OFF)

1 scan 1 scan

Parameter Name
Applicable Data Types

B W L F A Index Constant
Previous Value
Register * × × × × × ×

Previous Value Register

Icon:

Key entry:]P

5.2 Relay Circuit Instructions

5.2.7 Rising-edge Pulses (ON-PLS)

5-16

(3) Programming Example

The DB000002 output coil turns ON for only one scan if the status of DB000001 changes when the DB000000 relay
changes from OFF to ON.

The timing chart is shown below.

DB000000

DB000002

ON
OFF

ON
OFF

ON
OFF

1 scan 1 scan

DB000001

5.2 Relay Circuit Instructions

5.2.8 Falling-edge Pulses (OFF-PLS)

5-17

In
st

ru
ct

io
ns

5

5.2.8 Falling-edge Pulses (OFF-PLS)

(1) Operation

The OFF-PLS instruction sets the bit output to 1 (ON) for only one scan when the bit input changes from 1 (ON) to 0
(OFF). The previous value of the bit input is saved in the Previous Value Register of the OFF-PLS instruction.

The following table shows the relationship between the bit input of the OFF-PLS instruction, the Previous Value Reg-
ister, and the bit output.

In the second row of the table, notice how the bit input changes from 1 (ON) in the Previous Value Register to 0 (OFF),
causing the OFF-PLS instruction to set the bit output to 1 (ON).

(2) Format

∗ C and # registers cannot be used.
The Previous Value Register holds the previous value of the bit input. Do not use other instructions to set the value
of this register.

Bit Input Previous Value Register OFF-PLS Instruction Bit Output
0 (OFF) 0 (OFF) → 0 (OFF)
0 (OFF) 1 (ON) → 1 (ON)
1 (ON) 0 (OFF) → 0 (OFF)
1 (ON) 1 (ON) → 0 (OFF)

Bit input

Bit output

1 (ON)
0 (OFF)

1 (ON)
0 (OFF)

Previous Value
Register

1 (ON)
0 (OFF)

1 scan 1 scan

Parameter Name
Applicable Data Types

B W L F A Index Constant
Previous Value
Register * × × × × × ×

Previous Value Register

Icon:

Key entry:]N

5.2 Relay Circuit Instructions

5.2.8 Falling-edge Pulses (OFF-PLS)

5-18

(3) Programming Example

The DB000002 output coil turns ON for only one scan if the status of DB000001 changes when the DB000000 relay
changes from ON to OFF.

The timing chart is shown below.

DB000000

DB000002

ON
OFF

ON
OFF

ON
OFF

1 scan 1 scan

DB000001

5.2 Relay Circuit Instructions

5.2.9 Coil (COIL)

5-19

In
st

ru
ct

io
ns

5

5.2.9 Coil (COIL)

(1) Operation

The COIL instruction sets the value of the bit at the coil address to 1 (ON) whenever the bit input is 1 (ON). The value
of the bit at the coil address is set to 0 (OFF) whenever the bit input is 0 (OFF).

(2) Format

∗ C and # registers cannot be used.

(3) Programming Example

The DB000000 coil turns ON when the DB000001 relay turns ON.

If there are no instructions on the left side, the DB000000 coil is OFF because there is no input.

Coil address

1 (ON)

0 (OFF)

1 (ON)

0 (OFF)

Bit input

Bit value

Parameter Name
Applicable Data Types

B W L F A Index Constant
Coil address * × × × × × ×

Coil address
Icon:

Key entry: @

5.2 Relay Circuit Instructions

5.2.10 Set Coil (S-COIL)

5-20

5.2.10 Set Coil (S-COIL)

(1) Operation

The S-COIL instruction sets the value of the bit at the coil address to 1 (ON) when the bit input is 1 (ON). The set coil
stays in the ON state.

(2) Format

∗ C and # registers cannot be used.

(3) Programming Example

The DB000001 set coil stays in the ON state when the DB000000 relay turns ON.

The timing chart is shown below.

Bit input

Coil address

1 (ON)
0 (OFF)

1 (ON)
0 (OFF)Bit value

Coil address

Icon:

Key entry: @S

Parameter Name
Applicable Data Types

B W L F A Index Constant
Coil address * × × × × × ×

DB000000 ON
OFF

ON
OFFDB000001

5.2 Relay Circuit Instructions

5.2.11 Reset Coil (R-COIL)

5-21

In
st

ru
ct

io
ns

5

5.2.11 Reset Coil (R-COIL)

(1) Operation

The R-COIL instruction sets the bit at the reset coil address to 1 (ON) when the bit input is 1 (ON). The set coil is
changed to OFF.

(2) Format

∗ C and # registers cannot be used.

(3) Programming Example

In the following programming example, the reset coil is used to turn OFF the set coil that was turned ON in the first
line.
The DB000001 reset coil in the second line turns ON if the DB000002 relay turns ON while the DB000001 set coil is
ON, therefore turning OFF the DB000001 set coil.

The timing chart is shown below.

Bit input

Coil address

1 (ON)
0 (OFF)

1 (ON)
0 (OFF)Bit value

Parameter Name
Applicable Data Types

B W L F A Index Constant
Coil address * × × × × × ×

Coil address
Icon:

Key entry: @R

DB000000

DB000001

ON
OFF

ON
OFF

ON
OFFDB000002

5.3 Numeric Operation Instructions

5.3.1 Store (STORE)

5-22

5.3 Numeric Operation Instructions
5.3.1 Store (STORE)

(1) Operation

The input data is stored in the output register.

(2) Format

∗ C and # registers cannot be used.

Input data Output register

Input data Output register

Icon:

Key entry: ;

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input data (Src) ×
Output register
(Dest) × * * * * ×

5.3 Numeric Operation Instructions

5.3.1 Store (STORE)

5-23

In
st

ru
ct

io
ns

5

(3) Programming Examples

In the following programming examples, the input data is stored in the output register.
• Storing the Input Data, an Integer Value of 12345, in the MW00000 Output Register

• Storing the Input Data, a Real Value of 123.45, in the MW00000 Output Register

• Storing the Double-length Integer 89ABCDEF Hex in the MW00000 Output Register
The lower word of the double-length integer –12,817 (CDEF hex) is stored in MW00000.

• Storing the Input Data, an Integer Value of 1234, in the MF00000 Output Register

When performing operations with different data types, the result of the operation will depend on the data type of the output reg-
ister.
Refer to 4.4.2 (3) Precautions When Using Local Registers within a User Function for details.

INFO

5.3 Numeric Operation Instructions

5.3.2 Add (ADD (+))

5-24

5.3.2 Add (ADD (+))

(1) Operation

Input data A and input data B are added and the result is stored in the output data.
An operation error occurs if the result produces an overflow or underflow.

(2) Format

∗ C and # registers cannot be used.

Input data A Output dataInput data B+

Input data B

Input data A

Output data

Icon:

Key entry: +

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input data A (SrcA) × ×
Input data B (SrcB) × ×
Output data (Dest) × * * * × ×

5.3 Numeric Operation Instructions

5.3.2 Add (ADD (+))

5-25

In
st

ru
ct

io
ns

5

(3) Programming Examples

In the following programming examples, input data A and input data B are added and the result is stored in the output
data.

• Storing the Output Data in MW00000 When Input Data A Is 100 and Input Data B Is 200
100 + 200 → MW00000 = 300

• Storing the Output Data in MW00000 When Input Data A Is 10.5 and Input Data B Is 10
10.5 + 10 → MW00000 = 20 (when truncating below the decimal point is set)

• Storing the Output Data in ML00000 When Input Data A in MW00002 Is 20,000 and Input Data B in MW00003
Is 30,000
MW00002 (20,000) + MW00003 (30,000) → ML00000 = 32,767*

∗ In the example given above, an overflow error occurs because both input data A and B are integers, which lim-
its the result to a number within the range for integers.

(4) Additional Information

With integer operations, an overflow operation error occurs if the result exceeds 32,767 and an underflow operation
error occurs if the result is less than -32,768.
With double-length integer operations, an overflow operation error occurs if the result exceeds 2,147,483,647 and an
underflow operation error occurs if the result is less than -2,147,483,648.

When performing operations with different data types, the result of the operation will depend on the data type of the output reg-
ister.
Refer to 4.4.2 (3) Precautions When Using Local Registers within a User Function for details.
Normally, addition and subtraction instructions (+, –, ++, and – –) involving double-length integers are performed as 32-bit
operations.
However, these instructions are performed as 64-bit operations if they are used to correct the remainder produced by an immedi-
ately preceding MUL instruction (×) and are immediately followed by a DIV instruction (÷).

INFO

5.3 Numeric Operation Instructions

5.3.3 Extended Add (ADDX (++))

5-26

5.3.3 Extended Add (ADDX (++))

(1) Operation

Input data A and input data B are added and the result is stored in the output data.
Overflows are not treated as operation errors. Operation continues from the maximum value in the negative direction.
Underflows are not treated as operation errors. Operation continues from the maximum value in the positive direction.

Output Data Behavior

In the example shown above, the output data is integer data. With double-length integers, adding 1 to
2,147,483,647 (7FFFFFFF hex) results in -2,147,483,648 (80000000 hex).
Unlike operations for the ADD, SUB, or EXPRESSION instructions, overflows and underflows do not occur.

(2) Format

∗ C and # registers cannot be used.

Input data A Output dataInput data B
Extended Add

++

Output data (See notes.)
0

32,767 (7FFF hex)

−32,768 (8000 hex)

+1

32,767

-32,768

+1

Input data B Output data

Input data A

Icon:

Key entry: ++

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input data A (SrcA) × × ×
Input data B (SrcB) × × ×
Output data (Dest) × * * × × ×

5.3 Numeric Operation Instructions

5.3.3 Extended Add (ADDX (++))

5-27

In
st

ru
ct

io
ns

5

(3) Programming Examples

In the following programming examples, input data A and input data B are extended-added and the result is stored in
the output data.

• Storing the Output Data in MW00000 When Input Data A Is 32,760 and Input Data B Is 10
32,760 ++ 10 → MW00000 = -32,766

• Storing the Output Data in ML00000 When Input Data A in MW00002 Is 20,000 and Input Data B in MW00003
is 30,000
20,000 ++ 30,000 → ML00000 = -15,536*

∗ In the example given above, ML00000 does not equal 50,000 because both input data A and B are integers,
which limits the result to a number within the range for integers.

• Storing the Output Data in ML00000 When Input Data A Is 2,147,483,647 and Input Data B Is 2
2,147,483,647 ++ 2 → ML00000 = -241,783,647

• Storing the Output Data in MW00000 When Input Data A Is -32,768 and Input Data B Is -1
-32,768 ++ -1 → MW00000 = 32,767

When performing operations with different data types, the result of the operation will depend on the data type of the output reg-
ister.
Refer to 4.4.2 (3) Precautions When Using Local Registers within a User Function for details.
Normally, addition and subtraction instructions (+, –, ++, and – –) involving double-length integers are performed as 32-bit
operations.
However, these instructions are performed as 64-bit operations if they are used to correct the remainder produced by an immedi-
ately preceding MUL instruction (×) and are immediately followed by a DIV instruction (÷).

INFO

5.3 Numeric Operation Instructions

5.3.4 Subtract (SUB (−))

5-28

5.3.4 Subtract (SUB (−))

(1) Operation

Input data B is subtracted from input data A and the result is stored in the output data.
An operation error occurs if the result produces an overflow or underflow.

(2) Format

∗ C and # registers cannot be used.

(3) Programming Examples

In the following programming examples, input data B is subtracted from input data A and the result is stored in the out-
put data.

• Storing the Output Data in MW00000 When Input Data A Is 100 and Input Data B Is 200
100 – 200 → MW00000 = -100

Input data A Output dataInput data B−

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input data A (SrcA) × ×
Input data B (SrcB) × ×
Output data (Dest) × * * * × ×

Input data B Output data

Input data A

Icon:

Key entry: −

5.3 Numeric Operation Instructions

5.3.4 Subtract (SUB (−))

5-29

In
st

ru
ct

io
ns

5

• Storing the Output Data in MW00000 When Input Data A Is 10.5 and Input Data B Is 10
10.5 – 10 → MW00000 = 0 (when truncating below the decimal point is set)

• Storing the Output Data in ML00000 When Input Data A in MW00002 Is -20,000 and Input Data B in
MW00003 Is 30,000
-20,000 – 30,000 → ML00000 = -32,768*

∗ In the example given above, an underflow error occurs because both input data A and B are integers, which
limits the result to a number within the range for integers.

(4) Additional Information

With integer operations, an overflow operation error occurs if the result exceeds 32,767 and an underflow operation
error occurs if the result is less than -32,768.
With double-length integer operations, an overflow operation error occurs if the result exceeds 2,147,483,647 and an
underflow operation error occurs if the result is less than -2,147,483,648.

When performing operations with different data types, the result of the operation will depend on the data type of the output reg-
ister.
Refer to 4.4.2 (3) Precautions When Using Local Registers within a User Function for details.
Normally, addition and subtraction instructions (+, –, ++, and – –) involving double-length integers are performed as 32-bit
operations.
However, these instructions are performed as 64-bit operations if they are used to correct the remainder produced by an immedi-
ately preceding MUL instruction (×) and are immediately followed by a DIV instruction (÷).

INFO

5.3 Numeric Operation Instructions

5.3.5 Extended Subtract (SUBX (− −))

5-30

5.3.5 Extended Subtract (SUBX (− −))

(1) Operation

Input data B is subtracted from input data A and the result is stored in the output data.
Overflows are not treated as operation errors. Operation continues from the maximum value in the negative direction.
Underflows are not treated as operation errors. Operation continues from the maximum value in the positive direction.

Output Data Behavior

In the example shown above, the output data is integer data. With double-length integers, subtracting 1 from -
2,147,483,647 (80000000 hex) results in 2,147,483,647(7FFFFFFF hex).
Unlike operations for the ADD, SUB, or EXPRESSION instructions, overflows and underflows do not occur.

(2) Format

∗ C and # registers cannot be used.

Input data A Output dataInput data B
Extended Subtract

− −

0

-1

32,767

-32,768

-1

Output data

32,767 (7FFF hex)

-32,768 (8000 hex)

Input data B Output data

Input data A

Icon:

Key entry: − −

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input data A (SrcA) × × ×
Input data B (SrcB) × × ×
Output data (Dest) × * * × × ×

5.3 Numeric Operation Instructions

5.3.5 Extended Subtract (SUBX (− −))

5-31

In
st

ru
ct

io
ns

5

(3) Programming Examples

In the following programming examples, input data B is extended-subtracted from input data A and the result is stored
in the output data.

• Storing the Output Data in MW00000 When Input Data A Is -32,760 and Input Data B Is 10
-32,768 – – 10 → MW00000 = 32,766

• Storing the Output Data in ML00000 When Input Data A in MW00002 Is -20,000 and Input Data B in
MW00003 Is 30,000
-20,000 – –30,000 → ML00000 = 15,536*

∗ In the example given above, ML00000 does not equal -50,000 because both input data A and B are integers,
which limits the result to a number within the range for integers.

• Storing the Output Data in ML00000 When Input Data A Is -2,147,483,648 and Input Data B Is 2
-2,147,483,648 – – 2 → ML00000 = 241,783,646

• Storing the Output Data in MW00000 When Input Data A Is 32,767 and Input Data B Is -1
32,767 – – -1 → MW00000 = -32,768

When performing operations with different data types, the result of the operation will depend on the data type of the output reg-
ister.
Refer to 4.4.2 (3) Precautions When Using Local Registers within a User Function for details.
Normally, addition and subtraction instructions (+, –, ++, and – –) involving double-length integers are performed as 32-bit
operations.
However, these instructions are performed as 64-bit operations if they are used to correct the remainder produced by an immedi-
ately preceding MUL instruction (×) and are immediately followed by a DIV instruction (÷).

INFO

5.3 Numeric Operation Instructions

5.3.6 Multiply (MUL (x))

5-32

5.3.6 Multiply (MUL (x))

(1) Operation

Input data A and input data B are multiplied and the result is stored in the output data.

(2) Format

∗ C and # registers cannot be used.

(3) Programming Examples

In the following programming examples, input data A and input data B are multiplied and the result is stored in the out-
put data.

• Storing the Output Data in MW00000 When Input Data A Is 100 and Input Data B Is 200
100 × 200 → MW00000 = 20,000

Input data A Output dataInput data B×

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input data A (SrcA) × ×
Input data B (SrcB) × ×
Output data (Dest) × * * * × ×

Input data B Output data

Input data A

Icon:

Key entry: *

5.3 Numeric Operation Instructions

5.3.6 Multiply (MUL (x))

5-33

In
st

ru
ct

io
ns

5

• Storing the Output Data in ML00000 When Input Data A in MW00002 Is 200 and Input Data B in MW00003 Is
300
200 × 300 → ML00000 = 60,000

• Storing the Output Data in MW00002 When Input Data A in ML00000 Is -200 and Input Data B in MW00003 Is
300
-200 × 300 → MW00002 = 5,536*

∗ The input data contains a double-length integer, so this operation is performed as a double-length integer oper-
ation. However, the output data is integer data, so if the operation result exceeds the range for integers, the
lower 16-bits of the original operation result is stored in the output data.

When performing operations with different data types, the result of the operation will depend on the data type of the output reg-
ister.
Refer to 4.4.2 (3) Precautions When Using Local Registers within a User Function for details.
Normally, addition and subtraction instructions (+, –, ++, and – –) involving double-length integers are performed as 32-bit
operations.
However, these instructions are performed as 64-bit operations if they are used to correct the remainder produced by an immedi-
ately preceding MUL instruction (×) and are immediately followed by a DIV instruction (÷).

INFO

5.3 Numeric Operation Instructions

5.3.7 Divide (DIV (÷))

5-34

5.3.7 Divide (DIV (÷))

(1) Operation

Input data A is divided by input data B and the result is stored in the output data.

(2) Format

∗ C and # registers cannot be used.

Input data A Output dataInput data B÷

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input data A (SrcA) × ×
Input data B (SrcB) × ×
Output data (Dest) × * * * × ×

Input data B Output data

Input data A

Icon:

Key entry: /

5.3 Numeric Operation Instructions

5.3.7 Divide (DIV (÷))

5-35

In
st

ru
ct

io
ns

5

(3) Programming Examples

In the following programming examples, input data A is divided by input data B and the result is stored in the output
data.

• Storing the Output Data in MW00000 When Input Data A Is 200 and Input Data B Is 100
200 ÷ 100 → MW00000 = 2

• Storing the Output Data in ML00000 When Input Data A Is 200 and Input Data B Is 1,000
200 ÷ 1,000 → ML00000 = 0

• Storing the Output Data in MF00000 When Input Data A Is 200 and Input Data B Is 1,000
200 ÷ 1,000 → MF00000 = 0.2

When performing operations with different data types, the result of the operation will depend on the data type of the output reg-
ister.
Refer to 4.4.2 (3) Precautions When Using Local Registers within a User Function for details.
Normally, addition and subtraction instructions (+, –, ++, and – –) involving double-length integers are performed as 32-bit
operations.
However, these instructions are performed as 64-bit operations if they are used to correct the remainder produced by an immedi-
ately preceding MUL instruction (×) and are immediately followed by a DIV instruction (÷).

INFO

5.3 Numeric Operation Instructions

5.3.8 Integer Remainder (MOD)

5-36

5.3.8 Integer Remainder (MOD)

(1) Operation

The remainder of the immediately preceding integer or double-length integer division is stored in the output data. The
MOD instruction must be executed immediately after the DIV instruction. If the MOD instruction is executed at any
other time, the operation result obtained before the next numeric operation instruction will be invalid.

(2) Format

∗ C and # registers cannot be used.

Output data

Division of an integer or double-length integer

Execute MOD instruction immediately after a division.

Parameter Name
Applicable Data Types

B W L F A Index Constant
Output data (Dest) × * * × × ×

Output data

Icon:

Key entry: MOD

5.3 Numeric Operation Instructions

5.3.8 Integer Remainder (MOD)

5-37

In
st

ru
ct

io
ns

5

(3) Programming Examples

In the following programming examples, input data A is divided by input data B and the remainder is stored in the out-
put data.

• If the Immediately Preceding Division Is as Follows: 12,345 ÷ 123 → MW00000 = 100
And then the MOD instruction is executed immediately afterward → MW00001 = 45.

• If the Immediately Preceding Division Is as Follows: 123,456,789 ÷ 12,345 → ML00000 = 10,000
And then the MOD instruction is executed immediately afterward → ML00002 = 6,789

When performing operations with different data types, the result of the operation will depend on the data type of the output reg-
ister.
Refer to 4.4.2 (3) Precautions When Using Local Registers within a User Function for details.

INFO

5.3 Numeric Operation Instructions

5.3.9 Real Remainder (REM)

5-38

5.3.9 Real Remainder (REM)

(1) Operation

The remainder from a real number division is stored in the output data. Here, the remainder refers to the remainder
obtained by repeatedly subtracting the base value from the input data.
Specifically, the value obtained by subtracting the base value from the input data n number of times (input data - base
value × n) is output when it becomes less than the base value.

Condition n

The output data is computed by using the first value of n that satisfies the following formula when the value of n is
incremented from 0, 1, 2, 3, etc.
(Input data – Base value × n) < Base value

(2) Format

∗ C and # registers cannot be used.

Input data Output dataBase value− × n

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input data (Src) × × × × ×
Base (Base) × × × × ×
Output data (Dest) × × × * × ×

Base value Output data

Input data

Icon:

Key entry: REM

5.3 Numeric Operation Instructions

5.3.9 Real Remainder (REM)

5-39

In
st

ru
ct

io
ns

5

(3) Programming Examples

In the following programming examples, the base value is subtracted from the input data n times and the remainder is
stored in the output data.

• Storing the Output Data in MF00000 When the Input Data Is 5.0 and the Base Value Is 2.0
5.0 – 2.0 – 2.0 = 1.0 < Base (2.0) → MF00000 = 1.0

• Storing the Output Data in MF00000 When the Input Data Is 3000.0 and the Base Value Is 3.0
3,000.0 – 3.0 – 3.0 ... = 0.0 < Base (3.0) → MF00000 = 0.0

5.3 Numeric Operation Instructions

5.3.10 Increment (INC)

5-40

5.3.10 Increment (INC)

(1) Operation

A value of 1 is added to the integer or double-length integer data. No overflow or underflow will occur for either an
integer or double-length integer. This operation handles overflows and underflows in the same way as the ADDX
instruction.

Output Data Behavior

In the example shown above, the data is an integer. With double-length integers, adding 1 to 2,147,483,647
(7FFFFFFF hex) results in -2,147,483,648(80000000 hex).

(2) Format

∗ C and # registers cannot be used.

Data Data+1

0

+1

32,767

-32,768

+1

1
2

…

Data

32,767 (7FFF hex)

-32,768 (8000 hex)

Parameter Name
Applicable Data Types

B W L F A Index Constant
Data (Dest) × * * × × ×

Data

Icon:

Key entry: INC

5.3 Numeric Operation Instructions

5.3.10 Increment (INC)

5-41

In
st

ru
ct

io
ns

5

(3) Programming Examples

The following programming examples achieve the same result by using the INC instruction and by using the ADDX
instruction.
The INC instruction is equivalent to adding 1 to the data 1,000 in MW00000 using the ADDX instruction.

Equivalent

5.3 Numeric Operation Instructions

5.3.11 Decrement (DEC)

5-42

5.3.11 Decrement (DEC)

(1) Operation

A value of 1 is subtracted from the integer or double-length integer data. No overflow or underflow will occur for
either an integer or double-length integer. This operation handles overflows and underflows in the same way as the
SUBX instruction.

Output Data Behavior

In the example shown above, the data is an integer. With double-length integers, subtracting 1 from
-2,147,483,648 (80000000 hex) results in 2,147,483,647(7FFFFFFF hex).

(2) Format

∗ C and # registers cannot be used.

Data Data− 1

Data
0

-1

32,767

-32,768

-1

-1
-2

…

32,767 (7FFF hex)

-32,768 (8000 hex)

Parameter Name
Applicable Data Types

B W L F A Index Constant
Data (Dest) × * * × × ×

Data

Icon:

Key entry: DEC

5.3 Numeric Operation Instructions

5.3.11 Decrement (DEC)

5-43

In
st

ru
ct

io
ns

5

(3) Programming Examples

The following programming examples achieve the same result by using the DEC instruction and by using the SUBX
instruction.
The DEC instruction is equivalent to subtracting 1 from the data 1,000 in MW00000 using the SUBX instruction.

Equivalent

5.3 Numeric Operation Instructions

5.3.12 Add Time (TMADD)

5-44

5.3.12 Add Time (TMADD)

(1) Operation

A duration (hours/minutes/seconds) is added to a time (hour/minutes/seconds). The add time is added to time data A
and the result is stored in time data A. Time data is two words long.

(2) Format

∗ 1. Optional.
∗ 2. C and # registers cannot be used.

The time data is formatted as shown below.

If the operation result exceeds any of the data ranges given above, time data A is not updated, the seconds data is set to
9,999, and the status bit is set to 1 (ON).
If the operation result is within the ranges, the status bit is set to 0 (OFF).

Time data A
+

Hour Minutes Seconds

Add time

Hours Minutes Seconds

Time data A

Hour Minutes Seconds

2 words 2 words 2 words

Status

Time data A

Add time

Icon:

Key entry: TMADD

Parameter Name
Applicable Data Types

B W L F A Index Constant
Add time (Src) × *2 × × × × ×

Time data A (Dest) × *2 × × × × ×

Status (Sts)*1 *2 × × × × × ×

Offset Contents Data Range (BCD)

0 Hour/minutes Upper byte (hour): 00 to 23
Lower byte (minutes): 00 to 59

1 Seconds 0000 to 0059

5.3 Numeric Operation Instructions

5.3.12 Add Time (TMADD)

5-45

In
st

ru
ct

io
ns

5

(3) Programming Example

The following table gives typical conditions for creating ladder programming that uses the TMADD instruction. The
examples show time data A before instruction execution, and the add time.

In the following programming example, the time data is added to the time under the above conditions and the resulting
time data is stored.

The result of adding the add time to the value of time data A before instruction execution is shown below.

Time Time Data A before Execution of Instruction Add Time

Hour/minutes
MW00000 = 0210 hex

(2:10)
MW00002 = 0050 hex
(0 hours 50 minutes)

Seconds
MW00001 = 0050 hex

(50 seconds)
MW00003 = 0020 hex

(20 seconds)

Time Time Data A after Execution of Instruction

Hour/minutes
MW00000 = 769 = 0301 hex

(3:01)

Seconds
MW00001 = 16 = 0010 hex

(10 seconds)

5.3 Numeric Operation Instructions

5.3.13 Subtract Time (TMSUB)

5-46

5.3.13 Subtract Time (TMSUB)

(1) Operation

A duration (hours/minutes/seconds) is subtracted from a time (hour/minutes/seconds). The subtract time is subtracted
from time data A and the result is stored in time data A. Time data is two words long.

(2) Format

∗ 1. Optional.
∗ 2. C and # registers cannot be used.

The time data is formatted as shown below.

If the operation result exceeds any of the data ranges given above, time data A is not updated, the seconds data is set to
9,999, and the status bit is set to 1 (ON).
If the operation result is within the ranges, the status bit is set to 0 (OFF).

Time data A
−

Hour Minutes Seconds

Subtract time

Hour Minutes Seconds

Time data A

Hour Minutes Seconds

2 words 2 words 2 words

Parameter Name
Applicable Data Types

B W L F A Index Constant
Subtract time (Src) × *2 × × × × ×

Time data A (Dest) × *2 × × × × ×

Status (Sts)*1 *2 × × × × × ×

Offset Contents Data Range (BCD)

0 Hour/minutes
Upper byte (hour): 00 to 23

Lower byte (minutes): 00 to 59
1 Seconds 0000 to 0059

Status

Time data A

Subtract time

Icon:

Key entry: TMSUB

5.3 Numeric Operation Instructions

5.3.13 Subtract Time (TMSUB)

5-47

In
st

ru
ct

io
ns

5

(3) Programming Example

The following table gives typical conditions for creating ladder programming that uses the TMSUB instruction. The
examples show time data A before instruction execution, and the subtract time.

In the following programming example, the subtract time is subtracted from the time under the above conditions and
the resulting time data is stored.

The result of subtracting the subtract time from the value of time data A before instruction execution is shown below.

Time Time Data A before Execution of Instruction Subtract Time

Hour/minutes
MW00000 = 0210 hex

(2:10)
MW00002 = 0050 hex
(0 hours 50 minutes)

Seconds
MW00001 = 0050 hex

(50 seconds)
MW00003 = 0020 hex

(20 seconds)

Time Time Data A after Execution of Instruction

Hour/minutes
MW00000 = 288 = 0120 hex

(1:20)

Seconds
MW00001 = 48 = 0030 hex

(30 seconds)

5.3 Numeric Operation Instructions

5.3.14 Spend Time (SPEND)

5-48

5.3.14 Spend Time (SPEND)

(1) Operation

The elapsed time is calculated by subtracting two data items (year/month/day/hour/minutes/seconds). The instruction
subtracts time B from time A, which gives the time elapsed from time B to time A and the result is stored in time A.
Time data is four words long.

(2) Format

∗ 1. Optional.
∗ 2. C and # registers cannot be used.

Time A
−

Year Month Hour/minutes/
seconds

Time B

Year Month Hour/minutes/
seconds

6 words 4 words

The time elapsed from time B to time A is calculated.

Total number
of seconds

Time A

Years Months
Hours/minutes/

seconds

6 words

Total number
of seconds

Parameter Name
Applicable Data Types

B W L F A Index Constant
Time B (Src) × *2 × × × × ×

Time A (Dest) × *2 × × × × ×

Status (Sts)*1 *2 × × × × × ×

Status

Time A

Time B

Icon:

Key entry: SPEND

5.3 Numeric Operation Instructions

5.3.14 Spend Time (SPEND)

5-49

In
st

ru
ct

io
ns

5

Time data B is formatted as shown below.

Time data A is formatted as shown below.

If the operation result exceeds any of the data ranges given above, time data A is not updated, the seconds data is set to
9,999, and the status bit is set to 1 (ON).
If the operation result is within the ranges, the status bit is set to 0 (OFF).

A year is calculated as 365 days. Leap years are not supported.
The number of months is not calculated. Only the number of days is calculated.

(3) Programming Example

The following table gives typical conditions for creating ladder programming that uses the SPEND instruction.
(The elapsed time between November 20, 2010, 02:10:50 and October 10, 2009, 00:50:20 is found.)

Offset Contents Data Range (BCD) I/O
0 Year (BCD) 0000 to 0099 IN

1 Month/day (BCD) Upper byte (month): 01 to 12
Lower byte (day): 01 to 31

IN

2 Hour/minutes (BCD) Upper byte (hour): 00 to 23
Lower byte (minutes): 00 to 59

IN

3 Seconds (BCD) 0000 to 0059 IN

Offset Contents Data Range (BCD) I/O
0 Year (BCD) 0000 to 0099 IN/OUT

1 Month/day (BCD) Upper byte (month): 01 to 12
Lower byte (day): 01 to 31

IN/OUT

2 Hour/minutes (BCD) Upper byte (hour): 00 to 23
Lower byte (minutes): 00 to 59

IN/OUT

3 Seconds (BCD) 0000 to 0059 IN/OUT
4

Total number of seconds
Operation result of years, months, days,
hours, minutes, and seconds converted
into seconds (double-length integer)

IN/OUT
5

INFO

Time A before Execution of Instruction Time B

Year
MW00000 = 0010 hex

(2010)
MW00006 = 0009 hex

(2009)

Month/day
MW00001 = 1120 hex

(November 20)
MW00007 = 1010 hex

(October 10)

Hour/minutes
MW0002 = 0210 hex

(2:10)
MW00008 = 0050 hex

(0:50)

Seconds
MW00003 = 0050 hex

(50 seconds)
MW00009 = 0020 hex

(20 seconds)

5.3 Numeric Operation Instructions

5.3.14 Spend Time (SPEND)

5-50

The execution result of this SPEND instruction example is shown below.

Time A after Execution of Instruction

Years
MW00000 = 1 = 0001 hex

(1 year)

Months/days
MW00001 = 65 = 0041 hex

(0 months, 41 days)

Hours/minutes
MW00002 = 288 = 0120 hex

(1 hour, 20 minutes)

Seconds
MW00003 = 48 = 0030 hex

(30 seconds)
Total number of seconds ML00004 = 35083230

5.3 Numeric Operation Instructions

5.3.15 Invert Sign (INV)

5-51

In
st

ru
ct

io
ns

5

5.3.15 Invert Sign (INV)

(1) Operation

The sign of the input data is inverted and the result is stored in the output data.

(2) Format

∗ C and # registers cannot be used.

(3) Programming Example

In the following programming example, the INV instruction inverts the sign of 12,345 in input data A in MW00000
and stores the result in the output data in ML00002.
-1 × MW00000 (12,345) → ML00002 = -12,345

When performing operations with different data types, the result of the operation will depend on the data type of the output reg-
ister.
Refer to 4.4.2 (3) Precautions When Using Local Registers within a User Function for details.

Output dataInput data-1 ×

Input data Output data

Icon:

Key entry: INV

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input data (Src) × ×
Output data (Dest) × * * * × ×

INFO

5.3 Numeric Operation Instructions

5.3.16 One’s Complement (COM)

5-52

5.3.16 One’s Complement (COM)

(1) Operation

The one’s complement of the input data is stored in the output data.

This instruction inverts the 0’s and 1’s in the binary representation of the input data and stores the result in the
output data.

(2) Format

∗ C and # registers cannot be used.

(3) Programming Example

In the following programming example, the one’s complement of -3,856 (F0F0 hex) in the input data in MW00000 is
stored in the output data in MW00001.
MW00000 = -3,856 (F0F0 hex) → MW00001 = 3,855 (0F0F hex)

When performing operations with different data types, the result of the operation will depend on the data type of the output reg-
ister.
Refer to 4.4.2 (3) Precautions When Using Local Registers within a User Function for details.

Output dataInput data
One’s complement

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input data (Src) × × ×
Output data (Dest) × * * × × ×

Input data Output data

Icon:

Key entry: COM

INFO

5.3 Numeric Operation Instructions

5.3.17 Absolute Value (ABS)

5-53

In
st

ru
ct

io
ns

5

5.3.17 Absolute Value (ABS)

(1) Operation

The absolute value of the input data is stored in the output data.

(2) Format

∗ C and # registers cannot be used.

(3) Programming Example

In the following programming example, the absolute value of -123.45 in the input data in MF00000 is stored in the out-
put data in MF00002.
| MF00000(-123.45) | → MF00002 = 123.45

When performing operations with different data types, the result of the operation will depend on the data type of the output reg-
ister.
Refer to 4.4.2 (3) Precautions When Using Local Registers within a User Function for details.

Output dataInput data
Absolute value

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input data (Src) × ×
Output data (Dest) × * * * × ×

Input data Output data

Icon:

Key entry: ABS

INFO

5.3 Numeric Operation Instructions

5.3.18 Binary Conversion (BIN)

5-54

5.3.18 Binary Conversion (BIN)

(1) Operation

The value of the input data is converted from BCD data to binary data and stored in the output data.
If the input data is not BCD data, such as 123F hex, the result of the binary conversion will be incorrect.

(2) Format

∗ C and # registers cannot be used.

(3) Programming Example

In the following programming example, the value 4,660 (1234 hex) in input data A in MW00000 is converted to binary
and stored in the output data in MW00001.
MW00000 = 1234 hex: (1 × 1,000) + (2 × 100) + (3 × 10) + 4 → MW00001 = 1,234

When performing operations with different data types, the result of the operation will depend on the data type of the output reg-
ister.
Refer to 4.4.2 (3) Precautions When Using Local Registers within a User Function for details.

Output dataInput data
Converted to binary.

The output data is computed as shown below when the input BCD data is abcd.
Output data = (a × 1,000) + (b × 100) + (c × 10) + d

Input data Output data

Icon:

Key entry: BIN

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input data (Src) × × ×
Output data (Dest) × * * × × ×

INFO

5.3 Numeric Operation Instructions

5.3.19 BCD Conversion (BCD)

5-55

In
st

ru
ct

io
ns

5

5.3.19 BCD Conversion (BCD)

(1) Operation

The input data is converted from binary data to BCD data and stored in the output data.
If the input data is greater than 9,999, or a negative value, the result will be incorrect.

(2) Format

∗ C and # registers cannot be used.

(3) Programming Example

In the following programming example, the value 1,234 in input data A in MW00000 is converted to BCD and stored
in the output data in MW00001.
MW00000 = 1,234: (1 × 4,096) + (2 × 256) + (3 × 16) + 4 → MW00001 = 4,660 (1234 hex)

When performing operations with different data types, the result of the operation will depend on the data type of the output reg-
ister.
Refer to 4.4.2 (3) Precautions When Using Local Registers within a User Function for details.

Output dataInput data
Converted to BCD.

The output data is computed as shown below when the input decimal data is abcd.
Output data = (a × 49) + (b × 256) + (c × 16) + d

Input data Output data

Icon:

Key entry: BCD

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input data (Src) × × ×
Output data (Dest) × * * × × ×

INFO

5.3 Numeric Operation Instructions

5.3.20 Parity Conversion (PARITY)

5-56

5.3.20 Parity Conversion (PARITY)

(1) Operation

The number of bits set to 1 (ON) in the input data is calculated in binary notation and stored in the output data.

(2) Format

∗ C and # registers cannot be used.

(3) Programming Example

In the following programming example, the number of bits set to 1 (ON) in 255 (00FF hex) in the input data A in
MW00000 is stored in the output data in MW00001.
Number of 1 bits in MW00000 (0FF hex) = 8 → MW00001 = 8

When performing operations with different data types, the result of the operation will depend on the data type of the output reg-
ister.
Refer to 4.4.2 (3) Precautions When Using Local Registers within a User Function for details.

Output dataInput data

Number of 1 (ON) bits in binary
notation of input data

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input data (Src) × × ×
Output data (Dest) × * * × × ×

Input data Output data

Icon:

Key entry: PARITY

INFO

5.3 Numeric Operation Instructions

5.3.21 ASCII Conversion 1 (ASCII)

5-57

In
st

ru
ct

io
ns

5

5.3.21 ASCII Conversion 1 (ASCII)

(1) Operation

The input text string is converted to ASCII and stored in the output data. The text string is case sensitive.
The input text string can contain up to 32 characters (16 words).

Storage Location of ASCII Values for Input Text String

If the text string contains an odd number of characters, the upper byte of the last word is set to zeros.

(2) Format

∗ 1. ASCII text
∗ 2. C and # registers cannot be used.

Output dataInput text string

Converted to ASCII.

C B A

Lower byte

Upper byte

Lower byte

Upper byte

1st word in
output data

2nd word in
output data

1st
character

2nd
character

3rd
character

'A'

0

'B'

'C'

Input text string Output data

Icon:

Key entry: ASCII

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input text string (Src) ×*1

Output data (Dest) × *2 × × × × ×

5.3 Numeric Operation Instructions

5.3.21 ASCII Conversion 1 (ASCII)

5-58

(3) Programming Example

In the following programming example, the input string “Hello” is converted to ASCII and stored in the output data in
MW00000.

The ASCII values are stored as given in the following table.

Address ASCII Value Character
MW00000 (lower byte) 48 hex H
MW00000 (upper byte) 65 hex e
MW00001 (lower byte) 6C hex l
MW00001 (upper byte) 6C hex l
MW00002 (lower byte) 6F hex o
MW00002 (upper byte) 0 -

5.3 Numeric Operation Instructions

5.3.22 ASCII Conversion 2 (BINASC)

5-59

In
st

ru
ct

io
ns

5

5.3.22 ASCII Conversion 2 (BINASC)

(1) Operation

The 16-bit binary data stored in the 1-word input data is converted to four-digit hexadecimal ASCII and stored in the 2-
word output data.

Storage Location of ASCII Values for Input Data of 10,811(2A3B hex)

(2) Format

∗ C and # registers cannot be used.

Output dataInput data

Converted to hexadecimal
notation.

4-digit text string
(0 to 9 and A to F)

Converted
to ASCII.

3 A 2

Lower byte

Upper byte

Lower byte

Upper byte

1st word in
output data

2nd word in
output data

1st
character

4th
character

'2'

'A'

'3'

B

'B'

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input data (Src) × × × × ×
Output data (Dest) × * × × × × ×

Input data Output data

Icon:

Key entry: BINASC

5.3 Numeric Operation Instructions

5.3.22 ASCII Conversion 2 (BINASC)

5-60

(3) Programming Example

In the following programming example, 10,811 (2A3B hex) in the input data is converted to ASCII and stored in the
output data in MW00000.

The ASCII values are stored as given in the following table.

Address ASCII Value Character
MW00000 (lower byte) 32 hex 2
MW00000 (upper byte) 41 hex A
MW00001 (lower byte) 33 hex 3
MW00001 (upper byte) 42 hex B

5.3 Numeric Operation Instructions

5.3.23 ASCII Conversion 3 (ASCBIN)

5-61

In
st

ru
ct

io
ns

5

5.3.23 ASCII Conversion 3 (ASCBIN)

(1) Operation

The value given in 4-digit hexadecimal ASCII and stored in the 2-word input data is converted to 16-bit binary data
and stored in 1-word output data.

Output Data When First Word of Input Data Is 4132 Hex (‘2’ ‘A’) and Second Word Is 4232 Hex
(‘3’ ‘B’)

(2) Format

∗ C and # registers cannot be used.

Output dataInput data

ASCII converted
to binary data.

2A3B

1st word in
input data

2nd word in
input data

Hexadecimal notation

Output data (1 word)

Lower byte ‘A’

Upper byte ‘2’

Lower byte ‘B’

Upper byte ‘3’

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input data (Src) × × × × ×
Output data (Dest) × * × × × × ×

Input data Output data

Icon:

Key entry: ASCBIN

5.3 Numeric Operation Instructions

5.3.23 ASCII Conversion 3 (ASCBIN)

5-62

(3) Programming Example

In the following programming example, the ASCBIN instruction is used to store the input data in MW00000 in the out-
put data in MW00002.

The ASCII values are stored as given in the following table.

The output data in MW00000 is set to 10,811 (2A3B hex).

Address ASCII Value Character
MW00000 (lower byte) 32 hex 2
MW00000 (upper byte) 41 hex A
MW00001 (lower byte) 33 hex B
MW00001 (upper byte) 42 hex 3

5.4 Logic Operations and Comparison Instructions

5.4.1 Inclusive AND (AND)

5-63

In
st

ru
ct

io
ns

5

5.4 Logic Operations and Comparison Instructions
5.4.1 Inclusive AND (AND)

(1) Operation

The AND instruction performs a logical AND operation on input data A and input data B and the result is stored in the
output data.
This instruction can be used only with integer or double-length integer data.

Each bit in the input data is evaluated as shown in the following truth table.

(2) Format

∗ C and # registers cannot be used.

Input data A Input data B Output data
0 0 0
0 1 0
1 0 0
1 1 1

Input data A Output dataInput data BInclusive AND
(AND)

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input data A (SrcA) × ×
Input data B (SrcB) × ×
Output data (Dest) × * * * × ×

Input data A Input data B Output data

Icon:

Key entry: &

5.4 Logic Operations and Comparison Instructions

5.4.1 Inclusive AND (AND)

5-64

(3) Programming Example

In the following programming example, a logical AND is performed on 12,345 (3039 hex) in input data A in
MW00000 and 3,855 (0F0F hex) in input data B in MW00001, and the result is stored in the output data in DW00000.

0

Bit 0Bit 7Bit F Bit 3Bit B Bit 4Bit 8Bit C

MW00000 :
12,345 (3039 hex) 0 1 1 0 0 0 0 0 0 1 1 1 0 0 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

MW00001 :
3,855 (0F0F hex)

DW00000 :
 9 (0009 hex)

MW00000 & MW00001 → DW00000

5.4 Logic Operations and Comparison Instructions

5.4.2 Inclusive OR (OR)

5-65

In
st

ru
ct

io
ns

5

5.4.2 Inclusive OR (OR)

(1) Operation

The OR instruction performs a logical OR operation on input data A and input data B and the result is stored in the out-
put data.
This instruction can be used only with integer or double-length integer data.

Each bit in the input data is evaluated as shown in the following truth table.

(2) Format

∗ C and # registers cannot be used.

Input data A Input data B Output data
0 0 0
0 1 1
1 0 1
1 1 1

Input data A Output dataInput data BInclusive OR
(OR)

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input data A (SrcA) × ×
Input data B (SrcB) × ×
Output data (Dest) × * * * × ×

Input data A Input data B Output data

Icon:

Key entry: |

5.4 Logic Operations and Comparison Instructions

5.4.2 Inclusive OR (OR)

5-66

(3) Programming Example

In the following programming example, a logical OR is performed on 12,345 (3039 hex) in input data A in MW00000
and 3,855 (0F0F hex) in input data B in MW00001, and the result is stored in the output data in DW00000.

0

Bit 0Bit 7Bit F Bit 3Bit B Bit 4Bit 8Bit C

MW00000 :
12,345 (3039 hex) 0 1 1 0 0 0 0 0 0 1 1 1 0 0 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1

MW00001 :
3,855 (0F0F hex)

DW00000 :
16,191 (3F3F hex)

MW00000 | MW00001 → DW00000

5.4 Logic Operations and Comparison Instructions

5.4.3 Exclusive OR (XOR)

5-67

In
st

ru
ct

io
ns

5

5.4.3 Exclusive OR (XOR)

(1) Operation

The XOR instruction performs an exclusive logical OR operation on input data A and input data B and the result is
stored in the output data.
This instruction can be used only with integer or double-length integer data.

Each bit in the input data is evaluated as shown in the following truth table.

(2) Format

∗ C and # registers cannot be used.

Input data A Input data B Output data
0 0 0
0 1 1
1 0 1
1 1 0

Input data A Output dataInput data BExclusive OR
(XOR)

Input data A Input data B Output data

Icon:

Key entry: ^

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input data A (SrcA) × ×
Input data B (SrcB) × ×
Output data (Dest) × * * * × ×

5.4 Logic Operations and Comparison Instructions

5.4.3 Exclusive OR (XOR)

5-68

(3) Programming Example

In the following programming example, an exclusive logical OR is performed on 12,345 (3039 hex) in input data A in
MW00000 and 3,855 (0F0F hex) in input data B in MW00001, and the result is stored in the output data in DW00000.

0

Bit 0Bit 7Bit F Bit 3Bit B Bit 4Bit 8Bit C

MW00000 :
12,345 (3039 hex) 0 1 1 0 0 0 0 0 0 1 1 1 0 0 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 1 1 1 1 1 1 0 0 1 1 0 1 1 0

MW00001 :
3,855 (0F0F hex)

DW00000 :
16,182 (3F36 hex)

MW00000 ^ MW00001 → DW00000

5.4 Logic Operations and Comparison Instructions

5.4.4 Less Than (<)

5-69

In
st

ru
ct

io
ns

5

5.4.4 Less Than (<)

(1) Operation

Input data A and input data B are compared and the result is stored in the bit output.

(2) Format

(3) Programming Example

In the following programming example, the INC instruction on the right end of the line is executed because the com-
parison is true and turns the output ON; that is, input data A is less than input data B when input data A in MW00000 is
90 and input data B is 100.

With real number data, the value displayed by the MPE720 may not match the execution result of the comparison instruction
due to a slight precision error.

Input data A
TRUE: Output ON

FALSE: Output OFF
Input data B<

Compared.

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input data A (SrcA) × ×
Input data B (SrcB) × ×

Input data AInput data B

Icon:

Key entry: <

INFO

5.4 Logic Operations and Comparison Instructions

5.4.5 Less Than or Equal (≤)

5-70

5.4.5 Less Than or Equal (≤)

(1) Operation

Input data A and input data B are compared and the result is stored in the bit output.

(2) Format

(3) Programming Example

In the following programming example, the INC instruction on the right end of the line is not executed because the
comparison is false and turns the output OFF; that is, input data A is not less than or equal to input data B when input
data A in MW00000 is 101 and input data B is 100.

With real number data, the value displayed by the MPE720 may not match the execution result of the comparison instruction
due to a slight precision error.

Input data A
TRUE: Output ON

FALSE: Output OFF
Input data B≤

Compared.

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input data A (SrcA) × ×
Input data B (SrcB) × ×

Input data AInput data B

Icon:

Key entry: <=

INFO

5.4 Logic Operations and Comparison Instructions

5.4.6 Equal (=)

5-71

In
st

ru
ct

io
ns

5

5.4.6 Equal (=)

(1) Operation

Input data A and input data B are compared and the result is stored in the bit output.

(2) Format

(3) Programming Example

In the following programming example, the INC instruction on the right end of the line is executed because the com-
parison is true and turns the output ON; that is, input data A is equal to input data B when input data A in MW00000 is
100 and input data B is 100.

With real number data, the value displayed by the MPE720 may not match the execution result of the comparison instruction
due to a slight precision error.

Input data A
TRUE: Output ON

FALSE: Output OFF
Input data B=

Compared.

Input data AInput data B

Icon:

Key entry: =

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input data A (SrcA) × ×
Input data B (SrcB) × ×

INFO

5.4 Logic Operations and Comparison Instructions

5.4.7 Not Equal (≠)

5-72

5.4.7 Not Equal (≠)

(1) Operation

Input data A and input data B are compared and the result is stored in the bit output.

(2) Format

(3) Programming Example

In the following programming example, the INC instruction on the right end of the line is not executed because the
comparison is false and turns the output OFF; that is, input data A is equal to input data B when input data A in
MW00000 is 100 and input data B is 100.

With real number data, the value displayed by the MPE720 may not match the execution result of the comparison instruction
due to a slight precision error.

Input data A
TRUE: Output ON

FALSE: Output OFF
Input data B≠

Compared.

