¥ YASKAWA

Machine Controller MP2000 Series

USER'S MANUAL

LADDER PROGRAMMING

B [T i | [
gootan
‘-.-.-._-.--_..._u_..-..

T ———
D O S — T TP —
— ;
= ol o e
2T { F]
b | —
i
J' -
;
13
i
n
Al e S -
M| e
- e—
- R — —

MANUAL NO. SIE-C887-1.2D

Introduction to Ladder
Programming

Specifications for Ladder
Programs

Ladder Program Development
Flow

Programming

Instructions

Features of the MPE720
Engineering Tool

Troubleshooting

System Registers

CP (Previous) Ladder Instructions
and New Ladder Instructions

Sample Programming

Format for EXPRESSION
Instruction

Precautions

bl A P2 P2 B
S HES EBES B BS
=N =2 k=2 =2 =2 &
Il E=2 Kel R2 P

Copyright © 1998 YASKAWA ELECTRIC CORPORATION

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, mechanical, electronic, photocopying, recording, or other-
wise, without the prior written permission of Yaskawa. No patent liability is assumed with respect to
the use of the information contained herein. Moreover, because Yaskawa is constantly striving to
improve its high-quality products, the information contained in this manual is subject to change without
notice. Every precaution has been taken in the preparation of this manual. Nevertheless, Yaskawa
assumes no responsibility for errors or omissions. Neither is any liability assumed for damages result-
ing from the use of the information contained in this publication.

About this Manual

B This manual provides comprehensive information on ladder programming for MP2000-series
Machine Controllers. It provides the following information on MP2000-series Machine Controllers.

* Introduction to Ladder Programming
* Specifications

* Program Development Flow

* Programming

* Instructions

* MPE720 Engineering Tool

* Troubleshooting

B This manual provides information on MP2000-series Machine Controllers and MPE720 version 6.

For information on the MP900-series Machine Controllers and MPE720 version 5, refer to the
appropriate manuals for them.

B Read this manual carefully to ensure the proper use of the MP2000-series Machine Controllers.
Keep this manual in a safe place so that it can be referred to whenever necessary.

Using this Manual

B Intended Audience

This manual is intended for the following users.
» Those responsible for designing the MP2000-series Machine Controller system
» Those responsible for writing the MP2000-series Machine Controller ladder programs

B MPE720 Engineering Tool Version Number

In this manual, the operation of the MPE720 is described using screen captures of MPE720 version 6.
For this reason, the screen captures and some descriptions may differ for MPE720 version 5.

B Abbreviations

The following abbreviation is used in this manual.

+ MP2000: A generic term for the MP2100, MP2100M, MP2101, MP2101M, MP2101T, MP2101TM, MP2200,
MP2300, MP2300S, MP2310, MP2400, MP2500/M/B/MB, and MPU-01.

MP2000-series Manuals

B The MP2000 Series includes the MP2100, MP2100M, MP2101, MP2101M, MP2101T, MP2101TM,
MP2200, MP2300, MP2300S, MP2310, MP2400, MPU-01, MP2500/M/B/MB, and MPU-01.
There are many manuals available for one or more of these Machine Controllers. A list of the
related manuals is provided on the following page. Refer to these manuals as required.

B Related Manuals

The following manuals are related to the MP2000 Series. Refer to these manuals as required.

Manual Name

Manual Number

Description

Machine Controller MP21000/MP21000M
User’s Manual, Design and Maintenance

SIEP C880700 01

Describes the functions, specifications, setup procedures, and
operating methods of the MP2100/MP2100M.

Machine Controller MP2200 User’s Manual

SIEP C880700 14

Describes the functions, specifications, setup procedures, and
operating methods of the MP2200.

Machine Controller MP2300 Basic Module
User’s Manual

SIEP C880700 03

Describes the functions, specifications, setup procedures, and
operating methods of the MP2300.

Machine Controller MP2300S Basic Module
User’s Manual

SIEP C880732 00

Describes the functions, specifications, setup procedures, and
operating methods of the MP2300S.

Machine Controller MP2310 Basic Module
User’s Manual

SIEP C880732 01

Describes the functions, specifications, setup procedures, and
operating methods of the MP2310.

Machine Controller MP2400 User’s Manual

SIEP C880742 00

Describes the functions, specifications, setup procedures, and
operating methods of the MP2400.

Machine Controller MP2500/MP2500M/
MP2500D/MP2500MD User’s Manual

SIEP C880752 00

Describes how to use the MP2500, MP2500M, MP2500D, and
MP2500MD Machine Controllers.

Machine Controller MP2000 Series
Built-in SVB/SVB-01 Motion Module
User’s Manual

SIEP C880700 33

Describes the SVB Module that is built into an MP2000-series
Machine Controller and the SVB-1 Optional Module.

Machine Controller MP2000 Series
SVC-01 Motion Module User’s Manual

SIEP C880700 41

Describes the SVC-01 SVA Motion Module for MP2000-series
Machine Controllers.

Machine Controller MP2000 Series
SVA-01 Motion Module User’s Manual

SIEP C880700 32

Describes the SVA-01 SVA Motion Module for MP2000-series
Machine Controllers.

Machine Controller MP2000 Series
Pulse Output Motion Module PO-01
User’s Manual

SIEP C880700 28

Describes the PO-01 Pulse Output Motion Module for MP2000-
series Machine Controllers.

Machine Controller MP2000 Series
Communication Module User’s Manual

SIEP C880700 04

Describes the Communications Modules that can be connected to
MP2000-series Machine Controllers.

Machine Controller MP2000 Series
262IF-01 FL-net Communication Module
User’s Manual

SIEP C880700 36

Describes the 262IF-01 FL-net Communications Module for
MP2000-series Machine Controllers.

Machine Controller MP2000 Series
263IF-01 EtherNet/IP Communication
Module User’s Manual

SIEP C880700 39

Describes the 2631F-01 EtherNet/IP Communications Module for
MP2000-series Machine Controllers.

Machine Controller MP2000 Series
1/0 Module User’s Manual

SIEP C880700 34

Describes the 1/0 Modules that can be connected to MP2000-
series Machine Controllers.

Machine Controller MP2000 Series
Analog Input/Analog Output Module
Al-01/A0-01 User’s Manual

SIEP C880700 26

Describes the AI-01 Analog Input Module and AO-01 Analog
Output Module for MP2000-series Machine Controllers.

Machine Controller MP2000 Series
Counter Module CNTR-01 User’s Manual

SIEP C880700 27

Describes the CNTR-01 Counter Module for MP2000-series
Machine Controllers.

Machine Controller MP2000 Series
MPU-01 Multiple-CPU Module
User’s Manual

SIEP C880781 05

Describes the MPU-01 Multiple-CPU Module for MP2000-series
Machine Controllers.

Machine Controller MP2000 Series
User’s Manual for Motion Programming

SIEP C880700 38

Describes the instructions that are used in motion programming for
MP2000-series Machine Controllers.

Engineering Tool for MP2000 Series
Machine Controller MPE720 Version 6
User’s Manual

SIEP C880700 30

Describes how to install and operate the MPE720 version 6 Engi-
neering Tool for MP2000-series Machine Controllers.

Machine Controller MP900/MP2000 Series
MPE720 Software for Programming Device
User’s Manual

SIEP C880700 05

Describes how to install and operate the MPE720 programming
device software for MP900/MP2000-series Machine Controllers.

Machine Controller MP2000 Series
Embedded C-Language Programming
Package Development Guide

SIEP C880700 25

Describes how to develop, design, and maintain embedded C-lan-
guage application programs for MP2000-series Machine Control-
lers.

Machine Controller MP900/MP2000 Series
New Ladder Editor User’s Manual

SIEZ-C887-13.2

Describes the operating methods of the New Ladder Editor, which
assists MP900/MP2000-series design and maintenance.

Manual Name

Manual Number

Description

Machine Controller MP900/MP2000 Series
Distributed 1/0O Module User’s Manual,
MECHATROLINK System

SIE-C887-5.1

Describes MECHATROLINK distributed I/0 for MP900/
MP2000-series Machine Controllers.

Machine Controller MP900/MP2000 Series
User’s Manual, For Linear Servomotors

SIEP C880700 06

Describes the connection methods, setting methods, and other
information for Linear Servomotors.

AC Servo Drives X-V Series User’s Manual,
Setup, Rotational Motor

SIEP S800000 43

Describes the installation, wiring, connections, and trial operation
of the 2-V Series Servo Drives and Rotational Servomotors.

AC Servo Drives X-V Series User’s Manual,
Setup, Linear Motor

SIEP S800000 44

Describes the installation, wiring, connections, and trial operation
of the -V Series Servo Drives and Linear Servomotors.

AC Servo Drives X-V Series User’s Manual,
Design and Maintenance, Analog-voltage,
Pulse-string Reference, Rotational Motor

SIEP S800000 45

Describes the design and maintenance of the X-V Series Analog
Servo Drives and Rotational Servomotors.

AC Servo Drives X-V Series User’s Manual,
Design and Maintenance, Analog-voltage/
Pulse-string Reference, Linear Motor

SIEP S800000 47

Describes the design and maintenance of the -V Series Analog
Servo Drives and Linear Servomotors.

AC Servo Drives X-V Series User’s Manual,
Design and Maintenance,
MECHATROLINK-II Communications
Reference, Rotational Motor

SIEP S800000 46

Describes the design and maintenance of the X-V Series MECHA-
TROLINK-II Communications-reference Servo Drives and Rota-
tional Servomotors.

AC Servo Drives X-V Series User’s Manual,
Design and Maintenance,
MECHATROLINK-II Communications
Reference, Linear Motor

SIEP S800000 48

Describes the design and maintenance of the -V Series MECHA-
TROLINK-IT Communications-reference Servo Drives and Linear
Servomotors.

AC Servo Drives 2-V Series User’s Manual,
MECHATROLINK-II Commands

SIEP S800000 54

Describes the MECHATROLINK-IT communications commands
of the Z-V Series Servo Drives with MECHATROLINK-II com-
munications references.

AC Servo Drives 2-V Series User’s Manual,
Operation of Digital Operator

SIEPS 800000 55

Describes operating procedures of the Digital Operator for -V
Series Servo Drives.

Vi

B Visual Aids

The following visual aids are used to indicate certain types of information for easier reference. Use these to help you
understand the different types of information.

Indicates information that must be remembered.

IMPORTANT

(N
INF
(nFo)

4 EXAMPLE p * Indicates concrete examples.

TERMSI

Also indicates alarm displays and other minor precautions that will not result in machine damage.

Indicates supplemental information and convenient information to remember.

Indicates definitions of difficult terms or terms that have not been previously explained in this manual.

B Copyrights

» DeviceNet is a registered trademark of the ODVA (Open DeviceNet Venders Association).
» PROFIBUS is a trademark of the PROFIBUS User Organization.

* Ethernet is a registered trademark of the Xerox Corporation.

* MPLINK is a registered trademark of Yaskawa Electric Corporation.

* Microsoft, Windows, Windows NT, and Internet Explorer are trademarks or registered trademarks of the
Microsoft Corporation.

 Pentium is a registered trademark of the Intel Corporation.

* MECHATROLINK is a trademark of the MECHATROLINK Members Association.

* Other product names and company names are the trademarks or registered trademarks of the respective com-
pany. “TM” and the ® mark do not appear with product or company names in this manual.

Safety Information

The following signal words and marks are used to indicate safety precautions in this manual. Information marked as
shown below is important for safety. Always read this information and heed the precautions that are provided.

Indicates precautions that, if not heeded, could possibly result in loss of life or serious injury.

/N\ WARNING
Indicates precautions that, if not heeded, could result in relatively serious or minor injury, or
property damage.

A CAUTION If not heeded, even precautions classified as cautions (A CAUTION) can lead to serious results depending on
circumstances.

Indicates prohibited actions. For example, @ indicates prohibition of open flame.

S PROHIBITED

0 MANDATORY Indicates mandatory actions. For example, 9 indicates that grounding is required.

Safety Precautions

This section provides important precautions that must be observed in ladder programming. Before you start to program,

carefully read all of this manual and all other provided manuals and make sure that you program the MP2000-series

Machine Controller correctly. You must be completely familiar with the MP2000-series Machine Controllers, safety
information, and all safety precautions before you attempt to use the Machine Controller.

B Storage and Transportation

/N\ CAUTION

+ If disinfectants or insecticides must be used to treat packing materials such as wooden frames, pallets, or
plywood, the packing materials must be treated before the product is packaged, and methods other than
fumigation must be used.

Example: Heat treatment, where materials are kiln-dried to a core temperature of 56°C for 30 minutes or
more.

If the electronic products, which include stand-alone products and products installed in machines, are packed with
fumigated wooden materials, the electrical components may be greatly damaged by the gases or fumes resulting from
the fumigation process. In particular, disinfectants containing halogen, which includes chlorine, fluorine, bromine, or
iodine can contribute to the erosion of the capacitors.

B Other General Precautions

Observe the following general precautions to ensure safe application.

.

The MP2000-series Machine Controllers were not designed or manufactured for use in devices or systems
directly related to human life.

Users who intend to use products that are described in this manual for special purposes such as devices or sys-
tems relating to transportation, medical, space aviation, atomic power control, or underwater use must contact
Yaskawa Electric Corporation beforehand.

The MP2000-series Machine Controllers have been manufactured under strict quality control guidelines. However,
if an MP2000-series Machine Controller is to be installed in any location in which a failure of the MP2000-series
Machine Controllers could involve a life and death situation or in a facility where failure may cause a serious acci-
dent, safety devices MUST be installed to minimize the likelihood of any serious accident.

The products shown in illustrations in this manual are sometimes shown without covers or protective guards.
Always replace the cover or protective guard as specified first, and then operate the products in accordance with
the manual.

The drawings that are presented in this manual are typical examples and may not match the product you received.

If the manual must be ordered due to loss or damage, inform your nearest Yaskawa representative or one of the
offices listed on the back of this manual.

Contact your nearest Yaskawa representative or one of the offices listed on the back of this manual to order a new
nameplate whenever a nameplate becomes worn or damaged.

Vii

viii

Warranty

(1) Details of Warranty

B Warranty Period

The warranty period for a product that was purchased (hereinafter called “delivered product”) is one year from the time
of delivery to the location specified by the customer or 18 months from the time of shipment from the Yaskawa factory,
whichever is sooner.

Warranty Scope

Yaskawa shall replace or repair a defective product free of charge if a defect attributable to Yaskawa occurs during the

warranty period above. This warranty does not cover defects caused by the delivered product reaching the end of its

service life and replacement of parts that require replacement or that have a limited service life.

This warranty does not cover failures that result from any of the following causes.

L.

[I N VS I S]

6.

Improper handling, abuse, or use in unsuitable conditions or in environments not described in product catalogs or
manuals, or in any separately agreed-upon specifications

. Causes not attributable to the delivered product itself
. Modifications or repairs not performed by Yaskawa
. Abuse of the delivered product in a manner in which it was not originally intended

. Causes that were not foreseeable with the scientific and technological understanding at the time of shipment from

Yaskawa

Events for which Yaskawa is not responsible, such as natural or human-made disasters

Limitations of Liability

1.

Yaskawa shall in no event be responsible for any damage or loss of opportunity to the customer that arises due to
failure of the delivered product.

. Yaskawa shall not be responsible for any programs (including parameter settings) or the results of program execu-

tion of the programs provided by the user or by a third party for use with programmable Yaskawa products.

. The information described in product catalogs or manuals is provided for the purpose of the customer purchasing

the appropriate product for the intended application. The use thereof does not guarantee that there are no infringe-
ments of intellectual property rights or other proprietary rights of Yaskawa or third parties, nor does it construe a
license.

. Yaskawa shall not be responsible for any damage arising from infringements of intellectual property rights or other

proprietary rights of third parties as a result of using the information described in catalogs or manuals.

(3) Suitability for Use

1. It is the customer’s responsibility to confirm conformity with any standards, codes, or regulations that apply if the
Yaskawa product is used in combination with any other products.

2. The customer must confirm that the Yaskawa product is suitable for the systems, machines, and equipment used by
the customer.

3. Consult with Yaskawa to determine whether use in the following applications is acceptable. If use in the application
is acceptable, use the product with extra allowance in ratings and specifications, and provide safety measures to
minimize hazards in the event of failure.

* QOutdoor use, use involving potential chemical contamination or electrical interference, or use in conditions or
environments not described in product catalogs or manuals

» Nuclear energy control systems, combustion systems, railroad systems, aviation systems, vehicle systems,
medical equipment, amusement machines, and installations subject to separate industry or government regula-
tions

+ Systems, machines, and equipment that may present a risk to life or property

» Systems that require a high degree of reliability, such as systems that supply gas, water, or electricity, or sys-
tems that operate continuously 24 hours a day

 Other systems that require a similar high degree of safety

4. Never use the product for an application involving serious risk to life or property without first ensuring that the sys-
tem is designed to secure the required level of safety with risk warnings and redundancy, and that the Yaskawa
product is properly rated and installed.

5. The circuit examples and other application examples described in product catalogs and manuals are for reference.
Check the functionality and safety of the actual devices and equipment to be used before using the product.

6. Read and understand all use prohibitions and precautions, and operate the Yaskawa product correctly to prevent
accidental harm to third parties.

(4) Specifications Change

The names, specifications, appearance, and accessories of products in product catalogs and manuals may be changed at
any time based on improvements and other reasons. The next editions of the revised catalogs or manuals will be pub-
lished with updated code numbers. Consult with your Yaskawa representative to confirm the actual specifications
before purchasing a product.

Contents

About this Manual- - - - - === - == - oo iii
UsingthisManual---- === == - o mmm e e e e iii
MP2000-series Manuals - = = = == = = = == = s s o e e e e e e e oo iii

Safety Information = - - == === cmc e e Vi

Safety Precautions - - - - - == - - - o oo oo vii

Warranty - - - === - - - oo e viii

1 Introduction to Ladder Programming-------------=“--“-«----------- 1-1
1.1 What Is a Ladder Program?- - = = = = = = = = o oo s e e e 1-2
1.2 Features of Ladder Programming for MP2000-series Machine Controllers- - - - - 1-3
1.2.1 Types of Ladder Drawings and Their Different Execution Timing--------------------- 1-3
1.2.2 Program Modules - - - - = = == = = = - oo oo e e e e 1-4
1.2.3 Programming Complicated Numeric Operations - - - -- == === - ccmmommm e 1-4
1.2.4 Communications Control with External Devices---- - === === - ccmmommm i aae 1-5
1.2.5 Complete Synchronization with Motion Control === - === = === = e e m e - 1-5

2 Specifications for Ladder Programs--- - - - - == == = mc o e o e e e e e 2-1
2.1 MP2000-series Machine Controller Specifications - - - - - - ---------------- 2-2
2.1.1 Applicable Machine Controllers = - --- == === - - oo 2-2
2.1.2 Machine Controller Program Specifications - = - - == = = = = = = = oo s oo e e e e oo 2-3
2.2 Engineering Tool Specifications - - - - === === - ccmmmmm e oo 2-4
2.2.1 Applicable Engineering ToOl- = - = = = = = = = = o o m o e e 2-4
2.2.2 MPE720 Version 6 Engineering Tool Specifications == --==--==--=-------c------ 2-4
2.3 Ladder Programming Instructions - ---=--=---ccmmmmmmm e 2-5
3 Ladder Program Development FIOW - - ------ == - cmmmmmmm e m e o 3-1
3.1 Ladder Program Design Procedures -------------------------~--~---- 3-2
3.1.1 Connecting the Hardware - - - = = = = = = = = o oo m oo e e 3-3
3.1.2 Installing MPE720 Version 6 - - - - - - - - - o= - - m oo oo 3-4
3.1.3 Communications Settings = - - === = === = = m s o m e e a e 3-4
3.1.4 System Startup--- - === === cm e e e 3-4
3.1.5 Creating a Project- - - = = = == = = s s o e e e e 3-5
3.1.6 Creating Ladder Programs = - - - == - = =@ c o cm i oo e e e e e 3-6
3.1.7 Transferring Ladder Programs - = = = = = = = = = = s ¢ o e mm e e e s 3-9
3.1.8 Checking the Operation of the Ladder Programs - = = = = = = = = = = = m oo e m e e e e - 3-11
3.1.9 Saving the Ladder Programs to Flash Memory - ------=c-cmmmmmmm o oo 3-14

4 Programming - ------ === - - - - o s o e e e e e oo oo 4-1
4.1 Ladder Program Editor = = = = == == = = s o e e e e e e 4-2
4.2 Ladder Drawings - ---= === === o - e e e e e e e 4-3
4.2.1 Types of Ladder Drawings---- === === === - m oo oo e e o oo 4-3
4.2.2 Controlling the Execution of Drawings -----=---==-=-=- -« - @ mmem e oo - 4-5
4.3 User FunctionS------------------ - 4-7
4.3.1 WhatlsaUser FUNCtion? == - - - - oo s mm oo e m e e e oo - 4-7
4.3.2 Creating User FUNCtions - - - = = = = = = o oo oo o e e e e e e 4-9

4.3.3 Callinga User Function- - - = - = = = = = o oo e o e e e e e e e 4-12

4.4 Registers (Variables)----------cmmmmm e 4-13

4.4.1 What Are Registers? - - = = === m o m e e oo 4-13
442 Register TYpes - - - - - - - s o s s e o oo o e e o oo 4-14
443 Data TypeS ----- - - - s oo m oo e e e e oo oo 4-17
4.4.4 Index Registers (i, j)- === === === s cm e 4-19
45 TableData-------------mmmm i e e - 4-21
451 Whatls Table Data? ----------mmmmmm e e e 4-21
452 Creating Table Data-----------------------mm oo 4-21
4.6 TransferringData - - - - - - === - - c oo e 4-23
4.7 Setting the High-speed/Low-speed Scan Times----------------uc-uc---- 4-24
4.8 Advanced Programming - -------------=--“--“--“-““--“----------- - 4-25
4.8.1 Motion Programs- - - - = = = = - - - oo m o e e e e e oo 4-25
4.8.2 C-language Programs = = = = = = = = = = @ o oot o e e e oo 4-26
4.8.3 SECUNMtY = === = = s s mm o m o e o e e e o maomae 4-27
484 TraCing-------- - - o m oo oo oo 4-28

5 InStructions - - - - = - = == - - o e e e e 5-1
5.1 How to Read the Instructions-------------------- - 5-4
5.2 Relay Circuit Instructions-----=-=--c-comm e 5-5
521 NOContact (NOC) - ------mmmmm e e e oo 5-5
522 NCContaCt (NCC)---------mmmmmm e o e oo 5-6
5.2.3 10-ms ON-Delay Timer (TON[10MS]) = ----------- - - oo m oo oo 5-7
5.2.4 10-ms OFF-Delay Timer (TOFF[10MS]) - - === === == - m e e e e e e e e e o - 5-9
5.2.5 1-s ON-Delay Timer (TON[1S]) == - - === === - - oo m oo e oo m oo 5-11
5.2.6 1-s OFF-Delay Timer (TOFF[1S]) - ------mmmmmmm oo 5-13
5.2.7 Rising-edge Pulses (ON-PLS) - --------mm oo e e o oo 5-15
5.2.8 Falling-edge Pulses (OFF-PLS) - --------cmmmmm e e e oo 5-17
5.2.9 COil (COIL) === === == oo oo oo 5-19
5.210 Set Coil (S-COIL) === == - - - m oo mm oo 5-20
5.2.11 Reset Coil (R-COIL)- === - - - - - m oo 5-21
5.3 Numeric Operation Instructions - - - ----=--- = -c e oo 5-22
5.3.1 Store (STORE) = - == = = == 5 2o m o e e e e o e e e e e i a oo 5-22
5.3.2 Add (ADD (F)) === == = = = = = = m m e e e 5-24
5.3.3 Extended Add (ADDX (+4)) = = = = = = == s s s e 5-26
5.3.4 Subtract (SUB (—))- === === = === cm s o e e e o o 5-28
5.3.5 Extended Subtract (SUBX (——)) === === === s s e m o e e e e a o 5-30
5.3.6 Multiply (MUL (X)) === = === === s s o e s o e m o e e e e e e e e e e m oo 5-32
5.3.7 Divide (DIV (+)) = = = = = = = = = m s m e e e e e e e e o e 5-34
5.3.8 Integer Remainder (MOD) = - = = = = = = = = 2 mm ot m e e o e e e o e 5-36
5.3.9 Real Remainder (REM) = = = = = = = = m e s e e e o e e e e e e e 5-38
5.3.10 Increment (INC)- = = = = = = = = o s s o e e e e e e e e e e e e a oo 5-40
5.3.11 Decrement (DEC) === === == s s s o m e e e e e e e e e e mea oo 5-42
5.3.12 Add Time (TMADD) - = = = = = = = = ¢ ¢ f e e e e e e e e e e e e 5-44
5.3.13 Subtract Time (TMSUB) - - - = = = = = = s s s o e e e e e e o e 5-46
5.3.14 Spend Time (SPEND) - - - - === - m oo s o e e e e e e e e e oo 5-48
5.3.15 Invert Sign (INV) = = = = = o 2 mm e e e e e e e e e e 5-51
5.3.16 One’s Complement (COM) - = = = = = = = = o e m o e e e e e e oo e 5-52
5.3.17 Absolute Value (ABS)- - = = = = = = = = s m oo m o e e e a e 5-53
5.3.18 Binary Conversion (BIN)- = = = = = = = = = 2 o e o e e e e 5-54
5.3.19 BCD Conversion (BCD) == == == = = = s 2 o e o e e e e e e e e oo 5-55
5.3.20 Parity Conversion (PARITY) = = = = = s s o e e o e e e e e e o 5-56
5.3.21 ASCIl Conversion 1 (ASCI) === == == = s s o e e e e e e e e 5-57
5.3.22 ASCII Conversion 2 (BINASC) === == == s s m e m e e e e e e 5-59
5.3.23 ASCII Conversion 3 (ASCBIN) = == == = = s s o e e e e e e e oo 5-61

Xi

5.4 Logic Operations and Comparison Instructions - ---------------------- 5-63

5.4.1 Inclusive AND (AND) == === s mm s s o e e e e e e e e e 5-63
5.4.2 Inclusive OR (OR) === = === s s o m o e e e e e e e 5-65
5.4.3 Exclusive OR (XOR) = = = = = = = = oot o e e e o e e e e e e 5-67
5.4.4 Less Than (<)== - === s o mm s oo o e oo e e e e 5-69
5.4.5 Less Thanor EqQual () = - === = === s s s s ot e e e e e 5-70
5.4.6 EQUal (Z) == = === = m s mm e m e e e e e e 5-71
5.4.7 NotEQUal (#) === == === = s s m o e e e e e e e e 5-72
5.4.8 Greater Thanor Equal (2) === - === = === s s o e e e e - 5-73
549 Greater Than (>)-----------mm o mm oo oo 5-74
5.4.10 Range Check (RCHK) - = = = = = = = o s m e e e e e e e e e e e e e - 5-75
5.5 Program Control Instructions - = - = = = = == = m o oo e e 5-77
5.5.1 Call Sequence Program (SEE)-----------m o mmm e e 5-77
5.5.2 Call Motion Program (MSEE)- - - - = - === - - s m o oo oo e o e oo 5-78
5.5.3 Call User Function (FUNC) - - - - == - - c oo o m e oo 5-80
5.5.4 Direct Input String (INS) - - - - - - - - - - oo 5-81
5.5.5 Direct Output String (OUTS) - - - - - - - m oo m oo oo e e 5-84
5.5.6 Call Extended Program (XCALL) - - - - == - - c oo i m o e oo 5-87
5.5.7 WHILE Construct (WHILE, END_WHILE) == === === === - o oo e e e e e e e e e e e - - 5-88
5.5.8 FOR Construct (FOR, END_FOR) - - - = == = = s s s s e e e e o e e e e e o 5-91
5.5.9 IF Construct (IF, END_IF) = = = == 2 m s e e 5-93
5.5.10 IF-ELSE Construct (IF, ELSE, END _IF)- === === -cccommmm e e e - - 5-95
5.5.11 Expression (EXPRESSION)- - - = - = - s o m i e o e e e e e - 5-97
5.6 Basic Function Instructions - - ------------------------ - 5-99
5.6.1 Square Root (SQRT)- === === = s m o e e e e e e e o 5-99
5.6.2 SiNE (SIN) = - - - - m e s s oo oo 5-101
5.6.3 CoSiNg (COS)- === == - mm o m o e oo e o e e i 5-103
5.6.4 Tangent (TAN) = - - = = = m o mm s oo e o e e e e e e e 5-105
5.6.5 Arc Sine (ASIN) == = = = 5 = s s o e e e e e i 5-106
5.6.6 Arc Cosing (ACOS)- === = == = s s s o e o e e e e e m o 5-107
5.6.7 Arc Tangent (ATAN) = - = = == c - mm s m o e e e e e e e e e e e 5-108
5.6.8 Exponential (EXP) === - === mmm i o e e e e e e 5-109
5.6.9 Natural Logarithm (LN) = = = = = = = = = 2 m e e e e e e e e e e e - 5-110
5.6.10 Common Logarithm (LOG) == === === mm e e e e e e - 5-111
5.7 Data Shift Instructions----------- - 5-112
5.7.1 Bit Rotate Left (ROTL)- === == === mm s mm o e oo e e e 5-112
5.7.2 Bit Rotate Right (ROTR) = - - == = === c o o oo oo 5-114
5.7.3 Move Bit (MOVB) - - = = - - = = o o o e o e e e e 5-116
5.7.4 Move Word (MOVW)- - - - - - o o oo oo e e o e e 5-118
5.7.5 Exchange (XCHG) - - - - - - - - - oo oo oo e o e 5-120
5.7.6 Table Initialization (SETW)- - = = = = = = = o m e o e e e e 5-122
5.7.7 Byte-to-word Expansion (BEXTD) ------cmcmmmm e e e 5-124
5.7.8 Word-to-byte Compression (BPRESS) - - - --------ommmmmmm e 5-126
5.7.9 Binary Search (BSRCH) - - - - - - - - - - mm i o m oo 5-128
5.7.10 Sort (SORT) - == = = = - s m o oo e e e e e e oo 5-130
5.7.11 Bit Shift Left (SHFTL) == - - = = mm s e e e - 5-132
5.7.12 Bit Shift Right (SHFTR) = = = = = === m e e e 5-134
5.7.13 Copy Word (COPYW) - - - - - o o o e e e e oo e e e 5-136
5.7.14 Byte Swap (BSWAP)- - - - = - = = oo o e m oo oo 5-138
5.8 DDC Instructions ------------------- oo 5-139
5.8.1 Dead Zone A (DZA) - - - - - - s o e e e e e e e e e 5-139
582 Dead Zone B (DZB) - - - - - - - - s s m e e e e e e e e e 5-141
5.8.3 Upper/Lower Limit (LIMIT) - - = = = = = = m s o e e e e e e e e 5-143
5.8.4 Pl CoNtrol (Pl) == =-=--cc oo e i e oo 5-145
5.8.5 PD Control (PD) - =====----- - mm oo e oo 5-150
5.8.6 PID Control (PID) === === - oo oo e o i e oo oo oo 5-156

Xii

5.8.7 First-order Lag (LAG)-----------------mmomo oo 5-161

5.8.8 PhaseLead Lag (LLAG) -------------mmmmm oo 5-164
5.8.9 Function Generator (FGN) - - ----------mmmmm oo 5-167
5.8.10 Inverse Function Generator (IFGN) - - - - = = == = = c cc e e e 5-172
5.8.11 Linear Accelerator/Decelerator 1 (LAU) - - = === == - o m m o e e e e e e e e 5-177
5.8.12 Linear Accelerator/Decelerator 2 (SLAU) - - - - === - == oo - oo o m e e oo 5-184
5.8.13 Pulse Width Modulation (PWM)- = = = = = = = = = & =@ @ @ @@ e e e e e e a o 5-194
5.9 Table Manipulation Instructions - ----=---=---c - e oo 5-197
5.9.1 Read Table BIOCK (TBLBR)- - = = = = = = = = = =« « & m et e et e e e e e 5-197
5.9.2 Write Table BIoCk (TBLBW) = - = = = - = = = o & o e e et et d e e e 5-200
5.9.3 Search for Table Row (TBLSRL)- - = = = = = = = 2 o e e e e e e e o - 5-203
5.9.4 Search for Table Column (TBLSRC) === = == = = o s m s e e e e e e o - 5-206
5.9.5 Clear Table BIOCK (TBLCL)- - = = = = = = = = =« « & m et e et e e e e 5-209
5.9.6 Move Table BIOck (TBLMV) = = = = = = = = = o c o o e e ettt d e ee e 5-212
5.9.7 Read Queue Table (QTBLR and QTBLRI) == = === = = o m s m e e e e e e o - 5-215
5.9.8 Write Queue Table (QTBLW and QTBLWI)- = = = == = = e s e e e e e e o - 5-219
5.9.9 Clear Queue Table Pointers (QTBLCL) = === = === - m e s e e e e e oo 5-223
5.10 System Function Instructions---------------------------------- 5-225
5.10.1 Counter (COUNTER) - - = = == = = = = m s o o e e e e oo e e m 5-225
5.10.2 First-in First-out (FINFOUT) = == = = = = = = = = 2 oo oo e oo e i oo e e eemm o 5-228
5.10.3 Trace (TRACE) - - = = = = = = = oo o e e oo e e e e 5-232
5.10.4 Read Data Trace (DTRC-RD) - - - - === - o m oo e o m oo - 5-234
5.10.5 Read Inverter Trace (ITRC-RD) -----------mm oo oo 5-238
5.10.6 Send Message (MSG-SND) - - - -------mmmmmm oo 5-241
5.10.7 Receive Message (MSG-RCV) - - - - - ---mmmmm oo e 5-253
5.10.8 Write Inverter Parameter (ICNS-WR)- - - = = = = - o m o s m e e e e m o - 5-261
5.10.9 Read Inverter Parameter (ICNS-RD) - - - - == - == - - o oo oo e e 5-266
5.10.10 Write SERVOPACK Parameter (MLNK-SVW)- = = = = = ==« @« o cco e e e e eceee e 5-270
5.10.11 Write Motion Register (MOTREG-W) - - = = = = = o o e o e e e e e e o 5-275
5.10.12 Read Motion Register MOTREG-R) = - == === == o s e e e e e e 5-278
5.11 C-language Control Instructions - - - - - - === == - c o oo e e e 5-281
5.11.1 Call C-language Function (C-FUNC) = = = = = = = == m s s e e e e e e e e - 5-281
5.11.2 C-language Task Control (TSK-CTRL) = - === === s o e m s e e e e e o - 5-283

6 Features of the MPE720 Engineering Tool - - - - = = == = == = - - o o m o e oo - 6-1
6.1 Ladder Program Runtime Monitoring - ----------------------------- 6-2
6.2 Searching/Replacing------= === - - m e 6-3
6.3 Cross References---------ccommmmmmmm e e e e e e ee i ee e o e 6-4
6.4 Checking for Multiple Coils == - === === - e e 6-5
6.5 Forcing Coils ONand OFF --------cmommmmm e e e oo 6-5
6.6 Viewing Called Programs - - ----= - c - mc oo e e e e - 6-6
6.7 Register Lists - - - = === - - m oo m e e e e o 6-6
6.8 TuningPanel - - - - - - - cmcm e e e e e e e 6-7
6.9 Enabling and Disabling Ladder Programs - - = - == = === === - o - o m e e oo - - 6-8
6.10 Compiling for MPE720 Version 5 - - - - - == - == - oo o e o e e oo 6-9
7 Troubleshooting---------------c e 7-1
7.1 Basic Flow of Troubleshooting-----=-=--=-ccmommmm e e oo - 7-2

Xiii

7.2 Indicator Status - - - - = - === - s e oo 7-3

7.3 Problem Classifications------=--=--cc - e e 7-4
7.3 OVEIVIBW - = - = = = = s o e m o o e e e e e e e o aoeoaoaoo- 7-4
7.3.2 Error Checking Flowchart for MP2000-series Machine Controllers ------------------- 7-5

7.4 Detailed Troubleshooting------------------------ oo 7-6
7.4.1 Operation Errors- - - = = = = = = = oo s oo e e e e e e e e oo 7-6
T.4.2 1O EIOrS= = = = = = 5 = = e m o e oo e e e e e e e e e o e oo 7-9
7.4.3 Watchdog Timer Errors - - - - = - = - == - oo oo oo o o e e 7-10
7.4.4 Module Synchronization Errors = - - === = == o @ m e e e e 7-10
7.4.5 System Ermors - - - - - - - oo m s oo e o e e e 7-11

Appendix A System Registers---------------------ooo o A-1

A.1 System Service Registers-------- - oo A-2

A2 SystemStatus - - - ----- - - oo A-6

A.3 SystemError Status - - - = == == == s s e A-7

A.4 Overview of User Operation Error Status ------------=---=---------- A-9

A.5 System Service Execution Status- - - - - - - === - - o m i A-11

A.6 Detailed User Operation Error Status - - - === === === == - c o e o mm e oo oo A-11

A.7 System /O ErrorStatus - ---------mmm oo A-12

A.8 CF Card-related System Registers

(MP2200-series CPU-02 and CPU-03 only)---------------------- A-13

A9 Interrupt Status - ---------- - A-14
A9.1 Interrupt Status List ----------------"““ o A-14
A.9.2 Details on Interrupting Module- - - = - = = = = = - o e oo A-14

A.10 Module Information-------- === - - A-15

A.11 MPU-01 System Status---------------mmm i A-16

A.12 Motion Program Information ------------cc-mommmm e e oo - A-17

Appendix B CP (Previous) Ladder Instructions and New Ladder Instructions - - - B-1

B.1 Correspondence between CP (Previous) Ladder Instructions and New Ladder

Instructions----------- - oo B-2

B.2 Converting CP (Previous) Ladder Programs to New Ladder Programs - - - - - - B-3
Appendix C Sample Programming-------------=--c---cmmmoo C-1
C.1 Jogging from the Control Panel - - - - - - = - = = == - o oo o e C-2
C.2 Motion Program Control - - = = = = == == = s - o e e e e e e C-3
C.3 Simple Synchronized Operation of Two Axes with a Virtual Axis----------- C14
C.4 Transferring Project Files to Different Models - - - - - - - -=----c-comooo-- C-6
Appendix D Format for EXPRESSION Instruction---------------------- D-1
D.1 Elements That You Can Use in Numeric Expressions - ----------------- D-2

Xiv

D.2 National Limitations ----------------cmmmm o D-5

D.2.1 Arithmetic Operators - - - - - = === === o oo e oo oo D-5

D.2.2 Comparison Operators - ------- ===« - - D-5

D.2.3 Logic Operators - - - - - - === - - - oo D-5

D.2.4 Substitution Operator = ----=--- - e D-6

D.2.5 FUNCONS === === = o s e mmc e e e i ne e e n e D-6

D.2.6 Others =---c-mmmcome oo i e iie i a e D-6
Appendix E Precautions -------------------o oo E-1
E.1 General Precautions----------------cmmmmmm oo E-2
E.2 Precautions on Motion Parameters ---------------coo-ooo - E-2
[gTe = e Index-1

Revision History

XV

Introduction to Ladder Programming

This chapter gives an overview of ladder programming and describes its features.

1.1 What Is a Ladder Program? - - - - - - - = = = - m oo oo e e e e oo 1-2
1.2 Features of Ladder Programming for MP2000-series Machine Controllers - - - - - 1-3
1.2.1 Types of Ladder Drawings and Their Different Execution Timing --------------------- 1-3
1.2.2 Program Modules - - - - - - - - - oo oo oo oo oo oo 1-4
1.2.3 Programming Complicated Numeric Operations - - - - - - === - -mmmmmmm oo 1-4
1.2.4 Communications Control with External Devices ----------------cooommmo 1-5
1.2.5 Complete Synchronization with Motion Control - - - - == - - == - - - oo oo e e 1-5

= Introduction to Ladder Programming

1-1

1.1 What Is a Ladder Program?

1.1 What Is a Ladder Program?

A ladder program uses ladder instructions and registers to symbolically represent electrical circuits that consist of

switches, timers, lamps, and other devices.

lllustration of a Circuit

Timer Lamp
Switch m
@ L4
|
| [
Ladder Program
switch larmp
[|EODOOO timer CBEO000O
— ——(_ToN[0ms] &))

MW]Set 00005
5

[W]Count DWOOOOD
0

Ladder programming allows you to easily program large, complex circuits.
Each of the ladder programs that you create is executed in a single scan and then executed repeatedly at fixed

intervals.
Ladder Programming Example
H~Motion controller
alarm clear operation ready e Servo Oh
MEOO0O01 |B:E0000 OB&0000
[
__I I____I |
H~Systern busy
[Ba0002
| |
[
alarm cleat Y Alarm clear
MEQDDO01 CEB000F
__I e
—
A #~Running senm on
[B80001 DBO0O000
Execution is —] —
repeated at a
fixed interval.
¥~ Motion cormmand
{ STORE E—
[YLF]Sre 00000 [¥LF|Dest CWYBO0S
a a
JOG comrmand SEND 0N
KMEODDOOZ2 DBO00000 H~Motion command
—I I——I |—I_ (STORE AD_
[LF]Src 00007 [¥LF|Dest CWYBOOS
7 7

1-2

1.2 Features of Ladder Programming for MP2000-series Machine Controllers

Controllers

1.2.1 Types of Ladder Drawings and Their Different Execution Timing

1.2 Features of Ladder Programming for MP2000-series Machine

This section describes the features of ladder programming.

1.2.1 Types of Ladder Drawings and Their Different Execution Timing

Ladder programs are managed in units of drawings (DWG). These are called ladder drawings.

In the MP2000-series Machine Controllers, ladder drawings are executed at various times, as illustrated in the follow-

ing figure.

Processing can be executed at the appropriate time by programming it in the appropriate ladder drawing.

DWG.A

— Executed only when power
is turned ON.

Low-speed scan cycle

High-speed
scan cycle

High-speed
scan cycle

High-speed
scan cycle

DWG.I
— Executed only when an
interrupt signal is detected.

:

DWG.H

— Executed in the high-speed
scan cycle.

DWG.L

— Executed in the low-speed
scan cycle.

B

Processed during

Power ON idle time of the

high-speed scan.

B Drawing Execution Timing

Interrupt
signal

Interrupt signal

7 On standby while

- drawings of higher

Z priority are processed.

Priority Ladder Drawing Execution Timing (Processing Example)
I (High) DWGA This drawing i.s .e).(ecfute.d only once when the power supply is turned ON
(e.g., for data initialization).
2(1) DWGI Thls drawing is e.xecuted when an interrupt signal is detected (e.g., for
interrupt processing for external signals).
3(1) DWGH This drawing is executed every high-speed scan cycle (e.g., for motion
control).
4 (Low) DWGL This drgwing is execu.ted every low-speed scan cycle (e.g., for touch
panel display processing).

¢+ The drawings with lower numbers have higher execution priority.

= Introduction to Ladder Programming

1-3

1.2 Features of Ladder Programming for MP2000-series Machine Controllers

1.2.2 Program Modules

1.2.2 Program Modules

The main program can be separated into modular units to suit different processing requirements, such as child draw-
ings, grandchild drawings, and functions, to make the program easier to read.

H: Main program

Automatic operation processing 8 b4 I B EET
------ 1 | | Automatic operation
...... SEE instruction ¥l processing drawing
4M | i) Modularization Manual operation
anual operation processing ® ularizati . . | : processing ® drawing
...... SEE instruction
...... FUNC
instruction N
Difference numeric processing
""" Difference numeric
Manual operation processing @ Manual operation processing function
L) | processing @ drawing \
""" SEE instruction 4
------ FUNC 4
______ instruction

1.2.3 Programming Complicated Numeric Operations

Complicated calculations written over several lines can be written easily within a single EXPRESSION instruction.
Variables, structures, and basic functions, such as those for sine and cosine calculations, can be programmed using
familiar C-like expressions.

You can display the current value inside expressions in the same way as you can for other ladder language instructions.

— STORE A
[LFjSrc MFODI00 [WLF]|Dest MFOOOOD
9.000000 E+001 3. 000000E+001
— ADD Z—
WLFErcA MFOODOOD — [WWLF|Dest MFOOO04
9 000000E-+101 9.000000E+001

WLFEreB MFOOOO2
0 000000E-+000

— EXPRESSION A
W 00005 =sin(hF 00000+ MFO0O02)°2;
2 D00000E +000=5in@ 00D000E+001-+0 000000E-+I0072

— SIN A
WYFRre MFOOO04 MyFlDest WMFOODOE
9.000000 EHIO1 1.000000E+000
— MUL)
MYLFErcA MFOOD0G [WLFDest MFODODS
1.00000E-+Ha0 2.000000E+000

WLFErcE 00002
2

1.2 Features of Ladder Programming for MP2000-series Machine Controllers

1.2.4 Communications Control with External Devices

1.2.4 Communications Control with External Devices

(N
INF
(nFo3

The MSG-SND and MSG-RCV ladder instructions support various protocols and can be used to control communica-
tions with many external devices, such as a touch panels or host PLCs. This allows external devices to access registers

in the Machine Controller.

MP2000-series Machine Controller

4 N
—
Ladder Program
Touch Panel
) | ¢ MSG-SND iNStruction | et—
M
Registers (Send Message) <
h * MSG-RCYV instruction h_ PLC
(Receive Message)

N J N

External Device

Instead of using a ladder program, the Machine Controller can also communicate with external devices by using I/O message

communications or automatic reception.

Refer to Chapter 6 Ethernet Communications in the Machine Controller MP2310 Basic Module User s Manual (Manual No.:

SIEP C880732 01) for details.

1.2.5 Complete Synchronization with Motion Control

Ladder programs that are started in the high-speed scan are processed in complete synchronization with motion control
processing. This allows you to call and process a motion program that performs complicated motion control synchro-

nously with a ladder program.

Sequence Control

Ladder Program (High-speed Scan)
motion &t at
program stat o pulie mithion $tar
BOXO0 =10y sfed LEWg
i s

mobon held
hald matian heid
BOOO01 DEOOM11
| e

mabion pregram aber

ahor motion sbort
BUAL [E-10s iR
| P

miohon alamm clas and pogram reset

Char
RO Program

Start of a Motion

= WE 1)

[WProgram o 00001
|AlDwt & DA

Motion control is processed in
complete synchronization with
the high-speed scan.

Motion Program

MPMOO1

VEL [X]2000 [Y]2000;
ACC [X]100 [Y]100; N
Setting

DCC [X]100 [Y]100; motion
MOV [X]0 [Y]0; parameters

MV'S [X]100.0 [Y]200.0;

Motion Control
(Motion Module)

| Completely
synchronized
control

Position
control

Motion parameters
4

Speed
control

Torque
control

\

= Introduction to Ladder Programming

1-5

2

Specifications for Ladder Programs

This chapter gives the specifications for ladder programs.

2.1 MP2000-series Machine Controller Specifications ---------------------- 2-2
2.1.1 Applicable Machine Controllers = - - = = = = = = = = = s o e e e e 2-2
2.1.2 Machine Controller Program Specifications - --------=------c-cmmmmmem oo 2-3

2.2 Engineering Tool Specifications - ------------------ommmm o 2-4
2.2.1 Applicable Engineering ToOl - - - - == ==« s o e m e e e e e e 2-4
2.2.2 MPET720 Version 6 Engineering Tool Specifications -------------ccommommmon 2-4

2.3 Ladder Programming Instructions - - - - - - = - - = - - - - - o oo oo oo 2-5

Specifications for Ladder Programs

2-1

2.1 MP2000-series Machine Controller Specifications

2.1.1 Applicable Machine Controllers

2.1 MP2000-series Machine Controller Specifications

2.1.1 Applicable Machine Controllers

You can use ladder programs with the following MP2000-series Machine Controllers.
* MP2100
+ MP2100M
+ MP2101
« MP2101M
*« MP2101T
« MP2101TM
* MP2200 with CPU-01
* MP2200 with CPU-02
* MP2200 with CPU-03
* MP2200 with CPU-04
* MP2300
+ MP2300S
* MP2310
* MP2500
+ MP2500B
* MP2500M
* MP2500MB
*+ MPU-01

INFO The MP2400 supports only motion programs and sequence programs.
% You cannot use ladder programs with it.

2.1 MP2000-series Machine Controller Specifications

2.1.2 Machine Controller Program Specifications

2.1.2 Machine Controller Program Specifications

MP2101, MP2101M,

MP2100 MP2200 MP2200 MP2101T, MP2101TM,
Machine Controller and MP2300 MP2300S | with MP2310 with MP2200 with CPU-03,
MP2100M CPU-01 CPU-02 MP2200 with CPU-04,
and MPU-01
Program Capacity”’ 5.5 MB 7.5 MB 11.5 MB

Applicable Models | Applicable™? | NA Applicable

Startup Processing | 64 drawings max. including parent drawings, operation error drawings, child drawings, and grandchild drawings

Interrupt
% Processing 64 drawings max. including parent drawings, operation error drawings, child drawings, and grandchild drawings
‘g’ High-speed Scan 200 drawings max. including parent drawings, operation error drawings, child drawings, and grandchild draw-
& | Processing ings
8 | Low-speed Scan 500 drawings max. including parent drawings, operation error drawings, child drawings, and grandchild draw-
il'% Processing ings

User Functions 500 drawings max.

Maximum Number

of Steps 1,000 steps per drawing

Applicable Models | Applicable

Number of

Programs 256 programs max. including motion programs and sequence programs

Number of Groups | 8 groups (Up to 16 axes can be set in one group.)

Number of Tasks 16 tasks max. (This is the number of simultaneously executable motion programs.)

Motion Programs

Number of Parallel

Forks per Task 8 (4 main program forks X 2 subprogram forks)

2 | Applicable Models | NA Applicable | Applicable | NA | Applicable | NA Applicable

g Number of - ncludi . d

8 | Programs programs max. including motion programs and sequence programs

o

)

e

8 | Number of Tasks 16 tasks max. (This is the number of simultaneously executable sequence programs.)

o

n

M Registers Apphcabl.e (65,535 words) . *3
These registers are backed up with a battery.
. Applicable (8,192

o | S Registers pplicab .e(,192 words) . u

Q These registers are backed up with a battery.

o

'qSJ': | Registers Applicable (32,768 words + motion monitor parameters)

% O Registers Applicable (32,768 words + motion setting parameters)

a ; .

2 C Registers Applicable (16,384 words)

e D Registers Applicable (Can be specified to between 0 and 16,384 words.)

2 These registers are unique to each drawing (DWG). They can be used within each drawing.
Applicable (Can be specified to between 0 and 16,384 words.)

Registers These are internal registers that are unique to each drawing (DWG). They can be referenced within each draw-
ing.
Capacity of Table Data N | MB 3 MB
Backed Up by a Battery one

x 1. This is the total capacity for ladder programs and motion programs.
x 2. This is supported only for version 2.66 or higher.
x 3. The # registers can be used only when ladder programs are used.

Specifications for Ladder Programs

2-3

2-4

2.2 Engineering Tool Specifications

2.2.1 Applicable Engineering Tool

2.2 Engineering Tool Specifications

This section gives the specifications for programs for the Engineering Tool.

2.2.1 Applicable Engineering Tool

A\
(o

You can create ladder programs with the following Engineering Tool.
* MPE720 version 5 for all MP2000-series Machine Controllers except for the MP2400
* MPE720 version 6 for all MP2000-series Machine Controllers

In addition to the Engineering Tool, you can also use the following Support Tools to monitor Machine Controller information

and transfer data.

* MPLOGGER (Control Information Monitoring Tool)
* MPLoader (Data Transfer Tool)
* MPLoadMaker (Automatic Transfer Data Creation Tool)

You can install the Engineering Tool and Support Tools in one PC to use them.

2.2.2 MPET720 Version 6 Engineering Tool Specifications

The following table shows the relationship between the Engineering Tool and the Machine Controller.

Machine Controller

MPE720 Version 6
(CPMC-MPET770)

Remarks

MP2100 Applicable

MP2100M Applicable

MP2101 Applicable Applicable with MPE720 version 6.24 or higher
MP2101M Applicable Applicable with MPE720 version 6.24 or higher
MP2101T Applicable Applicable with MPE720 version 6.24 or higher
MP2101TM Applicable Applicable with MPE720 version 6.24 or higher
MP2200 with CPU-01 Applicable -

MP2200 with CPU-02 Applicable —

MP2200 with CPU-03 Applicable Applicable with MPE720 version 6.20 or higher
MP2200 with CPU-04 Applicable Applicable with MPE720 version 6.22 or higher
MP2300 Applicable —

MP2300S Applicable Applicable with MPE720 version 6.04 or higher
MP2310 Applicable Applicable with MPE720 version 6.04 or higher
MPU-01 Applicable Applicable with MPE720 version 6.23 or higher

The following table shows the relationship between the Engineering Tool and the programs.

Program

MPE720 Version 6
(CPMC-MPET770)

Remarks

Ladder Programs Applicable —
Motion Programs Applicable
Sequence Programs Applicable

2.3 Ladder Programming Instructions

2.3 Ladder Programming Instructions

The following table lists the ladder programming instructions.

Refer to the reference sections for details on individual instructions.

Type Symbol Function Reference
NOC NO Contact 5.2.1
NCC NC Contact 522
g TONJ[10 ms] 10-ms ON-Delay Timer 523
g’ TOFF[10 ms] 10-ms OFF-Delay Timer 524
3 | TON[Is] 1-s ON-Delay Timer 525
= TOFF[1 s] 1-s OFF-Delay Timer 5.2.6
.::)’ ON-PLS Rising-edge Pulses 527
> OFF-PLS Falling-edge Pulses 5.2.8
K COIL Coil 5.2.9
S-COIL Set Coil 5.2.10
R-COIL Reset Coil 5.2.11
STORE Store 5.3.1
ADD Add 532
ADDX Extended Add 533
SUB Subtract 534
SUBX Extended Subtract 535
MUL Multiply 53.6
DIV Divide 5.3.7
‘é MOD Integer Remainder 5.3.8
‘g REM Real Remainder 539
s INC Increment 5.3.10
E DEC Decrement 5.3.11
';9-0' TMADD Add Time 5.3.12
!g_ TMSUB Subtract Time 5.3.13
2 SPEND Spend Time 53.14
Y Tvert Sign 53.15
Z COM One’s Complement 5.3.16
ABS Absolute Value 5.3.17
BIN Binary Conversion 53.18
BCD BCD Conversion 5.3.19
PARITY Parity Conversion 5.3.20
ASCII ASCII Conversion 1 53.21
BINASC ASCII Conversion 2 5.3.22
ASCBIN ASCII Conversion 3 5.3.23
AND Inclusive AND 5.4.1
g OR Inclusive OR 542
‘g’ XOR Exclusive OR 543
‘g)' < Less Than 544
S < Less Than or Equal 5.4.5
5 = Equal 5.4.6
§_ * Not Equal 5.4.7
o > Greater Than or Equal 5438
§) > Greater Than 5.4.9
RCHK Range Check 5.4.10

Specifications for Ladder Programs

2-5

2-6

2.3 Ladder Programming Instructions

Type Symbol Function Reference
SEE Call Sequence Subprogram 5.5.1
MSEE Call Motion Program 552
FUNC Call User Function 553

@ INS Direct Input String 554
2 | outs Direct Output String 555
% XCALL Call Extended Program 5.5.6
[
?g EVI\II—l];i\];:VHILE WHILE construct 5.5.7
c
(g l];IC\)IgiF OR FOR construct 5.5.8
% I IF construct 5.5.9
£ END IF
IF
ELSE IF ELSE construct 5.5.10
END_IF
EXPRESSION Expression 5.5.11
SQRT Square Root 5.6.1
2 SIN Sine 5.6.2
2 [cos Cosine 563
% TAN Tangent 5.6.4
e ASIN Arc Sine 5.6.5
2 [Acos Arc Cosine 5.6.6
ug_ ATAN Arc Tangent 5.6.7
2 EXP Exponential 5.6.8
@ LN Natural Logarithm 5.6.9
LOG Common Logarithm 5.6.10
ROTL Bit Rotate Left 5.7.1
ROTR Bit Rotate Right 5.7.2
" MOVB Move Bit 573
§ | MOVW Move Word 5.7.4
g XCHG Exchange 5.7.5
g SETW Table Initialization 5.7.6
.S BEXTD Byte-to-word Expansion 5.7.7
g BPRESS Word-to-byte Compression 5.7.8
% BSRCH Binary Search 5.7.9
g SORT Sort 5.7.10
§ SHFTL Bit Shift Left 5711
SHFTR Bit Shift Right 5.7.12
COPYW Copy Word 5.7.13
BSWAP Byte Swap 5.7.14
DZA Dead Zone A 5.8.1
DZB Dead Zone B 5.8.2
LIMIT Upper/Lower Limit 5.83
PI PI Control 5.84
g PD PD Control 5.8.5
‘g’ PID PID Control 5.8.6
7 LAG First Order Lag 5.8.7
(_CJ LLAG Phase Lead Lag 5.8.8
8 FGN Function Generator 5.8.9
IFGN Inverse Function Generator 5.8.10
LAU Linear Accelerator/Decelerator 1 5.8.11
SLAU Linear Accelerator/Decelerator 2 5.8.12
PWM Pulse Width Modulation 5.8.13

2.3 Ladder Programming Instructions

Type Symbol Function Reference
TBLBR Read Table Block 5.9.1
TBLBW Write Table Block 59.2
g TBLSRL Search Table Row 5.9.3
S [TBLSRC Search Table Column 594
§ TBLCL Clear Table Block 5.9.5
s | TBLMV Move Table Block 5.9.6
© QTBLR Read Queue Table 5.9.7
-C% QTBLRI Read Queue Table with Pointer Incre- 597
= ment
% QTBLW Write Queue Table 5.9.8
© QTBLWI Write Queue Table with Pointer Incre- 508
ment

QTBLCL Clear Queue Table Pointer 5.9.9
* COUNTER Counter 5.10.1
S | FINFOUT First-in First-out 5.102
2 | TRACE Trace 5.10.3
2 | DTRCRD Read Data Trace 5.10.4
é ITRC-RD Read Inverter Trace 5.10.5
€ | MSG-SND Send Message 5.10.6
UE- MSG-RCV Receive Message 5.10.7
% ICNS-WR Write Inverter Parameters 5.10.8
5 ICNS-RD Read Inverter Parameters 5.10.9
E MLNK-SVW Write SERVOPACK Parameters 5.10.10
& | MOTREG-W Write Motion Register 5.10.11
@ MOTREG-R Read Motion Register 5.10.12

°

€ C-FUNC Call User C-language Function 5.11.1

S

22

S TSK-CTRL Control User C-language Task 5.11.2

@)

Specifications for Ladder Programs

2-7

3

Ladder Program Development Flow

This chapter describes the development flow for ladder programs.

3.1 Ladder Program Design Procedures - - = - = == == = == cm o mc e m e e m e oo - 3-2
3.1.1 Connecting the Hardware - - - = - = == = = = - o m oo oo e e 3-3
3.1.2 Installing MPE720 Version 6 - - - = = = = = = = - o s o e o e e e e oo 34
3.1.3 Communications Settings - - == == == == s s m o e e 34
3.1.4 System Startup - - - - - - - s - o m e e e e e 34
3.1.5Creating a Project - ----- - - - o m o e e e e 3-5
3.1.6 Creating Ladder Programs - - - = = = = = = = o s oo e o e e e e e 3-6
3.1.7 Transferring Ladder Programs == - - === - - - o c oo e e e 3-9
3.1.8 Checking the Operation of the Ladder Programs - -----------mmmmmmmmmmm oo 3-11
3.1.9 Saving the Ladder Programs to Flash Memory - - - - == - == == - o c e e e e e e oo - - 3-14

n Ladder Program Development Flow

3-1

3-2

3.1 Ladder Program Design Procedures

3.1 Ladder Program Design Procedures

This section describes the design procedures for ladder programs as outlined below.

@ Preparation for Devices to Be Connected

Assemble and wire all devices to be connected.
Install MPE720 on a PC.

Refer to 3.1.1 Connecting the Hardware.

@ Creating Ladder Programs

Enter the ladder programs in the Ladder Editor.

Refer to 3.1.6 Creating Ladder Programs.

Refer to 3.1.2 Installing MPE720 Version 6.
Refer to 3.1.3 Communications Settings.

AV

A4

® Transferring Ladder Programs

@ System Startup
Transfer the ladder programs that you created to

the MP2000-series Machine Controllers.

Perform self configuration and start the system.

Refer to 3.1.7 Transferring Ladder Programs.

AV

® Checking the Operation of the Ladder Programs

Refer to 3.1.4 System Startup.

AV

(® Creating a Project

Create a project before you start ladder program Check the operation of the ladder programs.

development, Refer to 3.1.8 Checking the Operation of the Ladder

Programs.

® Saving the Ladder Programs to Flash Memory

Refer to 3.1.5 Creating a Project.

AV

Save the debugged ladder programs to flash memory.

Refer to 3.1.9 Saving the Ladder Programs to Flash
Memory.

¢+ The above flowchart is an example of the ladder program design process. Settings to interface the external devices
must be completed to use programs on the actual system.

3.1 Ladder Program Design Procedures

3.1.1 Connecting the Hardware

3.1.1 Connecting the Hardware

The flow of ladder program development that is described in this chapter is based on the following system configura-
tion.

24-VDC
power supply
MP2300 218IF-01 >
7 YASKAWA ROYO ORUN rnQ Qpse
AMO Qkerg| sxQ QOrcot
™0 OBAT| O Orx
sTop .
e
CNFG| oFF on
Mo swi
TEST PORT o o
OFF ON = =] S
o ° ©
M-1/IT — | o o
D = =
© ©
BATTERY e f=
] s a
Sha's
— O o]
CPU IO
nc2ay ° 108ase-T
he = -—
ncol .
ofi:) (]|l
_———
(1|
0

Machine Controller

Virtual I/O Devices*
(Entered on MPE720.)

Ethernet cable MB00000 MBO00001 MBO00002

MB00010 MBO00011

* In this chapter, M registers in the Machine Controller are used to simulate virtual I/O devices in the example system.
In practice, the input and output signals would be connected to I/O Modules on the Machine Controller, and the ladder program
would be created using I and O registers.

a Ladder Program Development Flow

PC running MPE720

3-3

3.1 Ladder Program Design Procedures

3.1.2 Installing MPE720 Version 6

3.1.2 Installing MPE720 Version 6

Install MPE720 version 6 on a PC.
Refer to the Engineering Tool for MP2000 Series Machine Controller MPE720 Version 6 Users Manual (SIEP
C880700 30) for the installation procedure.

3.1.3 Communications Settings

After you install MPE720 version 6 on the PC, set up communications between the MP2000-series Machine Controller
and the PC.

Refer to the Engineering Tool for MP2000 Series Machine Controller MPE720 Version 6 User s Manual (SIEP
C880700 30) for the communications setup procedure.

3.1.4 System Startup

Set up the system by performing self configuration. Self configuration automatically recognizes the Modules that are
installed in the MP2000-series Machine Controller and the devices that are connected through the MECHATROLINK
connector. This allows you to quickly and easily set up the system. You can perform self configuration by using the
DIP switch on the Machine Controller or by using the MPE720.

Refer to the user’s manual for your Machine Controller for details on self configuration.

3.1 Ladder Program Design Procedures

3.1.5 Creating a Project

3.1.5 Creating a Project

Use the following procedure to create a project.

1. Double-click the following icon on the PC desktop to start MPE720 version 6.

MPEVZ0 Yer.

2. When MPE720 version 6 starts, select New on the Start Tab Page.

B0 MPE 720 Ver. 6 - [Start]
I3 e Ede Wew Orine Comple [ebug Window Heb A
DEE N Iy) :)

== g% e L
YASKAWA FLECTRIC CORPORATION

Setup Frogramming Mon Trans Utility

Sysem Scankme settng

Communicatsons Selting
ILP] IP192.160.1.1]
Desconamchion

4:Ethemet|LP) IP192.168.1.1

Ready

3. Specify the file name, file storage location, and Machine Controller model, and then click the Create
Button.

Create New Project

Save in: (= MP2300

by Recent
Documents

@

Desklop

v)@?‘

\ Specify the file storage location.

s,

My Documents

= Specify the file name.
3 /

Iy Computer Z

File name: (MP2300) Cese D
Q Saveastype | Project File [YMW) v| [cance |
by Nln;E\lJork
Fleess Contraller (=) &
AN

|
NN Specify the model of the
MP2000-series Machine Controller.

a Ladder Program Development Flow

3-5

3.1 Ladder Program Design Procedures

3.1.6 Creating Ladder Programs

3.1.6 Creating Ladder Programs

Start the Ladder Editor and use the following procedure to create a ladder program.

1. Inthe pane on the left, expand the tree under Ladder program. Right-click High-speed and select
New from the menu.

7 .-Start-i

Ely = [E,‘_‘J Hiskary f

Prograrm
=] DII 23105MPL_E [MP2310]
(= [Ladder program

(W

Mew TP Ladder

A] Interrupt
/=1 Funckion

Right-click.

Cut Chrl+

Copy ChrHC

Paste Chrl+y

Select. Compile

Enable Main Program

Disable Main Program
Conversion of CP ladder

Inport]
Export]

Ladder Tokion

Print. .,

2. Click the OK Button.

: reate New Program

&l o

Praograrn Mame: | Main Program |

Configuration = File privilege 0.1 -~
Dietail definition Read 0 T

wirite 1

= Useregister num... | 32,00
[v reqgister 32

wiork regizter... | 0 0

register i}
-

Q Ok J)[Cancel

3.1 Ladder Program Design Procedures

3.1.6 Creating Ladder Programs

Create the ladder program in the Ladder Editor that you started.

Ladder programs are entered by inserting rungs, then instructions, and finally parameters for the instructions.
The following example shows how to insert an NO Contact instruction.

@ Right-click the tab with the row number, and select Insert Rung.

41

Stark.-_H = Main Prooram

Right-click. H:hdain Pragram 3

/—
7—(END

i)

[g

Insert Rung _— ﬂ

Insert Fung Comment Shift+Insert

@ Drag the instruction to insert (here, the NO Contact instruction under the relay instructions) from the Ladder

Instructions Pane to the inserted rung.

Stark -~ * H : Main Prugram-, EI 8l | adder Instruckion
H:Main Program A| | = RELAY -
(=]
__——Q_—-I 4 F MO Contact
N =
? | % 44 nC Contact
]
TON .
% E Drag and drop. 10 On-Delay Timer10ms]
-1 8 6 OffDelay Time10ms]
m (EMD } T?g'l On-Delay Timer1 2]
?11 T3 Off-Delay Time(15]

® Click the portion of the instruction with a question mark and enter the parameter (MB00000) from the key-
board.

a Ladder Program Development Flow

N ME Q00000
| |

l‘|H| Smumin

¢+ The types and number of instruction parameters depend on the instruction. Refer to Chapter 5 Instructions for
details on individual instructions.

3-7

3-8

3.1 Ladder Program Design Procedures

3.1.6 Creating Ladder Programs

@ Repeat steps 1 to 3 until you have created the entire ladder program. The following figures show examples of
a ladder program and its timing chart.

H:hain Program

AMD circuit
SV Sy2 LANMP1
MBO00000 WMBO00001 WMBOO0010
| || O
0000
ML-1
timer crcuit |
SW3 LAMP2
MBO00002 mWBO000 11
| | T Ao = P
] TON[1g Z LS
o003 [W]Set 00005
ML-1 [W]Count DWOO0000
[EMND]
0006
L1

+ The ladder program example that is shown above uses M registers for switches and lamps.
When you enter a ladder program for an actual system, use the appropriate | and O registers.

AND Circuit Operation

SW1 (MB00000) ON
OFF
ON
SW2 (MB00001)
OFF
ON
Lamp 1 (MB00010)
OFF
Timer Circuit Operation
ON
SW3 (MB00002)
OFF
5
Timer (DW00000)
0 5s
>
Lamp 2 (MB00011) ON
OFF

4. While displaying the ladder program, select Compile - Compile from the menu bar to compile the pro-
gram. When the compilation is finished, the ladder program will be saved automatically.

If an error is displayed in the Output Pane during compilation, the ladder program will not be saved.

IMPORTANT

3.1 Ladder Program Design Procedures

3.1.7 Transferring Ladder Programs

3.1.7 Transferring Ladder Programs

Use the following procedure to transfer the ladder program to the MP2000-series Machine Controller. This procedure
is not necessary if you created the ladder program online.

1. Select Communications Setting on the Start Tab Page.

B! MPE720 Ver.6 - 2310test [MP2310] - [Start]

[¥ Bl Edt Wew Onine Comple Debug Window Help _Ax
RS0 % 56 @M . [g Heim e [l) L)
1] B MO,

Offine MP2310 d YASKAWA ELECTRIC CORPORATION

- Start

Ty History 2 My tool

Program
= [1]] 2310test [MP2310]
=) Ladder program

[E) High-speed
[E Low-speed Communications Selting
1 start 3
[Sp— Connection
B Function Disconnection

History

[EllLadder |[E]mation | []5ystem 2310test YHW

Output R | 2vMw

<
Ready

=

2. Select the desired communications port in the Communications Setting Box, and then click the Con-
nection Button.

Y Communications Setting

Set the communication setking (Connection b

Communication pork | 4 1 Ethernet(LP

i)
n Ladder Program Development Flow

! MPE720 Ver. 6 - 2310test [MP2310] - [Start]
FY Ble Edt Yew Onne Comple Debug Window Heln _8x

Ded%, 78 b ST AT Wit o wo hmuDe

2t

T

b

w

% B

i Program

=[11] 2310test [MP2310]

= Ladder program
[High-speed

[Low-speed R
[Start
[Intermupt Connection [4:Ethernet{LP) IP192.168.1.1]

@I Function Disconnection

History
[ElLadder |[E]motion | [Hsystem 2310testYMW
Output R | 2 vmw

3.1 Ladder Program Design Procedures

3.1.7 Transferring Ladder Programs

4. Click the Individual Button, then select the Program Check Box. Click the Start Button.

Transfer Program - Write into Controller

B
Start /

Source Project File ; MP2310

Program
i Reqister
|:| Comment

(231 0kest, YMW)

0%

’ % Batch @IividualDD Save ko Flash after transferring to the contraller,

[system Configuration

[w]Ladder program
Makion programm
Sequence program
C language
Table data
¥ [#] variable

User Struckure

[+

Cptions] [Close]

(N
(o

file data.

* When an individual transfer is selected, the same file in the Machine Controller will be overwritten with the selected project

* When a batch transfer is selected, the RAM in the MP2000-series Machine Controller will be cleared before the transfer, and
all project file data will be written in the RAM.

5. Click the CPU STOP Button. The transfer will start.

3.1 Ladder Program Design Procedures

3.1.8 Checking the Operation of the Ladder Programs

3.1.8 Checking the Operation of the Ladder Programs

This section provides procedures to check the ladder program that was created in 3.1.6 Creating Ladder Programs.
Confirm that your program operates correctly by manipulating registers with the Register List, and by checking the
runtime monitor in the Register List and Ladder Editor.

(1) Preparations for Checking Operation

1. Open the ladder program that was transferred.

Nt MPE720 Ver.6 - [MP2310] - [Start]
I3 Ble Edt Wiew Onine Comple Debug Window Help _8x

4:Ethernet(LP) IP192.16

~ Progam
= (T[] [MPz310] Controller
= [Ladder program
= B High-speed
| - [BLH : Main Program Communications Setting

[Low-speed
& [Start Connection [4:Ethernet(LF] IP192.168.1.1]

i % antertrupt Disconnection
) Function

History History
2310test YMW 4:Ethemel(LF) IP192.168.1.1

Double-click.

[EllLadder |[Emation | [LIsystem

-~ Start campiling : H : Main Pragram -
Errar (0 Warning O

Ejoutpct |“Birvansfer | [ERegister List L | [wakeh 1 | W Cross Reference 1 | 40 Farce CailList |
Ready

2. Click the Register List 1 Tab, and then enter “MB000000” in the Register Box.
If the Register List 1 Tab is not visible, select View — Register List — Register List 1 from the menu
bar. The tab will be displayed and the register list will be opened.

41
x|

n Ladder Program Development Flow

Shart n Program |
H:hdain Frogram ~ -
&S|
=TlE°]
= I8
SN Sz LAl P | Z
BOOOO00 hBOO0001 MBOOOO10 3
| | | | 2
T 1 &

Enter “MB000000.”

0 (1 [2 |38 |4 |5 e |7 |8 |9 |a |8 € [p [|F
meoooooo [GEEMBEEMGEEN oFr OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
MBI [iFEERN oFr OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
MBL _|OFF OFF OFF OFF OFF
MBODDD30 |OFF OFF OFF OFF OFF
MBI _|OFF OFF OFF OFF OFF

|

|Tl-"|0utput ‘ TransFer

(IR egister List 1 |1 watch 1 _mCross Referance 1 :-’OForce Cail List

3-11

3.1 Ladder Program Design Procedures

3.1.8 Checking the Operation of the Ladder Programs

(2) Confirming the Operation of the 0000th Line (AND Circuit)

1. Set MB000000 to ON in the Register List. Confirm that the NO contact for MBO0000O in the Ladder
Editor changes to blue.

+ When a coil or contact is highlighted in blue, it means that it is ON.