Input data AInput data B

Icon:

Key entry: <>

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input data A (SrcA) × ×
Input data B (SrcB) × ×

INFO

5.4 Logic Operations and Comparison Instructions

5.4.8 Greater Than or Equal (≥)

5-73

In
st

ru
ct

io
ns

5

5.4.8 Greater Than or Equal (≥)

(1) Operation

Input data A and input data B are compared and the result is stored in the bit output.

(2) Format

(3) Programming Example

In the following programming example, the INC instruction on the right end of the line is executed because the com-
parison is true and turns the output ON; that is, input data A is greater than or equal to input data B when input data A
in MW00000 is 100 and input data B is 100.

With real number data, the value displayed by the MPE720 may not match the execution result of the comparison instruction
due to a slight precision error.

Input data A
TRUE: Output ON

FALSE: Output OFF
Input data B≥

Compared.

Input data AInput data B

Icon:

Key entry: >=

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input data A (SrcA) × ×
Input data B (SrcB) × ×

INFO

5.4 Logic Operations and Comparison Instructions

5.4.9 Greater Than (>)

5-74

5.4.9 Greater Than (>)

(1) Operation

Input data A and input data B are compared and the result is stored in the bit output.

(2) Format

(3) Programming Example

In the following programming example, the INC instruction on the right end of the line is not executed because the
comparison is false and turns the output OFF; that is, input data A is not greater than input data B when input data A in
MW00000 is 100 and input data B is 100.

With real number data, the value displayed by the MPE720 may not match the execution result of the comparison instruction
due to a slight precision error.

Input data A
TRUE: Output ON

FALSE: Output OFF
Input data B>

Compared.

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input data A (SrcA) × ×
Input data B (SrcB) × ×

Input data AInput data B

Icon:

Key entry: >

INFO

5.4 Logic Operations and Comparison Instructions

5.4.10 Range Check (RCHK)

5-75

In
st

ru
ct

io
ns

5

5.4.10 Range Check (RCHK)

(1) Operation

The RCHK instruction checks to see if the input data is between the upper limit and lower limit and the result is stored
in the bit output.

[a] Bit Output = ON

The bit output is turned ON if the value of the input data is within the range that is greater than or equal to the lower
limit, and less than or equal to the upper limit.

[b] Bit Output = OFF

The bit output is turned OFF if the value of the input data is outside the range that is greater than or equal to the lower
limit, and less than or equal to the upper limit.

(2) Format

Always set the lower limit to a value that is less than or equal to the upper limit. If the lower limit is greater than the upper limit,
the result will be invalid.

Upper limit

Lower limit

Input data

Bit Output = OFF

Bit Output = ON

Bit output = OFF

Lower limit Upper limitInput data ≤≤

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input data (In) × ×
Lower limit (Lower) × ×
Upper limit (Upper) × ×

Input data

Lower limit

Upper limit

Icon:

Key entry: RCHK

INFO

5.4 Logic Operations and Comparison Instructions

5.4.10 Range Check (RCHK)

5-76

(3) Programming Examples

The following programming examples execute the RCHK instruction.
• When Input Data (MW00000) = 80, Lower Limit = 100, and Upper Limit = 1,000

The INC instruction on the right end of the line is not executed because the input data is less than the lower limit
and turns the bit output OFF.

• When Input Data (MW00000) = 500, Lower Limit = 100, and Upper Limit = 1,000
The INC instruction on the right end of the line is executed because the value of the input data is within the range
that is greater than or equal to the lower limit and less than or equal to the upper limit, which turns ON the bit
output.

• When Input Data (MW00000) = 1,000, Lower Limit = 100, and Upper Limit = 1,000
The INC instruction on the right end of the line is executed because the value of the input data is within the range
that is greater than or equal to the lower limit and less than or equal to the upper limit, which turns ON the bit
output.

5.5 Program Control Instructions

5.5.1 Call Sequence Program (SEE)

5-77

In
st

ru
ct

io
ns

5

5.5 Program Control Instructions
5.5.1 Call Sequence Program (SEE)

(1) Operation

The SEE instruction calls a child drawing from a parent drawing, or a grandchild drawing from a child drawing.

(2) Format

(3) Programming Example

In the following programming example, the SEE instruction calls drawing H01.02 when the MB000000 relay is ON.
Thereafter, the process is executed and execution resumes from the next step after the SEE instruction. The SEE
instruction does not call drawing H01.02 if the MB000000 relay is OFF.

Parent Drawing

Child Drawing

Program called.

SEE
instruction

Parameter Name Applicable Data Types

Program number (Name) Registers cannot be used. Specify the program number directly.
The name of the specified program appears above the instruction.

Program number

Program name Icon:

Key entry: SEE

5.5 Program Control Instructions

5.5.2 Call Motion Program (MSEE)

5-78

5.5.2 Call Motion Program (MSEE)

(1) Operation

The MSEE instruction calls the specified motion program.
Motion programs can be called only from H drawings.

(2) Format

∗ M or D register only.

Work Register Configuration

Specify the program number from 1 to 256.
For details on motion programs, refer to the Machine Controller MP2000 Series User’s Manual for Motion Programming (Man-
ual No.: SIEP C880700 38).

H Drawing

Motion Program

Motion program called.

MSEE
instruction

First work register address

Program number

Icon:

Key entry: MSEE

Parameter Name
Applicable Data Types

B W L F A Index Constant
Program number
(Program No.) × * × × × ×

First work register
address (Data) × × × × * × ×

Address Data
Type Name Description I/O

0 W Status Flags Motion program status flags OUT
1 W Control Signals Motion program control signals IN

2 W Interpolation Override

The override is used when executing interpolation instruc-
tions.
Range: 0 to 32,767
Unit: 1 = 0.01%

IN

3 W System Work Number This is the system work number that calls the motion pro-
gram.

IN

INFO

5.5 Program Control Instructions

5.5.2 Call Motion Program (MSEE)

5-79

In
st

ru
ct

io
ns

5

(3) Programming Examples

The following programming examples show how to execute the motion program MPM001 with program number 1.
When the IB00000 relay turns ON, the Request for Start of Program Operation (DB000010) in the control signals turns
ON and executes the MPM001 motion program.

• Direct Designation
The program number is directly set to 1.

• Indirect Designation
The program number is set in MW00000.

Continue execution of the MSEE instruction until execution of the motion program is completed.
When using indirect designation, do not change the register value until the execution of the motion program is
completed.

IMPORTANT

5.5 Program Control Instructions

5.5.3 Call User Function (FUNC)

5-80

5.5.3 Call User Function (FUNC)

(1) Operation

The FUNC instruction calls a user function. The user function must be defined before it can be called.
Refer to 4.3 User Functions for details on user functions.

(2) Format

(3) Programming Example

Refer to 4.3 User Functions for programming examples for user functions.

Ladder Drawing

User Function

User function
called.

FUNC
instruction

Parameter Name Applicable Data Types

Program number (Name) Registers cannot be used. Specify the program number directly.
The name of the specified program appears above the instruction.

Function input The register that is set in the function’s input definition can be used.
Function output The register that is set in the function’s output definition can be used.

Function input

Program name

Function output

Program number

Icon:

Key entry: FUNC

5.5 Program Control Instructions

5.5.4 Direct Input String (INS)

5-81

In
st

ru
ct

io
ns

5

5.5.4 Direct Input String (INS)

(1) Operation

The INS instruction is executed in user programs to input data independently from the I/O batch processing that is per-
formed by the system at the start of the high-speed and low-speed scans. When the INS instruction is executed, the
inputs from the specified Module are processed according to the settings in a parameter table. The next instruction is
not executed until input processing is completed.
The following Modules can be specified.

• CPU Module (IO)
• LIO-01/02 Module (LIO)
• LIO-04/05 Module (LIO32)
• LIO-06 Module (MIXIO)
• AI-01 Module (AI)

(2) Format

∗ 1. C and # registers cannot be used.
∗ 2. Optional.

Batch
outputs

Batch
inputs

Start of scan
Processing
of drawings

Remaining
processing
of drawings

Inputs

INS instruction

Normally, the outputs and inputs
are processed at once for each
Module at the start of the
high-speed and low-speed scans.

These inputs are input from the Module
specified in the INS instruction, separately
from the batch inputs. Processing of the
drawings stops until the inputs are processed.

First address of
parameter table

Status

Icon:

Key entry: INS

Parameter Name
Applicable Data Types

B W L F A Index Constant
First address of
parameter table (Prm) × × × × *1 × ×

Status (Sts)*2 *1 × × × × × ×

5.5 Program Control Instructions

5.5.4 Direct Input String (INS)

5-82

Parameter Table Configuration

The following table gives details about the parameters in the MP2000-series Controller.

∗ If a channel for which the allocation has been deleted in the AI Module detailed definition is specified for the INS
instruction, the applicable channel number is output for the bit. This is because it is not possible to read the data on
channels for which allocations have been deleted.
The relation between bits and channels is shown below.
Bit 0: Channel 1
Bit 1: Channel 2
Bit 2: Channel 3
Bit 3: Channel 4
Bit 4: Channel 5
Bit 5: Channel 6
Bit 6: Channel 7
Bit 7: Channel 8

Address Data
Type Symbol Name Specification I/O

0 W RSSEL Unit selection 1
Specify the Module to input from.

IN
1 W MDSEL Unit selection 2 IN

2 W STS Status Each bit receives the input status for one word.
0: Normal, 1: Error

OUT

3 W N Number of words Specify the number of continuous words. IN
4 W ID1 Input data 1

Receives the data that was input.
Contains 0 if an error occurs.

OUT
: : : : :

N + 3 W IDN Input data N OUT

Module Name

Parameter
CPU (IO) LIO-01/02 (LIO) LIO-04/05

(LIO32)
LIO-06
(MIXIO)

AI-01
(AI)

RSSEL

Specify the rack, slot, and subslot of the target Module.
Hexadecimal notation: zxyy hex
 x: Rack number from 1 to 4
 yy: Slot number from 0 to 9
 z: Subslot number from 1 to maximum value (determined by Module specifications)

MDSEL 0 (Not used.) 0 (Not used.) Offset: 0 or 1 Channel number
- 1: 0 or 1

Channel number
- 1: 0 to 7

STS Always 0. Always 0. Always 0. Always 0. *

N 1 1 1 or 2
– MDSEL

1 or 2
– MDSEL

1 to 8
– MDSEL

5.5 Program Control Instructions

5.5.4 Direct Input String (INS)

5-83

In
st

ru
ct

io
ns

5

(3) Programming Example

When one word is input from the LIO at subslot number 1 on the LIO-01 Module mounted in rack 1 and slot 2, the
input data of the LIO is stored in MW00014.

5.5 Program Control Instructions

5.5.5 Direct Output String (OUTS)

5-84

5.5.5 Direct Output String (OUTS)

(1) Operation

The OUTS instruction is executed in user programs to output data independently from the I/O batch processing that is
performed by the system at the start of the high-speed and low-speed scans. When the OUTS instruction is executed,
the outputs from the specified Module are processed according to the settings in the parameter table.

The following Modules can be specified.
• CPU Module (IO)
• LIO-01/02 (LIO)
• LIO-04/05 (LIO32)
• LIO-06 (MIXIO)
• DO-01 (DO)
• AO-01 (AO)

(2) Format

∗ 1. C and # registers cannot be used.
∗ 2. Optional.

Batch
outputs

Batch
inputs

Start of scan
Processing
of drawings

Remaining
processing
of drawings

Outputs

OUTS instruction

These outputs are sent to the Module specified
by the OUTS instruction, separately from the
batch outputs. Processing of the drawings
stops until the outputs are processed.

Normally, the outputs and inputs
are processed at once for each
Module at the start of the
high-speed and low-speed scans.

Parameter Name
Applicable Data Types

B W L F A Index Constant
First address of
parameter table (Prm) × × × × *1 × ×

Status (Sts)*2 *1 × × × × × ×

First address of
parameter table

Status

Icon:

Key entry: OUTS

5.5 Program Control Instructions

5.5.5 Direct Output String (OUTS)

5-85

In
st

ru
ct

io
ns

5

Parameter Table Configuration

The following table gives details about the parameters in the MP2000-series Controller.

∗ If a channel for which the allocation has been deleted in the AO Module detailed definition is specified for the OUTS
instruction, the applicable channel number is output for the bit. This is because it is not possible to read the data on
channels for which allocations have been deleted.
The relation between bits and channels is shown below.
Bit 0: Channel 1
Bit 1: Channel 2
Bit 2: Channel 3
Bit 3: Channel 4

Address Data
Type Symbol Name Specification I/O

0 W RSSEL Unit selection 1
Specify the Module to output to.

IN
1 W MDSEL Unit selection 2 IN

2 W STS Status Each bit receives the input status for one word.
0: Normal, 1: Error

OUT

3 W N Number of words Specify the number of output words (always 1). IN
4 W OD1 Output data 1

Specify the data to output.

OUT
: : : : :

N + 3 W ODN Output data N OUT

Module Name

Parameter

CPU
(IO)

LIO-01/02
(LIO)

LIO-04/05
(LIO32)

LIO-06
(MIXIO)

DO-01
(DO)

AO-01
(AO)

RSSEL

Specify the rack, slot, and subslot of the target Module.
Hexadecimal notation: zxyy hex
 x: Rack number from 1 to 4
 yy: Slot number from 0 to 9
 z: Subslot number from 1 to maximum value (determined by Module specifications)

MDSEL 0 (Not used.) 0 (Not used.) Offset: 0 or 1 Offset: 0 or 1 Offset: 0 to 3 Channel num-
ber - 1: 0 to 3

STS Always 0. Always 0. Always 0. Always 0. Always 0. *

N 1 1 1 or 2
– MDSEL

1 or 2
– MDSEL

1 to 4
– MDSEL

1 to 4
– MDSEL

5.5 Program Control Instructions

5.5.5 Direct Output String (OUTS)

5-86

(3) Programming Example

When one word is output to the LIO at subslot number 1 on the LIO-01 Module mounted in rack 1 and slot 2, the data
in MW00014 is output to LIO.

5.5 Program Control Instructions

5.5.6 Call Extended Program (XCALL)

5-87

In
st

ru
ct

io
ns

5

5.5.6 Call Extended Program (XCALL)

(1) Operation

An extended program (i.e., a table program, such as a constants table, an I/O conversion table, an interlock table, or a
part composition table) is executed. The MPE720 converts the extended program into a ladder program. Converted lad-
der programs can be executed with the XCALL instruction.
Although more than one XCALL instruction can be used in a single drawing, the same extended program cannot be
called more than once.

(2) Format

∗ I/O conversion tables, interlock tables, and part composition tables are not supported by MPE720 version 6.
Use MPE720 version 5 if you have created these types of tables.

(3) Programming Example

This example shows how to call an MCTBL constants table.

Ladder Drawing

Extended program

Extended program
called.

XCALL
instruction

Parameter Name Applicable Data Types

Program type (Name)

Registers cannot be used. Specify the following type.
• MCTBL: Constants table
• IOTBL: I/O conversion table*
• ILKTBL: Interlock table*
• ASMTBL: Part composition table*

Program type

Icon:

Key entry: XCALL

5.5 Program Control Instructions

5.5.7 WHILE Construct (WHILE, END_WHILE)

5-88

5.5.7 WHILE Construct (WHILE, END_WHILE)

(1) Operation

The programming between the WHILE and END_WHILE instructions are executed when the conditional expression
for the WHILE instruction is satisfied. After the last line is executed, program execution returns to the WHILE instruc-
tion. Execution of the programming is repeated for as long as the conditional expression is satisfied.
If the conditional expression is not satisfied, program execution jumps to the next step following the END_WHILE
instruction. None of the programming between the WHILE and END_WHILE instructions is executed.

∗ 1. The programming is executed and then execution returns to the WHILE instruction.
∗ 2. The programming is not executed and execution jumps to the next step.

(2) Format

∗ Write with the format for an EXPRESSION instruction.
Refer to Chapter D Format for EXPRESSION Instruction for details on the format used to write the expression.

WHILE instruction
<conditional_expression>

END_WHILE

Next step

Programming

Condition
satisfied?

Satisfied.*1

Not satisfied.*2

Parameter Name
Applicable Data Types

B W L F A Index Constant
Conditional expression * * * * × * *

Programming

Conditional expression

Icon:

Key entry: WHILE, WEND

5.5 Program Control Instructions

5.5.7 WHILE Construct (WHILE, END_WHILE)

5-89

In
st

ru
ct

io
ns

5

(3) Programming Example

In the following programming example, the registers from MW00100 to MW00105 are added together and stored in
the MW00000 register.
The conditional expression is I ≤ 5, so the ADD instruction is executed while I is 0 to 5.
The conditional expression is no longer satisfied when I is 6, so program execution jumps to the next step following the
END_WHILE instruction.

Execution of the programming is repeated for as long as the conditional expression for the WHILE instruction
is satisfied.
If the conditional expression never becomes unsatisfied, or if it takes too much time to become unsatisfied, the
Machine Controller system will shut down.
In the example given above, an endless loop would occur if the programming did not include the instruction
that increments I.

IMPORTANT

5.5 Program Control Instructions

5.5.7 WHILE Construct (WHILE, END_WHILE)

5-90

(4) Additional Information

[a] Applicable Conditional Expressions

The conditional expression for a WHILE instruction must be written with the format for an EXPRESSION instruction
to produce a Boolean (TRUE or FALSE) result. Numerical expressions that include substitution operators will not be
recognized.

∗ Refer to Appendix D Format for EXPRESSION Instruction for details on applicable instructions, operation order, and
notation conventions.

[b] Nesting Depth

The FOR, WHILE, and IF constructs can contain other constructs. This is called nesting. The maximum depth of a
nested structure that uses FOR, WHILE, and IF statements is limited to 8 levels.
If an instruction is preceded by a contact, it is treated like an IF construct and is included in the number of nesting lev-
els.

Expression Example Notation Remarks
MB000001 == true OK TRUE: 1 (ON)
MB000001 != false OK FALSE: 0 (OFF)
MW00002 < 100 OK −
MF00002 < sin(60.0) OK −
MW00001 == 0x00FF OK OK Prefix hexadecimal values with 0x.
MB000001 = true NG −
MW00001 = MW00002 NG −

5.5 Program Control Instructions

5.5.8 FOR Construct (FOR, END_FOR)

5-91

In
st

ru
ct

io
ns

5

5.5.8 FOR Construct (FOR, END_FOR)

(1) Operation

The programming between the FOR and END_FOR instructions is repeatedly executed.
The initial value starts with the value in a register specified as the variable. This variable is incremented by the step
value each time execution is repeated.
The conditional expression for the FOR instruction is no longer satisfied when the value of the variable exceeds the
maximum value, so program execution jumps to the next step.

(2) Format

∗ C and # registers cannot be used.

Initialization of FOR
instruction variables

Next step

Programming

Variable > Maximum value?

Satisfied.

Not satisfied.

END_FOR

Variable = Variable + Step value

Parameter Name
Applicable Data Types

B W L F A Index Constant
Variable (Var) × * × × × ×
Initial value (Init) × × × ×
Maximum value (Max) × × × ×
Step value (Step) × × × ×

,

Programming

Variable

Initial value

Maximum value

Step value

Icon:

Key entry: FOR, FEND

5.5 Program Control Instructions

5.5.8 FOR Construct (FOR, END_FOR)

5-92

(3) Programming Example

In the following programming example, the registers from MW00100 to MW00105 are added together and stored in
the MW00000 register.
In this example, variable I is initialized to 0 by storing 0. Thereafter, the ADD instruction is executed until variable I
exceeds the maximum value of 5. The conditional expression is no longer satisfied when I is 6, so program execution
jumps to the next step following the END_FOR instruction.

(4) Additional Information

The FOR, WHILE, and IF constructs can contain other constructs. This is called nesting. The maximum depth of a
nested structure that uses FOR, WHILE, and IF statements is limited to 8 levels.
If an instruction is preceded by a contact, it is treated like an IF construct and is included in the number of nesting lev-
els.

5.5 Program Control Instructions

5.5.9 IF Construct (IF, END_IF)

5-93

In
st

ru
ct

io
ns

5

5.5.9 IF Construct (IF, END_IF)

(1) Operation

Execution of the programming between the IF and END_IF instructions is repeated for as long as the conditional
expression for the IF instruction is satisfied.
The programming is not executed if the conditional expression is not satisfied.

∗ 1. The programming is executed and execution jumps to the next step.
∗ 2. The programming is not executed and execution jumps to the next step.

(2) Format

∗ Write with the format for an EXPRESSION instruction.
Refer to Appendix D Format for EXPRESSION Instruction for details on the format used to write the expression.

IF instruction
<conditional_expression>

Next step

Programming

Condition
satisfied?

Satisfied.*1

Not satisfied.*2

END_IF

Parameter Name
Applicable Data Types

B W L F A Index Constant
Conditional
expression * * * * × * *

,

Programming 1

Conditional
expression

Icon:

Key entry: IF, IEND

5.5 Program Control Instructions

5.5.9 IF Construct (IF, END_IF)

5-94

(3) Programming Example

When the conditional expression (MB000001) for the IF instruction turns ON, the value of MW00010 is set in
MW01000 and MW00011 is incremented.

(4) Additional Information

[a] Applicable Conditional Expressions

The conditional expression for an IF instruction must be written with the format for an EXPRESSION instruction to
produce a Boolean (TRUE or FALSE) result. Numerical expressions that include substitution operators will not be rec-
ognized.

∗ Refer to Appendix D Format for EXPRESSION Instruction for details on applicable instructions, operation order, and
notation conventions.

[b] Nesting Depth

The FOR, WHILE, and IF constructs can contain other constructs. This is called nesting. The maximum depth of a
nested structure that uses FOR, WHILE, and IF statements is limited to 8 levels.
If an instruction is preceded by a contact, it is treated like an IF construct and is included in the number of nesting lev-
els.

Expression Example Notation Remarks
MB000001 == true OK TRUE: 1 (ON)
MB000001 != false OK FALSE: 0 (OFF)
MW00002 < 100 OK −
MF00002 < sin(60.0) OK −
MW00001 == 0x00FF OK OK Prefix hexadecimal values with 0x.
MB000001 = true NG −
MW00001 = MW00002 NG −

5.5 Program Control Instructions

5.5.10 IF-ELSE Construct (IF, ELSE, END_IF)

5-95

In
st

ru
ct

io
ns

5

5.5.10 IF-ELSE Construct (IF, ELSE, END_IF)

(1) Operation

When the conditional expression for the IF instruction is satisfied, only programming 1 is executed. Programming 2 is
not executed.
If the conditional expression is not satisfied, only programming 2 is executed. Programming 1 is not executed.

∗ 1. Programming 1 is executed and execution jumps to the next step.
∗ 2. Programming 2 is executed and execution jumps to the next step.

(2) Format

∗ Write with the format for an EXPRESSION instruction.
Refer to Appendix D Format for EXPRESSION Instruction for details on the format used to write the expression.

IF instruction
<conditional_expression>

ELSE

Next step

Programming 1

Condition
satisfied?

Satisfied.*1

Not satisfied.*2

END_IF

Programming 2

Parameter Name
Applicable Data Types

B W L F A Index Constant
Conditional expression * * * * × * *

, , Icon:

Key entry: IF, ELSE, IEND

Programming 1

Conditional
expression

Programming 2

5.5 Program Control Instructions

5.5.10 IF-ELSE Construct (IF, ELSE, END_IF)

5-96

(3) Programming Example

When the conditional expression (MB000001) for the IF instruction turns ON, the value of MW00010 is set in
MW01000 and MW00011 is incremented. When the conditional expression (MB000001) for the IF instruction is OFF,
the value of MW00009 is set in MW01000.

(4) Additional Information

The conditional expressions that can be used, and the nesting depth is the same as for IF constructs.

5.5 Program Control Instructions

5.5.11 Expression (EXPRESSION)

5-97

In
st

ru
ct

io
ns

5

5.5.11 Expression (EXPRESSION)

(1) Operation

You can use the following elements in an EXPRESSION instruction:
• A variable name or structure in place of a register, similar to C language.
• Basic functions, such as the SIN and COS functions.
• Arithmetic operators, logical operators, comparison operators, and substitution operators.
• Arrays.

(2) Format

∗ Write with the format for an EXPRESSION instruction.
Refer to Appendix D Format for EXPRESSION Instruction for details on the format used to write the expression.

EXPRESSION instruction

MW00000 = 10;
MW00001 = DATA1;
ML00002 = MW00000 + 100;
MF00004 = sin(MF00006);
MW00006 = 0x3FFF;

…

Parameter Name
Applicable Data Types

B W L F A Index Constant
Operation expression * * * * × * *

Operation expression

Icon:

Key entry: EXPR

5.5 Program Control Instructions

5.5.11 Expression (EXPRESSION)

5-98

(3) Programming Example

In the following programming example, multiple operations are programmed in a single EXPRESSION instruction.

(4) Additional Information

The EXPRESSION instruction can be programmed with numeric expressions in addition to expressions that return
Boolean TRUE or FALSE values.

Refer to Appendix D Format for EXPRESSION Instruction for details on applicable instructions, operation
order, and notation conventions.

Expression Example Notation Remarks
MB000000 = true; OK TRUE: 1 (ON)
MW00000 = MW00001+10 OK −
MW00000 = 0x00FF; OK Prefix hexadecimal values with 0x.
MB000000 == true; NG −
MW00001 > MW00000; NG −

5.6 Basic Function Instructions

5.6.1 Square Root (SQRT)

5-99

In
st

ru
ct

io
ns

5

5.6 Basic Function Instructions

5.6.1 Square Root (SQRT)

(1) Operation

The SQRT instruction calculates the square root of the integer or real number input data and stores the result in the out-
put data.
Double-length integers cannot be used.

If the input data is less than 0, the absolute value of the input data will be used to perform the operation and output
the result.

[a] Integer SQRT: When the Input Data and Output Data Are Integer Data.

With an integer SQRT instruction, the result is calculated differently from the square root used in mathematics.

[b] Real Number SQRT: For Any Other Data Types

(2) Format

∗ C and # registers cannot be used.

Input data × 128 2 Output data

Output dataInput data

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input data (Src) × × ×

Output data (Dest) × ∗ × * × ×

Input data Output data

Icon:

Key entry: SQRT

5.6 Basic Function Instructions

5.6.1 Square Root (SQRT)

5-100

(3) Programming Examples

The following programming examples demonstrate the SQRT instruction using integer and real number input data.
• Integer SQRT

The square root of 64, an integer in the input data in MW00000, is multiplied by 128 and the result is stored
in the output data in DW00000.

 × 128 → DW00000 = 1,448

• Real Number SQRT
The square root of 64.0, a real number in the input data in MF00000, is calculated and the result is stored in the
output data in DF00000.

 → DF00000 = 8.0

2

64 2

64.0

5.6 Basic Function Instructions

5.6.2 Sine (SIN)

5-101

In
st

ru
ct

io
ns

5

5.6.2 Sine (SIN)

(1) Operation

The SIN instruction calculates the sine of the integer or real number input data and stores the result in the output data.
Double-length integers cannot be used.

[a] Integer Input Data and Output Data

∗ 1. The input data is in degrees, where 1 = 0.01 degree.
∗ 2. The operation result is multiplied by 10,000 and stored in the output data.

[b] Real Number Input Data and Output Data

The input data is in degrees.

(2) Format

∗ C and # registers cannot be used.

[a] Integer

The input data is in degrees, where 1 = 0.01 degrees.
Therefore, the SIN function can operate on values between -327.78 and 327.67 degrees.
The output of the SIN function is multiplied by 10,000, so the output data will be output between -10,000 and 10,000.

[b] Real Number

The input data is in degrees.

Input data) × 10000 Output dataSIN (

Input data) Output dataSIN (

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input data (Src) × × ×

Output data (Dest) × * × * × ×

Input data Output data

Icon:

Key entry: SIN

5.6 Basic Function Instructions

5.6.2 Sine (SIN)

5-102

(3) Programming Examples

The following programming examples demonstrate the SIN instruction using integer and real number input data.
• Integer SIN

The sine of 9,000, an integer in the input data in MW00000, is calculated and the result is stored in the output
data in DW00000.
SIN (90.00 deg) × 10,000 → DW00000 = 10,000

• Real Number SIN
The sine of 90.0, a real number in the input data in MF00000, is calculated and the result is stored in the output
data in DF00000.
SIN (90.0 deg) → DF00000 = 1.0

5.6 Basic Function Instructions

5.6.3 Cosine (COS)

5-103

In
st

ru
ct

io
ns

5

5.6.3 Cosine (COS)

(1) Operation

The COS instruction calculates the cosine of the integer or real number input data and stores the result in the output
data.
Double-length integers cannot be used.

[a] Integer Input Data and Output Data

∗ 1. The input data is in degrees, where 1 = 0.01 degree.
∗ 2. The operation result is multiplied by 10,000 and stored in the output data.
∗ 3. The input data must be between -327.68 and 32.767 degrees. Any other number will not produce the correct

result.

[b] Real Number Input Data and Output Data

The input data is in degrees.

(2) Format

∗ C and # registers cannot be used.

[a] Integer

The input data is in degrees, where 1 = 0.01 degree.
Therefore, the COS function instruction can operate on values between -327.78 and 327.67 degrees.
The output of the COS function is multiplied by 10,000, so the data will be output between -10,000 and 10,000.

[b] Real Number

The input data is in degrees.

Input data) × 10000 Output dataCOS (

Input data) Output dataCOS (

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input data (Src) × × ×

Output data (Dest) × * × * × ×

Input data Output data

Icon:

Key entry: COS

5.6 Basic Function Instructions

5.6.3 Cosine (COS)

5-104

(3) Programming Examples

The following programming examples demonstrate the COS instruction using integer and real number input data.
• Integer COS

The cosine of 18,000, an integer in the input data in MW00000, is calculated and the result is stored in the output
data in DW00000.
COS (180.00 deg) × 10,000 → DW00000 = -10,000

• Real Number COS
The cosine of 180.0, a real number in the input data in MF00000, is calculated and the result is stored in the out-
put data in DF00000.
COS (180.0 deg) → DF00000 = -1.0

5.6 Basic Function Instructions

5.6.4 Tangent (TAN)

5-105

In
st

ru
ct

io
ns

5

5.6.4 Tangent (TAN)

(1) Operation

The TAN instruction calculates the tangent of the real number input data and stores the result in the output data.
The input data is in degrees.

(2) Format

∗ C and # registers cannot be used.

(3) Programming Example

In the following programming example, the tangent of 45 in the input data in MW00000 is calculated and the result is
stored in the output data in DF00000.
TAN (45.00 deg) → DF00000 = 1.0

Input data) Output dataTAN (

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input data (Src) × × × × ×

Output data (Dest) × × × * × × ×

Input data Output data

Icon:

Key entry: TAN

5.6 Basic Function Instructions

5.6.5 Arc Sine (ASIN)

5-106

5.6.5 Arc Sine (ASIN)

(1) Operation

The ASIN instruction calculates the arc sine of the real number input data and stores the result in the output data.
The output data is in degrees.

(2) Format

∗ C and # registers cannot be used.

Input Data Range

Set the input data to a value between -1.0 and 1.0. The output is set to 0 if the input value is out of range.

(3) Programming Example

In the following programming example, the arc sine of 1.0 in the input data in MF00000 is calculated and the result is
stored in the output data in DF00000.
SIN (1.0)-1 → DF00000 = 90.0 (degrees)

Input data) Output dataSIN (
-1

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input data (Src) × × × × ×

Output data (Dest) × × × * × × ×

Input data Output data

Icon:

Key entry: ASIN

5.6 Basic Function Instructions

5.6.6 Arc Cosine (ACOS)

5-107

In
st

ru
ct

io
ns

5

5.6.6 Arc Cosine (ACOS)

(1) Operation

The ACOS instruction calculates the arc cosine of the real number input data and stores the result in the output data.
The output data is in degrees.

(2) Format

∗ C and # registers cannot be used.

Input Data Range

Set the input data to a value between -1.0 and 1.0. The output is set to 0 if the input value is out of range.

(3) Programming Example

In the following programming example, the arc sine of 0.5 in the input data in MF00000 is calculated and the result is
stored in the output data in DF00000.
COS (0.5)-1 → DF00000 = 60.0 (degrees)

Input data) Output dataCOS (
-1

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input data (Src) × × × × ×

Output data (Dest) × × × * × × ×

Input data Output data

Icon:

Key entry: ACOS

5.6 Basic Function Instructions

5.6.7 Arc Tangent (ATAN)

5-108

5.6.7 Arc Tangent (ATAN)

(1) Operation

The ATAN instruction calculates the arc tangent of the real number input data and stores the result in the output data.
The output data is in degrees.

(2) Format

∗ C and # registers cannot be used.

(3) Programming Example

In the following programming example, the arc tangent of 1.0 in the input data in MF00000 is calculated and the result
is stored in the output data in DF00000.
TAN (1.0)-1 → DF00000 = 45.0 (degrees)

Input data) Output dataTAN (
-1

Input data Output data

Icon:

Key entry: ATAN

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input data (Src) × × × × ×

Output data (Dest) × × × * × × ×

5.6 Basic Function Instructions

5.6.8 Exponential (EXP)

5-109

In
st

ru
ct

io
ns

5

5.6.8 Exponential (EXP)

(1) Operation

The EXP instruction calculates the value obtained by raising base e of the natural logarithm to the real number input
data and stores the result in the output data.

 “e” is the base of the natural logarithm.

(2) Format

∗ C and # registers cannot be used.

(3) Programming Example

The following programming example calculates base e of the natural logarithm raised to 1.0 in the input data in
MF00000, and stores the result in the output data in DF00000.
e1.0 → DF00000 = 2.718282

If the operation result overflows, the output data will be set to the maximum value 3.402E+38 and an operation error will not
occur.

Input data
Output datae

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input data (Src) × × × × ×

Output data (Dest) × × × * × × ×

Input data Output data

Icon:

Key entry: EXP

INFO

5.6 Basic Function Instructions

5.6.9 Natural Logarithm (LN)

5-110

5.6.9 Natural Logarithm (LN)

(1) Operation

The LN instruction calculates the natural logarithm of X (loge X), when input data X is a real number and stores the
result in the output data.

(2) Format

∗ C and # registers cannot be used.

When Input Data Is Less Than or Equal to 0

If the input data is less than 0, the absolute value of the input data will be used to perform the operation and output the
result.
The output data is set to -∞ if the input value is 0.

(3) Programming Example

The following programming example calculates the natural logarithm when the input data is 2.718282 (≈ e) in
MF00000, and stores the result in the output data in DF00000.
Loge 2.718282 ≈ loge e → DF00000 = 1.0

Input data Output dataloge

Input data Output data

Icon:

Key entry: LN

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input data (Src) × × × × ×

Output data (Dest) × × × * × × ×

5.6 Basic Function Instructions

5.6.10 Common Logarithm (LOG)

5-111

In
st

ru
ct

io
ns

5

5.6.10 Common Logarithm (LOG)

(1) Operation

The LOG instruction calculates the common logarithm of X (log10 X), when input data X is a real number and stores
the result in the output data.

(2) Format

∗ C and # registers cannot be used.

When Input Data Is Less Than or Equal to 0

If the input data is less than 0, the absolute value of the input data will be used to perform the operation and output the
result.
The output data is set to -∞ if the input value is 0.

(3) Programming Example

The following programming example calculates the common logarithm when the input data is 10.0 in MF00000, and
stores the result in the output data in DF00000.
 log10 10.0 → DF00000 = 1.0

Input data Output datalog10

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input data (Src) × × × × ×

Output data (Dest) × × × ∗ × × ×

Input data Output data

Icon:

Key entry: LOG

5.7 Data Shift Instructions

5.7.1 Bit Rotate Left (ROTL)

5-112

5.7 Data Shift Instructions
5.7.1 Bit Rotate Left (ROTL)

(1) Operation

The ROTL instruction rotates the data specified by the first bit address and bit width to the left by the specified number
of bits.

(2) Format

∗ C and # registers cannot be used.

Bit width (m)

First bit
address

m − 1 m − 2 m − 3 4 3 2 1 0

Number of bits to rotate

Number of bits
to rotate Bit width

First bit address

Icon:

Key entry: ROTL

Parameter Name
Applicable Data Types

B W L F A Index Constant
First bit address (Adr) * × × × × × ×

Number of bits to rotate
(Num) × × × ×

Bit width (Width) × × × ×

5.7 Data Shift Instructions

5.7.1 Bit Rotate Left (ROTL)

5-113

In
st

ru
ct

io
ns

5

(3) Programming Example

In the following programming example, the data specified as 8 bits wide from the first bit address at MB000000 is
rotated two bits to the left.
The ROTL instruction is executed when switch 1 (DB000000) turns ON.

The following figure shows the operation when MW00000 is 12,345 (3039 hex).

0

Bit 0Bit 7Bit F Bit 3Bit B Bit 4Bit 8Bit C
Before Execution
MW00000
(3039 hex)

0 1 1 0 0 0 0 0 0 1 1 1 0 0 1

0 0 1 1 0 0 0 0 1 1 1 0 0 1 0 0

Rotated 2 bits to the left.

Data specified by the first
bit address and bit width

After Execution
MW00000
(30E4 hex)

5.7 Data Shift Instructions

5.7.2 Bit Rotate Right (ROTR)

5-114

5.7.2 Bit Rotate Right (ROTR)

(1) Operation

The ROTR instruction rotates the data specified by the first bit address and bit width to the right by the specified num-
ber of bits.

(2) Format

∗ C and # registers cannot be used.

Bit width (m)

First bit
address

m − 1 m − 2 m − 3 4 3 2 1 0

Number of bits to rotate

Parameter Name
Applicable Data Types

B W L F A Index Constant
First bit address (Adr) * × × × × × ×

Number of bits to rotate
(Num) × × × ×

Bit width (Width) × × × ×

Number of bits
to rotate Bit width

First bit address

Icon:

Key entry: ROTR

5.7 Data Shift Instructions

5.7.2 Bit Rotate Right (ROTR)

5-115

In
st

ru
ct

io
ns

5

(3) Programming Example

In the following programming example, the data specified as 8 bits wide from the first bit address at MB000000 is
rotated two bits to the right.
The ROTR instruction is executed when switch 1 (DB000000) turns ON.

The following figure shows the operation when MW00000 is 12,345 (3039 hex).

0

Bit 0Bit 7Bit F Bit 3Bit B Bit 4Bit 8Bit C
Before Execution
MW00000
(3039 hex)

0 1 1 0 0 0 0 0 0 1 1 1 0 0 1

0 0 1 1 0 0 0 0 0 1 0 0 1 1 1 0

Rotated 2 bits to the right.

Data specified by the first
bit address and bit width

After Execution
MW00000
(304E hex)

5.7 Data Shift Instructions

5.7.3 Move Bit (MOVB)

5-116

5.7.3 Move Bit (MOVB)

(1) Operation

The MOVB instruction moves the designated number of bits of data from the area that starts with the first source bit
address to the area that starts with the first destination bit address.

The bits are moved one bit at a time from the lowest relay address.
If the source area and destination area overlap, the source data that is actually moved may not be the data that
was in the source area before the instruction was executed.

Example Where the Source Area and Destination Area Overlap

1 1 0 0 0 1

1 1 0 0 0 1

Source area

Destination area

Bit data moved.

First source bit address

First destination bit address

Number of bits to move m

0m

Number of bits to move m

d c b a 0 00 00

b a b a 0 0b a0

0347 18 256

Source area
(shaded portion)

Destination area
(shaded portion)

Overlap

Bit status is moved in the following order: to . This means that the status of bits 2 and 3
are moved to bits 4 and 5 (and) and then the status of bits 4 and 5 are moved (and).

First source bit address:
MB00002

First destination bit address:
MB00004

0

0

F …

…

…

5.7 Data Shift Instructions

5.7.3 Move Bit (MOVB)

5-117

In
st

ru
ct

io
ns

5

(2) Format

∗ C and # registers cannot be used.

(3) Programming Example

In the following programming example, four bits of data are moved from the area that starts with the first source bit
address at MB000010 to the area that starts with the first destination bit address at MB000020.
The MOVB instruction is executed when switch 1 (DB000000) turns ON.

The following table illustrates how the data in the source area is moved to the destination area.

Parameter Name
Applicable Data Types

B W L F A Index Constant
First source bit address
(Src) × × × × × ×

First destination bit address
(Dest)

* × × × × × ×

Number of bits to move × × × ×

Number of bits
to moveFirst source bit address

First destination bit address

Icon:

Key entry: MOVB

Source area

⇒

Destination area

Register Data Register Data before Execution
of Instruction

Data after Execution of
Instruction

MB000010 0 MB000020 0 0

MB000011 1 MB000021 0 1

MB000012 1 MB000022 0 1

MB000013 1 MB000023 0 1

5.7 Data Shift Instructions

5.7.4 Move Word (MOVW)

5-118

5.7.4 Move Word (MOVW)

(1) Operation

The MOVW instruction moves the specified number of words from the area that starts with the first source address to
the area that starts with the first destination address.

The words are moved one at a time from the lowest register address.
If the source area and destination area overlap, the source data that is actually moved may not be the data that was in
the source area before the instruction was executed.

Example Where the Source Area and Destination Area Overlap

6 5 4 3 2 1

6 5 4 3 2 1

Source area

Destination area

Word data moved.

First source address

First destination address

Number of words to move m

0m

Number of words to move m

d c b a 0 00 00

b a b a 0 0b a0

0347 18 256

Source area
(shaded portion)

Destination area
(shaded portion)

Overlap

Word contents are moved in the following order: to . This means that the contents
of MW00002 and MW00003 are moved to MW00004 and MW00005 (and) and
then the contents of MW00004 and MW00005 are moved (and).

First source address:
MW00002

First destination address:
MW00004

0

0

F …

…

…

5.7 Data Shift Instructions

5.7.4 Move Word (MOVW)

5-119

In
st

ru
ct

io
ns

5

(2) Format

∗ C and # registers cannot be used.

(3) Programming Example

In the following programming example, four words of data from the area that starts with the first source address at
MW00010 are moved to the area that starts with the first destination address at MW00020.
The MOVW instruction is executed when switch 1 (DB000000) turns ON.

The following table illustrates how the data in the source area is moved to the destination area.

Parameter Name
Applicable Data Types

B W L F A Index Constant
First source address
(Src) × × × × × ×

First destination address
(Dest) × * × × × × ×

Number of words to
move (Width) × × × ×

Number of words to move

First destination address

First source address

Icon:

Key entry: MOVW

Source area

⇒

Destination area

Register Data Register Data before Execution
of Instruction

Data after Execution of
Instruction

MW00010 10 MW00020 0 10

MW00011 20 MW00021 0 20

MW00012 30 MW00022 0 30

MW00013 40 MW00023 0 40

5.7 Data Shift Instructions

5.7.5 Exchange (XCHG)

5-120

5.7.5 Exchange (XCHG)

(1) Operation

The XCHG instruction exchanges the designated number of words to move between table 1 and table 2.
The data contents of table 1 and table 2 specified by data table start 1, data table start 2, and the number of words to
move are exchanged.

(2) Format

∗ C and # registers cannot be used.

 Table 1 data
table start 1

Table 2 data
table start 2

Number of words
to move

1

2

3

4

5

11

12

13

14

15

Table 1 Table 2

11

12

13

14

15

1

2

3

4

5

Data exchanged.

6 16 6 16

Data table start 2 Number of words
to move

Data table start 1

Icon:

Key entry: XCHG

Parameter Name
Applicable Data Types

B W L F A Index Constant
Data table start 1
(Table1) × * × × × × ×

Data table start 2
(Table2) × ∗ × × × × ×

Number of words to move
(Width) × × × ×

5.7 Data Shift Instructions

5.7.5 Exchange (XCHG)

5-121

In
st

ru
ct

io
ns

5

(3) Programming Example

In the following programming example, four words of data are exchanged between table 1, which starts at MW00010,
and table 2, which starts at MW00020.
The XCHG instruction is executed when switch 1 (DB000000) turns ON.

The following table illustrates how the data is exchanged between table 1 and table 2.

Table 1 Table 2

Register
Data before
Execution of
Instruction

Data after
Execution of
Instruction

Register
Data before
Execution of
Instruction

Data after
Execution of
Instruction

MW00010 10 123 MW00020 123 10

MW00011 20 234 ⇔ MW00021 234 20

MW00012 30 345 MW00022 345 30

MW00013 40 456 MW00023 456 40

5.7 Data Shift Instructions

5.7.6 Table Initialization (SETW)

5-122

5.7.6 Table Initialization (SETW)

(1) Operation

The SETW instruction stores the data designated by the move data in all registers in the area that starts from the first
destination register address for the number of words to set. The data is stored one word at a time from the lowest regis-
ter address to the highest.
The data is stored in order from the lowest register address to the highest.

(2) Format

∗ C and # registers cannot be used.

abcd abcd

abcd

abcd

abcd

abcd

Number of
words to set

First destination register address

MW�����

MW����� + 1

MW����� + 5

Move data

aaaa

First destination
register address

Move data

Number of
words to set

Icon:

Key entry: SETW

Parameter Name
Applicable Data Types

B W L F A Index Constant
First destination register
address (Dest) × * × × × × ×

Move data (Data) × × × ×
Number of words to set
(Width) × × × ×

5.7 Data Shift Instructions

5.7.6 Table Initialization (SETW)

5-123

In
st

ru
ct

io
ns

5

(3) Programming Example

In the following programming example, the area of 1,000 words from MW00000 is initialized to the move data (0) on
the first scan of the high-speed scan after the power is turned ON.

The following table illustrates how the registers are initialized to 0 after execution of the first scan of the high-speed
scan when the power is turned ON.

Register Data
MW00000 0

MW00001 0

 : :

MW00998 0

MW00999 0

5.7 Data Shift Instructions

5.7.7 Byte-to-word Expansion (BEXTD)

5-124

5.7.7 Byte-to-word Expansion (BEXTD)

(1) Operation

The BEXTD instruction expands the byte data from an area designated by the number of bytes to move from the first
source register address into individual word data, one byte at a time, and moves the word data to the area that starts
with the first destination register address. When the byte is expanded into a word, the upper byte of the word is set to 0.
The byte data from an area designated by the number of bytes to move from the first source register address is
expanded into individual word data and moved to the area that starts with the first destination register address.

(2) Format

∗ C and # registers cannot be used.

a

b

c

d

a

00H

b

00H

c

00H

d

00H

Lower byte

Upper byte

Lower byte

Upper byte

Lower byte

Upper byte

Lower byte

Upper byte

e

MW

MW + 1

MW + 2

MW + 3

Lower byte

Upper byte

Lower byte

Upper byte

Lower byte

MW

MW + 1

Number of bytes
to move

Source area Destination area

Number of bytes
to move

First destination
register address

First source
register address

Icon:

Key entry: BEXTD

Parameter Name
Applicable Data Types

B W L F A Index Constant
First source register
address (Src) × × × × × ×

First destination
register address
(Dest)

× * × × × × ×

Number of bytes to
move (Width) × × × ×

5.7 Data Shift Instructions

5.7.7 Byte-to-word Expansion (BEXTD)

5-125

In
st

ru
ct

io
ns

5

(3) Programming Example

In the following programming example, four bytes of data are expanded and moved from the area that starts with the
first source register address at MW00010 to the area of words that starts with the first destination register address at
MW00020.
The BEXTD instruction is executed when switch 1 (DB000000) turns ON.

The following table illustrates how the byte data in the source area is expanded and moved into word data in the desti-
nation area.

Source area

⇒

Destination area
Register Data Register Data

MW00010 Lower byte 10 hex MW00020 Lower byte 10 hex
Upper byte 20 hex Upper byte 00 hex

MW00011 Lower byte 30 hex MW00021 Lower byte 20 hex
Upper byte 40 hex Upper byte 00 hex

MW00022 Lower byte 30 hex
Upper byte 00 hex

MW00023 Lower byte 40 hex
Upper byte 00 hex

5.7 Data Shift Instructions

5.7.8 Word-to-byte Compression (BPRESS)

5-126

5.7.8 Word-to-byte Compression (BPRESS)

(1) Operation

The BPRESS instruction stores the lower bytes of word data for the designated number of bytes to move starting from
the first source register address, in the area that starts from the first destination register address, one byte at a time. This
instruction performs the opposite operation of the BEXTD instruction.
The word data designated by the number of bytes to move is moved from the first source register address to the area
that starts with the first destination register address.
The upper byte is discarded.

(2) Format

∗ C and # registers cannot be used.

a

b

c

d

a

e

b

f

c

g

d

h

Lower byte

Upper byte

Lower byte

Upper byte

Lower byte

Upper byte

Lower byte

Upper byte

0

MW

MW + 1

MW + 2

MW + 3

Lower byte

Upper byte

Lower byte

Upper byte

Lower byte

MW

MW + 1

Number of bytes
to move

Source area Destination area

Number of bytes
to move

First destination
register address

First source
register address

Icon:

Key entry: BPRESS

Parameter Name
Applicable Data Types

B W L F A Index Constant
First source register
address (Src) × × × × × ×

First destination register
address (Dest) × * × × × × ×

Number of bytes to move
(Width) × × × ×

5.7 Data Shift Instructions

5.7.8 Word-to-byte Compression (BPRESS)

5-127

In
st

ru
ct

io
ns

5

(3) Programming Example

In the following programming example, the lower bytes of data are moved from the area of four words that starts with
the first source register address at MW00010 to the area of four bytes that starts with the first destination register
address at MW00020.
The BPRESS instruction is executed when switch 1 (DB000000) turns ON.

The following table illustrates how the word data in the source area is compressed and moved into byte data in the des-
tination area.

Source area

⇒

Destination area
Register Data Register Data

MW00010 Lower byte 12 hex MW00020 Lower byte 12 hex
Upper byte 23 hex Upper byte 34 hex

MW00011 Lower byte 34 hex MW00021 Lower byte 56 hex
Upper byte 45 hex Upper byte 78 hex

MW00012 Lower byte 56 hex
Upper byte 67 hex

MW00013 Lower byte 78 hex
Upper byte 89 hex

5.7 Data Shift Instructions

5.7.9 Binary Search (BSRCH)

5-128

5.7.9 Binary Search (BSRCH)

(1) Operation

The BSRCH instruction searches for the search data using a binary search method in the area designated by the number
of words from the first address in the search range. The search result is output as the offset word number of the data that
matches the search data from the first register in the search range.

∗ 1. Always sort the search area in ascending order before executing the BSRCH instruction.
∗ 2. The conceptual diagram shown here is for integers. The instruction operates in the same way for double-length

integers and real numbers.
∗ 3. If the search data is not found, the instruction sets the search result to -1.

(2) Format

∗ C and # registers cannot be used.

4

First register address
in the search range

7

8

20

60

MW

MW + 1

MW + 2

MW + 3

MW + 4

Search data:
20

4

First register address
in the search range

7

8

20

60

Found at address + 3 from
the first address

in the search range.

Search result: 3 (offset)Number of
words in

range

Search data Search result

Number of words
in range

First address
of the search range

Icon:

Key entry: BSRCH

Parameter Name
Applicable Data Types

B W L F A Index Constant
First address of search
range (Src) × × × ×

Number of words in range
(Width) × × × ×

Search data (Data) × ×

Search result (Result) × * × × × × ×

5.7 Data Shift Instructions

5.7.9 Binary Search (BSRCH)

5-129

In
st

ru
ct

io
ns

5

(3) Programming Example

In the following programming example, the data from ML00000 to ML00008 is sorted when the sort command
(DB000000) turns ON.
Then, if the search command (DB000001) turns ON, the search data in ML00012 is searched for in the sorted data area.

The following table shows how the sort is processed when the first line is executed. Here, the data from ML00000 to
ML00008 is as listed below, and the search data in ML00012 is 70. When the second line is executed, the search result
in MW00010 is set to 4 as the result of finding 70.

Register Data before Execution of 1st Line Data after Execution of 1st Line Execution Result of
2nd Line

ML00000 100 15

ML00004 = 70, so
MW00010 = 4

ML00002 30 30

ML00004 90 70

ML00006 15 90

ML00008 70 100

5.7 Data Shift Instructions

5.7.10 Sort (SORT)

5-130

5.7.10 Sort (SORT)

(1) Operation

The SORT instruction sorts the data in the range of registers from the first address of the sort range in ascending order.
The following diagram describes the operation using integers as an example. The sort is performed in the same way for
double-length integers and real numbers.

(2) Format

∗ C and # registers cannot be used.

60

First address of sort range

Number of
registers in range

7

20

8

100

4

4

First address of sort range

7

8

20

60

100

MW

MW + 1

MW + 2

MW + 3

MW + 4

MW + 5

Sorted in
ascending order.

Parameter Name
Applicable Data Types

B W L F A Index Constant
First address of sort
range (Table) × * * * × × ×

Number of registers in
range (Width) × × × ×

First address
of sort range

Number of
registers in range

Icon:

Key entry: SORT

5.7 Data Shift Instructions

5.7.10 Sort (SORT)

5-131

In
st

ru
ct

io
ns

5

(3) Programming Example

In the following programming example, the data from ML00000 to ML00008 is sorted in ascending order when the
sort command (DB000000) turns ON.

The following table shows how the data from ML00000 to ML00008 is sorted when the SORT instruction is executed.

Register Data before Execution of
Instruction

Data after Execution of
Instruction

ML00000 100 15

ML00002 30 30

ML00004 90 70

ML00006 15 90

ML00008 70 100

5.7 Data Shift Instructions

5.7.11 Bit Shift Left (SHFTL)

5-132

5.7.11 Bit Shift Left (SHFTL)

(1) Operation

The SHFTL instruction shifts the bits specified by the first bit address and bit width to the left by the specified number
of bits to shift.
Data that overflows from the bit width is discarded and insufficient bits are padded with 0’s.

(2) Format

∗ C and # registers cannot be used.

f e d c b ag00

d c b a 0 0e00

012345678…

fg

Number of
bits to shift

Bit width

First bit
addressBefore Shift

After Shift

Bits that overflow are discarded.

Insufficient bits are padded with 0’s.

Parameter Name
Applicable Data Types

B W L F A Index Constant
First bit address (Adr) * × × × × × ×
Number of bits to shift
(Num) × × × ×

Bit width (Width) × × × ×

Number of bits to shift Bit width

First bit address

Icon:

Key entry: SHFTL

5.7 Data Shift Instructions

5.7.11 Bit Shift Left (SHFTL)

5-133

In
st

ru
ct

io
ns

5

(3) Programming Example

In the following programming example, four bits from the first bit address at MB00001E are shifted two bits to the left
when switch 1 (DB000000) turns ON.

The following figure illustrates the result when the above instructions are executed.

0 0 1 1 0 1

0 0 0 1 0 0

EF012…

11

Number of bits
to shift = 2

Bit width = 4

First bit address:
MB00001EBefore Shift

After Shift

Bits that overflow are discarded.

5.7 Data Shift Instructions

5.7.12 Bit Shift Right (SHFTR)

5-134

5.7.12 Bit Shift Right (SHFTR)

(1) Operation

The SHFTR instruction shifts the bits specified by the first bit address and bit width to the right by the specified num-
ber of bits to shift.
Data that overflows from the bit width is discarded and insufficient bits are padded with 0’s.

(2) Format

∗ C and # registers cannot be used.

f e d c b ag00

0 g f e d c000

012345678…

ab

Number of bits to shift

Bit width

First bit
addressBefore Shift

After Shift

Bits that overflow are discarded.

Insufficient bits are padded with 0’s.

Number of bits to shift Bit width

First bit address

Icon:

Key entry: SHFTR

Parameter Name
Applicable Data Types

B W L F A Index Constant
First bit address (Adr) * × × × × × ×
Number of bits to shift
(Num) × × × ×

Bit width (Width) × × × ×

5.7 Data Shift Instructions

5.7.12 Bit Shift Right (SHFTR)

5-135

In
st

ru
ct

io
ns

5

(3) Programming Example

In the following programming example, four bits from the first bit address at MB00001E are shifted two bits to the
right when switch 1 (DB000000) turns ON.

The following figure illustrates the result when the above instructions are executed.

0 0 1 1 0 1

0 0 0 0 1 1

EF012…

10

Number of bits
to shift = 2

Bit width = 4

First bit address:
MB00000E

Before Shift

After Shift

Bits that overflow are discarded.

5.7 Data Shift Instructions

5.7.13 Copy Word (COPYW)

5-136

5.7.13 Copy Word (COPYW)

(1) Operation

The COPY instruction copies the specified number of words to move from the area that starts with the first source
address to the area that starts with the first destination address.
The data is copied as a block from the source to the destination. Unlike the MOVW instruction, the data is copied to the
destination as is, even if the source and destination overlap.

This instruction differs from the MOVW instruction by the way it handles overlap between the source and desti-
nation areas.

Example Where the Source Area and Destination Area Overlap

6 5 4 3 2 1

6 5 4 3 2 1

Source area

Destination area

Word data moved.

First source address

First destination address

Number of words to move m

0m

Number of words to move m

d c b a 0 00 00

b a b a 0 0d c0

0347 18 256

Source area
(shaded portion)

Destination area
(shaded portion)

Overlap

Unlike the MOVW instruction, all of the data in the source area
is moved to the destination area, even if the two areas overlap.

First source address:
MW00002

First destination address:
MW00004

0

0

F …

…

…

5.7 Data Shift Instructions

5.7.13 Copy Word (COPYW)

5-137

In
st

ru
ct

io
ns

5

(2) Format

∗ C and # registers cannot be used.

(3) Programming Example

In the following programming example, five words of data are copied from the area that starts with the first source
address at MW00000 to the area that starts with the first destination address at MW00100 when switch 1 (DB000000)
turns ON.

The following figure illustrates the result when the above instructions are executed.

Parameter Name
Applicable Data Types

B W L F A Index Constant
First source address
(Src) × × × × × ×

First destination address
(Dest) × * × × × × ×

Number of words to
move (Width) × × × ×

Number of
words to move

First destination
address

First source address

Icon:

Key entry: COPYW

Register Data Register Data before Execution of
Instruction

Data after Execution of
Instruction

MW00000 1 MW00100 123 1

MW00001 2 MW00101 234 2

MW00002 3 MW00102 345 3

MW00003 4 MW00103 456 4

MW00004 5 MW00104 567 5

5.7 Data Shift Instructions

5.7.14 Byte Swap (BSWAP)

5-138

5.7.14 Byte Swap (BSWAP)

(1) Operation

The BSWAP instruction swaps the upper byte and lower byte of the target register.

(2) Format

∗ C and # registers cannot be used.

(3) Programming Example

In the following programming example, the upper byte and lower byte of MW00000 are swapped when switch 1
(DB000000) turns ON.

If MW00000 is 00FF hex, MW00000 will be FF00 hex after execution of the BSWAP instruction.

ab

Target register
(word data)

Lower byteUpper byte

cd cd

Target register
(word data)

Lower byteUpper byte

ab

Parameter Name
Applicable Data Types

B W L F A Index Constant
Target register (Dest) × * × × × × ×

Target register

Icon:

Key entry: BSWAP

5.8 DDC Instructions

5.8.1 Dead Zone A (DZA)

5-139

In
st

ru
ct

io
ns

5

5.8 DDC Instructions
5.8.1 Dead Zone A (DZA)

(1) Operation

The DZA instruction calculates the output value by comparing the input value against a predefined dead zone.
As shown in the following figure, if the absolute value of the input value is greater than or equal to the absolute value
of D, the input value is outside of the dead zone, so it becomes the output value.
If the absolute value of the input value is less than the absolute value of D, the input value is inside of the dead zone, so
the output is set to 0.

(2) Format

∗ C and # registers cannot be used.

Dead zone set value = D

0
+ D

- D

 If | Input value | ≥ | D |
Output value = Input value

 If | Input value | < | D |
Output value = 0

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input value (In) × ×
Dead zone set value
(Zone) × ×

Output value (Out) × * * * × ×

Input value Output value

Dead zone set value

Icon:

Key entry: DZA

5.8 DDC Instructions

5.8.1 Dead Zone A (DZA)

5-140

(3) Programming Examples

In the following programming examples, the dead zone set value is set to 10,000 and the output value is stored in
MW00000.
The output values are calculated with respect to the input values in MW00001 to MW00003 as shown below.

• Outside of the Dead Zone
| MW00001 (12,345) | ≥ | 10,000 |, so MW00000 is 12,345.

| MW00002 (-12,345) | ≥ | 10,000 |, so MW00000 is -12,345.

• Inside of the Dead Zone
| MW00003 (6,789) | < | 10,000 |, so MW00000 is 0.

5.8 DDC Instructions

5.8.2 Dead Zone B (DZB)

5-141

In
st

ru
ct

io
ns

5

5.8.2 Dead Zone B (DZB)

(1) Operation

The DZB instruction calculates the output value by comparing the input value against a predefined dead zone.
As shown in the following figure, if the absolute value of the input value is less than the absolute value of D, the input
value is inside of the dead zone, so the output is set to 0.
Unlike the DZA instruction, when the input value is outside of the dead zone, the sign of the input value determines
whether the output value is obtained by adding the absolute value of D to or subtracting it from the input value.

(2) Format

∗ C and # registers cannot be used.

Dead zone set value = D

0 + | D |

- | D |

���

� If | Input value | < | D |
Output value = 0

� If Input value < 0 and | Input value | ≥ | D |
Output value = Input value + | D |

� If Input value > 0 and | Input value | ≥ | D |
Output value = Input value – | D |

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input value (In) × ×
Dead zone set value
(Zone) × ×

Output value (Out) × * * * × ×

Input value Output value

Dead zone set value

Icon:

Key entry: DZB

5.8 DDC Instructions

5.8.2 Dead Zone B (DZB)

5-142

(3) Programming Examples

In the following programming examples, the dead zone set value is set to 10,000 and the output value is stored in
MW00000.
The output values are calculated with respect to the input values in MW00001 to MW00003 as shown below.

• Outside of the Dead Zone
Because MW00001 (12,345) > 0 and | MW00001 (12,345) | ≥ | 10,000 |, so MW00000 = 12,345 – | 10,000 | =
2,345.

MW00002 (-12,345) < 0, | MW00002 (-12,345) | ≥ | 10,000 |, so MW00000 = -12,345 + | 10,000 | = -2,345.

• Inside of the Dead Zone
| MW00003 (6,789) | < | 10,000 |, so MW00000 is 0.

5.8 DDC Instructions

5.8.3 Upper/Lower Limit (LIMIT)

5-143

In
st

ru
ct

io
ns

5

5.8.3 Upper/Lower Limit (LIMIT)

(1) Operation

The LIMIT instruction controls the output value so that it does not exceed the specified upper and lower limits for the
input value.
As shown in the following figure, if the input value is within the upper and lower limits, the input value is output unal-
tered.
The upper limit is output when the input value is greater than upper limit. The lower limit is output when the input
value is less than the lower limit.

(2) Format

∗ C and # registers cannot be used.

Always set the lower limit to a value that is less than or equal to the upper limit.

 If Lower limit ≤ Input value ≤ Upper value
Output value = Input value

 If Input value > Upper limit
Output value = Upper limit

 Input value < Lower limit
Output value = Lower limit

Upper limit

Lower limit

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input value (In) × ×
Lower limit (Lower) × ×
Upper limit (Upper) × ×
Output value (Out) × * * * × ×

Input value Output value

Upper limit

Lower limit

Icon:

Key entry: LIMIT

INFO

5.8 DDC Instructions

5.8.3 Upper/Lower Limit (LIMIT)

5-144

(3) Programming Examples

In the following programming examples, the operation results are stored as the output value (MW00000) when the
lower limit is -100 and the upper limit is 10,000.
The output values are calculated with respect to the input values in MW00001 to MW00003 as shown below.

• The Input Value Is Outside of the Upper and Lower Limits
Because MW00001 (12,345) is greater than the upper limit (10,000), MW00000 becomes the upper limit
(10,000).

Because MW00002 (-12,345) is less than the lower limit (-100), MW00000 becomes the lower limit (-100).

• The Input Value Is Within the Upper and Lower Limits
Because the lower limit (-100) is less than MW00003 (6,789), which is less than the upper limit (10,000),
MW00000 becomes 6,789.

5.8 DDC Instructions

5.8.4 PI Control (PI)

5-145

In
st

ru
ct

io
ns

5

5.8.4 PI Control (PI)

(1) Operation

When deviation X is input, the PI instruction performs P and I operations and a range operation based on predefined
parameters in a parameter table, and outputs the result as compensation Y.
When the reset integration bit in the parameter table is closed (turned ON), the PI compensation is calculated using an
I compensation value of 0.
The input value to the PI instruction can be an integer or a real number. Double-length integers cannot be used.
The structure of the parameter table is different for integers and real numbers.

∗ The range operation for the PI compensation is processed as follows if the P + I compensation crosses the PI
upper or lower limit (UL or LL), or the PI dead zone (DB):

If the P compensation and I compensation have the same sign (divergence) → The previous value is
retained for the I compensation value.
If the P compensation and I compensation have different signs (convergence to 0) → The I compensation
value is updated to a new value.

The operation of the PI instruction can be expressed by the following formula, where X (s) is the input value and Y (s)
is the output value.

= Kp + Ki ×

Deviation X
Compensation Y

(PI output)
Upper/lower limit for

I compensation

P compensation

I compensation Yi

Previous I compensation

Yi'

Ki

Kp

Ts/Ti

PI Compensation Value Range Operation*
(Upper/Lower Limit + Dead Zone A)

RCHK

RCHK
+ DZA

Input value for PI instruction

Output value for PI instruction

Kp: P (proportional) gain
Ki: I (integral) gain
Ts: Scan time
Ti: Integral time

Y(s)

X(s)

1

Ti × s

5.8 DDC Instructions

5.8.4 PI Control (PI)

5-146

(2) Format

∗ C and # registers cannot be used.

[a] Parameter Table Configuration for PI Instruction with Integers

∗ The relay input and output bits are assigned as given below. (Close = Bit change to 1 (ON), Open = Bit change to 0
(OFF))

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input value (In) × × ×
First address of
parameter table (Prm) × × × × *

Output value (Out) × * × * × ×

First address of
parameter table Output value

Input value

Icon:

Key entry: PI

Address Data
Type Symbol Name Specification I/O

0 W RLY Relay I/O Relay inputs and relay outputs* IN/OUT

1 W Kp P gain Gain for the P compensation
(A gain of 1 is equivalent to 100.)

IN

2 W Ki Integral adjustment
gain

Gain for the input to the integration circuit
(A gain of 1 is equivalent to 100.)

IN

3 W Ti Integral time Integral time (ms) IN

4 W IUL Upper integration
limit Upper limit for the I compensation IN

5 W ILL Lower integration
limit Lower limit for the I compensation IN

6 W UL PI upper limit Upper limit for the P + I compensation IN
7 W LL PI lower limit Lower limit for the P + I compensation IN
8 W DB PI output dead zone Dead zone width for the P + I compensation IN
9 W Y PI output PI compensation output (output to Out) OUT
10 W Yi I compensation I compensation storage OUT
11 W IREM I remainder I remainder storage OUT

Bit Symbol Name Specification I/O
0 IRST Reset integration bit This input is closed to reset the integration operation. IN

1 to 7 – (Reserved.) Spare input relays IN
8 to F – (Reserved.) Spare output relays OUT

5.8 DDC Instructions

5.8.4 PI Control (PI)

5-147

In
st

ru
ct

io
ns

5

[b] Parameter Table Configuration for PI Instruction with Real Numbers

∗ The relay input and output bit assignments are the same as for integers.

[c] Internal Operation of the Instruction

The deviation X input is used to calculate the output value (PI compensation) as shown below.
In the formula shown below, Yi’ is the previous I compensation of Yi and Ts is the scan time set value.

When IRST (reset integration) is closed, the PI compensation is calculated with the I compensation set to 0.

P compensation = Upper/lower limit (UL or LL) of (Kp × X)

Yi (I compensation) = Upper/lower limit (IUL or ILL) of { (Ki × X + IREM) / + Yi’}

Y (PI compensation) = P compensation + Upper/lower limit (UL or LL) and Dead zone A (Width DB) of the I
compensation

Address Data
Type Symbol Name Specification I/O

0 W RLY Relay I/O Relay inputs and relay outputs* IN/OUT

1 W – (Reserved.) Spare register –
2 F Kp P gain Gain for the P compensation IN

4 F Ki Integral adjustment
gain Gain for the input to the integral circuit IN

6 F Ti Integral time Integral time (s) IN

8 F IUL Upper integration
limit Upper limit for the I compensation IN

10 F ILL Lower integration
limit Lower limit for the I compensation IN

12 F UL PI upper limit Upper limit for the P + I compensation IN
14 F LL PI lower limit Lower limit for the P + I compensation IN
16 F DB PI output dead zone Dead zone width for the P + I compensation IN
18 F Y PI output PI compensation output (output to Out) OUT
20 F Yi I compensation I compensation storage OUT

Ti
Ts

5.8 DDC Instructions

5.8.4 PI Control (PI)

5-148

(3) Programming Example

This programming example calculates the reference value in MF00100 weighted with the PI compensation.
The deviation in DF00024 is obtained from the reference value in MF00100 and the current value in MF00098 and it is
used as the input to the PI instruction.
The reference value to output is obtained by adding the original reference value in MF00100 to the PI compensation
output in DF00026.
The following block diagram illustrates the programming example.

• Upper/lower limits
UL = 100, LL = -100

• Dead Zone A
DB = 10

Kp = 10 DF00026

DF00024

PI compensationDeviation

• Upper/lower limits
IUL = 100, ILL = -100

Ts/Ti
(Ti = 1.0 s)

Ki = 10

Previous I
compensation

+

+

+

+

MF00100

Reference value

MF00098

Current value (feedback)

PI Instruction

MF00100

MF00100
+

+

+
−

Reference value

Reference value weighted with the compensation

5.8 DDC Instructions

5.8.4 PI Control (PI)

5-149

In
st

ru
ct

io
ns

5

The programming example is shown below.
The OL00000 (reference value) and IL00002 (feedback value) registers are assigned to external devices.

5.8 DDC Instructions

5.8.5 PD Control (PD)

5-150

5.8.5 PD Control (PD)

(1) Operation

When deviation X is input, the PD instruction performs P and D operations and a range operation based on predefined
parameters in a parameter table, and outputs the result as compensation Y.
The input value to the PD instruction can be an integer or a real number. Double-length integers cannot be used.
The structure of the parameter table is different for integers and real numbers.

∗ The differential time (Td) changes based on the relationship between the change in the deviation input (X – X’)
and the previous deviation input (X’) as follows:

If the change in the deviation input (X – X’) and the previous deviation input (X’) have the same sign
(divergence)
→ Td = Td1 (differential time for divergence)
If the change in the deviation input (X – X’) and the previous deviation input (X’) have different signs (con-
vergence)
→ Td = Td2 (differential time for convergence)

The operation of the PD instruction can be expressed by the following formula, where X (s) is the input value and Y (s)
is the output value.

= Kp + Kd × Td × S

Deviation X Compensation Y
(PD output)

PD Compensation Value Range Operation
(Upper/Lower Limit + Dead Zone A)

P compensation

D compensation RCHK
+ DZA

Previous input value

X'

Kp

Kd Td/Ts

Differential (D) operation*

Input value for PD instruction
Output value for PD instruction

Kp: P (proportional) gain
Kd: D (differential) gain
Ts: Scan time
Td: Differential time

Y(s)

X(s)

5.8 DDC Instructions

5.8.5 PD Control (PD)

5-151

In
st

ru
ct

io
ns

5

(2) Format

∗ C and # registers cannot be used.

[a] Parameter Table Configuration for PD Instruction with Integers

∗ The relay input and output bits are assigned as given below.

First address of
parameter table Output value

Input value

Icon:

Key entry: PD

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input value (In) × × ×
First address of
parameter table (Prm) × × × × *

Output value (Out) × * × * × ×

Address Data
Type Symbol Name Specification I/O

0 W RLY Relay I/O Relay inputs and relay outputs* IN/OUT

1 W Kp P gain Gain for the P compensation
(A gain of 1 is equivalent to 100.)

IN

2 W Kd D gain Gain for the input to the differential circuit
(A gain of 1 is equivalent to 100.)

IN

3 W Td1 Differential time for
divergence Differential time used when the input diverges (ms) IN

4 W Td2 Differential time for
convergence Differential time used when the input converges (ms) IN

5 W UL PD upper limit Upper limit for the P + D compensation IN
6 W LL PD lower limit Lower limit for the P + D compensation IN
7 W DB PD output dead zone Dead zone width for the P + D compensation IN
8 W Y PD output PD compensation output (output to Out) OUT
9 W X Input value storage Storage of current input value OUT

Bit Symbol Name Specification I/O
0 to 7 – (Reserved.) Spare input relays IN
8 to F – (Reserved.) Spare output relays OUT

5.8 DDC Instructions

5.8.5 PD Control (PD)

5-152

[b] Parameter Table Configuration for PD Instruction with Real Numbers

∗ The relay input and output bit assignments are the same as for integers.

[c] Internal Operation of the Instruction

The deviation X input is used to calculate the PD compensation output as shown below.
In the formula shown below, X’ is the previous input value of X, Ts is the scan time set value, and Td* is the differen-
tial time.

∗ The differential time (Td) is Td1 when X – X’ and X’ have the same sign, and Td2 when X – X’ and X’ have dif-
ferent signs.

P compensation = Upper/lower limit (UL or LL) of (Kp × X)

D compensation = Kd × (X – X’) × Upper/lower limit (IUL or ILL) of

PD compensation = Upper/lower limit (UL or LL) of (P compensation + D compensation) and Dead zone A
(Width DB)

Address Data
Type Symbol Name Specification I/O

0 W RLY Relay I/O Relay inputs and relay outputs* IN/OUT

1 W – (Reserved.) Spare register –
2 F Kp P gain Gain for the P compensation IN
4 F Kd D gain Gain for the input to the differential circuit IN

6 F Td1 Differential time for
divergence Differential time used when the input diverges (s) IN

8 F Td2 Differential time for
convergence Differential time used when the input converges (s) IN

10 F UL PD upper limit Upper limit for the P + D compensation IN
12 F LL PD lower limit Lower limit for the P + D compensation IN
14 F DB PD output dead zone Dead zone width for the P + D compensation IN
16 F Y PD output PD compensation output (output to Out) OUT
18 F X Input value storage Storage of current input value OUT

Td
Ts

5.8 DDC Instructions

5.8.5 PD Control (PD)

5-153

In
st

ru
ct

io
ns

5

(3) Programming Example

This programming example calculates the reference value in MF00100 weighted with the PD compensation.
The deviation in DF00024 is obtained from the reference value in MF00100 and the current value in MF00098 and it is
used as the input to the PD instruction.
The reference value to output is obtained by adding the original reference value in MF00100 to the PD compensation
output in DF000026.
The following block diagram illustrates the programming example.

DF00026DF00024

PD compensation

Deviation

MF00100

Reference value

MF00098

Current value (feedback)

PD Instruction

MF00100

MF00100
+

+

+
−

Reference value

Reference value weighted with the compensation

• Upper/lower limits
UL = 100, LL = -100

• Dead Zone A
DB = 10

Kp = 10

Td/Ts
(Td1 = 1.0 s
Td2 = 2.0 s)

Kd = 10

Previous
input value

+

+

+

−

5.8 DDC Instructions

5.8.5 PD Control (PD)

5-154

The programming example is shown below.
The OL00000 (reference value) and IL00002 (feedback value) registers are assigned to external devices.

5.8 DDC Instructions

5.8.5 PD Control (PD)

5-155

In
st

ru
ct

io
ns

5

(4) Additional Information

[a] Transfer Functions

The transfer function of the P and D operations can be expressed by the formula shown below.
In this formula, X (s) is the input value and Y (s) is the output value.

= Kp + Kd × Td × S

[b] Divergence and Convergence

The following figure shows the relation between the current deviation X and previous deviation X’ on the divergence
and convergence sides.

Y(s)

X(s)

Deviation

X' = 10 X = 15

(X − X') = 5

Both are positive
(same sign).

• Example of a Diverging Deviation

X' = 15 X = 10

(X − X') = -5

The signs
are different.

• Example of a Converging Deviation

TimeTime

Deviation

5.8 DDC Instructions

5.8.6 PID Control (PID)

5-156

5.8.6 PID Control (PID)

(1) Operation

When deviation X is input, the PID instruction performs P, I, and D operations and a range operation based on pre-
defined parameters in a parameter table, and outputs the result as compensation Y.
When the reset integration bit in the parameter table is closed (turned ON), the PI compensation is calculated using an
I compensation value of 0.
The input value to the PID instruction can be an integer or a real number. Double-length integers cannot be used.
The structure of the parameter table is different for integers and real numbers.

∗ 1. If the P + I + D compensation crosses the UL or LL (PID upper or lower limit), or DB (PI dead zone),
the following processing is performed,

If the P compensation and I compensation have the same sign (divergence) → The previous value is
retained for the I compensation value.
If the P compensation and I compensation have different signs (convergence to 0) → The I compensation
value is updated to a new value.

∗ 2. The differential time (Td) changes based on the relationship between the change in the deviation input
(X – X') and the previous deviation input (X') as follows:

If the change in the deviation input (X – X’) and the previous deviation input (X’) have the same sign
(divergence)
→ Td = Td1 (differential time for divergence)
If the change in the deviation input (X – X’) and the previous deviation input (X’) have different signs (con-
vergence)
→ Td = Td2 (differential time for convergence)

The operation of the PID instruction can be expressed by the following formula, where X (s) is the input value and Y
(s) is the output value.

= Kp + Ki × + Kd × Td × S

Deviation X
Compensation Y

(PID output)
P compensation

I compensation Yi

Previous I compensation

Yi'

PID Compensation Value Range Operation*1

(Upper/Lower Limit + Dead Zone A)

RCHK

RCHK
+ DZA

Input value for PID instruction

Output value for PID instruction

Upper/lower limit for
I compensation

D compensation

Previous input value

X'
Differential (D) operation*2

Kp: P (proportional) gain
Ki: I (integral) gain
Kd: D (differential) gain
Ts: Scan time
Td: Differential time
Ti: Integral time

Ki

Kp

Kd Td/Ts

Ts/Ti

Y(s)

X(s)

1

Ti × s

5.8 DDC Instructions

5.8.6 PID Control (PID)

5-157

In
st

ru
ct

io
ns

5

(2) Format

∗ C and # registers cannot be used.

[a] Parameter Table Configuration for PID Instruction with Integers

∗ The relay input and output bits are assigned as given below. (Close = Bit change to 1 (ON), Open = Bit change to 0
(OFF))

First address of
parameter table Output value

Input value

Icon:

Key entry: PID

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input value (In) × × ×
First address of
parameter table (Prm) × × × × *

Output value (Out) × * × * × ×

Address Data
Type Symbol Name Specification I/O

0 W RLY Relay I/O Relay inputs and relay outputs* IN/OUT

1 W Kp P gain Gain for the P compensation
(A gain of 1 is equivalent to 100.)

IN

2 W Ki I gain Gain for the input to the integration circuit
(A gain of 1 is equivalent to 100.)

IN

3 W Kd D gain Gain for the input to the differential circuit
(A gain of 1 is equivalent to 100.)

IN

4 W Ti Integral time Integral time (ms) IN

5 W Td1 Differential time for
divergence Differential time used when the input diverges (ms) IN

6 W Td2 Differential time for
convergence Differential time used when the input converges (ms) IN

7 W IUL Upper integration
limit Upper limit for the I compensation IN

8 W ILL Lower integration
limit Lower limit for the I compensation IN

9 W UL PID upper limit Upper limit for the P + I compensation IN
10 W LL PID lower limit Lower limit for the P + I compensation IN
11 W DB PID output dead zone Dead zone width for the P + I compensation IN
12 W Y PID output PI compensation output (output to Out) OUT
13 W Yi I compensation I compensation storage OUT
14 W IREM I remainder I remainder storage OUT
15 W X Input value storage Storage of current input value OUT

Bit Symbol Name Specification I/O
0 IRST Reset integration bit This input is closed to reset the integration operation. IN

1 to 7 – (Reserved.) Spare input relays IN
8 to F – (Reserved.) Spare output relays OUT

5.8 DDC Instructions

5.8.6 PID Control (PID)

5-158

[b] Parameter Table Configuration for PID Instruction with Real Numbers

∗ The relay input and output bit assignments are the same as for integers.

[c] Internal Operation of the Instruction

The deviation X input is used to calculate the PID compensation output as shown below.
In the formula shown below, X’ is the previous input value of X, Y’ is the previous I compensation, Ts is the scan time
set value, and Td* is the differential time.

∗ The differential time (Td) is Td1 when X – X’ and X’ have the same sign, and Td2 when X – X’ and X’ have dif-
ferent signs.
When IRST (reset integration) is closed, the PID compensation is calculated with the I compensation set to 0.

P compensation = Upper/lower limit (UL or LL) of (Kp × X)

Yi (I compensation) = Upper/lower limit (IUL or ILL) of { (Ki × X + IREM) / + Yi’}

D compensation = Kd × (X – X’) × Upper/lower limit (IUL or ILL) of

Y (PID compensation) = Upper/lower limits (UL or LL) of P + I + D compensation values and dead zone A
(Width DB)

Address Data
Type Symbol Name Specification I/O

0 W RLY Relay I/O Relay inputs and relay outputs* IN/OUT

1 W – (Reserved.) Spare register IN
2 F Kp P gain Gain for the P compensation IN
4 F Ki I gain Gain for the input to the integral circuit IN
6 F Kd D gain Gain for the input to the differential circuit IN
8 F Ti Integral time Integral time (s) IN

10 F Td1 Differential time for
divergence Differential time used when the input diverges (s) IN

12 F Td2 Differential time for
convergence Differential time used when the input converges (s) IN

14 F IUL Upper integration
limit Upper limit for the I compensation IN

16 F ILL Lower integration
limit Lower limit for the I compensation IN

18 F UL PID upper limit Upper limit for the P + I + D compensation IN
20 F LL PID lower limit Lower limit for the P + I + D compensation IN
22 F DB PID output dead zone Dead zone width for the P + I + D compensation IN
24 F Y PID output PID compensation output (output to Out) OUT
26 F Yi I compensation I compensation storage OUT
28 F X Input value storage Storage of current input value OUT

Ti
Ts

Td
Ts

5.8 DDC Instructions

5.8.6 PID Control (PID)

5-159

In
st

ru
ct

io
ns

5

(3) Programming Example

This programming example calculates the reference value in MF00100 weighted with the PID compensation.
The deviation in MF00000 is obtained from the reference value in MF00100 and the current value in MF00098 and it is
used as the input to the PID instruction.
The reference value to output is obtained by adding the original reference value in MF00100 to the PID compensation
output in MF00002.
The following block diagram illustrates the programming example.

MF00002MF00000

PD compensation

Deviation

MF00100

Reference value

MF00098

Current value (feedback)

PID Instruction

MF00100

MF00100
+

+

+
−

Reference value

Reference value weighted with the compensation

• Upper/lower limits
UL = 100, LL = -100

• Dead Zone A
DB = 10

Kp = 10

Td/Ts
(Td1 = 1.0 s
Td2 = 2.0 s)

Kd = 10

Previous
input value

+

+

+

−

• Upper/lower limits
IUL = 100, ILL = -100

Ts/Ti
(Ti = 1.0 s)

Ki = 10

Previous I compensation

+

+

+

5.8 DDC Instructions

5.8.6 PID Control (PID)

5-160

The programming example is shown below.
 The OL00000 (reference value) and IL00002 (feedback value) registers are assigned to external devices.

5.8 DDC Instructions

5.8.7 First-order Lag (LAG)

5-161

In
st

ru
ct

io
ns

5

5.8.7 First-order Lag (LAG)

(1) Operation

The LAG instruction calculates the first-order lag according to predefined parameters in a parameter table.
The input value to the LAG instruction can be an integer or a real number. Double-length integers cannot be used.
The structure of the parameter table is different for integers and real numbers.

The LAG operation in the figure shown above can be expressed by the formula shown below.

The following operation is performed internally by the LAG instruction, where dt = Ts and dY = Y – Y’.
In the formula shown below, Y’ is the previous output value, Ts is the scan time set value,* and REM is the remainder.

∗ The unit for Ts is the same as the unit for T.

When IRST (LAG reset) is closed, Y outputs 0 and REM outputs 0.
The symbols in the figure correspond to those in the parameter table.

Output value Y for
LAG instruction

Input value X for
LAG instruction

Time (t)
Time constant T

Approx. 63% →

= 1
1 + T × s

Y(s)
X(s)

T × + Y = X
dY
dt

Therefore,

Y =
T × Y' + Ts × X + REM

T + Ts

5.8 DDC Instructions

5.8.7 First-order Lag (LAG)

5-162

(2) Format

∗ C and # registers cannot be used.

[a] Parameter Table Configuration for LAG Instruction with Integers

∗ The relay input and output bits are assigned as given below. (Close = Bit change to 1 (ON), Open = Bit change to 0
(OFF))

[b] Parameter Table Configuration for LAG Instruction with Real Numbers

∗ The relay input and output bit assignments are the same as for integers.

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input value (In) × × ×
First address of parameter
table (Prm) × × × × *

Output value (Out) × * × * × ×

First address of
parameter table Output value

Input value

Icon:

Key entry: LAG

Address Data
Type Symbol Name Specification I/O

0 W RLY Relay I/O Relay inputs and relay outputs* IN/OUT

1 W T First-order lag time
constant First-order lag time constant (ms) IN

2 W Y LAG output LAG output (output to Out) OUT
3 W REM Remainder Remainder storage OUT

Bit Symbol Name Specification I/O
0 IRST LAG reset bit This input is closed to reset the LAG operation. IN

1 to 7 – (Reserved.) Spare input relays IN
8 to F – (Reserved.) Spare output relays OUT

Address Data
Type Symbol Name Specification I/O

0 W RLY Relay I/O Relay inputs and relay outputs* IN/OUT

1 W – (Reserved.) Spare register –

2 F T First-order lag time
constant First-order lag time constant (s) IN

4 F Y LAG output LAG output (output to Out) OUT

5.8 DDC Instructions

5.8.7 First-order Lag (LAG)

5-163

In
st

ru
ct

io
ns

5

(3) Programming Example

In the following programming example, the LAG instruction is executed where MF00000 is the input value in the
parameter table, MF00002 is the output value, and the first-order lag time constant is set to 1.0.

MF00002 changes as shown below when the input value (MF00000) changes from 0 to 10,000.

MF00002 changes as shown below when the input value (MF00000) changes from 0 to -10,000.

0

10,000

Approx. 6,300

1.0 s

Input value
(MF00000)

Output value
(MF00002)

0

-10,000

Approx. -6,300

Input value
(MF00000)

Output value
(MF00002)

1.0 s

5.8 DDC Instructions

5.8.8 Phase Lead Lag (LLAG)

5-164

5.8.8 Phase Lead Lag (LLAG)

(1) Operation

The LLAG instruction calculates the phase lead and lag according to predefined parameters in a parameter table. The
input value to the LLAG instruction can be an integer or real number. Double-length integers cannot be used.
The structure of the parameter table is different for integers and real numbers.

The LLAG operation in the figure shown above can be expressed by the formula shown below.

Therefore,

The following operation is performed internally by the LLAG instruction, where dt = Ts, dY = Y – Y’, and dX = X –
X’.
In the formula shown below, Y’ is the previous output value, X’ is the previous input value, Ts is the scan time set
value*, and REM is the remainder.

∗ The unit for Ts is the same as the unit for T1.

 When IRST (LLAG reset) is closed, Y outputs 0, REM outputs 0, and X outputs 0.

Output value Y for
LLAG instruction

Input value X for
LLAG instruction

Time (t)

Phase lag time constant T1

Approx. 63% →

T2 + Ts
T1 + Ts X →

100%

0%

=
1 + T1 × s

Y(s)
X(s)

1 + T2 × s

T1 × + YdY
dt T2 × + XdX

dt=

Y =
T1 × Y' + (T2 + Ts) × X −T2 × X' + REM

T1 + Ts

5.8 DDC Instructions

5.8.8 Phase Lead Lag (LLAG)

5-165

In
st

ru
ct

io
ns

5

(2) Format

∗ C and # registers cannot be used.

[a] Parameter Table Configuration for LLAG Instruction with Integers

∗ The relay input and output bits are assigned as given below. (Close = Bit change to 1 (ON), Open = Bit change to 0
(OFF))

[b] Parameter Table Configuration for LLAG Instruction with Real Numbers

∗ The relay input and output bit assignments are the same as for integers.

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input value (In) × × ×
First address of
parameter table (Prm) × × × × *

Output value (Out) × * × * × ×

First address of
parameter table Output value

Input value

Icon:

Key entry: LLAG

Address Data
Type Symbol Name Specification I/O

0 W RLY Relay I/O Relay inputs and relay outputs* IN/OUT

1 W T2 Phase lead time con-
stant Phase lead time constant (ms) IN

2 W T1 Phase lag time con-
stant Phase lag time constant (ms) IN

3 W Y LLAG output LLAG output (output to Out) OUT
4 W REM Remainder Remainder storage OUT
5 W X Input value storage Input value storage OUT

Bit Symbol Name Specification I/O
0 IRST LLAG reset bit This input is closed to reset the LLAG operation. IN

1 to 7 – (Reserved.) Spare input relays IN
8 to F – (Reserved.) Spare output relays OUT

Address Data
Type Symbol Name Specification I/O

0 W RLY Relay I/O Relay inputs and relay outputs* IN/OUT

1 W – (Reserved.) Spare register –

2 F T2 Phase lead time con-
stant Phase lead time constant (s) IN

4 F T1 Phase lag time con-
stant Phase lag time constant (s) IN

6 F Y LLAG output LLAG output (output to Out) OUT
8 F X Input value storage Input value storage OUT

5.8 DDC Instructions

5.8.8 Phase Lead Lag (LLAG)

5-166

(3) Programming Example

In the following programming example, the LLAG instruction is executed where MF00000 is the input value,
MF00002 is the output value, the phase lead time constant is set to 1.0 seconds, and the phase lag time constant is set to
2.0 seconds.

MF00002 changes as shown below when the input value (MF00000) changes from 0 to 10,000.

MF00002 changes as shown below when the input value (MF00000) changes from 0 to -10,000.

0

10,000
Approx. 8,150

2.0 s

Input value
(MF00000)

Output value
(MF00002)

Approx. 5,000

0

−10,000
Approx. − 8,150

Input value
(MF00000)

Output value
(MF00002)

2.0 s

Approx. − 5,000

5.8 DDC Instructions

5.8.9 Function Generator (FGN)

5-167

In
st

ru
ct

io
ns

5

5.8.9 Function Generator (FGN)

(1) Operation

The FGN instruction generates a function based on the parameters specified in the parameter table. It then uses the
function to calculate output value Y based on the value of input X.
The FGN instruction will be for integers, double-length integers, or real numbers, depending on the data type of input
value X. The structure of the parameter table changes accordingly.

Create the parameter table so that X1 < X2 < ... < XN.

Output value Y is calculated from
input value X for the function
generated by the parameter table.

Output value Y

X1 X2 X3

Y1

Y2

Y3

Input value X

…

…

XN

YN

Function generated by setting X1…N,
Y1…N in the parameter table.

5.8 DDC Instructions

5.8.9 Function Generator (FGN)

5-168

(2) Format

∗ C and # registers cannot be used.

[a] Parameter Table Configuration for FGN Instruction with Integers

If input value X is an integer, the FGN instruction will be for integers.
Create the parameter table as shown below.

First address of
parameter table

Output value Y

Input value X

Icon:

Key entry: FGN

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input value X (In) × ×
First address of parameter
table (Prm) × × × × × ×

Output value Y (Out) × * * * × ×

Address Data
Type Symbol Name

0 W N Number of pairs of X and Y
1 W X1 Data X1

2 W Y1 Data Y1

3 W X2 Data X2

4 W Y2 Data Y2

: : : :

2N - 1 W XN Data XN

2N W YN Data YN

5.8 DDC Instructions

5.8.9 Function Generator (FGN)

5-169

In
st

ru
ct

io
ns

5

[b] Parameter Table Configuration for FGN Instruction with Double-length Integers or Real Numbers

If input value X is a double-length integer, the FGN instruction will be for double-length integers. If input value X is a
real number, the FGN instruction will be for real numbers.
Create the parameter table as shown below.

For the FGN instruction, make sure to set the data so that X1 < X2 < ⋅⋅⋅ < XN, regardless of whether the parameter table is for
integer data, double-length integer data, or real number data.

Address Data
Type Symbol Name

0 W N Number of pairs of X and Y
1 W – Reserved.
2 L/F X1 Data X1

4 L/F Y1 Data Y1

6 L/F X2 Data X2

8 L/F Y2 Data Y2

: : : :

4N - 2 L/F XN Data XN

4N L/F YN Data YN

X1 X2 X3

Y1

Y2

Y3

…

…

XN

YN

Function generated by setting X1…N,
Y1…N in the parameter table.

INFO

5.8 DDC Instructions

5.8.9 Function Generator (FGN)

5-170

(3) Programming Example

In the following programming example, the function is generated using the FGN instruction for real numbers with the
parameter table given below.

The following figure shows the relationship between input value X in MF00000 and output value Y in MF00002.

Number of Pairs 4
X1, Y1 0.0, 2.0
X2, Y2 10.0, 6.0
X3, Y3 20.0, 15.0
X4, Y4 30.0, 20.0

Input value X:
MF00000

Output value Y:
MF00002

0.0
10.0 20.0 30.0

2.0
6.0

15.0

20.0

X1, Y1

X2, Y2

X3, Y3

X4, Y4

5.8 DDC Instructions

5.8.9 Function Generator (FGN)

5-171

In
st

ru
ct

io
ns

5

(4) Additional Information

The FGN instruction searches for the pair Xn and Yn where Xn ≤ Input X ≤ Xn + 1 to calculate output value Y.

If the pair Xn and Yn, where Xn ≤ Input X ≤ Xn+1, does not exist, the calculation is as follows:

• If Input value X < X1,

• If Input value X > XN,

= Yn + –Xn) (1 ≤ n ≤ N – 1)× (Output value Y Yn+1 – Yn

Xn+1 – Xn
Input value X

= Y1 + –X1)× (Output value Y Y2 – Y1

X2 – X1
Input value X

= YN + –XN)× (Output value Y YN – YN-1

XN – XN-1
Input value X

5.8 DDC Instructions

5.8.10 Inverse Function Generator (IFGN)

5-172

5.8.10 Inverse Function Generator (IFGN)

(1) Operation

The IFGN instruction generates a function based on the parameters specified in the parameter table in the same way as
the FGN instruction.
It then uses the function to calculate output value X based on the value of input Y, i.e., the opposite direction from the
FGN instruction.
The structure of the parameter table is the same as for the FGN instruction.

Create the parameter table so that Y1 < Y2 < ... < YN.

Output value X is calculated from
input value Y for the function
generated by the parameter table.

Input value Y

X1 X2 X3

Y1

Y2

Y3

Output value X

…

…

XN

YN

Function generated by setting X1…N,
Y1…N in the parameter table.

5.8 DDC Instructions

5.8.10 Inverse Function Generator (IFGN)

5-173

In
st

ru
ct

io
ns

5

(2) Format

∗ C and # registers cannot be used.

[a] Parameter Table Configuration for IFGN Instruction with Integers

If input value Y is an integer, the IFGN instruction will be for integers.
Create the parameter table as shown below.

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input value Y (In) × ×
First address of
parameter table (Prm) × × × × × ×

Output value X (Out) × * * * × ×

First address of
parameter table

Output value X

Input value Y

Icon:

Key entry: IFGN

Address Data
Type Symbol Name

0 W N Number of pairs of X and Y
1 W X1 Data X1

2 W Y1 Data Y1

3 W X2 Data X2

4 W Y2 Data Y2

: : : :
2N - 1 W XN Data XN

2N W YN Data YN

5.8 DDC Instructions

5.8.10 Inverse Function Generator (IFGN)

5-174

[b] Parameter Table Configuration for IFGN Instruction with Double-length Integers or Real Numbers

If input value Y is a double-length integer, the IFGN instruction will be for double-length integers. If input value Y is a
real number, the IFGN instruction will be for real numbers.
Create the parameter table as shown below.

For the IFGN instruction, make sure to set the data so that Y1 < Y2 < ⋅⋅⋅ < YN, regardless of whether the parameter table is for
integer data, double-length integer data, or real number data.

Address Data
Type Symbol Name

0 W N Number of pairs of X and Y
1 W – Reserved.
2 L/F X1 Data X1

4 L/F Y1 Data Y1

6 L/F X2 Data X2

8 L/F Y2 Data Y2

: : : :

4N - 2 L/F XN Data XN

4N L/F YN Data YN

X1 X2 X3

Y1

Y2

Y3

…

…

XN

YN

Function generated by setting X1…N,
Y1…N in the parameter table.

INFO

5.8 DDC Instructions

5.8.10 Inverse Function Generator (IFGN)

5-175

In
st

ru
ct

io
ns

5

(3) Programming Example

In the following programming example, the function is generated using the IFGN instruction for real numbers with the
parameter table given below.

The following figure shows the relationship between input value Y in MF00002 and output value X in MF00000.

Number of Pairs 4
X1, Y1 0.0, 2.0
X2, Y2 10.0, 6.0
X3, Y3 20.0, 15.0
X4, Y4 30.0, 20.0

Output value X:
MF00000

Input value Y:
MF00002

0.0
10.0 20.0 30.0

2.0
6.0

15.0

20.0

X1, Y1

X2, Y2

X3, Y3

X4, Y4

5.8 DDC Instructions

5.8.10 Inverse Function Generator (IFGN)

5-176

(4) Additional Information

The IFGN instruction searches for the pair Xn and Yn where Yn ≤ Input Y ≤ Yn + 1 to calculate output value X.

If the pair Xn and Yn, where Yn ≤ Input Y ≤ Yn+1, does not exist, the calculation is as follows:

• If Input value Y < Y1,

• If Input value Y > YN,

= Xn + –Yn) (1 ≤ n ≤ N – 1)× (Output value X Xn+1 – Xn

Yn+1 – Yn
Input value Y

= X1 + –Y1)× (Output value X X2 – X1

Y2 – Y1
Input value Y

= XN + –YN)× (Output value X
XN – XN-1

YN – YN-1
Input value Y

5.8 DDC Instructions

5.8.11 Linear Accelerator/Decelerator 1 (LAU)

5-177

In
st

ru
ct

io
ns

5

5.8.11 Linear Accelerator/Decelerator 1 (LAU)

(1) Operation

The LAU instruction outputs the speed that results from applying a constant acceleration or deceleration rate to the
input speed. The acceleration or deceleration rate is applied according to predefined parameters in a parameter table.
The input value to the LAU instruction can be an integer or a real number. Double-length integers cannot be used.
The structure of the parameter table is different for integers and real numbers.

Time (t)

Input speed

BT
(deceleration time)

AT
(acceleration time)

100% level

LAU instruction input
speed waveform

Time (t)

LAU instruction
output speed waveform

Input speed

Acceleration/deceleration
rate set in parameters

5.8 DDC Instructions

5.8.11 Linear Accelerator/Decelerator 1 (LAU)

5-178

(2) Format

∗ C and # registers cannot be used.

[a] Parameter Table Configuration for LAU Instruction with Integers

∗ The relay input and output bits are assigned as given below. (Close = Bit change to 1 (ON), Open = Bit change to 0
(OFF))

If QS (quick stop) is opened, QT (quick stop time) is used as the acceleration/deceleration time.