=
(=]
AND circuit g
Shi Shi2 LeAbd P §
b BOOOO00 hiBO00001 Wi BO00010 &
| &
i | (- | .
b ®Confirm that the contact changes to blue. =
Reqgister Lisk 1 o X
Register | MBODDOOD -] B BEaod &
2 3 4 5 & |7 |8 o |a B € D E F A
meoooooo [GNIMGEENGEEN oFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF =
MBOOOD 10 FF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
MBOODDZO |OFF OFF O OFF OFF OFF OFF OFF OFF OFF OFF OFF
MBOODO30 |OFF OFF OFF Input ON. OFF OFF OFF OFF OFF OFF OFF OFF OFF
MEOMNNAN nNFE NFF NOFF N NFF NFF NFF NFF NFF NFF NFF NOFF NOFF
2. Set MB000001 to ON in the Register List. Confirm the following points.
* In the Ladder Editor, the NO contact for MB000001 and coil for MB000010 must be blue.
+ In the Register List, MB000010 must be ON.
H:hdain Program s
=13
AND circuit g
Wl =
S Sz X LAahdF 1 o
MEODOODO MBOOOO0A ® Confirm that the contact changes to blue. WBOOD010 g
00 |___| — B
—
00) . b
@ Confirm that the coil changes to blue. 7 —
Reqister |MBEIEIEIEIEID 16 - [==
2 |3 ¥ 8 9 a B [b E |F A
Input ON. s
MED00000 - DFF OFF OFF OFF OFF OFF OFF OFF OFF =
MEDDOD10 -- OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
MEBO000Z0 OFF OFF OFF EIFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
MEB000030 IIIFF OF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF

EARAAAT 4 AT - A A Are arr Aer arrs Are A oare aer onree

@ Confirm that the register is ON.

If no problems occur in the above procedure, then this concludes checking the operation of the 0000th line.

3.1 Ladder Program Design Procedures

3.1.8 Checking the Operation of the Ladder Programs

(3) Confirming the Operation of the 0001st Line (Timer Circuit)

Set MB000002 to ON in the Register List. Confirm the following points.
@® The DW00000 timer must increment every second.

Start. " * H:Main Program | Ciia
= : — =

timer circuit |

b

Sz LAmMFZ E

MBOO0O00Z rBOO0OT 2

——I TON[s] =& i

o

000z MiSet 00005

MNL-1

a
[]Caunt CWOO000

@ Confirm that the value

increments every second.

S

's
i END

A

Reglster|MBDDDDDD -l 16 Al
s 6 |7 [8 |89 [a [B [D [E

MBOO0D0D ---w {OFF.| OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
MBOODO10 OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
MBO0O0020 _IIIFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
MBOOOO30 |OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
MBOOD040 OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
MBOOOO50 |OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
MBOOOOGD OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF

|’l‘|0utput 'PTransFer Reg|ster List 1 ’:lWatch 1 KCmss Reference 1 | 4O Force Cail List

@ After five seconds, the coil for MB0O00011 must turn blue in the Ladder Editor.

® In the Register List, MB000011 must be ON for step @.

~ Shart. “# H : Main Program | X
timer circuit 0
5
= LAMPZ =
hBOOOOOZ hABOOO0 1 g
[—O—| Iz
0003 [i]Set 00005
HL-1 5
] Count DAOOOO0
5 @ Confirm that the coil changes to blue.
{ EHD i
alulu]z]
< |
Register Lisk 1
RegisterlMBDDDDDD - 16 -5
_ 6 |7 |8 |9 |a B e |p [E
MB000000 ---DFF DFF DFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
meooooio [N OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
MBO0O0020 |OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF
MBO0O030 |OFF OFF OFF OFF OFF OFF OFF OFF

RAD N A

nce

nce

nce

® Confirm that the register is ON.

nce

nce

nce

nce

nce

If no problems occur in the above procedure, then this concludes checking the operation of the 0001st line.

a Ladder Program Development Flow

3.1 Ladder Program Design Procedures

3.1.9 Saving the Ladder Programs to Flash Memory

3.1.9 Saving the Ladder Programs to Flash Memory

Use the following procedure to save the data from the RAM in the MP2000-series Machine Controller to the flash
memory in the MP2000-series Machine Controller.

1. Select Transfer — Save to flash from the following window.

% MPE720 Ver.6 - [MP2310] - [Start]

‘I Ble Edt wew Onine Comple Cebug window Help _Ax

a

Online MP2310

Setup Programmi Monitor Transfer

Ladder ain Program

Bl = T History F My toal

~ Program
=[] MPz310]
= [Ladder program
=15 High-speed
[H : Main Program

Controller

Communications Setting
[Low-speed
) Start Connection [4:Ethemet(LP) IP192.168.1.1]

m g ::ntel’:upt Disconnection
@ [E Function

History Histary
2310test YMw 4:Ethernet(LP] IP192.168.1.1

2YMW

[ElLadder |[S]motion | TT15ystem

I Variable: Value Comment Frogram

MR Transfer |[ERegister List 1 | [Z]watch 1 | 8 Cross Reference 1 | 4O Farce Coil List

2. Click the Start Button.

Transfer Program - Save to Flash

7 N ‘Writing target controller : MP2310 (Ethernet(LP) IP192,165.1.1)

Start Y, 0%

[Options J [Close

i Contraller is running,
\\) There is a possibility bo cause the following problems when transfer during UM,

1. There is a possibility that the application miscalculation,
2. It will kake more time while to complete transfer,

Do wou wank ko continue kransfer?

4. Click the Yes Button in the following dialog box. The Machine Controller will switch to RUN Mode.

MPE720 Ver.6

- J RUM the conkrollery
Yes Mo

4

Programming

This chapter describes ladder programming methods and the elements that are necessary for ladder

programming.
4.1 Ladder Program Editor ---------- - - e e 4-2
4.2 ladder Drawings --------- - - s m e e e o 4-3
4.2.1 Types of Ladder Drawings - -------- - - - oo m o e e e 4-3
4.2.2 Controlling the Execution of Drawings - - - - - == == == - cm o e m oo 4-5
4.3User Functions = - - - - === - - e m o e m oo 4-7
4.3.1WhatIsa User FUNCHION? - = - == - = = == - c o e e e e e e a o 4-7
4.3.2 Creating User FUNCHONS = - == = = = - oo oo e e e e e e e e 4-9
4.3.3 Calling a User FUNCHION = - == = = = = o m o o e e e e e e e 4-12
4.4 Registers (Variables) - - - ------------mmmmmm e 4-13
4.41 What Are Registers? - - - - - - oo mm e e e 4-13
442 Register TYpes - - - - - oo m s o m o o e e e e oo 4-14
443 Data TYpes - - - - - - - - s o oo m e e e e e e oo oo 4-17
4.4.4 Index Registers (i, j) - === === === = - oo e e e o 4-19
45TableData - -------- - m e m e e e 4-21
451 Whatls Table Data? ------------mmmm e e e 4-21
452 Creating Table Data - - - - - === - - s s oo e e 4-21
4.6 TransferringData - ------ - - mmm oo 4-23
4.7 Setting the High-speed/Low-speed Scan Times - ----------=----------- 4-24
4.8 Advanced Programming ------- == - - - o oo s e m o - 4-25
4.8.1 Motion Programs - - - - = = = = = o c oo e o e e e e e e e m e 4-25
4.8.2 C-language Programs - - - - - - - - - c oo oo o e e e e oo 4-26
4.8.3 SECUMtY == == == m s o oo e e e e oo 4-27
4.8.4 TraCing - - - - === - - - s o mm o e e e e e oa oo 4-28

Programming

4-1

4.1 Ladder Program Editor

4.1 Ladder Program Editor

On the MPE720 version 6 Engineering Tool, the following panes are displayed to edit a ladder program. These
panes are used to create and edit ladder programs.

4-2

- o X

Start

HO1 : common settings for axes

Prograrm
= (][] 23105MPL_E [MP2310]
= [Ladder program

= [High-speed

@ HOZ ¢ main program for manual operation
@ HO4 : main program for positioning
@ HOG : phase contral main program
= [Love-speed
= @ L ¢ low speed main prograrm
@ LO& @ electric cam kable data generation
[E=] Start
[E Interrupt
[E0 Function

Ladder Maticr § (1] 5ystem

Ready

[alalu]
HL-1

oo0z
ML-1

v = =

REEREREEER iz Common Settings #RRRRERREE

praRmsdaa® Motion Command Detection ##dwsssds

axis 1 motion command 0 detection

MEZ00010

[ILF]S et 002
[WLF]SeB 00000

axis 2 motion command O detection

MEB300012

[VLFISiea WE0ss
[WLF]SeB 00000

R Servo ON Command #Rtdsssseis

axis 1 Seno OMN

S~Motion cantroller
aperation ready
1200000 1BE0000

HruSenn ON
OB=s0000

ajgenigy, [2207]

Wariable 31X
2 85 £}

(=l & Registar
Comment List
= Variable

[0@ System Yariable
fixis Yariable

[+ [35] 10 variable

al

Constant Yariable
User struckure

Ej] Ladder... Yarisble

Ladder Pane

B Ladder Pane

Ladder Program Editing Tab Page

Ladder programs are displayed by drawing.
Refer to 4.2 Ladder Drawings for details on drawings.

B [adder Program Editing Tab Page

This tab page is used to edit ladder programs.

B Variables Pane

This pane displays variables. Refer to 4.4 Registers (Variables) for details on variables.

Variables Pane

In addition to the panes and tab page that were just described, various other panes, tab pages, and tool bars

also exist.

Refer to the Engineering Tool for MP2000 Series Machine Controller MPE720 Version 6 User s Manual
(SIEP C880700 30) for details on MPE720 version 6.

4.2 Ladder Drawings

4.2.1 Types of Ladder Drawings

4.2 Ladder Drawings

Ladder programs are managed as drawings (ladder drawings) that are identified by their drawing numbers (DWG

numbers).
The ladder drawings form the basis of the ladder programs.

4.2.1 Types of Ladder Drawings

(1) Types and Priorities of Drawings

There are the following types of ladder drawings: parent drawings, child drawings, grandchild drawings, and operation
error drawings.
 Parent Drawings
These drawings are automatically executed by the system when the execution conditions that are listed in the fol-
lowing table are met.
¢ Child Drawings
These drawings are executed when they are called from a parent drawing with a Call Program (SEE) instruction.
* Grandchild Drawings
These drawings are executed when they are called from a child drawing with a Call Program (SEE) instruction.
* Operation Error Drawings
These drawings are automatically executed by the system when an operation error occurs.
There are also five different types of drawings based on their role.
The following table gives the priority and parent drawing execution conditions for each type of drawing.

Priority* | Drawing Type Role Parent Drawing Execution Condition Maximum Number
of Drawings
Startup Power ON
1 DWGA . . 4
WG processing (Processed once when the power supply is turned ON.) 6
Interrupt External interrupt
2 DWGI roc;lzn (Executed when a DI interrupt or counter match inter- | 64
P & rupt is received from an Optional Module.)
3 DWGH ngh-speed scan | Started at fixed 1nt.ervals. 200
processing (Executed every high-speed scan.)
4 DWGL Low-sp.eed scan | Started at fixed intervals. 500
processing (Executed every low-speed scan.)
Function call
- Functions User functions (Executed when called with a FUNC instruction from a | 500
drawing.)

* Drawings with lower numbers have higher priority.

The breakdown of the number of drawings in each category is given in the following table.

) Number of Drawings
Drawing
DWG.A DWG.I DWG.H DWG.L
Parent drawings 1 drawing 1 drawing 1 drawing 1 drawing
Operation error drawings | 1 drawing 1 drawing 1 drawing 1 drawing
Child drawings Total of 62 Total of 62 Total of 198 Total of 498
Grandchild drawings drawings max. drawings max. drawings max. drawings max.

Programming

4-3

4.2 Ladder Drawings

4.2.1 Types of Ladder Drawings

(2) Hierarchical Configuration of Drawings

Each process program is organized in a parent-child-grandchild hierarchy.

The parent drawing first must call a child drawing, and then the child drawing must call a grandchild drawing. This is
called the hierarchical configuration of drawings.

A parent drawing cannot call a child drawing with a different drawing type. Similarly, a child drawing cannot call a
grandchild drawing from a different drawing type. A parent drawing cannot call a grandchild drawing directly.

You can call functions from any drawing regardless of the drawing type or hierarchy.

The hierarchy of drawings is shown below using DWG.A drawings as an example.

Parent Child Grandchild Functions
drawing drawings drawings

A A01 A01.01 |[FUNCO1
A01.02

A02 A02.01 FUNCO02

FUNCO03

HiH

Drawing name:DWG.X YY .ZZ

| |—> Grandchild drawing number (01 to 99)
Child drawing number (01 to 99)
Parent drawing type (A, I, H, or L)

The following notation is used for operation error drawings.
DWG.X 00

Fixed value (00)

[T

Parent drawing type (A, I, H, or L)
of the drawing where the error occurs

4.2 Ladder Drawings

4.2.2 Controlling the Execution of Drawings

(1) Controlling the Execution of Drawings

4.2.2 Controlling the Execution of Drawings

Drawings are executed based on their priorities, as shown in the following figure.

Power ON

DWG.A
Startup drawing

|

Every high-speed scan

Every low-speed scan

Operation error

Interrupt signal

| Batch outputs

Batch outputs |

| Batch inputs

Batch inputs |

I
DWG.H
High-speed scan
process drawings

I
DWG.L
Low-speed scan
process drawings

I

l

+ The parent drawing of each drawing is automatically called and executed by the system.

DWG.X00
Operation error drawing

DWG.I
Interrupt process drawing

Ix:AH,orL

l

Execution is continued from
the point before the error.

(2) Scheduling the Execution of Scan Process Drawings

Execution is continued
from the point before
the interrupt.

All scan process drawings are not executed at the same time. The following figure shows how execution time is allo-

cated to them based on their priority levels.

"

Low-speed scan

P
>

High-speed scan | High-speed scan | High-speed scan | High-speed scan

-

L] Ll

Ll L

DWG.H

DWG.L

Background*

This time is used to execute internal system processing, such as self-diagnosis.

[]: Execution in progress

The low-speed scan is executed during the time that is not used by the high-speed scans. Set the time of the high-speed
scan to approximately twice the total execution time of the high-speed drawings (DWG.H).

Programming

4-5

4.2 Ladder Drawings

4.2.2 Controlling the Execution of Drawings

(3) Execution Processing of Drawings

The execution processing for drawings is executed by calling the drawings from the top to the bottom, following the
hierarchy of the drawings. The hierarchy of drawings is shown below using DWG.A drawings as an example.

Execution is started by the system program
when the execution condition is met.

v

Parent Drawing Child Drawings Grandchild Drawings
H HO1 H01.01
SEE SEE F i
o1 J < HO1.HO1) | ¢ unction
SNG FUNC 01
§_|—>
— END
END
END
Execution is
ﬁgE — HO2 automatically
N < 1 7 started by the
HOO
An operation |_| system. >
error occurs.
VAL
END END)|« END

¢+ The parent drawing is automatically called and executed by the system.
Child drawings and grandchild drawings are executed by calling them from a parent drawing or a child drawing using
the Call Program (SEE) instruction.

+ You can call functions from any drawing. You can also call functions from other functions.

+ If an operation error occurs, the operation error drawing for the drawing type will be started automatically.

4.3 User Functions

4.3.1 What Is a User Function?

4.3 User Functions
4.3.1 What Is a User Function?

(1) Overview of User Functions

A user function contains a function definition (program number and I/O definitions) and processing instructions that

are defined by the user.
The following figure shows an example of a function definition.

FLNC T
[FUNCO1)_ Program Number

[BIE+vAL | DEOOOOOY
[OUT] DD
LL-oUT | DLooozz
[FIF-OUT | DFOD024

Function Input Definition Function Address Definition Function Input Definition

* Number of inputs * Presence of definition * Number of inputs
* Data type » Comments « Data types
* Comments « Comments

The processing to be performed by a function is created using a ladder program.
Functions are executed when they are called from a parent, child, or grandchild drawing with the FUNC instruction.
You can call a user function freely from any drawing. You can also simultaneously call the same function from differ-
ent types or different levels of drawings. You can also call user functions from other user functions.
The use of functions provides the following advantages.

* Easy user program modularization

+ Easy user programming and program maintenance

User functions can be called from any programs, any number of times.
When you call a user function, consider what values could be in the variables in each function, and perform

IMPORTANT

initialization as needed.
Refer to 4.4.2 (3) Precautions When Using Local Registers within a User Function for details.

Programming

4-7

4-8

4.3 User Functions

4.3.1 What Is a User Function?

(2) Relationship between I/O Data for a Function and Registers in the Function

Registers within a User Function

, Bit data outputs

¥ (16 bits max.)

A 4

Data outputs
» Word data
» Long data
* Float data
(16 words max.)

X Registers Y Registers
(Function Input Registers) (Function Output Registers)
Bit data inputs) XBO00OOO to XBOOOOOF YBO00000O to YBOOOOOF
(16 bits max.) Iiq 0
XW00001 YWO00001
XW00002 YW00002
XWO00003 YWO00003
Data inputs ;
» Word data
* Long data
* Float data
(16 words max.) XW00015 YWO00015
XWO00016 YWO00016
Address Inputs ~ ARegisters
(Function External Registers)
MA00100 MWO00100 ¢ > AW00000
MW00101 ¢ D AW00001
MW00102 ¢ > AW00002
MW00103 4 D AW00003
Z Registers # Registers D Registers
The X, Y, Z, and D registers are initialized to different values when a function is called.
IMPORTANT g

(N
INF
(nFo)

Refer to 4.4.2 (3) Precautions When Using Local Registers within a User Function for details.

The S, M, 1, O, and C registers can also be accessed from within a function.

4.3 User Functions

4.3.2 Creating User Functions

This section describes how to create a user function that has, as an example, the following specifications.

4.3.2 Creating User Functions

Function Definition Item Name Remarks
Program Number FUNCO1
Function Input Value IN Integer data
Function Output Value 1 OUT1 Integer data
Function Output Value 2 OuUT2 Integer data

Processing Details
Multiply the function input value (IN) by 2 and output it to function output value 1 (OUT1).
Multiply the function input value (IN) by 3 and output it to function output value 2 (OUT2).

B Procedure to Create a User Function

1. Inthe pane on the left, expand the tree under Ladder program. Right-click Function and select New
from the menu.

Bl -

Prograrn
=[][] 23105MPL_E [MP2310]
= [Ladder program
+ [High-speed
+ [Low-speed

+ [Start
Select.

Tew]
Tew CP Ladder

& cut Chri

% Copy Chrl+C

[paste Chriy
Compile

2. Enter “FUNCO01” in the Program No. Box.

1 Create New Program

Prograrn Mo,
- Program Marme

Configuration
= I definition

Funickion input definition
Function address definition
Function autput definition

+| Detail definition

Ok] [Cancel

Enter “FUNCO01.”

Programming

4-9

4.3 User Functions

4.3.2 Creating User Functions

3. Select Function input definition under I/0 definition and enter the following information.

Functian inpuk na. 1 -

w
Enter.
Type Zomrment

il v IH

Close

4. Select Function output definition under I/O definition and enter the following information.

% Enter.

. Function output na, 2

L

Tvpe Camment

02 WORD % OUTZ

Close

5. Click the OK Button. This concludes setting the function definition.

 Create New Program

Ijﬂ Program Ma. FUMCO1

Program Mame | |

Canfiguration _ == +
| Lion

VORD N WORD GUTH
Function input definition WORD DUT2
Function address definition
Function output definition

Detail definition
Click.

| #

|
oK Zancel << Detail
N—

4.3 User Functions

4.3.2 Creating User Functions

6. Create the following ladder program in the drawing of the FUNCO1 user function that was created in

step 5.
FUMNCOT:
2 times the input value CWW00001) then output (AAO0001) i

(MUL]
aoao [ALFISrcA A00001 WLIFDest YWwwWODOOD 1
ML-1 [WLF]SrcE 00002

d times the input value (0000 1) then output (AAO000 1)

(MUL ol
iy [ALF]SrcA ¥AD0001 [WLFDest YwiDDD?2
ML-1 [WWLF]SrcE 00003
0002 3 END)

0002
ML- 1

7. Compile the user function to conclude the creation of the user function.

Programming

4.3 User Functions

4.3.3 Calling a User Function

4.3.3 Calling a User Function

You can call a user function by using a FUNC instruction in the ladder drawing.

This section describes how to call the user function that was created in the previous section from the high-speed draw-
ing (DWGH).

B Example for Calling the FUNCO1 User Function from DWG.H

Program a FUNC instruction in DWG.H as shown below.

user function 01
i

FUNC E]—i
LS
Program number of
Marme FLMCOT the user fu?\ction to call

AN DVWO00o0 WIQUTT CWyoooo1

Input defined in
the user function

1] 1] Output defined in
P-N]DUTE WY 000072 the user function
I

This diagram shows a conceptual image of what the programming shown above accomplishes.

Registers within the FUNCO1 User Function

4-12

X Registers Y Registers
(Function Input Registers) (Function Output Registers)
IN XB000000 to XBOOOOOF YB000000 to YBOOOOOF OouT1
x2
DWO00000 } XW00001 > YWO00001 } DW00001
XW00002 > YW00002 » DW00002
x3
YW00003 OouT2
LB YW00016

I:I Values that are set I:I Undefined values

In this example, when DW00000 in DWG.H is set to 10, DW00001 becomes 20 and DW00002 becomes 30, demon-
strating that the user function was called correctly.

user function 01

{ FLUNC B
MName FLUMNCOA
[WW]IN - DWW00000 [WIOLT1 Dww00001
10 20

[WWIDUT2 Dew00002

20

4.4 Registers (Variables)

4.4.1 What Are Registers?

4.4 Registers (Variables)
4.4.1 What Are Registers?

Registers are areas that store data within the Machine Controller. Variables are registers with labels (variable names).
There are two kinds of registers: global registers that are shared between all programs, and local registers that are used

only by a specific program.

(1) Global Registers

Global registers are variables that are shared by ladder programs, user functions, motion programs, and sequence pro-
grams. Memory space for global registers is reserved by the system for each register type.

. Motion programs/
Ladder programs User functions sequence programs
] [| []
I [f [| [

Global Registers

S registers

8,192 words

M registers

65,535 words

| registers

32,768 words +
Monitor parameters

O registers

32,768 words +
Setting parameters

C registers

16,384 words

(2) Local Registers

Parent drawing Child drawing User function User function
H HO1 FUNCO1 FUNCO02
. . X registers X registers
reg{sters # regl.sters Y registers Y registers
D registers D registers Z registers Z registers
registers # registers
D registers D registers

Local registers can be used within a specific drawing. They cannot be used in other drawings.

Local Registers

Programming

4-13

4-14

4.4 Registers (Variables)

4.4.2 Register Types

4.4.2 Register Types

(1) Globa

| Registers

Global registers are variables that are shared by ladder programs, user functions, motion programs, and sequence pro-

grams. In other words, the operation results of a ladder program can be used by other user functions, motion programs,

or sequence programs.

Designation I
Type Name Method Usable Range Description
SBnnnnnh, These registers are prepared by the system. They report the
System registers SWnnnnn, SW00000 to status of the Machine Cor}troller and other information.
S . SLnnnnn, The system clears the registers from SW00000 to
(S registers) SW08191
SFnnnnn, SW00049 to 0 at startup.
SAnnnnn They have a battery backup.
MBnnnnnh,
. MWnnnnn, . .
Data registers MWO00000 to | These registers are used as interfaces between programs.
M| (M registers) MLnnnnn, MWG65534 | They have a battery back
egisters MFnnnnn, ey have a battery backup.
MAnnnnn
IW0000 to . .
) IBhhhhh., TWh- These registers are used for input data.
Input registers ’ IW7FFF
| . hhh, ILhhhh, - - -
(I registers) IFhhhh IW8000 to These registers store the motion monitor parameters.
IWFFFF These registers are used for Motion Modules.
OWO0000 to .
) OBhhhhh. OWh- OWOFFF These registers are used for output data.
Output registers ’
¢] . hhh, OLhhhh, - - -
(O registers) OFhhhh OWS8000to | These registers store the motion setting parameters.
OWFFFF These registers are used for Motion Modules.
CBnnnnnh,
Constant registers CWnnnnn, CW00000 to Th.ese registers can be read in programs but they cannot be
C (C registers) CLnnnnn, CW16383 written.
g CFnnnnn, The values are set from the MPE720.
CAnnnnn

+ n: decimal digit, h: hexadecimal digit

4.4 Registers (Variables)

(2) Local Registers

4.4.2 Register Types

Local registers are valid within only one specific program. The local registers in other programs cannot be accessed.
You specify the usable range of local registers from the MPE720.

Type Name Designation Method Description
registers Zgzﬁggﬁh;ﬂﬁﬁﬁﬁzn’ These registers can be read in programs but they cannot be writ-
£ ’ ? ten. The values are set from the MPE720.
#Annnnn
These registers can be used for general purposes within a program.
DBnnnnnh, DWnnnn, By default, 32 words are reserved for each program.
D D registers DLnnnnn, DFnnnnn, The default values after startup depend on the setting of the D
DAnnnnn Register Clear when Start Option. For details, refer to B Setting
the D Register Clear When Start Option.

+ n: decimal digit, h: hexadecimal digit

B [ocal Registers within a User Function

In addition to the # registers and D registers, there are local registers that can be used only within user functions.

Type

Name

Designation Method

Description

Function input registers

XBnnnnnh, XWnnnnn,
XLnnnnn, XFnnnnn

These registers are used for inputs to functions.
Bit inputs: XB000000 to XBOOOOOF
Integer inputs: XW00001 to XW00016
Double-length integers: XL00001 to XL00015
Real numbers: XF00001 to XF00015

Function output
registers

YBnnnnnh, YWnnnnn,
YLnnnnn, YFnnnnn

These registers are used for outputs from functions.
Bit outputs: YB000000 to YBOOOOOF
Integer outputs: YW00001 to YW00016
Double-length integers: YL00001 to YL00O015
Real numbers: YF00001 to YF00015

Function internal
registers

ZBnnnnnh, ZWnnnnn,
ZLnnnnn, ZFnnnnn

These are internal registers that are unique within each function.
You can use them for internal processing in functions.

Function external
registers

ABnnnnnh, AWnnnnn,
ALnnnnn, AFnnnnn

These are external registers that use the address input values as the
base addresses.

When the address input value of an M or D register is provided by
the source of the function call, then the registers of the source of
the function call can be accessed from inside the function by using
that address as the base.

¢+ n:decimal digit, h: hexadecimal digit

IMPORTANT

as needed.

User functions can be called from any programs, any number of times.

When you call a user function, consider what values could be in the local registers, and perform initialization

Refer to 4.4.2 (3) Precautions When Using Local Registers within a User Function for details.

Programming

4-15

4.4 Registers (Variables)

4.4.2 Register Types

(3) Precautions When Using Local Registers within a User Function

When you call a user function, consider what values should be in the local registers, and perform initialization as

needed.

Name

Precaution

X registers (function
input registers)

If input values are not set, the values will be uncertain.
Do not use X registers that are outside of the range that is specified in the input definitions.

Y registers (function out-
put registers)

If output values are not set, the values will be uncertain.
Always set the values of the range of Y registers that is specified in the output definitions.

Z registers (function
internal registers)

When the function is called, the previously set values will be lost and the values will be uncertain.
These registers are not appropriate for instructions if the previous value must be retained.
Use them only after initializing them within the function.

registers

These are constant registers. Their values cannot be changed.

D registers

When the function is called, the previously set values are preserved.

If a previous value is not necessary, initialize the value or use a Z register instead. D registers retain
the data until the power is turned OFF.

The default values after startup depend on the setting of the D Register Clear when Start Option. For
details, refer to B Setting the D Register Clear When Start Option.

B Setting the D Register Clear When Start Option

1. Select File — Environment Setting from the MPE720 Version 6 Window.

2. Select Setup — System Setting.

3. Select Enable or Disable for the D Register Clear when Start Option.

Environment Setting

71 Svstem
71 Security Syzhern Setting
'_:.Eetup ! - g
L3 System Setting Wik Protect wihitable ~
Scan Time Setting PCl Resst Signal |
7 Ladder .
3 Mation D Register Clear when Start
1 < language ; .
£ Varishle Battery Connection
77 Manikar Keep Latest ValueMumber of scan of keep latest value
£ Transfer when abnormal input]
71 Print High-zpeed Input 2 = zcan [1 to 268)
[Message Low-zpeed [nput 2 C- zcan [1 to 255)
Calender Setting
Date and Time Feb /272001 0g:08 :
Ok] [Cancel

X

Set Values

Disable: The initial values will be uncertain.
Enable: The initial values will be 0.

4.4 Registers (Variables)

4.4.3 Data Types

(1) Listof Data Types

4.4.3 Data Types

There are various data types that you can use depending on the purpose of the application: bit, integer, double-length
integer, real number, and address.

Symbol Data Type Range of Values Remarks
B Bit 1 (ON) or 0 (OFF) Used in relay circuits and to determine ON/OFF status.
W Integer 132,768 t0 32,767 (8000 to TFFF hex) Used for numeric .operatlons: The values in parentheses on
the left are for logical operations.
L Double-length -2,147,483,648 to 2,147,483,647 Used for numeric operations. The values in parentheses on
integer (80000000 to 7FFFFFFF hex) the left are for logical operations.
Foo | Single-preci- | 106E 38 10 3.402E438) or 0 Used for numeric operations.
sion real number
A Address 0 to 32,767 Used only as pointers for addressing.
The MP3000-series Machine Controllers do not have separate registers for each data type. As shown in the fol-
IMPORTANT parale reg o

lowing figure, the same address will access the same register even if the data type is different.

For example, MB001003, a bit address, and the MW00100, an integer address, have different data types, but
they both access the same register, MW00100.

Data Types and Register Designations

Address data type

l

MAO00101

Integer data type__.-""

l

MWO00100

— MWO00101
MW00102

MWO00103

One word is allocated for each register address.

FEDCBAD9S

An extra digit that specifies the bit (3) is appended
to the end of the register address (00100).

7 6 54|3210
IIII T

MB001003 e Bit data type

ML00100

: MF00100

ML00102
MF00102

[MB00103B]

A continuous data area is addressed,
with the specified register address
(00101) as the first address.

44— Bit data type

:

Double-length integer or
real number data type

The addressed register (00102) and the
following register (00103) are combined
as a 2-word area. Therefore the register
addresses are specified at intervals of 2.

Programming

4-17

4-18

4.4 Registers (Variables)

4.4.3 Data Types

(2)

[a]

[b]

[c]

[d]

Precautions for Operations Using Different Data Types

If you perform an operation using different data types, the results will be different depending on the data type of the
storage register, as described below.

Storing Real Number Data in an Integer Register

MW00100 = MF00200: The real number data is converted to integer data and stored in the destination register.
(00001) (1.234)

¢+ There may be rounding error due to storing a real number in an integer register.
Whether numbers are rounded or truncated when converting a real number to an integer can be set in the properties
of the drawing. (See below.)
MW00100 = MF00200 + MF00202:

(0124) (123.48) (0.02) The result of the operation may be different depending on the value of the variable.
(0123) (123.49) (0.01)

Storing Real Number Data in a Double-length Integer Register

MLO00100 = MF00200: The real number data is converted to integer data and stored in the destination register.
(65432) (65432.1)

Storing Double-length Integer Data in an Integer Register

MW00100 = ML00200: The lower 16 bits of the double-length integer data are stored without change.
(-00001) (65535)

Storing Integer Data in a Double-length Integer Register

ML00100 = MWO00200: The integer data is converted to double-length integer data and stored in the destination register.
(0001234) (1234)

Setting for Real Number Casting

The casting method (truncating or rounding) can be set in the detailed definitions in the Program Property Dialog Box.
The method to use for real number casting is set for each drawing.

1 program Property g|
l: é‘ Program Mo, H
Program Mame . High-speed Main Program
Zonfiguration Setting the operation when real number | Truncation -

[= Detail definition
Dekail information
Real number - = integral ca:
Madified hiskory

Setting the operation when real number
Setting the operation when real number -» integral number cast.
Truncation: MP2000 series standard

F 3 Round: MPA00 series compatible(Increases the compile time.]

&) Com)

4.4 Registers (Variables)

4.4.4 Index Registers (i, j)

4.4.4 Index Registers (i, j)

There are two index registers, i and j, that are used to modify relay and register addresses. The functions of i and j are

identical.
There are index registers for each program type, as shown in the following figure.

Motion Sequence
DWG.A DWG.H DWG.L DWG.I program* program*
4 N 4 A
y h y y h y
i and j registers i and j registers i and j registers i and j registers i and j registers i and j registers

* Motion programs and sequence programs have separate i and j registers for each task.

¢+ Functions reference the i and j registers that belong to the calling drawing.
For example, a function called by DWG.H will reference the i and j registers for DWG.H.

The operation for each register data type is described next.

[a] Attaching an Index to a Bit Register

) Using an index is the same as adding
Equivalent the value of i or j to the register address.

Ifi=2, .
DB000000 = MB0000o;, || DB000000 = MBO0002 | o~)\ 100000i s

the same as MB00002.

[b] Attaching an Index to an Integer Register

) Using an index is the same as adding
Equivalent the value of i or j to the register address.

Ifi = 30, }
DW000000 = MW00001i. DW000000 = MWO0O03T | ¢ o ample, if i = 30, MW0O0001 i

the same as MW00031.

[c] Attaching an Index to a Double-length Integer or a Real Number Register

Double-length Integer Upper word Lower word .Usmg an |erex is the same as adding the value of i or
MWO00001 MWO00000 j to the register address.
If j = 0, ML0O000Oj is ML0O000O. | | | For example, if j = 1, MLOOO0OOj is the same as ML0O00O1.
| | In the case of double-length integers and real numbers, the
one-word area of the register address and the one-word
area of the register address + 1 are used together. Be
Real Number Upper word Lower word i i i
MW00001 MW00000 Zareglul Tf ov:]r!a:)pmg areaslwhenblndem.ngt;
If = 0, MFO0000] is MFO0000. | | | ouble-length integer or rea num. er register -
VW 5 W] addresses. For example, when using MLO00OOj with
0000 0000 both j=0andj = 1, the one-word area of MW00001 will
If j = 1, MFO0000j is MFO0001. | | | overiap

If j =1, MLO000Oj is MLO0001. |

Programming

4-20

4.4 Registers (Variables)

4.4.4 Index Registers (i, j)

A programming example that uses indexed registers is shown below.

This example uses index j to find the total of the values in 50 registers from ML00100 to ML0O0198.

{ STORE A
IWYLFISre 00000 [WLFDest MLOD200
{ STORE T
[WLF]Src 00000 [WLF]Dest J
WHILE &
J<100
(ADD T
[WLFISrcA MO0 WLFDest MLODZ0
[WLFJSreB MLODT00]
(ADD o
[WLFErcA J [WLFDest J
[WLFIErcB 00002
— END ‘WHLE)

4.5 Table Data
4.5.1 What Is Table Data?

4.5 Table Data
4.5.1 What Is Table Data?

Table data is data that is managed in tabular form. The data is stored separately from the registers.
Data can be copied from a table to registers or from registers to a table by executing table data manipulation instruc-
tions in the ladder program. Tables can also be used to hold data when there is not a sufficient range of registers.

Read Queue Table Instruction

Data | ... ___
— CTELR =
Mame TEBL1 MA[Cut] CWADDD20
[AlData DADODDO [Bl[Sts] DBOOOZ10
[AFrm DADDDTO

Table data
Registers

— QTBLW Ful)an
Mame TBL1 MA[Cut] OV 00020
[AData DA00DDO [Bl[Sts] CBOOOZ10
[AFPrm D&D0010

T

5

TBLA Write Queue Table Instruction

4.5.2 Creating Table Data

Use the following procedure to create table data. The table definition information and column attributes that are set for
table data are listed in the following table.

Table Definition Lo
h Description
< Creating Table Data > Information P
Table Name This is the name of the table.
Table Type Select an array-type or record-type table.

» |Number of Columns| This is the number of columns in the table.
(10,000 columns max.)

Set the table

VR . Number of Rows | This is the number of rows in the table. (10,000 rows max.)
definition information.

Table Comment This is a comment for the table.

o
Select normal or battery backup. £
Table Data Refer to 2.1.2 Machine Controller Program Specifications E
Storage Location | for details on the maximum size of tables and ©
which models have battery backup storage. 8"
a
Set the column attributes. Column Attribute Description
_ Column Name This is the name of the column.
T, * | Data Type The data type can be integer, double-length integer, real
number, or text string.
Size This is the length of the data type.
Display Type The display type can be binary, decimal, hexadecimal,
. real number, or text string.
End of Creating Table Data —
Column Comment | This is a comment for the column.
INFO You can select one of the following table types when you create table data.
% * Array type: Specifies a table where all columns have the same attributes.

* Record type: Specifies a table where each column has a different attribute.

You can select one of the following table data storage locations.

* Normal: Refer to 2.1.2 Machine Controller Program Specifications for the maximum program size. The maximum size per
table is 5 MB.

* Battery backup: Refer to 2.1.2 Machine Controller Program Specifications for the maximum size of table data that can be
backed up with the battery. The maximum size per table is 3 MB.

4-21

4.5 Table Data
4.5.2 Creating Table Data

B Procedure to Create Table Data

1. Select File - Open — Define Data Table — Data Table Map in the Module Configuration Definitions
Window. The Table Data Store Target Dialog Box will be displayed.

2. Select File — Create New from the menu bar. The Table Definition Dialog Box will be displayed. Set the

table definition information and click the OK Button.

Table Definition X

Table Mame TEL

Table Type Record Type -

Colurnn

3
Lines 100

Table Comrnent |>< ' pogition data

Table data store target Mormal -
QF. | Cancel

3. The Data Table Column Attribute Dialog Box will be displayed. Set the table data column attributes,
and then save them.

+ If the table is set to an array-type table, set only one row of column attributes.

M Data table column attribute 2310SMPL_E MP2310 Offline Local

PT#:— CPU#:— |
Table Mame [TEL Table Type [Record Type Colurnn 00003 Linez (00100
T able data store target Normal Table Comment Y position data
Mn_ | Column Mame Data Size l Dizplay Twpe Column Comment
1 POS MO Integer = {002 DEC > |DATA Mo
2 ¥ _DATA LOMG = |004 DEC > |# POSITION
3 v _DATA LOMG ~ | 004 DEC « |V POSITION

The Table Data Store Target Dialog Box that was displayed in step 1 will show the table that you created.
This concludes the creation of the data table.

INF O When a table is created, the contents are initialized to 0.
% Select the table that was created in the Table Data Store Target Dialog Box, and click the Table Data Button to read or write
table data.

Use the table instructions to perform operations on the table data from a ladder program.

4-22

4.6 Transferring Data

4.6 Transferring Data

You can perform one of the four operations that are shown in the following figure to transfer data.

Hard disk in PC

MPE720 version 6
(MData can be written to

the Machine Controller.

Project }

(®Data can be read from
and written to projects. &

(@Data can be read from
the Machine Controller.

Project

MP2000-series
Machine Controller

RAM

4) /

Data can be saved
to flash memory.

Flash memory

- J

@ Writing Data to a Machine Controller

You can transfer the project data that was created offline to RAM in the Machine Controller.

@ Reading Data from the Machine Controller.

You can transfer data from the Machine Controller to a project on the hard disk of the PC.

@ Reading Data from and Writing Data to Proje

You can transfer data between projects on the hard disk of the PC.

@ Saving Data to Flash Memory

You can transfer the data in RAM in the Machine Controller to flas

cts

h memory.

memory.

IMPORTANT Always save the data to flash memory after you transfer it to the MP2000-series Machine Controller.
Failure to save the data to flash memory will result in losing the data that was transferred when the power is
turned OFF and ON again, causing the Machine Controller to run on the data that was last saved in the flash

Programming

4-23

4-24

4.7 Setting the High-speed/Low-speed Scan Times

4.7 Setting the High-speed/Low-speed Scan Times

(1) What Are the Scan Times?

With an MP2000-series Machine Controller, both the high-speed scan and low-speed scan can be set. The high-speed
scan time is the cycle at which high-speed drawings are executed. The low-speed scan time is the cycle at which low-
speed drawings are executed. The following table shows the possible set values and default values for each scan time.

Iltem Possible Set Values Default
High-speed Scan Time 0.5 to 32 ms (in 0.5-ms increments) 10.0 ms
Low-speed Scan Time 2.0 to 300.0 ms (in 0.5-ms increments) 200.0 ms

¢+ The possible set values and default values depend on the model. Refer to the user’'s manual for the Module you are
using for details.

Scan Time Set Value Precautions

Observe the following precautions when setting the high-speed scan time and low-speed scan time.
* Set the scan set value so that it is 1.25 times greater than the maximum value.

+ If the scan set value is too close to the maximum value, the refresh rate of the MPE720 window will noticeably
drop and can cause communications timeout errors to occur. If the maximum value exceeds the scan set
value, a watchdog error may occur and cause the Machine Controller system to shut down.

* If you are using MECHATROLINK-II or MECHATROLINK-III, set values that are an integral multiple of the
communications cycle. If you change the communications cycle, check the scan time set values.

* Do not change the scan set value while the Servo is ON. Never change the scan set values while an axis is in
motion (i.e., while the motor is rotating). Doing so may cause the motor to rotate out of control.

« After changing or setting the scan times, make sure to save the data to flash memory.

Checking and Setting the Scan Times

You can check the current and maximum values of the scan times and the set values of the scan times, and you can set
the scan times in the following dialog box of MPE720 Version 6.0.

Select File — Environment Setting — Setup — Scan Time Setting.

Environment Setting E]

[System
71 Security High-speed Scan
5 Setup SettingYalue |10.0 ms [0.5ms-32.0ms]

Syskem Setting

B - Time Setting Current Yalue .D.D ms 1] uzs
77 Ladder b wirmum Yalue | 0.0 ms 1] us
771 Mation
£ C language Low-zpeed Scan
7] variable Sefting Value | 200.0 iz [2.0me-300. 0ms)

[Menitor Current alue 0.0 ms
7] Transfer y T

.;_'.{] I awirnum alue 0.0 ms
{73 Print

7] Message

1] 1. The operation of the application which depends at the scan time changes
2 when change the setting value.
2. Pleaze do not zet zetting value smaller than current value. The watchdog
1700 DCCUTS.
3. when high-speed scan zetting value iz changed on the CPL with built-in
SWE, MECHATROLIME communication is reset and position data will be
reset a3 & result, Executing ZRET/AZ5ET command after changing setting iz
recommended to recover the position data.

()8] [Cancel

4.8 Advanced Programming

4.8 Advanced Programming
4.8.1 Motion Programs

4.8.1 Motion Programs

A motion program is written in a text-based motion language. In addition to basic motion control and operations,
motion programs can also be used to easily program complex movements, such as linear interpolation and circular

interpolation.

You can execute motion programs either by placing MSEE instructions in ladder programming in high-speed drawings,

or by registering the motion programs in the Program Definition Tab Page for the M-EXECUTOR.

MP2000-series Machine Controller

Ladder Programs

Motion Programs

e MSEE Instruction A
D . MSEE) Called
= Bt [W]Program Mo, 00001
_L-j onoo|
DA [A)Data WMADD100
o WMADDIOD
Hi 1 .02
M-EXECUTOR

Program Definition

& e Ot L

— Called

Yy VY

You can call motion programs
without a ladder program.

You can call up
to 16 programs
at the same time.

You can create up
to 256 programs.

Motion parameters

SVR

h

Built-in
SVB

SVB-01

v

i

SVA-01

For details on motion programs, refer to the Machine Controller MP2000 Series User s Manual for Motion Program-

ming (Manual No.: SIEP C880700 38).

PO-01

Programming

4-25

4-26

4.8 Advanced Programming

4.8.2 C-language Programs

4.8.2 C-language Programs

You can use the MP2000-series Machine Controller Embedded C-language Programming Package to use C-language
functions and C-language tasks in addition to ladder programs and motion programs.

You can call C-language functions and start and stop C-language tasks from the ladder programs.

The following configuration is for using C-language programming.

Ladder language Motion language
B VEL X200 [Y]2000;
—f ACC [X]100 [Y]100
| DCC [X]100 [Y]100:
s MOV DD [YED;
MV'S [X]100.0 [Y[200 0 F30000;

External signal

= HD1.01

HD1.02

e

[Rpp————— pp— Table data - Registers -
Function called. Can be accessed
Can be accessed from
from ladder-language,
MP2000 ladder-language motion-language,
|Task started and stopped.| or C-language or C-language
programming. programming.
C-language
function -
Function called. Global variables
/ Can be accessed only from
C-language programming.
= Q—-"‘

User-defined
C-language task A == e

| Task started and stopped.
Ld

*

-

User-defined -
C-language task B *

1A | Local task made dormant.
I s

= I“-.--.-r"

1

Automatically started
at start of H or L scan.

For details on C-language programming, refer to the Machine Controller MP2000 Series Embedded C-Language Pro-
gramming Package Development Guide (Manual No.: SIEP C880700 25).

4.8 Advanced Programming

4.8.3 Security

4.8.3 Security

MPE720 version 6 has the following security features. You can use these security features for data protection by speci-
fying access privileges for individual projects and program drawings.

B User Administration (User Name and Password Setting)

You can register and change the name of the users who can open projects.
If the setting is performed while the Machine Controller is online, the setting will provide access privileges to the
Machine Controller.

B Project Password Setting

You can set a password for opening a project file.

B Program Password Setting

You can set a password for opening ladder programs and motion programs. A password can be set for each program.

B Online Security Setting

You can set a security key (i.e., a password) and privilege levels for reading data from a Machine Controller. This
allows you to restrict the ability to read the program data from the Machine Controller or the ability to open the pro-
grams to users who have the specified level of privilege or a higher privilege.

Refer to the Engineering Tool for MP2000 Series Machine Controller MPE720 Version 6 User s Manual (SIEP
C880700 30) for detailed setting procedures for security.

Programming

4-27

4-28

4.8 Advanced Programming
4.8.4 Tracing

4.8.4 Tracing
MPE720 version 6 has three trace modes.

B Realtime Tracing

You can monitor specified registers on a graph in real time.

B Data Tracing

You can have the Machine Controller collect data for specified registers during a specified time period, and perform
operations on that data and plot it on a graph.
This allows you to analyze register data that is acquired during specific time periods to debug ladder programs.

B XY Tracing

This trace mode acquires the position data of the X axis and Y axis every scan, and displays the data in a 2-dimensional
graph.

All three modes support exporting the trace data to CSV files.
Use tracing to check operation and to debug the ladder programs and motion programs.

Data Tracing Display Example

Start -~ Scope : Scopel ¥ X
Scopelb Start ” |View|ﬂ Snap | Manitar data Mo, 100 v | setting WTriager.. Type Eﬁi@
v I = o] (] (AT CEICA 12 ./
Auto b Auto ¥
25000 25000
20000 20000
15000 15000
10000 10000
5000 i 5000
1] a
5000 5000
1000 10000
15000 -15000
-20000 -20000
-25000 -25000
-30000 -30000
E50.0 7oo.o 7a0.0
< > |[ms] v g
]) i
S GrerlTelTmn ST s 0 o |]
Select | Digp | Color | Marisble | Program Comment | " axig zcale 0.00 | 10.00 | 20,00
bd:1 ¥ Sw/0001 5 Calendar; Seconds Auta hd %] %] B9
1 | i
£ 3>

Refer to the Engineering Tool for MP2000 Series Machine Controller MPE720 Version 6 Users Manual (SIEP
C880700 30) for detailed setting procedures for tracing.

5

Instructions
This chapter describes the ladder programming instructions in detail.

5.1 How to Read the Instructions - - - - == - === -cc-mmmm e e oo 5-4
5.2 Relay Circuit Instructions = - = === == == = m s e m e e 5-5
52 1NOContact (NOC) === ----mmmmm oo e e e oo 5-5
522NC Contact (NCC) === === - s e s e oo e e oo 5-6
5.2.3 10-ms ON-Delay Timer (TON[10mMS]) -----------mmmm e e e e e 5-7
5.2.4 10-ms OFF-Delay Timer (TOFF[10mMS]) = - === --==--=cc-mmmmmmmmmm e e oo - - 5-9
5.2.5 1-s ON-Delay Timer (TON[1S]) == == == == mm oo e e e oo - 5-11
5.2.6 1-s OFF-Delay Timer (TOFF[1S]) ---------mmmm i e e e oo - 5-13
5.2.7 Rising-edge Pulses (ON-PLS) -------ommmm i e e oo - 5-15
5.2.8 Falling-edge Pulses (OFF-PLS) -------mmmm oo e e e e e oo - 5-17
5,29 C0il (COIL) ==--mmmm s e e e e oo 5-19
5210 Set Coil (S-COIL) = ------m s s s e e e 5-20
5.2.11 Reset Coil (R-COIL) == == === m s e e oo e oo - 5-21
5.3 Numeric Operation Instructions - --------=----c-cmmma 5-22
5.3.1Store (STORE) ------mmm s m s s e e e e e e e e 5-22
5.3.2 Add (ADD (+)) == === == m e mm e e e e e oo oo 5-24
5.3.3 Extended Add (ADDX (+4)) == === - - - mm oo s m e e oo oo 5-26
5.3.4 Subtract (SUB (=) == == === - = s s s e o e e e e 5-28
5.3.5 Extended Subtract (SUBX (——)) == --=- - == oo e e 5-30
5.3.6 Multiply (MUL (X)) === === - s s s m e e e e e e e e e oo 5-32
5.3.7Divide (DIV () === === == o oo e e e e e e e o oo 5-34
5.3.8 Integer Remainder (MOD) ------- - - cmmmm e e e m e e oo 5-36
5.3.9 Real Remainder (REM) = - - === o mmm e e e e e e e m e oo - 5-38
5.3.10Increment (INC) = - == = = - = m s s e e o e e e 5-40
5.3.11 Decrement (DEC) - ----- - -mmmm o m e e e e 5-42
5.3.12 Add Time (TMADD) - - - - - - - - - s e o e e oo oo oo oo 5-44
5.3.13 Subtract Time (TMSUB) - - == == = - - o e e e e e - - 5-46
5.3.14 Spend Time (SPEND) - - - - - - - o s m o m e e e e e e e - 5-48
5.3.15 1 Invert Sign (INV) === - - - mm o m e e e e e e 5-51
5.3.16 One’s Complement (COM) - - - - - - - m oo o m oo e 5-52
5.3.17 Absolute Value (ABS) - - = = - = = - - o mm oo e e e 5-53
5.3.18 Binary Conversion (BIN) === === = = oo cm e e 5-54
5.3.19 BCD Conversion (BCD) - ------- - o m i e e e 5-55
5.3.20 Parity Conversion (PARITY) === - - - cm o m e e e - - 5-56
5.3.21 ASCII Conversion 1 (ASCIl) === ---c - m s m e e e o - 5-57
5.3.22 ASCII Conversion 2 (BINASC) = -------mmmmmm e e e e e e e o - 5-59

5.3.23 ASCII Conversion 3 (ASCBIN) - - - - - - m o e - 5-61

Instructions

5.4 Logic Operations and Comparison Instructions - ------------------ 5-63

5.4.1 Inclusive AND (AND) === == m oo m o e e e e e e e 5-63
5.4.2 Inclusive OR (OR) === == == m s o m o e e e e e e e e m e 5-65
5.4.3 Exclusive OR (XOR) === = == c s oo m e e e e e e e e e e 5-67
5.4.4 Less Than (<) === - - m s mmm i s o m o e e e e 5-69
5.45Less ThanorEqual () == === - - mmm o m e 5-70
546 EQUAl (5) === - - mm i m i m e e e e e e e 5-71
547 NotEqual (#) --=---= s m e e e e e 5-72
5.4.8 Greater ThanorEqual (2) === --=---mmmmmm i e o - 5-73
5.4.9 Greater Than () = - === === s m s s e o e e e e e e 5-74
5.4.10 Range Check (RCHK) = === = = = c s m e e e e e e e e e e - 5-75
5.5 Program Control Instructions - - - === === - cmmmm e e e o 5-77
5.5.1 Call Sequence Program (SEE) - - - - - === - - - - oo m o e e 5-77
5.5.2 Call Motion Program (MSEE) - - - - - - - == - o m oo e e 5-78
5.5.3 Call User Function (FUNC) - --------mm oo e oo 5-80
5.5.4 Direct Input String (INS) - --------mmm e 5-81
5.5.5 Direct Output String (OUTS) - ------- oo i e e oo - 5-84
5.5.6 Call Extended Program (XCALL) ----------cmmmm e oo 5-87
5.5.7 WHILE Construct (WHILE, END_WHILE) --------------ccommmeee oo - 5-88
5.5.8 FOR Construct (FOR, END_FOR) - -----ccmmmmm e e e e - 5-91
5.5.91F Construct (IF, END_IF) - -----ccommmmm oo 5-93
5.5.10 IF-ELSE Construct (IF, ELSE, END _IF) - - === -c-cmmmmmmi e oo oo - 5-95
5.5.11 Expression (EXPRESSION) = - = = - = c oo o e e e e e e e - 5-97
5.6 Basic Function Instructions - ---------------mm oo 5-99
5.6.1 Square Root (SQRT) == = === = == m s oot e o e e e e - 5-99
5.6.2SIN€ (SIN) = - - - oo s e s m o oo 5-101
5.6.3C0SINE (COS) === mmmmm o m oo e e e e i e o 5-103
5.6.4 Tangent (TAN) = - - == c s o mm s oo e e e e e i 5-105
5.6.5 Arc Sine (ASIN) == == s o m e m e e e e 5-106
5.6.6 Arc Cosine (ACOS) - - = = = == s - o m o e e e e 5-107
5.6.7 Arc Tangent (ATAN) = - - == - @ o e e e e e e e e e 5-108
5.6.8 Exponential (EXP) === == - s cmm o e e e e 5-109
5.6.9 Natural Logarithm (LN) == === == s m e o e e e e e e - 5-110
5.6.10 Common Logarithm (LOG) - -==- === - cmm e e e e e - 5-111
5.7 Data Shift Instructions - - ---------mmmm e 5-112
5.7.1 Bit Rotate Left (ROTL) = - - === === mm s oo e e e e oo 5-112
5.7.2 Bit Rotate Right (ROTR) - --- === - mm e e e 5-114
5.7.3 Move Bit (MOVB) - - - - - - oo m e o oo 5-116
5.7.4 Move Word (MOVW) = - - - - - - oo oo e oo e oo 5-118
575 Exchange (XCHG) --------mmmmmmm oo e 5-120
5.7.6 Table Initialization (SETW) - - = - = = == m o s m e e e e e - 5-122
5.7.7 Byte-to-word Expansion (BEXTD) -------mmmmmm e e e e o 5-124
5.7.8 Word-to-byte Compression (BPRESS) -------------mmmmmm e 5-126
5.7.9 Binary Search (BSRCH) -----------mmmim oo 5-128
5.7.10 Sort (SORT) = - == m s s mm oo e e e e e e 5-130
5.7.11 Bit Shift Left (SHFTL) - -------ccm o e e 5-132
5.7.12 Bit Shift Right (SHFTR) = ------ccc s o e e e 5-134
5.7.13 Copy Word (COPYW) - - - - o cm e m oo e e e 5-136
5.7.14 Byte Swap (BSWAP) - - - - - - oo e e mm oo e 5-138
5.8 DDC Instructions - ----------------- oo 5-139
5.8.1Dead Zone A (DZA) - - - - - - mmm o e e e e e e o 5-139
5.82Dead Zone B (DZB) --------mm o e e e e e a o 5-141
5.8.3 Upper/Lower Limit (LIMIT) - == === s - e e e e e e e e e e o 5-143
5.8.4PlIControl (Pl) =------ oo mmmmme e e 5-145
5.85PD Control (PD) =-=--------c-mmmm oo 5-150

5.8.6 PID CONtrol (PID) - = - = = = = == = = = == = x o m e e e e e 5-156

5.8.7 First-order Lag (LAG) = - === - == - - s oo oo e o e e 5-161

5.8.8 Phase Lead Lag (LLAG) ----------------“---““--oo oo 5-164
5.8.9 Function Generator (FGN) -------------------mm oo 5-167
5.8.10 Inverse Function Generator (IFGN) - ----------- oo 5-172
5.8.11 Linear Accelerator/Decelerator 1 (LAU) - --------cmommmmmm e e oo 5-177
5.8.12 Linear Accelerator/Decelerator 2 (SLAU) - - - == - === - o m o m e e e - 5-184
5.8.13 Pulse Width Modulation (PWM) - = - = = = = = o cm e e e e e e 5-194
5.9 Table Manipulation Instructions -----=---=---cc-cmao 5-197
5.9.1 Read Table Block (TBLBR) == = = = - - = = = o oo e m e e e 5-197
5.9.2 Write Table Block (TBLBW) === - - - oo m o i e e oo 5-200
5.9.3 Search for Table Row (TBLSRL) = - === === m s e e e e o - 5-203
5.9.4 Search for Table Column (TBLSRC) === === -cmmmmmm i e e - 5-206
5.9.5 Clear Table Block (TBLCL) == ---------mmmmm oo e - 5-209
5.9.6 Move Table Block (TBLMV) === - - oo oo e e e 5-212
5.9.7 Read Queue Table (QTBLR and QTBLRI) === === cmmm o m e ie e - 5-215
5.9.8 Write Queue Table (QTBLW and QTBLWI) = = = = == == = s e s e e e e e - 5-219
5.9.9 Clear Queue Table Pointers (QTBLCL) - ---- === mmmmmmmm e e o - 5-223
5.10 System Function Instructions - ----=--=-ccmommmmm e 5-225
5.10.1 Counter (COUNTER) -------------mmmmm e 5-225
5.10.2 First-in First-out (FINFOUT) - -------mmmmmm e e oo 5-228
510.3Trace (TRACE) ----------mmmmmm e e e oo - 5-232
5.10.4 Read Data Trace (DTRC-RD) - - -------- - o oo - 5-234
5.10.5 Read Inverter Trace (ITRC-RD) ------------------oommmm oo - 5-238
5.10.6 Send Message (MSG-SND) --------------oommmmmm oo 5-241
5.10.7 Receive Message (MSG-RCV) ---------mmmmmmmmm e oo oo - 5-253
5.10.8 Write Inverter Parameter (ICNS-WR) - - - = - = = = oo e o m e e e o o 5-261
5.10.9 Read Inverter Parameter (ICNS-RD) - - - - - - - - cmmmmmm e e e e e o 5-266
5.10.10 Write SERVOPACK Parameter (MLNK-SVW) - = - = = = = = o e e o m e e oo - 5-270
5.10.11 Write Motion Register MOTREG-W) - - - - - - - o i e m e e e e e e - 5-275
5.10.12 Read Motion Register MOTREG-R) - --------cmmmmmm e e e oo 5-278
5.11 C-language Control Instructions ---------------------------- 5-281
5.11.1 Call C-language Function (C-FUNC) == - === - ccmmmmmm e e e e - 5-281
5.11.2 C-language Task Control (TSK-CTRL) = === === mmmm e ee e e - 5-283

Instructions

5-3

5.1 How to Read the Instructions

5.1 How to Read the Instructions

This chapter describes each instruction using the following format.

(1) Operation

The operation performed by the instruction is described.
Figures are used to show the operation performed by the instruction.

(2) Format

Icon:

Shows the icon used in the MPE720.

This area shows how the instruction
appears in a ladder program. Key entry:

Shows the shortcut key combination
used in the Ladder Editor.

Applicable Data Types
Parameter Name

B W L F A Index Constant

The name of the parameter
that appears in the ladder X O O O X @] O
programs is given.

x: This data type cannot be used.
O: All registers with this data type can be used.

(3) Programming Example

This section gives a ladder programming example that uses the instruction.

(4) Additional Information

This section contains additional information about the instruction. It is omitted if there is no additional information that
is required for the instruction.

5.2 Relay Circuit Instructions
5.2.1 NO Contact (NOC)

5.2 Relay Circuit Instructions
5.2.1 NO Contact (NOC)

(1) Operation

The NOC instruction outputs ON whenever the bit with the specified relay address is 1 (ON).
The NOC instruction outputs OFF when the bit is 0 (OFF).

o N E B
)

1(
0 (OFF

o I I I
Output of the NOC instruction opf

Relay address Bit

(2) Format

lcon: '"'

Relay address

Il

MEODOOOD

| | Key entry:][

Applicable Data Types
B w L F A Index Constant

Parameter Name

Relay address O

X

X X X X

(3) Programming Example

The DB000001 output coil is ON whenever the DB000000 relay in the NOC instruction is ON.

DEO00O00 CE000007
|
i

Instructions

5.2 Relay Circuit Instructions

5.2.2 NC Contact (NCC)

5.2.2 NC Contact (NCC)
(1) Operation

The NCC instruction outputs OFF whenever the bit with the specified relay address is 1 (ON).
The NCC instruction outputs ON when the bit is 0 (OFF).

Lo L
Relay address Bit

0 (OFF)
o I
Output of the NCC instruction OFF I—I
(2) Format
Icon: -I/I-

Relay address

!

MEOOOOOD

—

Key entry: |/

Applicable Data Types
Parameter Name

B W L F A Index Constant

X

X X X X

Relay address O

(3) Programming Example

The DB000001 coil is ON whenever the DB000000 relay in the NCC instruction is OFF.

DE000000 B =
1
/1

5.2 Relay Circuit Instructions

5.2.3 10-ms ON-Delay Timer (TON[10ms])

5.2.3 10-ms ON-Delay Timer (TON[10ms])

(1) Operation
The timer counts the time whenever the timer bit input is 1 (ON). The bit output is set to 1 (ON) when the count value

equals the set value.
If the bit input changes to 0 (OFF) during counting, the timer will stop counting. If the bit input changes to 1 (ON)

again, the timer starts counting again from the beginning (i.e., from 0). The actual counted time (in units of 10 ms) is

stored in the Count register.

N

i Bit input — Timer — Bit output i
The set value and count value are in units of 10 ms.
Set value
Count value
0 »
Bitinput | (ON)
0 (OFF)
1 (ON
Bit output 0 §OFI):)

¢+ The counting error is 10 ms or less.

(2) Format
Icon: T'i}ﬂN
— TON[10ms] &=
[A]=et MWOD000 e———j Set value
Y] Caunt CAAO0000
T— Count value Key entry: [ON
Applicable Data Types
Parameter Name
B w L F Index Constant

Set value (Set) O X X X O
Count value (Count) X o* X X X X X

* C and # registers cannot be used.

Instructions

5-7

5.2 Relay Circuit Instructions
5.2.3 10-ms ON-Delay Timer (TON[10ms])

(3) Programming Example
In the following programming example, the set value of the TON instruction is 50, and the count value is stored in the

DWO00001 register.
The DB000001 coil will turn ON after the DB000000 relay stays ON for 500 ms.

DEOOOIOO DEoaoa01

- o)

[W]3et 0OOEO
£0

[W]Count DWOOOO1
50

The timing chart is shown below.

DB000000 ON
OFF
ON

DB000001 pr

50

DWO00001 0 ——

500 ms - Ts

(Ts: Scan time set value)

Y -
v

5-8

5.2 Relay Circuit Instructions

5.2.4 10-ms OFF-Delay Timer (TOFF[10ms])

(1) Operation

5.2.4 10-ms OFF-Delay Timer (TOFF[10ms])

The timer counts the time whenever the timer bit input is 0 (OFF). The bit output is set to 0 (OFF) when the count value

equals the set value.

If the bit input changes to 0 (OFF) during counting, the timer will stop counting. If the bit input changes to 1 (ON)
again, the timer starts counting again from the beginning (i.e., from 0). The actual counted time (in units of 10 ms) is

stored in the Count register.

Bit input — Timer — Bit output
The set value and count value are in units of 10 ms.
Set value
Count value
0 >
Bitinput | (ON)
0 (OFF)
. 1(ON)
Bit output 0 (OFF)
¢ The counting error is 10 ms or less.
(2) Format
Icon: T-CI)EF
—{_ TOFF[10ms] & F
[W]Set MAWOD00D —— Setvalue
[W]Count DWW0DOOD
;‘ Count value Key entry: [OFF

Applicable Data Types
Parameter Name
w F Index Constant
Set value (Set) @) X X O
Count value (Count) Oo* X X X X

* C and # registers cannot be used.

Instructions

5-9

5.2 Relay Circuit Instructions
5.2.4 10-ms OFF-Delay Timer (TOFF[10ms])

(3) Programming Example
In the following programming example, the set value of the TOFF instruction is 50, and the count value is stored in the

DWO00001 register.
The DB000001 coil will turn OFF after the DB000000 relay stays OFF for 500 ms.

DE000000 DE000001
| (TOFF[10ms] 2} .
[W]Set 00050
50
[WI]Count DWOOOD 1
50

The timing chart is shown below.

DB000000ON
OFF

ON
DB000001 g

50

DwWO00001 O
500 ms - Ts

(Ts: Scan time set value)

5-10

5.2 Relay Circuit Instructions

5.2.5 1-s ON-Delay Timer (TON[1s])

(1) Operation

5.2.5 1-s ON-Delay Timer (TON[1s])

The timer counts the time whenever the timer bit input is 1 (ON). The bit output is set to 1 (ON) when the count value

equals the set value.

If the bit input changes to 0 (OFF) during counting, the timer will stop counting. If the bit input changes to 1 (ON)
again, the timer starts counting again from the beginning (i.e., from 0). The actual counted time (in units of 1 s) is

stored in the Count register.

The set value and count value are in units of 1 s.

Count value

A4

I

Bit input — Timer — Bit output
Set value
0
Bitinput | (ON)
0 (OFF)
1 (ON
Bit output 0 EOFI)z)

I

¢ The counting error is 1 s or less.

(2) Format

—___ TON(1s] T

[W]Set

KA O0000 ¢——

]Count DWODOODO

| E—

. TOM
Icon: 1s
Set value
Count value Key entry: [SON

Applicable Data Types
Parameter Name
w F A Index Constant
Set value (Set) O X X X O
Count value (Count) X o* X X X X

* C and # registers cannot be used.

Instructions

5-11

5.2 Relay Circuit Instructions
5.2.5 1-s ON-Delay Timer (TON[1s])

(3) Programming Example
In the following programming example, the set value of the TON instruction is 5, and the count value is stored in the

DWO00001 register.
The DB000001 coil will turn ON after the DB000000 relay stays ON for 5 s.

DEDODOOO DEO0oOm

——] |——(_Tons] =)

M/]Set 00005
5

[Vy]Count Chw/0000 1
5

The timing chart is shown below.

DB000000 ON
OFF
ON

DB000001 Jrp

Dw0ooo1 0 ——

5s-Ts

—
v _

(Ts: Scan time set value)

5-12

5.2 Relay Circuit Instructions

5.2.6 1-s OFF-Delay Timer (TOFF[1s])

(1) Operation

5.2.6 1-s OFF-Delay Timer (TOFF[1s])

The timer counts the time whenever the timer bit input is 0 (OFF). The bit output is set to 1 (ON) when the count value

equals the set value.

If the bit input changes to 0 (OFF) during counting, the timer will stop counting. If the bit input changes to 1 (ON)
again, the timer starts counting again from the beginning (i.e., from 0). The actual counted time (in units of 1 s) is

stored in the Count register.

Bit input — Timer — Bit output
The set value and count value are in units of 1 s.
Set value
Count value
0 >
Bitinput | (ON)
0 (OFF)
) 1(ON)
Bit output 0 (OFF)
¢ The counting error is 1 s or less.
(2) Format
TOFF
lcon: qg
—{__ TOFA1s]
WY]Set WMWOD000 &—— Set value
W] Court DW000D0
;‘ Count value Key entry: [SOFF

Applicable Data Types

Parameter Name

B w L F Index Constant
Set value (Set) O X X X O
Count value (Count) o* X X X X

* C and # registers cannot be used.

Instructions

5-13

5.2 Relay Circuit Instructions
5.2.6 1-s OFF-Delay Timer (TOFF[1s])

(3) Programming Example
In the following programming example, the set value of the TOFF instruction is 5, and the count value is stored in the

DWO00001 register.
The DB000001 coil will turn OFF after the DB000000 relay stays OFF for 5 s.

DE000000 DEO00001
N (TOFF[1s]) D
[A]Set 00005
5
[W]Count DWWOOOD1
5

The timing chart is shown below.

DB000000 ON
OFF

ON
DB000001 ep

DwWO00001 0
5s-Ts

(Ts: Scan time set value)

5-14

5.2 Relay Circuit Instructions

5.2.7 Rising-edge Pulses (ON-PLS)

(1) Operation

5.2.7 Rising-edge Pulses (ON-PLS)

The ON-PLS instruction sets the bit output to 1 (ON) for only one scan when the bit input changes from 0 (OFF) to 1
(ON). The previous value of the bit input is saved in the Previous Value Register of the ON-PLS instruction.

1 (ON)

0 (OFF) _—\—

Previous Value

(ON)

1
Register 0 (OFF) _—\—

1 (ON)
0 (OFF) _?I

1 scan

?I

1 scan

The following table shows the relationship between the bit input of the ON-PLS instruction, the Previous Value Regis-

ter, and the bit output.

Bit Input Previous Value Register ON-PLS Instruction Bit Output
0 (OFF) 0 (OFF) - 0 (OFF)
0 (OFF) 1 (ON) - 0 (OFF)

1 (ON) 0 (OFF) - 1 (ON)

1 (ON) 1 (ON) - 0 (OFF)

In the third row of the table, notice how the bit input changes from 0 (OFF) in the Previous Value Register to 1 (ON),
causing the ON-PLS instruction to set the bit output to 1 (ON).

(2) Format

Previous Value Register

i

DEOOOD00

+

Icon: §

Key entry:]P

Parameter Name

Applicable Data Types

B W

L F

A

Index Constant

Previous Value
Register

O* X

X X

X

X X

* C and # registers cannot be used.
The Previous Value Register holds the previous value of the bit input. Do not use other instructions to set the value

.

of this register.

Instructions

5-15

5.2 Relay Circuit Instructions

5.2.7 Rising-edge Pulses (ON-PLS)

(3) Programming Example

The DB000002 output coil turns ON for only one scan if the status of DB000001 changes when the DB000000 relay

changes from OFF to ON.
DEOD00 00 DEODDOOY DBO0000?Z ‘
L Ty
I 4- ! |

The timing chart is shown below.

DB000000 ON
OFF
ON

DB000001 OFF

<N
DB000002 kg T

1 scan 1 scan

5-16

5.2 Relay Circuit Instructions

5.2.8 Falling-edge Pulses (OFF-PLS)

(1) Operation

5.2.8 Falling-edge Pulses (OFF-PLS)

The OFF-PLS instruction sets the bit output to 1 (ON) for only one scan when the bit input changes from 1 (ON) to 0
(OFF). The previous value of the bit input is saved in the Previous Value Register of the OFF-PLS instruction.

Bit input

1 (ON)
0 (OFF)

Previous Value
Register

1 (ON)
0 (OFF)

Bit output

[N
[N

1 (ON)
0 (OFF) _?I

1 scan

?I

1 scan

The following table shows the relationship between the bit input of the OFF-PLS instruction, the Previous Value Reg-

ister, and the bit output.

Bit Input Previous Value Register OFF-PLS Instruction Bit Output
0 (OFF) 0 (OFF) - 0 (OFF)
0 (OFF) 1 (ON) - 1 (ON)

1 (ON) 0 (OFF) - 0 (OFF)

1 (ON) 1 (ON) - 0 (OFF)

In the second row of the table, notice how the bit input changes from 1 (ON) in the Previous Value Register to 0 (OFF),
causing the OFF-PLS instruction to set the bit output to 1 (ON).

(2) Format

Previous Value Register

!

Icon: %

DB000000 Key entry: |N
Applicable Data Types
Parameter Name
B W L F A Index Constant
Previous Value o=
Register x x x x X x

* C and # registers cannot be used.
The Previous Value Register holds the previous value of the bit input. Do not use other instructions to set the value

.

of this register.

Instructions

5-17

5.2 Relay Circuit Instructions

5.2.8 Falling-edge Pulses (OFF-PLS)

(3) Programming Example

The DB000002 output coil turns ON for only one scan if the status of DB000001 changes when the DB000000 relay
changes from ON to OFF.

CEOOODOO CEO00007 DBEO0ODOY
| | £
I i Ry

The timing chart is shown below.

DB000000 ON
OFF
ON

DB000001 OFF

BN
DB000002 pp 1

1 scan 1 scan

5-18

5.2 Relay Circuit Instructions

5.2.9 Coil (COIL)

5.2.9 Coil (COIL)

(1) Operation

The COIL instruction sets the value of the bit at the coil address to 1 (ON) whenever the bit input is 1 (ON). The value
of the bit at the coil address is set to 0 (OFF) whenever the bit input is 0 (OFF).

1 (ON)
Bit input

0 (OFF)
Coil address Bit value 1(ON)
0 (OFF)
(2) Format
Icon:
Coil address OI
DEOOOOON

—Q— Key entry: @

Applicable Data Types
B W L F A Index Constant
Coil address Oo*

Parameter Name

X
X

X X X X

* C and # registers cannot be used.

(3) Programming Example

The DB000000 coil turns ON when the DB000001 relay turns ON.

DBOO0O07 DENDOOOO

— |

If there are no instructions on the left side, the DB000000 coil is OFF because there is no input.

OEOODDOD

T
Ry

Instructions

5-19

5.2 Relay Circuit Instructions
5.2.10 Set Coil (S-COIL)

5.2.10 Set Coil (S-COIL)
(1) Operation

The S-COIL instruction sets the value of the bit at the coil address to 1 (ON) when the bit input is 1 (ON). The set coil
stays in the ON state.

Bit input 1(ON)

0 (OFF)
. . 1 (ON)
Coil address Bit value 0 (OFF)

(2) Format

Icon: '@

Coil address

i

DEOdoooo

: Key entry: @S

Applicable Data Types
Parameter Name

B W L F A Index Constant

Coil address O*

X
X

X X X X

* C and # registers cannot be used.
(3) Programming Example
The DB000001 set coil stays in the ON state when the DB000000 relay turns ON.

DEO000O0 DEOOOOO1
L
| =

The timing chart is shown below.