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input speed (In) × × ×
First address of
parameter table (Prm) × × × × × ×

Output speed (Out) × * × * × ×

First address of
parameter table Output speed

Input speed

Icon:

Key entry: LAU

Address Data
Type Symbol Name Specification I/O

0 W RLY Relay I/O Relay inputs and relay outputs* IN/OUT

1 W LV 100% level of input Scale for 100% input IN
2 W AT Acceleration time Time to accelerate from 0% to 100% (0.1 s) IN
3 W BT Deceleration time Time to decelerate from 100% to 0% (0.1 s) IN
4 W QT Quick stop time Time to make a quick stop from 100% to 0% (0.1 s) IN
5 W V Current speed LAU output (output to Out) OUT

6 W DVDT Current acceleration/
deceleration rate Scaling with the normal acceleration rate set to 5,000 OUT

7 W – (Reserved.) Spare register –

8 W VIM Previous speed refer-
ence

For storage of the previous speed reference input
value

OUT

9 W DVDTK DVDT coefficient Scaling factor for DVDT (Current Acceleration Rate) IN
10 L REM Remainder Remainder of the acceleration/deceleration rate OUT

Bit Symbol Name Specification I/O
0 RN Line running This input is closed to run the line. IN
1 QS Quick stop This input is opened to execute a quick stop. IN

2 DVDTF Skip execution of DVDT
operation

This input is closed to skip execution of the DVDT
operation.

IN

3 DVDTS DVDT operation selection Selects the method for calculating DVDT IN
4 to 7 – (Reserved.) Spare input relays IN

8 ARY Accelerating This output is closed during acceleration. OUT
9 BRY Decelerating This output is closed during deceleration. OUT
A LSP Zero speed This output is closed during zero speed. OUT

B EQU Equal This output is closed when the input speed equals the
output speed.

OUT

C to F – (Reserved.) Spare output relays OUT

5.8 DDC Instructions

5.8.11 Linear Accelerator/Decelerator 1 (LAU)

5-179

In
st

ru
ct

io
ns

5

[b] Parameter Table Configuration for LAU Instruction with Real Numbers

∗ The relay input and output bits are assigned as given below. (Close = Bit change to 1 (ON), Open = Bit change to 0
(OFF))

If QS (quick stop) is opened, QT (quick stop time) is used as the acceleration/deceleration time.

The acceleration time (AT) is the time from the 0% speed to the 100% speed. The deceleration time (BT) is the time
from the 100% speed to the 0% speed. The 100% speed is set as the 100% level of input. The setting of this parameter
determines the acceleration/deceleration rate. When the input speed is applied, operation is performed at the accelera-
tion/deceleration rate.
Therefore, the ratio between the set value for LV (input at 100% level) and the input speed determines the actual accel-
eration/deceleration time.
Refer to (4) Additional Information for details on the processing that is performed internally by the LAU instruction.

When QS (quick stop) opens (OFF), the acceleration/deceleration time is set to the QT (quick stop time).
To execute a quick stop, open (OFF) QS (quick stop) and set the input speed to 0 at the same time.

Address Data
Type Symbol Name Specification I/O

0 W RLY Relay I/O Relay inputs and relay outputs* IN/OUT

1 W – (Reserved.) Spare register –
2 F LV 100% level of input Scale for 100% input IN
4 F AT Acceleration time Time to accelerate from 0% to 100% (s) IN
6 F BT Deceleration time Time to decelerate from 100% to 0% (s) IN
8 F QT Quick stop time Time to make a quick stop from 100% to 0% (s) IN
10 F V Current speed LAU output (output to Out) OUT

12 F DVDT Current acceleration/
deceleration rate The current acceleration or deceleration rate is output. OUT

Bit Symbol Name Specification I/O
0 RN Line running This input is closed to run the line. IN
1 QS Quick stop This input is opened to execute a quick stop. IN

2 to 7 – (Reserved.) Spare input relays IN
8 ARY Accelerating This output is closed during acceleration. OUT
9 BRY Decelerating This output is closed during deceleration. OUT
A LSP Zero speed This output is closed during zero speed. OUT

B EQU Equal This output is closed when the input speed equals the
output speed.

OUT

C to F – (Reserved.) Spare output relays OUT

Time (t)

Speed

BTAT

Output Speed Waveform When Input Speed Is at the 100% Input Level (LV)

0%

Input speed at
100% input level

INFO

5.8 DDC Instructions

5.8.11 Linear Accelerator/Decelerator 1 (LAU)

5-180

(3) Programming Example

In the following programming example, the LAU instruction for real numbers is executed with the specified accelera-
tion and deceleration rates where MF00000 is the input speed and MF00002 is the output speed.
The following parameters are set with an EXPRESSION instruction to create the acceleration or deceleration rate.

• 100% level of acceleration/deceleration rate input = 20,000
• Acceleration time = 2.5 s
• Deceleration time = 3.5 s
• Quick stop time = 0.5 s

The following figure shows how each register operates.

∗ 1. The acceleration time is applied when moving away from 0, and the deceleration time is applied when moving
toward 0.

∗ 2. The quick stop time is also applied as the acceleration time.

MB00100
(Quick stop bit OFF)

MF00000
(Input speed)

ON

OFF

0

20,000

MF00002
(Output speed) 0

20,000

3.5 s
(BT) 0.5 s*2

(QT)

-10,000

-10,000
2.5 s
(AT)

1.25 s*1

(AT/2)
1.75 s*1

(BT/2)

0.5 s
(QT)

(Quick stop time is applied.)(Acceleration time and deceleration time settings are applied.)

5.8 DDC Instructions

5.8.11 Linear Accelerator/Decelerator 1 (LAU)

5-181

In
st

ru
ct

io
ns

5

(4) Additional Information

This information applies when the LAU instruction is used for integer or real number data.

[a] LAU Instruction with Integers

The LAU instruction for integers calculates the speed output value during acceleration, deceleration, and quick stops,
and the current acceleration or deceleration rates using the formula shown below based on predefined parameters.
In this formula, V is the speed output value, V’ is the previous speed output value, VI is the input value for the speed
reference, and Ts is the scan time set value.

Speed Output Value during Acceleration

The speed output value during acceleration is calculated as follows:

Speed Output Value during Deceleration

The speed output value during deceleration is calculated as follows:

Speed Output Value during a Quick Stop

The speed output value during a quick stop is calculated as follows:

Current Acceleration/Deceleration Rate

If DVDTF is ON, DVDT (current acceleration/deceleration rate) will be calculated according to the setting of DVDTS
(DVDT operation selection) using one of the following formulas. If DVDTF is OFF, DVDT is set to 0.

ARY (accelerating) turns ON when V’ ≥ 0 and ADV > 0, or when V’ ≤ 0 and ADV < 0.
BRY (decelerating) turns ON at the following times:
• When V’ < 0 and BDV > 0, or when V’ > 0 and BDV < 0
• When V’ < 0 and QDV > 0, or when V’ > 0 and QDV < 0
LSP (zero speed) turns ON when V equals 0. EQU (equal) turns ON when VI equals V.
If RN (line running) is opened (OFF), the outputs for V, DVDT, and REM are set to 0.

ADV (acceleration rate) = LV × Ts (0.1 ms) + REM
AT (0.1 s) × 1,000

If VI > V' (V' ≥ 0), then V = V' + ADV.
If VI < V' (V' ≤ 0), then V = V' − ADV.

If VI > V' (V' < 0), then V = V' + BDV.
If VI < V' (V' > 0), then V = V' − BDV.

BDV (deceleration rate) = LV × Ts (0.1 ms) + REM
BT (0.1 s) × 1,000

If QS = OFF (VI > V', V' < 0), then V = V' + QDV.
If QS = OFF (VI < V', V' > 0), then V = V' − QDV.

QDV (Quick Stop Rate) = LV × Ts (0.1 ms) + REM
QT (0.1 s) × 1,000

If DVDTS = ON, DVDT =

If DVDTS = ON, DVDT = (V – V') × DVDTK

(V – V') × 5,000
ADV

INFO

5.8 DDC Instructions

5.8.11 Linear Accelerator/Decelerator 1 (LAU)

5-182

[b] LAU Instruction for Real Numbers

The LAU instruction for real numbers calculates the speed output value during acceleration, deceleration, and quick
stops, and the current acceleration or deceleration rates using the formula shown below based on predefined parame-
ters.
In this formula, V is the speed output value, V’ is the previous speed output value, VI is the input value for the speed
reference, and Ts is the scan time set value.

Speed Output Value during Acceleration

The speed output value during acceleration is calculated as follows:

Speed Output Value during Deceleration

The speed output value during deceleration is calculated as follows:

Speed Output Value during a Quick Stop

The speed output value during a quick stop is calculated as follows:

Current Acceleration/Deceleration Rate

The DVDT (current acceleration/deceleration rate) is calculated as follows after V (speed output) has been calculated:
DVDT = V - V’

ARY (accelerating) turns ON when V’ ≥ 0 and ADV > 0, or when V’ ≤ 0 and ADV < 0.
BRY (decelerating) turns ON at the following times:
• When V’ < 0 and BDV > 0, or when V’ > 0 and BDV < 0
• When V’ < 0 and QDV > 0, or when V’ > 0 and QDV < 0
LSP (zero speed) turns ON when V equals 0. EQR (equal) turns ON when VI equals V.
ARY (accelerating) turns ON when V ≠ V’ and DVDT and V have the same sign and BRY (decelerating) turns ON when V ≠
V’ and DVDT and V do not have the same sign.
If RN (line running) is opened (OFF), the outputs for V and DVDT are set to 0.

ADV (acceleration rate) = LV × Ts (0.1 ms)
AT (s) × 10,000

If VI > V' (V' ≥ 0), then V = V' + ADV.
If VI < V' (V' ≤ 0), then V = V' − ADV.

If VI < V' (V' > 0), then V = V' + BDV.
If VI > V' (V' < 0), then V = V' − BDV.

BDV (deceleration rate) = – LV × Ts (0.1 ms)
BT (s) × 10,000

If QS = OFF (VI < V', V' > 0), then V = V' + QDV.
If QS = OFF (VI > V', V' < 0), then V = V' − QDV.

QDV (Quick Stop Rate) = – LV × Ts (0.1 ms)
QT (s) × 10,000

INFO

5.8 DDC Instructions

5.8.11 Linear Accelerator/Decelerator 1 (LAU)

5-183

In
st

ru
ct

io
ns

5

[c] Precaution When Input Speed Changes Across a Speed of 0

If a reference is input that causes the speed to cross a speed of 0, the output changes as shown by in the following
figure.

If operation stops at a speed of 0, operation will proceed according to the set deceleration and acceleration times.
If the speed reference crosses the point where speed equals 0, operation is controlled by the deceleration time so
that the speed does not fluctuate.

 Positive Speed → 0 → Negative Speed

Deceleration DecelerationAccelerationDeceleration AccelerationDeceleration

0

 Negative Speed → 0 → Positive Speed

V

5.8 DDC Instructions

5.8.12 Linear Accelerator/Decelerator 2 (SLAU)

5-184

5.8.12 Linear Accelerator/Decelerator 2 (SLAU)

(1) Operation

The SLAU instruction outputs the speed that results from applying a variable acceleration or deceleration rate to the
input speed. Operation for the acceleration or deceleration rate is performed in an S curve according to predefined
parameters in a parameter table.
The input value to the SLAU instruction can be an integer or a real number.
The structure of the parameter table depends on the data type.

Double-length integers can be used only for CPU software version 2.30 or higher. For earlier versions, the lower 16
bits of the double-length integer are used in the calculations as an integer.

100% level of input

Acceleration/deceleration rate set in parameters

Input speed

Input speed

SLAU instruction
input speed waveform

Time (t)

SLAU instruction
output speed waveform

Time (t)Acceleration time +
Acceleration S-curve time

(AT + AAT)

Deceleration time +
Deceleration S-curve time

(BT + BBT)

5.8 DDC Instructions

5.8.12 Linear Accelerator/Decelerator 2 (SLAU)

5-185

In
st

ru
ct

io
ns

5

(2) Format

∗ 1. This data type can be used only for version 2.30 or higher. For earlier versions, the lower 16 bits of the double-
length integer are used in the calculations as an integer.

∗ 2. C and # registers cannot be used.

[a] Parameter Table Configuration for SLAU Instruction with Integers

∗ The relay input and output bits are assigned as follows. (Close = Bit change to 1 (ON), Open = Bit change to 0
(OFF))

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input speed (In) × *1 × ×

First address of parameter
table (Prm) × × × × *2

Output speed (Out) × *2 *1, 2 *2 × ×

First address of
parameter table Output speed

Input speed

Icon:

Key entry: SLAU

Address Data
Type Symbol Name Specification I/O

0 W RLY Relay I/O Relay inputs and relay outputs* IN/OUT

1 W LV 100% level of input Scale for 100% input IN
2 W AT Acceleration time Time to accelerate from 0% to 100% (0.1 s) IN
3 W BT Deceleration time Time to decelerate from 100% to 0% (0.1 s) IN
4 W QT Quick stop time Time to make a quick stop from 100% to 0% (0.1 s) IN
5 W AAT Acceleration S-curve time Acceleration S-curve region time (0.01 to 32.00 s) IN
6 W BBT Deceleration S-curve time Deceleration S-curve region time (0.01 to 32.00 s) IN
7 W V Current speed SLAU output (output to Out) OUT

8 W DVDT1 Current acceleration/
deceleration rate 1 Scaling with the normal acceleration rate set to 5,000 OUT

9 W – (Reserved.) Spare register –

10 W ABMD Speed increase when
holding

Amount of speed change until the speed stabilizes
after the hold command is executed

OUT

11 W REM1 Remainder Remainder of the acceleration/deceleration rate OUT
12 W – (Reserved.) Spare register –

13 W VIM Previous speed reference For storage of the previous speed reference input
value

OUT

14 L DVDT2 Current acceleration/
deceleration rate 2 1,000 times the actual acceleration/deceleration OUT

16 L DVDT3 Current acceleration/
deceleration rate 3

Current acceleration/deceleration rate (= DVDT2/
1,000)

OUT

18 L REM2 Remainder Remainder of the S-curve region acceleration/decel-
eration rate

OUT

20 W REM3 Remainder Remainder of the current speed OUT

21 W DVDTK DVDT1 coefficient Scaling factor for DVDT (Current acceleration rate 1)
(-32,768 to 32,767)

OUT

5.8 DDC Instructions

5.8.12 Linear Accelerator/Decelerator 2 (SLAU)

5-186

If QS (quick stop) is opened, QT (quick stop time) is used as the acceleration/deceleration time.

[b] Parameter Table Configuration for SLAU Instruction with Double-length Integers

∗ 1. D is a double-length real number expressed in four words. The MPE720 cannot display this value as a real number.
∗ 2. The relay input and output bits are assigned as given below. (Close = Bit change to 1 (ON), Open = Bit change to 0

(OFF))

If QS (quick stop) is opened, QT (quick stop time) is used as the acceleration/deceleration time.

Bit Symbol Name Specification I/O
0 RN Line running This input is closed to run the line. IN
1 QS Quick stop This input is opened to execute a quick stop. IN

2 DVDTF Skip execution of DVDT1
operation This input is closed to skip execution of the DVDT operation. IN

3 DVDTS DVDT1 operation selection Selects the method for calculating DVDT IN
4 to 7 – (Reserved.) Spare input relays IN

8 ARY Accelerating This output is closed during acceleration. OUT
9 BRY Decelerating This output is closed during deceleration. OUT
A LSP Zero speed This output is closed during zero speed. OUT
B EQU Equal This output is closed when the input speed equals the output speed. OUT
C – (Reserved.) Spare output relay OUT
D CCF Work relay System internal work relay OUT
E BBF Work relay System internal work relay OUT
F AAF Work relay System internal work relay OUT

Address Data
Type Symbol Name Specification I/O

0 W RLY Relay I/O Relay inputs and relay outputs*1 IN/OUT

1 W – (Reserved.) – –
2 L LV 100% level of input Scale for 100% of input value IN
4 L AT Acceleration time Time to accelerate from 0% to 100% (0.1 s) IN
6 L BT Deceleration time Time to decelerate from 100% to 0% (0.1 s) IN
8 L QT Quick stop time Time to make a quick stop from 100% to 0% (0.1 s) IN
10 L AAT Acceleration S-curve time Acceleration S-curve region time (0.01 s) IN
12 L BBT Deceleration S-curve time Deceleration S-curve region time (0.01 s) IN
14 L V Current speed SLAU output (also the output to the A register) OUT

16 L DVDT Current acceleration/
deceleration rate

The current acceleration or deceleration rate is output.
(The output is truncated below the decimal point.)*2 OUT

18 L ABMD Speed increase when
holding

Amount of speed change until the speed stabilizes after the
hold command is executed

OUT

20 D V_D Current speed SLAU output for system use (double-precision real number) IN/OUT

24 D DVDT_D Current acceleration/
deceleration rate

Current acceleration or deceleration rate for system use
(double-precision real number)

IN/OUT

Bit Symbol Name Specification I/O
0 RN Line running This input is closed to run the line. IN
1 QS Quick stop This input is opened to execute a quick stop. IN

2 DVDTF Acceleration/deceleration
rate flag

When the input is closed, DVDT (current acceleration/
deceleration rate) is multiplied by 1,000 and then output.

IN

3 to 7 – (Reserved.) Spare input relays IN
8 ARY Accelerating This output is closed during acceleration. OUT
9 BRY Decelerating This output is closed during deceleration. OUT
A LSP Zero speed This output is closed during zero speed. OUT

B EQU Equal This output is closed when the input value equals the out-
put value.

OUT

C to F – Work relays System internal work relays IN/OUT

5.8 DDC Instructions

5.8.12 Linear Accelerator/Decelerator 2 (SLAU)

5-187

In
st

ru
ct

io
ns

5

[c] Parameter Table Configuration for SLAU Instruction with Real Numbers

∗ The relay input and output bits are assigned as given below. (Close = Bit change to 1 (ON), Open = Bit change to 0
(OFF))

If QS (quick stop) is opened, QT (quick stop time) is used as the acceleration/deceleration time.

Refer to (4) Additional Information for details on the processing that is performed internally by the LAU instruction.

Address Data
Type Symbol Name Specification I/O

0 W RLY Relay I/O Relay inputs and relay outputs* IN/OUT

1 W – (Reserved.) Spare register –
2 F LV 100% level of input Scale for 100% input IN
4 F AT Acceleration time Time to accelerate from 0% to 100% (s) IN
6 F BT Deceleration time Time to decelerate from 100% to 0% (s) IN
8 F QT Quick stop time Time to make a quick stop from 100% to 0% (s) IN

10 F AAT Acceleration S-curve time Acceleration S-curve region time (s) IN
12 F BBT Deceleration S-curve time Deceleration S-curve region time (s) IN
14 F V Current speed SLAU output (output to Out) OUT

16 F DVDT1 Current acceleration/
deceleration rate 1 The actual acceleration or deceleration rate is output. OUT

18 F ABMD Speed increase when hold-
ing

Amount of speed change until the speed stabilizes
after the hold command is executed

OUT

Bit Symbol Name Specification I/O
0 RN Line running This input is closed to run the line. IN
1 QS Quick stop This input is opened to execute a quick stop. IN

2 to 7 – (Reserved.) Spare input relays IN
8 ARY Accelerating This output is closed during acceleration. OUT
9 BRY Decelerating This output is closed during deceleration. OUT
A LSP Zero speed This output is closed during zero speed. OUT

B EQU Equal This output is closed when the input speed equals the
output speed.

OUT

C to F – (Reserved.) Spare output relays OUT

Speed at
100% input

Linear
period

AT - AAT

S-curve
region

AAT

S-curve
region

AAT

S-curve
region

BBT

Linear
period

BT - BBT

S-curve
region

BBT

BT

BT + BBT

AT

AT + AAT

Acceleration Deceleration

Start of
acceleration

End of
acceleration

Start of
deceleration

End of
deceleration

5.8 DDC Instructions

5.8.12 Linear Accelerator/Decelerator 2 (SLAU)

5-188

When QS (quick stop) opens (OFF), the output decelerates at the quick stop time and the output speed is set to 0.
It is not necessary to set the input speed to 0 in the same way as for the LAU instruction.
For a quick stop, the speed is decelerated linearly without applying the S-curve.
Set the parameters so that AT or BT (linear acceleration or deceleration time) is greater than or equal to AAT or BBT (S-curve
acceleration or deceleration time).

(3) Programming Example

In the following programming example, the SLAU instruction for real numbers is executed with the specified accelera-
tion and deceleration rates where MF00000 is the input speed and MF00002 is the output speed.
The following parameters are set with an EXPRESSION instruction to create the acceleration or deceleration rate.

• Speed when input level of acceleration or deceleration rate is 100% = 20,000
• Acceleration time = 1.5 s
• Deceleration time = 2.5 s
• Quick stop time = 0.5 s
• Acceleration S-curve time = 0.5 s
• Deceleration S-curve time = 1.0 s

INFO

5.8 DDC Instructions

5.8.12 Linear Accelerator/Decelerator 2 (SLAU)

5-189

In
st

ru
ct

io
ns

5

The following figure shows how each register operates.

∗ If the quick stop bit is turned OFF, the speed is decelerated to a stop using the quick stop time, regardless of the S-
curve time and input speed.

(4) Additional Information

The following operations are performed internally by the SLAU instruction.

[a] Operation of the SLAU Instruction for Integers

The SLAU instruction for integers calculates the speed output value during acceleration, deceleration, quick stops, S-
curve acceleration, S-curve deceleration, and the current acceleration or deceleration rates using the formulas shown
below based on predefined parameters.
In this formula, V is the speed output value, V’ is the previous speed output value, VI is the input value for the speed
reference, and Ts is the scan time set value.

Speed Output Value during Acceleration

The speed output value during acceleration is calculated as follows:

Speed Output Value during Deceleration

The speed output value during deceleration is calculated as follows:

MB00100
(Quick stop bit OFF)

MF00000
(Input speed)

ON

OFF

0

20,000

MF00002
(Output speed) 0

20,000

−10,000

−10,000 2.0 s
(AT + AAT)

(Acceleration time, deceleration time, and S-curve time settings are applied.)

3.5 s
(BT + BBT)

1.25 s
(AT/2 + AAT)

2.25 s
(BT/2 + BBT)

2.0 s
(AT + AAT)

1.0 s*
(QT)

(Quick stop time
is applied.)

ADV (acceleration rate) = LV × Ts (0.1 ms) + REM1
AT (0.1 s) × 1,000

If VI > V' (V' ≥ 0) outside an S-curve region (ADVS > ADV), then V = V' + ADV.
If VI < V' (V' ≤ 0) outside an S-curve region (ADVS > ADV), then V = V' − ADV.

If VI > V' (V'< 0) outside an S-curve region (BDVS > BDV), then V = V' + BDV.
If VI < V' (V'> 0) outside an S-curve region (BDVS > BDV), then V = V' − BDV.

BDV (deceleration rate) = LV × Ts (0.1 ms) + REM1
BT (0.1 s) × 1,000

5.8 DDC Instructions

5.8.12 Linear Accelerator/Decelerator 2 (SLAU)

5-190

Speed Output Value during a Quick Stop

The speed output value during a quick stop is calculated as follows:

For a quick stop, the speed is decelerated linearly without applying the S-curve.

Speed Output Value during S-Curve Acceleration

The speed output value during S-curve acceleration is calculated as follows:

Speed Output Value during S-Curve Deceleration

The speed output value during S-curve deceleration is calculated as follows:

Current Acceleration/Deceleration Rate

If DVDTF (skip execution of DVDT1 operation) is ON, DVDT1 (current acceleration/deceleration rate 1) will be cal-
culated according to the setting of DVDTS (DVDT1 operation selection) using one of the following formulas. If
DVDTF is OFF, DVDT1 is set to 0.

The value for DVDT2 (current acceleration/deceleration rate 2) is calculated as follows:
During acceleration: Inside the S-curve region: DVDT2 = ±ADVS

Outside the S-curve region: DVDT2 = ±ADV
During deceleration: Inside the S-curve region: DVDT2 = ±BDVS

Outside the S-curve region: DVDT2 = ±BDV
During a quick stop: DVDT = ±QDV

The result of ABMD (speed increase upon holding) is output after the following operation is performed.

If QS = OFF (VI > V', V' < 0), then V = V' + QDV.
If QS = OFF (VI < V', V' > 0), then V = V' − QDV.

QDV (Quick Stop Rate) = LV × Ts (0.1 ms) + REM1
QT (0.1 s) × 1,000

AADVS = ADV × Ts (0.1 ms) + REM2
AAT (0.01 s) × 100

If VI > V' (V' ≥ 0) inside an S-curve region (ADVS < ADV), then V = V' + ADVS.
If VI < V' (V' ≤ 0) inside an S-curve region (ADVS < ADV), then V = V' − ADVS.

ADVS (S-curve region acceleration rate) = ADVS' ± AADVS

BBDVS = BDV × Ts (0.1 ms) + REM2
BBT (0.01 s) × 100

BDVS (S-curve region deceleration rate) = BDVS' ± BBDVS

If VI > V' (V'< 0) inside an S-curve region (BDVS < BDV), then V = V' + BDVS.
If VI < V' (V'> 0) inside an S-curve region (BDVS < BDV), then V = V' − BDVS.

If DVDTS is ON, DVDT1 =

If DVDTS is OFF, DVDT1 = (V – V') × DVDTK

(V – V') × 5,000
ADV

ABMD =

DVDT2': Previous value of DVDT2 (current acceleration/deceleration rate 2)

DVDT2' × DVDT2'
2 × AADVS (BBDVS)

5.8 DDC Instructions

5.8.12 Linear Accelerator/Decelerator 2 (SLAU)

5-191

In
st

ru
ct

io
ns

5

ARY (accelerating) turns ON at the following times:
• When V’ ≥ 0 and ADV > 0, or when V’ ≤ 0 and ADV < 0
• If V’ ≥ 0 and ADVS > 0 inside an S-curve region, or if V’ ≤ 0 and ADVS < 0 inside an S-curve region
BRY (decelerating) turns ON at the following times:
• When V’ < 0 and BDV > 0, or when V’ > 0 and BDV < 0
• When V’ < 0 and QDV > 0, or when V’ > 0 and QDV < 0
• When V’ < 0 and BDVS > 0 inside an S-curve region, or if V’ > 0 and BDVS < 0 inside an S-curve region
LSP (zero speed) turns ON when V equals 0. EQU (equal) turns ON when VI equals V.
If RN (line running) is opened (OFF), the outputs for V, DVDT1, DVDT2, DVDT3, REM1, REM2, and REM3 are set to 0.

[b] Operation of the SLAU Instruction for Double-length Integers or Real Numbers

The SLAU instruction for double-length integers or real numbers calculates the speed output value during acceleration,
deceleration, quick stops, S-curve acceleration, S-curve deceleration, and the current acceleration or deceleration rates
using the formulas shown below.
In this formula, V is the speed output value, V’ is the previous speed output value, VI is the input value for the speed
reference, Ts is the scan time set value, ADVS’ is the previous ADVS value, and BDVS’ is the previous BDVS value.

Speed Output Value during Acceleration

The speed output value during acceleration is calculated as follows:

Speed Output Value during Deceleration

The speed output value during deceleration is calculated as follows:

Speed Output Value during a Quick Stop

The speed output value during a quick stop is calculated as follows:

For a quick stop, the speed is decelerated linearly without applying the S-curve.

INFO

ADV (acceleration rate) = LV × Ts (0.1 ms)
AT (s) × 10,000

If VI > V' (V' ≥ 0) outside an S-curve region (ADVS > ADV), then V = V' + ADV.
If VI < V' (V' ≤ 0) outside an S-curve region (ADVS > ADV), then V = V' − ADV.

If VI > V' (V'< 0) outside an S-curve region (BDVS > BDV), then V = V' + BDV.
If VI < V' (V'> 0) outside an S-curve region (BDVS > BDV), then V = V' − BDV.

BDV (deceleration rate) = – LV × Ts (0.1 ms)
BT(s) × 10,000

If QS = OFF (VI > V', V' < 0), then V = V' + QDV.
If QS = OFF (VI < V', V' > 0), then V = V' − QDV.

QDV (Quick Stop Rate) = – LV × Ts (0.1 ms)
QT (s) × 10,000

5.8 DDC Instructions

5.8.12 Linear Accelerator/Decelerator 2 (SLAU)

5-192

Speed Output Value during S-Curve Acceleration

The speed output value during S-curve acceleration is calculated as follows:

Speed Output Value during S-Curve Deceleration

The speed output value during S-curve deceleration is calculated as follows:

Current Acceleration/Deceleration Rate

The value of DVDT (current acceleration/deceleration rate 1) is output after the following operation is performed:
During acceleration: Inside the S-curve region: DVDT = ADVS

Outside the S-curve region: DVDT = ADV
During deceleration: Inside the S-curve region: DVDT = BDVS

Outside the S-curve region: DVDT = BDV
During a quick stop: DVDT = QDV

The result of ABMD (speed increase upon holding) is output after the following operation is performed.

LSP (zero speed) turns ON when V equals 0. EQU (equal) turns ON when VI equals V.
If RN (line running) is opened (OFF), the outputs for V, DVDT, and AVMD are set to 0.

AADVS = ADV × Ts (0.1 ms)
AAT (s) × 10,000

ADVS (S-curve region acceleration rate) = ADVS’ ± AADVS

If VI > V' (V' ≥ 0) inside an S-curve region (ADVS < ADV), then V = V' + ADVS.
If VI < V' (V' ≤ 0) inside an S-curve region (ADVS < ADV), then V = V' − ADVS.

BBDVS = BDV × Ts (0.1 ms)
BBT (s) × 10,000

BDVS (S-curve region deceleration rate) = BDVS' ± BBDVS

If VI > V' (V'< 0) inside an S-curve region (BDVS < BDV), then V = V' + BDVS.
If VI < V' (V'> 0) inside an S-curve region (BDVS < BDV), then V = V' − BDVS.

ABMD = DVDT × DVDT
2 × AADVS (BBDVS)

INFO

5.8 DDC Instructions

5.8.12 Linear Accelerator/Decelerator 2 (SLAU)

5-193

In
st

ru
ct

io
ns

5

[c] Precautions in Using the SLAU Instruction for Integers

Do not change the input value before the input speed (VI) is reached (i.e., during acceleration or deceleration).
Otherwise, overshooting or undershooting may occur as shown in the following figures.

If VI (input value) must be changed while accelerating or decelerating, take one of the following measures in your
application program.

• Use the SLAU instruction for real numbers.
• Use the SLAU instruction for integers together with the LIMIT instruction. Specifically, use the output value of

the SLAU instruction for integers as the input value to the LIMIT instruction to prevent overshooting or under-
shooting.

[d] Precaution When Canceling a Quick Stop While Decelerating during a Quick Stop

When decelerating for a quick stop, do not cancel the quick stop before the output speed reaches 0. Otherwise, under-
shooting may occur while approaching the input speed.

If you must reset the quick stop before the output speed reaches 0 and undershooting is a problem, take one of the fol-
lowing measures in your application program.

• Do not cancel the quick stop before the output speed reaches 0.
• Use the LIMIT instruction on the output speed to prevent undershooting when the quick stop is canceled.

Time

Speed

VI

0

Reference input changed
during acceleration

(VI was changed to 0).

Reference input changed
during deceleration

(0 was changed to VI).

Overshoot

Undershoot

Speed

VI

0 Time

Time

Speed

VI

0

Quick stop

Quick stop canceled
before speed is 0.

Undershoot

5.8 DDC Instructions

5.8.13 Pulse Width Modulation (PWM)

5-194

5.8.13 Pulse Width Modulation (PWM)

(1) Operation

The PWM instruction converts the input value (from -100.00% to 100.00%) using pulse-width modulation and outputs
the result to the output value and parameter table. The input value and output value must be integers. Double-length
integers and real numbers cannot be used.

The ON output time and number of ON output scans of the PWM instruction can be calculated with the following for-
mula.
X is the input value, PWMT is the PWM cycle (ms), and Ts is the scan time set value (ms).

The relation between the input value and the PWM output ON ratio is as follows:
Input value 100.00% → 100% ON (ON output time = PWMT)
Input value 0.00% → 50% ON (ON output time = PWMT/2)
Input value -100.00% → 0% ON (ON output time = 0)

After turning ON the power supply, close PWMRST (PWM reset) to clear all internal calculations before using
the PWM instruction. When the PWM reset bit is closed, all internal calculations are reset and then the PMW
operation starts execution from that point.

1
(ON)

0
(OFF)

0
(OFF)

1
(ON)

PWMT (PWM cycle)

ON output time
(number of ON output scans)

Output value for
PWM instruction

Scan

PWMT (PWM cycle)

ON output time =

Number of ON output scans =

PWMT (X + 10,000)
20,000

PWMT (X + 10,000)
Ts × 20,000

5.8 DDC Instructions

5.8.13 Pulse Width Modulation (PWM)

5-195

In
st

ru
ct

io
ns

5

(2) Format

∗ C and # registers cannot be used.

[a] Ranges of Input and Output Values

The input value must be between -10,000 and 10,000 in units of 0.01%.
If the input exceeds this range, processing is performed for the upper limit (10,000) and the lower limit (-10,000).
The output value is set to 1 when the PWM output is ON, or to 0 when the PWM output is OFF.

[b] Parameter Table Configuration

∗ The relay input and output bits are assigned as given below. (Close = Bit change to 1 (ON), Open = Bit change to 0
(OFF))

Parameter Name
Applicable Data Types

B W L F A Index Constant
Input value (In) × × × ×
First address of
parameter table (Prm) × × × × *

Output value (Out) * × × × × ×

First address of
parameter table Output value

Input value

Icon:

Key entry: PWM

Address Data
Type Symbol Name Specification I/O

0 W RLY Relay I/O Relay inputs and relay outputs* IN/OUT

1 W RWMT PWM cycle PWM cycle (1 ms)
Range: 1 to 32,767 ms

IN

2 W ONCNT ON output setting timer ON output setting timer (1 ms) OUT
3 W CVON ON output counting timer ON output counting timer (1 ms) OUT

4 W CVONREM ON output counting timer remainder ON output counting timer remainder
(0.1 ms)

OUT

5 W OFFCNT OFF output setting timer OFF output setting timer (1 ms) OUT
6 W CVOFF OFF output counting timer OFF output counting timer (1 ms) OUT

7 W CVOFFREM OFF output counting timer remain-
der

OFF output counting timer remainder
(0.1 ms)

OUT

Bit Symbol Name Specification I/O
0 PWMRST PWM reset bit This input is closed to reset the PWM operation. IN

2 to 7 – (Reserved.) Spare input relays IN

8 PWMOUT PWM output
PWM output
(The output value is set to 1 when the output is ON, or
to 0 when the output is OFF.)

OUT

9 to F – (Reserved.) Spare output relays OUT

5.8 DDC Instructions

5.8.13 Pulse Width Modulation (PWM)

5-196

(3) Programming Example

In the following programming example, the PWM output for the input value in MW00000 is stored in OB000000
where the PWM cycle is 100 ms.

This figure shows the output of OB000000 when MW00000 is 0 (0%: ON output time is 1/2 of the PWM cycle).

This figure shows the output of OB000000 when MW00000 is 7,500 (75%: ON output time is 3/4 of the PWM cycle).

PWM cycle = 100 ms

ON

OFF ON output time = 50 ms
Number of ON output scans = 50 ms/scan time set value

ON

OFF

PWM cycle = 100 ms

ON output time = 75 ms
Number of ON output scans = 75 ms/scan time set value

5.9 Table Manipulation Instructions

5.9.1 Read Table Block (TBLBR)

5-197

In
st

ru
ct

io
ns

5

5.9 Table Manipulation Instructions
5.9.1 Read Table Block (TBLBR)

(1) Operation

The TBLBR instruction moves the block of the table data that is specified by the table name, row number, and column
number to a continuous area that starts at the first destination address. The data is stored in the destination area accord-
ing to the data type of the elements that were read.
If an error occurs when accessing the table, such as data that is outside of the valid range or not enough data length at
the destination, an error is output and no data is read. The contents in the destination area will remain unchanged.
If the instruction ends normally, the number of words that were moved is output, and the Status bit is turned OFF. If an
error occurs, an error code is output and the Status bit is turned ON.

[a] If the Move Succeeds

[b] If the Move Fails

If the move fails, the destination area will retain the contents from before the instruction was executed.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

Columns →

 (W) (W) (L) (L) (W)

Rows

↓

7

8

9

12

13

Data type for each column

Block specified in parameter table

First destination address

MW

ML + 1

ML + 3

MW + 5

14

ML + 6

ML + 8
Table Data

Data is stored according to
the data type of the table data.

Transferred.

Number of
words moved Output data

Status0 (OFF)

Error code Output data

Status1 (ON)

5.9 Table Manipulation Instructions

5.9.1 Read Table Block (TBLBR)

5-198

(2) Format

∗ 1. Optional.
∗ 2. C and # registers cannot be used.

[a] Parameter Table Configuration

[b] Error Codes

The error codes apply to all table manipulation instructions.

Status

Output data

First address of
parameter table

First destination address

Source table name

Icon:

Key entry: TBLBR

Parameter Name
Applicable Data Types

B W L F A Index Constant
First destination address
(Data) × × × × *2 × ×

First address of parameter
table (Prm) × × × × × ×

Output data (Out)*1 × *2 × × × ×

Status (Sts)*1 *2 × × × × × ×

Address Data
Type Symbol Name Specification I/O

0 L ROW1 First row number of
table elements

First row number of table elements to move
(1 to 65,535)

IN

2 L COL1 First column number
of table elements

First column number of table elements to move
(1 to 32,767)

IN

4 W RLEN Number of row ele-
ments Number of row elements (1 to 32,767) IN

5 W CLEN Number of column
elements Number of column elements (1 to 32,767) IN

Error Code Error Name Meaning
0001 hex Table undefined The target table is undefined.
0002 hex Outside range of row numbers The row number of the table element is outside the target table.

0003 hex Outside range of column num-
bers The column number of the table element is outside the target table.

0004 hex Incorrect number of elements The number of target elements is invalid.
0005 hex Insufficient storage area The storage area is insufficient.
0006 hex Insufficient element type The data type specified for the element is wrong.

0007 hex Queue buffer error An attempt was made to read from an empty queue buffer or to write to a
full queue buffer by advancing the pointer.

0008 hex Queue table error The specified table is not a queue table.

0009 hex System error An unexpected error was detected in the system during instruction execu-
tion.

5.9 Table Manipulation Instructions

5.9.1 Read Table Block (TBLBR)

5-199

In
st

ru
ct

io
ns

5

(3) Programming Example

In the following programming example, the specified block in record table data TBL1 is moved to an area that starts at
MW00100 when switch 1 (DB000000) turns ON.

The parameter table is set as shown in the following table.

The contents of table data TBL1 are given below.

The column data types are given in parentheses.

After the instruction is executed, the data is moved to an area that starts from MW00100 as shown below.
The number of words that was moved is set to 15 in MW00000 (output data), and MB000010 (status) is set to 0 (move
successful).

The registers are assigned as shown in the above table.

Register Data Remarks
DL00000 2 First row number of table elements
DL00002 2 First column number of table elements
DW00004 3 Number of row elements
DW00005 3 Number of column elements

Register Data Register Data Register Data
MW00100 2002 ML00101 20000 ML00103 20002
MW00105 3003 ML00106 30000 ML00108 30003
MW00110 4004 ML00111 40000 ML00113 40004

Column
Row

1
(W)

2
(W)

3
(L)

4
(L)

5
(F)

1

2

3

4

5

1.1

1.2

1.3

1.4

1.5

10001

20002

30003

40004

50005

10000

20000

30000

40000

50000

1001

2002

3003

4004

5005

1000

2000

3000

4000

5000

Block to move

5.9 Table Manipulation Instructions

5.9.2 Write Table Block (TBLBW)

5-200

5.9.2 Write Table Block (TBLBW)

(1) Operation

The TBLBW instruction moves the data from a continuous area that starts at the first source address to a block of the
table data that is specified by the table name, row number, and column number. The data is stored under the assumption
that the data type of the source area and each element in the table data are the same.
If an error occurs when accessing the table, such as data that is outside of the valid range or not enough data length at
the source, an error is output and no data is written. The contents in the destination area will remain unchanged.
If the instruction ends normally, the number of words that were moved is output, and the Status bit is turned OFF. If an
error occurs, an error code is output and the Status bit is turned ON.

[a] If the Move Succeeds

[b] If the Move Fails

If the move fails, the destination area will retain the contents from before the instruction was executed.

1 2 3 4 5

6 100 101 102 10

11 103 105 106 15

 Columns →

 (W) (W) (L) (L) (W)

Rows

↓

100

101

102

103

104

Data type for each column

Block specified in parameter table

First source address

MW

ML + 1

ML + 3

MW + 5

105

ML + 6

ML + 8 Table Data

Data is moved according to
the data type of the table data.

Transferred.

Number of
words moved

Output data

Status0 (OFF)

Error code Output data

Status1 (ON)

5.9 Table Manipulation Instructions

5.9.2 Write Table Block (TBLBW)

5-201

In
st

ru
ct

io
ns

5

(2) Format

∗ 1. Optional.
∗ 2. C and # registers cannot be used.

[a] Parameter Table Configuration

[b] Error Codes

The error codes apply to all table manipulation instructions.

Status

Output data

First address of
parameter table

First source address

Destination table name

Key entry: TBLBW

Icon:

Parameter Name
Applicable Data Types

B W L F A Index Constant
First source address
(Data) × × × × *2 × ×

First address of
parameter table (Prm) × × × × × ×

Output data (Out)*1 × *2 × × × ×

Status (Sts)*1 *2 × × × × × ×

Address Data
Type Symbol Name Specification I/O

0 L ROW1 First row number of
table elements

First row number of table elements to move
(1 to 65,535)

IN

2 L COL1 First column number of
table elements

First column number of table elements to move
(1 to 32,767)

IN

4 W RLEN Number of row ele-
ments Number of row elements (1 to 32,767) IN

5 W CLEN Number of column ele-
ments Number of column elements (1 to 32,767) IN

Error Code Error Name Meaning
0001 hex Table undefined The target table is undefined.
0002 hex Outside range of row numbers The row number of the table element is outside the target table.

0003 hex Outside range of column num-
bers The column number of the table element is outside the target table.

0004 hex Incorrect number of elements The number of target elements is invalid.
0005 hex Insufficient storage area The storage area is insufficient.
0006 hex Insufficient element type The data type specified for the element is wrong.

0007 hex Queue buffer error An attempt was made to read from an empty queue buffer, or to write to a
full queue buffer by advancing the pointer.

0008 hex Queue table error The specified table is not a queue table.

0009 hex System error An unexpected error was detected in the system during instruction execu-
tion.

5.9 Table Manipulation Instructions

5.9.2 Write Table Block (TBLBW)

5-202

(3) Programming Example

In the following programming example, an area of data that starts at MW00100 is moved to a specified block in record
table data TBL1 when switch 1 (DB00000) turns ON.

The parameter table is set as shown in the following table.

The data that is written is given below.

The following table shows the contents of table data TBL1 after the instruction is executed.
The number of words that were moved is set to 15 in MW00000, and MB000010 (status) is set to 0 (move successful).

The column data types are given in parentheses.

Register Data Remarks
DL00000 2 First row number of table elements
DL00002 2 First column number of table elements
DW00004 3 Number of row elements
DW00005 3 Number of column elements

Register Data Register Data Register Data
MW00100 1 ML00101 2 ML00103 3
MW00105 4 ML00106 5 ML00108 6
MW00110 7 ML00111 8 ML00113 9

Column
Row

1
(W)

2
(W)

3
(L)

4
(L)

5
(F)

1

2 1 2 3

3 4 5 6

4 7 8 9

5

Area that is written

5.9 Table Manipulation Instructions

5.9.3 Search for Table Row (TBLSRL)

5-203

In
st

ru
ct

io
ns

5

5.9.3 Search for Table Row (TBLSRL)

(1) Operation

The TBLSRL instruction searches for the search data in column elements of the table data that is specified by the table
name, row numbers, and column number. The search result is output as the row number of the data that matches the
search data. The type of the data to be searched is automatically determined by the data type of the specified column
elements.
If the instruction ends normally and the search data is found, the search result in the input parameter table is set to 1, the
output data is set to the row number, and the status is turned OFF. If the search data is not found, the search result and
output data are set to 0. If an error occurs, an error code is set in the output data and the status is turned ON.

[a] Search Data Found

[b] Search Data Not Found

[c] Search Error

Columns →

 (W) (W) (L) (L) (W)
Rows

↓

Data type for each column

Table Data

Search area selected
by first row number,
last row number, and
column number

SearchSearch data

Row number Output data

Status0 (OFF)

Search result
for parameters

1: Matching
 row exists

0 Output data

Status0 (OFF)

Search result
for parameters

0: No matching row

Error code Output data

Status1 (ON)

5.9 Table Manipulation Instructions

5.9.3 Search for Table Row (TBLSRL)

5-204

(2) Format

∗ 1. Optional.
∗ 2. C and # registers cannot be used.

[a] Parameter Table Configuration

[b] Error Codes

Parameter Name
Applicable Data Types

B W L F A Index Constant
First address of search
data (Data) × × × × × ×

First address of parameter
table (Prm) × × × × × ×

Output data (Out)*1 × *2 × × × ×

Status (Sts)*1 *2 × × × × × ×

Status

Output data

First address of
parameter table

Table name

First address
of search data

Icon:

Key entry: TBLSRL

Address Data
Type Symbol Name Specification I/O

0 L ROW1 First row number of
table elements

First row number of table elements to search
(1 to 65,535)

IN

2 L ROW2 Last row number of
table elements

Last row number of table elements to search
(1 to 65,535)

IN

4 L COLUMN Column number of
table elements

Column number of table elements to search
(1 to 32,767)

IN

6 W FIND Search result
Search result
0: No matching row
1: Matching row exists

OUT

Error Code Error Name Meaning
0001 hex Table undefined The target table is undefined.
0002 hex Outside range of row numbers The row number of the table element is outside the target table.

0003 hex Outside range of column num-
bers The column number of the table element is outside the target table.

0004 hex Incorrect number of elements The number of target elements is invalid.
0005 hex Insufficient storage area The storage area is insufficient.
0006 hex Insufficient element type The data type specified for the element is wrong.

0007 hex Queue buffer error An attempt was made to read from an empty queue buffer, or to write to a
full queue buffer by advancing the pointer.

0008 hex Queue table error The specified table is not a queue table.
0009 hex System error An unexpected error was detected in the system during instruction execution.

5.9 Table Manipulation Instructions

5.9.3 Search for Table Row (TBLSRL)

5-205

In
st

ru
ct

io
ns

5

(3) Programming Example

In the following programming example, a search is made for search data 32 in MW00000 in part of a column of array
table data TBL1.

The parameter table is set as shown in the following table.

The contents of table data TBL1 are given below. (Table elements are integer data.)

A match for 32 (MW00000) was found in row number 3 in the search area, so DW00001 is set to 3.

Register Data Remarks
DL00010 2 First row number of table elements
DL00012 5 Last row number of table elements
DL00014 2 Column number of table elements

Column
Row

1 2 3 4 5

1 11 12 13 14 15

2 21 22 23 24 25

3 31 32 33 34 35

4 41 42 43 44 45

5 51 52 53 54 55

Area to search

5.9 Table Manipulation Instructions

5.9.4 Search for Table Column (TBLSRC)

5-206

5.9.4 Search for Table Column (TBLSRC)

(1) Operation

The TBLSRC instruction searches for the search data in row elements of the table data that is specified by the table
name, column numbers, and row number. The search result is output as the column number of the data that matches the
search data. The type of the data to be searched is automatically determined by the data types of the specified row ele-
ments.
If the instruction ends normally and the search data is found, the search result in the input parameter table is set to 1, the
output data is set to the column number, and the status is turned OFF. If the search data is not found, the search result
and output data are set to 0. If an error occurs, an error code is set in the output data and the status is turned ON.

[a] Search Data Found

[b] Search Data Not Found

[c] Search Error

Columns →

 (W) (W) (L) (L) (W)
Row

↓

Data type for each column

Table Data

Search area selected
by first column number,
last column number,
and row number

SearchSearch data

Column number Output data

Status0 (OFF)

Search result
for parameters

1: Matching
 column exists

0 Output data

Status0 (OFF)

Search result
for parameters

0: No matching
 column

Error code Output data

Status1 (ON)

5.9 Table Manipulation Instructions

5.9.4 Search for Table Column (TBLSRC)

5-207

In
st

ru
ct

io
ns

5

(2) Format

∗ 1. Optional.
∗ 2. C and # registers cannot be used.

[a] Parameter Table Configuration

[b] Error Codes

Status

Output data

First address of
parameter table

Table name

First address
of search data

Icon:

Key entry: TBLSRC

Parameter Name
Applicable Data Types

B W L F A Index Constant
First address of
search data (Data) × × × × × ×

First address of
parameter table (Prm) × × × × × ×

Output data (Out)*1 × *2 × × × ×

Status (Sts)*1 *2 × × × × × ×

Address Data
Type Symbol Name Specification I/O

0 L ROW1 Row number of table
elements

Row number of table elements to search
(1 to 65,535)

IN

2 L COLUMN1 First column number of
table elements

First column number of table elements to search
(1 to 32,767)

IN

4 L COLUMN2 Last column number of
table elements

Last column number of table elements to search
(1 to 32,767)

IN

6 W FIND Search result
Search result
0: No matching column
1: Matching column exists

OUT

Error Code Error Name Meaning
0001 hex Table undefined The target table is undefined.
0002 hex Outside range of row numbers The row number of the table element is outside the target table.

0003 hex Outside range of column num-
bers The column number of the table element is outside the target table.

0004 hex Incorrect number of elements The number of target elements is invalid.
0005 hex Insufficient storage area The storage area is insufficient.
0006 hex Unexpected element type The data type specified for the element is wrong.

0007 hex Queue buffer error An attempt was made to read from an empty queue buffer, or to write to a
full queue buffer by advancing the pointer.

0008 hex Queue table error The specified table is not a queue table.

0009 hex System error An unexpected error was detected in the system during instruction execu-
tion.

5.9 Table Manipulation Instructions

5.9.4 Search for Table Column (TBLSRC)

5-208

(3) Programming Example

In the following programming example, a search is made for search data 34 in MW00000 in part of a row of array table
data TBL1.

The parameter table is set as shown in the following table.

The contents of table data TBL1 are given below. (Table elements are integer data.)

A match for 34 (MW00000) was found in column number 4 in the search area, so DW00001 is set to 4.

Register Data Remarks
DL00010 3 Row number of table elements
DL00012 2 First column number of table elements
DL00014 5 Last column number of table elements

Column
Row

1 2 3 4 5

1 11 12 13 14 15

2 21 22 23 24 25

3 31 32 33 34 35

4 41 42 43 44 45

5 51 52 53 54 55

Area to search

5.9 Table Manipulation Instructions

5.9.5 Clear Table Block (TBLCL)

5-209

In
st

ru
ct

io
ns

5

5.9.5 Clear Table Block (TBLCL)

(1) Operation

The TBLCL instruction clears the block of data in the table data that is specified by the table name, row numbers, and
column numbers. The elements are filled with spaces if the data type is for text strings, and 0s if the data type is for
numeric values.
If both the first row number and the first column number of the table element are 0, the entire table will be cleared.
If an error occurs when accessing the table, such as data that is outside of the valid range or not enough data length at
the destination, an error is output and no data is written.
If the instruction ends normally, the number of words that were cleared is output and the status is turned OFF. If an
error occurs, an error code is set in the output data and the status is turned ON.

If the first row number and column number of the table element are both 0, the entire table is cleared.

[a] If the Clear Succeeds

[b] If the Clear Fails

If the clear fails, the table data will retain the contents from before the instruction was executed.

1 2 3 4 abcd

6 0 0 0

11 0 0 0

16 17 18 19 hijk

Columns →

 (W) (W) (L) (L) (Text string)

Rows

↓

Data type for each column

Specified block

Table Data

Text strings are set to spaces,
numeric values are set to 0s.

Data cleared.

Number of
words cleared Output data

Status0 (OFF)

Error code Output data

Status1 (ON)

5.9 Table Manipulation Instructions

5.9.5 Clear Table Block (TBLCL)

5-210

(2) Format

∗ 1. Optional.
∗ 2. C and # registers cannot be used.

[a] Parameter Table Configuration

[b] Error Codes

Parameter Name
Applicable Data Types

B W L F A Index Constant
First address of
parameter table (Prm) × × × × × ×

Output data (Out)*1 × *2 × × × ×

Status (Sts)*1 *2 × × × × × ×

Status

Output data

First address of
parameter table

Table name

Icon:

Key entry: TBLCL

Address Data
Type Symbol Name Specification I/O

0 L ROW First row number of
table elements

First row number of table elements to clear
(1 to 65,535)

IN

2 L COL First column number of
table elements

First column number of table elements to clear
(1 to 32,767)

IN

4 W RLEN Number of row ele-
ments Number of row elements (1 to 32,767) IN

5 W CLEN Number of column ele-
ments Number of column elements (1 to 32,767) IN

Error Code Error Name Meaning
0001 hex Table undefined The target table is undefined.
0002 hex Outside range of row numbers The row number of the table element is outside the target table.

0003 hex Outside range of column num-
bers The column number of the table element is outside the target table.

0004 hex Incorrect number of elements The number of target elements is invalid.
0005 hex Insufficient storage area The storage area is insufficient.
0006 hex Insufficient element type The data type specified for the element is wrong.

0007 hex Queue buffer error An attempt was made to read from an empty queue buffer, or to write to a
full queue buffer by advancing the pointer.

0008 hex Queue table error The specified table is not a queue table.

0009 hex System error An unexpected error was detected in the system during instruction execu-
tion.

5.9 Table Manipulation Instructions

5.9.5 Clear Table Block (TBLCL)

5-211

In
st

ru
ct

io
ns

5

(3) Programming Example

In the following programming example, the specified block is cleared from record table data TBL1 when switch 1
(DB000100) turns ON.
The parameter table is set as shown in the following table.

The contents of table data TBL1 are given below.

The column data types are given in parentheses.

The data is cleared after the instruction is executed as shown below.

The column data types are given in parentheses.

Register Data Remarks
DL00000 2 First row number of table elements
DL00002 2 First column number of table elements
DW00004 3 Number of row elements
DW00005 3 Number of column elements

Column
Row

1
(W)

2
(W)

3
(L)

4
(Text string)

5
(F)

1

2

3

4

5

1000

2000

3000

4000

5000

1001

2002

3003

4004

5005

10000

20000

30000

40000

50000

ABCD

BCDE

CDEF

DEFG

EFGH

1.1

1.2

1.3

1.4

1.5

Area to clear

Column
Row

1
(W)

2
(W)

3
(L)

4
(Text string)

5
(F)

1

2

3

4

5

1000

2000

3000

4000

5000

1001

0

0

0

5005

10000

0

0

0

50000

ABCD

EFGH

1.1

1.2

1.3

1.4

1.5

Area that was cleared

5.9 Table Manipulation Instructions

5.9.6 Move Table Block (TBLMV)

5-212

5.9.6 Move Table Block (TBLMV)

(1) Operation

The TBLMV instruction moves a block of data in the table data that is specified by the table name, row number, and
column number to a different table block. The block can be moved between different tables or within the same table.
If the data type of the column elements in the source and destination do not match, an error is output and no data is
moved.
If the instruction ends normally, the number of words that were moved is output, and the Status bit is turned OFF. If an
error occurs, an error code is output and the Status bit is turned ON.

[a] If the Move Succeeds

[b] If the Move Fails

If the move fails, the table data will retain the contents from before the instruction was executed.

1 2 3

4 5 6

1 2 3

Rows

↓

Table Data 1

4 5 6

Columns →

(W)

1 2 3

4 5 6

Rows

↓

Columns →

Table Data 2

Moved.

Moved.

(W)(L)(L)(W) (W) (L)(L)(W)

Number of
words moved Output data

Status0 (OFF)

Error code Output data

Status1 (ON)

5.9 Table Manipulation Instructions

5.9.6 Move Table Block (TBLMV)

5-213

In
st

ru
ct

io
ns

5

(2) Format

∗ 1. Optional.
∗ 2. C and # registers cannot be used.

[a] Parameter Table Configuration

[b] Error Codes

Parameter Name
Applicable Data Types

B W L F A Index Constant
First address of
parameter table (Prm) × × × × × ×

Output data (Out)*1 × *2 × × × ×

Status (Sts)*1 *2 × × × × × ×

Status

Output data

First address of
parameter table

Destination table name

Source table name

Icon:

Key entry: TBLMV

Address Data
Type Symbol Name Specification I/O

0 L ROW1 First row number of
table elements

First row number of table elements at source to
move (1 to 65,535)

IN

2 L COLUMN1 First column number of
table elements

First column number of table elements at source to
move (1 to 32,767)

IN

4 W RLEN Number of row ele-
ments Number of row elements (1 to 32,767) IN

5 W CLEN Number of column ele-
ments Number of column elements (1 to 32,767) IN

6 L ROW2 First row number of
table elements

First row number of table elements at destination (1
to 65,535)

IN

8 L COLUMN2 First column number of
table elements

First column number of table elements at destina-
tion (1 to 32,767)

IN

Error Code Error Name Meaning
0001 hex Table undefined The target table is undefined.
0002 hex Outside range of row numbers The row number of the table element is outside the target table.

0003 hex Outside range of column num-
bers The column number of the table element is outside the target table.

0004 hex Incorrect number of elements The number of target elements is invalid.
0005 hex Insufficient storage area The storage area is insufficient.
0006 hex Insufficient element type The data type specified for the element is wrong.

0007 hex Queue buffer error An attempt was made to read from an empty queue buffer, or to write to a
full queue buffer by advancing the pointer.

0008 hex Queue table error The specified table is not a queue table.

0009 hex System error An unexpected error was detected in the system during instruction execu-
tion.

5.9 Table Manipulation Instructions

5.9.6 Move Table Block (TBLMV)

5-214

(3) Programming Example

In the following programming example, the specified block in record table data TBL1 is moved to the specified block
in table data TBL2 when switch 1 (DB000100) turns ON.

The contents of table data TBL1 are given below.

The column data types are given in parentheses.

The parameter table is set as shown in the following table.

This table shows the contents of table data TBL2 after the instruction is executed.

Register Data Remarks
DL00000 2 First row number at source
DL00002 1 First column number at source
DW00004 3 Number of row elements
DW00005 3 Number of column elements
DL00006 2 First row number at destination
DL00008 2 First column number at destination

3
(L)

1000 1001 10000

2000 2002 20000
3000 3003 30000

4000 4004 40000
5000 5005 50000

Column
Row

1

2
3

4
5

1
(W)

2
(W)

Block to move

Column
Row

1
(W)

2
(W)

3
(W)

4
(L)

5
(L)

1

2
3
4

5

2000 2002 20000
3000 3003 30000
4000 4004 40000

Block that was moved

5.9 Table Manipulation Instructions

5.9.7 Read Queue Table (QTBLR and QTBLRI)

5-215

In
st

ru
ct

io
ns

5

5.9.7 Read Queue Table (QTBLR and QTBLRI)

(1) Operation

Column elements of the table data that are specified by the table name, row number, and column number are continu-
ously read and stored in a continuous area that starts at a specified register. The data types of the elements that are read
are automatically determined by the table that is specified. The data types of the destination registers are ignored and
the data is stored according to the data types in the table without any conversion.
The QTBLR instruction does not change the queue table read pointer. The QTBLRI instruction advances the queue
table read pointer by one row.
If an error occurs when accessing the table, such as a table name error, an out of range row number, or an empty queue
buffer, an error is output, no data is read, and the pointer is not advanced.
The contents of the destination registers will be retained.
If the instruction ends normally, the number of words that were moved is output, and the Status bit is turned OFF. If an
error occurs, an error code is output and the Status bit is turned ON.

[a] If the Read Succeeds

[b] If the Read Fails

If the read fails, the data at the destination will retain the contents from before the instruction was executed.

Table Data

Read pointer

With the QTBLRI
instruction, the
pointer is
advanced after
instruction execution.

First address of destination data

Read.

Advanced.

With the QTBLR
instruction, the
pointer is not
advanced after
instruction execution.

Number of
words moved

Output data

Status0 (OFF)

Error code Output data

Status1 (ON)

5.9 Table Manipulation Instructions

5.9.7 Read Queue Table (QTBLR and QTBLRI)

5-216

(2) Format

∗ 1. Optional.
∗ 2. C and # registers cannot be used.

Parameter Name
Applicable Data Types

B W L F A Index Constant
First destination
address (Data) × × × × × ×

First address of
parameter table
(Prm)

× × × × *2 × ×

Output data (Out)*1 × *2 × × × ×

Status (Sts)*1 *2 × × × × × ×

Status

Output data

First address of
parameter table

Table name

First destination
address

Icon:

Key entry: QTBLR, QTBLRI

5.9 Table Manipulation Instructions

5.9.7 Read Queue Table (QTBLR and QTBLRI)

5-217

In
st

ru
ct

io
ns

5

[a] Parameter Table Configuration

[b] Error Codes

[c] Setting the Relative Row Numbers of Table Elements

(3) Programming Example

In the following programming example, the specified column elements in array table data TBL1 are read and stored in
MW00010 to MW00012 when switch 2 (DB000002) turns ON.
Before switch 2 is turned ON, the table data is set as shown below by turning ON switch 1 three times while changing
the contents of MW00000 to MW00002. (Refer to information on the Write Queue Table instruction.)

The contents of table data TBL1 are given below.

The column data types are given in parentheses.

Address Data
Type Symbol Name Specification I/O

0 L ROW Relative row number of
table elements

Relative row number of table elements at source to
move (1 to 65,535)

IN

2 L COLUMN First column number of
table elements

First column number of table elements at source to
move (1 to 32,767)

IN

4 W CLEN Number of column ele-
ments Number of column elements to move (1 to 32,767) IN

5 W Reserved.
6 L RPTR Read pointer Read pointer of the queue after execution OUT
8 L WPTR Write pointer Write pointer of the queue after execution OUT

Error Code Error Name Meaning
0001 hex Table undefined The target table is undefined.
0002 hex Outside range of row numbers The row number of the table element is outside the target table.

0003 hex Outside range of column num-
bers The column number of the table element is outside the target table.

0004 hex Incorrect number of elements The number of target elements is invalid.
0005 hex Insufficient storage area The storage area is insufficient.
0006 hex Insufficient element type The data type specified for the element is wrong.

0007 hex Queue buffer error An attempt was made to read from an empty queue buffer, or to write to a
full queue buffer by advancing the pointer.

0008 hex Queue table error The specified table is not a queue table.

0009 hex System error An unexpected error was detected in the system during instruction execu-
tion.

Relative Row
Number Row That Is Read Remarks

0 Read pointer row The pointer is advanced only for the QTBLRI instruction.
1 Read pointer row Pointer is not advanced.
2 Read pointer row – 1 Pointer is not advanced.
3 Read pointer row – 2 Pointer is not advanced.
: :
n Read pointer row – (n – 1) Pointer is not advanced.

 Column
Row

1
(W)

2
(W)

3
(W)

1 11 12 13
2 21 22 23
3 31 32 33

5.9 Table Manipulation Instructions

5.9.7 Read Queue Table (QTBLR and QTBLRI)

5-218

The parameter table is set as shown in the following table.

Here, switch 2 (DB000002) is turned ON three times. The data that is read changes each time from the first time to the
third time, as shown below.

The read pointer is advanced each time the instruction is executed starting at the first row on the first pass, the second
row on the second pass, and so on, therefore resulting in the table shown above.

When the power supply is turned ON, values of the read pointer and write pointer are undefined. Always execute the QTBLCL
instruction before using the QTBLR, QTBLRI, QTBLW, or QTBLWI instruction.
An operation error may occur if the QTBLR, QTBLRI, QTBLW, or QTBLWI instruction is executed without first executing the
QTBLCL instruction.

Register Data Remarks
DL00010 0 Relative row number

DL00012 1 First column number
DW00014 3 Number of row elements

Register 1st Data 2nd Data 3rd Data
MW00010 11 21 31

MW00011 12 22 32
MW00012 13 23 33

INFO

5.9 Table Manipulation Instructions

5.9.8 Write Queue Table (QTBLW and QTBLWI)

5-219

In
st

ru
ct

io
ns

5

5.9.8 Write Queue Table (QTBLW and QTBLWI)

(1) Operation

Data in a continuous area that starts at a specified register is continuously written to columns in a specified table. The
instruction is processed under the assumption that the data type of the source and destination are the same.
The QTBLW instruction does not change the queue table write pointer. The QTBLWI instruction advances the queue
table write pointer by one row.
If an error occurs when accessing the table, such as a table name error, an out of range row number, or a full queue
buffer, an error is output, no data is written, and the pointer is not advanced.
The contents of the destination registers will be retained.
If the instruction ends normally, the number of words that were moved is output, and the Status bit is turned OFF. If an
error occurs, an error code is output and the Status bit is turned ON.

[a] If the Write Succeeds

[b] If the Write Fails

If the write fails, the table data will retain the contents from before the instruction was executed.

Table Data

Write pointer
First address of source data

Written.

Advanced.

With the QTBLWI
instruction, the
pointer is
advanced after
instruction execution.

With the QTBLW
instruction, the
pointer is not
advanced after
instruction execution.

Number of
words moved

Output data

Status0 (OFF)

Error code Output data

Status1 (ON)

5.9 Table Manipulation Instructions

5.9.8 Write Queue Table (QTBLW and QTBLWI)

5-220

(2) Format

∗ 1. Optional.
∗ 2. C and # registers cannot be used.

Parameter Name
Applicable Data Types

B W L F A Index Constant
First address of
source data (Data) × × × × × ×

First address of
parameter table
(Prm)

× × × × *2 × ×

Output data
(Out)*1

× *2 × × × ×

Status (Sts)*1 *2 × × × × × ×

Status

Output data

First address of
parameter table

Table name

First address
of source data

Icon:

Key entry: QTBLW, QTBLWI

5.9 Table Manipulation Instructions

5.9.8 Write Queue Table (QTBLW and QTBLWI)

5-221

In
st

ru
ct

io
ns

5

[a] Parameter Table Configuration

[b] Error Codes

[c] Setting the Relative Row Number of Table Elements

(3) Programming Example

In the following programming example, the data from MW00000 to MW00002 is written to the specified column ele-
ments in array table data TBL1 when switch 1 (DB000001) turns ON.

Initialize table data TBL1 before executing this type of programming.

The column data types are given in parentheses.

Address Data
Type Symbol Name Specification I/O

0 L ROW Relative row number of
table elements

Relative row number of table elements at destina-
tion (1 to 65,535)

IN

2 L COLUMN First column number of
table elements

First column number of table elements at destina-
tion (1 to 32,767)

IN

4 W CLEN Number of column ele-
ments Number of column elements to move (1 to 32,767) IN

5 W Reserved.
6 L RPTR Read pointer Read pointer of the queue after execution OUT
8 L WPTR Write pointer Write pointer of the queue after execution OUT

Error Code Error Name Meaning
0001 hex Table undefined The target table is undefined.
0002 hex Outside range of row numbers The row number of the table element is outside the target table.

0003 hex Outside range of column num-
bers The column number of the table element is outside the target table.

0004 hex Incorrect number of elements The number of target elements is invalid.
0005 hex Insufficient storage area The storage area is insufficient.
0006 hex Insufficient element type The data type specified for the element is wrong.

0007 hex Queue buffer error An attempt was made to read from an empty queue buffer, or to write to a
full queue buffer by advancing the pointer.

0008 hex Queue table error The specified table is not a queue table.

0009 hex System error An unexpected error was detected in the system during instruction execu-
tion.

Relative Row
Number Row That Is Read Remarks

0 Write pointer row The pointer is advanced only for the QTBLWI instruction.
1 Write pointer row Pointer is not advanced.
2 Write pointer row – 1 Pointer is not advanced.
3 Write pointer row – 2 Pointer is not advanced.
: :
n Write pointer row – (n – 1) Pointer is not advanced.

Column
Row

1
(W)

2
(W)

3
(W)

1 0 0 0
2 0 0 0
3 0 0 0

5.9 Table Manipulation Instructions

5.9.8 Write Queue Table (QTBLW and QTBLWI)

5-222

The parameter table is set as shown in the following table.

After changing the contents of MW00000 to MW00002 as shown in the following table, turn ON the switch 1
(DB000001) three times.

The write pointer is advanced each time the instruction is executed starting at the first row on the first pass, the second
row on the second pass, and so on. After three executions, TBL1 will be set with data as shown below.

When the power is turned ON, values of the read pointer and write pointer are undefined. Always execute the QTBLCL instruc-
tion before using the QTBLR, QTBLRI, QTBLW, or QTBLWI instruction.
An operation error may occur if the QTBLR, QTBLRI, QTBLW, or QTBLWI instruction is executed without first executing the
QTBLCL instruction.

Register Data Remarks
DL00010 0 Relative row number

DL00012 1 First column number
DW00014 3 Number of row elements

Register 1st Data 2nd Data 3rd Data
MW00000 11 21 31

MW00001 12 22 32
MW00002 13 23 33

Column

Row

1

(W)

2

(W)

3

(W)

1

2

3

11 12 13

21 22 23

31 32 33

Written on first pass

Written on second pass

Written on third pass

INFO

5.9 Table Manipulation Instructions

5.9.9 Clear Queue Table Pointers (QTBLCL)

5-223

In
st

ru
ct

io
ns

5

5.9.9 Clear Queue Table Pointers (QTBLCL)

(1) Operation

The QTBLCL instruction returns the queue read and queue write pointers to their initial values (first row) for the table
data that is specified by the table name.
If the instruction ends normally, the output data is set to 0 and the status is turned OFF. If an error occurs, an error code
is set in the output data and the status is turned ON.

[a] If the Queue Clear Succeeds

[b] If the Queue Clear Fails

If the clear fails, the queues will retain the contents from before the instruction was executed.

Table Data

Read pointer

Write pointer

Pointers return
to first row.

0 Output data

Status0 (OFF)

Error code Output data

Status1 (ON)

5.9 Table Manipulation Instructions

5.9.9 Clear Queue Table Pointers (QTBLCL)

5-224

(2) Format

∗ 1. Optional.
∗ 2. C and # registers cannot be used.

Error Codes

(3) Programming Example

In the following programming example, the queue pointers for the specified queue table are initialized when switch 2
(DB000003) turns ON.

When the power is turned ON, values of the read pointer and write pointer are undefined. Always execute the QTBLCL instruc-
tion before using the QTBLR, QTBLRI, QTBLW, or QTBLWI instruction.
An operation error may occur if the QTBLR, QTBLRI, QTBLW, or QTBLWI instruction is executed without first executing the
QTBLCL instruction.

Parameter Name
Applicable Data Types

B W L F A Index Constant

Output data (Out)*1 × *2 × × × ×

Status (Sts))*1 *2 × × × × × ×

Status

Output data

Table name

Icon:

Key entry: QTBLCL

Error Code Error Name Meaning
0001 hex Table undefined The target table is undefined.
0002 hex Outside range of row numbers The row number of the table element is outside the target table.

0003 hex Outside range of column num-
bers The column number of the table element is outside the target table.

0004 hex Incorrect number of elements The number of target elements is invalid.
0005 hex Insufficient storage area The storage area is insufficient.
0006 hex Insufficient element type The data type specified for the element is wrong.

0007 hex Queue buffer error An attempt was made to read from an empty queue buffer, or to write to a
full queue buffer by advancing the pointer.

0008 hex Queue table error The specified table is not a queue table.

0009 hex System error An unexpected error was detected in the system during instruction execu-
tion.

INFO

5.10 System Function Instructions

5.10.1 Counter (COUNTER)

5-225

In
st

ru
ct

io
ns

5

5.10 System Function Instructions
5.10.1 Counter (COUNTER)

(1) Operation

When the count up or count down command changes from OFF to ON, the current value is incremented or decre-
mented.
When the counter reset command turns ON, the current value of the counter is set to 0. The current value of the counter
is compared against the set value and the result is output.
If a counter error occurs (i.e., if the current value is greater than the set value), the current value will neither be incre-
mented nor decremented.

Three status are output as shown below.
• Count matched (current value = set value).
• Count is zero (current value = 0).
• Counter error

(current value > set value or current value < 0).

Status

Rising edge of count up command
(OFF → ON)

Rising edge of count down command
(OFF → ON)

Counter reset command
ON

Count value incremented
(current value + 1).

Count value decremented
(current value − 1).

Counter reset
(current value = 0)

Counter set value

Counter current value

COUNTER instruction

5.10 System Function Instructions

5.10.1 Counter (COUNTER)

5-226

(2) Format

∗ 1. M or D register only.
∗ 2. C and # registers cannot be used.

The parameters are described in the following table.

∗ If the count up command and count down command change from OFF to ON at the same time, the current value
stays the same.

Parameter Name
Applicable Data Types

B W L F A Index Constant
Count up command
(Up-Cmd) × × × × × ×

Count down
command
(Down-Cmd)

× × × × × ×

Counter reset
command (Reset) × × × × × ×

First address of
counter processing
data area (Cnt-Data)

× × × × *1 × ×

Count up (Cnt-Up) *2 × × × × × ×

Zero count (Cnt-Zero) *2 × × × × × ×

Count error (Cnt-Err) *2 × × × × × ×

Parameter Name Description I/O

Count up command (Up-Cmd) The count value is incremented when this command
changes from OFF to ON.*

IN

Count down command (Down-Cmd) The count value is decremented when this command
changes from OFF to ON.*

IN

Counter reset command (Reset) The current value is reset to 0 when this command turns
ON.

IN

First address of counter processing data area
(Cnt-Data)

+0 word: Set value IN

+1 word: Current value OUT

+2 word: Work flags OUT

Count up (Cnt-Up) Turns ON when the current value equals the set value. OUT
Zero count (Cnt-Zero) Turns ON when the current value equals 0. OUT

Count error (Cnt-Err)
Turns ON when the current value is greater than the set
value.
Also turns ON when the current value is less than 0.

OUT

Icon:

Key entry: COUNTER

5.10 System Function Instructions

5.10.1 Counter (COUNTER)

5-227

In
st

ru
ct

io
ns

5

(3) Programming Example

In the following programming example, the first line sets the counter set value to 5, and the third line monitors the
counter current value in DW00001.
When DB000100 changes from OFF to ON, DW00001 is incremented, and when DB000101 changes from OFF to
ON, DW00001 is decremented.

5.10 System Function Instructions

5.10.2 First-in First-out (FINFOUT)

5-228

5.10.2 First-in First-out (FINFOUT)

(1) Operation

The FINFOUT instruction calls a first-in first-out block data transfer function. The FIFO data table consists of a 4-
word header and a data buffer. Always set the three words with the data size, input size, and output size before you exe-
cute this instruction.

• When the Data Input Command (In-Cmd) turns ON, the specified number of data items from the specified input
data area are stored sequentially in the data area of the FIFO table.

• When the Data Output Command (Out-Cmd) turns ON, the specified number of data items are moved from the
first address in the data area of the FIFO table to the specified output data area.

• When the Reset Command (Reset) turns ON, the number of stored words is set to 0 and Tbl-Emp (FIFO table
empty) turns ON.

• If the data empty size is less than the input size or if the data size is less than the output size, Tbl-Err (FIFO table
error) turns ON.

[a] If the Data Input Command (In-Cmd) Is ON

[b] If the Data Option Command (Out-Cmd) Is ON

[c] If the Reset Command (Reset) Is ON

The number of words stored in the FIFO table is set to 0.
The contents of the table buffer are retained and not cleared to 0.

1

FIFO table data buffer

Start23

1

…

Data size (words)

2

3

First address of input data

Input size
(words)

Data In-Cmd = ON

1

FIFO table data buffer

Start234

1

…

2

3

First address of output data

Output size
(words)

Data Out-Cmd = ON

4

After the output is completed, this data is moved to the first address.

5.10 System Function Instructions

5.10.2 First-in First-out (FINFOUT)

5-229

In
st

ru
ct

io
ns

5

(2) Format

∗ 1. M or D register only.
∗ 2. C and # registers cannot be used.

Icon:

Key entry: FINFOUT

Parameter Name
Applicable Data Types

B W L F A Index Constant
Data input command
(In-Cmd) × × × × × ×

Data output command
(Out-Cmd) × × × × × ×

Reset command (Reset) × × × × × ×
First address of FIFO table
(FIFO-Tbl) × × × × *1 × ×

First address of input data
(In-Data) × × × × *1 × ×

First address of output data
(Out-Data) × × × × *1 × ×

FIFO table full (Tbl-Full) *2 × × × × × ×

FIFO table empty (Tbl-Emp) *2 × × × × × ×

FIFO table error (Tbl-Err) *2 × × × × × ×

5.10 System Function Instructions

5.10.2 First-in First-out (FINFOUT)

5-230

The parameters are described in the following table.

(3) Programming Example

In the following programming example, a FIFO table is created with a data size of 12 words, input size of 4 words, and
an output size of 2 words, and then the FINFOUT instruction is executed.

Parameter Name Description I/O

Data input command (In-Cmd) Data is stored in the FIFO table when this command turns
ON.

IN

Data output command (Out-Cmd) Data is transferred out of the FIFO table when this com-
mand turns ON.

IN

Reset command (Reset) The number of words to store is set to 0 when this command
turns ON.

IN

First address of FIFO table (FIFO-Tbl)

+0 word: Data size IN

+1 word: Input size IN

+2 word: Output size IN

+3 word: Data storage size OUT

+4 word and on: Data OUT

First address of input data (In-Data) First address of input data IN

First address of output data (Out-Data) First address of output data IN

FIFO table full (Tbl-Full) Turns ON when the FIFO table is full. OUT
FIFO table empty (Tbl-Emp) Turns ON when the FIFO table is empty. OUT
FIFO table error (Tbl-Err) Turns ON when the FIFO table has an error. OUT

5.10 System Function Instructions

5.10.2 First-in First-out (FINFOUT)

5-231

In
st

ru
ct

io
ns

5

The data from MW00000 to MW00003 is stored in the FIFO table buffer when switch 1 turns ON.
The data storage size in DW00005 is set to 4.

Next, when switch 2 turns ON, two words of data from the first address in the FIFO table buffer are output to the area
from MW0010 to MW0011. The data storage size in DW00005 is set to 2.

Register Data FIFO Table Data Buffer Data

MW00000

MW00001

MW00002

MW00003

123

234

345

456

DW00006

DW00007

DW00008

DW00009

DW00010

:

DW00017

123

234

345

456

0

:
0

Stored area

FIFO Table Data Buffer Data Register Data

MW00010 DW00006
→ 345 MW00011

MW00012

123

234

0 DW00007

123

234
→ 456

Stored area

The output data is moved out and
the remaining data is moved forward.

5.10 System Function Instructions

5.10.3 Trace (TRACE)

5-232

5.10.3 Trace (TRACE)

(1) Operation

The TRACE instruction performs trace execution control of the trace data that is specified by the trace group number (1
to 4).

The trace definition is set in the Data Trace Definitions in the MPE720. Refer to the Engineering Tool for MP2000
Series Machine Controller MPE720 Version 6 User’s Manual (SIEP C880700 30) for details.

• The trace is executed if Execute (trace execution command) is ON.
• The trace counter is reset when Reset (trace reset command) turns ON. This also resets Trc-End (trace end).
• Trc-End (trace end) turns ON when the specified number of traces have been executed.

(2) Format

∗ C and # registers cannot be used.

Error

Status

TRACE execution command
ON

TRACE reset command
ON

Trace is executed.

Trace count reset
Trace end reset

Trace execution count = Set value
→ Trace endTRACE instruction

Trace definition
Trace group No.

Set on the MPE720.

Parameter Name
Applicable Data Types

B W L F A Index Constant
Trace execution command
(Execute) × × × × × ×

Trace reset command
(Reset) × × × × × ×

Trace group No. (Group-No) × × × ×

Trace end (Trc-End) * × × × × × ×

Error * × × × × × ×

Status × * × × × ×

Icon:

Key entry: TRACE

5.10 System Function Instructions

5.10.3 Trace (TRACE)

5-233

In
st

ru
ct

io
ns

5

The parameters are described in the following table.

The status configuration is shown below.

(3) Programming Example

In the following programming example, the definition for trace group number 1 is used to execute a trace. The trace
starts when DB000000 turns ON.

Set the data trace definition for trace group number 1 on the MPE720 in advance. Make sure to set the sampling
condition to Program.

Parameter Name Description I/O
Trace execution command (Execute) Trace execution begins when this command turns ON. IN
Trace reset command (Reset) Trace execution is reset when this command turns ON. IN
Trace group No. (Group-No) Trace group No. specification (1 to 4) IN

Trace end (Trc-End) Turns ON when the trace ends. OUT

Error Turns ON when an error occurs. OUT
Status Trace execution status OUT

Bit Name Remarks

0 Trace data full Turns ON after once going through the data
trace memory of the specified group.

1 to 7 Reserved for system. –
8 No trace definition The function will not be executed.
9 Group No. error The function will not be executed.

10 to 12 Reserved for system. –
13 Execution timing error The function will not be executed.
14 Reserved for system. –
15 Reserved for system. –

5.10 System Function Instructions

5.10.4 Read Data Trace (DTRC-RD)

5-234

5.10.4 Read Data Trace (DTRC-RD)

(1) Operation

The DTRC-RD instruction reads trace data in the Machine Controller and stores it in registers. The data in the trace
memory can be read by specifying the first record number and the number of records. You can designate and read only
the required items in a record.

Structure of Read Data

The length of a record can be from 1 to 32 words, depending on the selected data items. The maximum number of
records can be from 1,015 to 32,511 depending on the record length.

Read data

First address

Specified read
items read.

Data trace memory

Record No.

n

Requested number
of records

Old

New
Number of first
record to read

M or D registers

0

Record 1 Item 1
:
:

Item 16

Record 2

:

Record n

Old

32,512 words max.

New

1 to 32 words

1 to 32 words

1 to 32 words

First address

5.10 System Function Instructions

5.10.4 Read Data Trace (DTRC-RD)

5-235

In
st

ru
ct

io
ns

5

(2) Format

∗ 1. M or D register only.
∗ 2. C and # registers cannot be used.

The parameters are described in the following table.

Icon:

Key entry: DTRCRD

Parameter Name
Applicable Data Types

B W L F A Index Constant
Trace read execution
command (Execute) × × × × × ×

Trace group No.
(Group-No) × × × × × ×

Record No. (Rec-No) × × × × × ×
Number of records
(Rec-Size) × × × × × ×

Item selection
(Select) × × × × × ×

First address
(Dat-Adr) × × × × *1 × ×

Trace completed
(Complete)

*2 × × × × × ×

Error *2 × × × × × ×

Status × *2 × × × × ×

Number of records
read
(Rec-Size)

× *2 × × × × ×

Length of 1 read
record (Rec-Len) × *2 × × × × ×

Parameter Name Description I/O
Trace read execution command (Execute) Data trace read execution command IN
Trace group No. (Group-No) Data trace group No. (1 to 4). IN

Record No. (Rec-No) Number of first record to read
(0 to maximum records – 1)

IN

Number of records (Rec-Size) Requested number of records to read
(0 to maximum records – 1)

IN

Item selection (Select)
Items to read (0001 to FFFF hex)
Bits 0 to F correspond to data specifiers 1 to 16 in the
trace definition.

IN

First address (Dat-Adr) Number of first register to read (MA, DA) IN
Trace completed (Complete) Turns ON when the trace read ends. OUT
Error Turns ON when an error occurs. OUT
Status Data trace read execution status OUT
Number of records read (Rec-Size) Number of records that were read OUT
Length of 1 read record (Rec-Len) Length of 1 read record (words) OUT

5.10 System Function Instructions

5.10.4 Read Data Trace (DTRC-RD)

5-236

The status configuration is shown below.

(3) Programming Example

In the following programming example, a data trace is executed for group definition number 1.
The trace is executed when DB000000 turns ON.

Bit Name Remarks
0 to 7 Reserved for system. –

8 No trace definition The function will not be executed.
9 Group No. error The function will not be executed.
10 Specified record No. error The function will not be executed.
11 Specified number of records error The function will not be executed.
12 Data storage error The function will not be executed.
13 Reserved for system. –
14 Reserved for system. –
15 Address input error The function will not be executed.

5.10 System Function Instructions

5.10.4 Read Data Trace (DTRC-RD)

5-237

In
st

ru
ct

io
ns

5

(4) Additional Information

[a] Structure of Read Data

The read data is structured as shown in the following figure.

[b] Record Lengths

A record consists of the selected data items.
The record length (number of words in a single record) is determined by the selected registers and the number of data
items.

• Number of words for 1 record = Bn × 1 word + Wn × 1 word + Ln × 2 words + Fn × 2 words
Bn: Number of selected bit registers
Wn: Number of selected integer registers
Ln: Number of selected double-length integer registers
Fn: Number of selected real number registers
The maximum total is 16 registers.

• Maximum record length = 32 words (with 16 double-length integers or real number registers)
• Minimum record length = 1 word (with 1 record for each bit or integer register)

[c] Number of Records

The number of records that can be specified depends on the record length as shown below.
• Number of records with the maximum record length: 0 to 1,015
• Number of records with the minimum record length: 0 to 32,511

(Upper limit: 32,521 divided by the record length - 1)

[d] Latest Record Number

The most recent record number for each trace group is stored in the system registers as shown below.

Record 1 Item 1
:
:

Item 16

Record 2

:

Record n

Old

32,512 words max.

New

1 to 32 words

1 to 32 words

1 to 32 words

First address

System Register Address Description
SW00100 Latest record number in group 1.
SW00101 Latest record number in group 2.
SW00102 Latest record number in group 3.
SW00103 Latest record number in group 4.
SW00104 –
SW00105 –
SW00106 –
SW00107 –

5.10 System Function Instructions

5.10.5 Read Inverter Trace (ITRC-RD)

5-238

5.10.5 Read Inverter Trace (ITRC-RD)

(1) Operation

The ITRC-RD instruction reads trace data in the Inverter and stores it in registers. You can specify the required records
and read them from the trace buffer. You can designate and read only the required items in each record.

Applicable Inverters:
This instruction is applicable to Inverters that are connected to the MP930, SVB-01, or 215IF.

Structure of Read Data

The length of a record can be from 1 to 16 words, depending on the selected data items.
The maximum number of records is 120.

Records are always read from the first record.

Read data

First address

Specified read
items read.

Data trace memory

Number of
records to read

Old

New
First record

M or D registers

Record 1 Item 1
:
:

Item 16

Record 2

:

Record n

Old

1,920 words max.

New

1 to 16 words

1 to 16 words

1 to 16 words

First address

5.10 System Function Instructions

5.10.5 Read Inverter Trace (ITRC-RD)

5-239

In
st

ru
ct

io
ns

5

(2) Format

∗ 1. M or D register only.
∗ 2. C and # registers cannot be used.

Parameter Name
Applicable Data Types

B W L F A Index Constant
Trace read execution
command (Execute) × × × × × ×

Trace read abort command
(Abort) × × × × × ×

Communications device
type (Dev-Typ) × × × ×

Circuit number (Cir-No) × × × ×
Slave station number
(St-No) × × × ×

Communications buffer
channel number (Ch-No) × × × ×

Number of records
(Rec-Size) × × × ×

Item selection (Select) × × × ×

First address (Dat-Adr) × × × × *1 × ×

Busy *2 × × × × × ×

Complete *2 × × × × × ×

Error *2 × × × × × ×

Status × *2 × × × ×

Number of records read
(Rec-Size) × *2 × × × ×

Read record length
(Rec-Len) × *2 × × × ×

Icon:

Key entry: ITRC-RD

5.10 System Function Instructions

5.10.5 Read Inverter Trace (ITRC-RD)

5-240

The parameters are described in the following table.

The status configuration is shown below.

(3) Programming Example

In the following programming example, trace data is read from an Inverter.
Two records of trace data are read from the Inverter that is connected to station 1 of the SVB–01 on circuit 1. The data
is stored in the area that starts with MW00100.

Parameter Name Description I/O
Trace read execution command (Execute) Reading begins when this command turns ON. IN
Trace read abort command (Abort) Reading is aborted when this command turns ON. IN
Communications device type (Dev-Typ) 215IF = 1, MP930 = 4, and SVB-01 = 10 IN
Circuit number (Cir-No) 215IF = 1 or 2, MP930 = 1, and SVB-01 = 1 to 16 IN
Slave station number (St-No) 215IF = 1 to 64, MP930 = 1 to 14, and SVB-01 = 1 to 14 IN
Communications buffer channel number
(Ch-No) 215IF = 1 to 3, MP930 = 1, and SVB-01 = 1 to 8 IN

Number of records (Rec-Size) Number of records to read (1 to 64) IN

Item selection (Select) Items to read (0001 to FFFF hex)
Bits 0 to F corresponds to trace data items 1 to 26.

IN

First address (Dat-Adr) First register address to read at source (MA, DA) IN
Busy Turns ON while reading Inverter trace data is in progress. OUT
Complete Turns ON when reading Inverter trace data is completed. OUT
Error Turns ON when an error occurs. OUT
Status Inverter trace data read execution status OUT
Number of records read (Rec-Size) Number of records that were read OUT
Read record length (Rec-Len) Length of records that were read OUT

Bit Name Remarks
0 to 8 Reserved for system. –

9 Communications parameter error The function will not be executed.
10 Reserved for system. –
11 Specified number of records error The function will not be executed.
12 Data storage error The function will not be executed.
13 Communications error The function will not be executed.
14 Reserved for system. –
15 Address input error The function will not be executed.

5.10 System Function Instructions

5.10.6 Send Message (MSG-SND)

5-241

In
st

ru
ct

io
ns

5

5.10.6 Send Message (MSG-SND)

(1) Operation

The MSG-SND instruction sends a message to a remote station of the specified communications device type on the
specified circuit.
This instruction supports the following communications devices and protocols.

Communications devices: CPU Module, 215IF, 217IF, 218IF, and SVB-01
Protocol: MEMOBUS communications or no-protocol

Communications Device

Protocol:
MEMOBUS or

no-protocol

Data area specified by the first
address of the parameter list and size

M, D, or # registers Communications device:
CPU Module,

215IF,
217IF,

218IF, or
SVB-01

Parameters

5.10 System Function Instructions

5.10.6 Send Message (MSG-SND)

5-242

(2) Format

∗ 1. M or D register only.
∗ 2. C and # registers cannot be used.

The parameters are described in the following table.

Parameter Name
Applicable Data Types

B W L F A Index Constant
Send execution command
(Execute) × × × × × ×

Send abort command
(Abort) × × × × × ×

Communications device
type (Dev-Typ) × × × ×

Communications protocol
(Pro-Typ) × × × ×

Circuit number (Cir-No) × × × ×
Communications buffer
channel number (Ch-No) × × × ×

First address of parameter
list (Param) × × × × *1 × ×

Busy *2 × × × × × ×

Complete *2 × × × × × ×

Error *2 × × × × × ×

Parameter Name Description I/O
Send execution command (Execute) The message is sent when this command turns ON. IN

Send abort command (Abort) Sending the message is aborted when this command turns
ON.

IN

Communications device type (Dev-Typ) CPU Module = 8, 215IF = 1, 217IF = 5, 218IF = 6,
218IF-02 = 16, and SVB-01 = 10

IN

Communications protocol (Pro-Typ) MEMOBUS = 1, No-protocol = 2

Circuit number (Cir-No) CPU Module = 1 or 2, 215IF = 1 to 8, 217IF = 1 to 24,
218IF(-02) = 1 to 8, and SVB-01 = 1 to 16

IN

Communications buffer channel number
(Ch-No)

CPU Module = 1 or 2, 215IF = 1 to 13, 217IF = 1,
218IF(-02) = 1 to 10, and SVB-01 = 1 to 8

IN

First address of parameter list (Param) First address of parameter list (MA, DA, or #A) IN
Busy Turns ON while sending the message is in progress. OUT
Complete Turns ON when sending the message is completed. OUT
Error Turns ON when an error occurs. OUT

Icon:

Key entry: MSG-SND

5.10 System Function Instructions

5.10.6 Send Message (MSG-SND)

5-243

In
st

ru
ct

io
ns

5

[a] Parameter Details

This section describes the parameters in detail. The parameter number corresponds to the word offset from the first
address of the parameter list.

For example, if the first address of the parameter list is MA00100, set the value in MW00110 to set PARAM10.

Processing Result (PARAM00)

This parameter outputs the result of processing to the upper byte. The lower byte is used for system analysis.
• 00 hex: Processing (Busy)
• 10 hex: Processing completed (Complete)
• 8 hex: Error

The following errors can occur.
• 81 hex: Function code error

An attempt was made to send an unused function code. Or an unused function code was received.
• 82 hex: Address setting error

The data address, coil offset, input relay offset, input register offset, or hold register offset is out-
side of the valid range.

• 83 hex: Data size error
The size of the send or receive data was set outside of the valid range.

• 84 hex: Circuit number setting error
The set circuit number is outside of the valid range.

• 85 hex: Channel number setting error
The set channel number is outside of the valid range.

• 86 hex: Station address error
The set station number is outside of the valid range.

• 88 hex: Communications section error
The communications section returned an error response.

• 89 hex: Device selection error
A device that cannot be used was selected.

Parameter No. IN/OUT
Description

MEMOBUS No-protocol
PARAM00 OUT Processing result Processing result
PARAM01 OUT Status Status
PARAM02 IN Remote station number Remote station number
PARAM03 SYS Reserved for system. Reserved for system.
PARAM04 IN Function code –
PARAM05 IN Data address Data address
PARAM06 IN Data size Data size
PARAM07 IN Remote CPU number Remote CPU number
PARAM08 IN Coil offset –
PARAM09 IN Input relay offset –
PARAM10 IN Input register offset –
PARAM11 IN Hold register offset Register offset
PARAM12 SYS Reserved for system. Reserved for system.
PARAM13 SYS Reserved for system. Reserved for system.
PARAM14 SYS Reserved for system. Reserved for system.
PARAM15 SYS Reserved for system. Reserved for system.
PARAM16 SYS Reserved for system. Reserved for system.

5.10 System Function Instructions

5.10.6 Send Message (MSG-SND)

5-244

　Status (PARAM01)

The status of the communications section is output to this parameter.
The bit assignments are shown in the following figure.

1. COMMAND

The abbreviations and meanings of the commands are given in the following table.

2. RESULT

The abbreviations and meanings of the results are listed in the following table.

F E D C B A 9 8 7 6 5 4 3 2 1 0

REQUEST
RESULT

COMMAND
PARAMETER

4 2 1 3

Code Abbreviation Meaning
1 U_SEND Sends a general-purpose message.
2 U_REC Receives a general-purpose message.
3 ABORT Aborts operation.

8 M_SEND Sends a MEMOBUS command and ends when a response is
received.

9 M_REC Receives a MEMOBUS command and returns a response.
C MR_SEND Sends a MEMOBUS response.

Code Abbreviation Meaning
0 – Execution is in progress.
1 SEND_OK The send was completed normally.
2 REC_OK The reception was completed normally.
3 ABORT_OK Aborting was completed.
4 FMT_NG A parameter format error occurred.

5
SEQ_NG or
INIT_NG

A command sequence error occurred or a token was not received.
There is no connection to a communications system.

6
RESET_NG or
O_RING_NG

A reset status exists.
Out of ring: A token was not received within the token monitoring
time.

7 REC_NG A data reception error occurred. (An error was detected in a low-
level program.)

5.10 System Function Instructions

5.10.6 Send Message (MSG-SND)

5-245

In
st

ru
ct

io
ns

5

3. PARAMETER

If the RESULT is 4 (FMT_NG), one of the following error codes is given. Otherwise, the remote station address
is given.

4. REQUEST

1 = Request
2 = Reception completed notification

Remote Station Number (PARAM02)/Serial

1 to 254: The message is sent to the station with the specified device address.

Function Code (PARAM04)

Set the MEMOBUS function code to send.
The function codes are listed in the following table.

: Can be set, ×: Cannot be set.
When the target device is operating as the master, only MW and MB data can be read and written. When the target
device is operating as a slave, MB, MW, IB, and IW data can be read and written for coils, hold registers, input
relays, and input registers, respectively.

Code Error
00 No error
01 Station address out of range
02 MEMOBUS response monitoring time error
03 Number of retries setting error
04 Cyclic area setting error
05 Message signal CPU number error
06 Message signal register address error
07 Message signal number of words error

Function Code Setting
00 hex Not used. ×

01 hex Read Coil Status

02 hex Read Input Relay Status

03 hex Read Hold Register Contents

04 hex Read Input Register Contents

05 hex Change Single Coil Status

06 hex Write Single Hold Register
07 hex Not used. ×

08 hex Loopback Test

09 hex Expanded Read Hold Register Contents

0A hex Expanded Read Input Register Contents

0B hex Expanded Write Hold Register
0C hex Not used. ×

0D hex Expanded Read Nonconsecutive Hold Registers

0E hex Expanded Write Nonconsecutive Hold Registers

0F hex Change Multiple Coil Status

10 hex Write Multiple Hold Registers
11 hex to 20 hex Not used. ×

21 hex to 3F hex Reserved for system. ×

40 hex to 4F hex Reserved for system. ×

50 hex and higher Not used. ×

5.10 System Function Instructions

5.10.6 Send Message (MSG-SND)

5-246

Data Addresses

The range of addresses that can be set for each function code are given in the following table.

∗ Requests to read or write relays or coils: Set the first bit address of the data.
Requests to read or write consecutive registers: Set the first word address of the data.
Requests to read or write nonconsecutive registers: Set the first word address of the address table.

[b] Data Size (PARAM06)

Set the data size (number of bits or number of words) for the read or write request. The setting range depends on the
function code.
The setting ranges for serial data sizes are listed in the following table.

Function Code Setting
00 hex Not used. Not valid.

01 hex Read Coil Status 0 to 65,535 (0 to FFFF hex)*

02 hex Read Input Relay Status 0 to 65,535 (0 to FFFF hex)*

03 hex Read Hold Register Contents 0 to 32,767 (0 to 7FFF hex)
04 hex Read Input Register Contents 0 to 32,767 (0 to 7FFF hex)

05 hex Change Single Coil Status 0 to 65,535 (0 to FFFF hex)*

06 hex Write Single Hold Register 0 to 32,767 (0 to 7FFF hex)
07 hex Not used. Not valid.
08 hex Loopback Test Not valid.
09 hex Expanded Read Hold Register Contents 0 to 32,767 (0 to 7FFF hex)
0A hex Expanded Read Input Register Contents 0 to 32,767 (0 to 7FFF hex)
0B hex Expanded Write Hold Register 0 to 32,767 (0 to 7FFF hex)
0C hex Not used. Not valid.

0D hex Expanded Read Nonconsecutive Hold Regis-
ters 0 to 32,767 (0 to 7FFF hex)

0E hex Expanded Write Nonconsecutive Hold Regis-
ters 0 to 32,767 (0 to 7FFF hex)

0F hex Change Multiple Coil Status 0 to 65,535 (0 to FFFF hex)*

10 hex Write Multiple Hold Registers 0 to 32,767 (0 to 7FFF hex)

Function Code
Data Size Setting Range

215IF or 218IF CPU Module, 217IF, or
SVB-01

00 hex Not used. Not valid.
01 hex Read Coil Status 1 to 2,000 (1 to 07D0 hex) bits
02 hex Read Input Relay Status 1 to 2,000 (1 to 07D0 hex) bits
03 hex Read Hold Register Contents 1 to 125 (1 to 007D hex) words
04 hex Read Input Register Contents 1 to 125 (1 to 007D hex) words
05 hex Change Single Coil Status Not valid.
06 hex Write Single Hold Register Not valid.
07 hex Not used. Not valid.
08 hex Loopback Test Not valid.

09 hex Expanded Read Hold Register Contents 1 to 508 (1 to 01FC hex)
words

1 to 252 (1 to 00FC hex)
words

0A hex Expanded Read Input Register Contents 1 to 508 (1 to 01FC hex)
words

1 to 252 (1 to 00FC hex)
words

0C hex Not used. Not valid.