DB000000 ON j—l—‘
OFF
ON

DB000001 -

5-20

5.2 Relay Circuit Instructions

5.2.11 Reset Coil (R-COIL)

5.2.11 Reset Coil (R-COIL)

(1) Operation

The R-COIL instruction sets the bit at the reset coil address to 1 (ON) when the bit input is 1 (ON). The set coil is
changed to OFF.

Bit input 1(ON)
0 (OFF)
: . 1 (ON)
Coil address
Bit value 0 (OFF)

(2) Format

Coil eidress lcon: @

MEOOOO00

—®— Key entry: @R

Applicable Data Types

Parameter Name
B W L F A Index Constant

Coil address O*

X
X

X X X X

* C and # registers cannot be used.

(3) Programming Example

In the following programming example, the reset coil is used to turn OFF the set coil that was turned ON in the first
line.

The DB000001 reset coil in the second line turns ON if the DB000002 relay turns ON while the DB000001 set coil is
ON, therefore turning OFF the DB000001 set coil.

CEO00000 DEOODOO

—— | O—

CBO0D0D DEOODOO

|
The timing chart is shown below.

ON
DB000000 OFE
ON
DB000002 ofFf

ON
DB000001 pp

Instructions

5-21

5.3 Numeric Operation Instructions

5.3.1 Store (STORE)

5.3 Numeric Operation Instructions
5.3.1 Store (STORE)
(1) Operation

The input data is stored in the output register.

Input data e Output register

(2) Format

—(STORE =, =

WLF Jsre MWO00000 WLF Dest MWOOOD1

1 1

Key entry: ;
Input data Output register
Applicable Data Types
Parameter Name

B w L F A Index Constant
Input data (Src) e) e} @) @) e}
Output register
(Dest) X O O O @] (@) X

* C and # registers cannot be used.

5-22

5.3 Numeric Operation Instructions

5.3.1 Store (STORE)

(3) Programming Examples

In the following programming examples, the input data is stored in the output register.
* Storing the Input Data, an Integer Value of 12345, in the MW00000 Output Register

(STORE -
WLF]Src 1245 [WLF]Dest MwO0D0D
12345 12345

* Storing the Input Data, a Real Value of 123.45, in the MW00000 Output Register

(STORE A

.
M/LFSrc 1.234500E+002 [WLF]Dest MWOODOO
1.2345 D0E+002 123

* Storing the Double-length Integer 89ABCDEF Hex in the MW00000 Output Register
The lower word of the double-length integer —12,817 (CDEF hex) is stored in MW00000.

(STORE f)
[WLF]Sre HEBABCDEF [WLFIDest MWOOODD
~1085220329 12817

* Storing the Input Data, an Integer Value of 1234, in the MF00000 Output Register

(STORE =
[WLFSrc 01234 [W/LFDest MFODOOO v
1234 1.234000E+003 S
2
? Y\ihen performing operations with different data types, the result of the operation will depend on the data type of the output reg-
ister.

Refer to 4.4.2 (3) Precautions When Using Local Registers within a User Function for details.

5-23

5.3 Numeric Operation Instructions

5.3.2 Add (ADD (+))

5-24

5.3.2 Add (ADD (+))

(1) Operation

Input data A and input data B are added and the result is stored in the output data.
An operation error occurs if the result produces an overflow or underflow.

(2) Format

Input data A

Input data B

Output data

—{ ADD B
- [WLF [SrcA MWOO0DDO [WLF Dest WMWOOODZ lcon: s
(WMWLF]SreE MWWO0001 T
Input data B Output data
Key entry: +
Input data A
Applicable Data Types
Parameter Name
B w L F A Index Constant
Input data A (SrcA) X O O O X @] O
Input data B (SrcB) X O O O X @] O
Output data (Dest) X o* o* o* X @] X

* C and # registers cannot be used.

5.3 Numeric Operation Instructions

(3) Programming Examples

5.3.2 Add (ADD (+))

In the following programming examples, input data A and input data B are added and the result is stored in the output

data.

* Storing the Output Data in MWO00000 When Input Data A Is 100 and Input Data B Is 200

100 +200 — MW00000 = 300

o)

[ADD
[WLF]SrcA 00100 [LF]Dest MWODD00
100 300
[WLF]SrcE 00200
200

* Storing the Output Data in MWO00000 When Input Data A Is 10.5 and Input Data B Is 10
10.5+ 10 > MWO00000 = 20 (when truncating below the decimal point is set)

[ADD

=)

WLFBrcA 1.050000E+0071
1.05000CE +001
WLFEBrcB 00010
10

[WLFDest MwODOOO
20

* Storing the Output Data in ML0O0000 When Input Data A in MW00002 Is 20,000 and Input Data B in MW00003

Is 30,000

MW00002 (20,000) + MW00003 (30,000) — ML00000 = 32,767*

[

ADD

b

20000

20000

L.
MLF]SrcA MW00002Z [WLF]Dest MLODOOO

fMYLF]SrcE MyWOO0003

32767

* In the example given above, an overflow error occurs because both input data A and B are integers, which lim-

its the result to a number within the range for integers.

(4) Additional Information

N
(o]

With integer operations, an overflow operation error occurs if the result exceeds 32,767 and an underflow operation

error occurs if the result is less than -32,768.

With double-length integer operations, an overflow operation error occurs if the result exceeds 2,147,483,647 and an
underflow operation error occurs if the result is less than -2,147,483,648.

When performing operations with different data types, the result of the operation will depend on the data type of the output reg-

ister.

Referto 4.4.2 (3) Precautions When Using Local Registers within a User Function for details.
Normally, addition and subtraction instructions (+, —, ++, and — —) involving double-length integers are performed as 32-bit

operations.

However, these instructions are performed as 64-bit operations if they are used to correct the remainder produced by an immedi-
ately preceding MUL instruction (X) and are immediately followed by a DIV instruction (+).

Instructions

5-25

5.3 Numeric Operation Instructions

5.3.3 Extended Add (ADDX (++))

5.3.3 Extended Add (ADDX (++))
(1) Operation

Input data A and input data B are added and the result is stored in the output data.
Overflows are not treated as operation errors. Operation continues from the maximum value in the negative direction.
Underflows are not treated as operation errors. Operation continues from the maximum value in the positive direction.

Extended Add
Input data A - Input data B —> Output data

B Output Data Behavior

32,767 (7TFFF hex) 32,767
+1 +1
0
Output data (See notes.) §
v N
-32,768 (8000 hex) -32,768

+ In the example shown above, the output data is integer data. With double-length integers, adding 1 to
2,147,483,647 (TFFFFFFF hex) results in -2,147,483,648 (80000000 hex).
+ Unlike operations for the ADD, SUB, or EXPRESSION instructions, overflows and underflows do not occur.

(2) Format

—{ ADDX F)om
H[WWL]SrcA MWO00000 [WLIDest MWO0002 lcon: & e
WL]SrcE MWOODOO

1 i

Input data B Output data
Key entry: ++
Input data A
Applicable Data Types
Parameter Name
B w L F A Index Constant

Input data A (SrcA) X O O X X O O
Input data B (SrcB) X O O X X O @]
Output data (Dest) X o* o* X X O X

* C and # registers cannot be used.

5-26

5.3 Numeric Operation Instructions

(3) Programming Examples

'Ell
<
]
N/

5.3.3 Extended Add (ADDX (++))

In the following programming examples, input data A and input data B are extended-added and the result is stored in

the output data.

+ Storing the Output Data in MWO00000 When Input Data A Is 32,760 and Input Data B Is 10

32,760 ++ 10 - MWO00000 = -32,766

[
L.

ADDX =

MLSrcA 32760
32760

MLISrcB 00010
10

[/LDest MWODOOD
~32766

* Storing the Output Data in MLO0000 When Input Data A in MW00002 Is 20,000 and Input Data B in MW00003

is 30,000
20,000 ++ 30,000 — ML00000 = -15,536*

[
L

ADD

F=l)

20000

20000

[/L]SrcA MWOOD02 [WLJDest MLODOOO

M/LISrcE MWOD0O03

-15536

* |n the example given above, MLO000O does not equal 50,000 because both input data A and B are integers,

which limits the result to a number within the range for integers.

* Storing the Output Data in ML00000 When Input Data A Is 2,147,483,647 and Input Data B Is 2

2,147,483,647 ++ 2 — ML00000 = -241,783,647

ZF—

ML]SrcA 21474836847 [WLHDest MLOODOO

(ADD
2147483647
WL]SrcE 00002
2

-2147483647

* Storing the Output Data in MW00000 When Input Data A Is -32,768 and Input Data B Is -1

-32,768 ++ -1 - MW00000 = 32,767

[
L,

ADDH A

ML]Srca -32768
_32768

[L]SrcB -00001
-1

[/LDest MWODODOD
30767

When performing operations with different data types, the result of the operation will depend on the data type of the output reg-

ister.

Referto 4.4.2 (3) Precautions When Using Local Registers within a User Function for details.
Normally, addition and subtraction instructions (+, —, ++, and — —) involving double-length integers are performed as 32-bit

operations.

However, these instructions are performed as 64-bit operations if they are used to correct the remainder produced by an immedi-
ately preceding MUL instruction (X) and are immediately followed by a DIV instruction ().

Instructions

5-27

5.3 Numeric Operation Instructions

5.3.4 Subtract (SUB (-))

5.3.4 Subtract (SUB (-))

(1) Operation

Input data B is subtracted from input data A and the result is stored in the output data.
An operation error occurs if the result produces an overflow or underflow.

Input data A _ Input data B —> Output data

(2) Format

—{ SUB bl

S UNLF]S kA WMW00000 [WLF]Dest MWO0002

[WLF]SrB MWNO0001 oon: =
Input data B Output data
Key entry: -
Input data A
Applicable Data Types
Parameter Name

B w L F A Index Constant
Input data A (SrcA) X O @] @] X O O
Input data B (SrcB) X O @] @] X O O
Output data (Dest) X O* O* o= X O X

* C and # registers cannot be used.

(3) Programming Examples

In the following programming examples, input data B is subtracted from input data A and the result is stored in the out-
put data.
+ Storing the Output Data in MW00000 When Input Data A Is 100 and Input Data B Is 200
100 — 200 - MWO00000 = -100

(SUB A

[WLF]SreA 00100 [WLF]IDest MWODOOO0
100 -100
[WLF]SreB 00200
200

5-28

5.3 Numeric Operation Instructions

5.3.4 Subtract (SUB (-))

* Storing the Output Data in MWO00000 When Input Data A Is 10.5 and Input Data B Is 10
10.5 - 10 - MWO00000 = 0 (when truncating below the decimal point is set)

(SUB)
WLFBrcA 1.050000E+001 [WLF]Dest MwWODOODO
1.05000CE+001 0
MWLFErcE 00010
10

* Storing the Output Data in ML0O0000 When Input Data A in MW00002 Is -20,000 and Input Data B in
MW00003 Is 30,000
-20,000 — 30,000 — ML00000 = -32,768*

E 5UB =—
[WLF]SrcA MW00002 [WLF]Dest MLO0OOO
20000 _32768
[WLFISrcB MyW00003
30000

+ |n the example given above, an underflow error occurs because both input data A and B are integers, which
limits the result to a number within the range for integers.

(4) Additional Information

ﬁ
Z
o
N~

With integer operations, an overflow operation error occurs if the result exceeds 32,767 and an underflow operation
error occurs if the result is less than -32,768.

With double-length integer operations, an overflow operation error occurs if the result exceeds 2,147,483,647 and an
underflow operation error occurs if the result is less than -2,147,483,648.

When performing operations with different data types, the result of the operation will depend on the data type of the output reg-
ister.

Refer to 4.4.2 (3) Precautions When Using Local Registers within a User Function for details.

Normally, addition and subtraction instructions (+, —, ++, and — —) involving double-length integers are performed as 32-bit
operations.

However, these instructions are performed as 64-bit operations if they are used to correct the remainder produced by an immedi-
ately preceding MUL instruction (X) and are immediately followed by a DIV instruction (+).

Instructions

5-29

5-30

5.3 Numeric Operation Instructions

5.3.5 Extended Subtract (SUBX (- -))

5.3.5 Extended Subtract (SUBX (- -))

(1) Operation

Input data B is subtracted from input data A and the result is stored in the output data.

Overflows are not treated as operation errors. Operation continues from the maximum value in the negative direction.

Underflows are not treated as operation errors. Operation continues from the maximum value in the positive direction.

Extended Subtract

Input data A

B Output Data Behavior

Output data

e Input data B —> Output data
32,767 (7TFFF hex) 32,767
* *
1 1/
0 " {
-32,768 (8000 hex) -32,768

+ In the example shown above, the output data is integer data. With double-length integers, subtracting 1 from -
2,147,483,647 (80000000 hex) results in 2,147,483,647(7TFFFFFFF hex).
+ Unlike operations for the ADD, SUB, or EXPRESSION instructions, overflows and underflows do not occur.

(2) Format

_(

SIEX

Al

3

S[WLISrcA MWO0000 [WLDest MWOODOD2
[WLISreB MWO0001

-

Icon; s m=m

Input data B Output data
Key entry: - -
Input data A
Applicable Data Types
Parameter Name

B w L A Index Constant
Input data A (SrcA) X @] O X X @] O
Input data B (SrcB) X @] O X X @] O
Output data (Dest) X o* o* X X @] X

* C and # registers cannot be used.

5.3 Numeric Operation Instructions

(3) Programming Examples

5.3.5 Extended Subtract (SUBX (- -))

In the following programming examples, input data B is extended-subtracted from input data A and the result is stored

in the output data.

* Storing the Output Data in MWO00000 When Input Data A Is -32,760 and Input Data B Is 10

-32,768 —— 10 — MW00000 = 32,766

[SUBX A
MLlSrcA -32760 [WLDest MwWOOOOD
-32760 A27BR
MLISrcE 00010
10

+ Storing the Output Data in ML0O0000 When Input Data A in MW00002 Is -20,000 and Input Data B in

MW00003 Is 30,000

-20,000 — 30,000 — ML00000 = 15,536*

i SUBX o)
[AYLSrcd WMWO00002 [WWUDest mMLODOOD
20000 15536
[L)SrcE Myw0o003
30000

* |n the example given above, MLOO00O does not equal -50,000 because both input data A and B are integers,

which limits the result to a number within the range for integers.
* Storing the Output Data in ML0O0000 When Input Data A Is -2,147,483,648 and Input Data B Is 2
-2,147,483,648 ——2 — ML00000 = 241,783,646

* Storing the Output Data in MWO00000 When Input Data A Is 32,767 and Input Data B Is -1

32,767 —— -1 - MWO00000 = -32,768

(SUBX A
[ALISrcA -2147483648 [WLDest MLOOOOD
-2147483648 2147 483646
[ALSrcB 00002
2

o) oo
[WLDest MwOOOOO
_32768

[SUBK
LSrcA 32767

32767
WMyLSrcB -00001
.

ister.

When performing operations with different data types, the result of the operation will depend on the data type of the output reg-

Refer to 4.4.2 (3) Precautions When Using Local Registers within a User Function for details.
Normally, addition and subtraction instructions (+, —, ++, and — —) involving double-length integers are performed as 32-bit

operations.

However, these instructions are performed as 64-bit operations if they are used to correct the remainder produced by an immedi-
ately preceding MUL instruction (X) and are immediately followed by a DIV instruction (+).

Instructions

5-31

5.3 Numeric Operation Instructions

5.3.6 Multiply (MUL (x))

5.3.6 Multiply (MUL (x))
(1) Operation

Input data A and input data B are multiplied and the result is stored in the output data.

Input data A x Input data B —> Output data

(2) Format

— MUL) oy

o [WLFISrcA MWO00000 [WLFDest MwW00D02 con: I
MWWLF ISrcE MAWD000 T T
Input data B Output data
Key entry: *
Input data A
Applicable Data Types
Parameter Name

B w L F A Index Constant
Input data A (SrcA) X O O O X O O
Input data B (SrcB) X @] O O X O O
Output data (Dest) X o* o* o* X O X

* C and # registers cannot be used.

(3) Programming Examples
In the following programming examples, input data A and input data B are multiplied and the result is stored in the out-

put data.
* Storing the Output Data in MW00000 When Input Data A Is 100 and Input Data B Is 200

100 x 200 — MW00000 = 20,000

(MUL)
[WLFSrcd 00100 [MWLFDest M/O000C
100 20000

[WLFSrcB 00200
200

5-32

5.3 Numeric Operation Instructions

5.3.6 Multiply (MUL (x))

* Storing the Output Data in MLO0000 When Input Data A in MW00002 Is 200 and Input Data B in MW00003 Is
300
200 x 300 — ML00000 = 60,000

(ML)
MLF]SrcA MWOOD02 [WLF]Dest MLODOOO

200 BO000
MLFISrcB MW00003

300

* Storing the Output Data in MW00002 When Input Data A in ML0O00O0O Is -200 and Input Data B in MW00003 Is
300
-200 x 300 - MWO00002 = 5,536*

i ML 2
MLFISrcA MLODDOD [WLF]Dest WWDODD2
200 5536
[LFISrcE MyW00003
300

#* The input data contains a double-length integer, so this operation is performed as a double-length integer oper-
ation. However, the output data is integer data, so if the operation result exceeds the range for integers, the
lower 16-bits of the original operation result is stored in the output data.

When performing operations with different data types, the result of the operation will depend on the data type of the output reg-
ister.

Refer to 4.4.2 (3) Precautions When Using Local Registers within a User Function for details.

Normally, addition and subtraction instructions (+, —, ++, and — —) involving double-length integers are performed as 32-bit
operations.

However, these instructions are performed as 64-bit operations if they are used to correct the remainder produced by an immedi-
ately preceding MUL instruction (X) and are immediately followed by a DIV instruction (+).

Instructions

5-33

5.3 Numeric Operation Instructions

5.3.7 Divide (DIV (+))

5.3.7 Divide (DIV (+))
(1) Operation

Input data A is divided by input data B and the result is stored in the output data.

Input data A + Input data B —> Output data

(2) Format
DI bl
& WLFSrcA MWO000D WLFDest KWWOO00Z lcon: ==
(WMWLFJ=rcE MWOO0D01
t [
Input data B Output data
Key entry: /
Input data A
Applicable Data Types
Parameter Name

B w L F A Index Constant
Input data A (SrcA) X O @] O X O O
Input data B (SrcB) X O @] O X O O
Output data (Dest) X o* o= O* X O X

* C and # registers cannot be used.

5-34

5.3 Numeric Operation Instructions

(3) Programming Examples

ﬁ
z
]
N~

5.3.7 Divide (DIV (+))

In the following programming examples, input data A is divided by input data B and the result is stored in the output

data.

* Storing the Output Data in MWO00000 When Input Data A Is 200 and Input Data B Is 100

200 + 100 - MW00000 = 2

[oIy A
[WLF]SrcA 00200 [WWLF]Dest WyWOOOOO

200 2
WLF]SrcE 00100

100

* Storing the Output Data in ML00000 When Input Data A Is 200 and Input Data B Is 1,000

200 + 1,000 - ML00000 = 0

[Dl A
WMLF]Sred 00200 [WLF]Dest MLOODOD

200 0
WLF]SreB 01000

1000

* Storing the Output Data in MFO0000 When Input Data A Is 200 and Input Data B Is 1,000

200 + 1,000 - MF00000 = 0.2

(DIy f)|
[WLFISrcA 00200 [A/LFDest MFODOOD
200 2 0000 00E-001
[WLF]SrcE 01000
1000

When performing operations with different data types, the result of the operation will depend on the data type of the output reg-

ister.

Refer to 4.4.2 (3) Precautions When Using Local Registers within a User Function for details.
Normally, addition and subtraction instructions (+, —, ++, and — —) involving double-length integers are performed as 32-bit

operations.

However, these instructions are performed as 64-bit operations if they are used to correct the remainder produced by an immedi-
ately preceding MUL instruction (X) and are immediately followed by a DIV instruction (+).

Instructions

5-35

5.3 Numeric Operation Instructions

5.3.8 Integer Remainder (MOD)

5.3.8 Integer Remainder (MOD)
(1) Operation

The remainder of the immediately preceding integer or double-length integer division is stored in the output data. The
MOD instruction must be executed immediately after the DIV instruction. If the MOD instruction is executed at any
other time, the operation result obtained before the next numeric operation instruction will be invalid.

Division of an integer or double-length integer

Execute MOD instruction immediately after a division.———» Output data

(2) Format

(MOD ;D Icon: MOD

[WL]Dest MWOODOD

I

Key entry: MOD

Output data
Applicable Data Types
Parameter Name
w L F A Index Constant
Output data (Dest) X o* o* X X @] X

* C and # registers cannot be used.

5-36

5.3 Numeric Operation Instructions

5.3.8 Integer Remainder (MOD)

(3) Programming Examples

In the following programming examples, input data A is divided by input data B and the remainder is stored in the out-
put data.
* If the Immediately Preceding Division Is as Follows: 12,345 + 123 — MWO00000 = 100
And then the MOD instruction is executed immediately afterward — MWO00001 = 45.

(Dy)

MLF]Srch 12345 [MWLFDest MWODOOO
12345 100

MYLFISrcB 00123

123

(MOD E—
[ML]Dest MyOOOO 1
45

* If the Immediately Preceding Division Is as Follows: 123,456,789 + 12,345 — ML00000 = 10,000
And then the MOD instruction is executed immediately afterward — ML00002 = 6,789

i DIy o)

WLF]SrcA 0123486789 [WLF]Dest MLOODODO
123456789 10000

[WLFISrcE 12345

12345

(__ WMOoD =}

WL Dest MLOOODZ @
6783 S
2
®
£
N FO When performing operations with different data types, the result of the operation will depend on the data type of the output reg- u
% ister.

Refer to 4.4.2 (3) Precautions When Using Local Registers within a User Function for details.

5-37

5.3 Numeric Operation Instructions

5-38

5.3.9 Real Remainder (REM)

5.3.9 Real Remainder (REM)

(1) Operation

The remainder from a real number division is stored in the output data. Here, the remainder refers to the remainder

obtained by repeatedly subtracting the base value from the input data.
Specifically, the value obtained by subtracting the base value from the input data n number of times (input data - base

value X n) is output when it becomes less than the base value.

Input data

B Condition n

Base value

Output data

The output data is computed by using the first value of n that satisfies the following formula when the value of n is

incremented from 0, 1, 2, 3, etc.

(Input data — Base value X n) < Base value

(2) Format

_(

REM

- [Flzre MFOOOOOD [FDest MFOOOO4 loon: BEM
[FlBase MFO0002 T
Base value Output data
Key entry: REM
Input data
Applicable Data Types
Parameter Name
B w L F A Index Constant

Input data (Src) X X X @] X X O
Base (Base) X X X O X X O
Output data (Dest) X X X o* X O X

* C and # registers cannot be used.

5.3 Numeric Operation Instructions

5.3.9 Real Remainder (REM)

(3) Programming Examples

In the following programming examples, the base value is subtracted from the input data n times and the remainder is
stored in the output data.
« Storing the Output Data in MF00000 When the Input Data Is 5.0 and the Base Value Is 2.0
5.0-2.0-2.0=1.0 <Base (2.0) > MF00000 = 1.0

[REM A
FlSrc 5.00000CE+000 [F]Dest MFOOOOO

5 00000CE+000 1.000000E+000
FEase 2.000000E+000

2 000000 +000

+ Storing the Output Data in MFO0000 When the Input Data Is 3000.0 and the Base Value Is 3.0
3,000.0 -3.0-3.0... = 0.0 <Base (3.0) - MF00000 = 0.0

(REM)
FlSrc 200000CE+003 [F]Dest MFOOOOO

3.000000E +003 0.000000E+000
FBase 2.000000E+000

3.000000e +000

Instructions

5-39

5-40

5.3 Numeric Operation Instructions

5.3.10 Increment (INC)

5.3.10 Increment (INC)

(1) Operation

A value of 1 is added to the integer or double-length integer data. No overflow or underflow will occur for either an
integer or double-length integer. This operation handles overflows and underflows in the same way as the ADDX

instruction.

Data +1 —> Data
B Output Data Behavior
32,767 (7FFF hex) 32,767 .
+1 Lo
2 H
1
Data Q
> >
-32,768 (8000 hex) -32,768

+ In the example shown above, the data is an integer. With double-length integers, adding 1 to 2,147,483,647

(7TFFFFFFF hex) results in -2,147,483,648(80000000 hex).

(2) Format

— INC X}

ML]Dest WWOODOO

I

Icon: =1

Data Key entry: INC
Applicable Data Types
Parameter Name
w L F A Index Constant
Data (Dest) X o* o* X X O X

* C and # registers cannot be used.

5.3 Numeric Operation Instructions

(3) Programming Examples

5.3.10 Increment (INC)

The following programming examples achieve the same result by using the INC instruction and by using the ADDX

instruction.

The INC instruction is equivalent to adding 1 to the data 1,000 in MW00000 using the ADDX instruction.

i
.

[-
WLDest MyWOOOOO
1001
Equivalent
ADDX A

MWL]Srcs MwWODODOO [ALJDest MyWOODODOD

WL]SrcB 00001

1000 1001
1

Instructions

5-41

5-42

5.3 Numeric Operation Instructions

5.3.11 Decrement (DEC)

5.3.11 Decrement (DEC)
(1) Operation

A value of 1 is subtracted from the integer or double-length integer data. No overflow or underflow will occur for
either an integer or double-length integer. This operation handles overflows and underflows in the same way as the

SUBX instruction.

B Output Data Behavior

Data

Data -1 —> Data
32,767 (7TFFF hex) 32,767
* B
1 1
0 ']
-1
-2
-32,768 (8000 hex) -32,768

+ In the example shown above, the data is an integer. With double-length integers, subtracting 1 from

-2,147,483,648 (80000000 hex) results in 2,147,483,647(7FFFFFFF hex).

(2) Format

—{ DEC

-

[WMWL]Dest MWOODOD

I

lcon: =1

Key entry: DEC

Data
Applicable Data Types
Parameter Name
W L F A Index Constant
Data (Dest) O* o* X X (@) X

* C and # registers cannot be used.

5.3 Numeric Operation Instructions

5.3.11 Decrement (DEC)

(3) Programming Examples

The following programming examples achieve the same result by using the DEC instruction and by using the SUBX
instruction.
The DEC instruction is equivalent to subtracting 1 from the data 1,000 in MW00000 using the SUBX instruction.

(DEC =
ML Dest WMWODDON
559
Equivalent
(SUBK =—
[ALSred MWI0000 ML Dest WAD0000
1000 459
[WL]SrcE 00001
1

Instructions

5-43

5.3 Numeric Operation Instructions

5.3.12 Add Time (TMADD)

5-44

5.3.12 Add Time (TMADD)

(1) Operation

Time data A

Hour ‘ Minutes“ Seconds

Add time

Hours ‘Minutes‘ Seconds

Time data A

2 words

(2) Format

2 words

_(

ThADD

B

Hour ‘ Minutes‘ Seconds

2 words

A duration (hours/minutes/seconds) is added to a time (hour/minutes/seconds). The add time is added to time data A
and the result is stored in time data A. Time data is two words long.

[WW]Sre MWWOO0000 [(W]Dest MWOOD24e—— Icon: @
T [Bl[=ts] MEOOOOLD I
Add time Status
Key entry: TMADD
Time data A —
Applicable Data Types
Parameter Name
B w L F A Index Constant
Add time (Src) 0" X X X X X
Time data A (Dest) X 0" X X X X X
Status (Sts)"’ 0" x X X X x x

* 1. Optional.

x 2. C and # registers cannot be used.

The time data is formatted as shown below.

Offset

Contents

Data Range (BCD)

0

Hour/minutes

Upper byte (hour): 00 to 23

Lower byte (minutes): 00 to 59

1

Seconds

0000 to 0059

If the operation result exceeds any of the data ranges given above, time data A is not updated, the seconds data is set to
9,999, and the status bit is set to 1 (ON).
If the operation result is within the ranges, the status bit is set to 0 (OFF).

5.3 Numeric Operation Instructions

5.3.12 Add Time (TMADD)

(3) Programming Example

The following table gives typical conditions for creating ladder programming that uses the TMADD instruction. The

examples show time data A before instruction execution, and the add time.

Time Time Data A before Execution of Instruction Add Time
Hour/minute MWO00000 = 0210 hex MWO00002 = 0050 hex
ur/minutes
(2:10) (0 hours 50 minutes)
MWO00001 = 0050 hex MW00003 = 0020 hex
Seconds
(50 seconds) (20 seconds)

In the following programming example, the time data is added to the time under the above conditions and the resulting

time data is stored.

—[EXPRESSION E:}
i time data A (bhefore added)

WA 0000 O=0:210; 2 oclock 10 minutes;
528=5218

MW O000 1=0x0050: & 50 =econds;
g0=80

i added time data;
WA 0000 2=0x0050; 0 oclock 50 minutes;

80=80
MYODO0 3=0:=0020, & 20 seconds;
32=32
(TMADD =
[AISIe MWOODD2 [W]Dest MWOOOOD
[B][Sts] MBODOD40
0
— EXPRESSION fal),

i time data A (after added)

i 0000 0=k a0000; A hours minutes
TE9=7E69

WMAO000 1=kAa0001; & seconds;
16=16

The result of adding the add time to the value of time data A before instruction execution is shown below.

Time Time Data A after Execution of Instruction
Hour/minutes MW00000 =769 = 0301 hex
u u
(3:01)

MWO00001 = 16 = 0010 hex
(10 seconds)

Seconds

Instructions

5-45

5-46

5.3 Numeric Operation Instructions

5.3.13 Subtract Time (TMSUB)

5.3.13 Subtract Time (TMSUB)

(1) Operation

A duration (hours/minutes/seconds) is subtracted from a time (hour/minutes/seconds). The subtract time is subtracted
from time data A and the result is stored in time data A. Time data is two words long.

Time data A

Subtract time

Time data A

Hour ‘ Minutes“ Seconds

Hour ‘Minutes‘ Seconds

Hour ‘ Minutes‘ Seconds

2 words

(2) Format

2 words

_(

TMSLEB

=)

[W]Src MWO000D
T [BI[=ts]

[W]Dest MW00024 ¢——
MB000040

Subtract time

Status

Time data A —

2 words

Icon: @_

Key entry: TMSUB

Applicable Data Types

Parameter Name

B w L F A Index Constant
Subtract time (Src) 0" X X X X X
Time data A (Dest) X 0" X X X X X
Status (Sts)"! 0" x X X x x x

* 1. Optional.

2, C and # registers cannot be used.

The time data is formatted as shown below.

Offset Contents Data Range (BCD)
. Upper byte (hour): 00 to 23
0 Hour/ ts
ourmunutes Lower byte (minutes): 00 to 59
1 Seconds 0000 to 0059

If the operation result exceeds any of the data ranges given above, time data A is not updated, the seconds data is set to
9,999, and the status bit is set to 1 (ON).
If the operation result is within the ranges, the status bit is set to 0 (OFF).

5.3 Numeric Operation Instructions

5.3.13 Subtract Time (TMSUB)

(3) Programming Example

The following table gives typical conditions for creating ladder programming that uses the TMSUB instruction. The

examples show time data A before instruction execution, and the subtract time.

Time Time Data A before Execution of Instruction Subtract Time
Hour/minutes MWO00000 = 0210 hex MWO00002 = 0050 hex
ur/minu
(2:10) (0 hours 50 minutes)
MWO00001 = 0050 hex MWO00003 = 0020 hex
Seconds
(50 seconds) (20 seconds)

In the following programming example, the subtract time is subtracted from the time under the above conditions and
the resulting time data is stored.

—[EXPREESSION ﬂ]
i time data A (hefore subtracted)

MY 0000 0=0:210: H 2 oclock 10 minutes;
528=5218

MW O000 1=0x0050: f 50 seconds;
g80=80

i subtracted tme datz;

WA 0000 2=0:0050; 0 oclock 50 minutes;
g0=80

RAO000 3=0:0020; & 20 seconds;

32=32

(TMSUE =

[]Src MWODDDZ [WDest MWODODO

[BliSts] MBO00040
0

Instructions

— EXPRESSION),
i time data A (after subtracted)

h 0000 0= 00000; i hours minutes
2BE=288

A OO00 1=KA000017; & seconds;

43=43

The result of subtracting the subtract time from the value of time data A before instruction execution is shown below.

Time Time Data A after Execution of Instruction
. MWO00000 =288 = 0120 hex
Hour/minutes
(1:20)

MWO00001 =48 = 0030 hex
(30 seconds)

Seconds

5-47

5-48

5.3 Numeric Operation Instructions

5.3.14 Spend Time (SPEND)

5.3.14 Spend Time (SPEND)

(1) Operation

The elapsed time is calculated by subtracting two data items (year/month/day/hour/minutes/seconds). The instruction
subtracts time B from time A, which gives the time elapsed from time B to time A and the result is stored in time A.
Time data is four words long.

Time A Time B Time A
Year [Month | Hourminutes! | Total number Year | Month | Mourminutes/ Years [Months| "ot ™ | T onae
[[| [
\ 6 words 4 words / 6 words
The time elapsed from time B to time A is calculated.
(2) Format
— SPEND =
WISrc MYWOODOO [VW]Dest WMVWOO004 ¢—— icon: B,
T [BllSts] mABOOO100
Time B Status
Key entry: SPEND
Time A B
Applicable Data Types
Parameter Name
w L F A Index Constant
Time B (Src) 0*? X X X X X
Time A (Dest) X 0*? X X X X X
Status (Sts)*' o X X X x X X

* 1. Optional.

x 2. C and # registers cannot be used.

5.3 Numeric Operation Instructions

Time data B is formatted as shown below.

5.3.14 Spend Time (SPEND)

Offset Contents Data Range (BCD) 110
0 Year (BCD) 0000 to 0099 IN
Upper byte (month): 01 to 12
1 IN
Month/day (BCD) Lower byte (day): 01 to 31
. Upper byte (hour): 00 to 23
2 IN
Hour/minutes (BCD) Lower byte (minutes): 00 to 59
3 Seconds (BCD) 0000 to 0059 IN
Time data A is formatted as shown below.
Offset Contents Data Range (BCD) 110
0 Year (BCD) 0000 to 0099 IN/OUT
Upper byte (month): 01 to 12
1 IN/OUT
Month/day (BCD) Lower byte (day): 01 to 31
. Upper byte (hour): 00 to 23
2 IN/OUT
Hour/minutes (BCD) Lower byte (minutes): 00 to 59
3 Seconds (BCD) 0000 to 0059 IN/OUT
4 Operation result of years, months, days,
s Total number of seconds hours, minutes, and seconds converted IN/OUT
into seconds (double-length integer)

If the operation result exceeds any of the data ranges given above, time data A is not updated, the seconds data is set to

9,999, and the status bit is set to 1 (ON).
If the operation result is within the ranges, the status bit is set to 0 (OFF).

N
(o]

A year is calculated as 365 days. Leap years are not supported.
The number of months is not calculated. Only the number of days is calculated.

(3) Programming Example

The following table gives typical conditions for creating ladder programming that uses the SPEND instruction.

(The elapsed time between November 20, 2010, 02:10:50 and October 10, 2009, 00:50:20 is found.)

Time A before Execution of Instruction Time B
Year MWO00000 = 0010 hex MWO00006 = 0009 hex
(2010) (2009)
Month/day MWO00001 = 1120 hex MWO00007 = 1010 hex
(November 20) (October 10)
Hour/minutes MWO0002 = 0210 hex MW00008 = 0050 hex
(2:10) (0:50)
Seconds MWO00003 = 0050 hex MWO00009 = 0020 hex
(50 seconds) (20 seconds)

Instructions

5-49

5.3 Numeric Operation Instructions

5.3.14 Spend Time (SPEND)

— EXPRESSION)
i time data A (before subfracted)
IV O000 0=0=0010; M1lyears
16=16
MYOO00 1=0:x1120; & 11 months 20 days;
4384 =4384
Wi 0000 2=0x0210; i 2 hours 10 minutes
52B8=5218
Wi 0000 3=0x0050; 50 seconds;
gO0=80
i time data B;
R O000 B=00005 i3 years
§=5
RAOOOD =0 1010; & 10 maonths 10 days;
4112=4112
w0000 8=0x0050; i 0hours 50 minutes
80=80
w0000 S=0x0020; A 20 seconds;
J2=32
(SPEND A
M]Sre WYWODO00G []Dest WAOO000
[Ellsts] WMBOOOO40
1]
— EXPRESSICN)
fftime data A (after subtracted) ---= spended time
W O000 0=k 00000; i years
1=1
WAO000 1=hO0001; ff morths and days;
B5=65
w0000 2=pA00002; & hours and minutes
28B=088
w0000 3=pi00003; ff seconds;;
48=48
MLOOOO4=mLO0004; 4 total seconds;
J508 3230=35083230

The execution result of this SPEND instruction example is shown below.

Time A after Execution of Instruction
MWO00000 =1 =0001 hex
(1 year)

MWO00001 = 65 = 0041 hex

(0 months, 41 days)
MWO00002 =288 = 0120 hex

(1 hour, 20 minutes)
MW00003 =48 = 0030 hex

(30 seconds)
ML00004 = 35083230

Years

Months/days

Hours/minutes

Seconds

Total number of seconds

5-50

5.3 Numeric Operation Instructions

5.3.15 Invert Sign (INV)

(1) Operation

The sign of the input data is inverted and the result is stored in the output data.

(2) Format

Input data

5.3.15 Invert Sign (INV)

Output data

_[

I

[WLFSre MyW0000D

;

]

;I]— Icon: |MV

[WLF]Dest MWO0OD1

Input data Output data Key entry: INV
Applicable Data Types
Parameter Name
w L F Index Constant
Input data (Src) O O @] X O O
Output data (Dest) o* o* o* O X

* C and # registers cannot be used.

(3) Programming Example

In the following programming example, the INV instruction inverts the sign of 12,345 in input data A in MW00000
and stores the result in the output data in ML00002.
-1 x MW00000 (12,345) — ML00002 = -12,345

‘ { [P
1§
WLF]Sre MWO0000 [WLF]Dest WMWOOODT
12345 -12345

When performing operations with different data types, the result of the operation will depend on the data type of the output reg-
ister.
Refer to 4.4.2 (3) Precautions When Using Local Registers within a User Function for details.

N
(vop

Instructions

5-51

5.3 Numeric Operation Instructions

5.3.16 One’s Complement (COM)

5.3.16 One’s Complement (COM)

(1) Operation

The one’s complement of the input data is stored in the output data.

One’s complement
Input data _—> Output data

+ This instruction inverts the 0’s and 1’s in the binary representation of the input data and stores the result in the
output data.

(2) Format

—|: el ;I]_ Icon: D:.:IJM

[A/L]Src MWOOODD — [ALDest MWODOOT

1 |

Input data Output data Key entry: COM
Applicable Data Types
Parameter Name
W L F A Index Constant
Input data (Src) X O O X X O O
Output data (Dest) X o* o* X X O X

* C and # registers cannot be used.

(3) Programming Example
In the following programming example, the one’s complement of -3,856 (FOF0 hex) in the input data in MW00000 is

stored in the output data in MWO00001.
MWO00000 = -3,856 (FOF0 hex) - MWO00001 = 3,855 (OFOF hex)

| { COM 2

MYLISre MWOO0D0D [WLIDest WWOODO0T
-3856 3855
INFO When performing operations with different data types, the result of the operation will depend on the data type of the output reg-
% ister.

Refer to 4.4.2 (3) Precautions When Using Local Registers within a User Function for details.

5-52

5.3 Numeric Operation Instructions

5.3.17 Absolute Value (ABS)

5.3.17 Absolute Value (ABS)
(1) Operation

The absolute value of the input data is stored in the output data.

Absolute value
Input data _—> Output data

(2) Format

_[ABS ;I]— Icon: Inl
[WLFSre MWO0DOOD — [WLF]Dest MWOOOD 1

1 1

Input data Output data Key entry: ABS
Applicable Data Types
Parameter Name
W L F A Index Constant
Input data (Src) @] @] X O O
Output data (Dest) o* o* o* X O X

* C and # registers cannot be used.

(3) Programming Example

In the following programming example, the absolute value of -123.45 in the input data in MF00000 is stored in the out-
put data in MF00002.
| MF00000(-123.45) | - MF00002 = 123.45

| { ABS pa

MLF]Se MFODOO0 MLFIDest MFOO002
-1.234500E+002 1.234500E+002
N FO When performing operations with different data types, the result of the operation will depend on the data type of the output reg-
% ister.

Refer to 4.4.2 (3) Precautions When Using Local Registers within a User Function for details.

Instructions

5-53

5.3 Numeric Operation Instructions

5.3.18 Binary Conversion (BIN)

5.3.18 Binary Conversion (BIN)

(1) Operation
The value of the input data is converted from BCD data to binary data and stored in the output data.
If the input data is not BCD data, such as 123F hex, the result of the binary conversion will be incorrect.

Converted to binary.
Input data g Output data

The output data is computed as shown below when the input BCD data is abcd.
Output data = (a x 1,000) + (b x 100) + (c x 10) +d

(2) Format

BIN

|: =TT ED lcon: Fep

[WLISrc MWO00000 [AL]Dest MWOO00D T

1 1

Input data Output data Key entry: BIN
Applicable Data Types
Parameter Name
w L F A Index Constant
Input data (Src) (@) X X @] @]
Output data (Dest) X O* O* X X O X

* C and # registers cannot be used.

(3) Programming Example
In the following programming example, the value 4,660 (1234 hex) in input data A in MW00000 is converted to binary

and stored in the output data in MWO00001.
MWO00000 = 1234 hex: (1 x 1,000) + (2 x 100) + (3 x 10) + 4 - MW00001 = 1,234

| { BIN Py

IWLISrc MWO0000O [WLDest MWOOOO1
4660 1234

When performing operations with different data types, the result of the operation will depend on the data type of the output reg-

N
lNFO ister.
Refer to 4.4.2 (3) Precautions When Using Local Registers within a User Function for details.

5-54

5.3 Numeric Operation Instructions

5.3.19 BCD Conversion (BCD)

5.3.19 BCD Conversion (BCD)

(1) Operation

The input data is converted from binary data to BCD data and stored in the output data.
If the input data is greater than 9,999, or a negative value, the result will be incorrect.

Converted to BCD.
Input data — Output data

The output data is computed as shown below when the input decimal data is abcd.
Output data = (a x 49) + (b x 256) + (c x 16) +d

(2) Format

Icon:

BCD
— BCD) o Blg

(WL]src MWO0000D PAL]Dest MWOODOT

1 1

Key entry: BCD

Input data Output data
Applicable Data Types
Parameter Name
w L F A Index Constant
Input data (Src) O O X X @] O
Output data (Dest) X o* o* X X O X

* C and # registers cannot be used.

(3) Programming Example

In the following programming example, the value 1,234 in input data A in MW00000 is converted to BCD and stored
in the output data in MW00001.
MWO00000 = 1,234: (1 x 4,096) + (2 X 256) + (3 X 16) + 4 — MW00001 = 4,660 (1234 hex)

Instructions

| { BCD a3
WLiSre MWOO0D0D [WL]Dest WWWDOOO1
1234 4660
N FO When performing operations with different data types, the result of the operation will depend on the data type of the output reg-
% ister.

Refer to 4.4.2 (3) Precautions When Using Local Registers within a User Function for details.

5-55

5.3 Numeric Operation Instructions

5.3.20 Parity Conversion (PARITY)

5.3.20 Parity Conversion (PARITY)

(1) Operation

The number of bits set to 1 (ON) in the input data is calculated in binary notation and stored in the output data.

Number of 1 (ON) bits in binary
notation of input data

Input data _—> Output data

(2) Format

lcon: 1T

— PARITY) #?

WLSe MWOD00D [WL]Dest WMWOO00O0

1 1

Key entry: PARITY

Input data Output data
Applicable Data Types
Parameter Name
w L F A Index Constant
Input data (Src) X @) O X X O O
Output data (Dest) X o* o* X X O X

* C and # registers cannot be used.

(3) Programming Example

In the following programming example, the number of bits set to 1 (ON) in 255 (OOFF hex) in the input data A in
MWO00000 is stored in the output data in MW00001.
Number of 1 bits in MW00000 (OFF hex) = 8 — MW00001 =8

| { PARITY =
MLISre MWWODO0D [PWLDest WWWOOOOT
255 g
INFO When performing operations with different data types, the result of the operation will depend on the data type of the output reg-
% ister.

Refer to 4.4.2 (3) Precautions When Using Local Registers within a User Function for details.

5-56

5.3 Numeric Operation Instructions

5.3.21 ASCII Conversion 1 (ASCII)

5.3.21 ASCII Conversion 1 (ASCII)

(1) Operation

The input text string is converted to ASCII and stored in the output data. The text string is case sensitive.
The input text string can contain up to 32 characters (16 words).

Converted to ASCII.
Input text string E— Output data

B Storage Location of ASCII Values for Input Text String

3rd 2nd 1st
character character character

C B A
A > Lower byte o]
1st word in
B' output data
4 Upper byte |
'C' _
> Lower byte
2nd word in
0 output data
—_— Upper byte]

¢+ If the text string contains an odd number of characters, the upper byte of the last word is set to zeros.

(2) Format
Icon: ASCI
— ASCI)
Src ABCD O]Dest MWODO00
Key entry: ASCII
Input text string Output data

Applicable Data Types
Parameter Name
B | W | L] F | A | Index | Constant
Input text string (Src) 1
Output data (Dest) X ‘ o) ‘ X ‘ X ‘ X ‘ X | X

1. ASCII text
x 2. C and # registers cannot be used.

Instructions

5-57

5.3 Numeric Operation Instructions
5.3.21 ASCII Conversion 1 (ASCII)

(3) Programming Example

In the following programming example, the input string “Hello” is converted to ASCII and stored in the output data in
MWO00000.

| { ASCI pay
| sre Hello []Dest MWWOOOOO

The ASCII values are stored as given in the following table.

Address ASCII Value Character
MWO00000 (lower byte) 48 hex H
MWO00000 (upper byte) 65 hex e
MWO00001 (lower byte) 6C hex 1
MWO00001 (upper byte) 6C hex 1
MWO00002 (lower byte) 6F hex o
MWO00002 (upper byte) 0 -

5-58

5.3 Numeric Operation Instructions

5.3.22 ASCII Conversion 2 (BINASC)

5.3.22 ASCII Conversion 2 (BINASC)

(1) Operation

The 16-bit binary data stored in the 1-word input data is converted to four-digit hexadecimal ASCII and stored in the 2-
word output data.

Converted to hexadecimal Converted
notation. to ASCII.
4-digit text string
Input data —® (0to9andAtoF) o Output data
B Storage Location of ASCII Values for Input Data of 10,811(2A3B hex)
4th 1st
character character
B 3 A 2
2 R Lower byte]
1st word in
N output data
» Upper byte |
'3 _
> Lower byte
2nd word in
B output data
» Upper byte |
(2) Format
. BIN
Icon: ASC
— BINASC

[W]Src MWO00000

-

[M]Dest MWO000 1

-

Key entry: BINASC

Input data Output data
Applicable Data Types
Parameter Name
w F A Index Constant
Input data (Src) O X X X O
Output data (Dest) o* X X X

* C and # registers cannot be used.

Instructions

5-59

5.3 Numeric Operation Instructions

5.3.22 ASCII Conversion 2 (BINASC)

(3) Programming Example

In the following programming example, 10,811 (2A3B hex) in the input data is converted to ASCII and stored in the
output data in MW00000.

{ BINASC p.3
(S 10811 [WDest WAVWOD0DO
10811

The ASCII values are stored as given in the following table.

Address ASCII Value Character
MWO00000 (lower byte) 32 hex 2
MWO00000 (upper byte) 41 hex A
MWO00001 (lower byte) 33 hex 3
MWO00001 (upper byte) 42 hex B

5-60

5.3 Numeric Operation Instructions

5.3.23 ASCII Conversion 3 (ASCBIN)

(1) Operation

5.3.23 ASCII Conversion 3 (ASCBIN)

The value given in 4-digit hexadecimal ASCII and stored in the 2-word input data is converted to 16-bit binary data
and stored in 1-word output data.

ASCII converted
to binary data.

Input data

v

Output data

B Output Data When First Word of Input Data Is 4132 Hex (‘2 ‘A’) and Second Word Is 4232 Hex

((3! ‘B!)
_ Lower byte ‘A’
1st word in Output data (1 word)

input data

| Upper byte ‘2’

2A3B
_ Lower byte ‘B’
2nd word in Hexadecimal notation

input data

- Upper byte ‘3’

(2) Format
Icon: ‘%ﬁ‘:
—{ ASCBIN =
WSe MW00000 [A]Dest WWODODO2
Key entry: ASCBIN
Input data Output data
Applicable Data Types
Parameter Name
w F A Index Constant
Input data (Src) O X X X O
Output data (Dest) o* X X X

* C and # registers cannot be used.

Instructions

5-61

5.3 Numeric Operation Instructions
5.3.23 ASCII Conversion 3 (ASCBIN)

(3) Programming Example

In the following programming example, the ASCBIN instruction is used to store the input data in MW00000 in the out-
put data in MW00002.

{ ASCEIN .y
MVISrc MWO00D0 [WDest MWO0002
10811

The ASCII values are stored as given in the following table.

Address ASCII Value Character
MWO00000 (lower byte) 32 hex 2
MWO00000 (upper byte) 41 hex A
MWO00001 (lower byte) 33 hex B
MWO00001 (upper byte) 42 hex 3

The output data in MW00000 is set to 10,811 (2A3B hex).

5-62

5.4 Logic Operations and Comparison Instructions

5.4 Logic Operations and Comparison Instructions
5.4.1 Inclusive AND (AND)

(1) Operation

5.4.1 Inclusive AND (AND)

The AND instruction performs a logical AND operation on input data A and input data B and the result is stored in the

output data.

This instruction can be used only with integer or double-length integer data.

(2) Format

Inclusive AND
Input data A (AND) Input data B —> Output data
Each bit in the input data is evaluated as shown in the following truth table.
Input data A Input data B Output data
0 0 0
0 1 0
1 0 0
1 1 1
Icon: A

=

AMND

_(

— WllsrcA MWO0000 PAL]Dest DWOO0OO0O

YL]ScE 0000 T
T 1 Key entry: &
Input data A Input data B Output data
Applicable Data Types
Parameter Name
B W L F A Index Constant

Input data A (SrcA) X O O O X O O
Input data B (SrcB) X O O O X O O
Output data (Dest) X o* o* o* X O X

* C and # registers cannot be used.

Instructions

5-63

5.4 Logic Operations and Comparison Instructions

5.4.1 Inclusive AND (AND)

(3) Programming Example

In the following programming example, a logical AND is performed on 12,345 (3039 hex) in input data A in
MWO00000 and 3,855 (OFOF hex) in input data B in MW00001, and the result is stored in the output data in DW00000.

Bit F Bit C Bit B Bit8 Bit7 Bit4 Bit 3 Bit 0

MWO00000 :

12,345@3039hex) | O | O [V[T | OO OO OO0 0|1

MWO00001 :
3,855 (OFOF hex)

MWO00000 & MW00001 — DW00000

DW00000 :
9 (0009 hex)

(AND 2
MWLISrca WWO0000 [WL]Dest DWWO0DOOO
12345 9
[WLISICB MWO0001
3855

5-64

5.4 Logic Operations and Comparison Instructions

5.4.2 Inclusive OR (OR)

(1) Operation

The OR instruction performs a logical OR operation on input data A and input data B and the result is stored in the out-

put data.

This instruction can be used only with integer or double-length integer data.

5.4.2 Inclusive OR (OR)

Input data A InCIU(SCi)VRe)OR Input data B —> Output data
Each bit in the input data is evaluated as shown in the following truth table.
Input data A Input data B Output data
0 0 0
0 1 1
1 0 1
1 1 1
(2) Format
|: OR ED Icon: v
— MWL]Sc A WMWO0000 PAL]Dest DWWOOOO0
MAL]ScE MWO000 1 T
T Key entry: |
Input data A Input data B Output data
Applicable Data Types
Parameter Name
B w L F A Index Constant
Input data A (SrcA) X O O O X O O
Input data B (SrcB) X O O O X O O
Output data (Dest) X o* o* o* X O X

* C and # registers cannot be used.

Instructions

5-65

5.4 Logic Operations and Comparison Instructions

5.4.2 Inclusive OR (OR)

(3) Programming Example

In the following programming example, a logical OR is performed on 12,345 (3039 hex) in input data A in MW00000
and 3,855 (OFOF hex) in input data B in MW00001, and the result is stored in the output data in DW00000.

Bit F Bit C BitB Bit 8 Bit 7 Bit4 Bit3 Bit 0

MWO00000 :
12,345 (3039 hex)

MWO00001 :
3,855 (OFOF hex)

MWO00000 | MW00001 — DW00000

DW00000 :
16,191 (3F3F hex)

(OR =)
MLISrca MWO0D00 [WLIDest DWw0O0OOD
12345 16191
MMLISrCB MWO0D01
3855

5-66

5.4 Logic Operations and Comparison Instructions

5.4.3 Exclusive OR (XOR)

5.4.3 Exclusive OR (XOR)

(1) Operation

The XOR instruction performs an exclusive logical OR operation on input data A and input data B and the result is

stored in the output data.
This instruction can be used only with integer or double-length integer data.

Input data A EXCI(l;fgS)OR Input data B Output data

Each bit in the input data is evaluated as shown in the following truth table.

Input data A Input data B Output data
0 0 0
0 1 1
1 0 1
1 1 0
(2) Format
[HOR ED Icon: @
— y [ALSeA MWO0000 [WLDest DWO0000
[LISEE MAW0000 1 T
T Key entry: #
Input data A Input data B Output data
Applicable Data Types
Parameter Name
B w L F A Index Constant
Input data A (SrcA) X @] O O X O O
Input data B (SrcB) X @] O O X O O
Output data (Dest) X o= o* o* X O X

* C and # registers cannot be used.

Instructions

5-67

5.4 Logic Operations and Comparison Instructions

5.4.3 Exclusive OR (XOR)

(3) Programming Example

In the following programming example, an exclusive logical OR is performed on 12,345 (3039 hex) in input data A in
MWO00000 and 3,855 (OFOF hex) in input data B in MW00001, and the result is stored in the output data in DW00000.

Bit F Bit C BitB Bit 8 Bit 7 Bit4 Bit3 Bit 0

MWO00000 :

12,345 (3039 hex) | O [O | T[T Oo OO oo ottt 0]0 |

MWO00001 :
3,855 (OFOF hex)

MwO00000 * MW00001 — DW00000

DW00000 :
16,182 (3F36 hex)

(XOR =
[WLISrcA MWO0000 [WL]Dest DWO00000
12345 16182
MWLISrCB MWO00D
3855

5-68

5.4 Logic Operations and Comparison Instructions

5.4.4 Less Than (<)

5.4.4 Less Than (<)
(1) Operation

Input data A and input data B are compared and the result is stored in the bit output.

TRUE: Output ON
FALSE: Output OFF

Input data B

Input data A <

Compared.

(2) Format

(= Ej lcon: -«
YLF]Srch WWO0 000 ——
WLF]ScB 00100
Key entry: <
Input data B Input data A
Applicable Data Types
Parameter Name
w L F A Index Constant
Input data A (SrcA) O @] O X @] O
Input data B (SrcB) @) O O O O

(3) Programming Example

In the following programming example, the INC instruction on the right end of the line is executed because the com-
parison is true and turns the output ON; that is, input data A is less than input data B when input data A in MW00000 is
90 and input data B is 100.

—(<) (NC X
[WLFISrcA MYWO0000 [WLDest MvWO00D1
90 1772
[WLF]SrcB 00100
100

With real number data, the value displayed by the MPE720 may not match the execution result of the comparison instruction
due to a slight precision error.

N
(o]

Instructions

5-69

5.4 Logic Operations and Comparison Instructions

5.4.5 Less Than or Equal (<)

5.4.5 Less Than or Equal (<)
(1) Operation

Input data A and input data B are compared and the result is stored in the bit output.

TRUE: Output ON
FALSE: Output OFF

Input data A < Input data B

Compared.

(2) Format

A

[= ED lcon: =
YLF]SrcA WWOO0000D ———
WMYLF]=rcE WWO000 T

T Key entry: <=
Input data B Input data A
Applicable Data Types
Parameter Name
w L F A Index Constant
Input data A (SrcA) O O O X O O
Input data B (SrcB) X O O O X O @]

(3) Programming Example

In the following programming example, the INC instruction on the right end of the line is not executed because the
comparison is false and turns the output OFF; that is, input data A is not less than or equal to input data B when input
data A in MW00000 is 101 and input data B is 100.

_(' i= ED { INC pa
MLF]Sca hMyW00000 yLDest w0000
101 —=
YLF]ScE 00100
100
INFO With real number data, the value displayed by the MPE720 may not match the execution result of the comparison instruction
’ due to a slight precision error.

5-70

5.4 Logic Operations and Comparison Instructions

5.4.6 Equal (=)
5.4.6 Equal (=)
(1) Operation
Input data A and input data B are compared and the result is stored in the bit output.
Input data A _ Input data B TRUE: Output ON
FALSE: Output OFF
Compared.
(2) Format
—[== gD— lcon: =
YLF]SrcA MWOODOD ¢———
LF]ScE WWWOO000 1
T Key entry: =
Input data B Input data A
Applicable Data Types
Parameter Name
w L F Index Constant
Input data A (SrcA) @] O O X @] O
Input data B (SrcB) O O O O O

(3) Programming Example

In the following programming example, the INC instruction on the right end of the line is executed because the com-
parison is true and turns the output ON; that is, input data A is equal to input data B when input data A in MW00000 is
100 and input data B is 100.

L — =) 't NC X
[AWLFISrcA MWO0000 WL Dest MWOO001
100 256
MWLFISreB 00100
100

With real number data, the value displayed by the MPE720 may not match the execution result of the comparison instruction
due to a slight precision error.

(N
INF
(P03

Instructions

5-71

5.4 Logic Operations and Comparison Instructions

5.4.7 Not Equal (#)

54.7
(1)

(N
(o

5-72

Not Equal (#)

Operation

Input data A and input data B are compared and the result is stored in the bit output.

TRUE: Output ON
FALSE: Output OFF

Input data A # Input data B

Compared.

Format
[|= EJ lcon: &
[WLF]SrcA MW00000——
[MLF]SrcE W00 00 1
T Key entry: <>
Input data B Input data A
Applicable Data Types
Parameter Name
w L F A Index Constant

Input data A (SrcA) X @] O O X O O
Input data B (SrcB) @] O O X O O
Programming Example

In the following programming example, the INC instruction on the right end of the line is not executed because the
comparison is false and turns the output OFF; that is, input data A is equal to input data B when input data A in
MWO00000 is 100 and input data B is 100.

——(I= =) { NC X
[WLFISrCA MYWO0000 [WLIDest MWOO0D1
100
[WLF]SrcB 00100
100

With real number data, the value displayed by the MPE720 may not match the execution result of the comparison instruction
due to a slight precision error.

5.4 Logic Operations and Comparison Instructions

5.4.8 Greater Than or Equal (>)
(1) Operation

Input data A and input data B are compared and the result is stored in the bit output.

Input data A

>

Input data B

(2) Format

Compared.

TRUE: Output ON
FALSE: Output OFF

5.4.8 Greater Than or Equal (=)

(= = >

YLF]SrcA W00 000 ——

MYLF]ScE W00 00 1

T Key entry: >=
Input data B Input data A
Applicable Data Types
Parameter Name
w L F Index Constant

Input data A (SrcA) O O O O O
Input data B (SrcB) O O O O O

(3) Programming Example

In the following programming example, the INC instruction on the right end of the line is executed because the com-
parison is true and turns the output ON; that is, input data A is greater than or equal to input data B when input data A
in MWO00000 is 100 and input data B is 100.

—(_ >= F),
[WLF]SrcaA WWO0000
100
[WLF]SrcB 00100
100

INC A

WL Dest MW0O0001

a0s4

A
INF
(veop

due to a slight precision error.

With real number data, the value displayed by the MPE720 may not match the execution result of the comparison instruction

Instructions

5-73

5.4 Logic Operations and Comparison Instructions

5.4.9 Greater Than (>)

5.4.9 Greater Than (>)
(1) Operation

Input data A and input data B are compared and the result is stored in the bit output.

TRUE: Output ON
FALSE: Output OFF

Input data A > Input data B

Compared.

(2) Format

—(= ED— lcon:
WLFISICA MW00000 —
[MLF]SrcE MWO0O0D0 1

T Key entry: >
Input data B Input data A
Applicable Data Types
Parameter Name
B w L F A Index Constant
Input data A (SrcA) O O O X O O
Input data B (SrcB) X O O O X O O

(3) Programming Example

In the following programming example, the INC instruction on the right end of the line is not executed because the
comparison is false and turns the output OFF; that is, input data A is not greater than input data B when input data A in
MWO00000 is 100 and input data B is 100.

—(> =) 4 INC X
LFTSres WWVYOD000 WLDest MWOOOD
100 -—-
[WWLF]SrcB 00100
100
INFO With real number data, the value displayed by the MPE720 may not match the execution result of the comparison instruction
% due to a slight precision error.

5-74

5.4 Logic Operations and Comparison Instructions

5.4.10 Range Check (RCHK)

5.4.10 Range Check (RCHK)
(1) Operation

The RCHK instruction checks to see if the input data is between the upper limit and lower limit and the result is stored

in the bit output.
+ l Bit Output = OFF
Upper limit
N
Bit Output = ON
Input data ’\
v
Lower limit
T Bit output = OFF

[a] Bit Output = ON

The bit output is turned ON if the value of the input data is within the range that is greater than or equal to the lower
limit, and less than or equal to the upper limit.

IN
IN

Lower limit Input data Upper limit

[b] Bit Output = OFF

The bit output is turned OFF if the value of the input data is outside the range that is greater than or equal to the lower
limit, and less than or equal to the upper limit.

(2) Format

AN
INF
(vvop

(RCHK gD Icon: CEK

[WLF]In MAO0000 ¢——— input data

WY LF]Loweer R OO0 T

[WLF]Upper MA000072 |

Lower limit
T Key entry: RCHK
Upper limit
Applicable Data Types
Parameter Name
B w L F A Index Constant

Input data (In) X O @] @] X O O
Lower limit (Lower) X O @] @] X O O
Upper limit (Upper) X O O O X O O

Always set the lower limit to a value that is less than or equal to the upper limit. If the lower limit is greater than the upper limit,
the result will be invalid.

Instructions

5-75

5.4 Logic Operations and Comparison Instructions

5.4.10 Range Check (RCHK)

(3) Programming Examples

The following programming examples execute the RCHK instruction.
* When Input Data (MW00000) = 80, Lower Limit = 100, and Upper Limit = 1,000

The INC instruction on the right end of the line is not executed because the input data is less than the lower limit
and turns the bit output OFF.

—(RCHK =) (INC =
MWLF]In MYWOO00D WLDest MWO000
80
[WLFLower 00100
100
[WLFUpper 01000
1000

* When Input Data (MW00000) = 500, Lower Limit = 100, and Upper Limit = 1,000
The INC instruction on the right end of the line is executed because the value of the input data is within the range
that is greater than or equal to the lower limit and less than or equal to the upper limit, which turns ON the bit

output.
—(RCHK X} (NG &

WLF]IN WRAD0000 ML Dest MYWO0001
500 2363

[WLF]Lower 007100
100

[WLFUpper 01000
1000

* When Input Data (MW00000) = 1,000, Lower Limit = 100, and Upper Limit = 1,000
The INC instruction on the right end of the line is executed because the value of the input data is within the range
that is greater than or equal to the lower limit and less than or equal to the upper limit, which turns ON the bit

output.
—(RCHK =) (NG X}

[WYLF]IN YO0 WLDest NWWWODOD
1000 9606

[WLF]Lower 007100
100

YLFUpper 01000
1000

5-76

5.5 Program Control Instructions

5.5.1 Call Sequence Program (SEE)

5.5 Program Control Instructions
5.5.1 Call Sequence Program (SEE)

(1) Operation

The SEE instruction calls a child drawing from a parent drawing, or a grandchild drawing from a child drawing.

Parent Drawing Program called

A
v
. SEE. Child Drawing
instruction 4
Al

(2) Format

child draw ———— Program name lcon: SEE

SEEX)

Name HO1

T Key entry: SEE
Program number

Parameter Name Applicable Data Types

Registers cannot be used. Specify the program number directly.

Program number (Name
9 () The name of the specified program appears above the instruction.

(3) Programming Example

In the following programming example, the SEE instruction calls drawing H01.02 when the MB000000 relay is ON.
Thereafter, the process is executed and execution resumes from the next step after the SEE instruction. The SEE
instruction does not call drawing H01.02 if the MB00000O relay is OFF.

Instructions

Zall Grandchild draw
MBODODOD Grandhild draw 2

| |
|] SEE |

MName HO1.02

5-77

5.5 Program Control Instructions

5.5.2 Call Motion Program (MSEE)

5.5.2 Call Motion Program (MSEE)
(1) Operation

The MSEE instruction calls the specified motion program.

Motion programs can be called only from H drawings.

H Drawing

Motion program called.

MSEE
instruction

VN

(2) Format

Motion Program

.M
(MEEE ;D Icon: Saa
B Frogram Moo 00007 ¢—— Program number
[AlData DADDOOD
T Key entry: MSEE
First work register address
Applicable Data Types
Parameter Name
B w L F A Index Constant
Program number .
(Program No.) x © X x X x ©
First work register o*
address (Data) x x x x X X
* M or D register only.
B Work Register Configuration
Address Data Name Description /0
Type
0 W | Status Flags Motion program status flags OouT
1 W | Control Signals Motion program control signals IN
The override is used when executing interpolation instruc-
tions.
2 w i i IN
Interpolation Override Range: 0 to 32,767
Unit: 1 =0.01%
3 W System Work Number ;rhal; is the system work number that calls the motion pro- IN

Specify the program number from 1 to 256.

&
m
o
N~

ual No.: SIEP C880700 38).

For details on motion programs, refer to the Machine Controller MP2000 Series User s Manual for Motion Programming (Man-

5-78

5.5 Program Control Instructions

5.5.2 Call Motion Program (MSEE)

(3) Programming Examples
The following programming examples show how to execute the motion program MPMO0O01 with program number 1.
When the IB00000 relay turns ON, the Request for Start of Program Operation (DB000010) in the control signals turns

ON and executes the MPMOO1 motion program.

+ Direct Designation
The program number is directly set to 1.

program start

pulse
[E00000 DE00O310 DBEO00010
P

|| + O

. MSEE A}
[MIProgram Mo, 00001
[A]Data DA000OO

¢ Indirect Designation
The program number is set in MW00000.

(STORE = —

L
[YLF] S 00001 [WLFIDest MWOOO000
pulse program start
([BO00Q0 DECOO310 DBOOOO10
Ty

N - O

— MSEE =)
WWIProgram Mo, WYWO00D0
[A]Data DADDOD0O

Instructions

Continue execution of the MSEE instruction until execution of the motion program is completed.
IMPORTANT L o
When using indirect designation, do not change the register value until the execution of the motion program is

completed.

5-79

5-80

5.5 Program Control Instructions

5.5.3 Call User Function (FUNC)

5.5.3 Call User Function (FUNC)

(1) Operation

The FUNC instruction calls a user function. The user function must be defined before it can be called.
Refer to 4.3 User Functions for details on user functions.

Ladder Drawing

User function
called.

. FUNQ User Function
instruction 4

A 4

(2) Format
userfunction 01 ¢ Program name
— FUNC) Icon: FUNC
ame FUMCDT 46— Program number
[N KO0 000 AOUTT WA0000 1
T T Key entry: FUNC
Function input Function output

Parameter Name

Applicable Data Types

Program number (Name)

Registers cannot be used. Specify the program number directly.
The name of the specified program appears above the instruction.

Function input

The register that is set in the function’s input definition can be used.

Function output

The register that is set in the function’s output definition can be used.

(3) Programming Example

Refer to 4.3 User Functions for programming examples for user functions.

5.5 Program Control Instructions

5.5.4 Direct Input String (INS)

(1) Operation

5.5.4 Direct Input String (INS)

The INS instruction is executed in user programs to input data independently from the I/O batch processing that is per-
formed by the system at the start of the high-speed and low-speed scans. When the INS instruction is executed, the
inputs from the specified Module are processed according to the settings in a parameter table. The next instruction is
not executed until input processing is completed.

The following Modules can be specified.

« CPU Module (I0)

LIO-01/02 Module (LIO)
LI0-04/05 Module (LIO32)

» LIO-06 Module (MIXIO)

« AI-01 Module (AI)

Start of scan

\ outputs

INS instruction

Batch

Batch
inputs

) Remaining
Processing rocessing
of drawings Inputs | P

of drawings |
\

Normally, the outputs and inputs
are processed at once for each

Module at the start of the
high-speed and low-speed scans.

(2) Format

\ |

These inputs are input from the Module
specified in the INS instruction, separately
from the batch inputs. Processing of the
drawings stops until the inputs are processed.

_(

NS

Icon: L
Fa) oy s

[APmm MADDOO T

|

[B][Sts] MBOOODOO

|

First address of
parameter table

Status Key entry: INS

Parameter Name

Applicable Data Types

B W L F A Index Constant
First address of “
parameter table (Prm) x X X x o X x
Status (Sts)™ o™ x x X x X X

x 1. C and # registers cannot be used.

x 2. Optional.

Instructions

5-81

5.5 Program Control Instructions

5.5.4 Direct Input String (INS)

B Parameter Table Configuration

Address Data Symbol Name Specification I/0
Type
0 W | RSSEL Unit selection 1 .) IN
- - Specify the Module to input from.
1 W | MDSEL Unit selection 2 IN
2 w STS Status Each bit receives the input status for one word. OUT
0: Normal, 1: Error
W N Number of words Specify the number of continuous words. IN
4 W | IDI Input data 1 ouT
Receives the data that was input.
i . Contains 0 if an error occurs. ’
N+3 W | IDN Input data N ouT
The following table gives details about the parameters in the MP2000-series Controller.
Wiodule Name LIO-04/05 LIO-06 Al-01
CPU (IO LI0-01/02 (LIO y i A
(10) (L) (LI032) (MIXIO) (Al)
Parameter
Specify the rack, slot, and subslot of the target Module.
Hexadecimal notation: zxyy hex
RSSEL x: Rack number from 1 to 4
yy: Slot number from 0 to 9
z: Subslot number from 1 to maximum value (determined by Module specifications)
Channel number Channel number
MDSEL :
0 (Not used.) 0 (Not used.) Offset: 0 or 1 L0orl 1 0to7
STS Always 0. Always 0. Always 0. Always 0. *
N | | 1 or2 lor2 1to8
— MDSEL — MDSEL — MDSEL

x If a channel for which the allocation has been deleted in the Al Module detailed definition is specified for the INS
instruction, the applicable channel number is output for the bit. This is because it is not possible to read the data on
channels for which allocations have been deleted.

The relation between bits and channels is shown below.
Bit 0: Channel 1
Bit 1: Channel 2
Bit 2: Channel 3
Bit 3: Channel 4
Bit 4: Channel 5
Bit 5: Channel 6
Bit 6: Channel 7
Bit 7: Channel 8

5-82

5.5 Program Control Instructions

5.5.4 Direct Input String (INS)

(3) Programming Example

When one word is input from the LIO at subslot number 1 on the LIO-01 Module mounted in rack 1 and slot 2, the
input data of the LIO is stored in MW00014.

—(EXPRESSION)
YO0O010=0x1102; & number of rack, slot, sub-slot, ;
4354=4354
k0001 1=0; # unused;
0=0
hY00013=1; A number of words
1=1
(INS A—
[A]Frm kA00070 [Bl[=ts] MBOOODOO
0

Instructions

5-83

5.5 Program Control Instructions
5.5.5 Direct Output String (OUTS)

5.5.5 Direct Output String (OUTS)
(1) Operation

The OUTS instruction is executed in user programs to output data independently from the I/O batch processing that is
performed by the system at the start of the high-speed and low-speed scans. When the OUTS instruction is executed,
the outputs from the specified Module are processed according to the settings in the parameter table.

The following Modules can be specified.
» CPU Module (10)

L10-01/02 (LIO)

L10-04/05 (L1032)

LIO-06 (MIXIO)

* DO-01 (DO)
« AO-01 (AO)
OUTS instruction
Start of scan .
Batch Batch Processing Remalm_ng
: . Outputs| processing
outputs inputs of drawings .
\ of drawings |
‘ |
Normally, the outputs and inputs .
are processed at once for each These outputs_ are se_nt to the Module specified
Module at the start of the by the OUTS instruction, separately from the
high-speed and low-speed scans. batch outputs. Processing of the drawings
stops until the outputs are processed.
(2) Format

ouT

[OUTS ;I:I lcon: §

[AJPmn MAOD001 [B][Sts] MBO000OD

| I

Status Key entry: OUTS

First address of
parameter table

Parameter Name Applicable Data Types
B w L F A Index Constant
First address of *1
parameter table (Prm) x x x x o x x
Status (Sts)™ ol X x X x X X

x 1, C and # registers cannot be used.
* 2. Optional.

5-84

5.5 Program Control Instructions

5.5.5 Direct Output String (OUTS)

B Parameter Table Configuration

Address Data Symbol Name Specification 1/0
Type
0 W | RSSEL Unit selection 1) IN
- - Specify the Module to output to.

W | MDSEL Unit selection 2 IN

2 W STS Status Each bit receives the input status for one word. OUT
0: Normal, 1: Error

3 W | N Number of words Specify the number of output words (always 1). IN

4 W | OD1 Output data 1 OuT
: : : Specify the data to output. :

N+3 w ODN Output data N OouT

The following table gives details about the parameters in the MP2000-series Controller.