0D hex Expanded Read Nonconsecutive Hold Regis-
ters

1 to 508 (1 to 01FC hex)
words

1 to 252 (1 to 00FC hex)
words

0E hex Expanded Write Nonconsecutive Hold Regis-
ters

1 to 254 (1 to 01FE hex)
words

1 to 126 (1 to 007E hex)
words

0F hex Change Multiple Coil Status 1 to 800 (1 to 0320 hex) bits
10 hex Write Multiple Hold Registers 1 to 100 (1 to 0064 hex) words

5.10 System Function Instructions

5.10.6 Send Message (MSG-SND)

5-247

In
st

ru
ct

io
ns

5

Remote CPU Number (PARAM07)

Specify the remote CPU number. If the remote device is an MP2000-series Machine Controller, set the number to 1.
If the remote device is any other Yaskawa Controller that consists of more than one CPU Module, set the CPU number
of the send destination.
In all other cases, set the number to 0.

Coil Offset (PARAM08)

Set the offset to the word address of the coil. This setting is valid for function codes 01, 05, and 0F hex.

Input Relay Offset (PARAM09)

Set the offset to the word address of the input relay. This setting is valid for function code 02 hex.

Input Register Offset (PARAM10)

Set the offset to the word address of the input register. This setting is valid for function codes 04 and 0A hex.

Hold Register Offset (PARAM11)

Set the offset to the word address of the hold register. This setting is valid for function codes 03, 06, 09, 0B, 0D, 0E,
and 10 hex.

Reserved for System (PARAM12)

The channel number that is currently in use is held in this parameter. Set this parameter to 0000 hex from a user pro-
gram in the first scan after the power supply is turned ON. Do not change the value of the parameter after that. It is used
by the system.

Relationship between Data Addresses, Sizes, and Offsets

The following figure shows the relationship between the data addresses, sizes, and offsets.

No-protocol Communications

It is not necessary to set PARAM04, PARAM09, and PARAM10. Only MW registers can be sent. PARAM11 is the off-
set to the word address of the MW registers.

Offset to sending
address

Sending
data address

Data

Offset to receiving
address

Sending
data address

Data

Offset

Data
address

Data size

MW00000

MW

Offset

Data
address

Data size

[MSG-SND] [MSG-RCV]

5.10 System Function Instructions

5.10.6 Send Message (MSG-SND)

5-248

[c] Inputs

Execute (Send Execution Command)

The message is sent when this command turns ON.

Abort (Send Abort Command)

This command aborts sending the message. It takes priority over Execute (Send Execution Command).

Dev-Typ (Communications Device Type)

Specify the communications device type.
CPU Module = 8, 215IF = 1, 217IF = 5, 218IF = 6, 218IF-02 = 16, and SVB-01 = 11

Pro-Typ (Communications Protocol)

Specify the communications protocol. For no-protocol communications, a response is not received from the remote
device.
MEMOBUS: Set this input to 1.
No-protocol: Set this input to 2.

Cir-No (Circuit Number)

Specify the circuit number.
CPU Module = 1 or 2, 215IF = 1 to 8, 217IF = 1 to 24, 218IF = 1 to 8, and SVB-01 = 1 to 16

Ch-No (Channel Number)

Specify the channel number of the communications section. Do not set the same channel number more than once for
the same circuit.
CPU Module = 1, 215IF = 1 to 13, 217IF = 1, 218IF = 1 to 10, and SVB-01 = 1 to 8

PARAM (First Address of Parameter List)

Set the first address of the parameter list. For details on this parameter, refer to [a] Parameter Details earlier in this
section.

[d] Output

Busy (Processing)

This item indicates that processing is in progress. Keep Execute ON while Busy is ON.

Complete (Processing Completed)

This item turns ON for only one scan when processing is completed normally.

Error

This item turns ON for only one scan when an error occurs. For the causes of the error, refer to information on
PARAM00 and PARAM01 in [a] Parameter Details earlier in this section.

5.10 System Function Instructions

5.10.6 Send Message (MSG-SND)

5-249

In
st

ru
ct

io
ns

5

(3) Programming Example

In the following programming example, sending data is started according to the set parameters 6.0 seconds after the
power supply is turned ON.

5.10 System Function Instructions

5.10.6 Send Message (MSG-SND)

5-250

5.10 System Function Instructions

5.10.6 Send Message (MSG-SND)

5-251

In
st

ru
ct

io
ns

5

5.10 System Function Instructions

5.10.6 Send Message (MSG-SND)

5-252

Refer to Chapter 6 Built-in Ethernet Communications in the Machine Controller MP2300S Basic Module User’s Manual (Man-
ual No.: SIEP C880732 00) for application examples of message functions.INFO

5.10 System Function Instructions

5.10.7 Receive Message (MSG-RCV)

5-253

In
st

ru
ct

io
ns

5

5.10.7 Receive Message (MSG-RCV)

(1) Operation

A message is received from a remote station on the specified circuit of the communications device type.
Keep the message receive command ON until the Complete bit turns ON.
This instruction supports the following communications devices and protocols.

Communications devices: CPU Module, 215IF, 217IF, 218IF, and SVB-01
Protocol: MEMOBUS communications or no-protocol

The Complete bit changes to 1 (ON) when the message reception is completed.
Until then, keep the receive message command ON.

Communications Device

Protocol:
MEMOBUS or

no-protocol

Data area specified by the first address
of the parameter list and size

M or D registers
Communications device:

CPU Module,
215IF,
217IF,

218IF, or
SVB-01

Parameters

Message receive
command

5.10 System Function Instructions

5.10.7 Receive Message (MSG-RCV)

5-254

(2) Format

∗ 1. M or D register only.
∗ 2. C and # registers cannot be used.

The parameters are described in the following table.

Parameter Name
Applicable Data Types

B W L F A Index Constant
Receive execution
command (Execute) × × × × × ×

Receive abort command
(Abort) × × × × × ×

Communications device
type (Dev-Typ) × × × ×

Communications protocol
(Pro-Typ) × × × ×

Circuit number (Cir-No) × × × ×
Communications buffer
channel number (Ch-No) × × × ×

First address of parameter
list (Param) × × × × *1 × ×

Busy *2 × × × × × ×

Complete *2 × × × × × ×

Error *2 × × × × × ×

Parameter Name Description I/O
Receive execution command (Execute) The message is received when this command turns ON. IN
Receive abort command (Abort) Receiving the message is aborted when this command turns ON. IN

Communications device type (Dev-Typ) CPU Module = 8, 215IF = 1, 217IF = 5, 218IF = 6,
218IF-02 = 16, and SVB-01 = 10

IN

Communications protocol (Pro-Typ) MEMOBUS = 1, No-protocol = 2 –

Circuit number (Cir-No) CPU Module = 1 or 2, 215IF = 1 to 8, 217IF = 1 to 24,
218IF(-02) = 1 to 8, and SVB-01 = 1 to 16

IN

Communications buffer channel number
(Ch-No)

CPU Module = 1 or 2, 215IF = 1 to 13, 217IF = 1,
218IF(-02) = 1 to 10, and SVB-01 = 1 to 8

IN

First address of parameter list (Param) First address of parameter list (MA, DA, or #A) IN
Busy Turns ON while receiving the message is in progress. OUT
Complete Turns ON when receiving the message is completed. OUT
Error Turns ON when an error occurs. OUT

Icon:

Key entry: MSG-RCV

5.10 System Function Instructions

5.10.7 Receive Message (MSG-RCV)

5-255

In
st

ru
ct

io
ns

5

[a] Parameter Details

This section describes the parameters in detail. The parameter number corresponds to the word offset from the first
address of the parameter list.

For example, if the first address of the parameter list is MA00100, set the value in MW00110 to set PARAM10.

Processing Result (PARAM00)

This parameter outputs the result of processing to the upper byte. The lower byte is used for system analysis.
• 00 hex: Processing (Busy)
• 10 hex: Processing completed (Complete)
• 8 hex: Error

The following errors can occur.
• 81 hex: Function code error

An unused function code was received.
• 82 hex: Address setting error

The data address, coil offset, input relay offset, input register offset, or hold register offset is set
outside of the valid range.

• 83 hex: Data size error
The size of the send or receive data was outside of the valid range.

• 84 hex: Circuit number setting error
The set circuit number is outside of the valid range.

• 85 hex: Channel number setting error
The set channel number is outside of the valid range.

• 86 hex: Station address error
The set station number is outside of the valid range.

• 88 hex: Communications section error
The communications section returned an error response.

• 89 hex: Device selection error
A device that cannot be used was selected.

Status (PARAM01)

The status of the communications section is output to this parameter. For details, refer to information on the Status
parameter (PARAM01) in 5.10.6 Send Message (MSG-SND).

Parameter No. IN/OUT
Description

MEMOBUS No-protocol
PARAM00 OUT Processing result Processing result
PARAM01 OUT Status Status
PARAM02 OUT Remote station number Remote station number
PARAM03 SYS Reserved for system. Reserved for system.
PARAM04 OUT Function code –
PARAM05 OUT Data address Data address
PARAM06 OUT Data size Data size
PARAM07 OUT Remote CPU number Remote CPU number
PARAM08 IN Coil offset –
PARAM09 IN Input relay offset –
PARAM10 IN Input register offset –
PARAM11 IN Hold register offset Register offset
PARAM12 IN Writing range low Register offset
PARAM13 IN Writing range high Register offset
PARAM14 SYS Reserved for system. Reserved for system.
PARAM15 SYS Reserved for system. Reserved for system.
PARAM16 SYS Reserved for system. Reserved for system.

5.10 System Function Instructions

5.10.7 Receive Message (MSG-RCV)

5-256

Remote Station Number (PARAM02)

The station number of the source is output to this parameter.

Function Code (PARAM04)

The MEMOBUS function code that was received is output to this parameter.
The MEMOBUS function codes are listed in the following table.

When the target device is operating as a slave, MB, MW, IB, and IW data can be read and written for coils, hold
registers, input relays, and input registers, respectively.

Data Address (PARAM05)

The data address that was requested by the sending node is output to this parameter

Data Size (PARAM06)

The data size (number of bits or number of words) in the read or write request is output to this parameter.

Remote CPU Number (PARAM07)

If the remote device is an MP2000-series Machine Controller, 1 is output to this parameter.
If the remote device is any other Yaskawa Controller that consists of more than one CPU Module, the CPU number is
output to this parameter.
In all other cases, 0 is output to this parameter.

Function Code Setting
00 hex Not used. ×

01 hex Read Coil Status

02 hex Read Input Relay Status

03 hex Read Hold Register Contents

04 hex Read Input Register Contents

05 hex Change Single Coil Status

06 hex Write Single Hold Register
07 hex Not used. ×

08 hex Loopback Test

09 hex Expanded Read Hold Register Contents

0A hex Expanded Read Input Register Contents

0B hex Expanded Write Hold Register
0C hex Not used. ×

0D hex Expanded Read Nonconsecutive Hold Registers

0E hex Expanded Write Nonconsecutive Hold Registers

0F hex Change Multiple Coil Status

10 hex Write Multiple Hold Registers
11 hex to 20 hex Not used. ×

21 hex to 3F hex Reserved for system. ×

40 hex to 4F hex Reserved for system. ×

50 hex and higher Not used. ×

5.10 System Function Instructions

5.10.7 Receive Message (MSG-RCV)

5-257

In
st

ru
ct

io
ns

5

Coil Offset (PARAM08)

Set the offset to the word address of the coil.
This setting is valid for function codes 01, 05, and 0F hex.

Input Relay Offset (PARAM09)

Set the offset to the word address of the input relay.
This setting is valid for function code 02 hex.

Input Register Offset (PARAM10)

Set the offset to the word address of the input register.
This setting is valid for function codes 04 and 0A hex.

Hold Register Offset (PARAM11)

Set the offset to the word address of the hold register.
This setting is valid for function codes 03, 06, 09, 0B, 0D, 0E, and 10 hex.

Writing Range Low (PARAM12) and Writing Range High (PARAM13)

Set the range for which to enable writing for write requests. Any write request that is not within this range will cause an
error. This setting is valid for function codes 0B, 0E, 0F, and 10 hex.
0 ≤ Write range low ≤ Write range high ≤ Highest MW address

Reserved for System (PARAM14)

The channel number that is currently in use is held in this parameter. Set this parameter to 0000 hex from a user pro-
gram in the first scan after the power supply is turned ON. Do not change the value of the parameter after that. It is used
by the system.

No-protocol Communications

It is not necessary to set PARAM04, PARAM08, PARAM09, PARAM10, and PARAM11.
PARAM12 is also used for the offset to the MW word address at the write destination.

5.10 System Function Instructions

5.10.7 Receive Message (MSG-RCV)

5-258

[b] Inputs

Execute (Receive Execution Command)

The message is received when this command turns ON.
Keep the Execute bit ON until the Complete or Error bit turns ON.

Abort (Receive Abort Command)

This command aborts receiving the message. It takes priority over Execute (Receive Execution Command).

Dev-Typ (Communications Device Type)

Specify the communications device type.
CPU Module = 8, 215IF = 1, 217IF = 5, 218IF = 6, 218IF-02 = 16, and SVB-01 = 11

Pro-Typ (Communications Protocol)

Specify the communications protocol. For no-protocol communications, a response is not sent to the remote station.
MEMOBUS: Set this input to 1.
No-protocol: Set this input to 2.

Cir-No (Circuit Number)

Specify the circuit number.
CPU Module = 1 or 2, 215IF = 1 to 8, 217IF = 1 to 24, 218IF = 1 to 8, and SVB-01 = 1 to 16

Ch-No (Channel Number)

Specify the channel number of the communications section. Do not set the same channel number more than once for
the same circuit.
CPU Module = 1, 215IF = 1 to 13, 217IF = 1, 218IF = 1 to 10, and SVB-01 = 1 to 8

PARAM (First Address of Parameter List)

Set the first address of the parameter list. For details on this parameter, refer to [a] Parameter Details earlier in this
section.

[c] Outputs

Busy (Processing)

This item indicates that processing is in progress. Keep Execute ON while Busy is ON.

Complete (Processing Completed)

This item turns ON for only one scan when processing is completed normally.

Error

This item turns ON for only one scan when an error occurs.
For the causes of the error, refer to information on PARAM00 and PARAM01 in [a] Parameter Details earlier in this
section.

5.10 System Function Instructions

5.10.7 Receive Message (MSG-RCV)

5-259

In
st

ru
ct

io
ns

5

(3) Programming Example

In the following programming example, message reception continues with the parameters that are set after the power
supply is turned ON.
　　　

5.10 System Function Instructions

5.10.7 Receive Message (MSG-RCV)

5-260

Refer to Chapter 6 Built-in Ethernet Communications in the Machine Controller MP2300S Basic Module User’s Manual (Man-
ual No.: SIEP C880732 00) for application examples of message functions.INFO

5.10 System Function Instructions

5.10.8 Write Inverter Parameter (ICNS-WR)

5-261

In
st

ru
ct

io
ns

5

5.10.8 Write Inverter Parameter (ICNS-WR)

(1) Operation

The ICNS-WR instruction writes data to parameters in an Inverter. You can specify the types and range of the parame-
ters in the Inverter.

Applicable Inverters:
This instruction is applicable to Inverters that are connected to the MP930, SVB-01, or 215IF.

Data 1

Data 2

:

Data 10

First address of parameter list

Number of parameters
to write

(1 to 100)

ASR Proportional
Gain

ASR Integral Time

:

PG Dividing Ratio

:

:

Acceleration Time 1

Bn-06

Bn-05

Bn-14

Bn-01

Written.

M, D, or # registers

Parameters in the Inverter
Parameter type

Parameter number

5.10 System Function Instructions

5.10.8 Write Inverter Parameter (ICNS-WR)

5-262

(2) Format

∗ 1. M or D register only.
∗ 2. C and # registers cannot be used.

Parameter Name
Applicable Data Types

B W L F A Index Constant
Write command (Execute) × × × × × ×
Write processing abort
command (Abort) × × × × × ×

Communications device
type (Dev-Typ) × × × ×

Circuit number (Cir-No) × × × ×
Slave station number
(St-No) × × × ×

Communications buffer
channel number (Ch-No) × × × ×

Parameter type (Cns-Typ) × × × ×
Parameter number
(Cns-No) × × × ×

Number of parameters to
write (Cns-Size) × × × ×

First address (Dat-Adr) × × × × *1 × ×

Writing (Busy) *2 × × × × × ×

Write completed (Complete) *2 × × × × × ×

Error *2 × × × × × ×

Write execution status
(Status) × *2 × × × ×

Icon:

Key entry: ICNS-WR

5.10 System Function Instructions

5.10.8 Write Inverter Parameter (ICNS-WR)

5-263

In
st

ru
ct

io
ns

5

The parameters are described in the following table.

The status configuration is shown below.

Parameter Name Description I/O
Write command (Execute) Writing the Inverter parameters begins when this command turns ON. IN
Write processing abort command
(Abort) The write process is aborted when this command turns ON. IN

Communications device type
(Dev-Typ) 215IF = 1, MP930 = 4, and SVB-01 = 10 IN

Circuit number (Cir-No) 215IF = 1 or 2, MP930 = 1, and SVB-01 = 1 to 16 IN
Slave station number (St-No) 215IF = 1 to 64, MP930 = 1 to 14, and SVB-01 = 1 to 14 IN
Communications buffer channel
number (Ch-No) 215IF = 1 to 3, MP930 = 1, and SVB-01 = 1 to 8 IN

Parameter type (Cns-Typ)
Inverter parameter type:
0 = Direct specification of reference number, 1 = An, 2 = Bn, 3 = Cn,
4 = Dn, 5 = En, 6 = Fn, 7 = Hn, 8 = Ln, 9 = On, and 10 = Tn

IN

Parameter number (Cns-No)
Inverter parameter number (1 to 99)
The upper limit depends on the model of the Inverter.
If the parameter type (Cns-Typ) is set to 0, specify the reference number.

IN

Number of parameters to write
(Cns-Size) Number of parameters to write to the Inverter (1 to 100) IN

First address (Dat-Adr) The first register address of the parameters (MA, DA, or #A). IN
Writing (Busy) Turns ON while writing parameters to the Inverter is in progress. OUT
Write completed (Complete) Turns ON when writing parameters to the Inverter is completed. OUT
Error Turns ON when an error occurs. OUT
Write execution status (Status) Inverter parameter write execution status OUT

Bit Name Remarks

0 to 7 Reserved for system.

The error code is given here when an Inverter
response error is received.
01 hex: Function code error
02 hex: Reference number error
03 hex: Error in the number of data items written
21 hex: Error in the upper or lower limit of the
write data
22 hex: Write error (during operation or under-
voltage)

8 Execution sequence error The function will not be executed.
9 Communications parameter error The function will not be executed.
10 Specified type error –
11 Specified number error The function will not be executed.
12 Specified data error The function will not be executed.
13 Communications error The function will not be executed.
14 Inverter response error The function will not be executed.
15 Address input error The function will not be executed.

5.10 System Function Instructions

5.10.8 Write Inverter Parameter (ICNS-WR)

5-264

(3) Programming Example

In the following programming example, the data in MW00000 is written to parameter Bn-10 in the Inverter that is con-
nected as station 1 to the SVB-01 on circuit 1.
When DB000000 turns ON, the parameter is written to the Inverter.
After execution, you must check the Complete bit (DB000003) to make sure that it has turned ON, and then write the
data to parameter storage memory in the Inverter (EEPROM). (Refer to (4) Additional Information.)

5.10 System Function Instructions

5.10.8 Write Inverter Parameter (ICNS-WR)

5-265

In
st

ru
ct

io
ns

5

(4) Additional Information

[a] Writing Parameters to EEPROM

The procedure to write parameters to the parameter storage memory in the Inverter (EEPROM) is given in the follow-
ing figure.

The parameters are first written to work memory in the Inverter with the ICNS-WR system function. To write those
parameters to EEPROM, you must use the Write Enter command that is shown in the following figure.

[b] Executing the Write Enter Command

To execute the Write Enter command, use the ICNS-WR function to write data of 0 to the reference “FEED”.

Write the parameters
to work memory.

Write the parameters
to work memory.

Digital
Operator

Work memory

EEPROM

Inverter
ICNS-WR function

Write Enter command

S
ha

re
d

m
em

or
y

5.10 System Function Instructions

5.10.9 Read Inverter Parameter (ICNS-RD)

5-266

5.10.9 Read Inverter Parameter (ICNS-RD)

(1) Operation

The ICNS-RD instruction reads parameters from an Inverter. You can specify the types and range of the parameters in
the Inverter.

Applicable Inverters:
This instruction is applicable to Inverters that are connected to the MP930, SVB-01, or 215IF.

Data 1

Data 2

:

Data 10

First address of parameter list

Number of parameters
to read

(1 to 100)

ASR Proportional
Gain

ASR Integral Time

:

PG Dividing Ratio

:

:

Acceleration Time 1

Bn-06

Bn-05

Bn-14

Bn-01

Read.

M or D registers

Parameters in the Inverter
Parameter type

Parameter number

5.10 System Function Instructions

5.10.9 Read Inverter Parameter (ICNS-RD)

5-267

In
st

ru
ct

io
ns

5

(2) Format

∗ 1. M or D register only.
∗ 2. C and # registers cannot be used.

Parameter Name
Applicable Data Types

B W L F A Index Constant
Read command (Execute) × × × × × ×
Read processing abort
command (Abort) × × × × × ×

Communications device
type (Dev-Typ) × × × ×

Circuit number (Cir-No) × × × ×
Slave station number
(St-No) × × × ×

Communications buffer
channel number (Ch-No) × × × ×

Parameter type (Cns-Typ) × × × ×
Parameter number
(Cns-No) × × × ×

Number of parameters to
read (Cns-Size) × × × ×

First address (Dat-Adr) × × × × *1 × ×

Reading (Busy) *2 × × × × × ×

Read completed (Complete) *2 × × × × × ×

Error *2 × × × × × ×

Read execution status
(Status) × *2 × × × ×

Icon:

Key entry: ICNS-RD

5.10 System Function Instructions

5.10.9 Read Inverter Parameter (ICNS-RD)

5-268

The parameters are described in the following table.

The status configuration is shown below.

Parameter Name Description I/O
Read command (Execute) Reading the Inverter parameters begins when this command turns ON. IN
Read processing abort command
(Abort) The read process is aborted when this command turns ON. IN

Communications device type
(Dev-Typ) 215IF = 1, MP930 = 4, and SVB-01 = 10 IN

Circuit number (Cir-No) 215IF = 1 or 2, MP930 = 1, and SVB-01 = 1 to 16 IN
Slave station number (St-No) 215IF = 1 to 64, MP930 = 1 to 14, and SVB-01 = 1 to 14 IN
Communications buffer channel
number (Ch-No) 215IF = 1 to 3, MP930 = 1, and SVB-01 = 1 to 8 IN

Parameter type (Cns-Typ)
Inverter parameter type:
0 = Direct specification of reference number, 1 = An, 2 = Bn, 3 = Cn,
4 = Dn, 5 = En, 6 = Fn, 7 = Hn, 8 = Ln, 9 = On, and 10 = Tn

IN

Parameter number (Cns-No)
Inverter parameter number (1 to 99)
The upper limit depends on the model of the Inverter.
If the parameter type (Cns-Typ) is set to 0, specify the reference number.

IN

Number of parameters to read
(Cns-Size) Number of parameters to read from the Inverter (1 to 100) IN

First address (Dat-Adr) The first register address of the parameters (MA, DA, or #A). IN
Reading (Busy) Turns ON while reading parameters from the Inverter is in progress. OUT
Read completed (Complete) Turns ON while reading parameters from the Inverter is completed. OUT
Error Turns ON when an error occurs. OUT
Read execution status (Status) Inverter parameter read execution status OUT

Bit Name Remarks

0 to 7 Reserved for system.

The error code is given here when an Inverter
response error is received.
01 hex: Function code error
02 hex: Reference number error

8 Execution sequence error The function will not be executed.
9 Communications parameter error The function will not be executed.
10 Specified type error –
11 Specified number error The function will not be executed.
12 Specified data error The function will not be executed.
13 Communications error The function will not be executed.
14 Inverter response error The function will not be executed.
15 Address input error The function will not be executed.

5.10 System Function Instructions

5.10.9 Read Inverter Parameter (ICNS-RD)

5-269

In
st

ru
ct

io
ns

5

(3) Programming Example

In the following programming example, parameter Bn-10 in the Inverter that is connected as station 1 to the SVB-01 on
circuit 1 is read and the data is stored in MW00000.
When DB000000 turns ON, the parameter is read from the Inverter.

5.10 System Function Instructions

5.10.10 Write SERVOPACK Parameter (MLNK-SVW)

5-270

5.10.10 Write SERVOPACK Parameter (MLNK-SVW)

(1) Operation

The MLNK-SVW instruction writes all the parameters that are saved in the Machine Controller as a SERVOPACK
parameter backup file to the SERVOPACK that is specified with the circuit number and axis number.
This instruction can be used to write SERVOPACK parameters using only a ladder program (i.e., without the use of
MPE720 or other tools) when a SERVOPACK is replaced.

An MP2000-series Machine Controller with software version 2.81 or higher is required to execute the MLNK-
SVW instruction for a SERVOPACK connected to an SVC Module.

(2) Format

∗ 1. M or D register only.
∗ 2. C and # registers cannot be used.

IMPORTANT

Parameters for the SERVOPACK that is specified
with the circuit number and axis number

Backup file of SERVOPACK
parameters in the Machine Controller

Written in one operation.

Parameter Name
Applicable Data Types

B W L F A Index Constant
Write command (Execute) × × × × × ×

Write processing abort
command (Abort) × × × × × ×

Circuit number (Cir-No) × × × × × ×

Axis number (St-No) × × × × × ×

Option settings (Option) × × × × × ×

First address (Param) × × × × *1 × ×

Writing (Busy) *2 × × × × × ×

Write completed (Complete) *2 × × × × × ×

Error *2 × × × × × ×

Icon:

Key entry: MLNK-SVW

5.10 System Function Instructions

5.10.10 Write SERVOPACK Parameter (MLNK-SVW)

5-271

In
st

ru
ct

io
ns

5

The parameters are described in the following table.

The option settings are described in the following table.

[a] Details on Function Workspace

This section provides details on the function workspace. The parameter number corresponds to the word offset from
the first address.
For example, if the first address is MA00100, set the value in MW00105 to set PARAM05.

Parameter Name Description I/O

Write command (Execute) Writing the SERVOPACK parameters begins when this command turns
ON.

IN

Write processing abort command
(Abort) The write process is aborted when this command turns ON. IN

Circuit number (Cir-No) Destination circuit number (1 to 16) IN
Axis number (St-No) Destination axis number (1 to 16) IN

Option settings (Option)

Command Option Bit Settings
Bit E: ID Check Enable/Disable; 0: Enable, 1: Disable
Bit F: Version Check Enable/Disable; 0: Enable, 1: Disable
The other bits are not used. Any settings in the other bits are ignored.

IN

First address (Param) First address of function workspace IN
Writing (Busy) Turns ON while writing the parameters is in progress. OUT
Write completed (Complete) Turns ON for one scan only after the parameters are written. OUT

Error Turns ON for one scan only when an error occurs.
(The error details are output to PARAM00 and PARAM01.)

OUT

Bit Description
0 to D Not used. (Settings will be ignored.)

E

ID Check Enable/Disable (0: Enable, 1: Disable)
This option allows you to disable detecting inconsistencies between the ID information in the source file and the
ID information where the data is written.
Use this option when writing to a stepping motor drive.
If this bit is set to 1 (disable), the model information is not checked. This can result in writing parameters for the
wrong model, which can cause problems. Take sufficient caution when you disable the check. An inconsistent ID
information error will also occur if a SERVOPACK parameters file that was edited or saved offline is used. If that
occurs, also disable the ID check.

F

Version Check Enable/Disable (0: Enable, 1: Disable)
If the version of the source SERVOPACK (communications interface) is not the same as the version at the write
destination, an inconsistent version error will occur.
SERVOPACK parameters and setting ranges are sometimes different for different versions as the result of
changes to specifications. Confirm that no problems will occur before you disable the version check. This will
allow you to write the parameters.
An inconsistent version error will also occur if a SERVOPACK parameters file that was edited or saved offline is
used. If that occurs, also disable the version check.

Parameter No. IN/OUT Description
PARAM00 OUT Processing result
PARAM01 OUT Error code
PARAM02 OUT Copy of Cir-No
PARAM03 OUT Copy of St-No
PARAM04 SYS For system use #1
PARAM05 SYS For system use #2
PARAM06 SYS For system use #3

5.10 System Function Instructions

5.10.10 Write SERVOPACK Parameter (MLNK-SVW)

5-272

Processing Result (PARAM00)

• 0000 hex: Processing (Busy)
• 1000 hex: Processing completed (Complete)
• 8 hex: Error

The following errors can occur.
• 8100 hex: Reserved.
• 8200 hex: Address setting error

The set data address is outside of the valid range.
• 8300 hex: Reserved.
• 8400 hex: Circuit number setting error

The set circuit number is outside of the valid range.
• 8500 hex: Reserved.
• 8600 hex: Axis number setting error

The set axis number is outside of the valid range.
• 8700 hex: Reserved.
• 8800 hex: Communications interface task error

An error was returned from the communications interface task.
• 8900 hex: Reserved.
• 8A00 hex: Function execution duplication error

More than one MLNK-SVW function was executed at the same time.

Error Code (PARAM01)

This parameter outputs the error code from the communications interface task. This parameter is valid only when
the processing result (PARAM00) is 8800 hex.
• 0000 hex: Reserved.
• 0001 hex: No SERVOPACK parameter backup file
• 0002 hex: Backup file error
• 0003 hex: Inconsistent ID information
• 0004 hex: Inconsistent version
• 0005 hex: Module error
• 0006 hex: SERVOPACK controller command duplication error
• 0007 hex: Communications error
• 0008 hex: Undefined command
• 0009 hex: Invalid parameter
• 000A hex: Internal system error

Copy of Cir-No (PARAM02)

This is a copy of the Cir-No input data.

Copy of St-No (PARAM03)

This is a copy of the St-No input data.

For System Use #1 (PARAM04)

This parameter is used by the system. Set this parameter to 0000 hex from a user program in the first scan after
the power supply is turned ON. Do not modify this parameter at any other time.

5.10 System Function Instructions

5.10.10 Write SERVOPACK Parameter (MLNK-SVW)

5-273

In
st

ru
ct

io
ns

5

For System Use #2 (PARAM05)

This parameter is used by the system. Set this parameter to 0000 hex from a user program in the first scan after
the power supply is turned ON. Do not modify this parameter at any other time.

For System Use #3 (PARAM06)

This parameter is used by the system. Set this parameter to 0000 hex from a user program in the first scan after
the power supply is turned ON. Do not modify this parameter at any other time.

(3) Programming Example

In the following programming example, the parameters are written to the SERVOPACK.
If a backup file of the SERVOPACK parameters exists in the Machine Controller, the SERVOPACK parameters are
written once to the specified SERVOPACK when DB000000 turns ON. The specified SERVOPACK is the one that is
defined in the Module configuration definition with a MECHATROLINK circuit number of 1 and defined in the
MECHATROLINK detailed definition with ST#8.

5.10 System Function Instructions

5.10.10 Write SERVOPACK Parameter (MLNK-SVW)

5-274

5.10 System Function Instructions

5.10.11 Write Motion Register (MOTREG-W)

5-275

In
st

ru
ct

io
ns

5

5.10.11 Write Motion Register (MOTREG-W)

(1) Operation

The MOTREG-W instruction calls a function that accesses a specified motion register.
The data is written to the motion register by specifying the circuit number, axis number, and register address. This
instruction is used with setting parameters.

This function is useful to store the same setting parameter for multiple axes with different circuit and axis num-
bers.
To store data with the STORE or EXPRESSION instructions, you need to consider an offset to address the cir-
cuit and the axis numbers.

Setting parameters for the specified
circuit and axis numbers

OW 00

:

:

OL 1CWrite data

Write destination
register address (= 001C hex)

5.10 System Function Instructions

5.10.11 Write Motion Register (MOTREG-W)

5-276

(2) Format

∗ C and # registers cannot be used. These parameters may be omitted.

The parameters are described in the following table.

Parameter Name
Applicable Data Types

B W L F A Index Constant
Axis information (Axis-Inf) × × × × × ×

Register address (Reg-No) × × × × × ×

Mode × × × × × ×

Write data (WR-Data) × × × × ×

Error * × × × × × ×

Read data (RD-Data) × * * × × × ×

Parameter Name Description I/O

Axis information (Axis-Inf)
Circuit number and axis number
Upper byte: Circuit number (01 to 10 hex)
Lower byte: Axis number (01 to 10 hex)

IN

Register address (Reg-No) Integer register: 0000 to 007F hex
Double-length integer register: 0000 to 007E hex

IN

Mode

Access type and access size
Upper byte: Access type

0: Write WR-Data to specified register.
1: Write inclusive OR of specified register and WR-Data to specified

register.
2: Write AND of specified register and WR-Data to specified register.
Others: Write WR-Data to specified register.

Lower byte: Access size
0: Integer data
1: Double-length integer data
Others: Integer data

IN

Write data (WR-Data) If the access size for Mode is an integer and the input data type is a double-
length integer, only the lower word will be used.

IN

Error

Error cause (Turns ON when an error occurs.)
The register cannot be written to or read from because the circuit number, axis
number, or register address is outside of the valid range, or because the Module
does not exist.
When an error occurs, RD-Data is set to 0.

OUT

Read data (RD-Data) This is the data that is read after writing is completed.
If integer data is specified, the data is output with the sign.

OUT

Icon:

Key entry: MOTREG-W

5.10 System Function Instructions

5.10.11 Write Motion Register (MOTREG-W)

5-277

In
st

ru
ct

io
ns

5

(3) Programming Example

In the following programming example, the value in ML00000 is written to the Step Travel Distance parameter in
OW 44 for axis number 10 on circuit number 3.
Set the following items.

• Axis-Inf = 030A hex (circuit 3, axis 10)
• Register address = 0044 hex
• Mode = 0001 hex (double-length Integer)

For simplicity, this example omits the error and data reading processes.

The same result can be achieved by directly specifying the register address and storing data with the STORE instruc-
tion.

Equivalent

5.10 System Function Instructions

5.10.12 Read Motion Register (MOTREG-R)

5-278

5.10.12 Read Motion Register (MOTREG-R)

(1) Operation

The MOTREG-R instruction calls a function that accesses a specified motion register.
The value is read from the motion register by specifying the circuit number, axis number, and register address.
This instruction is used with setting parameters and monitor parameters.

This instruction is useful to read the same parameter for multiple axes with different circuit and axis numbers.
To read data with the STORE or EXPRESSION instructions, you need to consider an offset to address the cir-
cuit and the axis numbers.

Setting parameters and monitor parameters
for the specified circuit and axis numbers

IW 00

:

:

IL 12Read data

Register address of
read destination (= 0012 hex)

5.10 System Function Instructions

5.10.12 Read Motion Register (MOTREG-R)

5-279

In
st

ru
ct

io
ns

5

(2) Format

∗ C and # registers cannot be used. These parameters may be omitted.

The parameters are described in the following table.

Parameter Name
Applicable Data Types

B W L F A Index Constant
Axis information (Axis-Inf) × × × × × ×

Register address (Reg-No) × × × × × ×

Mode × × × × × ×

Write data (WR-Data) × × × × ×

Error * × × × × × ×

Read data (RD-Data) × * * × × × ×

Parameter Name Description I/O

Axis information (Axis-Inf)
Circuit number and axis number
Upper byte: Circuit number (01 to 10 hex)
Lower byte: Axis number (01 to 10 hex)

IN

Register address (Reg-No) Integer register: 0000 to 007F hex
Double-length integer register: 0000 to 007E hex

IN

Mode

Register type and access size
Upper byte: Register type

0: I register (monitor parameter)
1: O register (setting parameter)
Others: I register

Lower byte: Access size
0: Integer data
1: Double-length integer data
Others: Integer data

IN

Error

Error cause (Turns ON when an error occurs.)
The register cannot be written to or read from because the circuit number, axis
number, or register address is outside of the valid range, or because the Module
does not exist.
When an error occurs, RD-Data is set to 0.

OUT

Read data (RD-Data) If integer data is specified, the data is output with the sign. OUT

Icon:

Key entry: MOTREG-R

5.10 System Function Instructions

5.10.12 Read Motion Register (MOTREG-R)

5-280

(3) Programming Example

In the following programming example, the Machine Coordinate System Feedback Position in IL8096 for axis number
2 on circuit number 1 is read.
Set the following items to read the feedback position and store it in DL00002.

• Axis-Inf = 0102 hex (circuit 1, axis 2)
• Register address = 0016 hex
• Mode = 0001 hex (monitor parameter, double-length integer)

The same result can be achieved by directly specifying the register address and storing data in DL00002 with the
STORE instruction.

Equivalent

5.11 C-language Control Instructions

5.11.1 Call C-language Function (C-FUNC)

5-281

In
st

ru
ct

io
ns

5

5.11 C-language Control Instructions
5.11.1 Call C-language Function (C-FUNC)

(1) Operation

This instruction calls a C-language function from a ladder drawing.

For details on C-language functions, refer to the Machine Controller MP2000 Series Embedded C-Language
Programming Package Development Guide (Manual No.: SIEP C880700 25).

(2) Format

∗ 1. Optional.
∗ 2. C and # registers cannot be used.
∗ 3. M or D register only.

Ladder Drawing

C-language function

Function called.

C-FUNC
instruction

Parameter Name
Applicable Data Types

B W L F A Index Constant
Execution flag (Execute) × × × × × ×

Option 1 (Option1) × × × ×

Option 2 (Option2) × × × ×
Function name
(C_Name) × × × × × ×

Argument 1 (C_Arg1) × × × × *3 × ×

Argument 2 (C_Arg2) × × × × *3 × ×

Completion flag*1
(Complete)

*2 × × × × × ×

Error flag*1 (Error) *2 × × × × × ×

Return value (Return) × × × × × ×

Function name

Argument 1

Argument 2

Completion flag

Error flag

Return value

Execution flag

Option 1

Option 2

Icon:

Key entry: C-FUNC

5.11 C-language Control Instructions

5.11.1 Call C-language Function (C-FUNC)

5-282

The parameters are described in the following table.

∗ This error is detected even when Execute is OFF.

(3) Programming Example

In the following programming example, the CFUNC1 C-language function is executed.
First the CFUNC1 C-language function is loaded into the Controller.
Next, when the C-FUNC execution command (MB000000) turns ON, the CFUNC1 C-language function is executed
by the C-FUNC instruction.
The MA00100 and MA00200 addresses are passed to the C-language function as the arguments and the return value
from the function is set in DL00002. Options 1 and 2 are not used, so 0 is set for them.

Parameter Name Description I/O
Execution flag (Execute) The C-FUNC function is executed when this command turns ON. IN
Option 1 (Option1) Option specification 1 (for future use) IN
Option 2 (Option2) Option specification 2 (for future use) IN

Function name (C_Name) Specify the first register address to pass to argument 1 of the user C-language
function.

IN

Argument 1 (C_Arg1) Specify the first register address to pass to argument 1 of the user C-language
function.

IN

Argument 2 (C_Arg2) Specify the first register address to pass to argument 2 of the user C-language
function.

IN

Completion flag (Complete) Turns ON when execution of the C-FUNC function is completed. OUT

Error flag (Error)

Turns ON when one of the following errors occurs.
• Register limit exceeded for C_Name, C_Arg.1, or C_Arg.2.*

The sizes of C_Arg.1 and C_Arg.2 are not considered.
• The function specified by C_Name does not exist.

OUT

Return value (Return) Stores the value that is returned by the user C-language function. OUT

5.11 C-language Control Instructions

5.11.2 C-language Task Control (TSK-CTRL)

5-283

In
st

ru
ct

io
ns

5

5.11.2 C-language Task Control (TSK-CTRL)

(1) Operation

This instruction controls a C-language task from a ladder drawing. The task can be woken up, reset, suspended, or
resumed.

For details on C-language functions, refer to the Machine Controller MP2000 Series Embedded C-Language
Programming Package Development Guide (Manual No.: SIEP C880700 25).

(2) Format

∗ C and # registers cannot be used.

Ladder Drawing

C-language Task

1: Wake up

2: Reset

3: Suspend

4: Resume

TSK-CTRL
instruction

Parameter Name
Applicable Data Types

B W L F A Index Constant
Execution flag (Execute) × × × × × ×

Type (Type) × × × × ×

Task name (C_Name) × × × × × ×

Completion flag (Complete) * × × × × × ×

Error flag (Error) * × × × × × ×

Error code (Err_code) × × * × × × ×

Execution flag

Type

Task name

Completion flag

Error flag

Error code

Icon:

Key entry: TSK-CTRL

5.11 C-language Control Instructions

5.11.2 C-language Task Control (TSK-CTRL)

5-284

The parameters are described in the following table.

∗ 1. Execute is not treated as a rising edge, but as a level. This allows cyclic execution in the high scan level and low
scan level tasks.

∗ 2. The errors that are detected by μITRON normally do not occur because of system management.

Parameter Name Description I/O
Execution flag (Execute) The TSK-CTRL instruction is executed when this command turns ON. IN

Type (Type)

1: Wake up
A task that is in WAIT state is woken up.
2: Reset
A task is ended, deleted, generated again, and started.
The task then executes itself and goes into WAIT state.
3: Suspend
The task is suspended and placed in SUSPEND state.
4: Resume
A task in SUSPEND state is changed to READY state.

IN

Task name (C_Name) Specify the first register address of the registers in which the task name of the
user C-language task is stored.

IN

Completion flag (Complete) Turns ON when execution of the TSK-CTRL instruction is completed. OUT

Error flag (Error) Turns ON when an error occurs. (The error is given in Err_code.) OUT

Error code (Err_code)

Error Codes
0 00000000

No error
0 00000091

Type setting error
• The value of Type is outside of the valid range.
• Type was set to Wake up when the state was not WAIT or WAIT-SUS-

PEND.
• Type was set to Suspend when the state was not WAIT or READY.

0 00000094
The task specified by C_Name does not exist.

0 00000096
Register upper/lower limit exceeded for C_Name.*1

0 FFFFFFDD

Error detected by μITRON: Illegal ID number*2

0 FFFFFFCC

Error detected by μITRON: Task not registered*2

0 FFFFFFC1
Error detected by μITRON: Illegal object state
• The task is in DORMANT state.
• Resume was specified when the task was not in SUSPEND state.

0 FFFFFFBB
Error detected by μITRON: Context error
• The task could not be executed in a non-task context.

0 FFFFFFB7

Error detected by μITRON: Queuing overflow*2

OUT

5.11 C-language Control Instructions

5.11.2 C-language Task Control (TSK-CTRL)

5-285

In
st

ru
ct

io
ns

5

(3) Programming Example

In the following programming example, the CTASK1 C-language task is executed.
First the CTASK1 C-language task is loaded into the Controller.
Next, when the TSK1 execute command (MB000000) turns ON, the CTASK1 C-language task is executed by the
TSK-CTRL instruction.

6-1

Fe
at

ur
es

 o
f t

he
 M

P
E

72
0

E
ng

in
ee

rin
g

To
ol

6

6
Features of the MPE720 Engineering Tool

This chapter describes the key features of the MPE720 Engineering Tool for ladder programming.
Refer to the Engineering Tool for MP2000 Series Machine Controller MPE720 Version 6 User’s
Manual (SIEP C880700 30) for details on these features, information on other features, and operat-
ing procedures.

6.1 Ladder Program Runtime Monitoring - 6-2

6.2 Searching/Replacing - 6-3

6.3 Cross References - 6-4

6.4 Checking for Multiple Coils - 6-5

6.5 Forcing Coils ON and OFF - 6-5

6.6 Viewing Called Programs - 6-6

6.7 Register Lists - 6-6

6.8 Tuning Panel - 6-7

6.9 Enabling and Disabling Ladder Programs - 6-8

6.10 Compiling for MPE720 Version 5 - 6-9

6.1 Ladder Program Runtime Monitoring

6-2

This chapter describes the following ladder programming and debugging features of MPE720 version 6.

• Ladder program runtime monitoring
• Searching/replacing
• Cross references
• Multiple coils
• Forcing coils ON and OFF
• Viewing called programs
• Register lists
• Tuning panel
• Enabling and disabling ladder programs
• Compiling for MPE720 version 5

MPE720 version 6 provides many other features. Refer to the Engineering Tool for MP2000 Series Machine Controller
MPE720 Version 6 User’s Manual (SIEP C880700 30) for details on these features and information on other features.

6.1 Ladder Program Runtime Monitoring
You can monitor the execution status of each instruction. Using runtime monitoring requires a connection to the
Machine Controller.
Instructions where the relay output is ON are displayed in blue.
The current values of the parameter registers of the instructions that are being executed are also displayed.

ON coils are
displayed in blue.

Current values of
registers are displayed.

6.2 Searching/Replacing

6-3

Fe
at

ur
es

 o
f t

he
 M

P
E

72
0

E
ng

in
ee

rin
g

To
ol

6

6.2 Searching/Replacing
Two different search/replace operations are provided.

• Searching and Replacing in Programs
You can search for and replace variables, instructions, and comments in the currently active ladder drawing.

• Searching and Replacing in Project Files
You can search for and replace variables in all ladder drawings in a project file.
You can use this operation only when the MPE720 is not connected to the Machine Controller.

Search Dialog Box

ReplaceSearch

You can search for and replace variables, comments, and other items.

Replace Dialog Box

6.3 Cross References

6-4

6.3 Cross References
Cross referencing allows you to check whether a register is used in a program, and where it is used.
The search results indicate output registers in red, input registers in blue.

If the value of a register is different from its set value, it means that the value of the register may have been overwritten
somewhere in the program. In this case, you can search for the registers using cross references. Check the registers dis-
played in red to locate the instructions that are overwriting them.

Cross referencing executed.

Search Results Display

Red: Output registers

Blue: Input registers

6.4 Checking for Multiple Coils

6-5

Fe
at

ur
es

 o
f t

he
 M

P
E

72
0

E
ng

in
ee

rin
g

To
ol

6

6.4 Checking for Multiple Coils
You can check for multiple coils (different coils that use the same register) in an entire ladder program, and display the
search results.

6.5 Forcing Coils ON and OFF
You can force a specified coil ON or OFF from the Ladder Editor.
The coil will output ON or OFF regardless of the output of the instruction to the left of the coil.

In the following example, you can simulate turning ON the switch (IB00000) by forcing the DB000001 relay ON even
though the physical switch does not exist.

Multiple coils are displayed.

Coil forced ON.

You can simulate turning ON a switch even
though the physical switch does not exist.

6.6 Viewing Called Programs

6-6

6.6 Viewing Called Programs
You can open a drawing that is called with an SEE instruction or an FUNC instruction.

6.7 Register Lists
You can monitor and edit the current values of the registers in a continuous area on a register list. Realtime monitoring
and editing are possible if the Machine Controller is connected.
Also, if you turn ON display of the register map, registers that are used in the ladder program are displayed with a
green background, and registers that are used for more than one data type are displayed with a red background.

Called drawing: H01 Drawing

You can open called drawings

Calling instruction

You can monitor and edit the current
values of registers in a continuous area.

6.8 Tuning Panel

6-7

Fe
at

ur
es

 o
f t

he
 M

P
E

72
0

E
ng

in
ee

rin
g

To
ol

6

6.8 Tuning Panel
The Tuning Panel allows you to display and edit the current values of pre-registered variables.
You can use the Tuning Panel to control and check the operation of your application.
You can adjust the Visual monitor Column to display data according to specific conditions.

• You can monitor and edit the current values of specified
registers.

• In addition to the current values, the Tuning Panel also
displays comments and visual status indicators.

6.9 Enabling and Disabling Ladder Programs

6-8

6.9 Enabling and Disabling Ladder Programs
You can enable and disable individual drawings in ladder programs.

This feature is used to temporarily disable ladder drawings that contain processing to turn ON the power supply to ser-
vomotors or jog processing for servomotors. This allows you to check the operation of individual servomotors with the
test run operation of the MPE720 or the Module configuration definition.

Disabled drawing

• Disabled ladder drawings are not processed.
• ON/OFF control of coils and instruction execution
are not processed.

Ladder drawing
disabled.

Disabled

The motor can be controlled
from MPE720 as required.

The required operation is not possible
because the ladder drawing is active.

6.10 Compiling for MPE720 Version 5

6-9

Fe
at

ur
es

 o
f t

he
 M

P
E

72
0

E
ng

in
ee

rin
g

To
ol

6

6.10 Compiling for MPE720 Version 5
Compiling for MPE720 version 5 allows you to display and edit ladder programs on MPE720 version 5 (version 5.34
or higher) even when you compile them on MPE720 version 6.

However, compiling errors will occur if notation that is supported only on MPE720 version 6 is used.
If you do not compile for MPE720 version5, you will not be able to display and edit the ladder programs that you create
on MPE720 version 6 on MPE720 version 5.

∗ MPE720 version 5.34 or higher is required to display and edit programs that were compiled for MPE720 version 5 on
MPE720 version 6.

MPE720 Version 6
Programs created.

MPE720 Version 5*
Programs can be

displayed and edited.
Compiling for

MPE720 version 5

7-1

Tr
ou

bl
es

ho
ot

in
g

7

7
Troubleshooting

This chapter describes troubleshooting.

7.1 Basic Flow of Troubleshooting - 7-2

7.2 Indicator Status - 7-3

7.3 Problem Classifications - 7-4
7.3.1 Overview - 7-4
7.3.2 Error Checking Flowchart for MP2000-series Machine Controllers - 7-5

7.4 Detailed Troubleshooting - 7-6
7.4.1 Operation Errors - 7-6
7.4.2 I/O Error - 7-9
7.4.3 Watchdog Timer Errors - 7-10
7.4.4 Module Synchronization Errors - 7-10
7.4.5 System Errors - 7-11

7.1 Basic Flow of Troubleshooting

7-2

7.1 Basic Flow of Troubleshooting
When a problem occurs, it is important to quickly find the cause of the problem and get the system running again as
quickly as possible. The basic troubleshooting flow is illustrated below.

Step 1 Visually confirm the following items.
• Machine movement
• Power supply
• I/O device status
• Wiring status
• Indicator status (LED indicators on each Module)
• Switch settings (e.g., DIP switches)
• Parameter settings and program contents

Step 2 Monitor the system to see if the problem changes in
response to the following operations.

• Switching the Controller to STOP status
• Resetting alarms
• Turning the power supply OFF and ON again

Step 3 Determine the location of the cause from the results of
steps 1 and 2.

• Controller or external?
• Sequence control or motion control?
• Software or hardware?

7.2 Indicator Status

7-3

Tr
ou

bl
es

ho
ot

in
g

7

7.2 Indicator Status
The pattern of the indicators on the MP2000-series Machine Controller shows the operating status. The following table
gives the indicator lighting patterns and corresponding corrective actions.

C
la

ss Indicator Status
Meaning Corrective Action

RDY RUN ALM ERR BAT

N
or

m
al

Not
lit.

Not
lit. Lit. Lit. Not

lit. Hardware has been reset.
Normally, the CPU Unit will start within
10 seconds. If more than 10 seconds is
required, there is an error in a user pro-
gram or a hardware failure.

Not
lit.

Not
lit.

Not
lit.

Not
lit.

Not
lit.

The Machine Controller is being initial-
ized.

Not
lit. Lit. Not

lit.
Not
lit.

Not
lit. Drawing A is being executed.

Lit. Not
lit.

Not
lit.

Not
lit.

Not
lit.

The user program is stopped.
(The Machine Controller is in Offline
Stopped Mode.)

This status is entered at the following
times. It does not represent an error.
• The stop operation was performed from

the MPE720.
• The STOP switch was turned ON.

Lit. Lit. Not
lit.

Not
lit.

Not
lit.

The user programs are being executed
normally. Normal operation is in progress.

E
rr

or

Not
lit.

Not
lit.

Not
lit. Lit. Not

lit.

A serious failure, watchdog timer error,
or Module synchronization error has
occurred.

A hardware failure, watchdog timer error,
or Module synchronization error has
occurred.
Refer to 7.3 Problem Classifications.

Not
lit.

Not
lit.

Not
lit.

Flash-
ing.

Not
lit.

A software error occurred.
Number of Flashes

3: Read address error exception
3: Write address error exception
5: FPU exception
6: General illegal instruction exception
7: Slot illegal instruction exception
8: General FPU suppression exception
9: Slot FPU suppression exception
10: TLB multibit exception
11: LTB reading error exception
12: LTB writing error exception
13: LTB read protection violation

exception
14: LTB write protection violation

exception
15: Initial page write exception

A system error occurred.
Refer to 7.4.5 System Errors.

Not
lit.

Not
lit.

Flash
ing.

Flash-
ing.

Not
lit.

A hardware error occurred.
Number of Flashes

2: RAM diagnostic error
3: ROM diagnostic error
4: CPU Function Module diagnostic

error
5: FPU Function Module diagnostic

error

A hardware failure has occurred. Replace
the Module.

A
la

rm

− − − − Lit. Battery alarm Replace the Battery.

Lit. Lit. Lit. Not
lit.

Not
lit.

An operation error occurred.
An I/O error occurred.

• Operation Errors
Refer to 7.4.1 Operation Errors.

• I/O Errors
Refer to 7.4.2 I/O Errors.

7.3 Problem Classifications

7.3.1 Overview

7-4

7.3 Problem Classifications
7.3.1 Overview

The following table gives the problems that can occur on an MP2000-series Machine Controller and the indicator light-
ing patterns.

∗ 1. If a motion program alarm occurs, refer to Chapter 10 Troubleshooting in the Machine Controller MP2000 Series
User’s Manual for Motion Programming (Manual No.: SIEP C880700 38) and clear the alarm.

∗ 2. If an axis alarm/warning occurs, refer to the user’s manual for your Motion Module and clear the alarm.

Classification Problem
Indicators

ALM ERR BAT

Alarm

Battery alarm Not lit. Not lit. Lit.

Operation error Lit. Not lit. Not lit.

I/O error Lit. Not lit. Not lit.

Motion program alarm*1 Not lit. Not lit. Not lit.

Axis alarm/warning *2 Not lit. Not lit. Not lit.

Error

Watchdog timer error Not lit. Lit. Not lit.

Module synchronization error Not lit. Lit. Not lit.

System error Not lit. Flashing. Not lit.

Hardware failure
Not lit. Lit. Not lit.

Flashing. Flashing. Not lit.

7.3 Problem Classifications

7.3.2 Error Checking Flowchart for MP2000-series Machine Controllers

7-5

Tr
ou

bl
es

ho
ot

in
g

7

7.3.2 Error Checking Flowchart for MP2000-series Machine Controllers
Use the following flowchart to troubleshoot problems based on the indicators and system registers.

Operation error

I/O error

Battery alarm

Refer to 7.4.1 Operation Errors.

Refer to 7.4.2 I/O Errors.

Replace the Battery.

Watchdog timer error

Module synchronization error

System error

Hardware failure

Refer to 7.4.3 Watchdog Timer
Errors.

Refer to 7.4.4 Modules
Synchronization Errors.

Refer to 7.4.5 System Errors.

BAT indicator lit.

SB000418 = ON
(User Operation Error)

SB000419 = ON
(I/O Error)

0001 hex
(Watchdog Timer Error)

0051 hex
(Module

Synchronization
Error)

Any other value

ALM indicator lit.

ERR indicator lit.

Hardware failure

ERR indicator
flashing.

ALM and ERR
indicators flashing.

Indicator and
System Register

Check

Check SW00041.
(CPU Error Status)

Check SW00050.
(32-bit Error Code)

SB000487 = ON
(Battery Alarm)

SB000402 = ON
(Alarm)

SB000403 = ON*
(Error)

SB000403 = ON*
(Error)

SB000403 = ON*
(Error)

*If a hardware failure occurs, the problem may
not be reported in the system registers.

Errors

Alarms

If clearing memory and turning
the power supply OFF and ON
again does not eliminate the
problem, there may be a
hardware failure. Consult with
your Yaskawa representative.

If clearing memory and turning
the power supply OFF and ON
again does not eliminate the
problem, there may be a
hardware failure. Consult with
your Yaskawa representative.

7.4 Detailed Troubleshooting

7.4.1 Operation Errors

7-6

7.4 Detailed Troubleshooting
7.4.1 Operation Errors

Operation errors can be caused by the following problems.
• An illegal operation was performed in a ladder program.
• An illegal operation was performed in a motion program.
• An illegal operation was performed in a sequence program.

If an operation error occurs, use the following procedure to isolate the error.

1. Check the contents of SW00080 to SW00089 to identify the type of drawing and error.

Information on operation errors is stored in the following system registers according to the type of drawing in
which the error occurred. Information on errors in motion programs is stored in the system registers for DWG.H.

Example: When SW00085 Contains a Value Other Than 0000 Hex

You can tell that an operation error occurred in high-speed scan processing. If the value in SW00084 is contin-
uously incremented, it means that the instruction that is causing the operation error is being executed continu-
ously.

2. Check the contents of SW00122, SW00138, SW00154, and SW00186 to identify the drawing number.

3. Identify the instruction that caused the error in the drawing.

The method to identify operation errors is different for integer operations and real number operations. To identify
operation errors for integer operations, refer to Troubleshooting Method 1.
To identify operation errors for real number operations, refer to Troubleshooting Method 2.

Drawing
Type Error Register

Address Description

DWG.A
Error Count SW00080

• Error Count
Gives the number of errors that have occurred.

• Error Code

Refer to A.9 Interrupt Status for information on error codes.

Error Code SW00081

DWG.I
Error Count SW00082

Error Code SW00083

DWG.H
Error Count SW00084

Error Code SW00085

DWG.L
Error Count SW00088

Error Code SW00089

Name Register
Address Description

DWG.A Error Drawing No. SW00122 Parent drawing: FFFF hex
Child drawing: xx00 hex (xx hex: Child drawing number)
Grandchild drawing: xxyy hex (yy hex: Grandchild drawing number)
Function: 8000 hex
Motion program/sequence program: F0xx hex (xx hex: Program num-
ber)

DWG.I Error Drawing No. SW00138

DWG.H Error Drawing No. SW00154

DWG.L Error Drawing No. SW00186

Bit 15 12 Bit 11 0

Error code

Index error

7.4 Detailed Troubleshooting

7.4.1 Operation Errors

7-7

Tr
ou

bl
es

ho
ot

in
g

7

Troubleshooting Method 1

You can use the following procedure to troubleshoot operation errors that occur in DWG.H (0002 hex: Integer
operation overflow).

1. Identify the error drawing number with the SW00154 system register and open that drawing.

2. Add the following code to the beginning of the drawing.

3. Add debugging code before and after the instruction that you think is causing the error.

4. Check the contents of the register address in the debugging code.
If it changes from 0 (no error) to 2 (integer operation overflow), an integer operation overflow has
occurred.

5. Repeat steps 3 and 4, above, to isolate the instruction that is causing the error.

You can use the above debugging method only with an integer or double-length integer operation.
You cannot use the above debugging method with real number operations.INFO

7.4 Detailed Troubleshooting

7.4.1 Operation Errors

7-8

Troubleshooting Method 2

You can use the following procedure to troubleshoot operation errors that occur in DWG.H (0030 hex: Invalid
real number operation (not a number)).

1. Identify the error drawing number with the SW00154 system register and open that drawing.

2. Check the value of the real number operation with the online monitor.

In this example, MF000000 in the DIV instruction is “************”.
“************” indicates an illegal value for a real number (not a number). If you use that value in a real num-
ber operation, the system will generate an operation error (0030 hex: Invalid real number operation (not a num-
ber)).

Operation errors can be caused by the following problems.
• A value is not set in a register (undefined data).
• A bit, integer, or double-length integer operation was performed for a register that uses the same address.
To perform real number operations, you must set real number values.

3. Repeat step 2, above, to isolate the register that is causing the error.

INFO

7.4 Detailed Troubleshooting

7.4.2 I/O Errors

7-9

Tr
ou

bl
es

ho
ot

in
g

7

7.4.2 I/O Errors
An I/O error can occur in the following cases.

• Option Module allocations or Module detail definitions were set in the Module Configuration.
• A cable was disconnected or a Module failed while the system was operating.

If an I/O error occurs, you can check the following system registers to check the I/O error.

You can also use the following system registers to find the address of the I/O register (IW /OW) for
which the I/O error occurred.

Example: When an I/O Error Was Detected for an I/O Device Assigned to IW1234

A value of 1234 hex will be stored in SW00202.

After you find the I/O register address, identify the slot of the Module and then find the I/O status from the following
system registers.
For details on I/O status, refer to 2.5.5 System I/O Error Status in the Machine Controller MP2000 Troubleshooting
Manual (Manual No.: SIJP C880700 40 (Japanese version)).

Name Register
Address Description

I/O Error Count SW00200 Number of I/O errors that have occurred (total of SW00201 and SW00203).
Input Error Count SW00201 Number of input errors that have occurred
Output Error Count SW00203 Number of output errors that have occurred

Name Register
Address Meaning

Input Error Address SW00202 The latest input error address (register address in IW)
Output Error Address SW00204 The latest output error address (register address in OW)

Name Register
Address Meaning

Input Error Address

SW00208 to
SW00215 CPU Function Module

SW00216 to
SW00223 Reserved for system.

SW00224 to
SW00231 Error status of Rack 1, Slot 1

SW00232 to
SW00239 Error status of Rack 1, Slot 2

SW00240 to
SW00247 Error status of Rack 1, Slot 3

SW00248 to
SW00255 Error status of Rack 1, Slot 4

... ...
SW00496 to

SW00503 Error status of Rack 4, Slot 9

7.4 Detailed Troubleshooting

7.4.3 Watchdog Timer Errors

7-10

7.4.3 Watchdog Timer Errors
Watchdog timer errors can be caused by the following problems.

• An infinite loop occurs in a user program.
• The scan time is exceeded by a user program.

• A Motion Module*1 fails.

• A watchdog timer error occurs in an MPU-01 Module.*2

∗ 1. Motion Modules: PO-01, SVA-01, SVB-01, SVC-01, and MPU-01
∗ 2. If a watchdog error occurs when you are using an MPU-01 Module, refer to Chapter 6 Troubleshooting in the

Machine Controller MP2000 Series MPU-01 Multiple-CPU Module User’s Manual (Manual No.: SIEP
C880781 05).

If a watchdog timer error occurs, it is important to determine if the cause of the error is in the CPU Module or in a
Motion Module.
To determine where the cause of the error was, stop the programs in the CPU Module and then restart the CPU Module
to see if the problem changes.

If a watchdog timer does not occur when the programs in the CPU Module are stopped, it is very likely that the cause
of the error is in the CPU Module. Check the programs to see if there are any infinite loops.
If this does not solve the problem, then there is a chance that the Motion Module is faulty. Consult with your Yaskawa
representative.

7.4.4 Module Synchronization Errors
Module synchronization errors can be caused by the following problems.

• A Motion Module*1 fails.

• A watchdog timer error occurs in an MPU-01 Module.*2

∗ 1. Motion Modules: PO-01, SVA-01, SVB-01, SVC-01, and MPU-01
∗ 2. If a Module synchronization error occurs when you are using an MPU-01 Module, refer to Chapter 6 Trouble-

shooting in the Machine Controller MP2000 Series MPU-01 Multiple-CPU Module User’s Manual (Manual
No.: SIEP C880781 05).

If a Module synchronization error occurs (i.e., if SW00050 = 0051 hex), the slot where the Module synchronization
error was detected is reported in the system registers given in the following table.

∗ Module synchronization errors are reported for CPU Modules with a system software version of 2.75 or higher.
For version 2.74 or lower, it is reported as a watchdog timer error.

If a Module synchronization error occurs, consult with your Yaskawa representative.

STOP
SUP
INIT

CNFG
MON
TEST

SW1

OFF ON

1
 2

 3
 4

 5
 6

Turn ON the STOP switch on the front panel of the CPU Unit
and then turn the power supply OFF and ON again to start the
CPU Module without executing the ladder programs in the
CPU Module.

Register Address Description

SW00076 Slot where Module synchronization error was detected*

xxyy hex: xx: Rack number (01 to 04), yy: Slot number (01 to 09)

7.4 Detailed Troubleshooting

7.4.5 System Errors

7-11

Tr
ou

bl
es

ho
ot

in
g

7

7.4.5 System Errors
System errors can be caused by the following problems.

• Illegal processing was performed in a user program.
• A problem occurred in the installation environment.
• A hardware failure occurred.

If you are using embedded C-language programs, a system error that results in the system going down can be caused by
illegal pointer access or an illegal operation on floating-point data. The causes of system errors are given in the follow-
ing table.

∗ For details, refer to Chapter 10 Precautions in the Machine Controller MP2000 Series Embedded C-Language Pro-
gramming Package Development Guide (Manual No.: SIEP C880700 25).

If you are not using embedded C-language programs or if you are using embedded C-language programs and none of
the above illegal programming problems exist, the cause may be a hardware error.
Hardware errors can be caused by the installation environment or by failures in the hardware itself.

If there are no problems in the installation environment and the error recurs regardless of corrective actions, the hard-
ware itself may have failed. Consult with your Yaskawa representative.

Number of
Flashes of

ERR Indicator
Error Cause Corrective Action

3 times Read address error excep-
tion Long word (32-bit) or word (16-bit)

data was read from an incorrect
address.* Check for the types of illegal processing

given on the left and correct any prob-
lems.

4 times Write address error
exception

5 times FPU exception
An illegal operation was performed for
floating-point data (not a number, divi-
sion by 0, overflow, etc.)

A-1

S
ys

te
m

 R
eg

is
te

rs

AppA

Appendix A
System Registers

This appendix describes the registers that are provided by the system of the Machine Controller.

A.1 System Service Registers - A-2

A.2 System Status - A-6

A.3 System Error Status - A-7

A.4 Overview of User Operation Error Status - A-9

A.5 System Service Execution Status - A-11

A.6 Detailed User Operation Error Status - A-11

A.7 System I/O Error Status - A-12

A.8 CF Card-related System Registers
(MP2200-series CPU-02 and CPU-03 only) - A-13

A.9 Interrupt Status - A-14
A.9.1 Interrupt Status List - A-14
A.9.2 Details on Interrupting Module - A-14

A.10 Module Information - A-15

A.11 MPU-01 System Status - A-16

A.12 Motion Program Information - A-17

A.1 System Service Registers

A-2

System registers are provided by the MP2000-series Machine Controller system. They can be used to read system error
information, the current operating status, and other information.

A.1 System Service Registers
(1) Common to All Drawings

Contents
SW00000 System Service Registers
SW00030 System Status
SW00050 System Error Status
SW00080 Overview of User Operation Error Status
SW00090 System Service Execution Status
SW00110 Detailed User Operation Error Status
SW00190 Alarm Counter and Alarm Clear
SW00200 System I/O Error Status
SW00504 Reserved for system.

SW00652 CF Card-related System Registers
(MP2200-series CPU-02 and CPU-03 only)

SW00698 Interrupt Status
SW00800 Module Information
SW01312 Reserved for system.
SW01411 MPU-01 Module System Status
SW02048 Reserved for system.
SW03200 Motion Program Information
SW05200 to
SW08191 Reserved for system.

Name Register Address Remarks
Reserved for system. SB000000 Not used.

High-speed Scan SB000001 ON for only the first scan after the high-speed scan
starts.

Low-speed Scan SB000003 ON for only the first scan after low-speed scan starts.
Always ON SB000004 Always ON (1).
Reserved for system. SB000005 and SB000006 Not used.
High-speed Scan in Progress SB000007 ON (1) during execution of the high-speed scan.
Reserved for system. SB000008 to SB00000F Not used.

A.1 System Service Registers

A-3

S
ys

te
m

 R
eg

is
te

rs

AppA

(2) Exclusive to DWG.H Only

Operation starts when the high-speed scan starts.

Name Register
Address Remarks

1-scan Flicker Relay SB000010

0.5-s Flicker Relay SB000011

1.0-s Flicker Relay SB000012

2.0-s Flicker Relay SB000013

0.5-s Sampling Relay SB000014

1.0-s Sampling Relay SB000015

2.0-s Sampling Relay SB000016

60.0-s Sampling Relay SB000017

1.0 s After Start of Scan Relay SB000018

2.0 s After Start of Scan Relay SB000019

5.0 s After Start of Scan Relay SB00001A

1 scan

1 scan

0.5 s 0.5 s

1.0 s 1.0 s

2.0 s 2.0 s

0.5 s 0.5 s

1 scan

1.0 s 1.0 s

1 scan

2.0 s 2.0 s

1 scan

1 scan

60.0 s 60.0 s

1.0 s

2.0 s

5.0 s

A.1 System Service Registers

A-4

(3) Exclusive to DWG.L Only

Operation starts when the low-speed scan starts.

Name Register
Address Remarks

1-scan Flicker Relay SB000030

0.5-s Flicker Relay SB000031

1.0-s Flicker Relay SB000032

2.0-s Flicker Relay SB000033

0.5-s Sampling Relay SB000034

1.0-s Sampling Relay SB000035

2.0-s Sampling Relay SB000036

60.0-s Sampling Relay SB000037

1.0 s After Start of Scan Relay SB000038

2.0 s After Start of Scan Relay SB000039

5.0 s After Start of Scan Relay SB00003A

1 scan

1 scan

0.5 s 0.5 s

1.0 s 1.0 s

2.0 s 2.0 s

0.5 s 0.5 s

1 scan

1 scan

1.0 s 1.0 s

1 scan

2.0 s 2.0 s

1 scan

60.0 s 60.0 s

1.0 s

2.0 s

5.0 s

A.1 System Service Registers

A-5

S
ys

te
m

 R
eg

is
te

rs

AppA

(4) Scan Execution Status and Calendar

(5) System Program Software Numbers and Remaining Program Memory Capacity

Name Register
Address Remarks

High-speed Scan Set
Value SW00004 This is the set value of the high-speed scan (0.1 ms).

High-speed Scan Current
Value SW00005 This is the current value of the high-speed scan (0.1 ms).

High-speed Scan
Maximum Value SW00006 This is the maximum value of the high-speed scan (0.1 ms).

High-speed Scan Set
Value 2 SW00007 This is the set value of the high-speed scan (1 μs).

High-speed Scan Current
Value 2 SW00008 This is the current value of the high-speed scan (1 μs).

High-speed Scan
Maximum Value 2 SW00009 This is the maximum value of the high-speed scan (1 μs).

Low-speed Scan Set
Value SW00010 This is the set value of the low-speed scan (0.1 ms).

Low-speed Scan Current
Value SW00011 This is the current value of the low-speed scan (0.1 ms)

Low-speed Scan
Maximum Value SW00012 This is the maximum value of the low-speed scan (0.1 ms)

Reserved for system. SW00013 Not used.

Current Scan Time SW00014 This is the current value of the scan that is currently being exe-
cuted (0.1 ms).

Calendar: Year SW00015 1999: 0099 (BCD) (last two digits only)
Calendar: Month Day SW00016 December 31: 1231 (BCD)
Calendar: Hours and
Minutes SW00017 23: 59: 2359 (BCD)

Calendar: Seconds SW00018 59 s: 59 (BCD)

Calendar: Week SW00019 0: Sunday, 1: Monday, 2: Tuesday, 3: Wednesday, 4: Thursday,
5: Friday, 6: Saturday

Name Register Address Remarks

System Program Software Version SW00020 S (is replaced with the
BCD value.)

System Number SW00021 to
SW00025 Not used.

Remaining Program Memory Capacity SL00026 Bytes
Total Memory Capacity SL00028 Bytes

A.2 System Status

A-6

A.2 System Status
The system operating status and errors are stored in registers SW00040 to SW00048. You can check the system status
to determine whether the cause of the error is hardware or software related.

Name Register
Address Contents

Reserved for
system.

SW00030 to
SW00039 –

CPU Status SW00040

SB000400 READY 0: Error, 1: Ready
SB000401 RUN 0: Stopped, 1: Running
SB000402 ALARM 0: Normal, 1: Alarm
SB000403 ERROR 0: Normal, 1: Error
SB000404 Reserved for system. –
SB000405 Reserved for system. –
SB000406 FLASH 1: Flash operation

SB000407 WEN 0: Writing disabled, 1: Writing
enabled

SB000408 to
SB00040D Reserved for system. –

SB00040E Operation Stop Request 0: RUN selected, 1: STOP selected

SB00040F Run Switch Status at
Power ON 0: STOP, 1: RUN

CPU Error
Status SW00041

SB000410 Serious Failure 1: WDGE, undefined instruction
Refer to SW00050 for details.

SB000411 Reserved for system. –
SB000412 Reserved for system. –
SB000413 Exception Error –

SB000414 to SB000417 Reserved for system. –
SB000418 User Operation Error 1: User operation error
SB000419 I/O Error 1: I/O error

SB00041A to
SB00041F Reserved for system. –

H Scan
Exceeded
Counter

SW00044 – – –

L Scan
Exceeded
Counter

SW00046 – – –

Reserved for
system. SW00047 Reserved for system. –

Hardware
Configuration
Status

SW00048

SB000480 TEST

DIP switch status
0: ON, 1: OFF

SB000481 MON
SB000482 CNFG
SB000483 INIT
SB000484 SUP
SB000485 STOP
SB000486
SB000487 Battery Alarm –

SB000488 to SB00048F Reserved for system. –
Reserved for
system. SW00049 SB000490 to SB00049F Reserved for system. –

A.3 System Error Status

A-7

S
ys

te
m

 R
eg

is
te

rs

AppA

A.3 System Error Status
Details on the system errors are stored in registers SW00050 to SW00079.

Name Register Address Contents

32-bit Error Code
SW00050

0001 hex Watchdog timer error
0041 hex ROM diagnostic error
0042 hex RAM diagnostic error
0043 hex CPU diagnostic error
0044 hex FPU diagnostic error
0050 hex EXIO error
0051 hex Module synchronization error*1

00E0 hex Read address exception error
0100 hex Write address exception error
0120 hex FPU exception error
0180 hex General illegal instruction exception error
01A0 hex Slot illegal instruction exception error
01E0 hex User break after instruction execution
0800 hex General FPU suppression exception error
0820 hex Slot FPU suppression exception error

SW00051 For system error analysis

32-bit Error Address
SW00052

For system error analysis
SW00053

Error Task SW00054 0000 hex: System, 0001 hex: DWG.A, 0002 hex: DWG.I,
0003 hex: DWG.H, 0005 hex: DWG.L

Program Type SW00055
0000 hex: System, 0001 hex: DWG.A, 0002 hex: DWG.I,
0003 hex: DWG.H, 0005 hex: DWG.L, 0008 hex: Function,
000F hex: Motion program/sequence program

Error Drawing No. SW00056

Ladder program parent drawing: FFFF hex
Ladder program function: 8000 hex
Ladder program child drawing: xx00 hex (xx hex: Child drawing number)
Ladder program grandchild drawing: xxyy hex (yy hex: Grandchild draw-
ing number)
Motion program/sequence program: F0xx hex (xx hex: Program number)

Calling Drawing Type SW00057

Type of the calling drawing in which the error occurred
0001 hex: DWG.A, 0002 hex: DWG.I, 0003 hex: DWG.H,
005 hex: DWG.L, 8000 hex: Ladder program function,
000F hex: Motion program/sequence program,
0010 hex: Reserved for system, 0011 hex: Reserved for system.

Calling Drawing No. SW00058

Number of the calling drawing in which the error occurred

Parent drawing:
FFFF hex
Function: 0100 hex

Child drawing: xx00 hex
(xx hex: Child drawing number)
Grandchild drawing: xxyy hex
(yy hex: Grandchild drawing number)

Calling Drawing Step
No. SW00059 Step number in the calling drawing in which the error occurred

This number is set to 0 if the error occurred in the parent drawing.

A.3 System Error Status

A-8

∗ 1. This error is reported for CPU Modules with a system software version of 2.75 or higher. For version 2.74 or lower,
it is reported as a watchdog timer error (0001 hex).

∗ 2. This error is reported for CPU Modules with a system software version of 2.75 or higher.

Error Data

SW00060 and SW00061 Reserved for system.
SW00062 to SW00065 Name of task that caused the error

SW00066 and SW00067 Reserved for system.
SW00068 Year when error occurred
SW00069 Month when error occurred
SW00070 Day of week when error occurred
SW00071 Day when error occurred
SW00072 Hour when error occurred
SW00073 Minutes when error occurred
SW00074 Seconds when error occurred
SW00075 Milliseconds when error occurred (Not used.)

SW00076 Slot where module synchronization error was detected*2

xxyy hex: xx: Rack number (01 to 04), yy: Slot number (01 to 09)
SW00078 and SW00079 Reserved for system.

Name Register Address Contents

A.4 Overview of User Operation Error Status

A-9

S
ys

te
m

 R
eg

is
te

rs

AppA

A.4 Overview of User Operation Error Status
Details are given in registers SW00080 to SW00089 when a user operation error occurs in a program.

(1) User Operation Error Code -1

Name Register
Address Contents

DWG.A
Error Count SW00080 • Error Count

Gives the number of errors that have occurred.

• Error Code

Refer to (1) User Operation Error Code -1 or (2) User Operation Error
Code -2 for information on error codes.

Error Code SW00081

DWG.I
Error Count SW00082

Error Code SW00083

DWG.H
Error Count SW00084

Error Code SW00085

DWG.L
Error Count SW00088

Error Code SW00089

Bit 15 12 Bit 11 0

Error Code Index error

Error Code Error Description System Default

In
te

ge
r O

pe
ra

tio
ns 0001 hex Integer operation underflow -32,768

0002 hex Integer operation overflow 32,767
0003 hex Integer operation division error The A register stays the same.
0009 hex Double-length integer operation underflow -2,147,483,648
000A hex Double-length integer operation overflow 2,147,483,647
000B hex Double-length integer operation division error The A register stays the same.

R
ea

l N
um

be
r O

pe
ra

tio
ns

0010 hex Non-numerical integer storage error Data is not stored. [00000]
0011 hex Integer storage underflow Data is not stored. [-32,768]
0012 hex Integer storage overflow Data is not stored. [+ 32,767]
0021 hex Real number storage underflow Data is not stored. [-1.0E + 38]
0022 hex Real number storage overflow Data is not stored. [1.0E + 38]
0023 hex Real number operation division by zero error Data is not stored. [F register stays the same.]
0030 hex Invalid real number operation (not a number) Data is not stored.
0031 hex Real number operation exponent underflow 0.0
0032 hex Real number operation exponent overflow Maximum Value
0033 hex Real number operation division error (0/0) Operation is not executed.
0034 hex Real number storage exponent underflow A value of 0.0 is stored.
0035 hex Real number operation stack error –

0040 to 0059 hex

Real number operation error in standard system
function Operation is aborted and output is set to 0.0.

0040 hex: SQRT 0041 hex: SIN 0042 hex: COS 0043 hex: TAN

0044 hex: ASIN 0045 hex: ACOS 0046 hex: ATAN 0047 hex: EXP

0048 hex: LN 0049 hex: LOG 004A hex: DZA 004B hex: DZB

004C hex: LIM 004D hex: PI 004E hex: PD 004F hex: PID

0050 hex: LAG 0051 hex: LLAG 0052 hex: FGN 0053 hex: IFGN

0054 hex: LAU 0055 hex: SLAU 0056 hex: REM 0057 hex: RCHK

0058 hex: BSRCH 0059 hex: SORT
For an index error, 1000, 2000, or 3000 hex is added.

A.4 Overview of User Operation Error Status

A-10

(2) User Operation Error Code -2

Error Code Error Description System Default

In
te

ge
r a

nd
 R

ea
l N

um
be

r O
pe

ra
tio

ns 1000 hex Index error in drawing Re-executed as if i and j were set to 0.
(Both i and j registers stay the same.)

2000 hex Index error in function Re-executed as if i and j were set to 0.
(Both i and j registers stay the same.)

3000 hex Index error in motion program or sequence pro-
gram

Re-executed as if i and j were set to 0.
(Both i and j registers stay the same.)

In
te

ge
r O

pe
ra

tio
ns

060 to
0C9 hex

(= 1, 2, or 3)

Index error in integer system function Operation is aborted and output is set to input.
06D hex: PI 06E hex: PD 06F hex: PID 070 hex: LAG
071 hex: LLAG 072 hex: FGN 073 hex: IFGN 074 hex: LAU
075 hex: SLAU 076 hex: FGN 077 hex: IFGN 08E hex: INS
08F hex: OUTS 090 hex: ROTL 091 hex: ROTR 092 hex: MOVB
093 hex: MOVW 094 hex: SETW 095 hex: XCHG 096 hex: LIMIT
097 hex: LIMIT 098 hex: DZA 099 hex: DZA 09A hex: DZB
09B hex: DZB 09C hex: PWM 09E hex: SHFTL 09F hex: SHFTR
0A0 hex:

BEXTEND 0A1 hex: BPRESS 0A2 hex: SORT 0A4 hex: SORT

0A6 hex: RCHK 0A7 hex: RCHK 0A8 hex: COPYW 0A9 hex: ASCII
0AA hex: BINASC 0AB hex: ASCBIN 0AC hex: BSRC H 0AD hex: BSRC H
0AE hex:

TIMEADD 0AF hex: TIMSUB 0B1 hex: SPEND 0C0 hex: TBLBR

0C1 hex: TBLBW 0C2 hex: TBLSRL 0C3 hex: TBLSRC 0C4 hex: TBLCL
0C5 hex: TBLMW 0C6 hex: QTBLR 0C7 hex: QTBLRI 0C8 hex: QTBLW
0C9 hex: QTBLWI

A.5 System Service Execution Status

A-11

S
ys

te
m

 R
eg

is
te

rs

AppA

A.5 System Service Execution Status
The execution status of system services is stored in registers SW00090 to SW00103.

A.6 Detailed User Operation Error Status
Detailed information is given in registers SW00110 to SW00189 when a user operation error occurs in a program.

Name Register
Address Remarks

Reserved for system. SW00090

–
Reserved for system. SW00091
Reserved for system. SW00092
Reserved for system. SW00093

Reserved for system. SW00094 to
SW00097 –

Data Trace Definition Existence SW00098 Bits 0 to 3: Groups 1 to 4
Defined: 1, Not defined: 0

Data Trace Execution Status SW00099 Bits 0 to 3: Groups 1 to 4
Trace stopped: 1, Trace in progress: 0

Latest Record Numbers in Data Trace

Name Register
Address Remarks

Data Trace Group 1 SW00100 Latest record number
Data Trace Group 2 SW00101 Latest record number
Data Trace Group 3 SW00102 Latest record number
Data Trace Group 4 SW00103 Latest record number

Name
Register Address

Contents
DWG.A DWG.I DWG.H DWG.L

Error Count SW00110 SW00126 SW00142 SW00174 • Error Counts and Error Codes
Same as in Appendix A.4 Overview of User
Operation Error Status.

• Error Drawing No.
Parent drawing: FFFF hex
Child drawing: xx00 hex
(xx hex: Child drawing number)
Grandchild drawing: xxyy hex
(yy hex: Grandchild drawing number)
Function: 8000 hex
Motion program/sequence program:
F0xx hex (xx hex: Program number)

• Calling Drawing No.
Number of the calling drawing in which the
operation error occurred

• Calling Drawing Step No.
Step number in the calling drawing in which
the operation error occurred
This number is set to 0 if the error occurred
in the parent drawing.

Error Code SW00111 SW00127 SW00143 SW00175
Reserved for
system.

SW00112 to
SW00121

SW00128 to
SW00137

SW00144 to
SW00153

SW00176 to
SW00185

Error Drawing No. SW00122 SW00138 SW00154 SW00186
Calling Drawing No. SW00123 SW00139 SW00155 SW00187
Calling Drawing
Step No. SW00124 SW00140 SW00156 SW00188

Reserved for
system. SW00125 SW00141 SW00157 SW00189

A.7 System I/O Error Status

A-12

A.7 System I/O Error Status
Details on the system I/O errors are stored in registers SW00200 to SW00503.

Name Register
Address Contents

I/O Error Count SW00200 Number of I/O error occurrences
Input Error Count SW00201 Number of input error occurrences
Input Error Address SW00202 The latest input error address (register address in IW)
Output Error Count SW00203 Output error count

Output Error Address SW00204 The latest output error address
(register address in OW)

Reserved for system.
SW00205

Not used.SW00206
SW00207

I/O Error Status

SW00208 to
SW00215 Error status for CPU Module

SW00216 to
SW00223 Reserved for system.

SW00224 to
SW00231 Error status of Rack 1, Slot 1

SW00232 to
SW00239 Error status of Rack 1, Slot 2

SW00240 to
SW00247 Error status of Rack 1, Slot 3

SW00248 to
SW00255 Error status of Rack 1, Slot 4

… …
SW00496 to

SW00503 Error status of Rack 4, Slot 9

A.8 CF Card-related System Registers (MP2200-series CPU-02 and CPU-03 only)

A-13

S
ys

te
m

 R
eg

is
te

rs

AppA

A.8 CF Card-related System Registers
(MP2200-series CPU-02 and CPU-03 only)
The status of the CF Card is reported in registers SW00652 to SW00659.
These registers can be used only when a CF card is supported (the MP2200 with the CPU-02 or CPU-03).
For all other models, they are reserved for the system.

Name Register Address Contents
Total capacity of CF
card SL00652 Unit: Bytes

Card status SW00654

SB006540 0: CF card not mounted, 1: CF card mounted
SB006541 0: Not supplying power, 1: Supplying power
SB006542 0: Cannot detect a CF card, 3: CF card detected
SB006543 0: Not accessing CF card, 1: Accessing CF card
SB006544 0: –, 1: Checking FAT file system
SB006545 to
SB00654F Reserved for system.

FAT type SW00655
0001 hex FAT12
0002 hex FAT16
0003 hex FAT32

Reserved for system. SW00656 –
Reserved for system. SW00657 –

Batch load and batch
save SW00658

SB006580 Batch load in progress
SB006581 CF card reading error
SB006582 Load file model mismatch error
SB006583 Load file write error
SB006584 Save to flash memory error
SB006585 Folder for batch loading does not exist.
SB006586 Loading error due to program write protection
SB006587 Reserved for system.
SB006588 Batch save in progress
SB006589 CF card writing error
SB00658A Save file read error
SB00658B Security error
SB00658C to
SB00658F Reserved for system.

Reserved for system. SW00659 –

A.9 Interrupt Status

A.9.1 Interrupt Status List

A-14

A.9 Interrupt Status
A.9.1 Interrupt Status List

A.9.2 Details on Interrupting Module

(1) Rack

mm = 01 to 04
The rack number where the Module in which the interrupt occurred is mounted is reported.

(2) Slot

ss = 01 to 09
The slot number where the Module in which the interrupt occurred is mounted is reported.

(3) Interrupt Type

1: DI interrupt for CPU IO (MP2100, MP2100M, MP2101, MP2101M, MP2101T, MP2101TM, or MP2300)
2: DI interrupt for LIO-01, LIO-02, LIO-04, or LIO-05
3: Counter interrupt for LIO-01, LIO-02, LIO-06, or CNTR-01

(4) Hardware Interrupt Cause Register Values

For the hardware interrupt cause register values, refer to 2.5.6 Interrupt Status in the Machine Controller MP2000
Troubleshooting Manual (Manual No.: SIJP C880700 40 (Japanese version)).

Name Register Address Remarks

Interrupt information

SW00698 Interrupt detection count
SW00699 Number of interrupting methods
SW00700
SW00701
SW00702

Interrupting module 1

SW00703
SW00704
SW00705

Interrupting module 2

:
:

SW00787
SW00788
SW00789

Interrupting module 30

F 8 7 0 (Bit numbers)

SW00 + 0 Rack Slot mmss hex
SW00 + 1 Interrupt Type
SW00 + 2 Hardware Interrupt Cause Register Values

A.10 Module Information

A-15

S
ys

te
m

 R
eg

is
te

rs

AppA

A.10 Module Information
The Module information is reported as shown in this section.

The contents of the registers depends on the model. Refer to the manuals for your Machine Controller.

(1) CPU Function Module

(2) Option Modules

(3) Function Module Status Details

Name Register Address Remarks

CPU Unit Information

SW00800 CPU Module ID
SW00801 Hardware version (BCD)
SW00802 Software version (BCD)
SW00803 Number of sub-slots (hex)
SW00804 Function Module 1 ID (hex)
SW00805 Function Module 1 Status
SW00806 Function Module 2 ID (hex)
SW00807 Function Module 2 Status
SW00808 Function Module 3 ID (hex)
SW00809 Function Module 3 Status
SW00810 Function Module 4 ID (hex)
SW00811 Function Module 4 Status
SW00812 Function Module 5 ID (hex)
SW00813 Function Module 5 Status
SW00814 Function Module 6 ID (hex)
SW00815 Function Module 6 Status

Option Module Information SW00816 to SW01095 Option Module Information
(Depends on the CPU model and mounted Option Modules.)

Name Register Address Remarks

Module
Information

SW00 + 0 Option Module ID
SW00 + 1 Hardware version (BCD)
SW00 + 2 Software version (BCD)
SW00 + 3 Number of sub-slots (hex)
SW00 + 4 Function Module 1 ID (hex)
SW00 + 5 Function Module 1 Status
SW00 + 6 Function Module 2 ID (hex)
SW00 + 7 Function Module 2 Status

Value
Text Displayed in MPE720

Module Configuration
Definition

Status

0 None There is no Module Definition and the Module is not mounted.
1 Empty There is a Function Module Definition, but the Module is not mounted.
2 Operating (Driving) The Module is operating normally.

3 Standby
 (Reserved for system.) The Module is on standby.

4 Failure An error was detected in the Module.
5 × Module name The mounted Module does not match the definition.
6 Waiting for initialization The Module is mounted, but there is no Detailed Function Module Definition.
7 Driving stop Local I/O is stopped.

8 or higher – Reserved for system.

A.11 MPU-01 System Status

A-16

A.11 MPU-01 System Status

Name Register
Address Remarks

MPU-01 #1 Status SW01411 Status of MPU-01 Module circuit number 1
MPU-01 #1 Error Status SW01412 Error status of MPU-01 Module circuit number 1
MPU-01 #2 Status SW01413 Status of MPU-01 Module circuit number 2
MPU-01 #2 Error Status SW01414 Error status of MPU-01 Module circuit number 2
MPU-01 #3 Status SW01415 Status of MPU-01 Module circuit number 3
MPU-01 #3 Error Status SW01416 Error Status of MPU-01 Module circuit number 3
MPU-01 #4 Status SW01417 Status of MPU-01 Module circuit number 4
MPU-01 #4 Error Status SW01418 Error Status of MPU-01 Module circuit number 4
MPU-01 #5 Status SW01419 Status of MPU-01 Module circuit number 5
MPU-01 #5 Error Status SW01420 Error Status of MPU-01 Module circuit number 5
MPU-01 #6 Status SW01421 Status of MPU-01 Module circuit number 6
MPU-01 #6 Error Status SW01422 Error Status of MPU-01 Module circuit number 6
MPU-01 #7 Status SW01423 Status of MPU-01 Module circuit number 7
MPU-01 #7 Error Status SW01424 Error Status of MPU-01 Module circuit number 7
MPU-01 #8 Status SW01425 Status of MPU-01 Module circuit number 8
MPU-01 #8 Error Status SW01426 Error Status of MPU-01 Module circuit number 8
MPU-01 #9 Status SW01427 Status of MPU-01 Module circuit number 9
MPU-01 #9 Error Status SW01428 Error Status of MPU-01 Module circuit number 9
MPU-01 #10 Status SW01429 Status of MPU-01 Module circuit number 10
MPU-01 #10 Error Status SW01430 Error Status of MPU-01 Module circuit number 10
MPU-01 #11 Status SW01431 Status of MPU-01 Module circuit number 11
MPU-01 #11 Error Status SW01432 Error status of MPU-01 Module circuit number 11
MPU-01 #12 Status SW01433 Status of MPU-01 Module circuit number 12
MPU-01 #12 Error Status SW01434 Error status of MPU-01 Module circuit number 12
MPU-01 #13 Status SW01435 Status of MPU-01 Module circuit number 13
MPU-01 #13 Error Status SW01436 Error status of MPU-01 Module circuit number 13
MPU-01 #14 Status SW01437 Status of MPU-01 Module circuit number 14
MPU-01 #14 Error Status SW01438 Error status of MPU-01 Module circuit number 14
MPU-01 #15 Status SW01439 Status of MPU-01 Module circuit number 15
MPU-01 #15 Error Status SW01440 Error status of MPU-01 Module circuit number 15
MPU-01 #16 Status SW01441 Status of MPU-01 Module circuit number 16
MPU-01 #16 Error Status SW01442 Error status of MPU-01 Module circuit number 16

A.12 Motion Program Information

A-17

S
ys

te
m

 R
eg

is
te

rs

AppA

A.12 Motion Program Information
(1) System Work Numbers 1 to 8

System Work Number System
Work 1

System
Work 2

System
Work 3

System
Work 4

System
Work 5

System
Work 6

System
Work 7

System
Work 8

Executing Main Program No. SW03200 SW03201 SW03202 SW03203 SW03204 SW03205 SW03206 SW03207
Status SW03264 SW03322 SW03380 SW03438 SW03496 SW03554 SW03612 SW03670
Control Signals SW03265 SW03323 SW03381 SW03439 SW03497 SW03555 SW03613 SW03671

Fork 0
Program Number SW03266 SW03324 SW03382 SW03440 SW03498 SW03556 SW03614 SW03672
Block Number SW03267 SW03325 SW03383 SW03441 SW03499 SW03557 SW03615 SW03673
Alarm Code SW03268 SW03326 SW03384 SW03442 SW03500 SW03558 SW03616 SW03674

Fork 1
Program Number SW03269 SW03327 SW03385 SW03443 SW03501 SW03559 SW03617 SW03675
Block Number SW03270 SW03328 SW03386 SW03444 SW03502 SW03560 SW03618 SW03676
Alarm Code SW03271 SW03329 SW03387 SW03445 SW03503 SW03561 SW03619 SW03677

Fork 2
Program Number SW03272 SW03330 SW03388 SW03446 SW03504 SW03562 SW03620 SW03678
Block Number SW03273 SW03331 SW03389 SW03447 SW03505 SW03563 SW03621 SW03679
Alarm Code SW03274 SW03332 SW03390 SW03448 SW03506 SW03564 SW03622 SW03680

Fork 3
Program Number SW03275 SW03333 SW03391 SW03449 SW03507 SW03565 SW03623 SW03681
Block Number SW03276 SW03334 SW03392 SW03450 SW03508 SW03566 SW03624 SW03682
Alarm Code SW03277 SW03335 SW03393 SW03451 SW03509 SW03567 SW03625 SW03683

Fork 4
Program Number SW03278 SW03336 SW03394 SW03452 SW03510 SW03568 SW03626 SW03684
Block Number SW03279 SW03337 SW03395 SW03453 SW03511 SW03569 SW03627 SW03685
Alarm Code SW03280 SW03338 SW03396 SW03454 SW03512 SW03570 SW03628 SW03686

Fork 5
Program Number SW03281 SW03339 SW03397 SW03455 SW03513 SW03571 SW03629 SW03687
Block Number SW03282 SW03340 SW03398 SW03456 SW03514 SW03572 SW03630 SW03688
Alarm Code SW03283 SW03341 SW03399 SW03457 SW03515 SW03573 SW03631 SW03689

Fork 6
Program Number SW03284 SW03342 SW03400 SW03458 SW03516 SW03574 SW03632 SW03690
Block Number SW03285 SW03343 SW03401 SW03459 SW03517 SW03575 SW03633 SW03691
Alarm Code SW03286 SW03344 SW03402 SW03460 SW03518 SW03576 SW03634 SW03692

Fork 7
Program Number SW03287 SW03345 SW03403 SW03461 SW03519 SW03577 SW03635 SW03693
Block Number SW03288 SW03346 SW03404 SW03462 SW03520 SW03578 SW03636 SW03694
Alarm Code SW03289 SW03347 SW03405 SW03463 SW03521 SW03579 SW03637 SW03695

Logical Axis 1 Program Current Position SL03290 SL03348 SL03406 SL03464 SL03522 SL03580 SL03638 SL03696
Logical Axis 2 Program Current Position SL03292 SL03350 SL03408 SL03466 SL03524 SL03582 SL03640 SL03698
Logical Axis 3 Program Current Position SL03294 SL03352 SL03410 SL03468 SL03526 SL03584 SL03642 SL03700
Logical Axis 4 Program Current Position SL03296 SL03354 SL03412 SL03470 SL03528 SL03586 SL03644 SL03702
Logical Axis 5 Program Current Position SL03298 SL03356 SL03414 SL03472 SL03530 SL03588 SL03646 SL03704
Logical Axis 6 Program Current Position SL03300 SL03358 SL03416 SL03474 SL03532 SL03590 SL03648 SL03706
Logical Axis 7 Program Current Position SL03302 SL03360 SL03418 SL03476 SL03534 SL03592 SL03650 SL03708
Logical Axis 8 Program Current Position SL03304 SL03362 SL03420 SL03478 SL03536 SL03594 SL03652 SL03710
Logical Axis 9 Program Current Position SL03306 SL03364 SL03422 SL03480 SL03538 SL03596 SL03654 SL03712
Logical Axis 10 Program Current Position SL03308 SL03366 SL03424 SL03482 SL03540 SL03598 SL03656 SL03714
Logical Axis 11 Program Current Position SL03310 SL03368 SL03426 SL03484 SL03542 SL03600 SL03658 SL03716
Logical Axis 12 Program Current Position SL03312 SL03370 SL03428 SL03486 SL03544 SL03602 SL03660 SL03718
Logical Axis 13 Program Current Position SL03314 SL03372 SL03430 SL03488 SL03546 SL03604 SL03662 SL03720
Logical Axis 14 Program Current Position SL03316 SL03374 SL03432 SL03490 SL03548 SL03606 SL03664 SL03722
Logical Axis 15 Program Current Position SL03318 SL03376 SL03434 SL03492 SL03550 SL03608 SL03666 SL03724
Logical Axis 16 Program Current Position SL03320 SL03378 SL03436 SL03494 SL03552 SL03610 SL03668 SL03726

A.12 Motion Program Information

A-18

(2) System Work Numbers 9 to 16

System Work Number System
Work 9

System
Work 10

System
Work 11

System
Work 12

System
Work 13

System
Work 14

System
Work 15

System
Work 16

Executing Main Program No. SW03208 SW03209 SW03210 SW03211 SW03212 SW03213 SW03214 SW03215
Status SW03728 SW03786 SW03844 SW03902 SW03960 SW04018 SW04076 SW04134
Control Signals SW03729 SW03787 SW03845 SW03903 SW03961 SW04019 SW04077 SW04135

Fork 0
Program Number SW03730 SW03788 SW03846 SW03904 SW03962 SW04020 SW04078 SW04136
Block Number SW03731 SW03789 SW03847 SW03905 SW03963 SW04021 SW04079 SW04137
Alarm Code SW03732 SW03790 SW03848 SW03906 SW03964 SW04022 SW04080 SW04138

Fork 1
Program Number SW03733 SW03791 SW03849 SW03907 SW03965 SW04023 SW04081 SW04139
Block Number SW03734 SW03792 SW03850 SW03908 SW03966 SW04024 SW04082 SW04140
Alarm Code SW03735 SW03793 SW03851 SW03909 SW03967 SW04025 SW04083 SW04141

Fork 2
Program Number SW03736 SW03794 SW03852 SW03910 SW03968 SW04026 SW04084 SW04142
Block Number SW03737 SW03795 SW03853 SW03911 SW03969 SW04027 SW04085 SW04143
Alarm Code SW03738 SW03796 SW03854 SW03912 SW03970 SW04028 SW04086 SW04144

Fork 3
Program Number SW03739 SW03797 SW03855 SW03913 SW03971 SW04029 SW04087 SW04145
Block Number SW03740 SW03798 SW03856 SW03914 SW03972 SW04030 SW04088 SW04146
Alarm Code SW03741 SW03799 SW03857 SW03915 SW03973 SW04031 SW04089 SW04147

Fork 4
Program Number SW03742 SW03800 SW03858 SW03916 SW03974 SW04032 SW04090 SW04148
Block Number SW03743 SW03801 SW03859 SW03917 SW03975 SW04033 SW04091 SW04149
Alarm Code SW03744 SW03802 SW03860 SW03918 SW03976 SW04034 SW04092 SW04150

Fork 5
Program Number SW03745 SW03803 SW03861 SW03919 SW03977 SW04035 SW04093 SW04151
Block Number SW03746 SW03804 SW03862 SW03920 SW03978 SW04036 SW04094 SW04152
Alarm Code SW03747 SW03805 SW03863 SW03921 SW03979 SW04037 SW04095 SW04153

Fork 6
Program Number SW03748 SW03806 SW03864 SW03922 SW03980 SW04038 SW04096 SW04154
Block Number SW03749 SW03807 SW03865 SW03923 SW03981 SW04039 SW04097 SW04155
Alarm Code SW03750 SW03808 SW03866 SW03924 SW03982 SW04040 SW04098 SW04156

Fork 7
Program Number SW03751 SW03809 SW03867 SW03925 SW03983 SW04041 SW04099 SW04157
Block Number SW03752 SW03810 SW03868 SW03926 SW03984 SW04042 SW04100 SW04158
Alarm Code SW03753 SW03811 SW03869 SW03927 SW03985 SW04043 SW04101 SW04159

Logical Axis 1 Program Current Position SL03754 SL03812 SL03870 SL03928 SL03986 SL04044 SL04102 SL04160
Logical Axis 2 Program Current Position SL03756 SL03814 SL03872 SL03930 SL03988 SL04046 SL04104 SL04162
Logical Axis 3 Program Current Position SL03758 SL03816 SL03874 SL03932 SL03990 SL04048 SL04106 SL04164
Logical Axis 4 Program Current Position SL03760 SL03818 SL03876 SL03934 SL03992 SL04050 SL04108 SL04166
Logical Axis 5 Program Current Position SL03762 SL03820 SL03878 SL03936 SL03994 SL04052 SL04110 SL04168
Logical Axis 6 Program Current Position SL03764 SL03822 SL03880 SL03938 SL03996 SL04054 SL04112 SL04170
Logical Axis 7 Program Current Position SL03766 SL03824 SL03882 SL03940 SL03998 SL04056 SL04114 SL04172
Logical Axis 8 Program Current Position SL03768 SL03826 SL03884 SL03942 SL04000 SL04058 SL04116 SL04174
Logical Axis 9 Program Current Position SL03770 SL03828 SL03886 SL03944 SL04002 SL04060 SL04118 SL04176
Logical Axis 10 Program Current Position SL03772 SL03830 SL03888 SL03946 SL04004 SL04062 SL04120 SL04178
Logical Axis 11 Program Current Position SL03774 SL03832 SL03890 SL03948 SL04006 SL04064 SL04122 SL04180
Logical Axis 12 Program Current Position SL03776 SL03834 SL03892 SL03950 SL04008 SL04066 SL04124 SL04182
Logical Axis 13 Program Current Position SL03778 SL03836 SL03894 SL03952 SL04010 SL04068 SL04126 SL04184
Logical Axis 14 Program Current Position SL03780 SL03838 SL03896 SL03954 SL04012 SL04070 SL04128 SL04186
Logical Axis 15 Program Current Position SL03782 SL03840 SL03898 SL03956 SL04014 SL04072 SL04130 SL04188
Logical Axis 16 Program Current Position SL03784 SL03842 SL03900 SL03958 SL04016 SL04074 SL04132 SL04190

B-1

C
P

(P
re

vi
ou

s)
 L

ad
de

r I
ns

tru
ct

io
ns

 a
nd

 N
ew

 L
ad

de
r I

ns
tru

ct
io

ns

AppB

Appendix B
CP (Previous) Ladder Instructions and

New Ladder Instructions

This appendix describes some CP (previous) ladder instructions and new ladder instructions.