Module Name
CPU LIO-01/02 L10-04/05 LIO-06 DO-01 AO-01

(10) (LIO) (LI032) (MIXIO) (DO) (AO)

Parameter

Specify the rack, slot, and subslot of the target Module.
Hexadecimal notation: zxyy hex
RSSEL x: Rack number from 1 to 4
yy: Slot number from 0 to 9
z: Subslot number from 1 to maximum value (determined by Module specifications)

MDSEL 0 (Notused) | O(Notused) | Offset:Oorl | Offset:0or1 | Offset: 0to3 E:raml‘elo“t‘;“;
STS Always 0. Always 0. Always 0. Always 0. Always 0. *
N 1 1 lor2 lor2 1to4 1to4

— MDSEL — MDSEL — MDSEL — MDSEL

* |f a channel for which the allocation has been deleted in the AO Module detailed definition is specified for the OUTS
instruction, the applicable channel number is output for the bit. This is because it is not possible to read the data on
channels for which allocations have been deleted.

The relation between bits and channels is shown below.
Bit 0: Channel 1
Bit 1: Channel 2
Bit 2: Channel 3
Bit 3: Channel 4

Instructions

5-85

5.5 Program Control Instructions

5.5.5 Direct Output String (OUTS)

(3) Programming Example

When one word is output to the LIO at subslot number 1 on the LIO-01 Module mounted in rack 1 and slot 2, the data
in MW00014 is output to LIO.

— EXPRESSION =)

rAVYO0010=0x1102; & number of rack, slot, sub-slat, ;

4354=4554

rVY 0001 1=0; A unused;

0=0

rAVY00013=1; K number of words;

1=1

MW 00014 =0 000f, A output data

15=15
(NS A)—
[A]Prm MADOOT0 [BI[Sts] mBOOOOOD

0

5-86

5.5 Program Control Instructions

5.5.6 Call Extended Program (XCALL)

5.5.6 Call Extended Program (XCALL)
(1) Operation

An extended program (i.e., a table program, such as a constants table, an I/O conversion table, an interlock table, or a
part composition table) is executed. The MPE720 converts the extended program into a ladder program. Converted lad-
der programs can be executed with the XCALL instruction.

Although more than one XCALL instruction can be used in a single drawing, the same extended program cannot be
called more than once.

Ladder Drawing Extended program
called.

N
|4
XCALL
Extended program

VN

(2) Format
. X
Icon: CALL
HACALL &
MName 7
T Key entry: XCALL
Program type
Parameter Name Applicable Data Types

Registers cannot be used. Specify the following type.
* MCTBL: Constants table

Program type (Name) « IOTBL: I/O conversion table*

« ILKTBL: Interlock table*

* ASMTBL: Part composition table*

* 1/O conversion tables, interlock tables, and part composition tables are not supported by MPE720 version 6.
Use MPE720 version 5 if you have created these types of tables.

(3) Programming Example

This example shows how to call an MCTBL constants table.

Mame MCTBL |

Instructions

5-87

5-88

5.5 Program Control Instructions

5.5.7 WHILE Construct (WHILE, END_WHILE)

5.5.7 WHILE Construct (WHILE, END_WHILE)

(1) Operation

The programming between the WHILE and END WHILE instructions are executed when the conditional expression
for the WHILE instruction is satisfied. After the last line is executed, program execution returns to the WHILE instruc-
tion. Execution of the programming is repeated for as long as the conditional expression is satisfied.

If the conditional expression is not satisfied, program execution jumps to the next step following the END WHILE
instruction. None of the programming between the WHILE and END_WHILE instructions is executed.

WHILE instruction
<conditional_expression>

Condition
satisfied?

Satisfied.™

| Programming |

END_WHILE

Not satisfied.™

A 4

Next step

* 1. The programming is executed and then execution returns to the WHILE instruction.
* 2. The programming is not executed and execution jumps to the next step.

(2) Format

— WHILE
MWO0000=0

Programming

END WHILE

b o
‘—

Conditional expression

. END_
Icon: WHILE WHILE

Key entry: WHILE, WEND

Parameter Name

Applicable Data Types

B

w L

F

A Index Constant

Conditional expression Oo*

o Ok

O*

X o* o*

* Write with the format for an EXPRESSION instruction.
Refer to Chapter D Format for EXPRESSION Instruction for details on the format used to write the expression.

5.5 Program Control Instructions

5.5.7 WHILE Construct (WHILE, END_WHILE)

(3) Programming Example

In the following programming example, the registers from MW00100 to MWO00105 are added together and stored in
the MWO00000 register.

The conditional expression is I <5, so the ADD instruction is executed while I is 0 to 5.

The conditional expression is no longer satisfied when I is 6, so program execution jumps to the next step following the
END_WHILE instruction.

{ STORE o) e
WLFISre 00000 MLFDest WW00000

(STORE =
[WLF]Sre 00000 [WLF]Dest |

—__ WHILE E]

|==5

(ACD =
WLFISA MWOODOD MAYLFDest hWWO0000
[WLFISE MYWOOT100

NG A

MYL]Dest |

—— END WHILE |

Execution of the programming is repeated for as long as the conditional expression for the WHILE instruction
is satisfied.

Instructions

IMPORTANT

If the conditional expression never becomes unsatisfied, or if it takes too much time to become unsatisfied, the
Machine Controller system will shut down. ﬂ
In the example given above, an endless loop would occur if the programming did not include the instruction

that increments 1.

5-89

5.5 Program Control Instructions

5.5.7 WHILE Construct (WHILE, END_WHILE)

(4) Additional Information

[a] Applicable Conditional Expressions

The conditional expression for a WHILE instruction must be written with the format for an EXPRESSION instruction
to produce a Boolean (TRUE or FALSE) result. Numerical expressions that include substitution operators will not be

recognized.
Expression Example Notation Remarks
MBO000001 == true OK TRUE: 1 (ON)
MB000001 != false OK FALSE: 0 (OFF)
MWO00002 < 100 OK —
MF00002 < sin(60.0) OK -
MWO00001 == 0x00FF OK OK Prefix hexadecimal values with 0x.
MBO000001 = true NG -
MWO00001 = MW00002 NG -

* Referto Appendix D Format for EXPRESSION Instruction for details on applicable instructions, operation order, and
notation conventions.

[b] Nesting Depth

The FOR, WHILE, and IF constructs can contain other constructs. This is called nesting. The maximum depth of a
nested structure that uses FOR, WHILE, and IF statements is limited to 8 levels.

If an instruction is preceded by a contact, it is treated like an IF construct and is included in the number of nesting lev-
els.

5-90

5.5 Program Control Instructions

5.5.8 FOR Construct (FOR, END_FOR)

5.5.8 FOR Construct (FOR, END_FOR)
(1) Operation

The programming between the FOR and END_FOR instructions is repeatedly executed.

The initial value starts with the value in a register specified as the variable. This variable is incremented by the step
value each time execution is repeated.

The conditional expression for the FOR instruction is no longer satisfied when the value of the variable exceeds the
maximum value, so program execution jumps to the next step.

Initialization of FOR
instruction variables

Variable = Variable + Step value

Not satisfied.

Variable > Maximum value?

Satisfied.

(END_FOR)

!

Next step
(2) Format
2
— FOR =)= Icon: FOR, E:}DFI %
Variable —[W]var MWO0000 Maximum value B
[Nt WWOO00 2

[hax W00 00 2 —
Initial value M]Step MWDODOS‘_l_ Step value

Programming

Key entry: FOR, FEND

END_FOR

Applicable Data Types
Parameter Name
B w L F A Index Constant
Variable (Var) X o* X X X @] X
Initial value (Init) X O X X X @] O
Maximum value (Max) X O X X X @] O
Step value (Step) X O X X X O O

* C and # registers cannot be used.

5-91

5.5 Program Control Instructions

5.5.8 FOR Construct (FOR, END_FOR)

(3) Programming Example
In the following programming example, the registers from MW00100 to MW00105 are added together and stored in

the MWO00000 register.
In this example, variable I is initialized to 0 by storing 0. Thereafter, the ADD instruction is executed until variable I
exceeds the maximum value of 5. The conditional expression is no longer satisfied when I is 6, so program execution

jumps to the next step following the END FOR instruction.

{ STORE A

L%
WLFSrc 00000 [WLF]Dest MWOO000

FOR &

] War |
[Winit 00000

[WMax 00005
[W]Step 00001

(ADD) o
MYLF]SrcA MWOD0D0 [WLF]Dest WA00000
MYLF]ScE W00 00

—1_ EMND FOR

(4) Additional Information

The FOR, WHILE, and IF constructs can contain other constructs. This is called nesting. The maximum depth of a
nested structure that uses FOR, WHILE, and IF statements is limited to 8 levels.
If an instruction is preceded by a contact, it is treated like an IF construct and is included in the number of nesting lev-

els.

5-92

5.5 Program Control Instructions

5.5.9 IF Construct (IF, END_IF)

(1) Operation

5.5.9 IF Construct (IF, END_IF)

Execution of the programming between the I[F and END_IF instructions is repeated for as long as the conditional

expression for the IF instruction is satisfied.
The programming is not executed if the conditional expression is not satisfied.

IF instruction
<conditional_expression>

Not satisfied.™2

Condition
satisfied?

Satisfied.™

| Programming |

Next step

* 1. The programming is executed and execution jumps to the next step.
* 2. The programming is not executed and execution jumps to the next step.

(2) Format

N S-)

WMEOODO00 ¢

END.

Conditional lon: IF . |F

Programming 1

EMND IF

expression

Key entry: IF, IEND

Applicable Data Types
Parameter Name
B W L F A Index Constant
Conditional
expression O o O o x O o

* Write with the format for an EXPRESSION instruction.
Refer to Appendix D Format for EXPRESSION Instruction for details on the format used to write the expression.

Instructions

5-93

5.5 Program Control Instructions

5.5.9 IF Construct (IF, END_IF)

(3) Programming Example

When the conditional expression (MB000001) for the IF instruction turns ON, the value of MW00010 is set in
MWO01000 and MW00011 is incremented.

— [-)

MBO00001

(STORE =
WLFISIC MWO0010 [WLF]Dest MWO00100

(NC E}—
[WLIDest MWODO01

—1_ END IF

(4) Additional Information

[a] Applicable Conditional Expressions

The conditional expression for an IF instruction must be written with the format for an EXPRESSION instruction to
produce a Boolean (TRUE or FALSE) result. Numerical expressions that include substitution operators will not be rec-

ognized.
Expression Example Notation Remarks
MBO000001 == true OK TRUE: 1 (ON)
MBO000001 != false OK FALSE: 0 (OFF)
MWO00002 < 100 OK —
MF00002 < sin(60.0) OK -
MWO00001 == 0x00FF OK OK Prefix hexadecimal values with 0x.
MBO000001 = true NG -
MWO00001 = MW00002 NG -

* Referto Appendix D Format for EXPRESSION Instruction for details on applicable instructions, operation order, and
notation conventions.

[b] Nesting Depth

The FOR, WHILE, and IF constructs can contain other constructs. This is called nesting. The maximum depth of a
nested structure that uses FOR, WHILE, and IF statements is limited to 8 levels.
If an instruction is preceded by a contact, it is treated like an IF construct and is included in the number of nesting lev-

els.

5-94

5.5 Program Control Instructions

5.5.10 IF-ELSE Construct (IF, ELSE, END_IF)

5.5.10 IF-ELSE Construct (IF, ELSE, END_IF)

(1) Operation

When the conditional expression for the IF instruction is satisfied, only programming 1 is executed. Programming 2 is
not executed.
If the conditional expression is not satisfied, only programming 2 is executed. Programming 1 is not executed.

IF instruction
<conditional_expression>

Not satisfied.”
Condition

satisfied?

Satisfied.” (ELSE)

y

| Programming 1 | | Programming 2 |

(END_IF)

y

Next step

* 1. Programming 1 is executed and execution jumps to the next step.
* 2. Programming 2 is executed and execution jumps to the next step.

(2) Format

-_H: ™ . "
ME000000 Conditional lcon: IF, BSE, B8

expression

Instructions

Programming 1

ELSE

Programming 2 Key entry: IF, ELSE, IEND

EMND IF

Applicable Data Types
B w L F A Index Constant
Conditional expression o* o* o* O* X o* O*

Parameter Name

* Write with the format for an EXPRESSION instruction.
Refer to Appendix D Format for EXPRESSION Instruction for details on the format used to write the expression.

5-95

5.5 Program Control Instructions

5.5.10 IF-ELSE Construct (IF, ELSE, END_IF)

(3) Programming Example
When the conditional expression (MB000001) for the IF instruction turns ON, the value of MW00010 is set in
MW01000 and MWO00011 is incremented. When the conditional expression (MB000001) for the IF instruction is OFF,
the value of MW00009 is set in MW01000.

— IF)

MBO00001

{ STORE =
MALFISe MWO00010 [ALFDest MW01000

(NC E}—

[WL]Dest MWOODT 1

—1_ ELSE

(STORE Fo) oo

L
WLFISrc MWO0D0S [WLF]Dest MWO1000

(" END IF_)

(4) Additional Information

The conditional expressions that can be used, and the nesting depth is the same as for IF constructs.

5-96

5.5 Program Control Instructions

5.5.11 Expression (EXPRESSION)

5.5.11 Expression (EXPRESSION)
(1) Operation

You can use the following elements in an EXPRESSION instruction:
* A variable name or structure in place of a register, similar to C language.
* Basic functions, such as the SIN and COS functions.
* Arithmetic operators, logical operators, comparison operators, and substitution operators.
* Arrays.

EXPRESSION instruction

MWO00000 = 10;

MWO00001 = DATAT,
MLO00002 = MW00000 + 100;
MF00004 = sin(MF00006);
MWO00006 = 0x3FFF;

(2) Format

Icon: F%B

— EXPRESSICN)
MO0 00 0=hy 0000 1,
MO0 00 2=My 0000 3+MA00 004,

T

Operation expression

Key entry: EXPR

Applicable Data Types
Parameter Name

B W L F A Index Constant

Operation expression o* o* o* o* X o* o*

* \Write with the format for an EXPRESSION instruction.
Refer to Appendix D Format for EXPRESSION Instruction for details on the format used to write the expression.

Instructions

5-97

5.5 Program Control Instructions

5.5.11 Expression (EXPRESSION)

(3) Programming Example

In the following programming example, multiple operations are programmed in a single EXPRESSION instruction.

—{ EXPRESSION =
DW00000=DW00001* D¥W00001+ D¥wD0002* DW00002;
25=3%3+4%4

DW00004=10+1072;

30=10+10%2

DW00004=(10+10)*2;

40=(10+10}*2

DF00008=5in{DF00006)

5.000000E-001=sin(3.000000E+ 001}

(4) Additional Information

The EXPRESSION instruction can be programmed with numeric expressions in addition to expressions that return
Boolean TRUE or FALSE values.

Expression Example Notation Remarks
MBO000000 = true; OK TRUE: 1 (ON)
MW00000 = MW00001+10 OK -
MW00000 = 0x00FF; OK Prefix hexadecimal values with 0x.
MBO000000 == true; NG -
MW00001 > MWO00000; NG -

+ Refer to Appendix D Format for EXPRESSION Instruction for details on applicable instructions, operation
order, and notation conventions.

5-98

5.6 Basic Function Instructions

5.6.1 Square Root (SQRT)

5.6 Basic Function Instructions

5.6.1

[a]

[b]

Square Root (SQRT)

Operation

The SQRT instruction calculates the square root of the integer or real number input data and stores the result in the out-
put data.
Double-length integers cannot be used.

+ If the input data is less than 0, the absolute value of the input data will be used to perform the operation and output
the result.

Integer SQRT: When the Input Data and Output Data Are Integer Data.

J Input data x 128 ﬂ/ 2 —>

+ With an integer SQRT instruction, the result is calculated differently from the square root used in mathematics.

Output data

Real Number SQRT: For Any Other Data Types

j Input data

Output data

Format

Icon: "q"_

— SQRT)
[WFISrc MFO0000 [WFIDes! MFOD0D2

Input data | Output data |

Key entry: SQRT

Applicable Data Types
Parameter Name
w F Index Constant
Input data (Src) X O O O O
Output data (Dest) X o* o* (@) X

* C and # registers cannot be used.

Instructions

5-99

5.6 Basic Function Instructions

5.6.1 Square Root (SQRT)

(3) Programming Examples
The following programming examples demonstrate the SQRT instruction using integer and real number input data.
* Integer SQRT

The square root of 64, an integer in the input data in MW00000, is multiplied by 128 /2 and the result is stored
in the output data in DW00000.

J64 x 128 /2 — DW00000 = 1,448

{ SQRT

[WEISrc MMWOD0OD [WF]Dest DW000OO
64 1448

* Real Number SQRT
The square root of 64.0, a real number in the input data in MF00000, is calculated and the result is stored in the
output data in DF00000.

~64.0 — DF00000 = 8.0

{ SQRT

[WFISrc MFODOOD [Wi]Dest DFOO0O0
6.400000E+001 £.000000E+000

5-100

5.6 Basic Function Instructions

5.6.2 Sine (SIN)

5.6.2 Sine (SIN)

(1) Operation

The SIN instruction calculates the sine of the integer or real number input data and stores the result in the output data.
Double-length integers cannot be used.

[a] Integer Input Data and Output Data

SIN (| Inputdata |) x 10000 —»

1. The input data is in degrees, where 1 = 0.01 degree.
* 2. The operation result is multiplied by 10,000 and stored in the output data.

Output data

[b] Real Number Input Data and Output Data

SIN (|Inputdata |) —

¢+ The input data is in degrees.

Output data

(2) Format

Icon: Sin

—{ SIN

WFISc MFOD000

Input data

f)

[WF]Desi MFO0002

Output data

Key entry: SIN

Applicable Data Types
Parameter Name
B w F Index Constant
Input data (Src) X O O O O
Output data (Dest) X o* o* @) X

* C and # registers cannot be used.

[a] Integer

The input data is in degrees, where 1 = 0.01 degrees.
Therefore, the SIN function can operate on values between -327.78 and 327.67 degrees.
The output of the SIN function is multiplied by 10,000, so the output data will be output between -10,000 and 10,000.

[b] Real Number

The input data is in degrees.

Instructions

5-101

5-102

5.6 Basic Function Instructions

5.6.2 Sine (SIN)

(3) Programming Examples
The following programming examples demonstrate the SIN instruction using integer and real number input data.
* Integer SIN

The sine of 9,000, an integer in the input data in MW00000, is calculated and the result is stored in the output
data in DW00000.

SIN (90.00 deg) x 10,000 — DW00000 = 10,000

-
SIN

1§

[WFISrc MWOD0OD [WF]Dest DWVODOOO

9000 10000

e Real Number SIN

The sine of 90.0, a real number in the input data in MF00000, is calculated and the result is stored in the output
data in DF00000.

SIN (90.0 deg) — DF00000 = 1.0

-
SN
i\
[WF]sre WRFOO000 [WWFDest DFOO0OOO

9.000000E+001 1.000000E+000

5.6 Basic Function Instructions

5.6.3 Cosine (COS)

5.6.3 Cosine (COS)

(1) Operation

The COS instruction calculates the cosine of the integer or real number input data and stores the result in the output
data.
Double-length integers cannot be used.

[a] Integer Input Data and Output Data

COS (|[Inputdata) x10000 —>»

* 1. The input data is in degrees, where 1 = 0.01 degree.

* 2. The operation result is multiplied by 10,000 and stored in the output data.

* 3, The input data must be between -327.68 and 32.767 degrees. Any other number will not produce the correct
result.

Output data

[b] Real Number Input Data and Output Data

cos ([ipwame]) —

¢ The input data is in degrees.

Output data

(2) Format

Icon: COS

— COS

[WF]Sre MFO0000

Input data

-

[WF]Dest MFO0002

Key entry: COS

* C and # registers cannot be used.

[a] Integer

The input data is in degrees, where 1 = 0.01 degree.

Therefore, the COS function instruction can operate on values between -327.78 and 327.67 degrees.
The output of the COS function is multiplied by 10,000, so the data will be output between -10,000 and 10,000.

[b] Real Number

The input data is in degrees.

Applicable Data Types
Parameter Name

B w L F Index Constant @

Input data (Src) X O (@) O O S
[&]

Output data (Dest) X o* X o* O X =
(2]

[

5-103

5.6 Basic Function Instructions

5.6.3 Cosine (COS)

(3) Programming Examples

The following programming examples demonstrate the COS instruction using integer and real number input data.
¢ Integer COS
The cosine of 18,000, an integer in the input data in MW00000, is calculated and the result is stored in the output
data in DW00000.
COS (180.00 deg) x 10,000 - DW00000 = -10,000

{ COS

1§

A Sre MWWOODOD [WF Dest DWOOOO0O
18000 -10000

* Real Number COS
The cosine of 180.0, a real number in the input data in MF00000, is calculated and the result is stored in the out-
put data in DF00000.
COS (180.0 deg) — DF00000 =-1.0

{ COS

LN

[WFISre MFODO0D [¥WFDest DF0O0000

1 800000E+002 -1 000000E+000

5-104

5.6 Basic Function Instructions

5.6.4 Tangent (TAN)

5.6.4 Tangent (TAN)
(1) Operation

The TAN instruction calculates the tangent of the real number input data and stores the result in the output data.
¢+ The input data is in degrees.

TAN (|Inputdata |) —

Output data

(2) Format

Icon:

tan

_|:

[F]Src MF00000

Input data

TAN =

[FlDest MFOOODZ?

Key entry: TAN

Applicable Data Types
Parameter Name
w F Index Constant
Input data (Src) X X O X X O
Output data (Dest) X X X o" X X X

* C and # registers cannot be used.

(3) Programming Example

In the following programming example, the tangent of 45 in the input data in MWO00000 is calculated and the result is
stored in the output data in DF00000.
TAN (45.00 deg) — DF00000 = 1.0

{ TAN
[F]Src MFO0000
4 500000E+001

A
[FDest DFOO000
1 000000E+000

Instructions

5-105

5.6 Basic Function Instructions
5.6.5 Arc Sine (ASIN)

5.6.5 Arc Sine (ASIN)
(1) Operation

The ASIN instruction calculates the arc sine of the real number input data and stores the result in the output data.
¢+ The output data is in degrees.

-1
SIN (| Input data) — Output data

(2) Format

B "-I
_[I.EI.IS|N ED— Icon: sIN

[Flsre MFOOODOD [F]Dest MFOOOOZ

Input data Output data Key entry: ASIN

Applicable Data Types
Parameter Name
B w L F A Index Constant
Input data (Src) X X X O X X O
Output data (Dest) X X X o* X X X

* C and # registers cannot be used.

B Input Data Range

Set the input data to a value between -1.0 and 1.0. The output is set to 0 if the input value is out of range.

(3) Programming Example

In the following programming example, the arc sine of 1.0 in the input data in MF00000 is calculated and the result is
stored in the output data in DF00000.

SIN (1.0)'1 — DF00000 = 90.0 (degrees)

{ ASIN

1§
[FlSc MFO0000 [F]Dest DFOOOO0
1 000000E+000 9. 000000E+001

5-106

5.6 Basic Function Instructions

5.6.6 Arc Cosine (ACOS)

5.6.6 Arc Cosine (ACOS)
(1) Operation

The ACOS instruction calculates the arc cosine of the real number input data and stores the result in the output data.
¢+ The output data is in degrees.

-1
cos ([rmmmr])"

Output data

(2) Format

-1
Icon: ons
— ACOS =)
[FlZrc MFOODOD [F]Dest MFOOOOZ
Applicable Data Types
Parameter Name

B w L F Index Constant

Input data (Src) X X O X O

Output data (Dest) X X X o" X X

* C and # registers cannot be used.

B Input Data Range

Set the input data to a value between -1.0 and 1.0. The output is set to 0 if the input value is out of range.

Programming Example

In the following programming example, the arc sine of 0.5 in the input data in MF00000 is calculated and the result is
stored in the output data in DF00000.

COS (0.5)" = DF00000 = 60.0 (degrees)

{ ACOS5

[FlSc MFO0000 [F]Dest DFOOOO0
5 000000E-001 6.000000E+001

Instructions

5-107

5.6 Basic Function Instructions

5.6.7 Arc Tangent (ATAN)

5.6.7 Arc Tangent (ATAN)

(1) Operation
The ATAN instruction calculates the arc tangent of the real number input data and stores the result in the output data.

¢+ The output data is in degrees.

-1
TAN (| Input data) — Output data

(2) Format
Icon: taﬂ
— ATARN =
WIS MFO0000 [WFDes! MFOD0O0Z
Applicable Data Types
Parameter Name
B w L F A Index Constant
Input data (Src) X X @) X X O
Output data (Dest) X X X o* X X X

* C and # registers cannot be used.

(3) Programming Example
In the following programming example, the arc tangent of 1.0 in the input data in MF00000 is calculated and the result
is stored in the output data in DF00000.
TAN (1.0)'1 — DF00000 = 45.0 (degrees)

{ ATAN
[WFISrc MFO0000 [WFDest DFO0000
1 000000E+000 4 500000E+001

5-108

5.6 Basic Function Instructions

5.6.8 Exponential (EXP)

(1) Operation

5.6.8 Exponential (EXP)

The EXP instruction calculates the value obtained by raising base e of the natural logarithm to the real number input
data and stores the result in the output data.

+ “e”is the base of the natural logarithm.

(2) Format

e

Input data

Output data

_(

ExF

)

[Fl=re

MFOO000

Input data

[FlDes! MFOOO0OZ

Output data

Icon: KY

Key entry: EXP

Parameter Name

Applicable Data Types

B w F Index Constant
Input data (Src) X X O X O
Output data (Dest) X X o* X X

* C and # registers cannot be used.

(3) Programming Example

The following programming example calculates base e of the natural logarithm raised to 1.0 in the input data in

MF00000, and stores the result in the output data in DF00000.

¢!% = DF00000 = 2.718282

[Fl&re

EXP

MFOOO0O
1.000000E+000

[FDest DFOO000
3 718282E+000

INFO If the operation result overflows, the output data will be set to the maximum value 3.402E+38 and an operation error will not
1% occur.

Instructions

5-109

5.6 Basic Function Instructions

5.6.9 Natural Logarithm (LN)

5.6.9
(1)

Natural Logarithm (LN)

Operation

The LN instruction calculates the natural logarithm of X (log, X), when input data X is a real number and stores the

result in the output data.

Format

Output data

_[

) oy

[Fl=re

|Oge Input data
LM
MEOOOOO [F]Dest MEOCOOZ

Input data

Output data

Icon: In

Key entry: LN

Parameter Name

Applicable Data Types

B w F Index Constant
Input data (Src) X X @) X O
Output data (Dest) X X o* X X

* C and # registers cannot be used.

B When Input Data Is Less Than or Equal to 0

5-110

If the input data is less than 0, the absolute value of the input data will be used to perform the operation and output the

result.

The output data is set to -o< if the input value is 0.

Programming Example

The following programming example calculates the natural logarithm when the input data is 2.718282 (= e) in

MF00000, and stores the result in the output data in DF00000.

Log,2.718282 = log, e — DF00000 = 1.0

[Flare

=

LI

MFOOO0D
2716262E+000

[F]Dest DFOOCOO
1.000000E+000

5.6 Basic Function Instructions

5.6.10 Common Logarithm (LOG)

5.6.10 Common Logarithm (LOG)

(1) Operation

The LOG instruction calculates the common logarithm of X (log;(X), when input data X is a real number and stores

the result in the output data.

Output data

|0910 -

(2) Format

lcon: log

— LOG I

[Flzre MFOOODO [F]Dest WMFOOOOZ

Input data Output data

Key entry: LOG

Applicable Data Types
Parameter Name
w F Index Constant
Input data (Src) X O X O
Output data (Dest) X o* X X

* C and # registers cannot be used.

B When Input Data Is Less Than or Equal to 0

If the input data is less than 0, the absolute value of the input data will be used to perform the operation and output the
result.
The output data is set to -o< if the input value is 0.

Programming Example

The following programming example calculates the common logarithm when the input data is 10.0 in MF00000, and
stores the result in the output data in DF00000.
log;(10.0 — DF00000 = 1.0

LOG

[F]Dest DFOOCOO
1.000000E+000

=

MFOOO0D
1.000000E+001

[Flare

Instructions

5-111

5.7 Data Shift Instructions
5.7.1 Bit Rotate Left (ROTL)

5.7 Data Shift Instructions
5.7.1 Bit Rotate Left (ROTL)

(1) Operation

The ROTL instruction rotates the data specified by the first bit address and bit width to the left by the specified number

of bits.

|< Bit width (m) >|

m-1m-2m-3 4 3 2 1 0

+#— First bit
- p address
¥ ¥ L X F h J
L¢—d——d— ---m - ——il i i o
Number of bits to rotate
(2) Format
— ROTL = teon: AT
[ElAdr MEOCOOOO [ATWIcth KWOODDD2
[ANum KAO000 T
Number of bits -
to rotate Bit width Key entry: ROTL
First bit address
Applicable Data Types
Parameter Name
B W F A Index Constant

First bit address (Adr) o* X X X X X X
Number of bits to rotate » o y y « o o
(Num)
Bit width (Width) X O X X X O O

* C and # registers cannot be used.

5-112

5.7 Data Shift Instructions

(3) Programming Example

5.7.1 Bit Rotate Left (ROTL)

In the following programming example, the data specified as 8 bits wide from the first bit address at MB000000 is

rotated two bits to the left.

The ROTL instruction is executed when switch 1 (DB000000) turns ON.

SVYITCH pulse
DEOD0O00 DEOOO310

{ ROTL B

+

L8
[BlAdr MEODODOD [WWidth 00008
[W]Nurm 00002

The following figure shows the operation when MW00000 is 12,345 (3039 hex).

Data specified by the first
bit address and bit width

N

4 N
Bit F Bit C Bit B Bit 8 Bit 7 Bit 4 Bit 3 Bit 0
Before Execution
MWO00000 0 0 1 1 0 0 0 0 0 0 1 1 1 0 0 1
(3039 hex)
Rotated 2 bits to the left.
After Execution
MWO00000 0 0 1 0 0 0 0 1 1 1 0 0 1 0 0

(30E4 hex)

Instructions

5-113

5.7 Data Shift Instructions
5.7.2 Bit Rotate Right (ROTR)

5.7.2 Bit Rotate Right (ROTR)
(1) Operation

The ROTR instruction rotates the data specified by the first bit address and bit width to the right by the specified num-

ber of bits.
|< Bit width (m) >|
m-1m-2m-3 4 3 2 1 0
#— First bit
address
A AR A A O
Number of bits to rotate
(2) Format
. ROTR =) loon: P!
[B]Adr MBODOOOD [MA]PWIdth WWWOO0O00 2
AIMum WWW0O00 T
Number of bits L
Bit width
to rotate Key entry: ROTR
First bit address
Applicable Data Types
Parameter Name
B W F A Index Constant
First bit address (Adr) o* X X X X X X
Number of bits to rotate « o y y « o o
(Num)
Bit width (Width) X O X X X O O

* C and # registers cannot be used.

5-114

5.7 Data Shift Instructions

(3) Programming Example

5.7.2 Bit Rotate Right (ROTR)

In the following programming example, the data specified as 8 bits wide from the first bit address at MB000000 is

rotated two bits to the right.

The ROTR instruction is executed when switch 1 (DB000000) turns ON.

SWITCHT pulse
DBEOO0000 DEOOO310

e

| +

ROTR

=

[WNUm 00002

1§
[Bladr MBOD000O

The following figure shows the operation when MWO00000 is 12,345 (3039 hex).

[WIidth 00008

Data specified by the first
bit address and bit width

N
4 B
Bit F Bit C Bit B Bit 8 Bit 7 Bit 4 Bit 3 Bit 0
Before Execution
MWO00000 0 0 1 1 0 0 0 0 0 0 1 1 1 0 1
(3039 hex)
Rotated 2 bits to the right.
After Execution
MWO00000 0 0 1 1 0 0 0 0 0 1 0 0 1 1 0
(304E hex)

Instructions

5-115

5.7 Data Shift Instructions
5.7.3 Move Bit (MOVB)

5.7.3 Move Bit (MOVB)
(1) Operation

The MOVB instruction moves the designated number of bits of data from the area that starts with the first source bit
address to the area that starts with the first destination bit address.

Number of bits to move m
S

m - 0 First source bit address

Source area 1 1 0 0 0 1

First destination bit address

/

Bit data moved.

Destination area | 1 1 0 0 0 1

N J
N

Number of bits to move m

+ The bits are moved one bit at a time from the lowest relay address.
If the source area and destination area overlap, the source data that is actually moved may not be the data that
was in the source area before the instruction was executed.

B Example Where the Source Area and Destination Area Overlap

First source bit address:

Overlap KMBOOOOZ
F .. 8 7 6 5 4 3 2 1 0
Source area
(shaded portion) | © olo|o0o|d|c|b|afO0]oO
@/® @/ @
Destination area
(shaded portion) | O | . | O | b [a|b|a|b|a|0]|0

\ First destination bit address:
A 4 MB00004

Bit status is moved in the following order: @ to @. This means that the status of bits 2 and 3
are moved to bits 4 and 5 (O and @) and then the status of bits 4 and 5 are moved (® and @).

5-116

5.7 Data Shift Instructions

(2) Format

— MOVE

b)

[B]Src MBOODOOO [B]Dest MBOOOD1D 4—
T MAWidth MAWO0D02

First source bit address

Number of bits
to move

First destination bit address

5.7.3 Move Bit (MOVB)

Icon:; MOV
B

Key entry: MOVB

Applicable Data Types
Parameter Name
W L F A Index Constant
First source bit address
O X X X X X X

(Src)
First destination bit address o* y y « v < «
(Dest)
Number of bits to move X O X X X (@] (@]

* C and # registers cannot be used.

(3) Programming Example

In the following programming example, four bits of data are moved from the area that starts with the first source bit
address at MB000010 to the area that starts with the first destination bit address at MB000020.
The MOVB instruction is executed when switch 1 (DB000000) turns ON.

SWYITCHT pulse
DEOD0O00 DEOOO310

| +-

-
L8

MOVE F)

[Elors MEDODO10

[B]Dest MEOOOOZ0
[WWWidth 00004

Instructions

The following table illustrates how the data in the source area is moved to the destination area.

Source area Destination area
. . Data before Execution | Data after Execution of
Register Data Register . .
of Instruction Instruction
MB000010 0 — | MB000020 0 0
MB000011 1 MB000021 0 1
MB000012 1 MB000022 0 1
MB000013 1 MB000023 0 1

5-117

5.7 Data Shift Instructions
5.7.4 Move Word (MOVW)

5.7.4 Move Word (MOVW)
(1) Operation

The MOVW instruction moves the specified number of words from the area that starts with the first source address to
the area that starts with the first destination address.

Number of words to move m
S

m e 0 First source address

Source area 6 5 4 3 2 1

First destination address

/

Word data moved.

Destination area | 6 5 4 3 2 1

N J
N

Number of words to move m

+ The words are moved one at a time from the lowest register address.
If the source area and destination area overlap, the source data that is actually moved may not be the data that was in
the source area before the instruction was executed.

B Example Where the Source Area and Destination Area Overlap

First source address:

Overlap / MW00002
F 8 7 6 5 4 3 2 1 0
Source area
(shaded portion)| O | - | O [0 |0 | dc b jalo0]|o0
@ Vs e /@ Y/ O]
Destination area
(shaded portion)| 0 0 b a b a b a | o0 0
\ First destination address:
<+ MWO00004

Word contents are moved in the following order: @ to @. This means that the contents
of MW00002 and MWO00003 are moved to MW00004 and MW00005 (D and @) and
then the contents of MW00004 and MWO00005 are moved (® and @).

5-118

5.7 Data Shift Instructions

5.7.4 Move Word (MOVW)

(2) Format

— MOV Y = lcon: MOV
[W]Src MW0000D [W]Dest MWOD010 ¢— W
T [WIWicth MVYOD00 1

First source address Number of words to move

Key entry: MOVW

First destination address ——

Applicable Data Types
Parameter Name

B W L F A Index Constant
First source address

X (@] X X X X X
(Src)
First destination address « " « « y y «
(Dest) o
Number of words to
move (Width) % © x x % © ©

* C and # registers cannot be used.

(3) Programming Example

In the following programming example, four words of data from the area that starts with the first source address at
MWO00010 are moved to the area that starts with the first destination address at MW00020.
The MOVW instruction is executed when switch 1 (DB000000) turns ON.

SWITCH
DECOOO0 DENOO310
T o =
[M])Sre MWO0010 [WDest KWWOODZ0
[AWidth 00004

The following table illustrates how the data in the source area is moved to the destination area.

Source area Destination area
. . Data before Execution | Data after Execution of
Register Data Register . .
of Instruction Instruction
MWO00010 10 — | MWO00020 0 10
MWO00011 20 MWO00021 0 20
MWO00012 30 MWO00022 0 30
MWO00013 40 MW00023 0 40

Instructions

5-119

5.7 Data Shift Instructions

5.7.5 Exchange (XCHG)

5.7.5 Exchange (XCHG)
(1) Operation

The XCHG instruction exchanges the designated number of words to move between table 1 and table 2.

The data contents of table 1 and table 2 specified by data table start 1, data table start 2, and the number of words to

move are exchanged.

Table 1 data Table 2 data
table start 1 table start 2 Table 1 Table 2
1 11 11 1
2 12 12 2
Data exchanged.
Number of words 3 13 13 3
to move
4 14 14 4
5 15 15 5
6 16 6 16
(2) Format
_(ACHG E—' lcon: MCHE
WTable1 ®WWWOD000 [A]TWIdth RWWOO0Z20 '
W]Table2 MWOOO10 T
Data table start 2 Number of words
to move
Key entry: XCHG
Data table start 1
Applicable Data Types
Parameter Name
B W L F A Index Constant
Data table start 1 y o* « % % % %
(Table1)
Data table start 2 y O % % % % %
(Table2)
z\\l,L\;irgtli]e)r of words to move y o % % y o o

* C and # registers cannot be used.

5-120

5.7 Data Shift Instructions

5.7.5 Exchange (XCHG)

(3) Programming Example

In the following programming example, four words of data are exchanged between table 1, which starts at MW00010,
and table 2, which starts at MW00020.
The XCHG instruction is executed when switch 1 (DB000000) turns ON.

SWITCH?
DBO00000 DEBEO00310
e =
[Takle1 hWWO00T0 PATWIdth 00004
M Takle2 WMYWOODZ0

The following table illustrates how the data is exchanged between table 1 and table 2.

Table 1 Table 2
Data before Data after Data before Data after
Register Execution of Execution of Register Execution of Execution of
Instruction Instruction Instruction Instruction
MWO00010 10 123 MW00020 123 10
MWO00011 20 234 S| MW00021 234 20
MWO00012 30 345 MW00022 345 30
MWO00013 40 456 MW00023 456 40

Instructions

5-121

5.7 Data Shift Instructions
5.7.6 Table Initialization (SETW)

5.7.6 Table Initialization (SETW)

(1) Operation

The SETW instruction stores the data designated by the move data in all registers in the area that starts from the first
destination register address for the number of words to set. The data is stored one word at a time from the lowest regis-
ter address to the highest.

The data is stored in order from the lowest register address to the highest.

First destination register address

Move data l
abcd q abcd MwOOooo
abcd MwOOooo + 1
Number of
abed words to set
abcd
abcd MwOOoood + 5
aaaa
(2) Format
First destination Icon: SﬁT
(SETV E) [| register address
MVDest KWMWWOODT0 6—
[W]Data WWO0000 6— Move data
BATWYI dth VYOO 00 ¢——
| Number of Key entry: SETW
words to set
Applicable Data Types
Parameter Name
B W L F A Index Constant
First destination register v o y » y y »
address (Dest)
Move data (Data) X @] X X X O O
Number of words to set
(Width) X O X X X O O

* C and # registers cannot be used.

5-122

5.7 Data Shift Instructions

(3) Programming Example

5.7.6 Table Initialization (SETW)

In the following programming example, the area of 1,000 words from MWO00000 is initialized to the move data (0) on

the first scan of the high-speed scan after the power is turned ON.

After High Scan Start,
Cnly 1 Scan ON
SEO0OOO1
|]

The following table illustrates how the registers are initialized to 0 after execution of the first scan of the high-speed

scan when the power is turned ON.

Register Data
MW00000 0
MWO00001 0
MWO00998
MW00999

(SETW _ E[}—
[W]Dest MWOOOD0
[W]Data 00000
[Awicth 01000

Instructions

5-123

5.7 Data Shift Instructions
5.7.7 Byte-to-word Expansion (BEXTD)

5.7.7 Byte-to-word Expansion (BEXTD)
(1) Operation

The BEXTD instruction expands the byte data from an area designated by the number of bytes to move from the first
source register address into individual word data, one byte at a time, and moves the word data to the area that starts
with the first destination register address. When the byte is expanded into a word, the upper byte of the word is set to 0.
The byte data from an area designated by the number of bytes to move from the first source register address is
expanded into individual word data and moved to the area that starts with the first destination register address.

Source area Destination area
Lower byte a a Lower byte
MwOoOooo MwOOoooo
Number of bytes Upper byte b 00H Upper byte
to move \
Lower byte c b Lower byte
MwOoooono + 1 MwoOOoooo + 1
Upper byte d 00H Upper byte
Lower byte e c Lower byte
MwOOooood + 2
00H Upper byte
d Lower byte
MwOOooood + 3
00H Upper byte
(2) Format

[EEATD ED lcon: B

[W]Sre MWOO0DD [W]Dest MWOOOD5 ¢— EXTD
T [Twidth KMWOD0O10
First source Number of bytes
register address to move Key entry: BEXTD
First destination

register address

Applicable Data Types
Parameter Name
B w L F A Index Constant

First source register « o y « « y y
address (Src)
First destination
register address X o* X X X X X
(Dest)
Number of bytes to
move (Width) x © % x x © ©

* C and # registers cannot be used.

5-124

5.7 Data Shift Instructions

5.7.7 Byte-to-word Expansion (BEXTD)

(3) Programming Example

In the following programming example, four bytes of data are expanded and moved from the area that starts with the
first source register address at MWO00010 to the area of words that starts with the first destination register address at
MW00020.

The BEXTD instruction is executed when switch 1 (DB000000) turns ON.

SWITCH
DECOOO0 DENOO310
. (BEXTD =
(WS MWO00010 [WDest KWOODZ0
AT dth 00004

The following table illustrates how the byte data in the source area is expanded and moved into word data in the desti-
nation area.

Source area Destination area

Register Data Register Data
MWO00010 Lower byte 10 hex MWO00020 Lower byte 10 hex
Upper byte 20 hex = Upper byte 00 hex
MWO00011 Lower byte 30 hex MWO00021 Lower byte 20 hex
Upper byte 40 hex Upper byte 00 hex
MW00022 Lower byte 30 hex
Upper byte 00 hex
MW00023 Lower byte 40 hex
Upper byte 00 hex

Instructions

5-125

5.7 Data Shift Instructions

5.7.8 Word-to-byte Compression (BPRESS)

5.7.8 Word-to-byte Compression (BPRESS)

(1) Operation

The BPRESS instruction stores the lower bytes of word data for the designated number of bytes to move starting from
the first source register address, in the area that starts from the first destination register address, one byte at a time. This
instruction performs the opposite operation of the BEXTD instruction.

The word data designated by the number of bytes to move is moved from the first source register address to the area

that starts with the first destination register address.
The upper byte is discarded.

Source area

5-126

Lower byte
MwOOooo

Upper byte

Lower byte
MwOOOoOOono + 1

Upper byte

Lower byte
MwOOoOono + 2

Upper byte

Lower byte
MwOOoOono + 3

Upper byte

(2) Format

\ A 4
o

BFRESS

) oy

[W]Src MW00000

I

D est
MYWidth hWOD0T0

7

MWO0005 ¢——

First source
register address

Number of bytes
to move

First destination
register address

Destination area

Lower byte

Upper byte

Lower byte

Upper byte

Lower byte

MwOOoooo

MwoOoOooono + 1

Icon: PRESS

Number of bytes

to move

Key entry: BPRESS

Parameter Name

Applicable Data Types

w L F A Index Constant
First source register o « y « y «
address (Src)
First destination register o « y « y «
address (Dest)
Number of bytes to move
(Width) O X X X @] O

* C and # registers cannot be used.

5.7 Data Shift Instructions

(3) Programming Example

5.7.8 Word-to-byte Compression (BPRESS)

In the following programming example, the lower bytes of data are moved from the area of four words that starts with

the first source register address at MW00010 to the area of four bytes that starts with the first destination register
address at MW00020.
The BPRESS instruction is executed when switch 1 (DB000000) turns ON.

SYWITCH1
DEDO0000
| |

DED00210

P

4+

BFRESS

-

L%
[W]Src MWO00T0 [ADest

MWOD 020

[]Width 00004

The following table illustrates how the word data in the source area is compressed and moved into byte data in the des-

tination area.

Source area Destination area
Register Data Register Data

MW00010 Lower byte 12 hex MW00020 Lower byte 12 hex

Upper byte 23 hex Upper byte 34 hex
MWO00011 Lower byte 34 hex MWO00021 Lower byte 56 hex

Upper byte 45 hex Upper byte 78 hex
MWO00012 Lower byte 56 hex

Upper byte 67 hex
MW00013 Lower byte 78 hex

Upper byte 89 hex

Instructions

5-127

5.7 Data Shift Instructions
5.7.9 Binary Search (BSRCH)

5.7.9 Binary Search (BSRCH)

(1) Operation

The BSRCH instruction searches for the search data using a binary search method in the area designated by the number
of words from the first address in the search range. The search result is output as the offset word number of the data that
matches the search data from the first register in the search range.

First register address First register address
in the search range in the search range
— f f Found at address + 3 from
MwOOoOoono 4 4 the first address
> in the search range.
mMwoOoOooono + 1 7 7
Search data:
20
Number of (MWODOOOO + 2 8 8 .
words in ﬁ Search result: 3 (offset)

range >
MwOOoOooo + 3 20 20
mMwOoOooono + 4 60 60

* 1. Always sort the search area in ascending order before executing the BSRCH instruction.

* 2. The conceptual diagram shown here is for integers. The instruction operates in the same way for double-length
integers and real numbers.

% 3. If the search data is not found, the instruction sets the search result to -1.

(2) Format

— BSRCH fral) o
—»WLF]Se MW000D0 [W]Result MAW00007
S [W]Aidth MWO00005 T

B
| :
[WLFData MWO000S oon- engy

+

Search data Search result

Key entry: BSRCH

Number of words

in range
First address
of the search range
Applicable Data Types
Parameter Name
B w L F A Index Constant
First address of search v o o o y « «
range (Src)
Number of words in range v v v y o
(Width)
Search data (Data) X O O O X @]
Search result (Result) X o* X X X X %

* C and # registers cannot be used.

5-128

5.7 Data Shift Instructions

(3) Programming Example

5.7.9 Binary Search (BSRCH)

In the following programming example, the data from ML00000 to ML00OOS is sorted when the sort command

(DB000000) turns ON.

Then, if the search command (DB000001) turns ON, the search data in ML00012 is searched for in the sorted data area.

sort
DEODOOO0 DEO0D210
| | f (SORT =
WLF]Table MLOODOO [W]Width 00005
search
DEODOOOT DEO0D31
N A (BSRCH =
WLASrE MLO0D0D [WiResult MWOOD10

[A]Wvidth 00005
[WLF]Data MLO0O12

The following table shows how the sort is processed when the first line is executed. Here, the data from ML00000 to
MLO00008 is as listed below, and the search data in ML0O0012 is 70. When the second line is executed, the search result

in MWO00010 is set to 4 as the result of finding 70.

Register Data before Execution of 1st Line Data after Execution of 1st Line Exect;t:zjnl_ﬁeesult of
ML00000 100 15
ML00002 30 30
ML00004 90 70 ML00004 = 70, so
MW00010 =4
ML00006 15 90
ML00008 70 100

Instructions

5-129

5.7 Data Shift Instructions
5.7.10 Sort (SORT)

5.7.10 Sort (SORT)
(1) Operation

The SORT instruction sorts the data in the range of registers from the first address of the sort range in ascending order.

The following diagram describes the operation using integers as an example. The sort is performed in the same way for
double-length integers and real numbers.

First address of sort range First address of sort range
— | |
60 4 MwOoOoooo
7 7 MwOooono + 1
Sorted in
Number of 20 ascending order. 8 MwOoOooo + 2
registers in range
8 20 MwOOooono + 3
4 100 MwOOOOo + 5
(2) Format
Icon: SOAT

— SORT A

LF]Table WAWOOD0O0 DWPWicth MWO0005

| |

First address Number of Key entry: SORT
of sort range registers in range
Applicable Data Types
Parameter Name
B w L F A Index Constant

First address of sort * * *
range (Table) x o o o X X X
Number of registers in
range (Width) x © x x X o ©

* C and # registers cannot be used.

5-130

5.7 Data Shift Instructions

5.7.10 Sort (SORT)

(3) Programming Example
In the following programming example, the data from ML00000 to ML00OOS is sorted in ascending order when the
sort command (DB000000) turns ON.

sort
DBO0000a0 DBo00310

i 5

[WLF]Table MLOOOOO [AWIdth 00005

The following table shows how the data from ML00000 to ML00008 is sorted when the SORT instruction is executed.

. Data before Execution of Data after Execution of
Register . .
Instruction Instruction
ML00000 100 15
ML00002 30 30
ML00004 90 70
MLO00006 15 90
MLO00008 70 100

Instructions

5-131

5.7 Data Shift Instructions

5.7.11 Bit Shift Left (SHFTL)

5-132

5.7.11 Bit Shift Left (SHFTL)

(1) Operation

The SHFTL instruction shifts the bits specified by the first bit address and bit width to the left by the specified number

of bits to shift.

Data that overflows from the bit width is discarded and insufficient bits are padded with 0’s.

Before Shift | 0 0 g

Bit width
[|
8 7 6 4 3 2 1 0
e d © b a
—
Number of
bits to shift
After Shift | 0 0 e @ b a 0 0

a

g f

Bits that overflow are discarded.

(2) Format

First bit
address

Insufficient bits are padded with O’s.

SHFETL

_(

-

— [ElAdr
[IMum W00 005

3

I

MBOOODOD — PATWIdth MWOOO0E

Number of bits to shift

Bit width

Icon: SEFI-

Key entry: SHFTL

First bit address
Applicable Data Types
Parameter Name
B W F Index Constant

First bit address (Adr) o* X X X X X X
Number of bits to shift
(Num) X (@) X X X (@) (@)
Bit width (Width) X (@) X X X O @]

* C and # registers cannot be used.

5.7 Data Shift Instructions

5.7.11 Bit Shift Left (SHFTL)

(3) Programming Example

In the following programming example, four bits from the first bit address at MBOOOO1E are shifted two bits to the left
when switch 1 (DB000000) turns ON.

switch
DBO00000 DBO00310
N 4 (SHETL =
[BlAdr WMBOOOOTE [W]Width 00004
[ANUM 00002

The following figure illustrates the result when the above instructions are executed.

Bit width = 4

2 ! 0 F First bit address:

MBO0001E

Before Shift 0 0 1 1 0 1

—
Number of bits
to shift = 2

After Shift 0 0 0 1 0 0

B

1 1

Bits that overflow are discarded.

Instructions

5-133

5.7 Data Shift Instructions
5.7.12 Bit Shift Right (SHFTR)

5.7.12 Bit Shift Right (SHFTR)

(1) Operation

The SHFTR instruction shifts the bits specified by the first bit address and bit width to the right by the specified num-

ber of bits to shift.
Data that overflows from the bit width is discarded and insufficient bits are padded with 0’s.

Bit width

First bit

Before Shift | 0 0 g f e d @ b a address

Number of bits to shift

After Shift | 0 0 0 0 g f e d c

Tt A

Insufficient bits are padded with O’s.

Bits that overflow are discarded.

(2) Format

5-134

—{ SHFTR

=)

— [BJAd MBO00000
DAQNUm MWO0005

1

MATWidth WV OD00E

I

Number of bits to shift

Bit width

First bit address

. SHFT
Icon: B

Key entry: SHFTR

Applicable Data Types
Parameter Name
B W F A Index Constant
First bit address (Adr) o* X X X X X X
Number of bits to shift
(Num) X O X X X @) O]
Bit width (Width) X O X X X O O

* C and # registers cannot be used.

5.7 Data Shift Instructions

5.7.12 Bit Shift Right (SHFTR)

(3) Programming Example

In the following programming example, four bits from the first bit address at MBOOOO1E are shifted two bits to the
right when switch 1 (DB000000) turns ON.

switch
DELODODD DEDODA10
[(L —
[BlAdr MBOODDIE [ATWidth 00004
WYINum 00002

The following figure illustrates the result when the above instructions are executed.

Bit width = 4

2 1 0 F E First bit address:
MBOOOOOE

Before Shift 0 0 1 1 0 1

Number of bits
to shift = 2

After Shift

N

0 1

Bits that overflow are discarded.

Instructions

5-135

5.7 Data Shift Instructions
5.7.13 Copy Word (COPYW)

5.7.13 Copy Word (COPYW)
(1) Operation

The COPY instruction copies the specified number of words to move from the area that starts with the first source
address to the area that starts with the first destination address.

The data is copied as a block from the source to the destination. Unlike the MOVW instruction, the data is copied to the
destination as is, even if the source and destination overlap.

Number of words to move m
A
4 B

m - 0 First source address

Sourcearea | 6 | 54| 3| 2|1

\Vord data moved. F7t destination address

Destinationarea | 6 | 54| 3| 2| 1

N)
Y

Number of words to move m

+ This instruction differs from the MOVW instruction by the way it handles overlap between the source and desti-
nation areas.

B Example Where the Source Area and Destination Area Overlap

First source address:
Overlap / MWO00002

F ... 8 7 6 5 4 3 2 1 0
Source area
(shaded portion) | ° 0|0|0fdfc|bjajO]|oO
Destination area
(shaded portion)| O | -~ | O |d|c|bfajbfal0)0
wrst destination address:
L 2 MwWO00004

Unlike the MOVW instruction, all of the data in the source area
is moved to the destination area, even if the two areas overlap.

5-136

5.7 Data Shift Instructions

5.7.13 Copy Word (COPYW)

(2) Format

(COPYWY §D Icon: Cﬁf
MY]Src KA O00000 W]Dest MAOD0T0 ¢—
T ATWIdth 00020
Number of

First source address

words to move Key entry: COPYW

First destination

address
Parameter Name Applicable Data Types
B W L F A Index Constant

First source address

(Src) X (@) X X X X X
First destination address .

(Dest) X (@) X X X X X
Number of words to

move (Width) X o X X X o o

* C and # registers cannot be used.

(3) Programming Example

In the following programming example, five words of data are copied from the area that starts with the first source
address at MWO00000 to the area that starts with the first destination address at MW00100 when switch 1 (DB000000)

turns ON.
switch
DEODODO0 DEODDZ 10
|| 4 (COPYW =
[W]Sre MW O0000 [(W]Dest WAAOO100
[Awicth 00005

The following figure illustrates the result when the above instructions are executed.

. . Data before Execution of Data after Execution of
Register Data Register . .
Instruction Instruction
MWO00000 1 MW00100 123 1
MWO00001 2 MW00101 234 2
MWO00002 3 MW00102 345 3
MWO00003 4 MWO00103 456 4
MWO00004 5 MW00104 567 5

Instructions

5-137

5.7 Data Shift Instructions

5.7.14 Byte Swap (BSWAP)

5.7.14 Byte Swap (BSWAP)
(1) Operation

The BSWAP instruction swaps the upper byte and lower byte of the target register.

Target register Target register
(word data) (word data)
ab cd _— cd ab
Upper byte Lower byte Upper byte Lower byte
(2) Format
- B
Icon: SWER

e

W]Dest MyWOD00O

.

Target register

Key entry: BSWAP

Applicable Data Types

Parameter Name
W L F A Index

Constant

Target register (Dest) X e) X X X X

X

* C and # registers cannot be used.

(3) Programming Example

In the following programming example, the upper byte and lower byte of MW00000 are swapped when switch 1

(DB000000) turns ON.
+ [f MWO0O0O0O0O is 00FF hex, MWO0000O will be FFOO hex after execution of the BSWAP instruction.

switch
DELODODD DEDODA10

| || 4 (BSWAP =

[WWDest MYWOO00O

5-138

5.8 DDC Instructions

5.8 DDC Instructions
5.8.1 Dead Zone A (DZA)

(1) Operation

5.8.1 Dead Zone A (DZA)

The DZA instruction calculates the output value by comparing the input value against a predefined dead zone.
As shown in the following figure, if the absolute value of the input value is greater than or equal to the absolute value

of D, the input value is outside of the dead zone, so it becomes the output value.
If the absolute value of the input value is less than the absolute value of D, the input value is inside of the dead zone, so

the output is set to 0.

(2) Format

Dead zone set value = D

@ If | Input value | 2| D |
Output value = Input value

@ If | Input value | < | D |
Output value = 0

_[

D24

=

MWLF]in MWOOD0O00

|

WLF]Zone MWO00002 —
[WLFO Ut MW%DDDS

Icon: J—r

Instructions

Input value Output value
Key entry: DZA
Dead zone set value
Applicable Data Types
Parameter Name
W L F Index Constant
Input value (In) X @) O @) O O
Dead zone set value
(Zone) X O O O @) O
Output value (Out) X o* o* O* O X

* C and # registers cannot be used.

5-139

5.8 DDC Instructions

5.8.1 Dead Zone A (DZA)

(3) Programming Examples
In the following programming examples, the dead zone set value is set to 10,000 and the output value is stored in

MWO00000.
The output values are calculated with respect to the input values in MW00001 to MW00003 as shown below.

¢ QOutside of the Dead Zone
| MW00001 (12,345) | 2] 10,000 |, so MW00000 is 12,345.

(DZA)
MLFn MWOOOO! [WLF[Zone 10000
12345 10000
WLFOut MWOD0DD
12345

| MWO00002 (-12,345) | = | 10,000 |, so MWO00000 is -12,345.

{ DEA)
[MLF]n - MW O0002 [LF]Zone 10000
-12345 10000
BALFIOut M O0000
-12345
* Inside of the Dead Zone
| MW00003 (6,789) | <| 10,000 |, so MW00000 is 0.
{ DEA)
[MLF]n - WA O0003 [LF]Zone 10000
G784 10000
BALFIOut M O0000
a

5-140

5.8 DDC Instructions

5.8.2 Dead Zone B (DZB)

(1) Operation

5.8.2 Dead Zone B (DZB)

The DZB instruction calculates the output value by comparing the input value against a predefined dead zone.
As shown in the following figure, if the absolute value of the input value is less than the absolute value of D, the input

value is inside of the dead zone, so the output is set to 0.

Unlike the DZA instruction, when the input value is outside of the dead zone, the sign of the input value determines
whether the output value is obtained by adding the absolute value of D to or subtracting it from the input value.

Dead zone set value = D

-|D]|

+|D]

@ If Input value <0 and | Input value | 2| D |
Output value = Input value + | D |

@ If | Input value | <| D |

Output value = 0

® If Input value > 0 and | Input value | 2| D |
Output value = Input value — | D |

(2) Format

— D7B

) o

MYLF]In RWWOOO00

MLF]Zone WWOOODT —

MAYLFOUE WO0002

|

1

Instructions

Q
o
=]

Input value Output value
Key entry: DZB
Dead zone set value
Applicable Data Types
Parameter Name

B W L F Index Constant
Input value (In) @] @] @) @)
Dead zone set value
(Zone) X O O O O O
Output value (Out) X o* o* o* O X

* C and # registers cannot be used.

5-141

5.8 DDC Instructions

5.8.2 Dead Zone B (DZB)

(3) Programming Examples

In the following programming examples, the dead zone set value is set to 10,000 and the output value is stored in

MW00000.

The output values are calculated with respect to the input values in MW00001 to MW00003 as shown below.

¢ QOutside of the Dead Zone

Because MWO00001 (12,345) > 0 and | MW00001 (12,345) | > | 10,000 |, so MW00000 = 12,345 — | 10,000 | =

2,345.

i

X D78 HH—
WLFn MAO0001 [WLFZone 10000
123445 10000
[ALFCUt MA00000
2345

MW00002 (-12,345) < 0, | MW00002 (-12,345) | > | 10,000 |, so MW00000 = -12,345 + | 10,000 | = -2,345.

[

* Inside of the Dead Zone
| MW00003 (6,789) | <| 10,000 |, so MW00000 is 0.

5-142

(DZE =
WLFin MWO0002 [WLFZone 10000
1235 10000
MYLFICut MywOoooo
2345
{ DZB)
MLFn MAOOD03 [WLFZone 10000
5709 10000
[ALFIOut MwWODDoO
0

5.8 DDC Instructions

5.8.3 Upper/Lower Limit (LIMIT)

5.8.3 Upper/Lower Limit (LIMIT)

(1) Operation

The LIMIT instruction controls the output value so that it does not exceed the specified upper and lower limits for the

input value.

As shown in the following figure, if the input value is within the upper and lower limits, the input value is output unal-
tered.

The upper limit is output when the input value is greater than upper limit. The lower limit is output when the input
value is less than the lower limit.

Upper limit @
@ If Input value > Upper limit
Output value = Upper limit
@
@ If Lower limit < Input value < Upper value
Output value = Input value
® Input value < Lower limit
Output value = Lower limit
Lower limit
®

(2) Format

— LIMIT =
BALFIn MWW 00000 [YLF]Lower WA 00001 ¢—
[WWLF]Upper MW00002 — loon: E

]
[LF]Out MO0 003 S
S
®
Input value Output value <
Upper limit Key entry: LIMIT
Lower limit
Applicable Data Types
Parameter Name
B w L F A Index Constant
Input value (In) X @] O O X @] O
Lower limit (Lower) X @] O O X @] O
Upper limit (Upper) X O @) O X O O
Output value (Out) X o= O* o* X O X
* C and # registers cannot be used.
(N Always set the lower limit to a value that is less than or equal to the upper limit.
INFO

5-143

5.8 DDC Instructions

5.8.3 Upper/Lower Limit (LIMIT)

(3) Programming Examples

In the following programming examples, the operation results are stored as the output value (MW00000) when the

lower limit is -100 and the upper limit is 10,000.

The output values are calculated with respect to the input values in MW00001 to MW00003 as shown below.

* The Input Value Is Outside of the Upper and Lower Limits

Because MW00001 (12,345) is greater than the upper limit (10,000), MW00000 becomes the upper limit

(10,000).

i

1,
[WLFIn MWOOOD1
12345

LIMIT A
[WLF]Lower -00100
-100
[WLFUpper 10000
10000
[WLF] Ot hi 00000
10000

Because MWO00002 (-12,345) is less than the lower limit (-100), MW00000 becomes the lower limit (-100).

i
.

* The Input Value Is Within the Upper and Lower Limits

LInMIT)
WLFIn MwO0o02 [WWLF]Lower -00100
-12345 -100
[WLFUpper 10000
10000
WALFIOuE WWOOD00
-100

Because the lower limit (-100) is less than MW00003 (6,789), which is less than the upper limit (10,000),

MWO00000 becomes 6,789.

i
L

5-144

LIMIT B
[ALFIn WWOO003 ALFILower -00100
G789 -100
MYLF)Upper 10000
10000
[WLF] Ot WA 00000
G729

5.8 DDC Instructions

5.8.4 PI Control (PI)

(1) Operation

5.8.4 PI Control (PI)

When deviation X is input, the PI instruction performs P and I operations and a range operation based on predefined

parameters in a parameter table, and outputs the result as compensation Y.

When the reset integration bit in the parameter table is closed (turned ON), the PI compensation is calculated using an

I compensation value of 0.

The input value to the PI instruction can be an integer or a real number. Double-length integers cannot be used.

The structure of the parameter table is different for integers and real numbers.

PI Compensation Value Range Operation*
Input value for Pl instruction (Upper/Lower Limit + Dead Zone A)
/ RoHK| [
i + DZA
L > K P compensation —l__: _ o | o Compensation Y
Deviation X > p 'JI'._.. R —T (Pl output)
Upper/lower limit for + .
| compensation J
RCHK . | compensation Yi /
Ki o ToTi }_j— . Output value for Pl instruction
4
Kp: P (proportional) gain
Yi' | Ki: | (integral) gain
Ts: Scan time

Previous | compensation

Ti: Integral time

* The range operation for the PI compensation is processed as follows if the P + | compensation crosses the Pl

upper or lower limit (UL or LL), or the Pl dead zone (DB):

+ If the P compensation and | compensation have the same sign (divergence) — The previous value is

retained for the | compensation value.

+ If the P compensation and | compensation have different signs (convergence to 0) — The | compensation

value is updated to a new value.

The operation of the PI instruction can be expressed by the following formula, where X (s) is the input value and Y (s)

is the output value.
Y(s) 1

— = Kp+Kix —
X(s) Tixs

Instructions

5-145

5.8 DDC Instructions
5.8.4 PI Control (PI)

(2) Format

- b pig

S5 [WHIn MFOO000 [WF]OWw MFO0002

Icon: PI
[AJPmm MADDO10 1
First address of .
parameter table Output value Key entry: Pl
Input value
Applicable Data Types
Parameter Name
w L F A Index Constant
Input value (In) @] X @] X O O
First address of .
parameter table (Prm) x x x x © © ©
Output value (Out) X o* X o* X O X
* C and # registers cannot be used.
[a] Parameter Table Configuration for Pl Instruction with Integers
Data I
Address Symbol Name Specification 1/0
Type
0 W RLY Relay /0 Relay inputs and relay outputs” IN/OUT
1 W Kp P gain Gain for the P compensatlon IN
(A gain of 1 is equivalent to 100.)
5 W Ki Integral adjustment Gain for the input to the integration circuit IN
gain (A gain of 1 is equivalent to 100.)
3 W Ti Integral time Integral time (ms) IN
4 w UL Hri?fr integration Upper limit for the I compensation IN
5 W ILL {;r(:]\;zter integration Lower limit for the I compensation IN
6 w UL PI upper limit Upper limit for the P + I compensation IN
7 w LL PI lower limit Lower limit for the P + I compensation IN
8 w DB PI output dead zone Dead zone width for the P + I compensation IN
9 W Y PI output PI compensation output (output to Out) OouT
10 w Yi I compensation I compensation storage ouT
11 W IREM I remainder I remainder storage OouT

* The relay input and output bits are assigned as given below. (Close = Bit change to 1 (ON), Open = Bit change to 0

(OFF))
Bit Symbol Name Specification 1/0
0 IRST Reset integration bit This input is closed to reset the integration operation. IN
1to7 - (Reserved.) Spare input relays IN
8toF - (Reserved.) Spare output relays ouT

5-146

5.8 DDC Instructions

[b] Parameter Table Configuration for Pl Instruction with Real Numbers

5.8.4 PI Control (PI)

Address Data Symbol Name Specification 110
Type

0 W RLY Relay I/0 Relay inputs and relay outputs” IN/OUT
1 w - (Reserved.) Spare register -
2 F Kp P gain Gain for the P compensation IN
4 F Ki ::;gral adjustment Gain for the input to the integral circuit IN
6 F Ti Integral time Integral time (s) IN
8 F IUL Eﬁgfr integration Upper limit for the I compensation IN
10 F ILL {;I(;vivter itegration Lower limit for the I compensation IN
12 F UL PI upper limit Upper limit for the P + I compensation IN
14 F LL PI lower limit Lower limit for the P + I compensation IN
16 F DB PI output dead zone Dead zone width for the P + I compensation IN
18 F Y PI output PI compensation output (output to Out) ouT
20 F Yi I compensation I compensation storage OouT

* The relay input and output bit assignments are the same as for integers.

[c] Internal Operation of the Instruction

The deviation X input is used to calculate the output value (PI compensation) as shown below.

In the formula shown below, Yi’ is the previous I compensation of Yi and Ts is the scan time set value.

L]

P compensation = Upper/lower limit (UL or LL) of (Kp X X)

Ti

When IRST (reset integration) is closed, the Pl compensation is calculated with the | compensation set to 0.

Yi (I compensation) = Upper/lower limit (IUL or ILL) of { (Ki x X +IREM)/ "¢~ + Yi’}

Y (PI compensation) = P compensation + Upper/lower limit (UL or LL) and Dead zone A (Width DB) of the |
compensation

Instructions

5-147

5.8 DDC Instructions
5.8.4 PI Control (PI)

(3) Programming Example
This programming example calculates the reference value in MF00100 weighted with the PI compensation.

The deviation in DF00024 is obtained from the reference value in MF00100 and the current value in MF00098 and it is

used as the input to the PI instruction.
The reference value to output is obtained by adding the original reference value in MF00100 to the PI compensation

output in DF00026.
The following block diagram illustrates the programming example.

Reference value

MF00100
l Current value (feedback)
+

o— MF00098

- N
\

Deviation - P1 compensation
» Upper/lower limits
w UL =100, LL =-100
= » ’ —
Kp =10 y‘?+—> . Dead Zone A — DF00026
DB =10
DF00024 |
. + .
Ts/Ti * Upper/lower limits
= —»O—)| —e
Ki 10+(Ti=1.05) +| 1UL=100,ILL =-100
Previous |
compensation Pl Instruction
\, //
Reference value
+
v

MF00100 [¢

A 4

MF00100

M

Reference value weighted with the compensation

5-148

5.8 DDC Instructions

5.8.4 PI Control (PI)

The programming example is shown below.

+ The OL0000O (reference value) and ILO0002 (feedback value) registers are assigned to external devices.

calculating the difference between the command value and feedback value
here the command value is OLO0OD, feedback value is ILOO0OZ

command value

{ STORE
[WLFISrc OLO00O [WLF Dest MFO0100

feedback value

{ STORE
[WLF]Src 1LD00Z [WLF Dest WMFO009S

difference

i

{ SUB

—

[WLF]Sres MEOD100
WWLFISrcE MFO00SE

[WLFDest DFO0OZ4

calculating the compensation value

— EXPRESSION =}
DFODOD2=100; & Kp: P gain,
DFO0004=10.0 ; # Ki: | gain;

DFDOD0G=1.0 AT integration time:;

DFO0008=100.0
DFO0010=-100.0 ;
DFO0012=1000 ;

DFO0016=10.0 ;

DFO0014=-100.0 ;

A IUL: upper integration limit;
AOILL: lower integration limit;
AUL: upper P limit;
HLL: lower Pl limit;

DB Pl output dead band

compensation

add the compensation to command value

(PI
\

[WFIn DF00024
[APrm DAOOOOD

=)—

(AFIOut DFO00ZE

command value

output to external device

(ADD
[WLFISrcA DF00026
[WLFISreB MFO0100

= —

[WLFDest MFOO100

(STORE
[WLFISre MFO0100 [WLF]Dest OLODOO

=)—

Instructions

5-149

5.8 DDC Instructions
5.8.5 PD Control (PD)

5.8.5 PD Control (PD)

(1) Operation

When deviation X is input, the PD instruction performs P and D operations and a range operation based on predefined
parameters in a parameter table, and outputs the result as compensation Y.

The input value to the PD instruction can be an integer or a real number. Double-length integers cannot be used.

The structure of the parameter table is different for integers and real numbers.

Previous input value

—m X Differential (D) operation*
_ PD Compensation Value Range Operation
i— —— (Upper/Lower Limit + Dead Zone A)

Kd Td/Ts
D compensation
+ .
Deviation X —+—# Kp » Compensation Y
P compensation + (PD output)
.) Kp: P (proportional) gain /
Input value for PD instruction Kd: D (differential) gain
Ts: Scan time Output value for PD instruction

Td: Differential time
* The differential time (Td) changes based on the relationship between the change in the deviation input (X — X’)
and the previous deviation input (X’) as follows:
¢+ If the change in the deviation input (X — X’) and the previous deviation input (X’) have the same sign
(divergence)
— Td = Td1 (differential time for divergence)
+ If the change in the deviation input (X — X’) and the previous deviation input (X’) have different signs (con-

vergence)
— Td = Td2 (differential time for convergence)

The operation of the PD instruction can be expressed by the following formula, where X (s) is the input value and Y (s)

is the output value.
Y(s)
X(s)

= Kp+KdxTdxS

5-150

5.8 DDC Instructions

(2) Format

5.8.5 PD Control (PD)

_|:

FD

bl) o

Y F]In

MFOOOD0

WFOW MFOD002

Icon: RO
[AJPm MADDO10 1
First address of ' .
parameter table Output value Key entry: PD
Input value
Applicable Data Types
Parameter Name
w F A Index Constant
Input value (In) O X O X O O
First address of .
parameter table (Prm) x X X x o o %
Output value (Out) X o* X o* X O X
* C and # registers cannot be used.
[a] Parameter Table Configuration for PD Instruction with Integers
Data P
Address Symbol Name Specification 110
Type
0 w RLY Relay I/O Relay inputs and relay outputs” IN/OUT
. Gain for the P compensation
1 w K IN
P P gain (A gain of 1 is equivalent to 100.)
. Gain for the input to the differential circuit
2 w Kd IN
D gain (A gain of 1 is equivalent to 100.)
3 W Td1 leferentlal time for Differential time used when the input diverges (ms) IN
divergence
4 W Td2 Differential time for Differential time used when the input converges (ms) IN %)
convergence 5
5 w UL PD upper limit Upper limit for the P + D compensation IN g
6 w LL PD lower limit Lower limit for the P + D compensation IN ‘3
[
7 W DB PD output dead zone | Dead zone width for the P + D compensation IN -
8 w Y PD output PD compensation output (output to Out) ouT
9 w X Input value storage Storage of current input value ouT
* The relay input and output bits are assigned as given below.
Bit Symbol Name Specification 110
Oto7 - (Reserved.) Spare input relays IN
8toF - (Reserved.) Spare output relays OouUT

5-151

5.8 DDC Instructions

5.8.5 PD Control (PD)

5-152

[b] Parameter Table Configuration for PD Instruction with Real Numbers

Address .?;;Z Symbol Name Specification I/0
0 w RLY Relay I/0 Relay inputs and relay outputs* IN/OUT
1 A\ - (Reserved.) Spare register -

F Kp P gain Gain for the P compensation IN
F Kd D gain Gain for the input to the differential circuit IN
6 F Tdl pifferential time for Differential time used when the input diverges (s) IN
divergence
8 F Td2 Differential time for Differential time used when the input converges (s) IN
convergence
10 F UL PD upper limit Upper limit for the P + D compensation IN
12 F LL PD lower limit Lower limit for the P + D compensation IN
14 F DB PD output dead zone | Dead zone width for the P + D compensation IN
16 F Y PD output PD compensation output (output to Out) OuT
18 F X Input value storage Storage of current input value OouT

* The relay input and output bit assignments are the same as for integers.

[c] Internal Operation of the Instruction

The deviation X input is used to calculate the PD compensation output as shown below.
In the formula shown below, X’ is the previous input value of X, Ts is the scan time set value, and Td* is the differen-

tial time.

* The differential time (Td) is Td1 when X — X’ and X’ have the same sign, and Td2 when X — X’ and X’ have dif-

ferent signs.

P compensation = Upper/lower limit (UL or LL) of (Kp X X)

Td
D compensation = Kd x (X — X”) x Upper/lower limit (IUL or ILL) of Ts

S

PD compensation = Upper/lower limit (UL or LL) of (P compensation + D compensation) and Dead zone A

(Width DB)

5.8 DDC Instructions

(3) Programming Example

5.8.5 PD Control (PD)

This programming example calculates the reference value in MF00100 weighted with the PD compensation.
The deviation in DF00024 is obtained from the reference value in MF00100 and the current value in MF00098 and it is

used as the input to the PD instruction.

The reference value to output is obtained by adding the original reference value in MF00100 to the PD compensation

output in DF000026.
The following block diagram illustrates the programming example.

Reference value

MF00100
Current value (feedback)
il
ot—— MF00098
Previous PD Instructi
input value nSiuciel
= Td/Ts
o »O—h Kd = 10 M(Td1=1.0s
Deviation + Td2=2.05s)
+ « Upper/lower limits PD compensation
- UL=100,LL=-100 | |
DF00024 [+ {Kp=10 g Y . Dead Zone A — DF00026
DB =10
Reference value
+
MF00100 —+’I
-3 | MF00100

Reference value weighted with the compensation

Instructions

5-153

5.8 DDC Instructions

5.8.5 PD Control (PD)

The programming example is shown below.
¢+ The OL0000O (reference value) and ILO0002 (feedback value) registers are assigned to external devices.

calculating the difference between the command value and feedback value
here the command value 15 OLO0OO, feedback value is [LOOOD2

command vallue

(STORE A —

[WLF]Sre OLO00O [WLF]Dest MFOO100

feedback value

{ STORE A
[WLF]Sre L0002 MLF]Dest MFOODSS
difference
(SUB E)—

[LF]SrcA MEOO100 MLF]Dest DFO0024
[WLF]ScE MFO00S3

calculat ng the compensation value

—(EXPRESSION E}
DFOOO02=100 : & Kp: P gain;

DFO0004=100 ; #WKd Dgain;

DFO0O0B=10 ; A Td1: divergence differential ime;
DFOO008=210 ; HTd2: convergence differential time;
DFO00O10=100.0 ;. # UL: upper PD limit;

DFOOO12=-1000 ; & LL: lower PD limit;

DFOD014=-100 ; # DB: PD oulput dead band;

compensation

(PD A
MF]in DF00024 WF]OUt DF00026
[APrm DADOODO

add the compensation to command value

command value

(ADD A)—
[ALFISrcA DFEOOOZE MLF]Dest MFOO100
[LFISeB MEOOT00

output to external device

(STORE —

[WLF]Src MF00100 [WLF]Dest OLO0OO

5-154

5.8 DDC Instructions

(4) Additional Information

[a] Transfer Functions

5.8.5 PD Control (PD)

The transfer function of the P and D operations can be expressed by the formula shown below.
In this formula, X (s) is the input value and Y (s) is the output value.

Y(s)
—= Kp+KdxTdxS
X(s)

[b] Divergence and Convergence

The following figure shows the relation between the current deviation X and previous deviation X’ on the divergence

and convergence sides.

« Example of a Diverging Deviation

Deviation

Both are positive
(same sign).

» Example of a Converging Deviation

Deviation

\’ The signs

are different.

Instructions

5-155

5.8 DDC Instructions
5.8.6 PID Control (PID)

5.8.6 PID Control (PID)
(1) Operation

When deviation X is input, the PID instruction performs P, I, and D operations and a range operation based on pre-
defined parameters in a parameter table, and outputs the result as compensation Y.

When the reset integration bit in the parameter table is closed (turned ON), the PI compensation is calculated using an
I compensation value of 0.

The input value to the PID instruction can be an integer or a real number. Double-length integers cannot be used.

The structure of the parameter table is different for integers and real numbers.

Previous input value

—h. X'
Differential (D) operation*2

D compensation

. . *1
Y Kd TdiTs PID Compensation _Va_lue Range Operation
] (Upper/Lower Limit + Dead Zone A)

+v

RCHK ‘;‘
: + DZA
o | P compensation . |+ i Compensation Y
Deviation X—$— Kp | M- * (PID output)
Upper/lower limit for t :
| compensation /

RCHK / | compensation Yi /
E
—Ll—bl Ts/Ti »o—> Output value for PID instruction

/

Input value for PID instruction

Kp: P (proportional) gain
Ki: I (integral) gain
Previous | compensation Kd: D (differential) gain
Ts: Scan time
Td: Differential time
Ti: Integral time
x 1. If the P + | + D compensation crosses the UL or LL (PID upper or lower limit), or DB (Pl dead zone),
the following processing is performed,
¢+ If the P compensation and | compensation have the same sign (divergence) — The previous value is
retained for the | compensation value.
+ If the P compensation and | compensation have different signs (convergence to 0) — The | compensation
value is updated to a new value.
x 2. The differential time (Td) changes based on the relationship between the change in the deviation input
(X = X'") and the previous deviation input (X') as follows:
+ If the change in the deviation input (X — X’) and the previous deviation input (X’) have the same sign
(divergence)
— Td = Td1 (differential time for divergence)
¢+ If the change in the deviation input (X — X’) and the previous deviation input (X’) have different signs (con-
vergence)
— Td = Td2 (differential time for convergence)

The operation of the PID instruction can be expressed by the following formula, where X (s) is the input value and Y
(s) is the output value.
Y(s)

—=Kp+Kix —
X(s) Tixs

+KdxTdx S

5-156

5.8 DDC Instructions

5.8.6 PID Control (PID)

(2) Format

_|:

WHIn MFODOOO

PID =

[WFOW MFOD0D2

Icon: RID

[A]Pm MADTDD’l 0

First address of
parameter table

I

Output value

Key entry: PID

Input value
Applicable Data Types
Parameter Name
w F A Index Constant
Input value (In) O X @] X O O
First address of .
parameter table (Prm) X x X % © © ©
Output value (Out) X o* X o* X O X
* C and # registers cannot be used.
[a] Parameter Table Configuration for PID Instruction with Integers
Data I
Address Symbol Name Specification 110
Type
0 w RLY Relay I/O Relay inputs and relay outputs” IN/OUT
. Gain for the P compensation
1 w K] IN
P P gain (A gain of 1 is equivalent to 100.)
2 W Ki I gain Gain .for the 1.nput tlo the integration circuit IN
(A gain of 1 is equivalent to 100.)
. Gain for the input to the differential circuit
3 w Kd IN
D gain (A gain of 1 is equivalent to 100.)
4 W Ti Integral time Integral time (ms) IN
5 ' Td1 Qlfferenhal time for Differential time used when the input diverges (ms) IN ®
divergence 2
; — o
6 w Td2 Differential time for Differential time used when the input converges (ms) IN g
convergence 2
Upper integration - . 2
7 W IUL limit Upper limit for the I compensation IN =
8 4 ILL {;r(;vivter integration Lower limit for the I compensation IN
9 w UL PID upper limit Upper limit for the P + I compensation IN
10 w LL PID lower limit Lower limit for the P + I compensation IN
11 W DB PID output dead zone | Dead zone width for the P + I compensation IN
12 w Y PID output PI compensation output (output to Out) ouT
13 w Yi 1 compensation I compensation storage ouT
14 w IREM I remainder I remainder storage ouT
15 W X Input value storage Storage of current input value OouT

* The relay input and output bits are assigned as given below. (Close = Bit change to 1 (ON), Open = Bit change to 0

(OFF))
Bit Symbol Name Specification 110
0 IRST Reset integration bit This input is closed to reset the integration operation. IN
1to7 - (Reserved.) Spare input relays IN
8toF - (Reserved.) Spare output relays OouT

5-157

5.8 DDC Instructions

5.8.6 PID Control (PID)

[b] Parameter Table Configuration for PID Instruction with Real Numbers

Address Data Symbol Name Specification I/0
Type
0 W RLY Relay I/0 Relay inputs and relay outputs” IN/OUT
1 W - (Reserved.) Spare register IN
2 F Kp P gain Gain for the P compensation IN
4 F Ki I gain Gain for the input to the integral circuit IN
6 F Kd D gain Gain for the input to the differential circuit IN
8 F Ti Integral time Integral time (s) IN
10 F Tdl leferentlal time for Differential time used when the input diverges (s) IN
divergence
12 F Td2 Differential time for Differential time used when the input converges (s) IN
convergence
14 F IUL Hgffr integration Upper limit for the I compensation IN
16 F ILL E;‘?;er integration Lower limit for the I compensation IN
18 F UL PID upper limit Upper limit for the P + I+ D compensation IN
20 F LL PID lower limit Lower limit for the P + I + D compensation IN
22 F DB PID output dead zone | Dead zone width for the P + I + D compensation IN
24 F Y PID output PID compensation output (output to Out) ouT
26 F Yi I compensation I compensation storage ouT
28 F X Input value storage Storage of current input value OuT

* The relay input and output bit assignments are the same as for integers.

[c] Internal Operation of the Instruction

The deviation X input is used to calculate the PID compensation output as shown below.
In the formula shown below, X is the previous input value of X, Y’ is the previous I compensation, Ts is the scan time

set value, and Td* is the differential time.
* The differential time (Td) is Td1 when X — X’ and X’ have the same sign, and Td2 when X — X’ and X’ have dif-

*

5-158

ferent signs.

When IRST (reset integration) is closed, the PID compensation is calculated with the | compensation set to 0.

P compensation = Upper/lower limit (UL or LL) of (Kp X X)

Ti
Yi (I compensation) = Upper/lower limit (IUL or ILL) of { (Ki x X + IREM) / Ts T Yi'}

Td
D compensation = Kd x (X — X”) x Upper/lower limit (IUL or ILL) of ——

Ts

Y (PID compensation) = Upper/lower limits (UL or LL) of P + I + D compensation values and dead zone A

(Width DB)

5.8 DDC Instructions

(3) Programming Example

5.8.6 PID Control (PID)

This programming example calculates the reference value in MF00100 weighted with the PID compensation.

The deviation in MF00000 is obtained from the reference value in MF00100 and the current value in MF00098 and it is

used as the input to the PID instruction.

The reference value to output is obtained by adding the original reference value in MF00100 to the PID compensation

output in MF00002.

The following block diagram illustrates the programming example.

Reference value

MF00100

|

o¢t—— MF00098

Current value (feedback)

Previous
input value PID Instruction
- Td/Ts
- »O— Kd =10 M(Td1=1.0s
Deviation + Td2=205)
. » Upper/lower limits
v UL =100, LL =-100
| ¢ = Ve ’ ’
MF00000 - Kp =10 +'A » Dead Zone A
* | bB=10
) Ts/Ti + > Upper/lower limits
- Ki= PO —_—
Ki 10_’(Ti=1.0 s) 4+ | UL =100, ILL =-100

Previous | compensation|

Reference value

PD compensation

iy

MF00002

MF00100 —_'}I

MF00100

Reference value weighted with the compensation

Instructions

5-159

5.8 DDC Instructions

5.8.6 PID Control (PID)

The programming example is shown below.
The OL0000O (reference value) and ILO0002 (feedback value) registers are a

*

calculating the difference between the command value and feedback value
here the command value is OLO000O, feedback value is L0002

command walle

ssigned to external devices.

-

STORE

—

L8
[WLF]Src OLO000D

feedback value

[WLF]Dest MFOO100

\

{ STORE A
[WLF]Src 10002 [WLF]Dest MFOD0S8
{ SUB A—

[WLF]SreA MFEOO100
[WLF]SreB MFOODSE

calculating the compensation valle

[WLF]Dest MFOO0OO

DFO000G=1.0 ; ff Ti. integration time;
DFOOOA0=-10; 4 Td1: divergence differential ime;
DFO0OD12=20 ; 4 Td2: convergence differential time;

DFO0014=1000 ;
DFO0016=-100.0 ;
DFO001&=100.0 ;
DFO00Z20=-100.0 ;
DFO0022=100 ;

i

i
i

i
i

[IUL: upper integration limit;
ILL: lowier integration limit;
LL: upper PID limit;

LL: lower PID limit;

DB: PID output dead band;

—(EXPRESSION X}
DFOOOO2=100; & Kp: P gain;
DFO0004=100 ; / Ki: | gain;
DF00006=100 ; / Kd: D gain;

-
LY

P —

[WF]in WFODOO0
[APrm DAJDOOO

add the compensation to command value

command valle

[WF]Out MFODOD2

-
\

ADD

A

[WLF]SreA MFOODOZ
[WLF]SeB MFOO100

output to external device

[WLF]Dest MFOO100

-~
\

STORE

=)—

MYLF]Sre MFO0100

5-160

[WLF]Dest OLOOOO

5.8 DDC Instructions

5.8.7 First-order Lag (LAG)

5.8.7 First-order Lag (LAG)
(1) Operation

The LAG instruction calculates the first-order lag according to predefined parameters in a parameter table.
The input value to the LAG instruction can be an integer or a real number. Double-length integers cannot be used.
The structure of the parameter table is different for integers and real numbers.

Input value X for
LAG instruction ™~

N

Approx. 63% — Output value Y for

LAG instruction

! Time (t)
Time constant T
The LAG operation in the figure shown above can be expressed by the formula shown below.

Ys) 1
X(s) 1+Txs

Therefore,
dy
Tx——+Y=X
dt
The following operation is performed internally by the LAG instruction, where dt=Ts anddY =Y - Y".
In the formula shown below, Y’ is the previous output value, Ts is the scan time set value,* and REM is the remainder.
* The unit for Ts is the same as the unit for T.
TXY'+TsxX+REM
B T+Ts

+ When IRST (LAG reset) is closed, Y outputs 0 and REM outputs 0.
+ The symbols in the figure correspond to those in the parameter table.

Instructions

5-161

5.8 DDC Instructions
5.8.7 First-order Lag (LAG)

(2) Format

— LAG =

MR MEODOOD BAYF]OW MEOODOZ

Icon: LAG
[AJPrm MADDDY0 T
First address of
K try: LA
parameter table Output value ey entry: LAG
Input value
Applicable Data Types
Parameter Name
w L F A Index Constant
Input value (In) X @) X O X O O
First address of parameter ¥
table (Prm) % x x x O © ©
Output value (Out) X o" X o* X e} X
* C and # registers cannot be used.
[a] Parameter Table Configuration for LAG Instruction with Integers
Data I
Address Symbol Name Specification I/0
Type
0 w RLY Relay 1/0 Relay inputs and relay outputs” IN/OUT
1 w T First-order lag time First-order lag time constant (ms) IN
constant
2 w Y LAG output LAG output (output to Out) ouT
3 w REM Remainder Remainder storage OuT

* The relay input and output bits are assigned as given below. (Close = Bit change to 1 (ON), Open = Bit change to 0

(OFF))
Bit Symbol Name Specification 110
0 IRST LAG reset bit This input is closed to reset the LAG operation. IN
1to7 - (Reserved.) Spare input relays IN
8toF - (Reserved.) Spare output relays OuT

[b] Parameter Table Configuration for LAG Instruction with Real Numbers

Address Data Symbol Name Specification I/0
Type
0 w RLY Relay I/0 Relay inputs and relay outputs” IN/OUT
1 w - (Reserved.) Spare register -
2 F T First-order lag time First-order lag time constant (s) IN
constant
4 F Y LAG output LAG output (output to Out) OuT

* The relay input and output bit assignments are the same as for integers.

5-162

5.8 DDC Instructions

(3) Programming Example

In the following programming example, the LAG instruction is executed where MF00000 is the input value in the

5.8.7 First-order Lag (LAG)

parameter table, MF00002 is the output value, and the first-order lag time constant is set to 1.0.

— EXPRES SICN

Z

1.000000E+000=1.000000E+000

DF00002=1.0 f first-arder lag time

(LAG i)
[VWFlin MFOO0O00 AFOut WMFOD002
0.000000=+000 0.000000=+000

[A]Prm DADOOOO

MF00002 changes as shown below when the input value (MF00000) changes from 0 to 10,000.

Input value
(MF00000)

10,000
Approx. 6,300

\

Output value
(MF00002)

1.0s . Output value
>
0 c— (MF00002)
Approx. -6,300 /
-10,000 ~__Input value
(MF00000)

Instructions

5-163

5.8 DDC Instructions

5.8.8 Phase Lead Lag (LLAG)

5-164

5.8.8 Phase Lead Lag (LLAG)
(1) Operation

The LLAG instruction calculates the phase lead and lag according to predefined parameters in a parameter table. The

input value to the LLAG instruction can be an integer or real number. Double-length integers cannot be used.
The structure of the parameter table is different for integers and real numbers.

Input value X for
LLAG instruction

100%

Approx. 63% —

AN

Output value Y for

T2+ Ts LLAG instruction

TI+Ts = 0%

i i Time (t)
Phase lag time constant T1

The LLAG operation in the figure shown above can be expressed by the formula shown below.

Y(s) 1+T2xs
X(s) 1+Tlxs

Therefore,
Tix Y oy 9X x
dt dt

The following operation is performed internally by the LLAG instruction, where dt=Ts,dY =Y - Y, and dX =X —

X,

In the formula shown below, Y’ is the previous output value, X’ is the previous input value, Ts is the scan time set

value*, and REM is the remainder.
* The unit for Ts is the same as the unit for T1.

T1 x Y'+ (T2 + Ts) x X -T2 x X' + REM
Y =

T1 +Ts

¢+ When IRST (LLAG reset) is closed, Y outputs 0, REM outputs 0, and X outputs 0.

5.8 DDC Instructions

(2) Format

_[

LLAG

[WHEIn MFO0000
[A]Prm MAODO10

1

First address of
parameter table

MFIOW MFO0002

[

Output value

=)

5.8.8 Phase Lead Lag (LLAG)

lcon LLAG

Key entry: LLAG

Input value
Applicable Data Types
Parameter Name
w F Index Constant
Input value (In) O X O X O O
First address of .
parameter table (Prm) X X X X © % O
Output value (Out) X o* X o* X @] X
* C and # registers cannot be used.
[a] Parameter Table Configuration for LLAG Instruction with Integers
Data e
Address Symbol Name Specification 110
Type
0 w RLY Relay I/O Relay inputs and relay outputs” IN/OUT
1 W T2 Phase lead time con- Phase lead time constant (ms) IN
stant
Phase lag time con- .
2 W Tl Phase lag time constant (ms) IN
stant
w Y LLAG output LLAG output (output to Out) ouT
4 W REM Remainder Remainder storage ouT
5 W X Input value storage Input value storage OouT
]
* The relay input and output bits are assigned as given below. (Close = Bit change to 1 (ON), Open = Bit change to 0 _5
(OFF)) S
%
Bit Symbol Name Specification I/0 £
0 IRST LLAG reset bit This input is closed to reset the LLAG operation. IN
1to7 - (Reserved.) Spare input relays IN ﬂ
8toF - (Reserved.) Spare output relays OuT
[b] Parameter Table Configuration for LLAG Instruction with Real Numbers
Data I
Address Symbol Name Specification 110
Type
0 w RLY Relay I/O Relay inputs and relay outputs” IN/OUT
1 W - (Reserved.) Spare register -
2 F T2 Phase lead time con- Phase lead time constant (s) IN
stant
4 F T1 Phase lag time con- Phase lag time constant (s) IN
stant
6 F Y LLAG output LLAG output (output to Out) OouT
8 X Input value storage Input value storage ouT

* The relay input and output bit assignments are the same as for integers.

5-165

5.8 DDC Instructions
5.8.8 Phase Lead Lag (LLAG)

(3) Programming Example

In the following programming example, the LLAG instruction is executed where MF00000 is the input value,
MF00002 is the output value, the phase lead time constant is set to 1.0 seconds, and the phase lag time constant is set to

2.0 seconds.

— EXPRESSION =)
DFOOD02=10; /& T2 phaselead time
1.000000E+000=1.000000E+000

OFO0004=20 i T1: phase lag time
2.000000E+000=2.000000E+000

([LAG =
[WFIn MFODOOD [WFAOut MFO0002
0.000000E+000 0.00000CE +000

[APrm DCADDO00

MF00002 changes as shown below when the input value (MF00000) changes from 0 to 10,000.

Input value
(MF00000)

10,000 /

Approx. 8,150 / \
Approx. 5,000 Output value
(MF00002)

[RES—— 20s
0 —

MF00002 changes as shown below when the input value (MF00000) changes from 0 to -10,000.

20s Output value
>
0 c— (MF00002)
Approx. — 5,000 /
Approx. — 8,150 ————
-10,000 ~_Input value
(MF00000)

5-166

5.8 DDC Instructions

5.8.9 Function Generator (FGN)

(1) Operation

5.8.9 Function Generator (FGN)

The FGN instruction generates a function based on the parameters specified in the parameter table. It then uses the
function to calculate output value Y based on the value of input X.
The FGN instruction will be for integers, double-length integers, or real numbers, depending on the data type of input
value X. The structure of the parameter table changes accordingly.

Yn

Ys

Output value Y

Y2

Y1

Y1 in the parameter table.

Function generated by setting X1,

Output value Y is calculated from
input value X for the function
generated by the parameter table.

X1 X2

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| Xs
|

Input value X

+ Create the parameter table so that Xy < X5 < ... < Xy.

XN

Instructions

5-167

5.8 DDC Instructions

5.8.9 Function Generator (FGN)

(2) Format

_[

FGMN

=

WLF]in MFO0000

AP MAODO10

First address of
parameter table

[WLFJOuw MFO0002

]

Qutput value Y

Icon: FGEN

Key entry: FGN

Input value X
Applicable Data Types
Parameter Name
w L F Index Constant
Input value X (In) @) O O O
First address of parameter
table (Prm) x X X X X X
Output value Y (Out) X o* o* o* @] X

* C and # registers cannot be used.

[a] Parameter Table Configuration for FGN Instruction with Integers

If input value X is an integer, the FGN instruction will be for integers.
Create the parameter table as shown below.

Address .?;;Z Symbol Name
0 w N Number of pairs of X and Y
1 W Xy Data X;
2 w Y, Data Y,
3 w Xy Data X,
4 W Y, Data Y,
2N -1 W XN Data Xy
2N W YN Data Yy

5-168

5.8 DDC Instructions

5.8.9 Function Generator (FGN)

[b] Parameter Table Configuration for FGN Instruction with Double-length Integers or Real Numbers

If input value X is a double-length integer, the FGN instruction will be for double-length integers. If input value X is a
real number, the FGN instruction will be for real numbers.

Create the parameter table as shown below.

Address Data Symbol Name
Type
0 W N Number of pairs of X and Y
1 4 - Reserved.
2 L/F Xy Data X;
4 L/F Y, Data Y,
6 L/F X Data X,
8 L/F Y, Data 'Y,
4N -2 L/F XN Data Xy
4N L/F YN Data Yy
Yn
Ys
Y2 Function generated by setting Xi--n,
Yi Y1~ in the parameter table.
1
X1 X2 X3 Xn
(N For the FGN instruction, make sure to set the data so that X; <X, <. < X{, regardless of whether the parameter table is for
INFO(. .
’ integer data, double-length integer data, or real number data.

Instructions

5-169

5.8 DDC Instructions
5.8.9 Function Generator (FGN)

(3) Programming Example

In the following programming example, the function is generated using the FGN instruction for real numbers with the
parameter table given below.

Number of Pairs 4
X1,Y1 0.0,2.0
X2,Y2 10.0, 6.0
X3, Y3 20.0, 15.0
X4,Y4 30.0,20.0

first scan after H scan

— F 3

SBEO00001==true

— EXPRESSION =
O 0000 0=4; f number of data;

CFO0002=0.0, DFO0004=2.0; T,

DFDDDIDBZW.D; CFO0008=6.0; ORI,

DF 0001 0=200;, DFO0012=15.0; HH3IY3,

DFEIDIj14=3IJ.EI; DF00016=20.0; e

—(END_F_)
{ FoN)
[WLFIin MFOO0DOD [WLF]Out MFOO0DZ
MF00000 MFO0002
1.000000E +001 B.00000CE +000
[4JPrm DAOOOOO
DADOOO0

The following figure shows the relationship between input value X in MF00000 and output value Y in MF00002.

Output value Y:
MF00002

20.0

15.0
X3,Y3

X1, Y1

Input value X:
0.0 MF00000
10.0 20.0 30.0

5-170

5.8 DDC Instructions

5.8.9 Function Generator (FGN)

(4) Additional Information

The FGN instruction searches for the pair X, and Y, where X, < Input X < X, + 1 to calculate output value Y.
Output value Y|= Yn+ Y1 = Yo, (|Input value X|—Xn) (1 <n<N-1)
Xn+1 — Xn

If the pair X, and Y, where X, < Input X < X ., does not exist, the calculation is as follows:

« If Input value X <X,

. _
= =+ —_
_(Jutput value Y Y1 X=X x (' |Input value X|—X1)

* If Input value X > Xy,

YN—YN-1
- +7N T Xn _
Output value Y |= YN Xn — Xt (| Input value X|—XN)

Instructions

5-171

5.8 DDC Instructions
5.8.10 Inverse Function Generator (IFGN)

5.8.10 Inverse Function Generator (IFGN)

(1) Operation

The IFGN instruction generates a function based on the parameters specified in the parameter table in the same way as
the FGN instruction.

It then uses the function to calculate output value X based on the value of input Y, i.e., the opposite direction from the
FGN instruction.

The structure of the parameter table is the same as for the FGN instruction.

YN
Function generated by setting X1--N,
Y1--N in the parameter table.
Y3 /
InputvalueY - ——————————————— -
: Output value X is calculated from
| input value Y for the function
| generated by the parameter table.
Y2 I
I
I
Y
! |
I
I
7 |
I
I
I
I
I
I
I

X3 XN
+

Output value X

+ Create the parameter table so that Y4 <Y, < ... <Y).

5-172

5.8 DDC Instructions

(2) Format

5.8.10 Inverse Function Generator (IFGN)

IF 5

=

WLF]In
[AJPm

MFOO000
MADDOTO

1

First address of
parameter table

[WLFIOuW MFOD002

I

Output value X

lcon: ==
con: F@N

Key entry: IFGN

Input value Y
Applicable Data Types
Parameter Name
w L F Index
Input value Y (In) @) O O
First address of
parameter table (Prm) x X X x x
Output value X (Out) X o* O* O* O

* C and # registers cannot be used.

[a] Parameter Table Configuration for IFGN Instruction with Integers

If input value Y is an integer, the IFGN instruction will be for integers.

Create the parameter table as shown below.

Address 'IE');;: Symbol Name

0 4 N Number of pairs of X and Y
1 w Xy Data X;
2 w Y, Data Y,
3 w X5 Data X,
4 w Y, Data Y,
2N-1 W XN Data Xy
2N w YN Data Yy

Instructions

5-173

5.8 DDC Instructions
5.8.10 Inverse Function Generator (IFGN)

[b] Parameter Table Configuration for IFGN Instruction with Double-length Integers or Real Numbers

If input value Y is a double-length integer, the IFGN instruction will be for double-length integers. If input value Y is a
real number, the IFGN instruction will be for real numbers.
Create the parameter table as shown below.

Address Data Symbol Name
Type
0 W N Number of pairs of X and Y
1 w - Reserved.
2 L/F X Data Xl
4 L/F Y, Data Y,
6 L/F X5 Data X,
8 L/F Y, Data 'Y,
4N -2 L/F XN Data XN
4N L/F Yy Data Yy
YN
Ys
Y2
Function generated by setting X1--N,
Y Y1--N in the parameter table.
7
X1 X2 X3 XN
INFO For the IFGN instruction, make sure to set the data so that Y, <Y, < - <Yy, regardless of whether the parameter table is for
% integer data, double-length integer data, or real number data.

5-174

5.8 DDC Instructions

(3) Programming Example

5.8.10 Inverse Function Generator (IFGN)

In the following programming example, the function is generated using the IFGN instruction for real numbers with the

parameter table given below.

Number of Pairs 4
X1,Y1 0.0,2.0
X2,Y2 10.0, 6.0
X3,Y3 20.0, 15.0
X4,Y4 30.0, 20.0

first scan after Hscan

ChvO0000=4,

CFO000Z2=0.0; DFO0004=2.0; MR

DFDEIEIIEIB=1EI.D; DFO000&=6.0; HHRIND,

DF 0001 0=200; DrFO0012=15.0; 333,

DFDDDIMZSD.D; DFDO0 B=20.10; G

— F_ 3
SBO00001==true
pararmeters table
— EXPRESSION =)
K number of data;

input (MFO0002) ---= IFGM function --—-> output (MFOOO00O)

i

The following figure shows the relationship between input value Y in MF00002 and output value X in MF00000.

Input value Y:

MF00002

20.0

15.0

8

IFGHM

=)

MLFIn MFOO00D

[A]Prm DAODODD

WLFOut MFOODO0Z

B.00000CE +000

X1, Y1

X3,Y3

0.0

10.0

20.0

30.0

1.000000E+001

Output value X:
MF00000

Instructions

5-175

5.8 DDC Instructions

5.8.10 Inverse Function Generator (IFGN)

(4) Additional Information

The IFGN instruction searches for the pair X, and Y, where Y, < Input Y <Y, + 1 to calculate output value X.

Output value X| = Xn + % X (| Input value Y|=Yn) (1 <n<N-1)

If the pair X, and Y,,, where Y, <Input Y <Y, does not exist, the calculation is as follows:

» If Input value Y <Y,

X2 — X1
Output value X| = X1+ 7Y2 Y1 X (lnput value Y —Yl)

 If Input value Y > Yy,

XN — XN-1
= XN+~ Y|-
Output value X| = XN YN Yoo X (| Input value YN)

5-176

5.8 DDC Instructions

5.8.11 Linear Accelerator/Decelerator 1 (LAU)

5.8.11 Linear Accelerator/Decelerator 1 (LAU)

(1) Operation

The LAU instruction outputs the speed that results from applying a constant acceleration or deceleration rate to the

input speed. The acceleration or deceleration rate is applied according to predefined parameters in a parameter table.

The input value to the LAU instruction can be an integer or a real number. Double-length integers cannot be used.

The structure of the parameter table is different for integers and real numbers.

LAU instruction input

speed waveform
Input speed
Time ()
Acceleration/deceleration
rate set in parameters
100% level
Input speed \ LAU instruction
' output speed waveform
— T Time
AT BT
(acceleration time) (deceleration time)

Instructions

5-177

5.8 DDC Instructions
5.8.11 Linear Accelerator/Decelerator 1 (LAU)

(2) Format

_|:

o [WF]in MFOD000
[AlPrm MADDO10

1

First address of

LAU =)

WE]OW MFOD002

T

Icon: |‘ '|

parameter table Output speed Key entry: LAU
Input speed
Applicable Data Types
Parameter Name
w L F Index Constant
Input speed (In) O X O X O O
First address of o
parameter table (Prm) X X X X x x
Output speed (Out) X o* X o* X O X
* C and # registers cannot be used.
[a] Parameter Table Configuration for LAU Instruction with Integers
Data I
Address Symbol Name Specification 1/0
Type
0 w RLY Relay 1/0 Relay inputs and relay outputs” IN/OUT
1 W LvV 100% level of input Scale for 100% input IN
2 w AT Acceleration time Time to accelerate from 0% to 100% (0.1 s) IN
3 w BT Deceleration time Time to decelerate from 100% to 0% (0.1 s) IN
4 W QT Quick stop time Time to make a quick stop from 100% to 0% (0.1 s) IN
5 w v Current speed LAU output (output to Out) ouT
6 w DVDT Current a.cceleratlon/ Scaling with the normal acceleration rate set to 5,000 OuT
deceleration rate
7 w - (Reserved.) Spare register -
] w VIM Previous speed refer- | For storage of the previous speed reference input OUT
ence value
9 W DVDTK DVDT coefficient Scaling factor for DVDT (Current Acceleration Rate) IN
10 L REM Remainder Remainder of the acceleration/deceleration rate OuT

* The relay input and output bits are assigned as given below. (Close = Bit change to 1 (ON), Open = Bit change to 0

(OFF))
Bit Symbol Name Specification 110
0 RN Line running This input is closed to run the line. IN
1 Qs Quick stop This input is opened to execute a quick stop. IN
5 DVDTF Skip e?(ecution of DVDT This ir.lput is closed to skip execution of the DVDT IN
operation operation.
3 DVDTS DVDT operation selection | Selects the method for calculating DVDT IN
4t07 - (Reserved.) Spare input relays IN
8 ARY Accelerating This output is closed during acceleration. ouT
9 BRY Decelerating This output is closed during deceleration. ouT
A LSpP Zero speed This output is closed during zero speed. OuT
B EQU Equal ;Fllllérsmiust;::; (;s closed when the input speed equals the OUT
CtoF - (Reserved.) Spare output relays ouT

+ If QS (quick stop) is opened, QT (quick stop time) is used as the acceleration/deceleration time.

5-178

5.8 DDC Instructions

5.8.11 Linear Accelerator/Decelerator 1 (LAU)

[b] Parameter Table Configuration for LAU Instruction with Real Numbers

Address .?;;Z Symbol Name Specification 110
0 W RLY Relay I/O Relay inputs and relay outputs* IN/OUT
1 w - (Reserved.) Spare register -
2 F Lv 100% level of input Scale for 100% input IN
4 F AT Acceleration time Time to accelerate from 0% to 100% (s) IN
6 F BT Deceleration time Time to decelerate from 100% to 0% (s) IN
8 F QT Quick stop time Time to make a quick stop from 100% to 0% (s) IN
10 F v Current speed LAU output (output to Out) OouT
12 F DVDT dci:réle;;zz(flrzrtznon/ The current acceleration or deceleration rate is output. ouT

* The relay input and output bits are assigned as given below. (Close = Bit change to 1 (ON), Open = Bit change to 0

(OFF))
Bit Symbol Name Specification 110
0 RN Line running This input is closed to run the line. IN
1 QS Quick stop This input is opened to execute a quick stop. IN
2t07 - (Reserved.) Spare input relays IN
8 ARY Accelerating This output is closed during acceleration. ouT
9 BRY Decelerating This output is closed during deceleration. OouT
A LSp Zero speed This output is closed during zero speed. OuT
B EQU Equal This output is closed when the input speed equals the OUT
output speed.
CtoF - (Reserved.) Spare output relays OouT

+ If QS (quick stop) is opened, QT (quick stop time) is used as the acceleration/deceleration time.

Output Speed Waveform When Input Speed Is at the 100% Input Level (LV)

Speed

Input speed at
100% input level

0%

—
AT

BT Time (t)

The acceleration time (AT) is the time from the 0% speed to the 100% speed. The deceleration time (BT) is the time
from the 100% speed to the 0% speed. The 100% speed is set as the 100% level of input. The setting of this parameter
determines the acceleration/deceleration rate. When the input speed is applied, operation is performed at the accelera-

tion/deceleration rate.
Therefore, the ratio between the set value for LV (input at 100% level) and the input speed determines the actual accel-
eration/deceleration time.
Refer to (4) Additional Information for details on the processing that is performed internally by the LAU instruction.

INF O When QS (quick stop) opens (OFF), the acceleration/deceleration time is set to the QT (quick stop time).
1% To execute a quick stop, open (OFF) QS (quick stop) and set the input speed to 0 at the same time.

Instructions

5-179

5.8 DDC Instructions
5.8.11 Linear Accelerator/Decelerator 1 (LAU)

(3) Programming Example

In the following programming example, the LAU instruction for real numbers is executed with the specified accelera-
tion and deceleration rates where MF00000 is the input speed and MF00002 is the output speed.
The following parameters are set with an EXPRESSION instruction to create the acceleration or deceleration rate.

* 100% level of acceleration/deceleration rate input = 20,000
* Acceleration time =2.5 s

* Deceleration time =3.5 s

* Quick stop time = 0.5 s

— EXPRESSION =)
DFO0002=20000; # LY 100% input | evel,
DFO0004=2.5; I AT acceleration time (s);
DFO0006=3.% /f BT decelerationtime (s) ;
DFO0008=0.5; IF QT guick stop time ()

quick stop off quick stop

WB000100 DBO000O1
|| SN
I R

Abwrays OM run

SBO00004 DBOO0OOD
|] T,
[R

(LAU I

WHIn MFOO000 [AF]Ow MFO0002
[AIPrm MAO0O10

The following figure shows how each register operates.

MB00100 ON o o . . . o .
(Quick stop bit OFF) (Acceleration time and deceleration time settings are applied.) (Quick stop time is applied.)
20,000
MFO00000
(Input speed) 0 i
-10,000
20,000
MF00002
0 —V<—> >]
(Output speed) 25 35¢ H*z PARN
-10,000 (AT) (BT) - 05s 05s
— —> (Qm) (@m)
1.25s" 1.75s"
(AT/2) (BT/2)

* 1. The acceleration time is applied when moving away from 0, and the deceleration time is applied when moving
toward 0.
* 2. The quick stop time is also applied as the acceleration time.

5-180

5.8 DDC Instructions

(4)

[a]

Additional Information

This information applies when the LAU instruction is used for integer or real number data.

LAU Instruction with Integers

5.8.11 Linear Accelerator/Decelerator 1 (LAU)

The LAU instruction for integers calculates the speed output value during acceleration, deceleration, and quick stops,

and the current acceleration or deceleration rates using the formula shown below based on predefined parameters.
In this formula, V is the speed output value, V’ is the previous speed output value, VI is the input value for the speed

reference, and Ts is the scan time set value.

Speed Output Value during Acceleration

The speed output value during acceleration is calculated as follows:

IfVI> V' (V'>0), then V= V' + ADV.
IfVI< V' (V'<0), then V=V'— ADV.

LV x Ts (0.1 ms) + REM

ADYV (acceleration rate) =
AT (0.1 s) x 1,000

Speed Output Value during Deceleration

The speed output value during deceleration is calculated as follows:

If VI> V' (V' <0), then V = V' + BDV.
If VI< V' (V'>0), then V= V'~ BDV.

LV x Ts (0.1 ms) + REM
BT (0.1 s) x 1,000

BDV (deceleration rate) =

Speed Output Value during a Quick Stop

The speed output value during a quick stop is calculated as follows:

If QS = OFF (VI> V', V' < 0), then V = V' + QDV.
If QS = OFF (VI < V', V' > 0), then V = V' — QDV.

LV x Ts (0.1 ms) + REM

DV (Quick Stop Rate) =
Q Q P) QT (0.1 s) x 1,000

Current Acceleration/Deceleration Rate

If DVDTF is ON, DVDT (current acceleration/deceleration rate) will be calculated according to the setting of DVDTS
(DVDT operation selection) using one of the following formulas. If DVDTF is OFF, DVDT is set to 0.

(V- V') x 5,000
ADV

IfDVDTS =ON, DVDT = (V-V') x DVDTK

If DVDTS =ON, DVDT =

Instructions

ARY (accelerating) turns ON when V’ =20 and ADV >0, or when V’ <0 and ADV <0.

BRY (decelerating) turns ON at the following times:
* When V’ <0 and BDV > 0, or when V’ >0 and BDV <0
* When V’ <0 and QDV >0, or when V’ >0 and QDV <0

LSP (zero speed) turns ON when V equals 0. EQU (equal) turns ON when VI equals V.
If RN (line running) is opened (OFF), the outputs for V, DVDT, and REM are set to 0.

5-181

5.8 DDC Instructions

5.8.11 Linear Accelerator/Decelerator 1 (LAU)

[b] LAU Instruction for Real Numbers

5-182

The LAU instruction for real numbers calculates the speed output value during acceleration, deceleration, and quick

stops, and the current acceleration or deceleration rates using the formula shown below based on predefined parame-
ters.

In this formula, V is the speed output value, V’ is the previous speed output value, VI is the input value for the speed
reference, and Ts is the scan time set value.

Speed Output Value during Acceleration

The speed output value during acceleration is calculated as follows:

If VI> V' (V' >0), then V = V' + ADV.
If VI< V' (V' <0), then V= V' — ADV.

LV x Ts (0.1 ms)
AT (s) x 10,000

ADV (acceleration rate) =

Speed Output Value during Deceleration

The speed output value during deceleration is calculated as follows:
IfVI<V'(V'>0),then V=V'+BDV.
IfVI>V'(V'<0),then V=V'—-BDV.

—LV x Ts (0.1 ms)
BT (s) x 10,000

BDV (deceleration rate) =

Speed Output Value during a Quick Stop

The speed output value during a quick stop is calculated as follows:

If QS =OFF (VI<V', V'>0),then V=V'+QDV.
If QS = OFF (VI> V', V' <0), then V=V'—QDV.

—LV x Ts (0.1 ms)

DV (Quick Stop Rate) =
Q Q P) QT (s) x 10,000

Current Acceleration/Deceleration Rate

The DVDT (current acceleration/deceleration rate) is calculated as follows after V (speed output) has been calculated:
DVDT=V -V’

ARY (accelerating) turns ON when V’ > 0 and ADV > 0, or when V’ <0 and ADV <0.

BRY (decelerating) turns ON at the following times:

e When V’ <0 and BDV >0, or when V’ > 0 and BDV <0

* When V’ <0 and QDV >0, or when V’ >0 and QDV <0

LSP (zero speed) turns ON when V equals 0. EQR (equal) turns ON when VI equals V.

ARY (accelerating) turns ON when V # V’ and DVDT and V have the same sign and BRY (decelerating) turns ON when V #
V’ and DVDT and V do not have the same sign.

If RN (line running) is opened (OFF), the outputs for V and DVDT are set to 0.

5.8 DDC Instructions

5.8.11 Linear Accelerator/Decelerator 1 (LAU)

[c] Precaution When Input Speed Changes Across a Speed of 0

If a reference is input that causes the speed to cross a speed of 0, the output changes as shown by @ in the following
figure.

@ Positive Speed — 0 — Negative Speed @ Negative Speed — 0 — Positive Speed

Deceleration Acceleration Deceleration Deceleration Acceleration Deceleration

@ If operation stops at a speed of 0, operation will proceed according to the set deceleration and acceleration times.
@ If the speed reference crosses the point where speed equals 0, operation is controlled by the deceleration time so
that the speed does not fluctuate.

Instructions

5-183

5.8 DDC Instructions
5.8.12 Linear Accelerator/Decelerator 2 (SLAU)

5.8.12 Linear Accelerator/Decelerator 2 (SLAU)

(1) Operation

The SLAU instruction outputs the speed that results from applying a variable acceleration or deceleration rate to the
input speed. Operation for the acceleration or deceleration rate is performed in an S curve according to predefined
parameters in a parameter table.

The input value to the SLAU instruction can be an integer or a real number.

The structure of the parameter table depends on the data type.

+ Double-length integers can be used only for CPU software version 2.30 or higher. For earlier versions, the lower 16
bits of the double-length integer are used in the calculations as an integer.

SLAU instruction
input speed waveform

Input speed

Time (1)

Acceleration/deceleration rate set in parameters
100% level of input
Input speed
SLAU instruction
output speed waveform
S EE— S EEE—
Acceleration time + Deceleration time + Time (t)
Acceleration S-curve time Deceleration S-curve time
(AT + AAT) (BT + BBT)

5-184

5.8 DDC Instructions

(2) Format

5.8.12 Linear Accelerator/Decelerator 2 (SLAU)

_[

SLAL

Z-

WLF]in MFO0000
(AP MADODTO

1

[WLF]OuW MFODO02

First address of

lcon: S\

I

parameter table Output speed Key entry: SLAU
Input speed
Applicable Data Types
Parameter Name
B w L F A Index Constant
Input speed (In) O ol O X O X
First address of parameter 9
table (Prm) X X X X o o S
Output speed (Out) X o*2 o*L2 o*? % o %

* 1. This data type can be used only for version 2.30 or higher. For earlier versions, the lower 16 bits of the double-
length integer are used in the calculations as an integer.
x 2. C and # registers cannot be used.

[a] Parameter Table Configuration for SLAU Instruction with Integers

D I
Address ata Symbol Name Specification I/0
Type
0 w RLY Relay 1/0 Relay inputs and relay outputs* IN/OUT
1 W Lv 100% level of input Scale for 100% input IN
2 W AT Acceleration time Time to accelerate from 0% to 100% (0.1 s) IN
3 w BT Deceleration time Time to decelerate from 100% to 0% (0.1 s) IN
4 w QT Quick stop time Time to make a quick stop from 100% to 0% (0.1 s) IN
5 w AAT Acceleration S-curve time | Acceleration S-curve region time (0.01 to 32.00 s) IN
6 W BBT Deceleration S-curve time | Deceleration S-curve region time (0.01 to 32.00 s) IN
7 W v Current speed SLAU output (output to Out) ouT
8 W DVDT1 Current a.cceleratlon/ Scaling with the normal acceleration rate set to 5,000 OuT
deceleration rate 1
9 w - (Reserved.) Spare register -
10 W ABMD Spee'd increase when Amount of speed changé until the speed stabilizes OUT
holding after the hold command is executed
11 w REMI Remainder Remainder of the acceleration/deceleration rate OuT
12 W - (Reserved.) Spare register -
13 W VIM Previous speed reference For storage of the previous speed reference input OUT
value
14 L DVDT2 Current a.cceleratlon/ 1,000 times the actual acceleration/deceleration OouT
deceleration rate 2
16 L DVDT3 Current gcceleration/ Current acceleration/deceleration rate (= DVDT2/ OUT
deceleration rate 3 1,000)
18 L REM2 Remainder Rerr.lalnder of the S-curve region acceleration/decel- OUT
eration rate
20 W REM3 Remainder Remainder of the current speed OouT
. Scaling factor for DVDT (Current acceleration rate 1)
21 w DVDTK ouT
DVDT! coefficient (32,768 to 32.767)

* The relay input and output bits are assigned as follows. (Close = Bit change to 1 (ON), Open = Bit change to 0
(OFF))

Instructions

5-185

5.8 DDC Instructions

5.8.12 Linear Accelerator/Decelerator 2 (SLAU)

Bit Symbol Name Specification I/0
0 RN Line running This input is closed to run the line. IN
1 Qs Quick stop This input is opened to execute a quick stop. IN
2 DVDTF Skip e?(ecution of DVDTI This input is closed to skip execution of the DVDT operation. IN
operation
3 DVDTS | DVDTI operation selection | Selects the method for calculating DVDT IN
4107 - (Reserved.) Spare input relays IN
8 ARY | Accelerating This output is closed during acceleration. OuT
9 BRY | Decelerating This output is closed during deceleration. OouT
A LSP Zero speed This output is closed during zero speed. ouT
B EQU | Equal This output is closed when the input speed equals the output speed.| OUT
C - (Reserved.) Spare output relay OuT
D CCF | Work relay System internal work relay OouT
E BBF | Work relay System internal work relay ouT
F AAF | Work relay System internal work relay OuT
+ If QS (quick stop) is opened, QT (quick stop time) is used as the acceleration/deceleration time.
[b] Parameter Table Configuration for SLAU Instruction with Double-length Integers
Address Data Symbol Name Specification 110
Type
0 w RLY Relay I/0 Relay inputs and relay outputs*1 IN/OUT
1 W - (Reserved.) - -
2 L LV 100% level of input Scale for 100% of input value IN
4 L AT Acceleration time Time to accelerate from 0% to 100% (0.1 s) IN
6 L BT Deceleration time Time to decelerate from 100% to 0% (0.1 s) IN
8 L QT Quick stop time Time to make a quick stop from 100% to 0% (0.1 s) IN
10 L AAT Acceleration S-curve time | Acceleration S-curve region time (0.01 s) IN
12 L BBT Deceleration S-curve time | Deceleration S-curve region time (0.01 s) IN
14 L v Current speed SLAU output (also the output to the A register) ouT
16 L DVDT Current a.cceleration/ The current acceleration or deceleration rate is outfut. OUT
deceleration rate (The output is truncated below the decimal point.)*2
18 L ABMD Spee.d increase when Amount of spegd change until the speed stabilizes after the OUT
holding hold command is executed
20 D V_D Current speed SLAU output for system use (double-precision real number) | IN/OUT
24 p | DVDT D Current a.cceleration/ Current accel.e.ration or deceleration rate for system use INOUT
— | deceleration rate (double-precision real number)

* 1. D is a double-length real number expressed in four words. The MPE720 cannot display this value as a real number.
* 2. The relay input and output bits are assigned as given below. (Close = Bit change to 1 (ON), Open = Bit change to 0

(OFF))
Bit Symbol Name Specification 110
0 RN Line running This input is closed to run the line. IN
1 QS Quick stop This input is opened to execute a quick stop. IN
2 DVDTF Acceleration/deceleration | When the input is closed, DVDT (current acceleration/ IN
rate flag deceleration rate) is multiplied by 1,000 and then output.
3to7 - (Reserved.) Spare input relays IN
8 ARY Accelerating This output is closed during acceleration. OouT
9 BRY Decelerating This output is closed during deceleration. ouT
A LSp Zero speed This output is closed during zero speed. OouT
B EQU Equal This output is closed when the input value equals the out- OUT
put value.
CtoF - Work relays System internal work relays IN/OUT

+ If QS (quick stop) is opened, QT (quick stop time) is used as the acceleration/deceleration time.

5-186

5.8 DDC Instructions

5.8.12 Linear Accelerator/Decelerator 2 (SLAU)

[c] Parameter Table Configuration for SLAU Instruction with Real Numbers

Address .?;;Z Symbol Name Specification I/0
0 W RLY Relay I/O Relay inputs and relay outputs” IN/OUT
1 w - (Reserved.) Spare register -

2 F LV 100% level of input Scale for 100% input IN
4 F AT Acceleration time Time to accelerate from 0% to 100% (s) IN
6 F BT Deceleration time Time to decelerate from 100% to 0% (s) IN
8 F QT Quick stop time Time to make a quick stop from 100% to 0% (s) IN
10 F AAT Acceleration S-curve time | Acceleration S-curve region time (s) IN
12 F BBT Deceleration S-curve time | Deceleration S-curve region time (s) IN
14 F \% Current speed SLAU output (output to Out) ouT
16 F DVDTI geucr:ﬂe:rta?ii)flrzrtitl]on/ The actual acceleration or deceleration rate is output. OouT
18 F ABMD Speed increase when hold- | Amount of speed change. until the speed stabilizes OUT
ing after the hold command is executed

* The relay input and output bits are assigned as given below. (Close = Bit change to 1 (ON), Open = Bit change to 0

(OFF))
Bit Symbol Name Specification I/O
0 RN Line running This input is closed to run the line. IN
1 Qs Quick stop This input is opened to execute a quick stop. IN
2to7 - (Reserved.) Spare input relays IN
ARY Accelerating This output is closed during acceleration. OouT
9 BRY Decelerating This output is closed during deceleration. OouT
A LSP Zero speed This output is closed during zero speed. ouT
B EQU Equal This output is closed when the input speed equals the OUT
output speed.
CtoF - (Reserved.) Spare output relays ouT

+ If QS (quick stop) is opened, QT (quick stop time) is used as the acceleration/deceleration time.

Speed at
100% input

Acceleration

Deceleration

S-curve Linear S-curve S-curve . Linear S-curve

region ' period region region period region

AAT = AT-AAT: AAT BBT 'BT-BBT BBT
D e .%'
AT . BT ;

AT + AAT BT +BBT
+ * + *
Start of End of Start of End of

Instructions

acceleration acceleration deceleration deceleration

Refer to (4) Additional Information for details on the processing that is performed internally by the LAU instruction.

5-187

5.8 DDC Instructions
5.8.12 Linear Accelerator/Decelerator 2 (SLAU)

(N When QS (quick stop) opens (OFF), the output decelerates at the quick stop time and the output speed is set to 0.
; It is not necessary to set the input speed to 0 in the same way as for the LAU instruction.
For a quick stop, the speed is decelerated linearly without applying the S-curve.
Set the parameters so that AT or BT (linear acceleration or deceleration time) is greater than or equal to AAT or BBT (S-curve
acceleration or deceleration time).

(3) Programming Example

In the following programming example, the SLAU instruction for real numbers is executed with the specified accelera-
tion and deceleration rates where MF00000 is the input speed and MF00002 is the output speed.
The following parameters are set with an EXPRESSION instruction to create the acceleration or deceleration rate.

* Speed when input level of acceleration or deceleration rate is 100% = 20,000

* Acceleration time=1.5s

 Deceleration time =2.5 s

* Quick stop time = 0.5 s

 Acceleration S-curve time = 0.5 s

* Deceleration S-curve time = 1.0 s

— EXPRESSION =)
DFO0002=20000; # LW 100% input | evel;
DFO0004=1.% i AT acceleration time (s);
DFO000GE=2.5; /I BT decelerationtime (s) ;
DFO000S=1.0; QT guick stop time (s);
DFO000&=0.5; I AAT s-curve acceleration time (s);
DFO000S=1.0; {f BET s-curve deceleration ime (5)

quick stop off quick stop
WBE000100 DBO00001
|| Ty
I Ry
Abwrays ON run
SEO00004 DBOO0OO0
| 1 PR
[Ry
{ SLAL

L
MALF]In MFOODO0 WLFJOWw MFO0002
[APmM DAOOOOO

5-188

5.8 DDC Instructions

5.8.12 Linear Accelerator/Decelerator 2 (SLAU)

The following figure shows how each register operates.

ON i i
(Quicl\lflzg)?gi(t) OFF) oFF (Acceleration time, deceleration time, and S-curve time settings are applied.) (QliJslc:psptl?gdt-l)me
20,000
MF00000
(Input speed) 0 _
-10,000

20,000
MF00002 / \ f
0 —_

(Output speed) /_ : s 2
-10,000 2.0s 35s . 20s 1.0s*

(AT + AAT) (BT + BBT) <> &> (AT + AAT) QT
125s 2.25s
(AT/2 + AAT) (BT/2 + BBT)

x |f the quick stop bit is turned OFF, the speed is decelerated to a stop using the quick stop time, regardless of the S-
curve time and input speed.

(4) Additional Information

The following operations are performed internally by the SLAU instruction.

[a] Operation of the SLAU Instruction for Integers

The SLAU instruction for integers calculates the speed output value during acceleration, deceleration, quick stops, S-
curve acceleration, S-curve deceleration, and the current acceleration or deceleration rates using the formulas shown
below based on predefined parameters.

In this formula, V is the speed output value, V’ is the previous speed output value, VI is the input value for the speed
reference, and Ts is the scan time set value.

B Speed Output Value during Acceleration

The speed output value during acceleration is calculated as follows:

If VI> V' (V'>0) outside an S-curve region (ADVS > ADV), then V=V'+ ADV.
If VI<V'(V'<0) outside an S-curve region (ADVS > ADV), then V=V'— ADV.

LV x Ts (0.1 ms) + REMI
AT (0.1 s) x 1,000

ADYV (acceleration rate) =

B Speed Output Value during Deceleration
The speed output value during deceleration is calculated as follows:
If VI> V' (V'<0) outside an S-curve region (BDVS > BDV), then V= V' + BDV.
If VI<V' (V"™ 0) outside an S-curve region (BDVS > BDV), then V=V' — BDV.

LV x Ts (0.1 ms) + REM1

BDV (deceleration rate) =
BT (0.1 s) x 1,000

Instructions

5-189

5.8 DDC Instructions

5.8.12 Linear Accelerator/Decelerator 2 (SLAU)

5-190

B Speed Output Value during a Quick Stop

The speed output value during a quick stop is calculated as follows:
If QS = OFF (VI> V', V'<0),then V=V'+ QDV.
If QS =OFF (VI<V', V'>0),then V=V'—QDV.

LV x Ts (0.1 ms) + REM1
QT (0.1 s) x 1,000

QDV (Quick Stop Rate) =

¢+ For a quick stop, the speed is decelerated linearly without applying the S-curve.

Speed Output Value during S-Curve Acceleration

The speed output value during S-curve acceleration is calculated as follows:

If VI> V' (V'>0) inside an S-curve region (ADVS < ADV), then V=V'+ ADVS.
If VI<V'(V'<0) inside an S-curve region (ADVS < ADV), then V=V'— ADVS.

ADVS (S-curve region acceleration rate) = ADVS'+ AADVS

ADV x Ts (0.1 ms) + REM2

AADVS = AAT (0.01 s) x 100

Speed Output Value during S-Curve Deceleration

The speed output value during S-curve deceleration is calculated as follows:

If VI> V' (V'<0) inside an S-curve region (BDVS <BDV), then V=V'+ BDVS.
I[f VI<V'(V™>0) inside an S-curve region (BDVS <BDV), then V=V'—BDVS.

BDVS (S-curve region deceleration rate) = BDVS' £+ BBDVS

BBDVS = BDV x Ts (0.1 ms) + REM2
BBT (0.01 s) x 100

Current Acceleration/Deceleration Rate

If DVDTF (skip execution of DVDT1 operation) is ON, DVDT]1 (current acceleration/deceleration rate 1) will be cal-
culated according to the setting of DVDTS (DVDT1 operation selection) using one of the following formulas. If
DVDTF is OFF, DVDT1 is set to 0.

, _ (V=V')x5,000
If DVDTS is ON, DVDTI DV

If DVDTS is OFF, DVDT1 = (V-V') x DVDTK

The value for DVDT2 (current acceleration/deceleration rate 2) is calculated as follows:
During acceleration: Inside the S-curve region: DVDT2 = +ADVS
Outside the S-curve region: DVDT2 = tADV
During deceleration: Inside the S-curve region: DVDT2 = +BDVS
Outside the S-curve region: DVDT2 = +BDV
During a quick stop: DVDT =+QDV

The result of ABMD (speed increase upon holding) is output after the following operation is performed.

DVDT?2' x DVDT2'
2 x AADVS (BBDVS)

DVDT?2'": Previous value of DVDT?2 (current acceleration/deceleration rate 2)

ABMD =

5.8 DDC Instructions

5.8.12 Linear Accelerator/Decelerator 2 (SLAU)

ARY (accelerating) turns ON at the following times:

e When V’ >0 and ADV >0, or when V’ <0 and ADV <0

* If V' 20 and ADVS > 0 inside an S-curve region, or if V’ <0 and ADVS <0 inside an S-curve region

BRY (decelerating) turns ON at the following times:

* When V’ <0 and BDV > 0, or when V’ >0 and BDV <0

* When V’ <0 and QDV >0, or when V’ >0 and QDV <0

* When V’ <0 and BDVS > 0 inside an S-curve region, or if V' > 0 and BDVS < 0 inside an S-curve region

LSP (zero speed) turns ON when V equals 0. EQU (equal) turns ON when VI equals V.

If RN (line running) is opened (OFF), the outputs for V, DVDT1, DVDT2, DVDT3, REM1, REM2, and REM3 are set to 0.

[b] Operation of the SLAU Instruction for Double-length Integers or Real Numbers

The SLAU instruction for double-length integers or real numbers calculates the speed output value during acceleration,
deceleration, quick stops, S-curve acceleration, S-curve deceleration, and the current acceleration or deceleration rates
using the formulas shown below.

In this formula, V is the speed output value, V” is the previous speed output value, VI is the input value for the speed
reference, Ts is the scan time set value, ADVS’ is the previous ADVS value, and BDVS’ is the previous BDVS value.

Speed Output Value during Acceleration

The speed output value during acceleration is calculated as follows:
If VI> V' (V'>0) outside an S-curve region (ADVS > ADV), then V =V'+ ADV.
If VI<V'(V'<0) outside an S-curve region (ADVS > ADV), then V=V'— ADV.

LV x Ts (0.1 ms)
AT (s) x 10,000

ADYV (acceleration rate) =

Speed Output Value during Deceleration
The speed output value during deceleration is calculated as follows:

If VI > V' (V'<0) outside an S-curve region (BDVS > BDV), then V=V'+ BDV.
If VI<V' (V™ 0) outside an S-curve region (BDVS > BDV), then V=V'—BDV.

—LV x Ts (0.1 ms)

BDV (deceleration rate) =
BT(s) x 10,000

Speed Output Value during a Quick Stop

The speed output value during a quick stop is calculated as follows:

If QS = OFF (VI> V', V' < 0), then V = V' + QDV.
If QS = OFF (VI< V', V' > 0), then V = V' — QDV.

—LV xTs (0.1 ms)

DV (Quick Stop Rate) =
Q Q P) QT (s) x 10,000

+ For a quick stop, the speed is decelerated linearly without applying the S-curve.

Instructions

5-191

5.8 DDC Instructions

5.8.12 Linear Accelerator/Decelerator 2 (SLAU)

B Speed Output Value during S-Curve Acceleration
The speed output value during S-curve acceleration is calculated as follows:

If VI> V' (V'>0) inside an S-curve region (ADVS < ADV), then V=V'+ ADVS.
If VI<V'(V'<0) inside an S-curve region (ADVS < ADV), then V=V'— ADVS.

ADVS (S-curve region acceleration rate) = ADVS’ £ AADVS

ADV x Ts (0.1 ms)
AAT (s) x 10,000

AADVS =

B Speed Output Value during S-Curve Deceleration
The speed output value during S-curve deceleration is calculated as follows:

If VI> V' (V'<0) inside an S-curve region (BDVS <BDV), then V=V'+ BDVS.
If VI< V' (V™ 0) inside an S-curve region (BDVS <BDV), then V=V'—-BDVS.

BDVS (S-curve region deceleration rate) = BDVS' £ BBDVS

BBDVS = . BDV x Ts (0.1 ms)
BBT (s) x 10,000

B Current Acceleration/Deceleration Rate

The value of DVDT (current acceleration/deceleration rate 1) is output after the following operation is performed:
During acceleration: Inside the S-curve region: DVDT = ADVS
Outside the S-curve region: DVDT = ADV
During deceleration: Inside the S-curve region: DVDT = BDVS
Outside the S-curve region: DVDT = BDV
During a quick stop: DVDT = QDV

The result of ABMD (speed increase upon holding) is output after the following operation is performed.

DVDT x DVDT
ABMD =57 ADVS (BBDVS)
INFO LSP (zero speed) turns ON when V equals 0. EQU (equal) turns ON when VI equals V.
% If RN (line running) is opened (OFF), the outputs for V, DVDT, and AVMD are set to 0.

5-192

5.8 DDC Instructions

5.8.12 Linear Accelerator/Decelerator 2 (SLAU)

[c] Precautions in Using the SLAU Instruction for Integers

Do not change the input value before the input speed (V1) is reached (i.e., during acceleration or deceleration).
Otherwise, overshooting or undershooting may occur as shown in the following figures.

Overshoot
Speed /\ /\ Speed/\
VI \ Reference input changed
during deceleration
’/ (0 was changed to VI).
Reference input changed
during acceleration
(VI was changed to 0).
—
”~
0 Time 0 e Time

Undershoot

If VI (input value) must be changed while accelerating or decelerating, take one of the following measures in your
application program.
» Use the SLAU instruction for real numbers.

* Use the SLAU instruction for integers together with the LIMIT instruction. Specifically, use the output value of
the SLAU instruction for integers as the input value to the LIMIT instruction to prevent overshooting or under-
shooting.

[d] Precaution When Canceling a Quick Stop While Decelerating during a Quick Stop

When decelerating for a quick stop, do not cancel the quick stop before the output speed reaches 0. Otherwise, under-
shooting may occur while approaching the input speed.

Speed

Quick stop
VI &

Quick stop canceled
before speed is 0.

4

0 / \ / Time

Undershoot

Instructions

If you must reset the quick stop before the output speed reaches 0 and undershooting is a problem, take one of the fol-
lowing measures in your application program.

* Do not cancel the quick stop before the output speed reaches 0.
* Use the LIMIT instruction on the output speed to prevent undershooting when the quick stop is canceled.

5-193

5.8 DDC Instructions

5.8.13 Pulse Width Modulation (PWM)

5.8.13 Pulse Width Modulation (PWM)

5-194

(1) Operation

The PWM instruction converts the input value (from -100.00% to 100.00%) using pulse-width modulation and outputs
the result to the output value and parameter table. The input value and output value must be integers. Double-length

integers and real numbers cannot be used.

Output value for PWMT (PWM cycle) PWMT (PWM cycle)
PWM instruction
1 0 1 0
(ON) (OFF) (ON) (OFF)
| | Scan
N J
Y

ON output time
(number of ON output scans)

The ON output time and number of ON output scans of the PWM instruction can be calculated with the following for-

mula.
X is the input value, PWMT is the PWM cycle (ms), and Ts is the scan time set value (ms).

PWMT (X + 10,000)
20,000

ON output time =

PWMT (X + 10,000)
Ts x 20,000

+ The relation between the input value and the PWM output ON ratio is as follows:
¢+ Input value 100.00% — 100% ON (ON output time = PWMT)
¢ Input value 0.00% — 50% ON (ON output time = PWMT/2)
¢+ Input value -100.00% — 0% ON (ON output time = 0)
+ After turning ON the power supply, close PWMRST (PWM reset) to clear all internal calculations before using
the PWM instruction. When the PWM reset bit is closed, all internal calculations are reset and then the PMW
operation starts execution from that point.

Number of ON output scans =

5.8 DDC Instructions

5.8.13 Pulse Width Modulation (PWM)

(2) Format

— PM 2
[4n BAA00000 [B]Ou MEOOOC0 Icon: PWM
[A]Pmm MADOOTO T

First address of

Ki : PWM
parameter table ey entry

Output value

Input value
Applicable Data Types
Parameter Name
w L F Index Constant
Input value (In) O X X X O O
First address of .
parameter table (Prm) X % X x © © ©
Output value (Out) o* X X X X O X

* C and # registers cannot be used.

[a] Ranges of Input and Output Values

The input value must be between -10,000 and 10,000 in units of 0.01%.
If the input exceeds this range, processing is performed for the upper limit (10,000) and the lower limit (-10,000).
The output value is set to 1 when the PWM output is ON, or to 0 when the PWM output is OFF.

[b] Parameter Table Configuration

Address Data Symbol Name Specification I/0
Type
0 W RLY Relay /O Relay inputs and relay outputs* IN/OUT
PWM cycle (1 ms)
1 w RWMT IN
PWM cycle Range: 1 to 32,767 ms
2 W ONCNT ON output setting timer ON output setting timer (1 ms) ouT
3 w CVON ON output counting timer ON output counting timer (1 ms) ouT g
4 W CVONREM | ON output counting timer remainder 2)1\1 (I)::gut counting timer remainder OuT §
5 W OFFCNT OFF output setting timer OFF output setting timer (1 ms) OouT E
6 W CVOFF OFF output counting timer OFF output counting timer (1 ms) OouT
7 W CVOFFREM (?FF output counting timer remain- (OOFIF ou)tput counting timer remainder OUT
er .1 ms

* The relay input and output bits are assigned as given below. (Close = Bit change to 1 (ON), Open = Bit change to 0

(OFF))
Bit Symbol Name Specification 110
0 PWMRST | PWM reset bit This input is closed to reset the PWM operation. IN
2t07 - (Reserved.) Spare input relays IN
PWM output
8 PWMOUT | PWM output (The output value is set to 1 when the output is ON, or ouT
to 0 when the output is OFF.)
9toF - (Reserved.) Spare output relays ouT

5-195

5.8 DDC Instructions
5.8.13 Pulse Width Modulation (PWM)

(3) Programming Example

In the following programming example, the PWM output for the input value in MW00000 is stored in OB000000
where the PWM cycle is 100 ms.

After High Scan Start,
Only 1 Scan Ok
SB000001 DENoo310 DEOa0100

| | 4 O

(STORE o
WLFISrc 00100 [WLFIDest DvwO001 1
100 100
(Py A

1,

[N MWO000O [B]Out DEO000000
0 1

[A]Prm DAODD10

output to device

CEnoooao QE00000
I |
|

This figure shows the output of OB000000 when MW00000 is 0 (0%: ON output time is 1/2 of the PWM cycle).

PWM cycle = 100 ms

ON

OFF

ON output time = 50 ms
Number of ON output scans = 50 ms/scan time set value

This figure shows the output of OB000000 when MW00000 is 7,500 (75%: ON output time is 3/4 of the PWM cycle).

PWM cycle = 100 ms

ON

OFF

ON output time = 75 ms
Number of ON output scans = 75 ms/scan time set value

5-196

5.9 Table Manipulation Instructions

5.9.1 Read Table Block (TBLBR)

5.9 Table Manipulation Instructions
5.9.1 Read Table Block (TBLBR)

(1) Operation

The TBLBR instruction moves the block of the table data that is specified by the table name, row number, and column
number to a continuous area that starts at the first destination address. The data is stored in the destination area accord-
ing to the data type of the elements that were read.

If an error occurs when accessing the table, such as data that is outside of the valid range or not enough data length at
the destination, an error is output and no data is read. The contents in the destination area will remain unchanged.

If the instruction ends normally, the number of words that were moved is output, and the Status bit is turned OFF. If an
error occurs, an error code is output and the Status bit is turned ON.

Data type for each column First destination address

Columns — /
W W L L W
(W) W) (L) (L) (W) 7 Mwoooo
Rows 1 2 3 4 S
8 MLOOOO + 1
! 6 7 8 9 10
Transferred. 9 MLOODOO + 3
11 12 13 14 15 ﬁ
) 12 MwOOoOoO + 5
13 MLOOOO + 6
/ Table Data 14 MLOOOO + 8

Block specified in parameter table . .
Data is stored according to

the data type of the table data.

[a] If the Move Succeeds

[2])
Number of -5
words moved _— Output data _.g
0 (OFF) Status £
[b] If the Move Fails
Error code _ Output data
1 (ON) —_— Status

+ If the move fails, the destination area will retain the contents from before the instruction was executed.

5-197

5.9 Table Manipulation Instructions

5.9.1 Read Table Block (TBLBR)

(2) Format

_(

TELER =

— MName TBL1 [A[Ou] WWOO000 ¢— il
[A]Data MAOD100 [B][Stg MBO0OOD10 leon: g
[AJPrm MAODD10 T

First address of Status
parameter table
) o Key entry: TBLBR
First destination address Output data

Source table name

Applicable Data Types
Parameter Name
B w L F A Index Constant
First destination address 0
(Data) X X X X O X X
First address of parameter o
table (Prm) % x % x % x
Output data (Out)"! x 0™ X X X O x
Status (Sts)"! o™ X X X X x x
* 1, Optional.
* 2. C and # registers cannot be used.
[a] Parameter Table Configuration
Data e
Address Symbol Name Specification 110
Type
0 L ROW1 First row number of First row number of table elements to move IN
table elements (1 to 65,535)
2 L COL1 First column number | First column number of table elements to move IN
of table elements (110 32,767)
4 w RLEN Number of row ele- Number of row elements (1 to 32,767) IN
ments
Number of column
5 w CLEN Number of column elements (1 to 32,767) IN
elements
[b] Error Codes
Error Code Error Name Meaning
0001 hex Table undefined The target table is undefined.
0002 hex Outside range of row numbers | The row number of the table element is outside the target table.
0003 hex S;t;lde range of column num- The column number of the table element is outside the target table.
0004 hex Incorrect number of elements | The number of target elements is invalid.
0005 hex Insufficient storage area The storage area is insufficient.
0006 hex Insufficient element type The data type specified for the element is wrong.
0007 hex Queue buffer error An attempt was made to rea.d from an.empty queue buffer or to write to a
full queue buffer by advancing the pointer.
0008 hex Queue table error The specified table is not a queue table.
0009 hex System error anunexpected error was detected in the system during instruction execu-

5-198

+ The error codes apply to all table manipulation instructions.

5.9 Table Manipulation Instructions

(3) Programming Example

5.9.1 Read Table Block (TBLBR)

In the following programming example, the specified block in record table data TBL1 is moved to an area that starts at

MWO00100 when switch 1 (DB000000) turns ON.

The parameter table is set as shown in the following table.

Register Data Remarks

DL00000 2 First row number of table elements
DL00002 2 First column number of table elements
DWO00004 3 Number of row elements

DWO00005 3 Number of column elements

The contents of table data TBL1 are given below.

Column 1 2 3 4 5
Row (W) (W) (L) (L) (F)
1 1000 1001 10000 10001 1.1
2 2000 2002 20000 20002 y/
3 3000 3003 30000 30003 /1 3
4 4000 4004 40000 40004 14
5 5000 5005 50000 50005 15

¢ The column data types are given in parentheses.

Block to move

After the instruction is executed, the data is moved to an area that starts from MW00100 as shown below.

— EXPRESSION =)
DOLOoD0OD=2;, DLOoD02=2; i table elements beginning rave and calumn number,
=2 =2
OCwioon4=3; OCWy00005=3; & number of row and column elements
B=ap, 2=3
switchl
DEDDO100
——] | (TELER o w
Mame TEBL1 M TOut] MWOo000 S
[A]Data mMADOTO0 15 B
[4]Frm DADDOOO [Bll5ts] MEOOODOIO 2
0 2

The number of words that was moved is set to 15 in MW00000 (output data), and MB000010 (status) is set to 0 (move

successful).

Register Data Register Data Register Data
MWO00100 2002 ML00101 20000 ML00103 20002
MWO00105 3003 MLO00106 30000 MLO00108 30003
MWO00110 4004 MLO00111 40000 MLO00113 40004

+ The registers are assigned as shown in the above table.

5-199

5.9 Table Manipulation Instructions
5.9.2 Write Table Block (TBLBW)

5.9.2 Write Table Block (TBLBW)

(1) Operation

The TBLBW instruction moves the data from a continuous area that starts at the first source address to a block of the
table data that is specified by the table name, row number, and column number. The data is stored under the assumption
that the data type of the source area and each element in the table data are the same.

If an error occurs when accessing the table, such as data that is outside of the valid range or not enough data length at
the source, an error is output and no data is written. The contents in the destination area will remain unchanged.

If the instruction ends normally, the number of words that were moved is output, and the Status bit is turned OFF. If an
error occurs, an error code is output and the Status bit is turned ON.

First source address Data type for each column

Columns — /
100 Mwoooo w W u LW
101 MLOOOO + 1 Rows 1 2 3 4 5
102 MLOOOO +3 Transferred. ! 6 | 100 | 101 | 102 | 10
103 MWOOoO + 5 I 11 103 | 105 | 106 15

;

104 MLOOOO + 6
105 MLOOOO + 8 / Table Data

Data is moved according to Block specified in parameter table

the data type of the table data.

[a] If the Move Succeeds

Number of E —— Output data
words moved
0 (OFF)) Status
[b] If the Move Fails
Error code _— Output data
1 (ON) —} Status

+ If the move fails, the destination area will retain the contents from before the instruction was executed.

5-200

5.9 Table Manipulation Instructions

(2) Format

5.9.2 Write Table Block (TBLBW)

_|:

TELEWY

=)

—» MName
[AData MADD100
[APrm MADDOTO

TELT

[A[OW] MWO0000 —
[BI[5ts]

First address of
parameter table

First source address

MEDDOO10 . TBL
T Icon: BR
Status
Key entry: TBLBW
Output data

Destination table name

Applicable Data Types
Parameter Name
B W L F A Index Constant
First source address o
(Data) X X X X O X X
First address of o
parameter table (Prm) x x x x x x
Output data (Out)"? X 0*2 x X x o) x
Status (Sts)"! o2 X X X X X X
x 1. Optional.
x 2. C and # registers cannot be used.
[a] Parameter Table Configuration
Data I
Address Symbol Name Specification 110
Type
0 L ROWI First row number of First row number of table elements to move IN
table elements (1 to 65,535)
2 L COLI1 First column number of | First column number of table elements to move IN
table elements (1 to 32,767)
4 w RLEN Number of row ele- Number of row elements (1 to 32,767) IN
ments
5 W CLEN i‘;ﬁ:‘;er of column ele- Number of column elements (1 to 32,767) IN
[b] Error Codes
Error Code Error Name Meaning
0001 hex Table undefined The target table is undefined.
0002 hex Outside range of row numbers | The row number of the table element is outside the target table.
0003 hex E);tsmde range of column num- The column number of the table element is outside the target table.
0004 hex Incorrect number of elements | The number of target elements is invalid.
0005 hex Insufficient storage area The storage area is insufficient.
0006 hex Insufficient element type The data type specified for the element is wrong.
0007 hex Queue buffer error An attempt was made to regd from an empty queue buffer, or to write to a
full queue buffer by advancing the pointer.
0008 hex Queue table error The specified table is not a queue table.
0009 hex System error anunexpected error was detected in the system during instruction execu-

+ The error codes apply to all table manipulation instructions.

Instructions

5-201

5.9 Table Manipulation Instructions

5.9.2 Write Table Block (TBLBW)

(3) Programming Example

In the following programming example, an area of data that starts at MW00100 is moved to a specified block in record
table data TBL1 when switch 1 (DB00000) turns ON.

The parameter table is set as shown in the following table.

Register Data Remarks
DL00000 2 First row number of table elements
DL00002 2 First column number of table elements
DWO00004 3 Number of row elements
DW00005 3 Number of column elements
— EXPRESSION A
DOLOoD0OD=2;, DLOoD02=2; i table elements beginning rave and calumn number,
=2 =2
OCwioon4=3; OCWy00005=3; & number of row and column elements
B=ap, 2=3
switchl
DEDDO100
‘_I : [TELEW E)_
Mame TEBL1 M TOut] MWOo000
[A]Data mMADOTO0 15
[A]Prm DADOOOD [B][=ts] MEDDODTO
1]
The data that is written is given below.

Register Data Register Data Register Data
MWO00100 1 MLO00101 2 ML00103 3
MWO00105 4 ML00106 5 ML00108 6
MWO00110 7 MLO0O0111 8 MLO00113 9

The following table shows the contents of table data TBL1 after the instruction is executed.

The number of words that were moved is set to 15 in MW00000, and MB000010 (status) is set to 0 (move successful).

¢+ The column data types are given in parentheses.

5-202

Column 1 2 3 4 5 . .
Area that is written
Row (W) (W) (L) (L) (F)

1

2

3 6 |~

4

5

5.9 Table Manipulation Instructions

5.9.3 Search for Table Row (TBLSRL)

(1) Operation

5.9.3 Search for Table Row (TBLSRL)

The TBLSRL instruction searches for the search data in column elements of the table data that is specified by the table
name, row numbers, and column number. The search result is output as the row number of the data that matches the
search data. The type of the data to be searched is automatically determined by the data type of the specified column

elements.

If the instruction ends normally and the search data is found, the search result in the input parameter table is set to 1, the
output data is set to the row number, and the status is turned OFF. If the search data is not found, the search result and
output data are set to 0. If an error occurs, an error code is set in the output data and the status is turned ON.

Search data

Search area selected
by first row number,
|- last row number, and

[a] Search Data Found

column number

[b] Search Data Not Found

[c] Search Error

Instructions

Columns — / Data type for each column
w) (W) L w
Rows
1 f —
»Search | I
Table Data
Row number _) Output data
0 (OFF)) Status
1: Matching Search result
row exists ‘ for parameters
0) Output data
0 (OFF)) Status
0: No matching row| — 3 Search result
for parameters
Error code — Output data
1 (ON) e Status

5-203

5.9 Table Manipulation Instructions

5.9.3 Search for Table Row (TBLSRL)

5-204

(2) Format

— TBLSRL

=)

— Mame TEL
- [A]Data WMADDOD0
[APrm WADDOTD

1

[A[OW] MWODDD T 4—

[EllSts] MBOOODZ0 con: E?;HL_

1

First address of
Status
parameter table
First address Key entry: TBLSRL
Output data
of search data
Table name
Applicable Data Types
Parameter Name
B W L F A Index Constant
First address of search o
data (Data) X x x x X
First address of parameter o
table (Prm) x x x x x
Output data (Out)"! x 0*2 X X x) x
Status (Sts)"’! o™ X X X X X
x 1. Optional.
x 2. C and # registers cannot be used.
[a] Parameter Table Configuration
Data I
Address Symbol Name Specification I/O
Type
0 L ROWI1 First row number of First row number of table elements to search IN
table elements (1 to 65,535)
2 L ROW2 Last row number of Last row number of table elements to search IN
table elements (1 to 65,535)
4 L COLUMN Column number of Column number of table elements to search IN
table elements (1to 32,767)
Search result
6 W FIND Search result 0: No matching row OuT
1: Matching row exists
[b] Error Codes
Error Code Error Name Meaning
0001 hex Table undefined The target table is undefined.
0002 hex Outside range of row numbers | The row number of the table element is outside the target table.
0003 hex l?;t:'lde range of column num- The column number of the table element is outside the target table.
0004 hex Incorrect number of elements | The number of target elements is invalid.
0005 hex Insufficient storage area The storage area is insufficient.
0006 hex Insufficient element type The data type specified for the element is wrong.
0007 hex Queue buffer error An attempt was made to rea'd from an empty queue buffer, or to write to a
full queue buffer by advancing the pointer.
0008 hex Queue table error The specified table is not a queue table.
0009 hex System error An unexpected error was detected in the system during instruction execution.

5.9 Table Manipulation Instructions

5.9.3 Search for Table Row (TBLSRL)

(3) Programming Example

In the following programming example, a search is made for search data 32 in MWO00000 in part of a column of array
table data TBLI1.

The parameter table is set as shown in the following table.

Register Data Remarks

DL00010 2 First row number of table elements
DL00012 5 Last row number of table elements
DL00014 2 Column number of table elements

The contents of table data TBL1 are given below. (Table elements are integer data.)

Column 1 5 3 4 5
Row

1 11 12 13 14 15

2 21 22 23 24 25

3 31 32 33 34 35

4 41 42 43 44 45

5 51 52 53 54 55

Area to search

A match for 32 (MWO00000) was found in row number 3 in the search area, so DW00001 is set to 3.

—[EXPRESSION ;I]i
DOLO0D10=2; DLOD012=5; #head and last rows number of the target table element,
2=2 5=5
DLO0014=2 # column number,
2=
M O0000=32; /& search data
32=32 2
iel
©
=
2
[TELSREL o =
Mame TEBL1 [A[Cut] DWWo0001
[4]Data MAOOODO 3 u
[APrm DADOO10 [Bllsts] DBOOOCOO
1]

5-205

5.9 Table Manipulation Instructions

5.9.4 Search for Table Column (TBLSRC)

5.9.4 Search for Table Column (TBLSRC)

(1) Operation

The TBLSRC instruction searches for the search data in row elements of the table data that is specified by the table
name, column numbers, and row number. The search result is output as the column number of the data that matches the
search data. The type of the data to be searched is automatically determined by the data types of the specified row ele-

ments.

If the instruction ends normally and the search data is found, the search result in the input parameter table is set to 1, the
output data is set to the column number, and the status is turned OFF. If the search data is not found, the search result
and output data are set to 0. If an error occurs, an error code is set in the output data and the status is turned ON.

Search data

[a] Search Data Found

Search area selected
by first column number,
| last column number,

and row number

[b] Search Data Not Found

[c] Search Error

5-206

Columns — / Data type for each column
wy mw L L w
Row
!
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -» Search
Table Data
Column number  —— Output data
0 (OFF) _— Status
1: Matching Search result
column exists ’ for parameters
0 _— Output data
0 (OFF) _—) Status
0: No matching Search result
column —_— for parameters
Error code E— Output data
1 (ON) e Status




5.9 Table Manipulation Instructions

(2) Format

_|:

TELSRC

=)

— MName  TBL
[AlData MADDOOD
[APrm  MADQDT0

[A[Ou] MWOD0DT —

[Bl[Sts] MBO000Z0

:

5.9.4 Search for Table Column (TBLSRC)

Icon: HT%I:-:

Instructions

First address of
Status
parameter table
- Key entry: TBLSRC
First address Outout data
of search data P
Table name
Applicable Data Types
Parameter Name
B W L F A Index Constant
First address of y y y % o % N
search data (Data)
First address of y y y % o % N
parameter table (Prm)
Output data (Out)"! X 0™ X X x O X
Status (Sts)"! o*? X X X X X X
* 1. Optional.
x 2. C and # registers cannot be used.
[ a] Parameter Table Configuration
Data T
Address Symbol Name Specification 110
Type
0 L ROWI Row number of table Row number of table elements to search IN
elements (1 to 65,535)
5 L COLUMNI First column number of | First column number of table elements to search IN
table elements (1 to 32,767)
4 L COLUMN2 Last column number of | Last column number of table elements to search IN
table elements (1to 32,767)
Search result
6 4 FIND Search result 0: No matching column OouT
1: Matching column exists
[b] Error Codes
Error Code Error Name Meaning
0001 hex Table undefined The target table is undefined.
0002 hex Outside range of row numbers | The row number of the table element is outside the target table.
0003 hex S;;Slde range of column num- The column number of the table element is outside the target table.
0004 hex Incorrect number of elements | The number of target elements is invalid.
0005 hex Insufficient storage area The storage area is insufficient.
0006 hex Unexpected element type The data type specified for the element is wrong.
0007 hex Queue buffer error An attempt was made to rea.d from an empty queue buffer, or to write to a
full queue buffer by advancing the pointer.
0008 hex Queue table error The specified table is not a queue table.
0009 hex System error :?:nunexpected error was detected in the system during instruction execu-

5-207



5.9 Table Manipulation Instructions

5.9.4 Search for Table Column (TBLSRC)

(3) Programming Example

In the following programming example, a search is made for search data 34 in MWO00000 in part of a row of array table
data TBLI.

The parameter table is set as shown in the following table.

Register Data Remarks

DL00010 3 Row number of table elements
DL00012 2 First column number of table elements
DL00014 5 Last column number of table elements

The contents of table data TBL1 are given below. (Table elements are integer data.)

Column
1 2 3 4 S Area to search
Row
1 1 12 13 14 15
2 21 22 23 24 25
3 31 32 33 34 35
4 41 42 43 44 45
5 51 52 53 54 55

A match for 34 (MW00000) was found in column number 4 in the search area, so DW00001 is set to 4.

—( EXPRESSION ;I]

DLO0010=3; / head column number,

=3

DLO0012=2 DLO0D14=5: §# head and last column number,

2=2 5=5

M O0000=34; /& search data

34=34
[ TELSREC o
Mame TEBL1 [A[Cut] DWWo0001
[&]Data MADDDOO 4
[APrm  DADOO10 [Bllsts] DBOOOCOO

1]

5-208



5.9 Table Manipulation Instructions

5.9.5 Clear Table Block (TBLCL)

(1) Operation

5.9.5 Clear Table Block (TBLCL)

The TBLCL instruction clears the block of data in the table data that is specified by the table name, row numbers, and

column numbers. The elements are filled with spaces if the data type is for text strings, and Os if the data type is for

numeric values.

If both the first row number and the first column number of the table element are 0, the entire table will be cleared.

If an error occurs when accessing the table, such as data that is outside of the valid range or not enough data length at
the destination, an error is output and no data is written.

If the instruction ends normally, the number of words that were cleared is output and the status is turned OFF. If an

error occurs, an error code is set in the output data and the status is turned ON.

Data type for each column

—

Columns — /

w) (W) (L) (L) (Text string)
Rows 1 2 3 4 abced
l 6 0 0 0

1" 0 0 0

/
16 17 18 19 hijk
/ Table Data

Specified block

+ If the first row number and column number of the table element are both 0, the entire table is cleared.

[a] If the Clear Succeeds

Number of
words cleared

0 (OFF)

[b] If the Clear Fails

Error code

1 (ON)

+ |If the clear fails, the table data will retain the contents from before the instruction was executed.

Data cleared.

Text strings are set to spaces,
numeric values are set to Os.

L Output data
L Status
) Output data
_— Status

Instructions

5-209



5.9 Table Manipulation Instructions

5.9.5 Clear Table Block (TBLCL)

5-210

(2) Format

—{ TBLCL

=)

Icon:

Name TBLT M[OW] MWO000 0 —— CL

[APrm MAODO10  [BISts] MBO00010

First address of
parameter table Status Key entry: TBLCL
Table name Output data
Applicable Data Types
Parameter Name
B W L F A Index Constant
First address of y y v y o y «
parameter table (Prm)
Output data (Out) X o X X X @) X
Status (Sts)"! o™ X X X X x X
x 1. Optional.
x 2. C and # registers cannot be used.
[ a] Parameter Table Configuration
Data T
Address Symbol Name Specification I/O
Type
0 L ROW First row number of First row number of table elements to clear IN
table elements (1 to 65,535)
2 L COL First column number of | First column number of table elements to clear IN
table elements (1t032,767)
4 w RLEN Number of row ele- Number of row elements (1 to 32,767) IN
ments
Number of column ele-
5 W CLEN Number of column elements (1 to 32,767) IN
ments
[b] Error Codes
Error Code Error Name Meaning
0001 hex Table undefined The target table is undefined.
0002 hex Outside range of row numbers | The row number of the table element is outside the target table.
0003 hex ]?;t:lde range of column num- The column number of the table element is outside the target table.
0004 hex Incorrect number of elements | The number of target elements is invalid.
0005 hex Insufficient storage area The storage area is insufficient.
0006 hex Insufficient element type The data type specified for the element is wrong.
0007 hex Queue buffer error An attempt was made to rea'd from an.empty queue buffer, or to write to a
full queue buffer by advancing the pointer.
0008 hex Queue table error The specified table is not a queue table.
0009 hex System error ii\(r)lnunexpected error was detected in the system during instruction execu-




5.9 Table Manipulation Instructions

(3) Programming Example

5.9.5 Clear Table Block (TBLCL)

In the following programming example, the specified block is cleared from record table data TBL1 when switch 1

(DB000100) turns ON.

The parameter table is set as shown in the following table.
Register Data Remarks
DL00000 2 First row number of table elements
DL00002 2 First column number of table elements
DW00004 3 Number of row elements
DW00005 3 Number of column elements

The contents of table data TBL1 are given below.

Column 1 2 3 4 5
Row (W) (W) (L) (Textstring) | (F) Area to clear
1 1000 1001 10000 ABCD 1.1
2 2000 2002 20000 BCDE 1 /2/
3 3000 3003 30000 CDEF |3
4 4000 4004 40000 DEFG 14
5 5000 5005 50000 EFGH 1.5
¢+ The column data types are given in parentheses.
—( EXPRESSION ;I]—

DLOOoo0=2; DLOoO0OZ=2; f head and last row number;

d=2 =7

OiA00004=23; A orowe number;

=3

Cvy0000 £=3; f column number;

=3

{ TBLCL =
Mame TBLIT (A[Cut] MAO0000
[APrm DADODOO 15
[Blists] MBOOODO1O
1]

The data is cleared after the instruction is executed as shown below.

Area that was cleared

Column 1 2 3 4 5
Row (W) (W) (L) | (Textsting) | (F)

1 1000 1001 10000 ABCD 14

2 2000 0 0 122

3 3000 0 0 =

4 4000 0 0 14

5 5000 5005 50000 EFGH 15

¢+ The column data types are given in parentheses.

Instructions

5-211



5.9 Table Manipulation Instructions
5.9.6 Move Table Block (TBLMV)

5.9.6 Move Table Block (TBLMV)

(1) Operation

The TBLMYV instruction moves a block of data in the table data that is specified by the table name, row number, and
column number to a different table block. The block can be moved between different tables or within the same table.
If the data type of the column elements in the source and destination do not match, an error is output and no data is
moved.

If the instruction ends normally, the number of words that were moved is output, and the Status bit is turned OFF. If an
error occurs, an error code is output and the Status bit is turned ON.

Columns — Columns —
w mw o O w W WL (L
Rows| 1 2 3 Moved. Rows
| 4 5 6 ! 1 2 3
Moved. 4 5 6
1 2 3
4 5 6
Table Data 2
Table Data 1

[a] If the Move Succeeds

Number of
E—
words moved Output data
0 (OFF) E— Status
[b] If the Move Fails
Error code B —— Output data
1(ON) E— Status

+ If the move fails, the table data will retain the contents from before the instruction was executed.

5-212



5.9 Table Manipulation Instructions

(2) Format

5.9.6 Move Table Block (TBLMV)

— TBLIY Z-
— Sic Mame  TBL1 (][ Cu] WWOODDD  4——

DestName TBL2 [BliSts] MBO00010 leon: v

[AlPrm AACOD10 T
First address of '

Status
parameter table Key entry: TBLMV
Destination table name Output data

Source table name

Applicable Data Types
Parameter Name
B w L F A Index Constant
First address of » » y « o y »
parameter table (Prm)
Output data (Out)"” X 0™ x X X O x
Status (Sts)"! 0™ X x X x x x
* 1. Optional.
* 2. C and # registers cannot be used.
[a] Parameter Table Configuration
Data I
Address Symbol Name Specification 110
Type
0 L ROWI First row number of First row number of table elements at source to IN
table elements move (1 to 65,535)
2 L COLUMNI First column number of | First column number of table elements at source to IN
table elements move (1 to 32,767)
4 W RLEN Number of row ele- Number of row elements (1 to 32,767) IN
ments
Number of column ele-
5 w CLEN ments Number of column elements (1 to 32,767) IN
6 L ROW2 First row number of First row number of table elements at destination (1 IN
table elements to 65,535)
8 L COLUMN2 First column number of Elrst column number of table elements at destina- IN
table elements tion (1 to 32,767)
[b] Error Codes
Error Code Error Name Meaning
0001 hex Table undefined The target table is undefined.
0002 hex Outside range of row numbers | The row number of the table element is outside the target table.
0003 hex t())elitss1de range of column num- The column number of the table element is outside the target table.
0004 hex Incorrect number of elements | The number of target elements is invalid.
0005 hex Insufficient storage area The storage area is insufficient.
0006 hex Insufficient element type The data type specified for the element is wrong.
0007 hex Queue buffer error An attempt was made to regd from an empty queue buffer, or to write to a
full queue buffer by advancing the pointer.
0008 hex Queue table error The specified table is not a queue table.
0009 hex System error i?:nunexpected error was detected in the system during instruction execu-

Instructions

5-213



5.9 Table Manipulation Instructions
5.9.6 Move Table Block (TBLMV)

(3) Programming Example

In the following programming example, the specified block in record table data TBL1 is moved to the specified block
in table data TBL2 when switch 1 (DB000100) turns ON.

The contents of table data TBL1 are given below.

Column 1 2 3
Row (W) (W) (L)
1 1000 1001 10000
2 2000 | 2002 20000 Block to move
3 3000 3003 30000
4 4000 4004 40000
5 5000 | 5005 | 50000

¢+ The column data types are given in parentheses.

The parameter table is set as shown in the following table.

Register Data Remarks

DL00000 2 First row number at source

DL00002 1 First column number at source

DW00004 3 Number of row elements

DW00005 3 Number of column elements

DL00006 2 First row number at destination

DL00008 2 First column number at destination

——{ EXPRESSION B

DLOoooo0=2; DLO0DOZ=1: /i source head rowe and column number for trans fer;
2=21=1
Cvyi0004=3; A rowe number;
=3
OiA0000 5=23; i column number;
=3
DLO0O00G=2; DLOODOS=2; M target head row and column number for transfer,
d=2 =7

{ TELMY )
Src Mame  TBL1 AL WAAO0000
Dest Mame TELZ 12

[A]Prm DADDOOD  [B][Sts] MEOOOO10
a

This table shows the contents of table data TBL2 after the instruction is executed.

Column 1 2 3 4 5
Block that was moved
Row (W) (W) (W) (L) (L)

1

2 2000 2002 20000

3 3000 3003 30000 -

4 4000 4004 40000

5

5-214



5.9 Table Manipulation Instructions

5.9.7 Read Queue Table (QTBLR and QTBLRI)

5.9.7 Read Queue Table (QTBLR and QTBLRI)
(1) Operation

Column elements of the table data that are specified by the table name, row number, and column number are continu-
ously read and stored in a continuous area that starts at a specified register. The data types of the elements that are read
are automatically determined by the table that is specified. The data types of the destination registers are ignored and
the data is stored according to the data types in the table without any conversion.

The QTBLR instruction does not change the queue table read pointer. The QTBLRI instruction advances the queue
table read pointer by one row.

If an error occurs when accessing the table, such as a table name error, an out of range row number, or an empty queue
buffer, an error is output, no data is read, and the pointer is not advanced.

The contents of the destination registers will be retained.

If the instruction ends normally, the number of words that were moved is output, and the Status bit is turned OFF. If an
error occurs, an error code is output and the Status bit is turned ON.

. First address of destination data
Read pointer

_— |
Advanced. C |

----- b

Read.

With the QTBLR
instruction, the
pointer is not
advanced after
instruction execution.

With the QTBLRI
instruction, the
pointer is
advanced after Table Data
instruction execution.

[a] Ifthe Read Succeeds

Number of _—) Output data

words moved

0 (OFF) ) Status

[b] If the Read Fails

Instructions

Error code _—) Output data

1 (ON) _— Status

+ If the read fails, the data at the destination will retain the contents from before the instruction was executed.

5-215



5.9 Table Manipulation Instructions

5.9.7 Read Queue Table (QTBLR and QTBLRI)

5-216

(2) Format

_(

_[

—» Mame  TBEL

QTBLR

-

MName TBL
[AlData MADDOOD
[APrm MADDOT0

[MATIOW] MWO000 1

[Bl[Sts]

MEOODDZ0

QTELRI

)

[MA[OW] MWOO000 1 —

Icon: Q@TEL
R

QTEL

RI

[AData KADOOOD [Ellsts] WMBOOOOZ0
[APrm  hADDOT0
T Key entry: QTBLR, QTBLRI
First address of St .t
parameter table atus
First destination
address Output data
Table name
Applicable Data Types
Parameter Name
B W L F A Index Constant
First destination « y « « y y
address (Data)
First address of
parameter table X X X X 0*? X X
(Prm)
Output data (Out)”’ X 0*2 X X X ) X
Status (Sts)"! o™ x x X % x x

x 1. Optional.

x 2. C and # registers cannot be used.




5.9 Table Manipulation Instructions

[a] Parameter Table Configuration

5.9.7 Read Queue Table (QTBLR and QTBLRI)

Address Data Symbol Name Specification 110
Type
0 L ROW Relative row number of | Relative row number of table elements at source to IN
table elements move (1 to 65,535)
2 L COLUMN First column number of | First column number of table elements at source to IN
table elements move (1 to 32,767)
4 w CLEN I;:nmtl:er of column ele- Number of column elements to move (1 to 32,767) IN
W | Reserved.
L RPTR Read pointer Read pointer of the queue after execution ouT
L WPTR Write pointer Write pointer of the queue after execution OouT
[b] Error Codes
Error Code Error Name Meaning
0001 hex Table undefined The target table is undefined.
0002 hex Outside range of row numbers | The row number of the table element is outside the target table.
0003 hex t?elitSSIde range of column num- The column number of the table element is outside the target table.
0004 hex Incorrect number of elements | The number of target elements is invalid.
0005 hex Insufficient storage area The storage area is insufficient.
0006 hex Insufficient element type The data type specified for the element is wrong.
0007 hex Queue buffer error An attempt was made to rea.d from an empty queue buffer, or to write to a
full queue buffer by advancing the pointer.
0008 hex Queue table error The specified table is not a queue table.
0009 hex System error Q:nunexpected error was detected in the system during instruction execu-

[c] Setting the Relative Row Numbers of Table Elements

Relative Row
Row That Is Read Remarks
Number

0 Read pointer row The pointer is advanced only for the QTBLRI instruction.

1 Read pointer row Pointer is not advanced.

2 Read pointer row — 1 Pointer is not advanced. »
c

3 Read pointer row —2 Pointer is not advanced. 2
s

n Read pointer row — (n — 1) Pointer is not advanced. 2

(3) Programming Example

In the following programming example, the specified column elements in array table data TBL1 are read and stored in
MW00010 to MW00012 when switch 2 (DB000002) turns ON.

Before switch 2 is turned ON, the table data is set as shown below by turning ON switch 1 three times while changing
the contents of MW00000 to MW00002. (Refer to information on the Write Queue Table instruction.)

The contents of table data TBL1 are given below.

Column 1 2 3
Row (W) (W) (W)
1 1 12 13
2 21 22 23
3 31 32 33

+ The column data types are given in parentheses.

5-217



5.9 Table Manipulation Instructions

5.9.7 Read Queue Table (QTBLR and QTBLRI)

The parameter table is set as shown in the following table.

Register Data Remarks
DL00010 0 Relative row number
DL00012 1 First column number
DW00014 3 Number of row elements
— EXPRESSION =)
DLO0010=0; {f corresponding row number;
0=0
DLO0O12=1; /f beginning column number;
1=1
DLOOO14=3; f number of column elements;
=3
switch
DBO0oO01 DBO00310
| | 4 { QTELW A
Mame TBL1 MY[Out] CWAD000 1
[AData KMAOODOD —
AP rm DADDDTO [Bl[sts] DBOODDOOD
awitch2
OBOOOODZ CBEDOO3 11
|| 4 ( CTBLR 2
Mame TBL1 MY[Out] CWAD000 1
[AData KADDDDO —
[AFrm DADDDTO [Bl[3ts] DBOODDOD
— EXPRESSICON )
DLO0DM 6=DL00016; /f read painter;
0=0
DLO0018=0L00018; ffwrite pointer;
0=0

Here, switch 2 (DB000002) is turned ON three times. The data that is read changes each time from the first time to the
third time, as shown below.

Register 1st Data | 2nd Data | 3rd Data
MW00010 11 21 31
MWO00011 12 22 32
MWO00012 13 23 33

The read pointer is advanced each time the instruction is executed starting at the first row on the first pass, the second
row on the second pass, and so on, therefore resulting in the table shown above.

When the power supply is turned ON, values of the read pointer and write pointer are undefined. Always execute the QTBLCL
instruction before using the QTBLR, QTBLRI, QTBLW, or QTBLW!I instruction.

An operation error may occur if the QTBLR, QTBLRI, QTBLW, or QTBLWTI instruction is executed without first executing the
QTBLCL instruction.

B
T
)
N~

5-218



5.9 Table Manipulation Instructions

5.9.8 Write Queue Table (QTBLW and QTBLWI)

(1) Operation

Data in a continuous area that starts at a specified register is continuously written to columns in a specified table. The
instruction is processed under the assumption that the data type of the source and destination are the same.
The QTBLW instruction does not change the queue table write pointer. The QTBLWI instruction advances the queue

table write pointer by one row.

If an error occurs when accessing the table, such as a table name error, an out of range row number, or a full queue

5.9.8 Write Queue Table (QTBLW and QTBLWI)

buffer, an error is output, no data is written, and the pointer is not advanced.
The contents of the destination registers will be retained.
If the instruction ends normally, the number of words that were moved is output, and the Status bit is turned OFF. If an

error occurs, an error code is output and the Status bit is turned ON.

Write pointer

—
Advanced. <

----- b

With the QTBLW
instruction, the

pointer is not
advanced after
instruction execution.

With the QTBLWI
instruction, the

pointer is
advanced after
instruction execution.

[a] If the Write Succeeds

Number of
words moved

0 (OFF)

[b] If the Write Fails

Error code

1 (ON)

+ If the write fails, the table data will retain the contents from before the instruction was executed.

Table Data

Written.

First address of source data

Output data

Status

Output data

Status

Instructions

5-219



5.9 Table Manipulation Instructions

5.9.8 Write Queue Table (QTBLW and QTBLWI)

(2) Format
—I: CTBEL 5]]—
Mame  TBL A[OuE] WWYOD 00
[AlData MAODOO0 [Bl[=ts] MEDOODZ0
[AlPrm  KADOOTO
Icon: Q.II“T?L Q-,LE:L
— QTBLWI AN
— Mame TBL [A[OW] MWOD00T 4——
[AlData MAODOO0D [Bl[5ts] MEOOODZ0
[AlPrm  MADOOTO
T Key entry: QTBLW, QTBLWI
First address of
parameter table Status
First address
of source data Output data
Table name
Applicable Data Types
Parameter Name
B w L F A Index Constant
First address of y % % x X X
source data (Data)
First address of
parameter table X X X X 0*? X X
(Prm)
Output data %
(Out)*1 X @) X X X O X
Status (Sts)"! 02 X x x X X x

* 1, Optional.
x 2. C and # registers

5-220

cannot be used.




5.9 Table Manipulation Instructions

[a] Parameter Table Configuration

5.9.8 Write Queue Table (QTBLW and QTBLWI)

Address Data Symbol Name Specification 110
Type
0 L ROW Relative row number of Relatlve row number of table elements at destina- IN
table elements tion (1 to 65,535)
2 L COLUMN First column number of Elrst column number of table elements at destina- IN
table elements tion (1 to 32,767)

4 W CLEN gznmtlsoer of column ele- Number of column elements to move (1 to 32,767) IN
W | Reserved.
L RPTR Read pointer Read pointer of the queue after execution ouT
L WPTR Write pointer Write pointer of the queue after execution OuT

[b] Error Codes
Error Code Error Name Meaning

0001 hex Table undefined The target table is undefined.

0002 hex Outside range of row numbers | The row number of the table element is outside the target table.

0003 hex t?elit;lde range of column num- The column number of the table element is outside the target table.

0004 hex Incorrect number of elements | The number of target elements is invalid.

0005 hex Insufficient storage area The storage area is insufficient.

0006 hex Insufficient element type The data type specified for the element is wrong.

0007 hex Queue buffer error An attempt was made to rea.d from an empty queue buffer, or to write to a

full queue buffer by advancing the pointer.
0008 hex Queue table error The specified table is not a queue table.
0009 hex System error Q;lnunexpected error was detected in the system during instruction execu-

[c] Setting the Relative Row Number of Table Elements

Re:\?:::]i;ow Row That Is Read Remarks
0 Write pointer row The pointer is advanced only for the QTBLWI instruction.
1 Write pointer row Pointer is not advanced.
2 Write pointer row — 1 Pointer is not advanced.
3 Write pointer row — 2 Pointer is not advanced.
n Write pointer row — (n — 1) Pointer is not advanced.

(3) Programming Example

In the following programming example, the data from MWO00000 to MWO00002 is written to the specified column ele-
ments in array table data TBL1 when switch 1 (DB000001) turns ON.

Initialize table data TBL1 before executing this type of programming.

Column 1 2 3
Row (W) (W) (W)
1 0 0 0
2 0 0 0
3 0 0 0

+ The column data types are given in parentheses.

Instructions

5-221



5.9 Table Manipulation Instructions
5.9.8 Write Queue Table (QTBLW and QTBLWI)

The parameter table is set as shown in the following table.

Register Data Remarks
DL00010 0 Relative row number
DL00012 1 First column number
DWO00014 3 Number of row elements
—{ EXPRESSION )
EJIZ_DDDm 0=0; /f corresponding row number,

DLO0O12=1; /f beginning calumn number;
1=1
DLO0D14=3; /f number of column elements;

3=3
awitch
DBO000O1  DEB000310
| | _‘I‘_ [ CTBLWI A
Name TBLI [A[Out] Dvwo00d 1

[AData MADDODD
BPrm DADDDID  [B][Sts] DB000000

After changing the contents of MW00000 to MW00002 as shown in the following table, turn ON the switch 1

(DB000001) three times.

Register 1stData | 2nd Data | 3rd Data
MW00000 11 21 31
MW00001 12 22 32
MW00002 13 23 33

The write pointer is advanced each time the instruction is executed starting at the first row on the first pass, the second
row on the second pass, and so on. After three executions, TBL1 will be set with data as shown below.

Written on first pass

Column 1 2 3
Row (W) (W) (W)
1 11 12 13

2 21 22 23 -<EVritten on second pa%
3 31 32 33

Written on third pass

When the power is turned ON, values of the read pointer and write pointer are undefined. Always execute the QTBLCL instruc-

tion before using the QTBLR, QTBLRI, QTBLW, or QTBLWTI instruction.
An operation error may occur if the QTBLR, QTBLRI, QTBLW, or QTBLWI instruction is executed without first executing the

QTBLCL instruction.

B
m
o
N~

5-222



5.9 Table Manipulation Instructions

5.9.9 Clear Queue Table Pointers (QTBLCL)

5.9.9 Clear Queue Table Pointers (QTBLCL)
(1) Operation

The QTBLCL instruction returns the queue read and queue write pointers to their initial values (first row) for the table
data that is specified by the table name.

If the instruction ends normally, the output data is set to 0 and the status is turned OFF. If an error occurs, an error code
is set in the output data and the status is turned ON.

Pointers return
to first row.

Read pointer

Write pointer

e
Table Data
[a] If the Queue Clear Succeeds
0 _—) Output data

0 (OFF) _—) Status

[b] If the Queue Clear Fails
Error code _— Output data
1 (ON) _—) Status

+ If the clear fails, the queues will retain the contents from before the instruction was executed.

Instructions

5-223



5.9 Table Manipulation Instructions

5.9.9 Clear Queue Table Pointers (QTBLCL)

(2) Format

— QTBLCL - \con: GTEL
Mame TBEL1 [ [Ct] WW00000 €— - CL
[B][Sts] WBOOOO10
Table name Status Key entry: QTBLCL
Output data
Applicable Data Types
Parameter Name
B W L F A Index Constant
Output data (Out)”! x o™ x X X ©) X
Status (Sts)) ' o™ X x X x x x
* 1. Optional.
*2. C and # registers cannot be used.
B Error Codes
Error Code Error Name Meaning

0001 hex Table undefined The target table is undefined.

0002 hex Outside range of row numbers | The row number of the table element is outside the target table.

0003 hex S;t;lde range of column num- The column number of the table element is outside the target table.

0004 hex Incorrect number of elements | The number of target elements is invalid.

0005 hex Insufficient storage area The storage area is insufficient.

0006 hex Insufficient element type The data type specified for the element is wrong.

0007 hex Queue buffer error An attempt was made to regd from an empty queue buffer, or to write to a

full queue buffer by advancing the pointer.
0008 hex Queue table error The specified table is not a queue table.
0009 hex System error fixélnunexpected error was detected in the system during instruction execu-

(3) Programming Example

In the following programming example, the queue pointers for the specified queue table are initialized when switch 2

(DB000003) turns ON.

switch?
DEDDOOO3
||

OB000312

{ QTBLCL ol

+

Narme TBLI MY[[Out] DWO0oo 2

[El[Sts] DB000000

B
m
®)
N~

When the power is turned ON, values of the read pointer and write pointer are undefined. Always execute the QTBLCL instruc-
tion before using the QTBLR, QTBLRI, QTBLW, or QTBLWTI instruction.

An operation error may occur if the QTBLR, QTBLRI, QTBLW, or QTBLWI instruction is executed without first executing the

QTBLCL instruction.

5-224



5.10 System Function Instructions

5.10.1 Counter (COUNTER)

5.10 System Function Instructions

5.10.1 Counter (COUNTER)

(1) Operation

When the count up or count down command changes from OFF to ON, the current value is incremented or decre-

mented.

When the counter reset command turns ON, the current value of the counter is set to 0. The current value of the counter

is compared against the set value and the result is output.

If a counter error occurs (i.e., if the current value is greater than the set value), the current value will neither be incre-

mented nor decremented.

Rising edge of count up command
(OFF — ON)

—_

Rising edge of count down command
(OFF — ON)
—_—

Counter reset command

ON
 ——

Count value incremented
(current value + 1).

_

COUNTER instruction

Count value decremented

|
(current value - 1).

Counter set value

Counter current value

Counter reset
(current value = 0)

Status

Three status are output as shown below.

« Count matched (current value = set value).
» Count is zero (current value = 0).
« Counter error
(current value > set value or current value < 0).

Instructions

5-225



5.10 System Function Instructions

5.10.1 Counter (COUNTER)

(2) Format

Icon: %N
— COUNTER =
[ElUp-Cmd WMBOODOOD  [BlCnt-Up  MBOOCOOO3
[BIDown-Cmd MEDOOODT  [B]Cnt-Zero MBOO0004
[ElReset WMBOODODZ  [BICnt-Er  MBEOOCOOOS
[AlCnt-Data  MADOOD
Key entry: COUNTER
Applicable Data Types
Parameter Name
B w L F A Index Constant
Count up command o y « y y y y
(Up-Cmd)
Count down
command O X X X X X X
(Down-Cmd)
Counter reset o « « « « « «
command (Reset)
First address of
counter processing X X X X o™l X X
data area (Cnt-Data)
Count up (Cnt-Up) o*? X X X X x x
Zero count (Cnt-Zero) o™ X X X X X X
Count error (Cnt-Err) o*? X X X X X X
* 1. M or D register only.
x 2. C and # registers cannot be used.
The parameters are described in the following table.
Parameter Name Description I/0
Count up command (Up-Cmd) The count value is incremented when this command IN
changes from OFF to ON.*
Count down command (Down-Cmd) The count value is decremented when this command IN
changes from OFF to ON.*
Counter reset command (Reset) gll\? current value is reset to 0 when this command turns IN
_ . +0 word: Set value IN
First address of counter processing data area 1 word: Current value OUT
(Cnt-Data)
+2 word: Work flags OuT
Count up (Cnt-Up) Turns ON when the current value equals the set value. ouT
Zero count (Cnt-Zero) Turns ON when the current value equals 0. OouT
Turns ON when the current value is greater than the set
Count error (Cnt-Err) value. OouT

Also turns ON when the current value is less than 0.

* |f the count up command and count down command change from OFF to ON at the same time, the current value

stays the same.

5-226




5.10 System Function Instructions

(3) Programming Example

5.10.1 Counter (COUNTER)

In the following programming example, the first line sets the counter set value to 5, and the third line monitors the

counter current value in DW00001.

When DB000100 changes from OFF to ON, DW00001 is incremented, and when DB000101 changes from OFF to

ON, DW00001 is decremented.

( S5TORE B
[WLFASrc 00005 [WLF]Dest DywOO0O0O
5 g
({ COUNTER B

BlUp-Crnd  DBEOO0100 [E]CntUp DBO00103
[BIDown-Cmd DDBDDEHm [BICnt-Zero DDBDDD1D4
BlReset DDBDDEHEIE [BICnt-Err 1DBDDDms
“]CntData DDADDDD 0 ’
( STORE A
[WLFASC DDwnuum [WLF]Dest DDwnuum

Instructions

5-227



5.10 System Function Instructions

5-228

5.10.2 First-in First-out (FINFOUT)

5.10.2 First-in First-out (FINFOUT)

(1) Operation

The FINFOUT instruction calls a first-in first-out block data transfer function. The FIFO data table consists of a 4-
word header and a data buffer. Always set the three words with the data size, input size, and output size before you exe-
cute this instruction.
* When the Data Input Command (In-Cmd) turns ON, the specified number of data items from the specified input
data area are stored sequentially in the data area of the FIFO table.
* When the Data Output Command (Out-Cmd) turns ON, the specified number of data items are moved from the
first address in the data area of the FIFO table to the specified output data area.
* When the Reset Command (Reset) turns ON, the number of stored words is set to 0 and Tbl-Emp (FIFO table
empty) turns ON.

* If the data empty size is less than the input size or if the data size is less than the output size, Tbl-Err (FIFO table
error) turns ON.

[a] If the Data Input Command (In-Cmd) Is ON

First address of input data
Data In-Cmd = ON

1 FIFO table data buffer
Input size \
(words) 2
3 3| 2|1 Start

Data size (words)

[b] If the Data Option Command (Out-Cmd) Is ON

First address of output data

Data Out-Cmd = ON 1 l

2 Output size
FIFO table data buffer (words)
3
4 3 2 1 Start
4

After the output is completed, this data is moved to the first address.

[c] If the Reset Command (Reset) Is ON

The number of words stored in the FIFO table is set to 0.
+ The contents of the table buffer are retained and not cleared to 0.



5.10 System Function Instructions

(2) Format

5.10.2 First-in First-out (FINFOUT)

—{ FINFOUT )55 con: FIN
[Bln-Cmd  WMBOOOOOD  [B]ThI-Ful  MBOD0003 ' FouT
BlowCmd MBEODODO0T  [B]ThFEmMpR WEOOOOD
[BlRecet WMBODODODZ  [B]Thl-Er  WMBOOODOS
[AIFFO-Thl MADD100
[Aln-Data MADDOOO
[AlOu-Data MADOD20 Key entry: FINFOUT

Applicable Data Types
Parameter Name
B w L F A Index Constant
Data input command o y y y y y »
(In-Cmd)
Data output command o y y y y y »
(Out-Cmd)
Reset command (Reset) @] X X X X X X
First address of FIFO table v y v « ol « «
(FIFO-Tbl)
First address of input data -
(In-Data) X X X X © X x
First address of output data v y y « ol « «
(Out-Data)
FIFO table full (TbI-Full) o*? X X X X X X
FIFO table empty (Tbl-Emp) o™ X X X X X X
FIFO table error (Tbl-Err) o™ X X X X X X

* 1. M or D register only.

* 2. C and # registers cannot be used.

Instructions

5-229



5.10 System Function Instructions

5.10.2 First-in First-out (FINFOUT)

The parameters are described in the following table.

Parameter Name Description 110

Data input command (In-Cmd) gia\;a is stored in the FIFO table when this command turns IN

Data output command (Out-Cmd) Ezfdii:ﬁgg?ed out of the FIFO table when this com- IN

Reset command (Reset) 3;11:1 ;gnl\lll.)er of words to store is set to 0 when this command IN

+0 word: Data size IN

+1 word: Input size IN

First address of FIFO table (FIFO-Tbl) +2 word: Output size IN
+3 word: Data storage size ouT
+4 word and on: Data OouT

First address of input data (In-Data) First address of input data IN

First address of output data (Out-Data) First address of output data IN
FIFO table full (Tbl-Full) Turns ON when the FIFO table is full. OouT
FIFO table empty (Tbl-Emp) Turns ON when the FIFO table is empty. ouT
FIFO table error (Tbl-Err) Turns ON when the FIFO table has an error. OouT

(3) Programming Example

In the following programming example, a FIFO table is created with a data size of 12 words, input size of 4 words, and
an output size of 2 words, and then the FINFOUT instruction is executed.

— EXPRESSION =)
DWO0002=12, i data size,
12=12
CWVOD00 3=4; CWW00004=2, [ input outputsize,
4=4: 2=2
awitch 1 FIF 2 input
WEOO0200 OB0o0310 DEOOo0o0o

| | 4 O

5-230

switch? FIF C output
MBOOODZ01  DBO00311 DBO00001
|| P
[ f p—
({ FINFOUT =
[EIn-Cmd  DEO000O0 [E]Th-Full DEO0ODO3
0 0
[Blout-Cmd DBO00001 [BITh-Ermp DEOODOO4
0 0
[B]Reset DEO0DO0Z [B]TH-Err  DEO0OO0OS
0 0

[AIFIFO-Thl  DADDOOZ
[AlnData  MADDOOO
[A]OutData  MADDOD10




5.10 System Function Instructions

5.10.2 First-in First-out (FINFOUT)

The data from MWO00000 to MWO00003 is stored in the FIFO table buffer when switch 1 turns ON.
The data storage size in DW0000S5 is set to 4.

Register Data FIFO Table Data Buffer Data
MW00000 123 DWO00006 123
MWO00001 234 DWO00007 234
MW00002 345 DW00008 345
MWO00003 456 DW00009 456

DWO00010 0
DWO00017 0

Stored area

Next, when switch 2 turns ON, two words of data from the first address in the FIFO table buffer are output to the area
from MW0010 to MWO0011. The data storage size in DW00005 is set to 2.

FIFO Table Data Buffer Data Register Data Stored area
DW00006 123 MWO00010 123
— 345 MWO00011 234
DW00007 234 MWO00012 0
—456 | | —

e output data is moved out and ]
rd.

Th
Ge remaining data is moved forwa

Instructions

5-231



5.10 System Function Instructions

5.10.3 Trace (TRACE)

5.10.3 Trace (TRACE)
(1) Operation

The TRACE instruction performs trace execution control of the trace data that is specified by the trace group number (1
to 4).

¢+ The trace definition is set in the Data Trace Definitions in the MPE720. Refer to the Engineering Tool for MP2000
Series Machine Controller MPE720 Version 6 User’s Manual (SIEP C880700 30) for details.

» The trace is executed if Execute (trace execution command) is ON.
* The trace counter is reset when Reset (trace reset command) turns ON. This also resets Trc-End (trace end).

* Trc-End (trace end) turns ON when the specified number of traces have been executed.

TRACE execution command

ON
q P Trace is executed.
Trace execution count = Set value
TRACE instruction — _ Trace end
TRACE reset command
ON | Trace count reset
Trace end reset
Trace group No. )
q Trace definition Y Error
Set on the MPE720. 4 Status
(2) Format
. TRA
Icon: CE

— TRACE )
[B]Execute  MBOD0OOO [B[Trc-Enc MBO00002
[B]Reset MBOOO0O1 [BJEror  MBO0O0DO3
W]Group-No MW00002  [W]Status  MWOD001

Key entry: TRACE

Applicable Data Types
Parameter Name

B W L F A Index Constant
Trace execution command

(@) X X X X X X
(Execute)
Trace reset command

(@) X X X X X X
(Reset)
Trace group No. (Group-No) X @] X X X @] @]
Trace end (Trc-End) o" X X X X X X
Error o* X X X X X X
Status X o X X X O X

* C and # registers cannot be used.

5-232



5.10 System Function Instructions

5.10.3 Trace (TRACE)

The parameters are described in the following table.

Parameter Name Description 110
Trace execution command (Execute) Trace execution begins when this command turns ON. IN
Trace reset command (Reset) Trace execution is reset when this command turns ON. IN
Trace group No. (Group-No) Trace group No. specification (1 to 4) IN
Trace end (Trc-End) Turns ON when the trace ends. OouT
Error Turns ON when an error occurs. ouT
Status Trace execution status ouT

The status configuration is shown below.

Bit Name Remarks
0 Trace data full Turns ON after once going through the data
trace memory of the specified group.
1to7 Reserved for system. -
8 No trace definition The function will not be executed.
9 Group No. error The function will not be executed.

10to 12 Reserved for system. -

13 Execution timing error The function will not be executed.
14 Reserved for system. -
15 Reserved for system. -

(3) Programming Example

In the following programming example, the definition for trace group number 1 is used to execute a trace. The trace
starts when DB000000 turns ON.

+ Set the data trace definition for trace group number 1 on the MPE720 in advance. Make sure to set the sampling
condition to Program.

( TRACE =

[BlExecute  DEOOOOOD [B]Trc-End DEOOOOOZ
0 0

[2])

c

[B]Reset DBO0DOD1  [E]Error  DEOOOOD3 S
0 0 S
[W]Group-No 00001 [W]Status  CWODDD 1 %
1 0 =

5-233



5.10 System Function Instructions

5.10.4 Read Data Trace (DTRC-RD)

5.10.4 Read Data Trace (DTRC-RD)

(1) Operation

The DTRC-RD instruction reads trace data in the Machine Controller and stores it in registers. The data in the trace
memory can be read by specifying the first record number and the number of records. You can designate and read only

the required items in a record.

Data trace memory

Record No. 0
First address
T
old +* Specified read
items read.
Requested number Read data
of et #
. New
Number of first A 4
record to read " .
M or D registers

B Structure of Read Data

The length of a record can be from 1 to 32 words, depending on the selected data items. The maximum number of
records can be from 1,015 to 32,511 depending on the record length.

. - _S
First address Tto32words | pocord 1 Item 1 old
Iltem 16
32,512 words max.
1to 32 words | Record 2
New
1to 32 words | Record n h -

5-234



5.10 System Function Instructions

(2) Format

5.10.4 Read Data Trace (DTRC-RD)

Instructions

—I: DTRC-RED _§D—
[ElExecute MEBOODDDD  [E]lComplete MEOODOO
[W]Group-Mo MAO0001T  [BlErmror WMBEOOOD02 OTRC
[WiRec-MNo  MWOOD0DZ  [W]Status b 00005 lcon: -AD
[WiRec-Size MWOOD03  WIRec-Size RAOO00E
[W]Select MWO0004  WWRec-Len kAOOD0T
[A]Dat-Adr  MAD0ODT0 Key entry: DTRCRD
Applicable Data Types
Parameter Name
B L F A Index Constant
Trace read execution
O X X X X X
command (Execute)
Trace group No. « « « y « v
(Group-No)
Record No. (Rec-No) X X X X X X
Number of records « y » « y y
(Rec-Size)
Iltem selection « y » « y y
(Select)
First address *]
(Dat-Adr) x x x © x X
Trace completed 0
(Complete) O x % x x x
Error 0" X X X X X
Status X 0" X X X X X
Number of records
read X 0*? X X X X X
(Rec-Size)
Length of 1 read )
record (Rec-Len) X o x % x x x
# 1. M or D register only.
* 2. C and # registers cannot be used.
The parameters are described in the following table.
Parameter Name Description 110
Trace read execution command (Execute) | Data trace read execution command IN
Trace group No. (Group-No) Data trace group No. (1 to 4). IN
Record No. (Rec-No) Number qf first record to read IN
(0 to maximum records — 1)
Number of records (Rec-Size) Requeste(:i number of records to read IN
(0 to maximum records — 1)
Items to read (0001 to FFFF hex)
Item selection (Select) Bits 0 to F correspond to data specifiers 1 to 16 in the IN
trace definition.
First address (Dat-Adr) Number of first register to read (MA, DA) IN
Trace completed (Complete) Turns ON when the trace read ends. ouT
Error Turns ON when an error occurs. ouT
Status Data trace read execution status ouT
Number of records read (Rec-Size) Number of records that were read ouT
Length of 1 read record (Rec-Len) Length of 1 read record (words) OouT

5-235



5.10 System Function Instructions

5.10.4 Read Data Trace (DTRC-RD)

The status configuration is shown below.

Bit

Name

Remarks

Oto7

Reserved for system.

8

No trace definition

The function will not be executed.

9

Group No. error

The function will not be executed.

10

Specified record No. error

The function will not be executed.

11

Specified number of records error

The function will not be executed.

12

Data storage error

The function will not be executed.

13

Reserved for system.

14

Reserved for system.

15

Address input error

The function will not be executed.

(3) Programming Example

In the following programming example, a data trace is executed for group definition number 1.

The trace is executed when DB000000 turns ON.

5-236

[ TRACE

=

[B]Execute
[BlRes=et

1]
[]Group-Mo 00001
1

DECOOOOOO  [E]Trc-End DEOOOOOZ
1] o
DECOOOOT  [BlErrar
[W]Status

DEOOOOO3

o
CWo0o01
0




5.10 System Function Instructions

5.10.4 Read Data Trace (DTRC-RD)

(4 ) Additional Information

[a] Structure of Read Data

The read data is structured as shown in the following figure.

Firstaddress —— 1
1 to 32 words Record 1 ltem 1 old
Item 16
32,512 words max.
1to 32 words | Record 2
New
1to 32 words | Recordn v

[ b] Record Lengths

A record consists of the selected data items.
The record length (number of words in a single record) is determined by the selected registers and the number of data
items.
* Number of words for 1 record = Bn X 1 word + Wn X 1 word + Ln X 2 words + Fn X 2 words
Bn: Number of selected bit registers
Wn: Number of selected integer registers
Ln: Number of selected double-length integer registers
Fn: Number of selected real number registers
The maximum total is 16 registers.
* Maximum record length = 32 words (with 16 double-length integers or real number registers)
* Minimum record length = 1 word (with 1 record for each bit or integer register)

[ c] Number of Records

The number of records that can be specified depends on the record length as shown below.
* Number of records with the maximum record length: 0 to 1,015

» Number of records with the minimum record length: 0 to 32,511
(Upper limit: 32,521 divided by the record length - 1)

[d] Latest Record Number

The most recent record number for each trace group is stored in the system registers as shown below.

System Register Address Description
SW00100 Latest record number in group 1.
SW00101 Latest record number in group 2.
SW00102 Latest record number in group 3.
SW00103 Latest record number in group 4.
SW00104 -

SW00105 -
SW00106 -
SW00107 -

Instructions

5-237



5.10 System Function Instructions

5.10.5 Read Inverter Trace (ITRC-RD)

5.10.5 Read Inverter Trace (ITRC-RD)

(1) Operation

The ITRC-RD instruction reads trace data in the Inverter and stores it in registers. You can specify the required records
and read them from the trace buffer. You can designate and read only the required items in each record.

Applicable Inverters:
This instruction is applicable to Inverters that are connected to the MP930, SVB-01, or 215IF.

Data trace memory

First address

Specified read
items read.

Numb f —
urmbero Read data

records to read

Old

New

First record
M or D registers

B Structure of Read Data

The length of a record can be from 1 to 16 words, depending on the selected data items.
The maximum number of records is 120.
+ Records are always read from the first record.

First address —— B
1 to 16 words Record 1 ltem 1 old
ltem 16
1,920 words max.
1to 16 words | Record 2
New
1to 16 words | Record n S

5-238



5.10 System Function Instructions

(2) Format

— [TRC-RD

[BlExecute  MBOOD00D  [B]Busy WME 000002
[BlAbort MBO00001  [BlComplete MBOD0DO03
MDev-Typ  MWO0001  [B]Emor WB 000004
MACir-Mo  MWO0002  [W]Status  MW0O0007T
IA]SENo  MWO0003  [WRec-Size MWO000S
MChNo  MWO00004  [WRec-Len MW0O0003
[WRec-Size hWMWWOD00D5

[A]Select  MWOD006

[ADat-Adr  MADOD10

-

5.10.5 Read Inverter Trace (ITRC-RD)

Icon: I TRG
- -RD

Key entry: ITRC-RD

Parameter Name

Applicable Data Types

Instructions

B W L F A Index Constant
Trace read execution

(@) X X X X X X
command (Execute)
Trace read abort command
(Abort) (@) X X X X X X
Communications device v o « y « o o
type (Dev-Typ)
Circuit number (Cir-No) X @) X X X O O
(Ssli\l/\leoitatlon number y o » y v o o
Communications buffer
channel number (Ch-No) % © % x x © ©
Number of records
(Rec-Size) % © X x X © ©
Item selection (Select) X O X X X O O
First address (Dat-Adr) X X X X o't X X
Busy o™ X X X X X X
Complete o™ X X X X X X
Error 0™ X X X X X X
Status X 0*? X X X X
Number of records read y o* « y « y
(Rec-Size)
Read record length *
(Rec-Len) x o X x x @) X

* 1. M or D register only.

x 2. C and # registers cannot be used.

5-239



5.10 System Function Instructions

5.10.5 Read Inverter Trace (ITRC-RD)

5-240

The parameters are described in the following table.

Parameter Name Description 110
Trace read execution command (Execute) | Reading begins when this command turns ON. IN
Trace read abort command (Abort) Reading is aborted when this command turns ON. IN
Communications device type (Dev-Typ) 215IF = 1, MP930 = 4, and SVB-01 = 10 IN
Circuit number (Cir-No) 215IF =1 or 2, MP930 = 1, and SVB-01 =1 to 16 IN
Slave station number (St-No) 215IF =1 to 64, MP930 =1 to 14, and SVB-01 =1 to 14 IN
Communications buffer channel number
(Ch-No) 2151F =1 to 3, MP930 =1, and SVB-01 =1to 8 IN
Number of records (Rec-Size) Number of records to read (1 to 64) IN
Item selection (Select) Itgms to read (0001 to FFFF hex) . IN

Bits 0 to F corresponds to trace data items 1 to 26.

First address (Dat-Adr) First register address to read at source (MA, DA) IN
Busy Turns ON while reading Inverter trace data is in progress. ouT
Complete Turns ON when reading Inverter trace data is completed. OouT
Error Turns ON when an error occurs. OouT
Status Inverter trace data read execution status ouT
Number of records read (Rec-Size) Number of records that were read ouT
Read record length (Rec-Len) Length of records that were read ouT

The status configuration is shown below.

Bit Name Remarks
0to8 Reserved for system. -

9 Communications parameter error The function will not be executed.

10 Reserved for system. -

11 Specified number of records error The function will not be executed.

12 Data storage error The function will not be executed.

13 Communications error The function will not be executed.

14 Reserved for system. -

15 Address input error The function will not be executed.

(3) Programming Example

In the following programming example, trace

Two records of trace data are read from the Inverter that is connected to station 1 of the SVB-01 on circuit 1. The data

data is read from an Inverter.

is stored in the area that starts with MW00100.

{ ITRC-RD A
[BlExecute  DEDOODOD  [BlBusy DEDO000Z2
[BlAbort DDBDDDDD'I [ElComplete DDBDDDDDS
W]DewTyp DDDEH 1 [B]Ermr DDBEIDDDDél
MW]Cir-Ma 1DAIDEIIN W] Status DD\a‘VDDEIEI'I
MY]SE Mo 1DDEID1 WWRec-Size DD\f\fIJDEIEIQ
[WA]Ch-Mo 1DDEID1 [WRec-Len DDWDDEIEIS
[WRec-Size 1DDDDQ ’

[W]Select QHDDEF

[A]Dat-Adr 1P-f51&DD1 ]




5.10 System Function Instructions

5.10.6 Send Message (MSG-SND)

5.10.6 Send Message (MSG-SND)

(1) Operation

The MSG-SND instruction sends a message to a remote station of the specified communications device type on the
specified circuit.
This instruction supports the following communications devices and protocols.

Communications devices: CPU Module, 215IF, 217IF, 218IF, and SVB-01
Protocol: MEMOBUS communications or no-protocol

Communications Device

Parameters |

Protocol:

MEMOBUS or
no-protocol

Data area specified by the first —

address of the parameter list and size

M, D, or # registers Communications device:

CPU Module,
215IF,
217IF,

218IF, or
SVB-01

Instructions

5-241



5.10 System Function Instructions

5.10.6 Send Message (MSG-SND)

(2) Format

— MSG-SND A
[BlExecute MEOO0O00  [BlBusy MEO00002
[Blabort  MBO000D1  [BlComplete MB0O00DO0O3

5-242

MWDev-Typ MWO00001  [BJEmor ME 000004 Icon; M3G
[AJPro-Typ  MWO0002 il
[WICI-No  MWO0D0D3

[ACHMNo  MWO0D004
[AParam  MACODO10

Key entry: MSG-SND

Applicable Data Types
Parameter Name
B w L F A Index Constant
Send execution command
O X X X X X
(Execute)
Send abort command o y y y y %
(Abort)
Communications device y o y y y o
type (Dev-Typ)
Communications protocol y o y y y o
(Pro-Typ)
Circuit number (Cir-No) X @] X X X @]
Communications buffer y o y y « o
channel number (Ch-No)
First address of parameter -
list (Param) x x X x © x
Busy o™ X X X X X
Complete o™ X X X X X
Error o0*? X X X X X
* 1. M or D register only.
x 2. C and # registers cannot be used.
The parameters are described in the following table.
Parameter Name Description 110
Send execution command (Execute) The message is sent when this command turns ON. IN
Send abort command (Abort) ?)el\rlldmg the message is aborted when this command turns IN
Communications device type (Dev-Typ) CPU Module =8, 215IF = 1, 217IF = 5, 218IF = 6, IN
218IF-02 = 16, and SVB-01 =10
Communications protocol (Pro-Typ) MEMOBUS = 1, No-protocol =2
Circuit number (Cir-No) CPU Module =1 or 2, 215IF =1 to 8, 217IF =1 to 24, IN
218IF(-02) =1 to 8, and SVB-01 =1to 16
Communications buffer channel number CPU Module =1o0r2,215IF=1to 13,2171F =1, IN
(Ch-No) 218IF(-02) =1 to 10, and SVB-01 =1to 8
First address of parameter list (Param) First address of parameter list (MA, DA, or #A) IN
Busy Turns ON while sending the message is in progress. OuT
Complete Turns ON when sending the message is completed. ouT
Error Turns ON when an error occurs. ouT




5.10 System Function Instructions

[ a] Parameter Details

5.10.6 Send Message (MSG-SND)

This section describes the parameters in detail. The parameter number corresponds to the word offset from the first

address of the parameter list.

For example, if the first address of the parameter list is MA00100, set the value in MWO00110 to set PARAMI10.

Parameter No. IN/OUT Description

MEMOBUS No-protocol
PARAMO0O ouT Processing result Processing result
PARAMO1 ouT Status Status
PARAMO02 IN Remote station number Remote station number
PARAMO3 SYS Reserved for system. Reserved for system.
PARAMO4 IN Function code -
PARAMO05 IN Data address Data address
PARAMO6 IN Data size Data size
PARAMO7 IN Remote CPU number Remote CPU number
PARAMO8 IN Coil offset -
PARAMO09 IN Input relay offset -
PARAM10 IN Input register offset -
PARAM11 IN Hold register offset Register offset
PARAM12 SYS Reserved for system. Reserved for system.
PARAM13 SYS Reserved for system. Reserved for system.
PARAM14 SYS Reserved for system. Reserved for system.
PARAM15 SYS Reserved for system. Reserved for system.
PARAM16 SYS Reserved for system. Reserved for system.

B Processing Result (PARAMO00)

This parameter outputs the result of processing to the upper byte. The lower byte is used for system analysis.
+ 0000 hex: Processing (Busy)
+ 1000 hex: Processing completed (Complete)

- 80000 hex: Error

The following errors can occur.

« 8100 hex: Function code error

An attempt was made to send an unused function code. Or an unused function code was received.
8200 hex: Address setting error
The data address, coil offset, input relay offset, input register offset, or hold register offset is out-
side of the valid range.
83000 hex: Data size error
The size of the send or receive data was set outside of the valid range.
8400 hex: Circuit number setting error
The set circuit number is outside of the valid range.
85000 hex: Channel number setting error
The set channel number is outside of the valid range.
86000 hex: Station address error
The set station number is outside of the valid range.
880 hex: Communications section error
The communications section returned an error response.
89010 hex: Device selection error

A device that cannot be used was selected.

Instructions

5-243



5.10 System Function Instructions

5.10.6 Send Message (MSG-SND)

B Status (PARAMO1)

The status of the communications section is output to this parameter.

The bit assignments are shown in the following figure.

1.

2,

5-244

REQUEST

4

COMMAND

The abbreviations and meanings of the commands are given in the following table.

Code Abbreviation Meaning
1 U_SEND Sends a general-purpose message.
2 U_REC Receives a general-purpose message.
3 ABORT Aborts operation.
8 M SEND Sen@s a MEMOBUS command and ends when a response is
- received.
9 M_REC Receives a MEMOBUS command and returns a response.
C MR_SEND Sends a MEMOBUS response.
RESULT

The abbreviations and meanings of the results are listed in the following table.

Code Abbreviation Meaning

0 - Execution is in progress.

1 SEND_OK The send was completed normally.

2 REC_OK The reception was completed normally.

3 ABORT_OK Aborting was completed.

4 FMT_NG A parameter format error occurred.

5 SEQ_NG or A command sequence error occurred or a token was not received.
INIT_NG There is no connection to a communications system.

. RESET NG or g reseft stat}liexilits. ed within the tok o
O_RING_NG ' ut of ring: A token was not received within the token monitoring

time.
7 REC NG A data reception error occurred. (An error was detected in a low-
- level program.)

PARAMETER




5.10 System Function Instructions

3. PARAMETER

5.10.6 Send Message (MSG-SND)

If the RESULT is 4 (FMT_NGQG), one of the following error codes is given. Otherwise, the remote station address

is given.
Code Error
00 No error
01 Station address out of range
02 MEMOBUS response monitoring time error
03 Number of retries setting error
04 Cyclic area setting error
05 Message signal CPU number error
06 Message signal register address error
o7 Message signal number of words error
4. REQUEST
1 = Request

2 = Reception completed notification

B Remote Station Number (PARAMO02)/Serial

1 to 254: The message is sent to the station with the specified device address.

B Function Code (PARAMO04)

Set the MEMOBUS function code to send.
The function codes are listed in the following table.

Instructions

Function Code Setting

00 hex Not used. X

01 hex Read Coil Status O

02 hex Read Input Relay Status @)

03 hex Read Hold Register Contents ©)

04 hex Read Input Register Contents @)

05 hex Change Single Coil Status O

06 hex Write Single Hold Register ©)

07 hex Not used. X

08 hex Loopback Test O

09 hex Expanded Read Hold Register Contents ©)

OA hex Expanded Read Input Register Contents @)

0B hex Expanded Write Hold Register @)

0C hex Not used. X

0D hex Expanded Read Nonconsecutive Hold Registers @)

OE hex Expanded Write Nonconsecutive Hold Registers O

OF hex Change Multiple Coil Status O

10 hex Write Multiple Hold Registers @)

11 hex to 20 hex | Not used. X
21 hex to 3F hex | Reserved for system. X
40 hex to 4F hex | Reserved for system. X
50 hex and higher | Not used. X

+ O: Can be set, x: Cannot be set.
+ When the target device is operating as the master, only MW and MB data can be read and written. When the target
device is operating as a slave, MB, MW, IB, and IW data can be read and written for coils, hold registers, input

relays, and input

registers, respectively.

5-245



5.10 System Function Instructions

5.10.6 Send Message (MSG-SND)

B Data Addresses

The range of addresses that can be set for each function code are given in the following table.

Function Code Setting

00 hex Not used. Not valid.

01 hex | Read Coil Status 0 to 65,535 (0 to FFFF hex)”
02 hex Read Input Relay Status 0 to 65,535 (0 to FFFF hex)"
03 hex Read Hold Register Contents 0 to 32,767 (0 to 7FFF hex)
04 hex Read Input Register Contents 0 to 32,767 (0 to 7FFF hex)
05 hex Change Single Coil Status 0 to 65,535 (0 to FFFF hex)*
06 hex Write Single Hold Register 0 to 32,767 (0 to 7FFF hex)
07 hex Not used. Not valid.

08 hex Loopback Test Not valid.

09 hex Expanded Read Hold Register Contents 0 to 32,767 (0 to 7FFF hex)
0A hex Expanded Read Input Register Contents 0to 32,767 (0 to 7FFF hex)
0B hex Expanded Write Hold Register 0 to 32,767 (0 to 7FFF hex)
0C hex Not used. Not valid.

0D hex i};;)anded Read Nonconsecutive Hold Regis- 0 t0 32,767 (0 to 7FFF hex)
OE hex i};sanded Write Nonconsecutive Hold Regis- 0 t0 32,767 (0 to 7FFF hex)
OF hex | Change Multiple Coil Status 0 to 65,535 (0 to FFFF hex)"
10 hex Write Multiple Hold Registers 0 to 32,767 (0 to 7FFF hex)

*  Requests to read or write relays or coils: Set the first bit address of the data.
Requests to read or write consecutive registers: Set the first word address of the data.

Requests to read or write nonconsecutive registers: Set the first word address of the address table.

[ b] Data Size (PARAMOG)

Set the data size (number of bits or number of words) for the read or write request. The setting range depends on the
function code.

The setting ranges for serial data sizes are listed in the following table.

Data Size Setting Range
Function Code CPU Module, 217IF, or
215IF or 218IF SVB-01
00 hex Not used. Not valid.
01 hex Read Coil Status 1 to 2,000 (1 to 07DO0 hex) bits
02 hex Read Input Relay Status 1 to 2,000 (1 to 07D0 hex) bits
03 hex Read Hold Register Contents 1 to 125 (1 to 007D hex) words
04 hex Read Input Register Contents 1 to 125 (1 to 007D hex) words
05 hex Change Single Coil Status Not valid.
06 hex Write Single Hold Register Not valid.
07 hex Not used. Not valid.
08 hex Loopback Test Not valid.
09 hex Expanded Read Hold Register Contents 110508 (1 to OTFC hex) | 1 t0 252 (1 to 00FC hex)
words words
OA hex Expanded Read Input Register Contents 1't0 508 (1 to OIFC hex) | 1 t0 252 (1 to 00FC hex)
words words
0C hex Not used. Not valid.
0D hex Expanded Read Nonconsecutive Hold Regis- 1to 508 (1 to 01FC hex) | 1to 252 (1 to 00FC hex)
ters words words
OE hex Expanded Write Nonconsecutive Hold Regis- | 1to 254 (1 to O1FE hex) | 1to 126 (1 to 007E hex)
ters words words
OF hex Change Multiple Coil Status 1 to 800 (1 to 0320 hex) bits
10 hex Write Multiple Hold Registers 1 to 100 (1 to 0064 hex) words

5-246




5.10 System Function Instructions

5.10.6 Send Message (MSG-SND)

B Remote CPU Number (PARAMO7)

Specify the remote CPU number. If the remote device is an MP2000-series Machine Controller, set the number to 1.
If the remote device is any other Yaskawa Controller that consists of more than one CPU Module, set the CPU number
of the send destination.

In all other cases, set the number to 0.

B Coil Offset (PARAMOS)

Set the offset to the word address of the coil. This setting is valid for function codes 01, 05, and OF hex.

B Input Relay Offset (PARAMO09)

Set the offset to the word address of the input relay. This setting is valid for function code 02 hex.

B Input Register Offset (PARAM10)

Set the offset to the word address of the input register. This setting is valid for function codes 04 and 0A hex.

B Hold Register Offset (PARAM11)
Set the offset to the word address of the hold register. This setting is valid for function codes 03, 06, 09, 0B, 0D, OE,
and 10 hex.

B Reserved for System (PARAM12)

The channel number that is currently in use is held in this parameter. Set this parameter to 0000 hex from a user pro-
gram in the first scan after the power supply is turned ON. Do not change the value of the parameter after that. It is used
by the system.

B Relationship between Data Addresses, Sizes, and Offsets

The following figure shows the relationship between the data addresses, sizes, and offsets.

[MSG-SND] [MSG-RCV]
Mwooooo 4 , T
Offset Offsetto sending Offset to receiving
¢ address address Oﬁfet
Data Sending f
address data address Sending Data
¢ data address address
vwoooood [ [T ¥
Data size Data f
Data Data size

B No-protocol Communications

It is not necessary to set PARAMO04, PARAMO09, and PARAM10. Only MW registers can be sent. PARAM11 is the off-
set to the word address of the MW registers.

Instructions

5-247



5.10 System Function Instructions

5.10.6 Send Message (MSG-SND)

5-248

[c]
|

[d]

Inputs

Execute (Send Execution Command)

The message is sent when this command turns ON.

Abort (Send Abort Command)

This command aborts sending the message. It takes priority over Execute (Send Execution Command).

Dev-Typ (Communications Device Type)

Specify the communications device type.

CPU Module = 8, 215IF = 1, 2171IF = 5, 218IF = 6, 218IF-02 = 16, and SVB-01 =11
Pro-Typ (Communications Protocol)

Specify the communications protocol. For no-protocol communications, a response is not received from the remote
device.

MEMOBUS: Set this input to 1.

No-protocol: Set this input to 2.

Cir-No (Circuit Number)

Specify the circuit number.

CPU Module=1o0r2,215IF=1t0 8,217IF =1 to 24, 218IF =1 to 8, and SVB-01 =1t0 16
Ch-No (Channel Number)

Specify the channel number of the communications section. Do not set the same channel number more than once for
the same circuit.
CPU Module =1, 215IF =1 to 13, 217IF = 1, 218IF = 1 to 10, and SVB-01 =1to 8

PARAM (First Address of Parameter List)

Set the first address of the parameter list. For details on this parameter, refer to [ a | Parameter Details earlier in this
section.

Output

Busy (Processing)

This item indicates that processing is in progress. Keep Execute ON while Busy is ON.

Complete (Processing Completed)

This item turns ON for only one scan when processing is completed normally.

Error

This item turns ON for only one scan when an error occurs. For the causes of the error, refer to information on
PARAMO0 and PARAMO1 in [ a ] Parameter Details earlier in this section.



5.10 System Function Instructions

5.10.6 Send Message (MSG-SND)

(3) Programming Example

In the following programming example, sending data is started according to the set parameters 6.0 seconds after the
power supply is turned ON.

intialzing
seting parameters for MSG-SHD function during first scan after power on.
SBO00003 for low sacn and SEOD0001 for high scan.

first scan after pawer
on
IF
SBO00001==true

clear al D ragisters

{ SETW =
[W]Dest CW00000
[W]Data 00000

[WVWidth 00032

set for connection No. (PARAMOZ2)

——{_ EXPRESSION E

Dwon00z=1;

set for fundiion code [PARAMO4)

EXPRESSION =)
DWW 004=0x0008, #0BH=wmting hold ngister

set for data address [PARAMOS) and data size (FAR AMOE)

— EXPRESSION )
DWO0005=100; # data address (MW0O0100)
DWO0006=100;  /f datasize (100words)

set for CPUNo. (PARAMOT)

EXPRESSION &

DwWoooo7=1

Instructions

5-249



5.10 System Function Instructions

5.10.6 Send Message (MSG-SND)

set for offset (PARAMOS-PARAM 1)

— EXPRESSION =)
DWOO008=0; # coil offset param0s;

DWOO009=0: # inputrelay offset paramiDg;
DWOO010=0; # inputregister offset param10;
DWOO011=0; # hold registar offset param11;

clear system register (PARAM12)

—1__ EXPRESSION g

DWWo0012=0

[ END F }

treatment for all time
abortfortimeout if not completed in 10s after sending command

execLte abort timeout
DBO00200 DBO00201 DBO0020A
|| 1/ TON[10ms] &
[A]Set 01000

A Count TWO0031
abortif timeout or error

timeout complete abaort
DBO0020A DB000211 DBo00201

| 7

error

DBO00212
|
[

abort
DE000201

elease sending command in 60s after aborted

abart wiagiting ended wiaiting
DB000201 DB00020% DB000208
| | /]
— | 1]
wiaiting
DE000208
| |
[
wiaiting wigiting ended
DE000208 DE000209
|| TOM10ms] Z}

IAVSet  0B000
BAVICount DWO002 3

5-250




5.10 System Function Instructions

sending in every 1s after starting scan for 5s.
SEO0003A for low scan and SBO0001A forhigh scan

After 5.05 Scan Startu

5.10.6 Send Message (MSG-SND)

p Relay 55-0M
SBOODO3A DEN0O200
|
[
55-0M complete arror waiting exaclte
DEON0ZID DEO00Z211 DBO00212 DEO00208 DE000200
| [/ [/ [/ TON[10ms] =
[W1Set 00100
[W]Count DWO0030
{ MSG-SND =
[BlExecute DBO00200  [B]Busy DEO00210
[BlAbort DBO00201  [BlComplete DBOO0Z 11
[W]Dev-Typ 00006 [BIEmor DBO00212
[¥W]Pro-Typ 00001
[W]Cir-No 00001
[W]Ch-No 00001
[AlParam  DAOOOOO
finished normaly
IF i

DE000211==true

abort
DB000201

count normally

1/l

INC =

MLDest DWOD024

—_END IF

Instructions

5-251



5.10 System Function Instructions
5.10.6 Send Message (MSG-SND)

finished abnarmally

IF
DEO00212==true

countabnormally

NC =&
WLDest DWID0Z5

saving the resuts and
status

EXFRESSION =}
DWO0026=DWO0000, # resuts,
DWOI0027=DWO00001, f status;

—_EMND IF
treatment for timeout
timeout on pulse timeout occured
DEOD020A DBO0020E DEO00Z0C
| | A
[ _1
IF P

DEO00ZDC==te

counttimeout

INC =

WLDest DWO0023

- END F )

Refer to Chapter 6 Built-in Ethernet Communications in the Machine Controller MP2300S Basic Module User s Manual (Man-
ual No.: SIEP C880732 00) for application examples of message functions.

5-252



5.10 System Function Instructions

5.10.7 Receive Message (MSG-RCV)

5.10.7 Receive Message (MSG-RCV)

(1) Operation

A message is received from a remote station on the specified circuit of the communications device type.
Keep the message receive command ON until the Complete bit turns ON.
This instruction supports the following communications devices and protocols.

Communications devices: CPU Module, 215IF, 217IF, 218IF, and SVB-01
Protocol: MEMOBUS communications or no-protocol

Communications Device

| Parameters

Protocol:

MEMOBUS or
no-protocol

— Data area specified by the first address

of the parameter list and size

Message receive
command

Communications device:

CPU Module,
215IF,
217IF,

218IF, or
SVB-01

M or D registers

¢+ The Complete bit changes to 1 (ON) when the message reception is completed.
Until then, keep the receive message command ON.

Instructions

5-253



5.10 System Function Instructions

5.10.7 Receive Message (MSG-RCV)

5-254

(2) Format

— MSG-RCV =
[ElExecute MEBOOOODOD  [BlBusy MEDDO002
[E]Abort MEODOODT  [BlComplete WMEODODDI
W Deyv-Typ  MAWO000 =3 =gl MEDD 0004 Icon: g%%
[W]Pro-Typ  WWODO00DZ2
MA]Cir-Ma MWO0D003
(W]Ch-No  MWO0004 Key entry: MSG-RCV
[A]Faram kAADDO1T 0
Applicable Data Types
Parameter Name
B w L F A Index Constant
Receive execution
O X X X X X X
command (Execute)
Receive abort command o y y y y y %
(Abort)
Communications device y o y y y o o
type (Dev-Typ)
Communications protocol y o y y y o o
(Pro-Typ)
Circuit number (Cir-No) X @] X X X @] @]
Communications buffer
channel number (Ch-No) x © % % x © ©
First address of parameter -
list (Param) X X X X o) X X
Busy 02 X X X x x x
Complete o0*? X X X X X X
Error o™ X X X X X X
* 1. M or D register only.
x 2. C and # registers cannot be used.
The parameters are described in the following table.
Parameter Name Description 1/0
Receive execution command (Execute) The message is received when this command turns ON. IN
Receive abort command (Abort) Receiving the message is aborted when this command turns ON. IN
Communications device type (Dev-Typ) CPU Module = 8, 215IF = 1, 217IF = 5, 218IF = 6, IN
218IF-02 = 16, and SVB-01 = 10
Communications protocol (Pro-Typ) MEMOBUS = 1, No-protocol = 2 -
Circuit number (Cir-No) CPU Module =1 or 2,215IF =1to 8, 217IF = 1 to 24, IN
218IF(-02) =1 to 8, and SVB-01 =1to 16
Communications buffer channel number CPU Module =1or2,215IF=1to0 13,217IF =1, IN
(Ch-No) 218IF(-02) =1 to 10, and SVB-01 =1to 8
First address of parameter list (Param) First address of parameter list (MA, DA, or #A) IN
Busy Turns ON while receiving the message is in progress. ouT
Complete Turns ON when receiving the message is completed. ouT
Error Turns ON when an error occurs. OuT




5.10 System Function Instructions

[ a] Parameter Details

5.10.7 Receive Message (MSG-RCV)

This section describes the parameters in detail. The parameter number corresponds to the word offset from the first

address of the parameter list.

For example, if the first address of the parameter list is MA00100, set the value in MWO00110 to set PARAMI10.

Parameter No.| IN/OUT Description

MEMOBUS No-protocol
PARAMO0O OuT Processing result Processing result
PARAMO1 OouT Status Status
PARAMO02 ouT Remote station number Remote station number
PARAMO3 SYS Reserved for system. Reserved for system.
PARAMO04 ouT Function code -
PARAMO5 ouT Data address Data address
PARAMO6 ouT Data size Data size
PARAMO7 OouT Remote CPU number Remote CPU number
PARAMO8 IN Coil offset -
PARAMO09 IN Input relay offset -
PARAM10 IN Input register offset -
PARAM11 IN Hold register offset Register offset
PARAM12 IN Writing range low Register offset
PARAM13 IN Writing range high Register offset
PARAM14 SYS Reserved for system. Reserved for system.
PARAM15 SYS Reserved for system. Reserved for system.
PARAM16 SYS Reserved for system. Reserved for system.

B Processing Result (PARAMO00)

This parameter outputs the result of processing to the upper byte. The lower byte is used for system analysis.
+ 0000 hex: Processing (Busy)
+ 1000 hex: Processing completed (Complete)
+ 8000 hex: Error

The following errors can occur.

8100 hex:

82000 hex:

8300 hex:

8400 hex:

85000 hex:

86010 hex:

880 hex:

89010 hex:

Function code error

An unused function code was received.

Address setting error

The data address, coil offset, input relay offset, input register offset, or hold register offset is set
outside of the valid range.

Data size error

The size of the send or receive data was outside of the valid range.
Circuit number setting error

The set circuit number is outside of the valid range.

Channel number setting error

The set channel number is outside of the valid range.

Station address error

The set station number is outside of the valid range.
Communications section error

The communications section returned an error response.

Device selection error

A device that cannot be used was selected.

B Status (PARAMO1)

The status of the communications section is output to this parameter. For details, refer to information on the Status
parameter (PARAMO1) in 5.10.6 Send Message (MSG-SND).

Instructions

5-255



5.10 System Function Instructions

5.10.7 Receive Message (MSG-RCV)

B Remote Station Number (PARAMO02)

The station number of the source is output to this parameter.

B Function Code (PARAMO04)

The MEMOBUS function code that was received is output to this parameter.
The MEMOBUS function codes are listed in the following table.

Function Code Setting

00 hex Not used. X

01 hex Read Coil Status o

02 hex Read Input Relay Status @)

03 hex Read Hold Register Contents @)

04 hex Read Input Register Contents (@)

05 hex Change Single Coil Status @)

06 hex Write Single Hold Register @)

07 hex Not used. X

08 hex Loopback Test @)

09 hex Expanded Read Hold Register Contents @)

OA hex Expanded Read Input Register Contents O

0B hex Expanded Write Hold Register @)

0C hex Not used. X

0D hex Expanded Read Nonconsecutive Hold Registers O

OE hex Expanded Write Nonconsecutive Hold Registers O

OF hex Change Multiple Coil Status @)

10 hex Write Multiple Hold Registers O

11 hex to 20 hex | Not used. X
21 hex to 3F hex | Reserved for system. X
40 hex to 4F hex | Reserved for system. X
50 hex and higher | Not used. X

¢+ When the target device is operating as a slave, MB, MW, IB, and IW data can be read and written for coils, hold
registers, input relays, and input registers, respectively.

B Data Address (PARAMO05)

The data address that was requested by the sending node is output to this parameter

B Data Size (PARAMO06)

The data size (number of bits or number of words) in the read or write request is output to this parameter.

B Remote CPU Number (PARAMO7)

If the remote device is an MP2000-series Machine Controller, 1 is output to this parameter.

If the remote device is any other Yaskawa Controller that consists of more than one CPU Module, the CPU number is
output to this parameter.

In all other cases, 0 is output to this parameter.

5-256



5.10 System Function Instructions

5.10.7 Receive Message (MSG-RCV)

B Coil Offset (PARAMO8)

Set the offset to the word address of the coil.

This setting is valid for function codes 01, 05, and OF hex.

Input Relay Offset (PARAMO9)

Set the offset to the word address of the input relay.

This setting is valid for function code 02 hex.

Input Register Offset (PARAM10)

Set the offset to the word address of the input register.

This setting is valid for function codes 04 and OA hex.

Hold Register Offset (PARAM11)

Set the offset to the word address of the hold register.

This setting is valid for function codes 03, 06, 09, 0B, 0D, OE, and 10 hex.
Writing Range Low (PARAM12) and Writing Range High (PARAM13)

Set the range for which to enable writing for write requests. Any write request that is not within this range will cause an
error. This setting is valid for function codes 0B, OE, OF, and 10 hex.
0 < Write range low < Write range high < Highest MW address

Reserved for System (PARAM14)

The channel number that is currently in use is held in this parameter. Set this parameter to 0000 hex from a user pro-
gram in the first scan after the power supply is turned ON. Do not change the value of the parameter after that. It is used
by the system.

No-protocol Communications

It is not necessary to set PARAMO04, PARAMO08, PARAMO09, PARAM10, and PARAMI11.
PARAMI12 is also used for the offset to the MW word address at the write destination.

Instructions

5-257



5.10 System Function Instructions

5.10.7 Receive Message (MSG-RCV)

5-258

[b]
]

[c]

Inputs

Execute (Receive Execution Command)

The message is received when this command turns ON.
Keep the Execute bit ON until the Complete or Error bit turns ON.

Abort (Receive Abort Command)

This command aborts receiving the message. It takes priority over Execute (Receive Execution Command).

Dev-Typ (Communications Device Type)

Specify the communications device type.

CPU Module = 8, 215IF = 1, 217IF = 5, 218IF = 6, 218IF-02 = 16, and SVB-01 = 11
Pro-Typ (Communications Protocol)

Specify the communications protocol. For no-protocol communications, a response is not sent to the remote station.
MEMOBUS: Set this input to 1.

No-protocol: Set this input to 2.

Cir-No (Circuit Number)

Specify the circuit number.

CPU Module=1o0r2,215IF=1t0 8,217IF =1 to 24, 218IF =1 to 8, and SVB-01 =1t0 16
Ch-No (Channel Number)

Specify the channel number of the communications section. Do not set the same channel number more than once for
the same circuit.
CPU Module =1, 215IF =1 to 13, 217IF = 1, 218IF = 1 to 10, and SVB-01 =1to 8

PARAM (First Address of Parameter List)

Set the first address of the parameter list. For details on this parameter, refer to [ a | Parameter Details earlier in this
section.

Outputs

Busy (Processing)

This item indicates that processing is in progress. Keep Execute ON while Busy is ON.

Complete (Processing Completed)

This item turns ON for only one scan when processing is completed normally.

Error

This item turns ON for only one scan when an error occurs.
For the causes of the error, refer to information on PARAMO00 and PARAMO1 in [ a ] Parameter Details earlier in this
section.



5.10 System Function Instructions

5.10.7 Receive Message (MSG-RCV)

(3) Programming Example

In the following programming example, message reception continues with the parameters that are set after the power
supply is turned ON.

initializing
setting parameters for MSG-RCY function during first scan after power on.
SBO000003 for low sacn and SBO0000 for high scan.

first scan after power
an

—( IF )

SBO00003==true

clear all D registers

SETW A
MYDest  DWWOOO0D
W]Data 00000
W Width 00032

set for connection Mo, (PARAMOZ)

—{  EXPRESSION A}

OWo0002=5;

set for offset. (FARAMOB-FARAM11)

— EXPRESS| ON FS))
DWWOO008=0, / coil offset (PARAMOS)

DW00009=0; f input relay offset (PARAMOS)
DWW00010=0; f input register offset (PARAMI0)
DWO0011=0; # hold register offset (PARANM11)

set for wriing range (PARAM12 PARAM13)

— EXPRESSION
DW00012=0; # writing range LO (PARAM1Z)
DW00013=1000; # writing range HI (PARAM13)

Instructions

clear system register. (PARAM14)

( STORE R

WLF]Src 00000 [WLFIDest DW0OO0014

—( END_IF_)

5-259



5.10 System Function Instructions

5.10.7 Receive Message (MSG-RCV)

finished normally
—( F =)
DBO00211==true
abort
DBODO201 count normally
/] INC__ =&
WWL]Dest DWWODD24
— END_IF }
finished abnormally
—( IF =)
DBO00212==true
count abnormally
INC pa
WL]Dest DWWOD025
saving the result and
status
— EXPRESSION =}
DyWO0026=DW00000; & result
DWwWo0027=0DWW00001, 4 status
——{ EMND_IF |}
{ END )

Refer to Chapter 6 Built-in Ethernet Communications in the Machine Controller MP2300S Basic Module Users Manual (Man-
ual No.: SIEP C880732 00) for application examples of message functions.

A
INF
(veop

5-260



5.10 System Function Instructions

5.10.8 Write Inverter Parameter (ICNS-WR)

5.10.8 Write Inverter Parameter (ICNS-WR)

(1) Operation
The ICNS-WR instruction writes data to parameters in an Inverter. You can specify the types and range of the parame-

ters in the Inverter.

Applicable Inverters:
This instruction is applicable to Inverters that are connected to the MP930, SVB-01, or 215IF.

Parameter type
J, Parameters in the Inverter

Bn-01 | Acceleration Time 1
First address of parameter list

¢

Data 1 —— Bn-05 AR Pg;(:]monal K— Parameter number
S i i
Number of parameters Dataiz Bn-06 Rl vl
to write
(1 to 100)
Data 10 ———————) Bn-14 PG Dividing Ratio
T Written.

M, D, or # registers

Instructions

5-261



5.10 System Function Instructions

5.10.8 Write Inverter Parameter (ICNS-WR)

5-262

(2) Format

—I: NS WWR ED—

[BlExecute  WBOOOOOD [BIBEusy WBEOO0002

[BlAabort MEOOOODT  [BlComplete WBO00003

W]Dew-Typ  WWOOOO1  [BIErmor WBO000004

W] Cir-Mo WWVYODO0Z  [W]Status W 00008

(W] St-To kYO0 00 3 Icon:

W]CHMNG kYO0 004

W]Cns-Typ  WWOODOS

[W]Cns-No  MywW00006 Key entry: ICNS-WR

W]Cns-Size WMWWOODOT

(ADat-Adr MADOOTO

Applicable Data Types
Parameter Name
B w L F A Index Constant

Write command (Execute) O X X X X X X
Write processing abort
command (Abort) © x % % x x x
Communications device
type (Dev-Typ) X (@) X X X @] @]
Circuit number (Cir-No) X @] X X X @] @]
(Ssli\,/\?oitation number « o y « y o o
Communications buffer
channel number (Ch-No) x © x % x © ©
Parameter type (Cns-Typ) X O X X X O O
Parameter number 3 o 3 3 x o o
Number of parameters to
write (Cns-Size) x © % % x © ©
First address (Dat-Adr) X X X X o X X
Writing (Busy) o*? X X X X X X
Write completed (Complete) o*? X X X X X X
Error 0" X X X X X X
Write execution status )
(Status) X o % x x © X

* 1. M or D register only.

x 2. C and # registers cannot be used.




5.10 System Function Instructions

5.10.8 Write Inverter Parameter (ICNS-WR)

The parameters are described in the following table.

Parameter Name Description 110
Write command (Execute) Writing the Inverter parameters begins when this command turns ON. IN
Write processing abort command . . .
The write process is aborted when this command turns ON. IN
(Abort)
Communications device type 215IF = 1. MP930 = 4. and SVB-01 = 10 IN
(Dev-Typ) o - an e
Circuit number (Cir-No) 215IF =1 or 2, MP930 = 1, and SVB-01 =1 to 16 IN
Slave station number (St-No) 215IF =1 to 64, MP930 = 1 to 14, and SVB-01 =1to 14 IN
Communications buffer channel 2151F = 1 o 3. MP930 = 1. and SVB-01 = 1 to 8 IN
number (Ch-No) =lto3, =1, and S5VB-01 =110
Inverter parameter type:
Parameter type (Cns-Typ) 0 = Direct specification of reference number, 1 = An, 2=Bn, 3 =Cn, IN
4=Dn,5=En,6=Fn,7=Hn,8=Ln,9=0n,and 10 =Tn
Inverter parameter number (1 to 99)
Parameter number (Cns-No) The upper limit depends on the model of the Inverter. IN
If the parameter type (Cns-Typ) is set to 0, specify the reference number.
Number of parameters to write Number of . he I 1 to 100 IN
(Cns-Size) umber of parameters to write to the Inverter (1 to )
First address (Dat-Adr) The first register address of the parameters (MA, DA, or #A). IN
Writing (Busy) Turns ON while writing parameters to the Inverter is in progress. OouT
Write completed (Complete) Turns ON when writing parameters to the Inverter is completed. ouT
Error Turns ON when an error occurs. OuT
Write execution status (Status) Inverter parameter write execution status OouT

The status configuration is shown below.

Bit Name

Remarks

0to7 Reserved for system.

The error code is given here when an Inverter
response error is received.

01 hex: Function code error

02 hex: Reference number error

03 hex: Error in the number of data items written
21 hex: Error in the upper or lower limit of the
write data

22 hex: Write error (during operation or under-
voltage)

Execution sequence error

The function will not be executed.

9 Communications parameter error The function will not be executed.
10 Specified type error -

11 Specified number error The function will not be executed.
12 Specified data error The function will not be executed.
13 Communications error The function will not be executed.
14 Inverter response error The function will not be executed.
15 Address input error The function will not be executed.

Instructions

5-263



5.10 System Function Instructions

5.10.8 Write Inverter Parameter (ICNS-WR)

(3) Programming Example

In the following programming example, the data in MWO00000 is written to parameter Bn-10 in the Inverter that is con-
nected as station 1 to the SVB-01 on circuit 1.

When DB000000 turns ON, the parameter is written to the Inverter.

After execution, you must check the Complete bit (DB000003) to make sure that it has turned ON, and then write the
data to parameter storage memory in the Inverter (EEPROM). (Refer to (4 ) Additional Information.)

{ STORE =
WLFISrc 00128 [WLF]Dest MW00000
128 128
{ ICNS RD =

[BlExecute DBO0000D [BlBusy DE000002

0 0
[BlAbort  DB000DOT [BlComplete DBOO0003

0 0
MADev-Typ 00011 [BIEmar DE000004
11 0
MCir-Na 00001 [A]Stetus  DWOD00
1 0

[]St-MNo 00001
1

MICh-No 00001
1

MYICns-Typ 00002
2

W]Cns-No 00010
10
M]Cns-Size 00001

1
[A]Dat-Adr MAODOOO

5-264



5.10 System Function Instructions

5.10.8 Write Inverter Parameter (ICNS-WR)

(4 ) Additional Information

[a] Writing Parameters to EEPROM

The procedure to write parameters to the parameter storage memory in the Inverter (EEPROM) is given in the follow-

l

Write the parameters
to work memory.

ing figure.

A 4

Write the parameters
to work memory.

l

The parameters are first written to work memory in the Inverter with the ICNS-WR system function. To write those
parameters to EEPROM, you must use the Write Enter command that is shown in the following figure.

Inverter

:|4—> Work memory

ICNS-WR function

Shared memory

Digital EEPROM

Operator

Write Enter command

[ b] Executing the Write Enter Command

To execute the Write Enter command, use the ICNS-WR function to write data of 0 to the reference “FEED”.

Instructions

5-265



5.10 System Function Instructions

5.10.9 Read Inverter Parameter (ICNS-RD)

5.10.9 Read Inverter Parameter (ICNS-RD)

(1) Operation

The ICNS-RD instruction reads parameters from an Inverter. You can specify the types and range of the parameters in

the Inverter.

Applicable Inverters:
This instruction is applicable to Inverters that are connected to the MP930, SVB-01, or 215IF.

Parameter type
l Parameters in the Inverter

Bn-01 | Acceleration Time 1
First address of parameter list

¢

Data 1 ¢——— Bn-05 SR PrGOapich‘rtlonal K— Parameter number
Data 2 4¢—— Bn-06 ASR Integral Time
Number of parameters
to read
(1 to 100)
Data 10 4¢—— Bn-14 PG Dividing Ratio
o Read.

M or D registers

5-266



5.10 System Function Instructions

(2) Format

5.10.9 Read Inverter Parameter (ICNS-RD)

— ICNS-RD o )

[ElExecute  MBOOOOOD  [EBlBusy MBOD 0002

[ElAbort MBODDOOT  [BlComplete WEODOODZ

[M]Dew-Typ  MWODO001  [B]Errar WBOO0 0004

WMCiI-Mo WMWO0000Z2 ]Status MY OD00E

[W]=5t-MNo kAVYOO00 3 lcon: ARy

[AJCHNo  MWOD004

[ACrs-Typ  MWOD005

[W]Cns-MNo  WMW0000E6 Key entry: ICNS-RD

[W]Tns-Size MWODO0OT

[A]DatAdr WAQDOT0

Parameter Name Applicable Data Types
B w A Index Constant

Read command (Execute) O X X X X
Read processing abort
command (Abort) © % % x x % %
Communications device
type (Dev-Typ) X O X X X O O
Circuit number (Cir-No) X @) X X X O O
(Ssli\l/\leoitation number y o » y v o o
Communications buffer
channel number (Ch-No) % © % x x © ©
Parameter type (Cns-Typ) X X X X
Parameter number v « « «
(Cns-No)
Number of parameters to
read (Cns-Size) % © % x x © ©
First address (Dat-Adr) X X X X o't X X
Reading (Busy) o™ X X X X X x
Read completed (Complete) o™ X X X X X X
Error o™ X X X x X X
Read execution status *
(Status) X o™ x X X © X

* 1. M or D register only.

x 2. C and # registers cannot be used.

Instructions

5-267



5.10 System Function Instructions

5.10.9 Read Inverter Parameter (ICNS-RD)

5-268

The parameters are described in the following table.

Parameter Name Description 110
Read command (Execute) Reading the Inverter parameters begins when this command turns ON. IN
Read processing abort command . .
The read process is aborted when this command turns ON. IN
(Abort)
Communications device type 215IF = 1. MP930 = 4. and SVB-01 = 10 IN
(Dev-Typ) o - an e
Circuit number (Cir-No) 215IF =1 or 2, MP930 = 1, and SVB-01 =1 to 16 IN
Slave station number (St-No) 215IF = 1 to 64, MP930 =1 to 14, and SVB-01 =1 to 14 IN
Communications buffer channel 2151F = 1 o 3. MP930 = 1. and SVB-01 = 1 to 8 N
number (Ch-No) = ltod, - Lan Ol=lto
Inverter parameter type:
Parameter type (Cns-Typ) 0 = Direct specification of reference number, 1 = An, 2 =Bn, 3 =Cn, IN
4=Dn,5=En,6=Fn,7=Hn,8=Ln, 9=0n, and 10 =Tn
Inverter parameter number (1 to 99)
Parameter number (Cns-No) The upper limit depends on the model of the Inverter. IN
If the parameter type (Cns-Typ) is set to 0, specify the reference number.
Number of parameters to read
(Cns-Size) Number of parameters to read from the Inverter (1 to 100) IN
First address (Dat-Adr) The first register address of the parameters (MA, DA, or #A). IN
Reading (Busy) Turns ON while reading parameters from the Inverter is in progress. ouT
Read completed (Complete) Turns ON while reading parameters from the Inverter is completed. ouT
Error Turns ON when an error occurs. ouT
Read execution status (Status) Inverter parameter read execution status ouT

The status configuration is shown below.

Bit Name Remarks

The error code is given here when an Inverter

0to7 Reserved for system. response error is received.

01 hex: Function code error

02 hex: Reference number error
8 Execution sequence error The function will not be executed.
9 Communications parameter error The function will not be executed.
10 Specified type error -
11 Specified number error The function will not be executed.
12 Specified data error The function will not be executed.
13 Communications error The function will not be executed.
14 Inverter response error The function will not be executed.
15 Address input error The function will not be executed.




5.10 System Function Instructions

(3) Programming Example

5.10.9 Read Inverter Parameter (ICNS-RD)

In the following programming example, parameter Bn-10 in the Inverter that is connected as station 1 to the SVB-01 on

circuit 1 is read and the data is stored in MW00000.
When DB000000 turns ON, the parameter is read from the Inverter.

[W]Chs-MNao

[AlDarAdr

{ ICNS-RD T
[BlExecute DEOOOD00  [B]Busy DB00000Z
[BlAbort ODanooom [BIComplete ODanoooos
[W]Dev-Typ %oom [BIEmor 0[)8000004
[W]Cir-No 1r:11r:1r:1r:11 (V] Status 0DWU0001
[W]St- Mo 100001 ’

[W]Ch-Io 100001

1
[W]Cns-Typ 00002
2

00010
10

[W]Cns-Size 00001
1

MWACOO00

Instructions

5-269



5.10 System Function Instructions

5.10.10 Write SERVOPACK Parameter (MLNK-SVW)

5-270

5.10.10 Write SERVOPACK Parameter (MLNK-SVW)
(1) Operation

The MLNK-SVW instruction writes all the parameters that are saved in the Machine Controller as a SERVOPACK
parameter backup file to the SERVOPACK that is specified with the circuit number and axis number.

This instruction can be used to write SERVOPACK parameters using only a ladder program (i.e., without the use of
MPE720 or other tools) when a SERVOPACK is replaced.

IMPORTANT An MP2000-series Machine Controller with software version 2.81 or higher is required to execute the MLNK-
SVW instruction for a SERVOPACK connected to an SVC Module.
Backup file of SERVOPACK Parameters for the SERVOPACK that is specifie:
parameters in the Machine Controller with the circuit number and axis number
Written in one operation.
4
(2) Format

— ML M-S VWY =

[ElExecute WBEOODOOD [ElEusy WBOOO002

[E]Abort MBO0000T [EBlComplete WMEDOOOOI MLNK

W] Ci-MNo  MW00001 [E]Error WBOO 000 lcon: aymy

[W]St-Mo WWO0002

WY]Option  KMAO0003

[AlParam  MAODDO4 Key entry: MLNK-SVW

Applicable Data Types
Parameter Name
B w L F A Index Constant

Write command (Execute) O X X X X X X
Write processing abort
command (Abort) © x x x % x x
Circuit number (Cir-No) X O X X X X X
Axis number (St-No) X O X X X
Option settings (Option) X O X X X
First address (Param) X X X X ol X X
Writing (Busy) o X X X x X X
Write completed (Complete) o*? X X X X X X
Error 0*? X X X X X X

* 1. M or D register only.
x 2. C and # registers cannot be used.



5.10 System Function Instructions

5.10.10 Write SERVOPACK Parameter (MLNK-SVW)

The parameters are described in the following table.

Parameter Name Description 110
Write command (Execute) \OVIStmg the SERVOPACK parameters begins when this command turns IN
Write processing abort command
P 9 The write process is aborted when this command turns ON. IN
(Abort)
Circuit number (Cir-No) Destination circuit number (1 to 16) IN
Axis number (St-No) Destination axis number (1 to 16) IN
Command Option Bit Settings
. . . Bit E: ID Check Enable/Disable; 0: Enable, 1: Disable
Option settings (Option ’ ’ IN
P gs (Option) Bit F: Version Check Enable/Disable; 0: Enable, 1: Disable
The other bits are not used. Any settings in the other bits are ignored.
First address (Param) First address of function workspace IN
Writing (Busy) Turns ON while writing the parameters is in progress. OouT
Write completed (Complete) Turns ON for one scan only after the parameters are written. ouT
Error Turns ON for one scan only when an error occurs. OUT
(The error details are output to PARAMO0 and PARAMO1.)

The option settings are described in the following table.

Bit

Description

0toD

Not used. (Settings will be ignored.)

ID Check Enable/Disable (0: Enable, 1: Disable)

This option allows you to disable detecting inconsistencies between the ID information in the source file and the
ID information where the data is written.

Use this option when writing to a stepping motor drive.

If this bit is set to 1 (disable), the model information is not checked. This can result in writing parameters for the
wrong model, which can cause problems. Take sufficient caution when you disable the check. An inconsistent ID
information error will also occur if a SERVOPACK parameters file that was edited or saved offline is used. If that
occurs, also disable the ID check.

Version Check Enable/Disable (0: Enable, 1: Disable)

If the version of the source SERVOPACK (communications interface) is not the same as the version at the write
destination, an inconsistent version error will occur.

SERVOPACK parameters and setting ranges are sometimes different for different versions as the result of
changes to specifications. Confirm that no problems will occur before you disable the version check. This will
allow you to write the parameters.

An inconsistent version error will also occur if a SERVOPACK parameters file that was edited or saved offline is
used. If that occurs, also disable the version check.

[ a] Details on Function Workspace

This section provides details on the function workspace. The parameter number corresponds to the word offset from
the first address.
For example, if the first address is MA00100, set the value in MW00105 to set PARAMO5.

Parameter No. IN/OUT Description
PARAMO0 ouT Processing result
PARAMO1 ouT Error code
PARAMO2 OouT Copy of Cir-No
PARAMO3 OuT Copy of St-No
PARAMO4 SYS For system use #1
PARAMOS SYS For system use #2
PARAMO6 SYS For system use #3

Instructions

5-271



5.10 System Function Instructions

5.10.10 Write SERVOPACK Parameter (MLNK-SVW)

B Processing Result (PARAMOO)

* 0000 hex: Processing (Busy)

* 1000 hex: Processing completed (Complete)
« 830000 hex: Error

The following errors can occur.

8100 hex:
8200 hex:

8300 hex:
8400 hex:

8500 hex:
8600 hex:

8700 hex:
8800 hex:

8900 hex:

8A00 hex:

Reserved.

Address setting error

The set data address is outside of the valid range.

Reserved.

Circuit number setting error

The set circuit number is outside of the valid range.

Reserved.

Axis number setting error

The set axis number is outside of the valid range.

Reserved.

Communications interface task error

An error was returned from the communications interface task.
Reserved.

Function execution duplication error

More than one MLNK-SVW function was executed at the same time.

B Error Code (PARAMO1)

This parameter outputs the error code from the communications interface task. This parameter is valid only when
the processing result (PARAMO0) is 8800 hex.

0000 hex:
0001 hex:
0002 hex:
0003 hex:
0004 hex:
0005 hex:
0006 hex:
0007 hex:
0008 hex:
0009 hex

Reserved.

No SERVOPACK parameter backup file

Backup file error

Inconsistent ID information

Inconsistent version

Module error

SERVOPACK controller command duplication error
Communications error

Undefined command

: Invalid parameter
000A hex:

Internal system error

B Copy of Cir-No (PARAMO02)

This is a copy of the Cir-No input data.

B Copy of St-No (PARAMO03)

This is a copy of the St-No input data.

B For System Use #1 (PARAMO04)

This parameter is used by the system. Set this parameter to 0000 hex from a user program in the first scan after

the power supply is turned ON. Do not modify this parameter at any other time.

5-272



5.10 System Function Instructions

5.10.10 Write SERVOPACK Parameter (MLNK-SVW)

B For System Use #2 (PARAMO05)

This parameter is used by the system. Set this parameter to 0000 hex from a user program in the first scan after
the power supply is turned ON. Do not modify this parameter at any other time.

B For System Use #3 (PARAMO06)

This parameter is used by the system. Set this parameter to 0000 hex from a user program in the first scan after
the power supply is turned ON. Do not modify this parameter at any other time.

(3) Programming Example

In the following programming example, the parameters are written to the SERVOPACK.

If a backup file of the SERVOPACK parameters exists in the Machine Controller, the SERVOPACK parameters are
written once to the specified SERVOPACK when DB000000 turns ON. The specified SERVOPACK is the one that is
defined in the Module configuration definition with a MECHATROLINK circuit number of 1 and defined in the
MECHATROLINK detailed definition with ST#8.

— IF )

SBO00001==true

initializing the system work area (PAMADS--F AMADS)

{ SETW T
WDest DWW00014
W]Data 00000
[W]Wicth 00003
L END IF )
DBO00000  DBO00001 DBO0000Z  DBO00003  DBO000OT DB000004
| | ] /1 ]l ] ;L T
|1 4 /1 1/1 /1 ()
DB000004 m
| | c
| | S
(&)
=)
2
( MLNK-SYW T -

[BlExecute DBO00004  [B]Busy DB0000 06
0 0

[Blabort  DBO0000S  [B]Complete DBODO00Z
0 0

[WICi-No 00001 [BJEmor DBO00003
1 0

[W]St-No 00008
8

[W]Option 00000
0

[AParam  DAOOO10

5-273



5.10 System Function Instructions

5.10.10 Write SERVOPACK Parameter (MLNK-SVW)

5-274

complete normally

DBI0000S DBOa000z DBOa00a7
‘_Ifl | SN
| [ p_—
end abnormal b
IF =)
DBO00003==true
( COPTW T
I]Src DWW00O010 ["]Dest DWWOOOZ0
[APAicth 00006
Alwiays ON
SBEO00004 DBOa00a7
| SN
[ p_—
— END IF

—

END

p—




5.10 System Function Instructions

5.10.11 Write Motion Register (MOTREG-W)

5.10.11 Write Motion Register (MOTREG-W)
(1) Operation

The MOTREG-W instruction calls a function that accesses a specified motion register.
The data is written to the motion register by specifying the circuit number, axis number, and register address. This
instruction is used with setting parameters.

Setting parameters for the specified
circuit and axis numbers

ownanooo

Write data ) oLoOi1c

N

Write destination
register address ( = 001C hex)

+ This function is useful to store the same setting parameter for multiple axes with different circuit and axis num-
bers.
To store data with the STORE or EXPRESSION instructions, you need to consider an offset to address the cir-
cuit and the axis numbers.

Instructions

5-275



5.10 System Function Instructions

5.10.11 Write Motion Register (MOTREG-W)

(2) Format

— MOTREG-'\ =
[W]AxisIinf  MWO0000  [B][Emor] DE000030
[W]Reg-MNo  MWO0001  [WL][RC-Data] MLODOOS tcon: MOT.
[Whiode MVW0000 2

[WLIWR-Data ML00004

Key entry: MOTREG-W

Applicable Data Types

Parameter Name

B W L F A Index Constant
Axis information (Axis-Inf) X O X X X X X
Register address (Reg-No) X O X X X X X
Mode X O X X X X X
Write data (WR-Data) X @] O X X X X
Error o* X X X x x x
Read data (RD-Data) X o* o* X X X X
* C and # registers cannot be used. These parameters may be omitted.
The parameters are described in the following table.
Parameter Name Description I/O
Circuit number and axis number
Axis information (Axis-Inf) Upper byte: Circuit number (01 to 10 hex) IN
Lower byte: Axis number (01 to 10 hex)
Register address (Reg-No) Integer reglster.: 0000 to 097F hex IN
Double-length integer register: 0000 to 007E hex
Access type and access size
Upper byte: Access type
0: Write WR-Data to specified register.
1: Write inclusive OR of specified register and WR-Data to specified
register.
Mode 2: Write AND of specified register and WR-Data to specified register. IN
Others: Write WR-Data to specified register.
Lower byte: Access size
0: Integer data
1: Double-length integer data
Others: Integer data
Write data (WR-Data) If the access size for Mode is an 1ntegf3r and the input data type is a double- IN
length integer, only the lower word will be used.
Error cause (Turns ON when an error occurs.)
The register cannot be written to or read from because the circuit number, axis
Error number, or register address is outside of the valid range, or because the Module ouT
does not exist.
When an error occurs, RD-Data is set to 0.
Read data (RD-Data) This is the data that is read after writing is completed. OUT

If integer data is specified, the data is output with the sign.

5-276




5.10 System Function Instructions

5.10.11 Write Motion Register (MOTREG-W)

(3) Programming Example

In the following programming example, the value in ML0000O is written to the Step Travel Distance parameter in
Ow0O0O44 for axis number 10 on circuit number 3.
Set the following items.

* Axis-Inf=030A hex (circuit 3, axis 10)

» Register address = 0044 hex

* Mode = 0001 hex (double-length Integer)

For simplicity, this example omits the error and data reading processes.

{ MOTREG-W ]
BAAxisInf  HO20A [BI[Emor] DE000210
778 0
MReg-Mo  HOO44 [MWL|[RD-Data] DLOOO28
68 10000

[AMode HOO01
1

[MLIWWR-Data MLOOOOOD
10000

The same result can be achieved by directly specifying the register address and storing data with the STORE instruc-
tion.

Equivalent
. | { STORE =
[WLF]Sre WLOD0OO  [WLF]Dest OLS4C4
10000 10000

Instructions

5-277



5.10 System Function Instructions

5.10.12 Read Motion Register (MOTREG-R)

5.10.12 Read Motion Register (MOTREG-R)

(1) Operation

The MOTREG-R instruction calls a function that accesses a specified motion register.
The value is read from the motion register by specifying the circuit number, axis number, and register address.
This instruction is used with setting parameters and monitor parameters.

Setting parameters and monitor parameters
for the specified circuit and axis numbers

iwmooo

Read data ILOO12

N

Register address of
read destination (= 0012 hex)

¢+ This instruction is useful to read the same parameter for multiple axes with different circuit and axis numbers.
To read data with the STORE or EXPRESSION instructions, you need to consider an offset to address the cir-
cuit and the axis numbers.

5-278



5.10 System Function Instructions

(2) Format

5.10.12 Read Motion Register (MOTREG-R)

_|:

MOTREG-R =

[W]AxisInf MAWO00000
[W]Reg-No M#0O0001

[BI[E mor] WMBOO0030 lcon: peit

WLIRD-Data WLOOOO4

Maode  MWODOO2Z
[ Key entry: MOTREG-R
Applicable Data Types
Parameter Name
B w L F A Index Constant
Axis information (Axis-Inf) X O X X X X X
Register address (Reg-No) X O X X X X X
Mode X O X X X X X
Write data (WR-Data) X O O X X X X
Error o* X X X X X X
Read data (RD-Data) X o* o* X X X X
* C and # registers cannot be used. These parameters may be omitted.
The parameters are described in the following table.
Parameter Name Description 110
Circuit number and axis number
Axis information (Axis-Inf) Upper byte: Circuit number (01 to 10 hex) IN
Lower byte: Axis number (01 to 10 hex)
Register address (Reg-No) Integer reglsterf 0000 to 097F hex IN
Double-length integer register: 0000 to 007E hex
Register type and access size
Upper byte: Register type
0: I register (monitor parameter)
1: O register (setting parameter)
Mode Others: I register IN
Lower byte: Access size
0: Integer data g
1: Double-length integer data *§
Others: Integer data =
Error cause (Turns ON when an error occurs.) =
The register cannot be written to or read from because the circuit number, axis
Error number, or register address is outside of the valid range, or because the Module ouT ﬂ
does not exist.
‘When an error occurs, RD-Data is set to 0.
Read data (RD-Data) If integer data is specified, the data is output with the sign. ouT

5-279



5.10 System Function Instructions

5.10.12 Read Motion Register (MOTREG-R)

(3) Programming Example
In the following programming example, the Machine Coordinate System Feedback Position in IL8096 for axis number

2 on circuit number 1 is read.
Set the following items to read the feedback position and store it in DL00002.

* Axis-Inf= 0102 hex (circuit 1, axis 2)
» Register address = 0016 hex
* Mode = 0001 hex (monitor parameter, double-length integer)

( MOTREG-R =
[W]Axis-Inf HO102 [B][Error] DECCOD00

258 1]
[W]Reg-No HOO16 WLRC-Data DLOOOOZ

22 g0022
[#W]Mode  HOOOT

1

Equivalent

The same result can be achieved by directly specifying the register address and storing data in DL00002 with the
STORE instruction.

{ STORE |

LN
WLFISe IL8096 [WLFIDest DLOOOO2
80021 80021

5-280



5.11

C-language Control Instructions

5.11 C-language Control Instructions

5.11.1 Call C-language Function (C-FUNC)

(1) Operation

This instruction calls a C-language function from a ladder drawing.

Ladder Drawing

C-FUNC
instruction

Function called.

5.11.1 Call C-language Function (C-FUNC)

4

N
| 4

A

C-language function

¢+ For details on C-language functions, refer to the Machine Controller MP2000 Series Embedded C-Language
Programming Package Development Guide (Manual No.: SIEP C880700 25).

(2) Format

_(

C-FUNC

[A]C_Arg1

—» [BlExecute  MMBOOOOCO
— (VW] ption 1
[W]Option2 WW00002
[A)C Mame MADODT Oe—

WWWOD00 1

MADOT00

[AIC_Arg2 MAOTOQUU

Option 2

Argument 2

=1 Option 1

Argument 1

— Execution flag

Function name

) o
[BIComplete MBO0O00T —
[E]Emor MB 000002 ¢—
[LRetum  MLOOOOS

Return value

Error flag

Completion flag

. C-
Icon: FUNG

Key entry: C-FUNC

Applicable Data Types 2
Parameter Name o
B w L F A Index Constant *g
Execution flag (Execute) @] X X X X X X 2
Option 1 (Option1) x O x x x o) O =
Option 2 (Option2) X O X X X O O
Function name y % y y o % % ﬂ
(C_Name)
Argument 1 (C_Arg1) X X X X o* X X
Argument 2 (C_Arg2) X X X X o* X X
. *q
Completion flag o v « « « « «
(Complete)
Error flag™ (Error) 0" x X X X X X
Return value (Return) X X X X X X

x 1. Optional.

x 2. C and # registers cannot be used.

* 3. M or D register only.

5-281



5.11 C-language Control Instructions

5.11.1 Call C-language Function (C-FUNC)

The parameters are described in the following table.

Parameter Name Description I/O
Execution flag (Execute) The C-FUNC function is executed when this command turns ON. IN
Option 1 (Option1) Option specification 1 (for future use) IN
Option 2 (Option2) Option specification 2 (for future use) IN
Function name (C_Name) Spec1.fy the first register address to pass to argument 1 of the user C-language IN
function.

Argument 1 (C_Arg1) Spe01.fy the first register address to pass to argument 1 of the user C-language IN
function.

Argument 2 (C_Arg2) Spe01.fy the first register address to pass to argument 2 of the user C-language IN
function.

Completion flag (Complete) | Turns ON when execution of the C-FUNC function is completed. OouT

Turns ON when one of the following errors occurs.
* Register limit exceeded for C_Name, C_Arg.1, or C_Arg.Z.* OUT
The sizes of C_Arg.1 and C_Arg.2 are not considered.

* The function specified by C_Name does not exist.

Error flag (Error)

Return value (Return) Stores the value that is returned by the user C-language function. OouT

* This error is detected even when Execute is OFF.

(3) Programming Example

In the following programming example, the CFUNC1 C-language function is executed.

First the CFUNC1 C-language function is loaded into the Controller.

Next, when the C-FUNC execution command (MB000000) turns ON, the CFUNC1 C-language function is executed
by the C-FUNC instruction.

The MA00100 and MA00200 addresses are passed to the C-language function as the arguments and the return value
from the function is set in DL0O0002. Options 1 and 2 are not used, so 0 is set for them.

{ ASCI o)

Src CFUMCT []Dest CWYOOOT0
C-FUNC excute C-FUNG run
WMB 000000 DBO000 00
||
| o

( C-FUNC )
[BlExecute DEO00000  [B]JComplete DEOOODOT
[W]Cption1 00000 [BErmor DB0000 02
[W]COption? 00000 [URetun  DLOODOZ
[A]C Mame D@&00010
[AJC_Argl  M&DD100
[A]C Arg2  MADODZ00

5-282



5.11 C-language Control Instructions

5.11.2 C-language Task Control (TSK-CTRL)

5.11.2 C-language Task Control (TSK-CTRL)

(1) Operation

This instruction controls a C-language task from a ladder drawing.

resumed.

1: Wake up
2: Reset

Ladder Drawing

The task can be woken up, reset, suspended, or

3: Suspend

TSK-CTRL
instruction

4: Resume

v

C-language Task

+ For details on C-language functions, refer to the Machine Controller MP2000 Series Embedded C-Language

Programming Package Development Guide (Manual No.: SIEP C880700 25).

(2) Format

— TSK-CTRL e

[BlExecute MBEODOOOD 4

[A]Type  MWOOOD]
[A]C_Name m&nTum 0

Task name

Type

Execution flag

[ElComplete MEDDDD 01—
[EEmor  MBOOODO2
[LErr Code MLD%IIIIIIE

Error code

Error flag

Completion flag

. TSK-
Icon: CTRL

Key entry: TSK-CTRL

Instructions

Applicable Data Types
Parameter Name
B w L F A Index Constant
Execution flag (Execute) O X X X X X X
Type (Type) X O X X X O X
Task name (C_Name) X X X X @] X X
Completion flag (Complete) o* X X X X X X
Error flag (Error) o* X X X X X X
Error code (Err_code) X X o* X X X X

* C and # registers cannot be used.

5-283



5.11 C-language Control Instructions

5.11.2 C-language Task Control (TSK-CTRL)

5-284

The parameters are described in the following table.

Error detected by pITRON: Illegal object state
* The task is in DORMANT state.
* Resume was specified when the task was not in SUSPEND state.
OOFFFFFFBB
Error detected by pITRON: Context error
* The task could not be executed in a non-task context.
OOOFFFFFFB7

Error detected by pITRON: Queuing overflow ™2

Parameter Name Description I/O
Execution flag (Execute) The TSK-CTRL instruction is executed when this command turns ON. IN
1: Wake up
A task that is in WAIT state is woken up.
2: Reset
A task is ended, deleted, generated again, and started.
Type (Type) The task then executes itself and goes into WAIT state. IN
3: Suspend
The task is suspended and placed in SUSPEND state.
4: Resume
A task in SUSPEND state is changed to READY state.
Task name (C_Name) Specify the first reglst'er address of the registers in which the task name of the IN
user C-language task is stored.
Completion flag (Complete) | Turns ON when execution of the TSK-CTRL instruction is completed. ouT
Error flag (Error) Turns ON when an error occurs. (The error is given in Err_code.) ouT
Error Codes
0000000000
No error
0000000091
Type setting error
* The value of Type is outside of the valid range.
* Type was set to Wake up when the state was not WAIT or WAIT-SUS-
PEND.
 Type was set to Suspend when the state was not WAIT or READY.
0000000094
The task specified by C_Name does not exist.
00100000096
Register upper/lower limit exceeded for C_Name."!
Error code (Err_code) OOFFFFFFDD OouT
Error detected by pITRON: Illegal ID number 2
OOFFFFFFCC
Error detected by p(ITRON: Task not registered*2
OOFFFFFFC1

x 1, Execute is not treated as a rising edge, but as a level. This allows cyclic execution in the high scan level and low

scan level tasks.

x 2. The errors that are detected by WITRON normally do not occur because of system management.




5.11 C-language Control Instructions

(3) Programming Example

5.11.2 C-language Task Control (TSK-CTRL)

In the following programming example, the CTASK1 C-language task is executed.

First the CTASK1 C-language task is loaded into the Controller.

Next, when the TSK1 execute command (MB000000) turns ON, the CTASK 1 C-language task is executed by the

TSK-CTRL instruction.

i
8

ASCII A

TSK1 excute
WMBOOOOOO

Sro CTASKI

]Dest CWODD10

| [

STORE =

|| \
[WLF]Src 00001

MLF]Dest DWO0DD5

TSK1 excute TSK-CTREL run
WMBOOOOOO DEO0ooon
| |
| o
{ TSK-CTRL A
[BlExecute DBOOODDOD  [BlComplete DBOODOO1
[ Type Owvoooos  [EBlError DEO0o0 02

[A]C_Name DADDD1O

[LErr Code DLO0DOOZ

Instructions

5-285



6

Features of the MPE720 Engineering Tool

This chapter describes the key features of the MPE720 Engineering Tool for ladder programming.
Refer to the Engineering Tool for MP2000 Series Machine Controller MPE720) Version 6 Users
Manual (STEP C880700 30) for details on these features, information on other features, and operat-
ing procedures.

6.1 Ladder Program Runtime Monitoring ----------=-------------------- 6-2
6.2 Searching/Replacing - - - - === === - - o s oo e o o 6-3
6.3 Cross References = - -------cmcmmmmm et e e e e 6-4
6.4 Checking for Multiple Coils = ---- === - - e 6-5
6.5 Forcing Coils ONand OFF - -------cmommmmm e e oo 6-5
6.6 Viewing Called Programs - - ---- === - oo e 6-6
6.7 Register Lists - - - - - - - mm o m e e e 6-6
6.8 TuningPanel ---------------- - 6-7
6.9 Enabling and Disabling Ladder Programs ----------=--=--“=----------- 6-8
6.10 Compiling for MPE720 Version 5 - - - - - - - cm o mm e e e e oo 6-9

Features of the MPE720 Engineering Tool



6.1 Ladder Program Runtime Monitoring

This chapter describes the following ladder programming and debugging features of MPE720 version 6.

 Ladder program runtime monitoring

* Searching/replacing

* Cross references

* Multiple coils

* Forcing coils ON and OFF

* Viewing called programs

 Register lists

* Tuning panel

* Enabling and disabling ladder programs
» Compiling for MPE720 version 5

MPE?720 version 6 provides many other features. Refer to the Engineering Tool for MP2000 Series Machine Controller
MPE?720 Version 6 User s Manual (STEP C880700 30) for details on these features and information on other features.

6.1 Ladder Program Runtime Monitoring

You can monitor the execution status of each instruction. Using runtime monitoring requires a connection to the
Machine Controller.

Instructions where the relay output is ON are displayed in blue.

The current values of the parameter registers of the instructions that are being executed are also displayed.

6-2

Switch lamp
MBOO0000 OBO0D00
|| P
[ p—y
ON coils are
switch2 lamp2 . f
MBOODOO1 OBO000 //I displayed in blue.
L
‘_I ’ll
{ STORE =
IWLF]SIe 12345 [WLF]Dest MW00011
12345 12345
Switch Current values of
MBOO0003 registers are displayed.
‘_I : { STORE | /l
MYLFSIe MWO0D10  [WLF]Dest MWWOOO
2000 2000



6.2 Searching/Replacing

6.2 Searching/Replacing

Two different search/replace operations are provided.

* Searching and Replacing in Programs

You can search for and replace variables, instructions, and comments in the currently active ladder drawing.

* Searching and Replacing in Project Files

You can search for and replace variables in all ladder drawings in a project file.

You can use this operation only when the MPE720 is not connected to the Machine Controller.

Start " H:Main Program | HO1

H:Main Program

Olp  ®Down

[ Select Range
Start Rung
End Fiung @

DB000000 DEJ00001
|
0000 b
ML-1
DB00000Z DB000003 DEO00004
—/
0002
ML-1
F———{ END ) EEEE—
0005
L1
Search Replace
Replace EI
Wariable | Instruction | Comment | FRegister | Comment
Instuuction 7880001 v Search Aegister | OBG000 ~
Replace Register || -vf
] Output lag 2t Search 2 Search Direction Search Direchon

O Do

[ Select Range
Start Bung

End Rung [

Search Dialog Box

Replace Dialog Box

You can search for and replace variables, comments, and other items.

Features of the MPE720 Engineering Tool



6.3 Cross References

6.3 Cross References

Cross referencing allows you to check whether a register is used in a program, and where it is used.
The search results indicate output registers in red, input registers in blue.

M Cross Reference Setting

Input search variable,

Wariable | MWO0000

Seatch Program
Search H*: all High-zpeed program

@ H : High-speed kain Program

@ HOT : commmon settings for akes

@ HOZ : main program for manual operation

@ HOZ.01 : awiz 1 manual operation [JOGESTER)
@ HOZ.02 : awiz 2 manual operation[JOGESTEF] -
@ HO4 : main program for pozsitioning

Cross referencing executed.

@ HOE : phase control main program
@ HOE.01 : phase contral 1 [electronic shaft] w

Cross Reference 1 [M 1 Al program [ Search Result 7]

o _
Register | Program Execution Step Search Results Dlsplay
MWD, .. HOZ : main program For manual operation o[R] .

MW00,,.  HOZ : main program For manual operation 4[R] Red: Output registers
MO0, HO3 1 [Ww] Blue: Input registers

MWOD,.. HO3 2[Rr]

Moo, Hos 5[]

Moo, Hos a[R]

Mw0a,,. Ho3 a ]

If the value of a register is different from its set value, it means that the value of the register may have been overwritten
somewhere in the program. In this case, you can search for the registers using cross references. Check the registers dis-
played in red to locate the instructions that are overwriting them.



6.4 Checking for Multiple Coils

6.4 Checking for Multiple Coils

You can check for multiple coils (different coils that use the same register) in an entire ladder program, and display the
search results.

H:Main Program »
Switch ] la
rMBEOODO00 QB00000
I L O
o000 !
MNL-1
Switch2 lamp
MBOODO01 QOB00000
|| O
oooz2
ML-1
<

Multiple coils are displayed.

Cukput Type  |Register | Program Execution Skep
-1 QBO0000 H : Main Program 1

-1 CBO0000 H @ Main Program 3

6.5 Forcing Coils ON and OFF

You can force a specified coil ON or OFF from the Ladder Editor.
The coil will output ON or OFF regardless of the output of the instruction to the left of the coil.

In the following example, you can simulate turning ON the switch (IBO0000) by forcing the DB000001 relay ON even
though the physical switch does not exist.

Coil forced ON.

Switch relay
I[E00000 DE0OO00

| | o

relay lamp
DEOOO0C DEDOOOC3

— |

You can simulate turning ON a switch even
though the physical switch does not exist.

Features of the MPE720 Engineering Tool



6.6 Viewing Called Programs

6.6 Viewing Called Programs

You can open a drawing that is called with an SEE instruction or an FUNC instruction.

Called drawing: HO1 Drawing

FT it Fow asne <~ M fatigetd

Y-Function |

| R

| oo [WLJSr DNOOOIZ [VLDest, OWa0eS
o 1

[Wiisees oot

Calling instruction

L .
Phais 1, 2 inesw accelerationidecel eation setting

MPMmnnieg e sccelersbenids
MECOCD

commaon settings far &« | | oo
es

Mame HO1

You can open called drawings

6.7 Register Lists

You can monitor and edit the current values of the registers in a continuous area on a register list. Realtime monitoring
and editing are possible if the Machine Controller is connected.

Also, if you turn ON display of the register map, registers that are used in the ladder program are displayed with a
green background, and registers that are used for more than one data type are displayed with a red background.

Register | M¥00D0D «| B =
|0 1 2 3 4 |5 6 T
MW00000 6o o & o o 10 0
mMwoooos IR o 0 0 0 0 0 0
MWO00016 |0 ST o 0 0 0 0 0
MW00024 |0 0 0 i 0 0 0 0
MW0003Z |0 0 0 i 0 0 0 i
MWOO0040 O 0 ] ] 0 0 0 0
MWO00048 |0 0 0 0 0 0 0 i
MW00056 |0 0 0 i 0 0 ] 0
MWOD0G4 O 0 ] ] 0 0 ] i]
mOutput Watch 1 @Register Lisk 1 .@Ladder Mnti tem %Check Far Multiple Cails [all .../

You can monitor and edit the current
values of registers in a continuous area.




6.8 Tuning Panel

6.8 Tuning Panel

The Tuning Panel allows you to display and edit the current values of pre-registered variables.
You can use the Tuning Panel to control and check the operation of your application.
You can adjust the Visual monitor Column to display data according to specific conditions.

Edit View Online Program  Compile

MPZ100M/MP2500M

Monitor Transfer

Mad

Programming
St i ting

configuratian

Debug  Window  Help
1:MPZ100/2500 CPU1 CPU-RUN

Utility

Ladder *ax | ,"-m" start | HOL : commen settings for axes I Tuning Panel X
Bl = TR avis 1 Manual operationl]OG and STEF) #iRH |
Brogiam LB e |00 S i
glireeoe=ce
= @ High-speed axis 1 forward jog Auis 1 reverse jog Axis 1 jog command =
= [E]H: High-speed Main Program DBEIIEIE‘DEI DEEIIEIE:J‘H \B?EIEIIJ‘I DB000000
i I . 11 [ .
@ H02:02 1 axis 2 manual uperation(JOG‘l.‘.l HOZ.01 : axis 1 manual operation (JOGRSTEP) Skart HOL : common settings for axes - Tuning Panel | X
%:gi i eroeramior moion P Variable Comment Current v, Lnit Wisual monitor &
& [5]H05 s phase comroimai progrem ; IBA0E00 OFF O
S Lov poed 18016 0 I
E% S@ar:  low speed main program 1LE096 0 _
# [ Interrupt DLO0040 L] 0 o]
WE Functon MB300000 OFF o)
MB300001 CFF O
DLO0010 [L] 0 0
DEOO0010 [HO4] Start CFF O
DROO0011 [HO4] Hold CFF O
DBO00012 [HO4] Abort CFF o
DWOD030 [HO4] 0 o
DLODO10 [HO4] 0 I
DLOOD1Z [HO4] 0 —
DLOOO14 [HO4] 0 —
DLOOD1E [HO4] 0 I
. | 5 MB300020 CFF O
== = MB300028 CFF O
Ero.|Br. [Ew B [Glh. Il [&e . Please input varisble. ..
Ready
106 ; B
DW00010 [L] 0 0
1B&0000 CFF O
1BS0300 CFF S,
18016 0 ——
1L80%6 0 ——
DW00010 [L] 0 4] v
L] I | 2

* You can monitor and edit the current values of specified
registers.

« In addition to the current values, the Tuning Panel also

displays comments and visual status indicators.

Features of the MPE720 Engineering Tool

6-7



6.9 Enabling and Disabling Ladder Programs

6.9 Enabling and Disabling Ladder Programs

You can enable and disable individual drawings in ladder programs.

85 MPE720 Ver.6 - [MP2100M/MP2500M)] - [* HO1 : common settings for axes]

Fle Edt Uew oOnine Program  Comple Debug Mindow  Help

Online  MP2100M/MP2500M

Setup

Transfer  Utility
onfiguration

- ax HOZ ; main program for manual operation Start * HOL : common settings for axes | =
By = FHEREERRARE Fods Common Seftings #EREERE &
£
Program Tunin... 8
BNt pREEERRERRE Motion Command Detection s #HRER <
[ Ladder program wis 1 miotion command 0 detection 5
&
WB300010
EJULUEI MILFSIcA WE0R F

[WLFlSreE 00000
@ [EL low speed main
#[E Start

® [ Interrupt
@[] Function

wis 2 miotion command 0 detection

MB300018
i

oo 2
000z [WLFISrca vB0es

MNL-1
Disabled drawing TWLFISreE 00000
HEL
iz 1 Senvi i i
* Disabled ladder drawings are not processed.
WB300 q q . .
1| » ON/OFF control of coils and instruction execution
Nt are not processed.
3 ‘ 3 iz 2 servol
éo. 2. | Ew. Br. | EHL.. [Ew. |00s... | &c. B <

Ready

This feature is used to temporarily disable ladder drawings that contain processing to turn ON the power supply to ser-
vomotors or jog processing for servomotors. This allows you to check the operation of individual servomotors with the
test run operation of the MPE720 or the Module configuration definition.

v- = ==wm o1 _o_
[P u'nmnn
prasasannes Sern ON Corrmand entmmeens B
jos § BernON "
g
e .
= | n 2 o
i — m| " Disabled
s e : I p——
"
A st ennsaemeny
e 1 wiven st WEP——
m w00 B . TR =
il | Ladder drawing o 2
) J disabled. [ i H (CIr#OL Axis#DZ) SGDS-+++ |
t" - x Servo Enable Alarm
[ awis | [tcior msitoz) sepsH |
Servo Enchls Alarm EQ
Enable Dizable Manitor
~ Jog | Step
[-]
The axis operates only while hold down
Forward button or reverse butkon,
Fy i
reverse butl
[y
v || B-
Farward Reverse
Fomward Reverse
The required operation is not possible The motor can be controlled

because the ladder drawing is active. from MPE720 as required.




6.10 Compiling for MPE720 Version 5

6.10 Compiling for MPE720 Version 5

Compiling for MPE720 version 5 allows you to display and edit ladder programs on MPE720 version 5 (version 5.34
or higher) even when you compile them on MPE720 version 6.

However, compiling errors will occur if notation that is supported only on MPE720 version 6 is used.
If you do not compile for MPE720 version5, you will not be able to display and edit the ladder programs that you create
on MPE720 version 6 on MPE720 version 5.

MPE720 Version 5*
Programs can be

displayed and edited.

MPE720 Version 6
Programs created.

Compiling for
MPE720 version 5

*  MPET720 version 5.34 or higher is required to display and edit programs that were compiled for MPE720 version 5 on
MPE720 version 6.

Features of the MPE720 Engineering Tool

6-9



v

Troubleshooting
This chapter describes troubleshooting.
7.1 Basic Flow of Troubleshooting = ------=----ccccmmmm e oo - 7-2
7.2 Indicator Status - -------- - e 7-3
7.3 Problem Classifications == - === === - o mm oo 7-4
7.3.1 OVeIVIEW = = = = = m o e o e o e e e e e e oe e 7-4
7.3.2 Error Checking Flowchart for MP2000-series Machine Controllers -------------------- 7-5
7.4 Detailed Troubleshooting = - == == == == = s m o m e e 7-6
7.4.1 Operation Errors - - - - == - - c s oo e e e e e e e e 7-6
A A V(O B 4 o] g R R R 7-9
7.4.3 Watchdog Timer Errors - - - - - = - - - - s o e o o e e e e e e e e 7-10
7.4.4 Module Synchronization Errors - - - - - == == - o c e o e e e 7-10
7.4.5 SysStem ErrOrs - - - - - - - m - oo m o e e e e e e oo 7-11

Troubleshooting

H

7-1



7.1 Basic Flow of Troubleshooting

7.1 Basic Flow of Troubleshooting

When a problem occurs, it is important to quickly find the cause of the problem and get the system running again as
quickly as possible. The basic troubleshooting flow is illustrated below.

Step 1 Visually confirm the following items.

* Machine movement

» Power supply

* /O device status

» Wiring status

* Indicator status (LED indicators on each Module)
» Switch settings (e.g., DIP switches)

* Parameter settings and program contents

v

Monitor the system to see if the problem changes in
response to the following operations.

Step 2

» Switching the Controller to STOP status
* Resetting alarms
* Turning the power supply OFF and ON again

v

Determine the location of the cause from the results of
steps 1 and 2.

Step 3

« Controller or external?
» Sequence control or motion control?
» Software or hardware?




7.2 Indicator Status

7.2

Indicator Status

The pattern of the indicators on the MP2000-series Machine Controller shows the operating status. The following table
gives the indicator lighting patterns and corresponding corrective actions.

@ Indicator Status ) ) )
®© Meaning Corrective Action
O | RDY| RUN | ALM | ERR | BAT
Iﬁit Iﬂit Lit. Lit. T;;t Hardware has been reset. o o
Normally, the CPU Unit will start within
Not | Not | Not | Not | Not | The Machine Controller is being initial- | 10 seconds. If more than 10 seconds is
lit. lit. lit. lit. lit. | ized. required, there is an error in a user pro-
Not ] Not | Not | Not ] - gram or a hardware failure.
= | 1t Lit. lit. lit lit Drawing A is being executed.
CE) This status is entered at the following
z . Not | Not | Not | Not The user program is stoppeq. . times. It does not Fepresent an error.
Lit. lit. lit. lit. lit (The Machine Controller is in Offline * The stop operation was performed from
Stopped Mode.) the MPE720.
» The STOP switch was turned ON.
Lit. | Lit. I;I.Ot N.m N.Ot The user programs are being exccuted Normal operation is in progress.
it. lit. lit. | normally.
. . . A hardware failure, watchdog timer error,
Not | Not | Not Li Not A serious failure, wa.tchfiog timer etror, or Module synchronization error has
lit lit. lit. it. it | oF Module synchronization error has occurred.
oceurred. Refer to 7.3 Problem Classifications.
A software error occurred.
Number of Flashes
3: Read address error exception
3: Write address error exception
5: FPU exception
6: General illegal instruction exception
7: Slot illegal instruction exception
Not | Not | Not | Flash-| Not 8: General FPU supp.resswn ex<.:ept10n A system error occurred.
lit. lit. lit. ing. lit. 9: Slot FPU 51.1p.pre5510n.exceptlon Refer to 7.4.5 System Errors.
= 10: TLB multibit exception
ngJ 11: LTB reading error exception
12: LTB writing error exception
13: LTB read protection violation
exception
14: LTB write protection violation
exception
15: Initial page write exception
A hardware error occurred.
Number of Flashes
2: RAM diagnostic error
Not | Not | Flash | Flash- | Not 3: ROM diagnostic error A hardware failure has occurred. Replace
lit. | lt. | ing. | ing. | lt 4: CPU Function Module diagnostic the Module.
error
5: FPU Function Module diagnostic
error
- - - - Lit. | Battery alarm Replace the Battery.
£ * Operation Errors
g Lit. | Lit. | Lit. I;I.Ot NOt An operation error occurred. Refer to 7.4.1 Operation Errors.
it. lit. | An /O error occurred. * I/O Errors
Refer to 7.4.2 1/O Errors.

Troubleshooting

H

7-3



7.3 Problem Classifications

7.3.1 Overview

7.3 Problem Classifications

7.3.1 Overview

The following table gives the problems that can occur on an MP2000-series Machine Controller and the indicator light-
ing patterns.

I Indicators
Classification Problem
ALM ERR BAT
Battery alarm Not lit. Not lit. Lit.
Operation error Lit. Not lit. Not lit.
Alarm 1/O error Lit. Not lit. Not lit.
Motion program alarm*l Not lit. Not lit. Not lit.
AXxis a]arm/warning *2 Not lit. Not lit. Not lit.
Watchdog timer error Not lit. Lit. Not lit.
Module synchronization error Not lit. Lit. Not lit.
Error System error Not lit. Flashing. Not lit.
Not lit. Lit. Not lit.
Hardware failure - - -
Flashing. Flashing. Not lit.

x 1. If a motion program alarm occurs, refer to Chapter 10 Troubleshooting in the Machine Controller MP2000 Series
User’s Manual for Motion Programming (Manual No.: SIEP C880700 38) and clear the alarm.
x 2. If an axis alarm/warning occurs, refer to the user’s manual for your Motion Module and clear the alarm.



7.3 Problem Classifications

7.3.2 Error Checking Flowchart for MP2000-series Machine Controllers

7.3.2 Error Checking Flowchart for MP2000-series Machine Controllers

Use the following flowchart to troubleshoot problems based on the indicators and system registers.

Indicator and BAT indicator lit.

SB000487 = ON
(Battery Alarm)

" Battery alarm )
Replace the Battery.

N | jﬁ SB000418 = ON |
indicator lit. i Check SW00041. (User Operation Error) }( Operation error ) !
SB000402 = ON 3 y (CPU Error Status) i
(Alarm) ! Refer to 7.4.1 Operation Errors. |

System Register
Check

SB000419 = ON
(/O Error)
}( 1/O error )
Refer to 7.4.2 I/O Errors.

ERR indicator lit.

[ ] 0001 hex -

Check SW00050. (Watchdog Timer Error) :

T ,| (32-bit Error Code) S Watchdog timer error )
Refer to 7.4.3 Watchdog Timer

0051 hex Errors.
(Module
Synchronization
Error)

SB000403 = ON*
(Error)

Module synchronization erroD

| Refer to 7.4.4 Modules
| Synchronization Errors.

Any other value
4}( Hardware failure )

If clearing memory and turning :

the power supply OFF and ON
again does not eliminate the
problem, there may be a
hardware failure. Consult with
ERR indicator your Yaskawa representative.

flashing.

‘ }r System error )
SB000403 = ON* S
(Error)

Refer to 7.4.5 System Errors.

ALM and ERR
indicators flashing.

SBO00403 = ON* |

}C Hardware failure )

If clearing memory and turning
the power supply OFF and ON
again does not eliminate the
problem, there may be a
hardware failure. Consult with

your Yaskawa representative.

(Error)

*If a hardware failure occurs, the problem may
not be reported in the system registers.

|
|
I
|
|
I
|
|
I
I

Troubleshooting

H



7.4 Detailed Troubleshooting

7.4.1 Operation Errors

7.4 Detailed Troubleshooting
7.4.1 Operation Errors

Operation errors can be caused by the following problems.
* An illegal operation was performed in a ladder program.
* An illegal operation was performed in a motion program.
* An illegal operation was performed in a sequence program.
If an operation error occurs, use the following procedure to isolate the error.

1. Check the contents of SW00080 to SW00089 to identify the type of drawing and error.

Information on operation errors is stored in the following system registers according to the type of drawing in
which the error occurred. Information on errors in motion programs is stored in the system registers for DWG.H.

Drawing Register e
Type Error Address Description

Error Count SW00080

DWGA ¢ Error Count
Error Code SW00081 Gives the number of errors that have occurred.
Error Count SW00082

DWGI
Error Code SW00083 * Error Code

Bit15 « « « « - 12 Bit 11 » =« s v s m v s mn e mn e e e 0

Error Count SW00084 : : | |

DWGH
Error Code SW00085 Index error Error code

DWGL Error Count SW00088 I L

- Error Code SW00089 Refer to 4.9 Interrupt Status for information on error codes.

B Example: When SW00085 Contains a Value Other Than 0000 Hex

You can tell that an operation error occurred in high-speed scan processing. If the value in SW00084 is contin-
uously incremented, it means that the instruction that is causing the operation error is being executed continu-
ously.

2. Check the contents of SW00122, SW00138, SW00154, and SW00186 to identify the drawing number.

Name igcgilrzt:sr Description
DWG.A Error Drawing No. SW00122 Parent drawing: FFFF hex
DWG.I Error Drawing No. SW00138 Child drawing: xx00 hex (xx hex: Child drawing number)
- Grandchild drawing: xxyy hex (yy hex: Grandchild drawing number)
DWG.H Error Drawing No. SW00154 Function: 8000 hex
DWG.L Error Drawing No SW00186 Motion program/sequence program: FOxx hex (xx hex: Program num-
’ ’ ber)

3. Identify the instruction that caused the error in the drawing.

The method to identify operation errors is different for integer operations and real number operations. To identify
operation errors for integer operations, refer to M Troubleshooting Method 1.
To identify operation errors for real number operations, refer to B Troubleshooting Method 2.



7.4 Detailed Troubleshooting

B Troubleshooting Method 1

7.4.1 Operation Errors

You can use the following procedure to troubleshoot operation errors that occur in DWG.H (0002 hex: Integer

operation overflow).

1. Identify the error drawing number with the SW00154 system register and open that drawing.

2. Add the following code to the beginning of the drawing.

clear the error code at first

High-Speed Frogram Er
or Code

r

( STORE

2

[WLFSrc 00000
0

3. Add debugging code before and after the instruction that you

heck the error codeldebug code?

High—Speed Frogram E

[WLF]Dest SWOO085
0

think is causing the error.

rror Code
{ STORE =
[WLF]Sre SW00085 [ALF]Dest SWOO0ES
2 o
s if anything is wrong
( ADD =

L
DWLF]SreA  DW00000
2767
[WLF]ScE 00001
1

-heck the error codeldebug code?

High—Speed Frogram E
rror Code

[WLFIDest DINO0000
32757

( STORE

Zl—

L%
[WLF]Sre SWOC08S
o

OALF]Dest SWOO0RS
2

Check the contents of the register address in the debugging code.

If it changes from O (no error) to 2 (integer operation overflow), an integer operation overflow has

occurred.

Repeat steps 3 and 4, above, to isolate the instruction that is causing the error.

N
INFO

You cannot use the above debugging method with real number operations.

You can use the above debugging method only with an integer or double-length integer operation.

. Troubleshooting
N

7-7



7-8

7.4 Detailed Troubleshooting

7.4.1 Operation Errors

W Troubleshooting Method 2

You can use the following procedure to troubleshoot operation errors that occur in DWG.H (0030 hex: Invalid
real number operation (not a number)).

1. Identify the error drawing number with the SW00154 system register and open that drawing.

2. Check the value of the real number operation with the online monitor.

floaing cal culaion

( DIY b
WLF]SrcA MFO0000 [WLF]Dest MFO0004
[WLF]SreB MFO0002

1.230000E+000

In this example, MFO00000 in the DIV instruction is ## ¥k
ook R % indicates an illegal value for a real number (not a number). If you use that value in a real num-

ber operation, the system will generate an operation error (0030 hex: Invalid real number operation (not a num-
ber)).

(N Operation errors can be caused by the following problems.
INFOS P Y P

» A value is not set in a register (undefined data).
+ A bit, integer, or double-length integer operation was performed for a register that uses the same address.
To perform real number operations, you must set real number values.

3. Repeat step 2, above, to isolate the register that is causing the error.



7.4 Detailed Troubleshooting

7.4.2 1/O Errors

7.4.2 1/0O Errors

An I/O error can occur in the following cases.
* Option Module allocations or Module detail definitions were set in the Module Configuration.

* A cable was disconnected or a Module failed while the system was operating.

If an I/O error occurs, you can check the following system registers to check the I/O error.

Name igglrzt:é Description
1/O Error Count SW00200 Number of I/O errors that have occurred (total of SW00201 and SW00203).
Input Error Count SW00201 Number of input errors that have occurred
Output Error Count SW00203 Number of output errors that have occurred

You can also use the following system registers to find the address of the I/0O register IWOOOO/0wOOOO) for
which the I/O error occurred.

B Example: When an I/O Error Was Detected for an 1/0 Device Assigned to IW1234
A value of 1234 hex will be stored in SW00202.

Register .
Name Address Meaning
Input Error Address SW00202 The latest input error address (register address in IWOOOO)
Output Error Address SW00204 The latest output error address (register address in OWOOOO)

After you find the I/O register address, identify the slot of the Module and then find the I/O status from the following
system registers.

For details on I/O status, refer to 2.5.5 System 1/O Error Status in the Machine Controller MP2000 Troubleshooting
Manual (Manual No.: SIJP C880700 40 (Japanese version)).

Register

Address Meaning

Name

SW00208 to

SW00215 CPU Function Module

SW00216 to .
SW00223 Reserved for system.

SW00224 to

SW00231 Error status of Rack 1, Slot 1

SW00232 to

Error status of Rack 1, Slot 2
Input Error Address SW00239

SW00240 to

SW00247 Error status of Rack 1, Slot 3

SW00248 to

SW00255 Error status of Rack 1, Slot 4

SW00496 to

SW00503 Error status of Rack 4, Slot 9

Troubleshooting

H

7-9



7-10

7.4 Detailed Troubleshooting

7.4.3 Watchdog Timer Errors

7.4.3 Watchdog Timer Errors

Watchdog timer errors can be caused by the following problems.
* An infinite loop occurs in a user program.

* The scan time is exceeded by a user program.
« A Motion Module™! fails.

* A watchdog timer error occurs in an MPU-01 Module.*?

* 1. Motion Modules: PO-01, SVA-01, SVB-01, SVC-01, and MPU-01
x 2. If a watchdog error occurs when you are using an MPU-01 Module, refer to Chapter 6 Troubleshooting in the
Machine Controller MP2000 Series MPU-01 Multiple-CPU Module User’s Manual (Manual No.: SIEP
880781 05).
If a watchdog timer error occurs, it is important to determine if the cause of the error is in the CPU Module or in a
Motion Module.
To determine where the cause of the error was, stop the programs in the CPU Module and then restart the CPU Module
to see if the problem changes.

SW1 Turn ON the STOP switch on the front panel of the CPU Unit
STOP LO‘« and then turn the power supply OFF and ON again to start the
SUP 0 CPU Module without executing the ladder programs in the
INIT <~ CPU Module.
CNFG ™
MON N
TEST =~
OFF ON

If a watchdog timer does not occur when the programs in the CPU Module are stopped, it is very likely that the cause
of the error is in the CPU Module. Check the programs to see if there are any infinite loops.

If this does not solve the problem, then there is a chance that the Motion Module is faulty. Consult with your Yaskawa
representative.

7.4.4 Module Synchronization Errors

Module synchronization errors can be caused by the following problems.
« A Motion Module™! fails.

« A watchdog timer error occurs in an MPU-01 Module."

* 1. Motion Modules: PO-01, SVA-01, SVB-01, SVC-01, and MPU-01

* 2. If a Module synchronization error occurs when you are using an MPU-01 Module, refer to Chapter 6 Trouble-
shooting in the Machine Controller MP2000 Series MPU-01 Multiple-CPU Module User’s Manual (Manual
No.: SIEP C880781 05).

If a Module synchronization error occurs (i.e., if SW00050 = 0051 hex), the slot where the Module synchronization
error was detected is reported in the system registers given in the following table.

Register Address Description
SW00076 Slot where Module synchronization error was detected”
xxyy hex: xx: Rack number (01 to 04), yy: Slot number (01 to 09)

* Module synchronization errors are reported for CPU Modules with a system software version of 2.75 or higher.
For version 2.74 or lower, it is reported as a watchdog timer error.
If a Module synchronization error occurs, consult with your Yaskawa representative.



7.4 Detailed Troubleshooting

7.4.5 System Errors

System errors can be caused by the following problems.

* Illegal processing was performed in a user program.

A problem occurred in the installation environment.

e A hardware failure occurred.

7.4.5 System Errors

If you are using embedded C-language programs, a system error that results in the system going down can be caused by

illegal pointer access or an illegal operation on floating-point data. The causes of system errors are given in the follow-

ing table.

Number of
Flashes of
ERR Indicator

Error

Cause

Corrective Action

Read address error excep-

3 times ) Long word (32-bit) or word (16-bit)
tion .
. data was read from an incorrect
4 times Write e.lddress error address.”
exception
An illegal operation was performed for
5 times FPU exception floating-point data (not a number, divi-

sion by 0, overflow, etc.)

Check for the types of illegal processing
given on the left and correct any prob-
lems.

*  For details, refer to Chapter 10 Precautions in the Machine Controller MP2000 Series Embedded C-Language Pro-
gramming Package Development Guide (Manual No.: SIEP C880700 25).

If you are not using embedded C-language programs or if you are using embedded C-language programs and none of
the above illegal programming problems exist, the cause may be a hardware error.

Hardware errors can be caused by the installation environment or by failures in the hardware itself.

If there are no problems in the installation environment and the error recurs regardless of corrective actions, the hard-

ware itself may have failed. Consult with your Yaskawa representative.

Troubleshooting

H

7-11



Appendix A

System Registers

This appendix describes the registers that are provided by the system of the Machine Controller.

A.1 System Service Registers - --------ccm oo A-2
A2SystemStatus -------------- oo A-6
A3 SystemError Status - -------- - - e e A-7
A.4 Overview of User Operation Error Status - ------------=-------------- A-9
A.5 System Service Execution Status - - - -----------cmo e e A-11
A.6 Detailed User Operation Error Status - ---------------=--“----------- A-11
A.7 System /O Error Status - ---------c o e A-12
A.8 CF Card-related System Registers
(MP2200-series CPU-02 and CPU-03 only) --------------=------- A-13
A9 lnterrupt Status - ------------e e A-14
A.9.1 Interrupt Status List - - - - == == - s e e e e e A-14
A.9.2 Details on Interrupting Module - - - - - - - - - -m oo A-14
A.10 Module Information - - = - = == = == cc s e e A-15
A.11 MPU-01 System Status - -----------mm oo e e e o - A-16
A.12 Motion Program Information ---------------c-mmmmmm e A-17

System Registers

pg



A.1 System Service Registers

System registers are provided by the MP2000-series Machine Controller system. They can be used to read system error
information, the current operating status, and other information.

Contents
SW00000 System Service Registers
SW00030 System Status
SW00050 System Error Status
SW00080 Overview of User Operation Error Status
SW00090 System Service Execution Status
SW00110 Detailed User Operation Error Status
SW00190 Alarm Counter and Alarm Clear
SW00200 System I/O Error Status
SW00504 Reserved for system.

CF Card-related System Registers

SW00652 (MP2200-series C}};U-OZ an{(%i CPU-03 only)
SW00698 Interrupt Status
SW00800 Module Information
SWO01312 Reserved for system.
SWO01411 MPU-01 Module System Status
SW02048 Reserved for system.
SW03200 Motion Program Information
g\xgﬁg? o Reserved for system.

A.1  System Service Registers

(1) Common to All Drawings

Name Register Address Remarks
Reserved for system. SB000000 Not used.
High-speed Scan SB000001 ON for only the first scan after the high-speed scan
starts.
Low-speed Scan SB000003 ON for only the first scan after low-speed scan starts.
Always ON SB000004 Always ON (1).
Reserved for system. SB000005 and SB000006 Not used.
High-speed Scan in Progress SB000007 ON (1) during execution of the high-speed scan.
Reserved for system. SB000008 to SBOOOOOF Not used.




A.1 System Service Registers

(2) Exclusive to DWG.H Only

Operation starts when the high-speed scan starts.

Register
Name Address Remarks
—»| |4 1scan
1-scan Flicker Relay SB000010
—+| |*1scan
| 055 | 05s
0.5-s Flicker Relay SB000011 C T | | —
< 10s ple 1.0s >
1.0-s Flicker Relay SB000012
20s 20s
2.0-s Flicker Relay SB000013 _,—"'—\_
05s AO 5 S |
0.5-s Sampling Relay SB000014 o
—| | 1scan
P 10s | 1.0s |
1.0-s Sampling Relay SB000015 ]
—| | 1scan
20s 20s
2.0-s Sampling Relay SB000016 I_““ o .
—| | 1scan
60.0's 60.0's
60.0-s Sampling Relay SB000017 |_____ o o
—| < 1scan
P 10s |
1.0 s After Start of Scan Relay SB000018
20s
2.0 s After Start of Scan Relay SB000019 ]
50s
5.0 s After Start of Scan Relay SB0O0001A

ppA

i System Registers



A.1 System Service Registers

(3) Exclusive to DWG.L Only

Operation starts when the low-speed scan starts.

T

Register
Name Address Remarks
—»| |=1scan
1-scan Flicker Relay SB000030
—| % 1scan
| _05s | 055 |
0.5-s Flicker Relay SB000031 D e ] —
¢ 10s »ple 1.0s >l
1.0-s Flicker Relay SB000032 }—,7
L 20s o 20s
2.0-s Flicker Relay SB000033 [~ T ——
| 05s | 05s
. . |‘ L}
0.5-s Sampling Relay SB000034 | _| |_| |_| |_|_
I —+| |%1scan
P 10s |, 10s |
| Lt bl
1.0-s Sampling Relay SB000035
—»| |% 1 scan
20s 20s
2.0-s Sampling Relay SB000036
R
‘ 60.0 s 60.0 s
60.0-s Sampling Relay SB000037
= b
10s
1.0 s After Start of Scan Relay SB000038
20s
2.0 s After Start of Scan Relay SB000039
50s
5.0 s After Start of Scan Relay SB0O0003A




A.1 System Service Registers

(4) Scan Execution Status and Calendar

Register

Address Remarks

Name

High-speed Scan Set

Value SW00004 This is the set value of the high-speed scan (0.1 ms).

High-speed Scan Current

Value SW00005 This is the current value of the high-speed scan (0.1 ms).

High-speed Scan

Maximum Value SW00006 This is the maximum value of the high-speed scan (0.1 ms).

High-speed Scan Set
Value 2

High-speed Scan Current
Value 2

High-speed Scan
Maximum Value 2

SW00007 This is the set value of the high-speed scan (1 us).

SW00008 This is the current value of the high-speed scan (1 us).

SW00009 This is the maximum value of the high-speed scan (1 Ws).

Low-speed Scan Set
P SW00010 This is the set value of the low-speed scan (0.1 ms).

Value

Low-speed Scan Current

Value P SW00011 This is the current value of the low-speed scan (0.1 ms)
Low-speed Scan .. .

Maximum Value SW00012 This is the maximum value of the low-speed scan (0.1 ms)
Reserved for system. SW00013 Not used.

This is the current value of the scan that is currently being exe-

Current Scan Time SW00014
cuted (0.1 ms).
Calendar: Year SW00015 1999: 0099 (BCD) (last two digits only)
Calendar: Month Day SW00016 December 31: 1231 (BCD)
Calendar: Hours and
Minutes SW00017 23: 59: 2359 (BCD)
Calendar: Seconds SW00018 595:59 (BCD)
Calendar: Week SW00019 0: Sunday, 1: Monday, 2: Tuesday, 3: Wednesday, 4: Thursday,

5: Friday, 6: Saturday

(5) System Program Software Numbers and Remaining Program Memory Capacity

Name Register Address Remarks
System Program Software Version SW00020 SOO0O (OODOD is replaced with the
BCD value.)
SWO00021 to
System Number SW00025 Not used.
Remaining Program Memory Capacity SL00026 Bytes
Total Memory Capacity SL00028 Bytes

System Registers

=



A-6

A.2 System Status

A.2 System Status

The system operating status and errors are stored in registers SW00040 to SW00048. You can check the system status

to determine whether the cause of the error is hardware or software related.

Register
Name Address Contents
Reserved for | SW00030 to
system. SW00039 B
SB000400 READY 0: Error, 1: Ready
SB000401 RUN 0: Stopped, 1: Running
SB000402 ALARM 0: Normal, 1: Alarm
SB000403 ERROR 0: Normal, 1: Error
SB000404 Reserved for system. -
SB000405 Reserved for system. -
CPU Status SWO00040 SB000406 FLASH 1: Flash operation
SB000407 WEN 0: Writing disabled, 1: Writing
enabled
SB000408 to R df "
SB00040D eserved for system. -
SB00040E Operation Stop Request 0: RUN selected, 1: STOP selected
SBO0040F Run Switch Status at 0: STOP, 1: RUN
Power ON
. . 1: WDGE, undefined instruction
SB000410 Serious Failure Refer to SW00050 for details.
SB000411 Reserved for system. -
SB000412 Reserved for system. -
SB000413 Exception Error -
CPU Error SW00041 xcep
Status SB000414 to SB000417 | Reserved for system. -
SB000418 User Operation Error 1: User operation error
SB000419 1/O Error 1: /O error
SB00041A to R df
SBO004LF eserved for system. -
H Scan
Exceeded SW00044 - - -
Counter
L Scan
Exceeded SW00046 - - -
Counter
Reserved for SWO00047 Reserved for system. -
system.
SB000480 TEST
SB000481 MON
SB000482 CNFG
DIP switch status
Hardware SB000483 INIT 0: ON, 1: OFF
Configuration | SW00048 SB000484 SUP
Status SB000485 STOP
SB000486
SB000487 Battery Alarm -
SB000488 to SBO0048F | Reserved for system. -
Reserved for | s\00049 | SB000490 to SBOOO49F | Reserved for system. -

system.




A.3 System Error Status

A.3 System Error Status

Details on the system errors are stored in registers SW00050 to SW00079.

Name

Register Address

Contents

32-bit Error Code

SW00050

0001 hex Watchdog timer error

0041 hex ROM diagnostic error

0042 hex RAM diagnostic error

0043 hex CPU diagnostic error

0044 hex FPU diagnostic error

0050 hex EXIO error

0051 hex Module synchronization error’!

00EO hex Read address exception error

0100 hex Write address exception error

0120 hex FPU exception error

0180 hex General illegal instruction exception error

01A0 hex Slot illegal instruction exception error

01EO0 hex User break after instruction execution

0800 hex General FPU suppression exception error

0820 hex Slot FPU suppression exception error

SW00051

For system error analysis

32-bit Error Address

SW00052

SW00053

For system error analysis

Error Task

SW00054

0000 hex: System, 0001 hex: DWG.A, 0002 hex: DWGl,
0003 hex: DWG.H, 0005 hex: DWG.L

Program Type

SW00055

0000 hex: System, 0001 hex: DWG.A, 0002 hex: DWGl,
0003 hex: DWG.H, 0005 hex: DWG.L, 0008 hex: Function,
000F hex: Motion program/sequence program

Error Drawing No.

SW00056

Ladder program parent drawing: FFFF hex

Ladder program function: 8000 hex

Ladder program child drawing: xx00 hex (xx hex: Child drawing number)
Ladder program grandchild drawing: xxyy hex (yy hex: Grandchild draw-
ing number)

Motion program/sequence program: FOxx hex (xx hex: Program number)

Calling Drawing Type

SW00057

Type of the calling drawing in which the error occurred

0001 hex: DWG.A, 0002 hex: DWGI, 0003 hex: DWGH,

005 hex: DWGLL, 8000 hex: Ladder program function,

000F hex: Motion program/sequence program,

0010 hex: Reserved for system, 0011 hex: Reserved for system.

Calling Drawing No.

SW00058

Number of the calling drawing in which the error occurred

Child drawing: xx00 hex

(xx hex: Child drawing number)
Grandchild drawing: xxyy hex

(yy hex: Grandchild drawing number)

Parent drawing:
FFFF hex
Function: 0100 hex

Calling Drawing Step
No.

SW00059

Step number in the calling drawing in which the error occurred
This number is set to 0 if the error occurred in the parent drawing.

System Registers

=



A.3 System Error Status

Name Register Address Contents
SW00060 and SWO00061 | Reserved for system.

SW00062 to SW00065 | Name of task that caused the error
SW00066 and SW00067 | Reserved for system.

SW00068 Year when error occurred
SW00069 Month when error occurred
SW00070 Day of week when error occurred
SW00071
Error Data Day when error occurred
SW00072 Hour when error occurred
SW00073 Minutes when error occurred
SW00074 Seconds when error occurred
SW00075 Milliseconds when error occurred (Not used.)
SW00076 Slot where module synchronization error was detected™

xxyy hex: xx: Rack number (01 to 04), yy: Slot number (01 to 09)
SW00078 and SW00079 | Reserved for system.

x 1. This error is reported for CPU Modules with a system software version of 2.75 or higher. For version 2.74 or lower,
it is reported as a watchdog timer error (0001 hex).
x 2. This error is reported for CPU Modules with a system software version of 2.75 or higher.



A.4 Overview of User Operation Error Status

A.4  Overview of User Operation Error Status

Details are given in registers SW00080 to SW00089 when a user operation error occurs in a program.

Name isglrset:sr Contents
Error Count SW00080 « Error Count
DWGA Error Code SW00081 Gives the number of errors that have occurred.
DWGI Error Count SW00082 . Cod
" | Error Code SW00083 frort-ode
Error Count SW00084 Bit15 « « = « « 12 Bit 11« = =« = s« = s I. ............ I ...........
DWGH
Error Code SW00085 Index error Error Code
Error Count SW00088 l I
DWGL Error Code SW00089 Refer to (1) User Operation Error Code -1 or (2 ) User Operation Error
Code -2 for information on error codes.

(1) User Operation Error Code -1

Error Code Error Description System Default
@ 0001 hex Integer operation underflow -32,768
-% 0002 hex Integer operation overflow 32,767
g 0003 hex Integer operation division error The A register stays the same.
9 0009 hex Double-length integer operation underflow -2,147,483,648
:J')’ 000A hex Double-length integer operation overflow 2,147,483,647
E 000B hex Double-length integer operation division error | The A register stays the same.
0010 hex Non-numerical integer storage error Data is not stored. [00000]
0011 hex Integer storage underflow Data is not stored. [-32,768]
0012 hex Integer storage overflow Data is not stored. [ + 32,767]
0021 hex Real number storage underflow Data is not stored. [-1.0E + 38]
0022 hex Real number storage overflow Data is not stored. [1.0E + 38]
0023 hex Real number operation division by zero error Data is not stored. [F register stays the same.]
0030 hex Invalid real number operation (not a number) Data is not stored.
0031 hex Real number operation exponent underflow 0.0
g 0032 hex Real number operation exponent overflow Maximum Value
"E 0033 hex Real number operation division error (0/0) Operation is not executed.
§- 0034 hex Real number storage exponent underflow A value of 0.0 is stored.
g 0035 hex Real number operation stack error -
(Egu Elena:t?;?lber operation error in standard system Operation is aborted and output is set to 0.0.
§ 0040 hex: SQRT 0041 hex: SIN 0042 hex: COS 0043 hex: TAN
0044 hex: ASIN 0045 hex: ACOS 0046 hex: ATAN 0047 hex: EXP
0040 to 0059 hex 0048 hex: LN 0049 hex: LOG 004A hex: DZA 004B hex: DZB
004C hex: LIM 004D hex: PI 004E hex: PD 004F hex: PID
0050 hex: LAG 0051 hex: LLAG 0052 hex: FGN 0053 hex: IFGN
0054 hex: LAU 0055 hex: SLAU 0056 hex: REM 0057 hex: RCHK
0058 hex: BSRCH 0059 hex: SORT
For an index error, 1000, 2000, or 3000 hex is added.

System Registers

pg



A-10

A.4 Overview of User Operation Error Status

(2) User Operation Error Code -2

J0A6 hex: RCHK

OJ0A7 hex: RCHK

J0AS hex: COPYW

[J0A9 hex: ASCII

Error Code Error Description System Default

2} . . Re-executed as if i and j were set to 0.

c 1000 h

S x Index error in drawing (Both i and j registers stay the same.)

©

) . . Re-executed as if i and j were set to 0.

2000 h

8‘ x Index error in function (Both i and j registers stay the same.)

o

Qo

S

>

Z

©

D":’ 3000 hex Index error in motion program or sequence pro- | Re-executed as if i and j were set to 0.

9 gram (Both i and j registers stay the same.)

©

@

o)

@

IS

Index error in integer system function Operation is aborted and output is set to input.

006D hex: PI OO6E hex: PD OO6F hex: PID 0070 hex: LAG
0071 hex: LLAG 0072 hex: FGN 0073 hex: IFGN 00074 hex: LAU
0075 hex: SLAU 0076 hex: FGN 0077 hex: IFGN O08E hex: INS
OO8F hex: OUTS 0090 hex: ROTL 0091 hex: ROTR 0092 hex: MOVB

® 0093 hex: MOVW 0094 hex: SETW 0095 hex: XCHG 0096 hex: LIMIT

é 0097 hex: LIMIT 0098 hex: DZA 0099 hex: DZA O09A hex: DZB

S 00060 to 009B hex: DZB 009C hex: PWM OO09E hex: SHFTL CO9F hex: SHFTR

Q O0C9 hex

@) OO0AO hex: . ) )

5 (@d=1,2,0r3) BEXTEND O0AT1 hex: BPRESS | OO0A2 hex: SORT O0A4 hex: SORT

g

kS

OO0AA hex: BINASC

OJO0AB hex: ASCBIN

OOAC hex: BSRCH

OO0AD hex: BSRC H

CJOAE hex:
TIMEADD

OOAF hex: TIMSUB

OJ0B1 hex: SPEND

0J0CO hex: TBLBR

00C1 hex: TBLBW

[J0C2 hex: TBLSRL

0J0C3 hex: TBLSRC

0J0C4 hex: TBLCL

0O0C5 hex: TBLMW

0J0C6 hex: QTBLR

OO0C7 hex: QTBLRI

0J0C8 hex: QTBLW

O0C9 hex: QTBLWI




A.5 System Service Execution Status

A.5 System Service Execution Status

The execution status of system services is stored in registers SW00090 to SW00103.

Register
Name Address Remarks
Reserved for system. SW00090
Reserved for system. SW00091
Reserved for system. SW00092 -
Reserved for system. SW00093
SW00094 to
Reserved for system. SW00097 -
Data Trace Definition Existence SW00098 Bits 0 to 3: Groups 1 to 4
Defined: 1, Not defined: 0
Data Trace Execution Status SW00099 Bits 0 to 3: Groups 1 to 4
Trace stopped: 1, Trace in progress: 0

Latest Record Numbers in Data Trace

Name igglrsetssr Remarks
Data Trace Group 1 SW00100 Latest record number
Data Trace Group 2 SW00101 Latest record number
Data Trace Group 3 SW00102 Latest record number
Data Trace Group 4 SW00103 Latest record number

A.6 Detailed User Operation Error Status

Detailed information is given in registers SW00110 to SW00189 when a user operation error occurs in a program.

Register Address
Name Contents
DWGA DWG.I DWGH DWG.L
Error Count SWo00110 SW00126 SW00142 SW00174 | e Error Counts and Error Codes
Error Code SW00111 SW00127 | SWO00143 | SW00175 Same as in Appendix A.4 Overview of User
Reserved for SW00112t0 | SWO00128t0 | SW0014410 | SW0017610 | CPeration Error Status.
system. SW00121 | SW00137 | SW00153 | Swooigs | * Error Drawing No.
Error Drawing No. SW00122 | SWO00138 | SW001s4 | Swooise | —arentdrawing: FFFE hex
- - Child drawing: xx00 hex
Calling Drawing No. SW00123 SW00139 SW00155 SW00187 (xx hex: Child drawing number)
Calling Drawing SW00124 SW00140 SW00156 SW00188 Grandchild drawigg: XXyy hex
Step No. (yy hex: Grandchild drawing number) ®
Function: 8000 hex §
. @
Motion program/sequence program: S
FOxx hex (xx hex: Program number) &
* Calling Drawing No. £
Reserved for Number of the calling drawing in which the %
SWo00125 SW00141 SW00157 SW00189 operation error occurred &
system. . .
* Calling Drawing Step No.
Step number in the calling drawing in which
the operation error occurred pp.
This number is set to 0 if the error occurred
in the parent drawing.

A-11



A.7 System I/O Error Status

A.7 System I/O Error Status

Details on the system 1/O errors are stored in registers SW00200 to SW00503.

A-12

Register
Name Address Contents
I/O Error Count SW00200 Number of I/O error occurrences
Input Error Count SW00201 Number of input error occurrences
Input Error Address SW00202 The latest input error address (register address in IWOOOO)
Output Error Count SW00203 Output error count
The latest output error address
Output Error Address SW00204
P (register address in OWOOOO)
SW00205
Reserved for system. SW00206 Not used.
SW00207
SW00208 to E for CPU Modul
SW00215 rror status for odule
SW00216 to R qf
SW00223 eserved for system.
SW00224 to E fRack 1. Slot 1
SW00231 rror status of Rack 1, Slot
SWO0232 10| ¢ tatus of Rack 1, Slot 2
rror status of Rack 1, Slo
/O Error Status SW00239
SW00240 to E fRack 1. Slot 3
SW00247 rror status of Rack 1, Slot
SW00248 to E fRack 1. Slot 4
SW00255 rror status of Rack 1, Slot
SW00496 to E £ Rack 4. Slot 9
SW00503 rror status of Rack 4, Slot




A.8 CF Card-related System Registers (MP2200-series CPU-02 and CPU-03 only)

A.8

CF Card-related System Registers
(MP2200-series CPU-02 and CPU-03 only)

The status of the CF Card is reported in registers SW00652 to SW00659.

These registers can be used only when a CF card is supported (the MP2200 with the CPU-02 or CPU-03).
For all other models, they are reserved for the system.

Name Register Address Contents
Total capacity of CF .
card SL00652 Unit: Bytes
SB006540 0: CF card not mounted, 1: CF card mounted
SB006541 0: Not supplying power, 1: Supplying power
SB006542 0: Cannot detect a CF card, 3: CF card detected
Card status SW00654 SB006543 0: Not accessing CF card, 1: Accessing CF card
SB006544 0: —, 1: Checking FAT file system
ggggg;:i o Reserved for system.
0001 hex FAT12
FAT type SW00655 0002 hex FAT16
0003 hex FAT32
Reserved for system. SW00656 -
Reserved for system. SW00657 -
SB006580 Batch load in progress
SB006581 CF card reading error
SB006582 Load file model mismatch error
SB006583 Load file write error
SB006584 Save to flash memory error
SB006585 Folder for batch loading does not exist.
Batch load and batch SW00658 SB006586 Loading error due to program write protection
save SB006587 Reserved for system.
SB006588 Batch save in progress
SB006589 CF card writing error
SB00658A Save file read error
SB00658B Security error
ggggg;gg o Reserved for system.
Reserved for system. SW00659 -

System Registers

pg

A-13



A.9 Interrupt Status

A.9.1 Interrupt Status List

A.9 Interrupt Status
A.9.1 Interrupt Status List

Name Register Address Remarks

SW00698 Interrupt detection count
SW00699 Number of interrupting methods
SW00700
SW00701 Interrupting module 1
SW00702
SW00703

Interrupt information SW00704 Interrupting module 2
SW00705
SW00787
SW00788 Interrupting module 30
SW00789

A.9.2 Details on Interrupting Module

F 8 7 0  (Bit numbers)
swooOnOd + 0 Rack Slot mmss hex
swooOnOd + 1 Interrupt Type
swoodno + 2 Hardware Interrupt Cause Register Values

(1) Rack
mm = 01 to 04

The rack number where the Module in which the interrupt occurred is mounted is reported.

(2) Slot

ss =01 to 09

The slot number where the Module in which the interrupt occurred is mounted is reported.
(3) Interrupt Type

1: DI interrupt for CPU 10 (MP2100, MP2100M, MP2101, MP2101M, MP2101T, MP2101TM, or MP2300)
2: DI interrupt for LIO-01, LIO-02, LIO-04, or LIO-05
3: Counter interrupt for LIO-01, LIO-02, L1IO-06, or CNTR-01

(4 ) Hardware Interrupt Cause Register Values

For the hardware interrupt cause register values, refer to 2.5.6 Interrupt Status in the Machine Controller MP2000
Troubleshooting Manual (Manual No.: SIJP C880700 40 (Japanese version)).

A-14



A.10 Module Information

A.10 Module Information

The Module information is reported as shown in this section.

+ The contents of the registers depends on the model. Refer to the manuals for your Machine Controller.

(1) CPU Function Module

Name Register Address Remarks

SW00800 CPU Module ID
SW00801 Hardware version (BCD)
SW00802 Software version (BCD)
SW00803 Number of sub-slots (hex)
SW00804 Function Module 1 ID (hex)
SW00805 Function Module 1 Status
SW00806 Function Module 2 ID (hex)

CPU Unit Information SW00807 Function Module 2 Status
SW00808 Function Module 3 ID (hex)
SW00809 Function Module 3 Status
SW00810 Function Module 4 ID (hex)
SW00811 Function Module 4 Status
SW00812 Function Module 5 ID (hex)
SW00813 Function Module 5 Status
SW00814 Function Module 6 ID (hex)
SW00815 Function Module 6 Status

Option Module Information | SW00816 to SW01095 | Option Module Information ,

(Depends on the CPU model and mounted Option Modules.)

(2) Option Modules

Name Register Address Remarks

SwooOO0O+0 | Option Module ID
swooOOO + 1 Hardware version (BCD)
swooOO04d +2 Software version (BCD)

Module SwooO00O0O +3 | Number of sub-slots (hex)

Information SW00OOO +4 | Function Module 1 ID (hex)
swoodOOO +5 | Function Module 1 Status
SwooOO0O+ 6 | Function Module 2 ID (hex)
SwooOO0O+ 7 | Function Module 2 Status

(3 ) Function Module Status Details

Text Displayed in MPE720
Value Module Configuration Status
Definition
0 None There is no Module Definition and the Module is not mounted.
1 Empty There is a Function Module Definition, but the Module is not mounted.
2 Operating (Driving) The Module is operating normally.
3 S(?E:e?\,/e d for system.) The Module is on standby.
4 Failure An error was detected in the Module.
5 X Module name The mounted Module does not match the definition.
6 Waiting for initialization The Module is mounted, but there is no Detailed Function Module Definition.
7 Driving stop Local /O is stopped.
8 or higher | — Reserved for system.

System Registers

pg

A-15



A-16

A.11 MPU-01 System Status

A1

MPU-01 System Status

Name igg:fset:sr Remarks
MPU-01 #1 Status SWO01411 Status of MPU-01 Module circuit number 1
MPU-01 #1 Error Status SW01412 Error status of MPU-01 Module circuit number 1
MPU-01 #2 Status SW01413 Status of MPU-01 Module circuit number 2
MPU-01 #2 Error Status SW01414 Error status of MPU-01 Module circuit number 2
MPU-01 #3 Status SWO01415 Status of MPU-01 Module circuit number 3
MPU-01 #3 Error Status SW01416 Error Status of MPU-01 Module circuit number 3
MPU-01 #4 Status SW01417 Status of MPU-01 Module circuit number 4
MPU-01 #4 Error Status SWO01418 Error Status of MPU-01 Module circuit number 4
MPU-01 #5 Status SW01419 Status of MPU-01 Module circuit number 5
MPU-01 #5 Error Status SW01420 Error Status of MPU-01 Module circuit number 5
MPU-01 #6 Status SW01421 Status of MPU-01 Module circuit number 6
MPU-01 #6 Error Status SW01422 Error Status of MPU-01 Module circuit number 6
MPU-01 #7 Status SwWo01423 Status of MPU-01 Module circuit number 7
MPU-01 #7 Error Status SW01424 Error Status of MPU-01 Module circuit number 7
MPU-01 #8 Status SW01425 Status of MPU-01 Module circuit number 8
MPU-01 #8 Error Status SWO01426 Error Status of MPU-01 Module circuit number 8
MPU-01 #9 Status SW01427 Status of MPU-01 Module circuit number 9
MPU-01 #9 Error Status SW01428 Error Status of MPU-01 Module circuit number 9
MPU-01 #10 Status SW01429 Status of MPU-01 Module circuit number 10
MPU-01 #10 Error Status SW01430 Error Status of MPU-01 Module circuit number 10
MPU-01 #11 Status SW01431 Status of MPU-01 Module circuit number 11
MPU-01 #11 Error Status SW01432 Error status of MPU-01 Module circuit number 11
MPU-01 #12 Status SW01433 Status of MPU-01 Module circuit number 12
MPU-01 #12 Error Status SW01434 Error status of MPU-01 Module circuit number 12
MPU-01 #13 Status SW01435 Status of MPU-01 Module circuit number 13
MPU-01 #13 Error Status SWO01436 Error status of MPU-01 Module circuit number 13
MPU-01 #14 Status SWO01437 Status of MPU-01 Module circuit number 14
MPU-01 #14 Error Status SW01438 Error status of MPU-01 Module circuit number 14
MPU-01 #15 Status SW01439 Status of MPU-01 Module circuit number 15
MPU-01 #15 Error Status SW01440 Error status of MPU-01 Module circuit number 15
MPU-01 #16 Status SWO01441 Status of MPU-01 Module circuit number 16
MPU-01 #16 Error Status SWO01442 Error status of MPU-01 Module circuit number 16




A.12 Motion Program Information

A.12 Motion Program Information

(1) System Work Numbers 1 to 8

System Registers

pg

Sysom work urwer | i [ e [ e [ ot [ et | vers | wen | wans
Executing Main Program No. SW03200 | SW03201 | SW03202 | SW03203 | SW03204 | SW03205 | SW03206 | SW03207
Status SW03264 | SW03322 | SW03380 | SW03438 | SW03496 | SW03554 | SW03612 | SW03670
Control Signals SW03265 | SW03323 | SW03381 | SW03439 | SW03497 | SW03555 | SW03613 | SW03671

Program Number SW03266 | SW03324 | SW03382 | SW03440 | SW03498 | SW03556 | SW03614 | SW03672
Fork O Block Number SW03267 | SW03325 | SW03383 | SW03441 | SW03499 | SW03557 | SW03615 | SW03673
Alarm Code SW03268 | SW03326 | SW03384 | SW03442 | SW03500 | SW03558 | SW03616 | SW03674
Program Number SW03269 | SW03327 | SW03385 | SW03443 | SW03501 | SW03559 | SW03617 | SW03675
Fork 1 Block Number SW03270 | SW03328 | SW03386 | SW03444 | SW03502 | SW03560 | SW03618 | SW03676
Alarm Code SW03271 | SW03329 | SW03387 | SW03445 | SW03503 | SW03561 | SW03619 | SW03677
Program Number SW03272 | SW03330 | SW03388 | SW03446 | SW03504 | SW03562 | SW03620 | SW03678
Fork 2 Block Number SW03273 | SW03331 | SW03389 | SW03447 | SW03505 | SW03563 | SW03621 | SW03679
Alarm Code SW03274 | SW03332 | SW03390 | SW03448 | SW03506 | SW03564 | SW03622 | SW03680
Program Number SW03275 | SW03333 | SW03391 | SW03449 | SW03507 | SW03565 | SW03623 | SW03681
Fork 3 Block Number SW03276 | SW03334 | SW03392 | SW03450 | SW03508 | SW03566 | SW03624 | SW03682
Alarm Code SW03277 | SW03335 | SW03393 | SW03451 | SW03509 | SW03567 | SW03625 | SW03683
Program Number SW03278 | SW03336 | SW03394 | SW03452 | SW03510 | SW03568 | SW03626 | SW03684
Fork 4 Block Number SW03279 | SW03337 | SW03395 | SW03453 | SW03511 | SW03569 | SW03627 | SW03685
Alarm Code SW03280 | SW03338 | SW03396 | SW03454 | SW03512 | SW03570 | SW03628 | SW03686
Program Number SW03281 | SW03339 | SW03397 | SW03455 | SW03513 | SW03571 | SW03629 | SW03687
Fork 5 Block Number SW03282 | SW03340 | SW03398 | SW03456 | SW03514 | SW03572 | SW03630 | SW03688
Alarm Code SW03283 | SW03341 | SW03399 | SW03457 | SW03515 | SW03573 | SW03631 | SW03689
Program Number SW03284 | SW03342 | SW03400 | SW03458 | SW03516 | SW03574 | SW03632 | SW03690
Fork 6 Block Number SW03285 | SW03343 | SW03401 | SW03459 | SW03517 | SW03575 | SW03633 | SW03691
Alarm Code SW03286 | SW03344 | SW03402 | SW03460 | SW03518 | SW03576 | SW03634 | SW03692
Program Number SW03287 | SW03345 | SW03403 | SW03461 | SW03519 | SW03577 | SW03635 | SW03693
Fork 7 Block Number SW03288 | SW03346 | SW03404 | SW03462 | SW03520 | SW03578 | SW03636 | SW03694
Alarm Code SW03289 | SW03347 | SW03405 | SW03463 | SW03521 | SW03579 | SW03637 | SW03695
Logical Axis 1 Program Current Position | SL03290 | SL03348 | SL03406 | SL03464 | SL03522 | SL03580 | SL03638 | SL03696
Logical Axis 2 Program Current Position | SL03292 | SL03350 | SL03408 | SL03466 | SL03524 | SL03582 | SL03640 | SL03698
Logical Axis 3 Program Current Position | SL03294 | SL03352 | SL03410 | SL03468 | SL03526 | SL03584 | SL03642 | SL03700
Logical Axis 4 Program Current Position | SL03296 | SL03354 | SL03412 | SL03470 | SL03528 | SL03586 | SL03644 | SL03702
Logical Axis 5 Program Current Position | SL03298 | SL03356 | SL03414 | SL03472 | SL03530 | SL03588 | SL03646 | SL03704
Logical Axis 6 Program Current Position | SL03300 | SL03358 | SL03416 | SL03474 | SL03532 | SL03590 | SL03648 | SL03706
Logical Axis 7 Program Current Position | SL03302 | SL03360 | SL03418 | SL03476 | SL03534 | SL03592 | SL03650 | SL03708
Logical Axis 8 Program Current Position | SL03304 | SL03362 | SL03420 | SL03478 | SL03536 | SL03594 | SL03652 | SL03710
Logical Axis 9 Program Current Position | SL03306 | SL03364 | SL03422 | SL03480 | SL03538 | SL03596 | SL03654 | SL03712
Logical Axis 10 Program Current Position | SL03308 | SL03366 | SL03424 | SL03482 | SL03540 | SL03598 | SL03656 | SL03714
Logical Axis 11 Program Current Position | SL03310 | SL03368 | SL03426 | SL03484 | SL03542 | SL03600 | SL03658 | SL03716
Logical Axis 12 Program Current Position | SL03312 | SL03370 | SL03428 | SL03486 | SL03544 | SL03602 | SL03660 | SL03718
Logical Axis 13 Program Current Position | SL03314 | SL03372 | SL03430 | SL03488 | SL03546 | SL03604 | SL03662 | SL03720
Logical Axis 14 Program Current Position | SL03316 | SL03374 | SL03432 | SL03490 | SL03548 | SL03606 | SL03664 | SL03722
Logical Axis 15 Program Current Position | SL03318 | SL03376 | SL03434 | SL03492 | SL03550 | SL03608 | SL03666 | SL03724
Logical Axis 16 Program Current Position | SL03320 | SL03378 | SL03436 | SL03494 | SL03552 | SL03610 | SL03668 | SL03726

A-17



A-18

A.12 Motion Program Information

(2) System Work Numbers 9 to 16

Sysam workurber | Sy | e T o [ s | s | ot | s | e
Executing Main Program No. SW03208 | SW03209 | SW03210 | SW03211 | SW03212 | SW03213 | SW03214 | SW03215
Status SW03728 | SW03786 | SW03844 | SW03902 | SW03960 | SW04018 | SW04076 | SW04134
Control Signals SW03729 | SW03787 | SW03845 | SW03903 | SW03961 | SW04019 | SW04077 | SW04135

Program Number SW03730 | SW03788 | SW03846 | SW03904 | SW03962 | SW04020 | SW04078 | SW04136
Fork O Block Number SWO03731 | SW03789 | SW03847 | SW03905 | SW03963 | SW04021 | SW04079 | SW04137
Alarm Code SW03732 | SW03790 | SW03848 | SW03906 | SW03964 | SW04022 | SW04080 | SW04138
Program Number SWO03733 | SW03791 | SW03849 | SW03907 | SW03965 | SW04023 | SW04081 | SW04139
Fork 1 Block Number SW03734 | SW03792 | SW03850 | SW03908 | SW03966 | SW04024 | SW04082 | SW04140
Alarm Code SWO03735 | SW03793 | SW03851 | SW03909 | SW03967 | SW04025 | SW04083 | SW04141
Program Number SW03736 | SW03794 | SW03852 | SW03910 | SW03968 | SW04026 | SW04084 | SW04142
Fork 2 Block Number SWO03737 | SW03795 | SW03853 | SW03911 | SW03969 | SW04027 | SW04085 | SW04143
Alarm Code SWO03738 | SW03796 | SW03854 | SW03912 | SW03970 | SW04028 | SW04086 | SW04144
Program Number SW03739 | SW03797 | SW03855 | SW03913 | SW03971 | SW04029 | SW04087 | SW04145
Fork 3 Block Number SW03740 | SW03798 | SW03856 | SW03914 | SW03972 | SW04030 | SW04088 | SW04146
Alarm Code SW03741 | SW03799 | SW03857 | SW03915 | SW03973 | SW04031 | SW04089 | SW04147
Program Number SW03742 | SW03800 | SW03858 | SW03916 | SW03974 | SW04032 | SW04090 | SW04148
Fork 4 Block Number SW03743 | SW03801 | SW03859 | SW03917 | SW03975 | SW04033 | SW04091 | SW04149
Alarm Code SW03744 | SW03802 | SW03860 | SW03918 | SW03976 | SW04034 | SW04092 | SW04150
Program Number SW03745 | SW03803 | SW03861 | SW03919 | SW03977 | SW04035 | SW04093 | SW04151
Fork 5 Block Number SW03746 | SW03804 | SW03862 | SW03920 | SW03978 | SW04036 | SW04094 | SW04152
Alarm Code SW03747 | SW03805 | SW03863 | SW03921 | SW03979 | SW04037 | SW04095 | SW04153
Program Number SW03748 | SW03806 | SW03864 | SW03922 | SW03980 | SW04038 | SW04096 | SW04154
Fork 6 Block Number SW03749 | SW03807 | SW03865 | SW03923 | SW03981 | SW04039 | SW04097 | SW04155
Alarm Code SW03750 | SW03808 | SW03866 | SW03924 | SW03982 | SW04040 | SW04098 | SW04156
Program Number SWO03751 | SW03809 | SW03867 | SW03925 | SW03983 | SW04041 | SW04099 | SW04157
Fork 7 Block Number SW03752 | SW03810 | SW03868 | SW03926 | SW03984 | SW04042 | SW04100 | SW04158
Alarm Code SWO03753 | SW03811 | SW03869 | SW03927 | SW03985 | SW04043 | SW04101 | SW04159
Logical Axis 1 Program Current Position | SL03754 | SL03812 | SL03870 | SL03928 | SL03986 | SL04044 | SL04102 | SL04160
Logical Axis 2 Program Current Position | SL03756 | SL03814 | SL03872 | SL03930 | SL03988 | SL04046 | SL04104 | SL04162
Logical Axis 3 Program Current Position | SL03758 | SL03816 | SL03874 | SL03932 | SL03990 | SL04048 | SL04106 | SL04164
Logical Axis 4 Program Current Position | SL03760 | SL03818 | SL03876 | SL03934 | SL03992 | SL04050 | SL04108 | SL04166
Logical Axis 5 Program Current Position | SL03762 | SL03820 | SL03878 | SL03936 | SL03994 | SL04052 | SL04110 | SL04168
Logical Axis 6 Program Current Position | SL03764 | SL03822 | SL03880 | SL03938 | SL03996 | SL04054 | SL04112 | SL04170
Logical Axis 7 Program Current Position | SL03766 | SL03824 | SL03882 | SL03940 | SL03998 | SL04056 | SL04114 | SL04172
Logical Axis 8 Program Current Position | SL03768 | SL03826 | SL03884 | SL03942 | SL04000 | SL04058 | SL04116 | SL04174
Logical Axis 9 Program Current Position | SL03770 | SL03828 | SL03886 | SL03944 | SL04002 | SL04060 | SL04118 | SL04176
Logical Axis 10 Program Current Position | SL03772 | SL03830 | SL03888 | SL03946 | SL04004 | SL04062 | SL04120 | SL04178
Logical Axis 11 Program Current Position | SL03774 | SL03832 | SL03890 | SL03948 | SL04006 | SL04064 | SL04122 | SL04180
Logical Axis 12 Program Current Position | SL03776 | SL03834 | SL03892 | SL03950 | SL04008 | SL04066 | SL04124 | SL04182
Logical Axis 13 Program Current Position | SL03778 | SL03836 | SL03894 | SL03952 | SL04010 | SL04068 | SL04126 | SL04184
Logical Axis 14 Program Current Position | SL03780 | SL03838 | SL03896 | SL03954 | SL04012 | SL04070 | SL04128 | SL04186
Logical Axis 15 Program Current Position | SL03782 | SL03840 | SL03898 | SL03956 | SL04014 | SL04072 | SL04130 | SL04188
Logical Axis 16 Program Current Position | SL03784 | SL03842 | SL03900 | SL03958 | SL04016 | SL04074 | SL04132 | SL04190




Appendix B

CP (Previous) Ladder Instructions and
New Ladder Instructions

This appendix describes some CP (previous) ladder instructions and new ladder instructions.

B.1 Correspondence between CP (Previous)
Ladder Instructions and New Ladder Instructions - ------------------ B-2

B.2 Converting CP (Previous) Ladder Programs to New Ladder Programs - ------ B-3

ﬁ CP (Previous) Ladder Instructions and New Ladder Instructions
=}
o



B.1 Correspondence between CP (Previous) Ladder Instructions and New Ladder Instructions

B.1

and New Ladder Instructions

Correspondence between CP (Previous) Ladder Instructions

Changing from CP ladder programs to new ladder programs involves changes to some instructions and the addi-

tion of new instructions.

This section tells you what to do in new ladder programs for instructions that can be used only in CP ladder pro-

grams.

It also provides a list of instructions that can be used only in new ladder instructions.

Programs

Handling Instructions Supported Only by CP (Previous) Ladder Programs in New Ladder

Instruction Name

Function Outline

Procedure in New Ladder Programs

Instructions in [ ] Brackets

Instructions in [ ] brackets are executed only when
the value of the B register is ON.

IFON instruction

Processing up to the IEND instruction is executed
only when the value of the B register is ON.

IFOFF instruction

Processing up to the IEND instruction is executed
only when the value of the B register is OFF.

Use the IF instruction.

Call User Function
instruction

A user function is called.

Function Input instruction

The input data is stored in the function input regis-
ter.

Function Output instruc-
tion

The data in the function output register is stored in
the specified register.

Use the FUNC instruction.

Comment instruction

99

Text with double quotation marks (““ ) is treated

as a comment.

Use rung comments.

Integer Replacement
instruction

Data is replaced in an A register and the integer
operation is started.

Real Number Replace-
ment instruction

Data is replaced in an F register and the real num-
ber operation is started.

Store instruction

The contents of the A or F register is stored in the
specified register.

Use the STORE instruction.

(2) Instructions That You Can Use Only in New Ladder Programs

Instruction Name

Function Outline

IF instruction

The programming between the IF and END _IF instructions is executed while the conditional expres-

sion for the IF instruction is satisfied.

FUNC instruction

A user function is called.

STORE instruction

Integer, double-length integer, or real number data is stored in a register.

EXPRESSION instruction

A numeric expression is written.

MLINK-SVW instruction

The specified SERVOPACK parameter is written.

MOTREG-W instruction

The specified motion register is written.

MOTREG-R instruction

The specified motion register is read.

B-2




B.2 Converting CP (Previous) Ladder Programs to New Ladder Programs

B.2

Converting CP (Previous) Ladder Programs to New Ladder
Programs

You can use the CP ladder program conversion function on MPE720 version 6 to convert CP ladder programs to
new ladder programs. When converting a program, DWG properties and comments in the program will be con-
verted at the same time.

You must be offline to convert CP ladder programs. (You cannot convert CP ladder programs while connected to
the Machine Controller.) Refer to 3.6 Converting CP Ladder Programs to Ordinary Ladder Programs in the
Engineering Tool for MP2000 Series Machine Controller MPE720 Version 6 User’s Manual (SIEP C880700 30)
on converting CP ladder programs.

B Procedure to Convert CP Ladder Programs

1.

Select a program folder (High-speed, Low-speed, Start, Interrupt, or Function) or select a program that
contains programs of the lower hierarchical levels. Then, right-click the selected folder or program and
select Conversion of CP ladder from the pop-up menu.

When the selected program contains programs of lower hierarchical levels, the following message will appear

asking for confirmation.

MPE720 Ver.6

Is "H : P Ladder ; Main Program” converted inko the new ladder programy
. Please select the converted program clicking "Select” button when vou conwert the program of the subordinate together,

[Conversinn ] l Select l [ Cancel ]

Conversion: Click this button to convert the current program and all lower level programs to new ladder pro-

grams.
Select: Click this button to display the Conversion of CP ladder Dialog Box. See step 2 for details on setting.
Cancel: Click this button to cancel program conversion.

ﬁ CP (Previous) Ladder Instructions and New Ladder Instructions
=}
o

B-3



B-4

B.2 Converting CP (Previous) Ladder Programs to New Ladder Programs

Click Select.

The Conversion of CP ladder Dialog Box will appear.

The check box of the CP ladder program specified in step 1 or the check boxes of the CP ladder programs that are
displayed under the ladder program specified in step 1 will be selected.

When a program from the second hierarchical level is specified in step 1, the check box of the programs of first
hierarchical level will also be selected.

+ After deselecting the check boxes of the CP ladder programs not to be converted in step 3, the check boxes of
the project file, ladder program folder, High-speed, Low-speed, Start, Interrupt, or Function folder to which non-
selected CP ladder programs belong will be shaded. This is because some of CP ladder programs in the file or
folder are selected and the rest are not selected.

¥ Conversion of CP ladder

Program
=IE] (1] commlad [MP2E10]
=8 EF Ladder program

HOl1 <¢——Second layer
=] HO1.01
=] HOlnoz2

E|§ HO2
% Ho2.m

"] Hozoz

-] Hozo3
Eli: HO3

=] HO20

O 3 Ho302

[Conversinn ] [ Cancel

Clear the check boxes of CP ladder programs not to be converted.

+ New Ladder programs are shaded, and cannot be selected.

Click Conversion. All the selected CP ladder programs will be converted to new ladder programs.

If you click the Cancel Button, the CP ladder program conversion will be cancelled.

An error code (0xAxxxxxxx) and an error name may be displayed in the Output Subwindow in accordance with
the changed program.

Select the error code (0xAxxxxxxx) and press the F1 Key. Error Generating Information will appear.

Check the error causes and take corrective action.



Appendix C

Sample Programming

This appendix describes ladder programming examples that perform test runs.

C.1 Jogging from the Control Panel -------------------ooe oo C-2
C.2 Motion Program Control - - - - == -----ccom oo e C-3
C.3 Simple Synchronized Operation of Two Axes with a Virtual Axis ----------- C-4
C.4 Transferring Project Files to Different Models - - - ---------------------- C-6

Sample Programming



C.1 Jogging from the Control Panel

C.1  Jogging from the Control Panel

The following configuration and ladder programming example illustrate how to control a motor from switches on
a control panel when the motor and control panel are connected to the MP2300.

B Configuration Example

MP2300

Serial cable

Cont

rol Panel

MECHATROLINK-II

SERVOPACK (SGDV)
(Circuit No. 1, Axis 1), sV

B | adder Programming Example
IBE0DO0D (servo on)

#~Mation controller op

Servo ON command Al
(IBO00000)

O

Jog + command
(1B000002)

O

arm Clear command
(1B0O00001)

O

Jog — command
(1B000003)

O

HeSystemn busy
IBB0002
||

[
IBODOO 1 {alamm clear)

SEryo on eration ready Fe-Servo ON
[E0o00a IBBO00O CBs0000

| | || Oy

[ [ S

HeAlarm clear

JOG+/J0G- (BOOO0ZB00003)

alam clear
B00001 CEBO00F
| |
[ e
IBEDOOO 3 (JOG-)
JOG- ¥~ JOGISTER direction
BOO00O3 OBBODYZ
| ]
[ p—

F~Maoton command

(

L,

STORE A

WLF]Src 00000

F~Motion command

[WLF]Dest OWE008

i

JOG+ H~Running
[E00002 IB80001
|| ||
[ ]

JOG-
[E00003

_<

C-2

S5TORE

A
MWWLF]Src 00007

WLFDest OWWBOOB




C.2 Motion Program Control

C.2 Motion Program Control

The following ladder programming example demonstrates how to control execution of a motion program.

B [adder Programming Example

0ooo
MNL-1

ooz
NL-1

0oos
ML-1

ooo7
MNL-1

o009
ML-1

W | WeEE =)

X axis servo an

[BOOOOO
| ]

Power to the servomotor is turned
Servo on ON when IB00000 turns ON.

HeServo ON
OB30000
P

The motion program is started when
IBO0001 turns ON.

Ry

program hold

prograrm sta
start on pulse program start
I[BOOOO DB000040 DBEO00010
| A Y
[ _l Ry

program abort

hold program hold
|[BOO0OOZ DBO00O11
| ] PR
[ Ry

program and alarm reset

abort program atort
|[BOOOO3 DBO00012
|| ST
[ Ry

program and alarm

call motion program

reset reset

IB00004 DBO0001S
| | P
[ oy

The MSEE instruction is used to register
the motion program for execution.

0011 ["]Pragram Mo. 00001
MNL-1 [A]Data DADOOOD
stop motion program
checkif motion st
mationin mn off pulse opped
DEO00000 DB000041 DBo00042
| Yy
0012 [ % p—y
ML-1
IF )
0015 DEO00042==true
ML-1
here isthe any treatment after motion stopped
BAE» |— ENDIF ]
00186
MNL-1
{ END }
0017
ML-1

Sample Programming

C-3



C.3 Simple Synchronized Operation of Two Axes with a Virtual Axis

C.3 Simple Synchronized Operation of Two Axes with a Virtual Axis

With the following sample programs, a motion program moves an SVR (virtual axis) and a ladder program distributes
the feedback position of the SVR to two physical axes to perform synchronized operation with two axes.

SVB
Axis 1
A
SVR (virtual axis) \
>
A
\ q Axis 2
A
One-axis interpolation operation is
executed with a motion program. >

A ladder program is used to copy the
feedback position of the SVR to the
position references of axes 1 and 2
to perform synchronized operation.

B Motion Programming Example

FMX T10000K; "Set maximum interpolation speed K = 1,000.
INC; "Incremental Mode

IAC T500; "Interpolation acceleration time = 500 ms
IDC T500; "Interpolation deceleration time = 500 ms

MVS [SVR] 1000K F10000K; "Interpolation for travel distance of 1,000,000
END;




C.3 Simple Synchronized Operation of Two Axes with a Virtual Axis

B [adder Programming Example

for seno on
Hotlotion controlle
SEryoon roperation ready FeServo 0N
WME300000 IB30000 OB80000
] | O
0000
NL-1 H-Sysem busy
IB&0002
| ]
[
Y~Motion controlle
roperation ready Y~Servo OM
IBB0S00 OB80800
|| P
[ -y
Y~System busy
IB&OS02
| ]
[
Z~Motion controlle
roperation ready F=Servo 0N
IB&3000 OB83000
||
[ -y
chedk the status of X, Y 7
F~Ruming Y~Running Fo¥inmun
IB&OO01 IB&0E01 DEO00040
[ ||
0000 [ [ vy
NL-1 Z-Running K, Zinrun
B&8001 DEO00041
| ]
[ oy
sat motion command for actual axes of Xand Y
XY inrun
DEBO00040
0002 i EXPRESSION =)
o014 OW008=4, / Xirterpolation,
NL-1 OWS088=4 Jf Y interpolation
Y inrun
DE000040
B 1/ EXPRESSION Fa))
00116 OWB008=0: /f X irterpolation;
MNL-1 OWW8088=0; Jf Y interpalation
start mation program
axes move an pulse XL Zinn motion start
WME300001 DEOO0044 DEOO0041 DB000010
|| . | PR
[ _ [ p—
ML-1
call motion program
By — MSEE T}
0022 [WIProgram Mo, 00001
MNL-1 [A]Data DADOCN0
ouput he position command to actual axes
EXPRESSION =l
0023 QL801C=ILE816; # X position = Z feedback
NL-1 0OL809C=L8816; /Y position =Z feedback
{ ERD ¥
0024
NL-1

Sample Programming



C-6

C.4 Transferring Project Files to Different Models

C.4 Transferring Project Files to Different Models

Use the following procedure to transfer a project file to a different model.
This example shows how to convert a CPU-03 project file to a CPU-04 project file.

Converting a CPU-03 project file
to a CPU-04 project file

I

CPU-03.YMW CPU-04.YMW

B Procedure

1. Create a new project file for the CPU-04.
2. Select Online - Transfer - Read from Project.
3. Select the CPU-03 project file and transfer it to the CPU-04 project.

4. Manually set the Module configuration definitions.

(N The Module configuration definition will be lost when you transfer a project file to a different model.
INFO(
% Set the Module configuration definitions and parameters manually.

You cannot use the axis data copy function for Module configuration definitions between different project files.




Appendix D

Format for EXPRESSION Instruction

This appendix describes the format for the EXPRESSION instruction.

D.1 Elements That You Can Use in Numeric Expressions - ------------------ D-2
D.2 National Limitations - - ------=--cc o e D-5
D.2.1 Arithmetic Operators - - - - - - == - oo m e e e e e e D-5
D.2.2 Comparison Operators - - - - - - == = = - o m o m oo e e e e e e D-5
D.2.3 Logic Operators - - - = = = = = = - o oo o e e e e e e o oo D-5
D.2.4 Substitution Operator - - - - - === - - - mcm i e e e D-6
D.2.5 FUNCHONS = === - m s m e oo o e e e e e e e e D-6
D.2.6 Others - - - - - - mmm s m o e e e e e e D-6

i Format for EXPRESSION Instruction

ppD

D-1



D.1 Elements That You Can Use in Numeric Expressions

D.1  Elements That You Can Use in Numeric Expressions

Numeric expressions can include operators, operands (constants and variables), and functions.

D-2

This section describes each of these elements.

(1) Operators

[a] Types of Operators and Usable Operators

The following table gives the types of operators and usable operators.

Type Usable Operators
+ Add
- Subtract
* Multiply
Arithmetic and Logic / Divide
Operators
% Remainder
& Bit-wise AND
| Bit-wise OR
&& Inclusive AND
Logic Operators (Usable only I Inclusive OR
with bit data)
! Logical NOT
== Equal to right-side value
1= Unequal to right-side value
. > Greater than right-side value
Comparison Operators - -
>= Greater than or equal to right-side value
< Less than right-side value
<= Less than or equal to right-side value
Substitution Operator = Substitutes left-side value with right-side value
true TRUE for a logical expression
Reserved Words - -
false FALSE for a logical expression

[ b] Order of Evaluation

Operators are evaluated according to their processing priority and the order in which operands are grouped, as listed

below.
Priority* Operators Description Grouping
Order
High 10 Expression Left to right
-1 Unary Right to left
T * /o Multiplication, division, and remainder
+ - Addition and subtraction
<> <= >= Relational
== |= Equivalence
3 Bit-wise AND Left to right
l | Bit-wise OR
&& Inclusive AND
Low I Inclusive OR

+ Operators on the same line have the same processing priority and are evaluated according to their grouping order.




D.1 Elements That You Can Use in Numeric Expressions

(2) Operands

[a] Constants

Integers or real numbers may be used as a constant.
+ An integer may be any number that can be expressed within the range of a 32-bit integer.
(-2,147,483,648 to 2,147,483,647)
* A real number may be any number that can be expressed within the range of 32-bit floating point data.
+ (1.175494351e-38F to 3.402823466e+38F)

N FO Hexadecimal numbers must be expressed using the 0xCOOOO notation when used in the EXPRESSION, IF, or WHILE
% instruction.

The HOOOO notation will result in an error.
Example: HO12F ... NG 0x012F ... OK
The HOOOO notation must be used for all other instructions, such as the STORE instruction.

[b] Variables

The EXPRESSION instruction allows you to assign arbitrary variable names that are allowed in C language to registers
in the Machine Controller.

Although the C language does not have Boolean variables, bit registers in the Machine Controller are treated as Bool-
ean variables. Boolean variables are either TRUE or FALSE and can be used only in logical expressions.

B Limitations on Variable Names

The following limitations apply to variable names.
* Variable names must start with a non-numeric character.
» For ASCII characters, only alphabetic characters, underscores, and numbers may be used.
* The following variable names cannot be used because they are already used as function names.

Abc OK
Get_input() OK
<4 EXAMPLE » 1ab NG
Sin NG

Format for EXPRESSION Instruction

x=

D-3



D-4

D.1 Elements That You Can Use in Numeric Expressions

(3) Instructions That You Can Use with EXPRESSION Instructions

Instruction Description Example Reserved Word
+ Add MW00001 = MW00002 + MW00003 N
- Subtract MWO00001 = MWO00002 — MWO00003 v
* Multiply MWO00001 = MWO00002 x MW00003 v
/ Divide MWO00001 = MW00002 / MW00003 N
% Remainder MW00001 = MWO00002 % MWO00003 N
& Bit-wise AND MWO00001 = MWO00002 & 4096 N
| Bit-wise OR MWO00001 = MW00002 | 4096 v
&& Inclusive AND MB000010 = MB000011 && MB000012 N
I Inclusive OR MB000010 = MB000011 || MB000012 v
! Logical NOT MBO000010 = !MB000011 v
== | Paultorightside MB000010 = MB000011 == true y
Right-side value is less
>= than or equal to left- MBO000010 = MW00020 >= MW00021 Xl
side value
> i{fﬁ:flt‘_l:i;:?:h‘;le“ MB000010 = MW00020 > MW00021 v
Right-side value is
< greater than left-side MB000010 = MW00020 < MW00021 J
value
Right-side value is
<= greater than or equal to | MB000010 = MW00020 <= MW00021 N
left-side value
Substitute left-side
= value with right-side MW00001 = MW00002 J
value
true TRUE MBO000010 = MB000011 == true N
false FALSE MBO000010 = MB000011 == false N
sin() | SIN MW00001 = sin(MW00002) N
cos() | COS MF00002 = cos(MF00004) N
atan() | ARCTAN MWO00001 = atan(MF00002) N
tan() | TAN MW00001 = tan(MW00002) N
0 Parentheses MWO00001 = (MW00002 + MW00003) / MW00004 N
asin() | ARCSIN MWO00001 = asin(MW00002) N
acos() | ARCCOS MWO00001 = acos(MW00002) N
sqrt() | AQRT MW00001 = sqrt(MW00002) v
abs() ABS MWO00001 = abs(MW00002) v
exp() | EXP MWO00001 = exp(MW00002) \
log() LOG natural logarithm | MWO00001 = log(MW00002) N
log10() i‘igg’llo common 10ga- |\ 100001 = log1 0(MW00002) v




D.2 National Limitations

D.2 National Limitations

D.2.1 Arithmetic Operators

Several limitations apply when combining operands and operators to form numeric expressions. An expression is not

recognized as a numeric expression unless it meets these conditions.

This section describes these limitations.

D.2.1 Arithmetic Operators

These operators can be used with integer and real number operands. The unary minus operator can be used only once.

Bit operations can be performed only on integer data. Bit operands cannot be used for arithmetic operations. No auto-

matic data type conversion is performed even if the calculation result exceeds the range of the assigned register. There-

fore, the user must assign the appropriate data type to the variable.

<4 EXAMPLE

MWO00001 = MW00002 + MW00003
MWO00001 = MW00002 / 345

MF00002 = (MW00004 + MF00002) / (MLO0018 + MW00008)

MWO00001 = MW00002 & 4096
MB000010 = MB000011 - MB000012
MWO00001 = MB000011 * MW00001

D.2.2 Comparison Operators

OK
OK
OK
OK
NG
NG

These operators can be used with integer and real number operands. The left side must be a bit data register. To use an

integer bit operand in a comparison operation with the == or != operator, compare it with TRUE or FALSE.

<4 EXAMPLE »

MB000010 = MW00002 != MWO00003

MB000010 = MF00002 < 99.99
MB000010 = MW00002 >= MWO00003
MB000010 = MB0O00011 == true
MB000010 = MB000011 !=0
MBO000010 = MB0O00011 == 1

D.2.3 Logic Operators

These operators can be used with bit operands.

<4 EXAMPLE »

MB000010 = MB000011 && MB000012
MB000010 = IMB000011

OK
OK
OK
OK
NG
NG

MB000010 = (MW000020 >= 50) && MB000011

MB000010 = MWO00001 || MW00002
MB000010 = IMWO00001

OK
OK
OK
NG
NG

Format for EXPRESSION Instruction

x=

D-5



D-6

D.2 National Limitations

D.2.4 Substitution Operator

D.2.4 Substitution Operator

Real number and integer registers can be substituted with either real number or integer data, even if the data type dif-
fers on the right and left sides. When you substitute an integer with a real number, a round-off error will occur.

Bit registers can be substituted only with logical values, such as another bit register or a TRUE/FALSE. If you substi-
tute a bit register with a non-logical value, that value will be compared against 0 or 0.0 and the TRUE or FALSE out-
come will be converted to a code before it is substituted.

Bit data cannot be substituted into non-bit registers.

MWO00001 = MW00002; OK
<4 EXAMPLE » MF00000 = MWO00002 / 345; OK
MB000010 = MB000010; OK
MWO00010 = MB0000101; NG
MWO00001 = true; NG

D.2.5 Functions

The arguments and return values for functions depend on the specifications of the functions in the Machine Controller.
Therefore, if the input for the sin(), cos(), and atan() functions is an integer or integer register, the output value will be
returned as an integer. If the input is a real number or a real number register, the output value will be returned as a real
number.

The argument for the tan() function is a real number so an integer register input will be treated as a real number.

MWO00001 = sin(MW00002); oK
<EXAMPLE P 100002 = cos(MF00000 X 3.14): OK
MWO00001 = -atan(MF00002); oK

D.2.6 Others

B Parentheses

You can group multiple expressions by enclosing them with parenthesis ().

<4 EXAMPLE p MWO00001 = -(MW00002 + 10) / (MWO00003 — MW00005); OK

B Arrays

You can specify arrays by using square brackets [ ], just like with the C language.

MWO00001 = MW00002[100]; OK
< EXAMPLE p> MWO00001 = MWO00002[MW00003]; OK
MB000010 = MB000020[0]: OK



Appendix E

Precautions

This appendix provides precautions on ladder programs and motion parameters.

E.1 General Precautions ------------------o-m oo E-2

E.2 Precautions on Motion Parameters -------------------------------- E-2

Precautions



E-2

E.1 General Precautions

E.1  General Precautions
(1) Do Not Forget to Save The Data to Flash Memory When You Change or Transfer a Pro-
gram

Do not forget to save the data to flash memory when you change or transfer a ladder program or motion program. If
you do not, any changes that were made to the program will be lost when the power supply to the Machine Controller
is turned OFF.

E.2 Precautions on Motion Parameters

(1) Do Not Use a Subscript to Reference a Motion Register from an 1/O Register

1/0 registers and motion registers are not assigned to consecutive memory locations.
When using a subscript, make sure that you access registers within the range of I/O registers or within the range of

motion registers.

IW0000/0W0000
Accessible.
I/O registers
IW7FFF/OW7FFF
Not accessible.
Example:
1=1;
IW8000/0W8000 OWTYFFFi = 0;
Motion registers
) Accessible.
IWFFFF/OWFFFF




E.2 Precautions on Motion Parameters

(2) Do Not Use a Subscript to Reference a Motion Register in a Different Circuit

Motion registers on different circuits are not assigned to continuous memory location, just as is true for I/O registers

and motion registers.
When using a subscript, access registers within the range of motion registers for each circuit.
If the circuit numbers are the same, it is possible to access motion registers for different axes.

Axis 16 (IW8780 to IW87FF and OW8780 to OW87FF)

Circuit No. Axis 1 Axis 2 Axis 16
1 OW8000 to OWB07F OW8080 to OWSOFF OW8780 to OW8T7FF
2 OW8800 to OW8S87F OW8880 to OWSSFF OWS8F80 to OWSFFF
3 OW9000 to OW907F OW9080 to OW90FF OW9780 to OW97FF
4 OW9800 to OW987F OW9880 to OW9SFF OWOIF80 to OWI9FFF
5 OWAO000 to OWAO7F OWAO080 to OWAOFF OWA780 to OWAT7FF
6 OWARSB00 to OWAS7F OWAZS880 to OWASFF OWAF80 to OWAFFF
7 OWBO000 to OWBO7F OWBO080 to OWBOFF OWB780 to OWB7FF
8 OWBS800 to OWBS&7F OWBS880 to OWBSFF OWBF80 to OWBFFF
9 OWC000 to OWCO7F OWC080 to OWCOFF OWC780 to OWCT7FF
10 OWC800 to OWCS87F OWC880 to OWCSFF OWCF80 to OWCFFF
11 OWDO000 to OWDO7F OWDO080 to OWDOFF OWD780 to OWD7FF
12 OWDB800 to OWDS7F OWD880 to OWDSFF OWDF80 to OWDFFF
13 OWE000 to OWEO7F OWEO080 to OWEOFF OWE780 to OWE7FF
14 OWES800 to OWES7F OWES880 to OWESFF OWEF80 to OWEFFF
15 OWF000 to OWF07F OWF080 to OWFOFF OWF780 to OWF7FF
16 OWEF800 to OWF87F OWEF880 to OWFSFF OWFF80 to OWFFFF
Axis 1 (IW8000 to IW807F and OW8000 to OW807F) D Accessible
Axis 2 (IW8080 to IW80FF and OW8080 to OW80FF) e .I
xample:
Circuit 1 lOTNEO?F' 0
i=0;

Not accessible.

Example:

Axis 1 (IW8800 to IW887F and OW8800 to OW887F)

I =1;

Axis 2 (IW8880 to IW88FF and OW8880 to OW88FF)

OWB8TFFi = 0;

Circuit 2

Axis 16 (IW8F80 to IW8FFF and OW8F80 to OW8FFF)

Precautions

E-3



Index

Index

Symbols
HIEGIStErS === == - - - e e e e 4-15
Numerics

10-ms OFF-Delay Timer (TOFF[10ms]) - ---------------- 5-9
10-ms ON-Delay Timer (TON[10ms]) ------------------