B.1 Correspondence between CP (Previous)
Ladder Instructions and New Ladder Instructions - - - - - - - - - - - - - - - - - - - B-2

B.2 Converting CP (Previous) Ladder Programs to New Ladder Programs - - - - - - - B-3

B.1 Correspondence between CP (Previous) Ladder Instructions and New Ladder Instructions

B-2

B.1 Correspondence between CP (Previous) Ladder Instructions
and New Ladder Instructions
Changing from CP ladder programs to new ladder programs involves changes to some instructions and the addi-
tion of new instructions.
This section tells you what to do in new ladder programs for instructions that can be used only in CP ladder pro-
grams.
It also provides a list of instructions that can be used only in new ladder instructions.

(1) Handling Instructions Supported Only by CP (Previous) Ladder Programs in New Ladder
Programs

(2) Instructions That You Can Use Only in New Ladder Programs

Instruction Name Function Outline Procedure in New Ladder Programs

Instructions in [] Brackets Instructions in [] brackets are executed only when
the value of the B register is ON.

Use the IF instruction.IFON instruction Processing up to the IEND instruction is executed
only when the value of the B register is ON.

IFOFF instruction Processing up to the IEND instruction is executed
only when the value of the B register is OFF.

Call User Function
instruction A user function is called.

Use the FUNC instruction.Function Input instruction The input data is stored in the function input regis-
ter.

Function Output instruc-
tion

The data in the function output register is stored in
the specified register.

Comment instruction Text with double quotation marks (“ ”) is treated
as a comment. Use rung comments.

Integer Replacement
instruction

Data is replaced in an A register and the integer
operation is started.

Use the STORE instruction.Real Number Replace-
ment instruction

Data is replaced in an F register and the real num-
ber operation is started.

Store instruction The contents of the A or F register is stored in the
specified register.

Instruction Name Function Outline

IF instruction The programming between the IF and END_IF instructions is executed while the conditional expres-
sion for the IF instruction is satisfied.

FUNC instruction A user function is called.
STORE instruction Integer, double-length integer, or real number data is stored in a register.
EXPRESSION instruction A numeric expression is written.
MLINK-SVW instruction The specified SERVOPACK parameter is written.
MOTREG-W instruction The specified motion register is written.
MOTREG-R instruction The specified motion register is read.

B.2 Converting CP (Previous) Ladder Programs to New Ladder Programs

B-3

C
P

(P
re

vi
ou

s)
 L

ad
de

r I
ns

tru
ct

io
ns

 a
nd

 N
ew

 L
ad

de
r I

ns
tru

ct
io

ns

AppB

B.2 Converting CP (Previous) Ladder Programs to New Ladder
Programs
You can use the CP ladder program conversion function on MPE720 version 6 to convert CP ladder programs to
new ladder programs. When converting a program, DWG properties and comments in the program will be con-
verted at the same time.
You must be offline to convert CP ladder programs. (You cannot convert CP ladder programs while connected to
the Machine Controller.) Refer to 3.6 Converting CP Ladder Programs to Ordinary Ladder Programs in the
Engineering Tool for MP2000 Series Machine Controller MPE720 Version 6 User’s Manual (SIEP C880700 30)
on converting CP ladder programs.

Procedure to Convert CP Ladder Programs

1. Select a program folder (High-speed, Low-speed, Start, Interrupt, or Function) or select a program that
contains programs of the lower hierarchical levels. Then, right-click the selected folder or program and
select Conversion of CP ladder from the pop-up menu.

When the selected program contains programs of lower hierarchical levels, the following message will appear
asking for confirmation.

Conversion: Click this button to convert the current program and all lower level programs to new ladder pro-
grams.

Select: Click this button to display the Conversion of CP ladder Dialog Box. See step 2 for details on setting.
Cancel: Click this button to cancel program conversion.

B.2 Converting CP (Previous) Ladder Programs to New Ladder Programs

B-4

2. Click Select.

The Conversion of CP ladder Dialog Box will appear.
The check box of the CP ladder program specified in step 1 or the check boxes of the CP ladder programs that are
displayed under the ladder program specified in step 1 will be selected.
When a program from the second hierarchical level is specified in step 1, the check box of the programs of first
hierarchical level will also be selected.

After deselecting the check boxes of the CP ladder programs not to be converted in step 3, the check boxes of
the project file, ladder program folder, High-speed, Low-speed, Start, Interrupt, or Function folder to which non-
selected CP ladder programs belong will be shaded. This is because some of CP ladder programs in the file or
folder are selected and the rest are not selected.

3. Clear the check boxes of CP ladder programs not to be converted.

New Ladder programs are shaded, and cannot be selected.

4. Click Conversion. All the selected CP ladder programs will be converted to new ladder programs.

If you click the Cancel Button, the CP ladder program conversion will be cancelled.

An error code (0xAxxxxxxx) and an error name may be displayed in the Output Subwindow in accordance with
the changed program.
Select the error code (0xAxxxxxxx) and press the F1 Key. Error Generating Information will appear.
Check the error causes and take corrective action.

First layer
Second layer

C-1

S
am

pl
e

P
ro

gr
am

m
in

g

AppC

Appendix C
Sample Programming

This appendix describes ladder programming examples that perform test runs.

C.1 Jogging from the Control Panel -C-2

C.2 Motion Program Control -C-3

C.3 Simple Synchronized Operation of Two Axes with a Virtual Axis - - - - - - - - - - -C-4

C.4 Transferring Project Files to Different Models -C-6

C.1 Jogging from the Control Panel

C-2

C.1 Jogging from the Control Panel
The following configuration and ladder programming example illustrate how to control a motor from switches on
a control panel when the motor and control panel are connected to the MP2300.

Configuration Example

Ladder Programming Example

MP2300 Control Panel

Servo ON command
(IB000000)

Alarm Clear command
(IB000001)

Jog + command
(IB000002)

Jog − command
(IB000003)

MECHATROLINK-II

Serial cable

Σ-V

SERVOPACK (SGDV)
(Circuit No. 1, Axis 1)

C.2 Motion Program Control

C-3

S
am

pl
e

P
ro

gr
am

m
in

g

AppC

C.2 Motion Program Control
The following ladder programming example demonstrates how to control execution of a motion program.

Ladder Programming Example

Power to the servomotor is turned
ON when IB00000 turns ON.

The motion program is started when
IB00001 turns ON.

The MSEE instruction is used to register
the motion program for execution.

C.3 Simple Synchronized Operation of Two Axes with a Virtual Axis

C-4

C.3 Simple Synchronized Operation of Two Axes with a Virtual Axis
With the following sample programs, a motion program moves an SVR (virtual axis) and a ladder program distributes
the feedback position of the SVR to two physical axes to perform synchronized operation with two axes.

Motion Programming Example

SVR (virtual axis)

Axis 1

Axis 2

One-axis interpolation operation is
executed with a motion program.

SVB

A ladder program is used to copy the
feedback position of the SVR to the
position references of axes 1 and 2
to perform synchronized operation.

FMX T10000K; "Set maximum interpolation speed K = 1,000.
INC; "Incremental Mode
IAC T500; "Interpolation acceleration time = 500 ms
IDC T500; "Interpolation deceleration time = 500 ms
MVS [SVR] 1000K F10000K; "Interpolation for travel distance of 1,000,000
END;

C.3 Simple Synchronized Operation of Two Axes with a Virtual Axis

C-5

S
am

pl
e

P
ro

gr
am

m
in

g

AppC

Ladder Programming Example

C.4 Transferring Project Files to Different Models

C-6

C.4 Transferring Project Files to Different Models
Use the following procedure to transfer a project file to a different model.
This example shows how to convert a CPU-03 project file to a CPU-04 project file.

Procedure

1. Create a new project file for the CPU-04.

2. Select Online - Transfer - Read from Project.

3. Select the CPU-03 project file and transfer it to the CPU-04 project.

4. Manually set the Module configuration definitions.

The Module configuration definition will be lost when you transfer a project file to a different model.
Set the Module configuration definitions and parameters manually.
You cannot use the axis data copy function for Module configuration definitions between different project files.

MPE720

CPU-03.YMW

MPE720

CPU-04.YMW

Converting a CPU-03 project file
to a CPU-04 project file

INFO

D-1

Fo
rm

at
 fo

r E
X

P
R

E
S

S
IO

N
 In

st
ru

ct
io

n

AppD

Appendix D
Format for EXPRESSION Instruction

This appendix describes the format for the EXPRESSION instruction.

D.1 Elements That You Can Use in Numeric Expressions - - - - - - - - - - - - - - - - - - -D-2

D.2 National Limitations -D-5
D.2.1 Arithmetic Operators - D-5
D.2.2 Comparison Operators - D-5
D.2.3 Logic Operators - D-5
D.2.4 Substitution Operator - D-6
D.2.5 Functions - D-6
D.2.6 Others - D-6

D.1 Elements That You Can Use in Numeric Expressions

D-2

D.1 Elements That You Can Use in Numeric Expressions
Numeric expressions can include operators, operands (constants and variables), and functions.
This section describes each of these elements.

(1) Operators

[a] Types of Operators and Usable Operators

The following table gives the types of operators and usable operators.

[b] Order of Evaluation

Operators are evaluated according to their processing priority and the order in which operands are grouped, as listed
below.

Operators on the same line have the same processing priority and are evaluated according to their grouping order.

Type Usable Operators

Arithmetic and Logic
Operators

+ Add
− Subtract
* Multiply
/ Divide

% Remainder
& Bit-wise AND
| Bit-wise OR

Logic Operators (Usable only
with bit data)

&& Inclusive AND
|| Inclusive OR
! Logical NOT

Comparison Operators

== Equal to right-side value
!= Unequal to right-side value
> Greater than right-side value

>= Greater than or equal to right-side value
< Less than right-side value

<= Less than or equal to right-side value
Substitution Operator = Substitutes left-side value with right-side value

Reserved Words
true TRUE for a logical expression
false FALSE for a logical expression

Priority* Operators Description Grouping
Order

High [] () Expression Left to right

↑

↓

− ! Unary Right to left
* / % Multiplication, division, and remainder

Left to right

+ − Addition and subtraction

< > <= >= Relational

== != Equivalence

& Bit-wise AND

| Bit-wise OR

&& Inclusive AND

Low || Inclusive OR

D.1 Elements That You Can Use in Numeric Expressions

D-3

Fo
rm

at
 fo

r E
X

P
R

E
S

S
IO

N
 In

st
ru

ct
io

n

AppD

(2) Operands

[a] Constants

Integers or real numbers may be used as a constant.
• An integer may be any number that can be expressed within the range of a 32-bit integer.

(-2,147,483,648 to 2,147,483,647)
• A real number may be any number that can be expressed within the range of 32-bit floating point data.

± (1.175494351e–38F to 3.402823466e+38F)

Hexadecimal numbers must be expressed using the 0x notation when used in the EXPRESSION, IF, or WHILE
instruction.
The H notation will result in an error.
Example: H012F ... NG 0x012F ... OK
The H notation must be used for all other instructions, such as the STORE instruction.

[b] Variables

The EXPRESSION instruction allows you to assign arbitrary variable names that are allowed in C language to registers
in the Machine Controller.
Although the C language does not have Boolean variables, bit registers in the Machine Controller are treated as Bool-
ean variables. Boolean variables are either TRUE or FALSE and can be used only in logical expressions.

Limitations on Variable Names

The following limitations apply to variable names.
• Variable names must start with a non-numeric character.
• For ASCII characters, only alphabetic characters, underscores, and numbers may be used.
• The following variable names cannot be used because they are already used as function names.

INFO

Abc OK
Get_input() OK
1ab NG
Sin NG

EXAMPLE

D.1 Elements That You Can Use in Numeric Expressions

D-4

(3) Instructions That You Can Use with EXPRESSION Instructions

Instruction Description Example Reserved Word
+ Add MW00001 = MW00002 + MW00003 √

– Subtract MW00001 = MW00002 – MW00003 √

* Multiply MW00001 = MW00002 × MW00003 √

/ Divide MW00001 = MW00002 / MW00003 √

% Remainder MW00001 = MW00002 % MW00003 √

& Bit-wise AND MW00001 = MW00002 & 4096 √

│ Bit-wise OR MW00001 = MW00002 │ 4096 √

&& Inclusive AND MB000010 = MB000011 && MB000012 √

∥ Inclusive OR MB000010 = MB000011 ∥ MB000012 √

! Logical NOT MB000010 = !MB000011 √

== Equal to right-side
value MB000010 = MB000011 == true √

>=
Right-side value is less
than or equal to left-
side value

MB000010 = MW00020 >= MW00021 √

> Right-side value is less
than left-side value MB000010 = MW00020 > MW00021 √

<
Right-side value is
greater than left-side
value

MB000010 = MW00020 < MW00021 √

<=
Right-side value is
greater than or equal to
left-side value

MB000010 = MW00020 <= MW00021 √

=
Substitute left-side
value with right-side
value

MW00001 = MW00002 √

true TRUE MB000010 = MB000011 == true √

false FALSE MB000010 = MB000011 == false √

sin() SIN MW00001 = sin(MW00002) √

cos() COS MF00002 = cos(MF00004) √

atan() ARCTAN MW00001 = atan(MF00002) √

tan() TAN MW00001 = tan(MW00002) √

() Parentheses MW00001 = (MW00002 + MW00003) / MW00004 √

asin() ARCSIN MW00001 = asin(MW00002) √

acos() ARCCOS MW00001 = acos(MW00002) √

sqrt() AQRT MW00001 = sqrt(MW00002) √

abs() ABS MW00001 = abs(MW00002) √

exp() EXP MW00001 = exp(MW00002) √

log() LOG natural logarithm MW00001 = log(MW00002) √

log10() LOG10 common loga-
rithm MW00001 = log10(MW00002) √

D.2 National Limitations

D.2.1 Arithmetic Operators

D-5

Fo
rm

at
 fo

r E
X

P
R

E
S

S
IO

N
 In

st
ru

ct
io

n

AppD

D.2 National Limitations
Several limitations apply when combining operands and operators to form numeric expressions. An expression is not
recognized as a numeric expression unless it meets these conditions.
This section describes these limitations.

D.2.1 Arithmetic Operators
These operators can be used with integer and real number operands. The unary minus operator can be used only once.
Bit operations can be performed only on integer data. Bit operands cannot be used for arithmetic operations. No auto-
matic data type conversion is performed even if the calculation result exceeds the range of the assigned register. There-
fore, the user must assign the appropriate data type to the variable.

D.2.2 Comparison Operators
These operators can be used with integer and real number operands. The left side must be a bit data register. To use an

integer bit operand in a comparison operation with the == or != operator, compare it with TRUE or FALSE.

D.2.3 Logic Operators

These operators can be used with bit operands.

MW00001 = MW00002 + MW00003 OK

MW00001 = MW00002 / 345 OK

MF00002 = (MW00004 + MF00002) / (ML00018 + MW00008) OK
MW00001 = MW00002 & 4096 OK
MB000010 = MB000011 - MB000012 NG
MW00001 = MB000011 * MW00001 NG

EXAMPLE

MB000010 = MW00002 != MW00003 OK

MB000010 = MF00002 < 99.99 OK

MB000010 = MW00002 >= MW00003 OK
MB000010 = MB000011 == true OK
MB000010 = MB000011 != 0 NG
MB000010 = MB000011 == 1 NG

EXAMPLE

MB000010 = MB000011 && MB000012 OK

MB000010 = !MB000011 OK

MB000010 = (MW000020 >= 50) && MB000011 OK
MB000010 = MW00001 || MW00002 NG
MB000010 = !MW00001 NG

EXAMPLE

D.2 National Limitations

D.2.4 Substitution Operator

D-6

D.2.4 Substitution Operator
Real number and integer registers can be substituted with either real number or integer data, even if the data type dif-
fers on the right and left sides. When you substitute an integer with a real number, a round-off error will occur.
Bit registers can be substituted only with logical values, such as another bit register or a TRUE/FALSE. If you substi-
tute a bit register with a non-logical value, that value will be compared against 0 or 0.0 and the TRUE or FALSE out-
come will be converted to a code before it is substituted.
Bit data cannot be substituted into non-bit registers.

D.2.5 Functions
The arguments and return values for functions depend on the specifications of the functions in the Machine Controller.
Therefore, if the input for the sin(), cos(), and atan() functions is an integer or integer register, the output value will be
returned as an integer. If the input is a real number or a real number register, the output value will be returned as a real
number.
The argument for the tan() function is a real number so an integer register input will be treated as a real number.

D.2.6 Others

Parentheses

You can group multiple expressions by enclosing them with parenthesis ().

Arrays

You can specify arrays by using square brackets [], just like with the C language.

MW00001 = MW00002; OK

MF00000 = MW00002 / 345; OK

MB000010 = MB000010; OK
MW00010 = MB0000101; NG
MW00001 = true; NG

EXAMPLE

MW00001 = sin(MW00002); OK

MF00002 = cos(MF00000 × 3.14); OK

MW00001 = -atan(MF00002); OK

EXAMPLE

MW00001 = -(MW00002 + 10) / (MW00003 – MW00005); OKEXAMPLE

MW00001 = MW00002[100]; OK

MW00001 = MW00002[MW00003]; OK

MB000010 = MB000020[0]: OK

EXAMPLE

E-1

P
re

ca
ut

io
ns

AppE

Appendix E
Precautions

This appendix provides precautions on ladder programs and motion parameters.

E.1 General Precautions - E-2

E.2 Precautions on Motion Parameters - E-2

E.1 General Precautions

E-2

E.1 General Precautions
(1) Do Not Forget to Save The Data to Flash Memory When You Change or Transfer a Pro-

gram

Do not forget to save the data to flash memory when you change or transfer a ladder program or motion program. If
you do not, any changes that were made to the program will be lost when the power supply to the Machine Controller
is turned OFF.

E.2 Precautions on Motion Parameters
(1) Do Not Use a Subscript to Reference a Motion Register from an I/O Register

I/O registers and motion registers are not assigned to consecutive memory locations.
When using a subscript, make sure that you access registers within the range of I/O registers or within the range of
motion registers.

IW0000/OW0000

IW7FFF/OW7FFF

IW8000/OW8000

IWFFFF/OWFFFF

I/O registers

Motion registers

Example:
I = 1;
OW7FFFi = 0;

Not accessible.

Accessible.

Accessible.

E.2 Precautions on Motion Parameters

E-3

P
re

ca
ut

io
ns

AppE

(2) Do Not Use a Subscript to Reference a Motion Register in a Different Circuit

Motion registers on different circuits are not assigned to continuous memory location, just as is true for I/O registers
and motion registers.
When using a subscript, access registers within the range of motion registers for each circuit.
If the circuit numbers are the same, it is possible to access motion registers for different axes.

Circuit No. Axis 1 Axis 2 ... Axis 16
1 OW8000 to OW807F OW8080 to OW80FF ... OW8780 to OW87FF
2 OW8800 to OW887F OW8880 to OW88FF ... OW8F80 to OW8FFF
3 OW9000 to OW907F OW9080 to OW90FF ... OW9780 to OW97FF
4 OW9800 to OW987F OW9880 to OW98FF ... OW9F80 to OW9FFF
5 OWA000 to OWA07F OWA080 to OWA0FF ... OWA780 to OWA7FF
6 OWA800 to OWA87F OWA880 to OWA8FF ... OWAF80 to OWAFFF
7 OWB000 to OWB07F OWB080 to OWB0FF ... OWB780 to OWB7FF
8 OWB800 to OWB87F OWB880 to OWB8FF ... OWBF80 to OWBFFF
9 OWC000 to OWC07F OWC080 to OWC0FF ... OWC780 to OWC7FF
10 OWC800 to OWC87F OWC880 to OWC8FF ... OWCF80 to OWCFFF
11 OWD000 to OWD07F OWD080 to OWD0FF ... OWD780 to OWD7FF
12 OWD800 to OWD87F OWD880 to OWD8FF ... OWDF80 to OWDFFF
13 OWE000 to OWE07F OWE080 to OWE0FF ... OWE780 to OWE7FF
14 OWE800 to OWE87F OWE880 to OWE8FF ... OWEF80 to OWEFFF
15 OWF000 to OWF07F OWF080 to OWF0FF ... OWF780 to OWF7FF
16 OWF800 to OWF87F OWF880 to OWF8FF ... OWFF80 to OWFFFF

Circuit 1

Example:
I = 1;
OW87FFi = 0;

Not accessible.

Accessible.Axis 1 (IW8000 to IW807F and OW8000 to OW807F)
Axis 2 (IW8080 to IW80FF and OW8080 to OW80FF)

Axis 16 (IW8780 to IW87FF and OW8780 to OW87FF)

Example:
I = 1;
OW807Fi = 0;

Circuit 2

Axis 1 (IW8800 to IW887F and OW8800 to OW887F)
Axis 2 (IW8880 to IW88FF and OW8880 to OW88FF)

Axis 16 (IW8F80 to IW8FFF and OW8F80 to OW8FFF)

Index

Index-1

Index

Symbols
registers - 4-15

Numerics
10-ms OFF-Delay Timer (TOFF[10ms]) - - - - - - - - - - - - - - - - - 5-9
10-ms ON-Delay Timer (TON[10ms]) - - - - - - - - - - - - - - - - - - 5-7
1-s OFF-Delay Timer (TOFF[1s]) - 5-13
1-s ON-Delay Timer (TON[1s]) - 5-11

A
Absolute Value (ABS) - 5-53
Add (ADD (+)) - 5-24
Add Time (TMADD) - 5-44
address - 4-17
alarms - 7-4
Arc Cosine (ACOS) - 5-107
Arc Sine (ASIN) - 5-106
Arc Tangent (ATAN) - 5-108
arithmetic operators - D-5
ASCII Conversion 1(ASCII) - 5-57
ASCII Conversion 2(BINASC) - 5-59
ASCII Conversion 3 (ASCBIN) - 5-61

B
basic flow of troubleshooting - 7-2
BCD Conversion (BCD) - 5-55
Binary Conversion (BIN) - 5-54
Binary Search (BSRCH) - 5-128
Bit Rotate left (ROTL) - 5-112
Bit Rotate Right (ROTR) - 5-114
Bit Shift Left (SHFTL) - 5-132
Bit Shift Right (SHFTR) - 5-134
bits - 4-17
Byte Swap (BSWAP) - 5-138
Byte-to-word Expansion (BEXTD) - - - - - - - - - - - - - - - - - - - 5-124

C
Call C-language Function (C-FUNC) - - - - - - - - - - - - - - - - - - 5-281
Call Extended Program (XCALL) - 5-87
Call Motion Program (MSEE) - 5-78
Call Sequence Program (SEE) - 5-77
Call User Function (FUNC) - 5-80
calling a user function - 4-12
checking for multiple coils - 6-5
child drawings - 4-3
c-language programs - 4-26
C-language Task Control (TSK-CTRL) - - - - - - - - - - - - - - - - 5-283
Clear Queue Table Pointers (QTBLCL) - - - - - - - - - - - - - - - - 5-223
Clear Table Block (TBLCL) - 5-209
Coil (COIL) - 5-19
Common Logarithm (LOG) - 5-111
comparison operators - D-5
compiling for MPE720 version 5 - 6-9
constant registers - 4-14
controlling execution of drawings - 4-5
Copy Word (COPYW) - 5-136
Cosine (COS) - 5-103
Counter (COUNTER) - 5-225
cross references - 6-4

D
D registers - 4-15
data registers - 4-14
data tracing - 4-28
data types - 4-17
Dead Zone A(DZA) - 5-139
Dead Zone B (DZB) - 5-141
Decrement (DEC) - 5-42
Direct Input String (INS) - 5-81
Direct Output String (OUTS) - 5-84
Divide (DIV (÷)) - 5-34
double-length integer - 4-17
drawing A - 4-3
drawing H - 4-3
drawing I - 4-3
drawing L - 4-3
DWG.A - 4-3
DWG.H - 4-3
DWG.I - 4-3
DWG.L - 4-3

E
enabling and disabling ladder programs - - - - - - - - - - - - - - - - - - 6-8
Equal (=) - 5-71
errors - 7-4
Exchange (XCHG) - 5-120
Exclusive OR (XOR) - 5-67
execution processing of drawings - 4-6
Exponential (EXP) - 5-109
Expression (EXPRESSION) - 5-97
Extended Add (ADDX (++)) - 5-26
Extended Subtract (SUBX (− −) - 5-30

F
Falling-edge Pulses (OFF-PLS) - 5-17
First-in First-out (FINFOUT) - 5-228
First-order Lag (LAG) - 5-161
FOR Construct (FOR, END_FOR) - 5-91
forcing coils ON and OFF - 6-5
Function Generator (FGN) - 5-167
functional external registers - 4-15
functional input registers - 4-15
functional internal registers - 4-15
functional output registers - 4-15

G
global registers - 4-13
grandchild drawings - 4-3
Greater Than (>) - 5-74
Greater Than or Equal (≥) - 5-73

H
hierarchical configuration of drawings - - - - - - - - - - - - - - - - - - - 4-4

I
I/O errors - 7-9
IF Construct (IF, END_IF) - 5-93
IF_ELSE Construct (IF, ELSE, END_IF) - - - - - - - - - - - - - - - - 5-95
Inclusive AND (AND) - 5-63
Inclusive OR (OR) - 5-65
Increment (INC) - 5-40
index registers (i, j) - 4-19
indicator status - 7-3
input registers - 4-14
integer - 4-17

Index

Index-2

Integer Remainder (MOD) - 5-36
Inverse Function Generator (IFGN) - - - - - - - - - - - - - - - - - - - 5-172
Invert Sign (INV) - 5-51

L
ladder drawings - 4-3
ladder program - 1-2
Less Than (<) - 5-69
Less Than or Equal (≤) - 5-70
Linear Accelerator/Decelerator 1 (LAU) - - - - - - - - - - - - - - - 5-177
Linear Accelerator/Decelerator 2 (SLAU) - - - - - - - - - - - - - - 5-184
local registers - 4-13
local registers within a user function - - - - - - - - - - - - - - - - - - - 4-15
logic operators - D-5

M
module synchronization errors - 7-10
motion programs - 4-25
Move Bit (MOVB) - 5-116
Move Table Block (TBLMV) - 5-212
Move Word (MOVW) - 5-118
MPE720 Version 6 Engineering Tool specifications - - - - - - - - - - 2-4
Multiply (MUL (x)) - 5-32

N
Natural Logarithm (LN) - 5-110
NC Contact (NCC) - 5-6
NO contact (NOC) - 5-5
Not Equal (≠) - 5-72

O
One′s Complement (COM) - 5-52
operation error drawings - 4-3
operation errors - 7-6
output registers - 4-14

P
parent drawings - 4-3
Parity Conversion (PARITY) - 5-56
PD Control (PD) - 5-150
Phase Lead Lag (LLAG) - 5-164
PI Control (PI) - 5-145
PID Control (PID) - 5-156
procedure to convert CP ladder programs - - - - - - - - - - - - - - - - B-3
Pulse Width Modulation (PWM) - 5-194

R
Range Check (RCHK) - 5-75
Read Data Trace (DTRC-RD) - 5-234
Read Inverter Parameter (ICNS-RD) - - - - - - - - - - - - - - - - - - 5-266
Read Inverter Trace (ITRC-RD) - 5-238
Read Motion Register (MOTREG-R) - - - - - - - - - - - - - - - - - - 5-278
Read Queue Table (QTBLR and QTBLRI) - - - - - - - - - - - - - - 5-215
Read Table Block (TBLBR) - 5-197
reading data from and writing data to projects - - - - - - - - - - - - - 4-23
reading data from the Machine Controller - - - - - - - - - - - - - - - - 4-23
Real Remainder (REM) - 5-38
realtime tracing - 4-28
Receive Message (MSG-RCV) - 5-253
register lists - 6-6
registers (variables) - 4-13
Reset Coil (R-COIL) - 5-21
Rising-edge Pulses (ON-PLS) - 5-15

S
saving data to flash memory - 4-23

scheduling execution of scan process drawings - - - - - - - - - - - - - 4-5
Search for Table Column (TBLSRC) - - - - - - - - - - - - - - - - - - 5-206
Search for Table Row (TBLSRL) - 5-203
searching and replacing in programs - 6-3
searching and replacing in project files - - - - - - - - - - - - - - - - - - 6-3
security - 4-27
Send Message (MSG-SND) - 5-241
Set Coil (S-COIL) - 5-20
setting high-speed/low-speed scan times - - - - - - - - - - - - - - - - 4-24
Sine (SIN) - 5-101
single-precision real number - 4-17
Sort (SORT) - 5-130
Spend Time (SPEND) - 5-48
Square Root (SQRT) - 5-99
Store (STORE) - 5-22
substitute operators - D-6
Subtract (−) - 5-28
Subtract Time (TMSUB) - 5-46
system error status - A-7
system errors - 7-11
system registers - 4-14
system service registers - A-2
system status - A-6

T
table data - 4-21
Table Initialization (SETW) - 5-122
Tangent (TAN) - 5-105
Trace (TRACE) - 5-232
transferring data - 4-23
Tuning Panel - 6-7

U
Upper/Lower Limit (LIMIT) - 5-143
user functions - 4-7
user operation error code -1 - A-9
user operation error code -2 - A-10
user operation error status - A-9

W
watchdog timer errors - 7-10
WHILE Construct (WHILE, END_WHILE) - - - - - - - - - - - - - 5-88
Word-to-byte Compression (BPRESS) - - - - - - - - - - - - - - - - 5-126
Write Inverter Parameter (ICNS-WR) - - - - - - - - - - - - - - - - - 5-261
Write Motion Register (MOTREG-W) - - - - - - - - - - - - - - - - 5-275
Write Queue Table (QTBLW and QTBLWI) - - - - - - - - - - - - - 5-219
Write SERVOPACK Parameter (MLNK-SVW) - - - - - - - - - - 5-270
Write Table Block (TBLBW) - 5-200
writing data to a Machine Controller - - - - - - - - - - - - - - - - - - - 4-23

X
XY tracing - 4-28

Revision History

The revision dates and numbers of the revised manuals are given on the bottom of the back cover.

Date of
Publication

Rev.
No.

WEB
Rev.
No.

Section Revised Contents

February 2014 1 5.8.2 (1) Revision: Formula for input value and output value related to dead zone

August 2013 0
All chapters Completely revised.
Back cover Revision: Address

February 2013 0 Back cover Revision: Address

February 2012 0 Back cover Revision: Address

Jane 2011 0
Front cover Revision: Format
Back cover Revision: Address, format

December 2009 0

– Based on Japanese user’s manual, SI-C887-1.2E <17> published in October 2009.

Preface Revision: General precautions
Addition: PL on fumigation and warranty

1.3 Addition: Characteristics of registers in user functions

2.3.2 Revision: Integer input for function input registers
Addition: Notes on the use of registers (X, Y, Z, and D) in functions

5.2 Revision: Definition of TRACE function
Back cover Revision: Address

October 2008 0 Back cover Revision: Address

March 2007 0
– Based on Japanese user’s manual, SI-C887-1.2D <14> published in July 2006.
Back cover Revision: Address

April 2006 0
– Based on Japanese user’s manual, SI-C887-1.2D <13> published in February 2006.
3.3.1 Revision: RSSEL, MDSEL, and STS designations

August 2005 0 Back cover Revision: Address

March 2005 0
All chapters Completely revised.
Back cover Revision: Address

June 2003 0 Back cover Revision: Address

December 2002 0 Back cover Revision: Address

February 2001 0 All chapters Completely revised.

October 1998 0 All chapters Partly revised.

July 1998 – – – First edition

MANUAL NO. SIE-C887-1.2D
Published in Japan February 2014 98-7

Date of
publication

Date of original
publication

14 -

Revision number
WEB revision number

1

14

13

12

11

10

9

8

7

6

5

4

3

2

1

IRUMA BUSINESS CENTER (SOLUTION CENTER)
480, Kamifujisawa, Iruma, Saitama 358-8555, Japan
Phone 81-4-2962-5151 Fax 81-4-2962-6138
http://www.yaskawa.co.jp

YASKAWA AMERICA, INC.
2121 Norman Drive South, Waukegan, IL 60085, U.S.A.
Phone 1-800-YASKAWA (927-5292) or 1-847-887-7000 Fax 1-847-887-7310
http://www.yaskawa.com

YASKAWA ELÉTRICO DO BRASIL LTDA.
Avenida Piraporinha 777, Diadema, São Paulo, 09950-000, Brasil
Phone 55-11-3585-1100 Fax 55-11-3585-1187
http://www.yaskawa.com.br

YASKAWA EUROPE GmbH
Hauptstraβe 185, Eschborn 65760, Germany
Phone 49-6196-569-300 Fax 49-6196-569-398
http://www.yaskawa.eu.com

YASKAWA ELECTRIC KOREA CORPORATION
9F, Kyobo Securities Bldg. 26-4, Yeouido-dong, Yeongdeungpo-gu, Seoul, 150-737, Korea
Phone 82-2-784-7844 Fax 82-2-784-8495
http://www.yaskawa.co.kr

YASKAWA ELECTRIC (SINGAPORE) PTE. LTD.
151 Lorong Chuan, #04-02A, New Tech Park 556741, Singapore
Phone 65-6282-3003 Fax 65-6289-3003
http://www.yaskawa.com.sg

YASKAWA ELECTRIC (CHINA) CO., LTD.
12F, Carlton Bld., No.21 HuangHe Road, HuangPu District, Shanghai 200003, China
Phone 86-21-5385-2200 Fax 86-21-5385-3299
http://www.yaskawa.com.cn

YASKAWA ELECTRIC (CHINA) CO., LTD. BEIJING OFFICE
Room 1011, Tower W3 Oriental Plaza, No.1 East Chang An Ave.,
Dong Cheng District, Beijing 100738, China
Phone 86-10-8518-4086 Fax 86-10-8518-4082

YASKAWA ELECTRIC TAIWAN CORPORATION
9F, 16, Nanking E. Rd., Sec. 3, Taipei 104, Taiwan
Phone 886-2-2502-5003 Fax 886-2-2505-1280

In the event that the end user of this product is to be the military and said product is to be employed in any weapons systems or the manufacture
thereof, the export will fall under the relevant regulations as stipulated in the Foreign Exchange and Foreign Trade Regulations. Therefore, be sure
to follow all procedures and submit all relevant documentation according to any and all rules, regulations and laws that may apply.

Specifications are subject to change without notice for ongoing product modifications and improvements.

© 1998-2014 YASKAWA ELECTRIC CORPORATION. All rights reserved.

Published in Japan February 2014 98-7

MANUAL NO. SIE-C887-1.2D

13-6-9
14 -1

YASKAWA ELECTRIC CORPORATION

USER'S MANUAL
LADDER PROGRAMMING

Machine Controller MP2000 Series

	Front Cover
	About this Manual
	Using this Manual
	MP2000-series Manuals
	Safety Information
	Safety Precautions
	Warranty
	Contents
	1 Introduction to Ladder Programming
	1.1 What Is a Ladder Program?
	1.2 Features of Ladder Programming for MP2000-series Machine Controllers
	1.2.1 Types of Ladder Drawings and Their Different Execution Timing
	1.2.2 Program Modules
	1.2.3 Programming Complicated Numeric Operations
	1.2.4 Communications Control with External Devices
	1.2.5 Complete Synchronization with Motion Control

	2 Specifications for Ladder Programs
	2.1 MP2000-series Machine Controller Specifications
	2.1.1 Applicable Machine Controllers
	2.1.2 Machine Controller Program Specifications

	2.2 Engineering Tool Specifications
	2.2.1 Applicable Engineering Tool
	2.2.2 MPE720 Version 6 Engineering Tool Specifications

	2.3 Ladder Programming Instructions

	3 Ladder Program Development Flow
	3.1 Ladder Program Design Procedures
	3.1.1 Connecting the Hardware
	3.1.2 Installing MPE720 Version 6
	3.1.3 Communications Settings
	3.1.4 System Startup
	3.1.5 Creating a Project
	3.1.6 Creating Ladder Programs
	3.1.7 Transferring Ladder Programs
	3.1.8 Checking the Operation of the Ladder Programs
	3.1.9 Saving the Ladder Programs to Flash Memory

	4 Programming
	4.1 Ladder Program Editor
	4.2 Ladder Drawings
	4.2.1 Types of Ladder Drawings
	4.2.2 Controlling the Execution of Drawings

	4.3 User Functions
	4.3.1 What Is a User Function?
	4.3.2 Creating User Functions
	4.3.3 Calling a User Function

	4.4 Registers (Variables)
	4.4.1 What Are Registers?
	4.4.2 Register Types
	4.4.3 Data Types
	4.4.4 Index Registers (i, j)

	4.5 Table Data
	4.5.1 What Is Table Data?
	4.5.2 Creating Table Data

	4.6 Transferring Data
	4.7 Setting the High-speed/Low-speed Scan Times
	4.8 Advanced Programming
	4.8.1 Motion Programs
	4.8.2 C-language Programs
	4.8.3 Security
	4.8.4 Tracing

	5 Instructions
	5.1 How to Read the Instructions
	5.2 Relay Circuit Instructions
	5.2.1 NO Contact (NOC)
	5.2.2 NC Contact (NCC)
	5.2.3 10-ms ON-Delay Timer (TON[10ms])
	5.2.4 10-ms OFF-Delay Timer (TOFF[10ms])
	5.2.5 1-s ON-Delay Timer (TON[1s])
	5.2.6 1-s OFF-Delay Timer (TOFF[1s])
	5.2.7 Rising-edge Pulses (ON-PLS)
	5.2.8 Falling-edge Pulses (OFF-PLS)
	5.2.9 Coil (COIL)
	5.2.10 Set Coil (S-COIL)
	5.2.11 Reset Coil (R-COIL)

	5.3 Numeric Operation Instructions
	5.3.1 Store (STORE)
	5.3.2 Add (ADD (+))
	5.3.3 Extended Add (ADDX (++))
	5.3.4 Subtract (SUB (-))
	5.3.5 Extended Subtract (SUBX (- -))
	5.3.6 Multiply (MUL (x))
	5.3.7 Divide (DIV (÷))
	5.3.8 Integer Remainder (MOD)
	5.3.9 Real Remainder (REM)
	5.3.10 Increment (INC)
	5.3.11 Decrement (DEC)
	5.3.12 Add Time (TMADD)
	5.3.13 Subtract Time (TMSUB)
	5.3.14 Spend Time (SPEND)
	5.3.15 Invert Sign (INV)
	5.3.16 One’s Complement (COM)
	5.3.17 Absolute Value (ABS)
	5.3.18 Binary Conversion (BIN)
	5.3.19 BCD Conversion (BCD)
	5.3.20 Parity Conversion (PARITY)
	5.3.21 ASCII Conversion 1 (ASCII)
	5.3.22 ASCII Conversion 2 (BINASC)
	5.3.23 ASCII Conversion 3 (ASCBIN)

	5.4 Logic Operations and Comparison Instructions
	5.4.1 Inclusive AND (AND)
	5.4.2 Inclusive OR (OR)
	5.4.3 Exclusive OR (XOR)
	5.4.4 Less Than (<)
	5.4.5 Less Than or Equal (≤)
	5.4.6 Equal (=)
	5.4.7 Not Equal (≠)
	5.4.8 Greater Than or Equal (≥)
	5.4.9 Greater Than (>)
	5.4.10 Range Check (RCHK)

	5.5 Program Control Instructions
	5.5.1 Call Sequence Program (SEE)
	5.5.2 Call Motion Program (MSEE)
	5.5.3 Call User Function (FUNC)
	5.5.4 Direct Input String (INS)
	5.5.5 Direct Output String (OUTS)
	5.5.6 Call Extended Program (XCALL)
	5.5.7 WHILE Construct (WHILE, END_WHILE)
	5.5.8 FOR Construct (FOR, END_FOR)
	5.5.9 IF Construct (IF, END_IF)
	5.5.10 IF-ELSE Construct (IF, ELSE, END_IF)
	5.5.11 Expression (EXPRESSION)

	5.6 Basic Function Instructions
	5.6.1 Square Root (SQRT)
	5.6.2 Sine (SIN)
	5.6.3 Cosine (COS)
	5.6.4 Tangent (TAN)
	5.6.5 Arc Sine (ASIN)
	5.6.6 Arc Cosine (ACOS)
	5.6.7 Arc Tangent (ATAN)
	5.6.8 Exponential (EXP)
	5.6.9 Natural Logarithm (LN)
	5.6.10 Common Logarithm (LOG)

	5.7 Data Shift Instructions
	5.7.1 Bit Rotate Left (ROTL)
	5.7.2 Bit Rotate Right (ROTR)
	5.7.3 Move Bit (MOVB)
	5.7.4 Move Word (MOVW)
	5.7.5 Exchange (XCHG)
	5.7.6 Table Initialization (SETW)
	5.7.7 Byte-to-word Expansion (BEXTD)
	5.7.8 Word-to-byte Compression (BPRESS)
	5.7.9 Binary Search (BSRCH)
	5.7.10 Sort (SORT)
	5.7.11 Bit Shift Left (SHFTL)
	5.7.12 Bit Shift Right (SHFTR)
	5.7.13 Copy Word (COPYW)
	5.7.14 Byte Swap (BSWAP)

	5.8 DDC Instructions
	5.8.1 Dead Zone A (DZA)
	5.8.2 Dead Zone B (DZB)
	5.8.3 Upper/Lower Limit (LIMIT)
	5.8.4 PI Control (PI)
	5.8.5 PD Control (PD)
	5.8.6 PID Control (PID)
	5.8.7 First-order Lag (LAG)
	5.8.8 Phase Lead Lag (LLAG)
	5.8.9 Function Generator (FGN)
	5.8.10 Inverse Function Generator (IFGN)
	5.8.11 Linear Accelerator/Decelerator 1 (LAU)
	5.8.12 Linear Accelerator/Decelerator 2 (SLAU)
	5.8.13 Pulse Width Modulation (PWM)

	5.9 Table Manipulation Instructions
	5.9.1 Read Table Block (TBLBR)
	5.9.2 Write Table Block (TBLBW)
	5.9.3 Search for Table Row (TBLSRL)
	5.9.4 Search for Table Column (TBLSRC)
	5.9.5 Clear Table Block (TBLCL)
	5.9.6 Move Table Block (TBLMV)
	5.9.7 Read Queue Table (QTBLR and QTBLRI)
	5.9.8 Write Queue Table (QTBLW and QTBLWI)
	5.9.9 Clear Queue Table Pointers (QTBLCL)

	5.10 System Function Instructions
	5.10.1 Counter (COUNTER)
	5.10.2 First-in First-out (FINFOUT)
	5.10.3 Trace (TRACE)
	5.10.4 Read Data Trace (DTRC-RD)
	5.10.5 Read Inverter Trace (ITRC-RD)
	5.10.6 Send Message (MSG-SND)
	5.10.7 Receive Message (MSG-RCV)
	5.10.8 Write Inverter Parameter (ICNS-WR)
	5.10.9 Read Inverter Parameter (ICNS-RD)
	5.10.10 Write SERVOPACK Parameter (MLNK-SVW)
	5.10.11 Write Motion Register (MOTREG-W)
	5.10.12 Read Motion Register (MOTREG-R)

	5.11 C-language Control Instructions
	5.11.1 Call C-language Function (C-FUNC)
	5.11.2 C-language Task Control (TSK-CTRL)

	6 Features of the MPE720 Engineering Tool
	6.1 Ladder Program Runtime Monitoring
	6.2 Searching/Replacing
	6.3 Cross References
	6.4 Checking for Multiple Coils
	6.5 Forcing Coils ON and OFF
	6.6 Viewing Called Programs
	6.7 Register Lists
	6.8 Tuning Panel
	6.9 Enabling and Disabling Ladder Programs
	6.10 Compiling for MPE720 Version 5

	7 Troubleshooting
	7.1 Basic Flow of Troubleshooting
	7.2 Indicator Status
	7.3 Problem Classifications
	7.3.1 Overview
	7.3.2 Error Checking Flowchart for MP2000-series Machine Controllers

	7.4 Detailed Troubleshooting
	7.4.1 Operation Errors
	7.4.2 I/O Errors
	7.4.3 Watchdog Timer Errors
	7.4.4 Module Synchronization Errors
	7.4.5 System Errors

	Appendix A System Registers
	A.1 System Service Registers
	A.2 System Status
	A.3 System Error Status
	A.4 Overview of User Operation Error Status
	A.5 System Service Execution Status
	A.6 Detailed User Operation Error Status
	A.7 System I/O Error Status
	A.8 CF Card-related System Registers (MP2200-series CPU-02 and CPU-03 only)
	A.9 Interrupt Status
	A.9.1 Interrupt Status List
	A.9.2 Details on Interrupting Module

	A.10 Module Information
	A.11 MPU-01 System Status
	A.12 Motion Program Information

	Appendix B CP (Previous) Ladder Instructions and New Ladder Instructions
	B.1 Correspondence between CP (Previous) Ladder Instructions and New Ladder Instructions
	B.2 Converting CP (Previous) Ladder Programs to New Ladder Programs

	Appendix C Sample Programming
	C.1 Jogging from the Control Panel
	C.2 Motion Program Control
	C.3 Simple Synchronized Operation of Two Axes with a Virtual Axis
	C.4 Transferring Project Files to Different Models

	Appendix D Format for EXPRESSION Instruction
	D.1 Elements That You Can Use in Numeric Expressions
	D.2 National Limitations
	D.2.1 Arithmetic Operators
	D.2.2 Comparison Operators
	D.2.3 Logic Operators
	D.2.4 Substitution Operator
	D.2.5 Functions
	D.2.6 Others

	Appendix E Precautions
	E.1 General Precautions
	E.2 Precautions on Motion Parameters

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	X

	Revision History
	Back Cover

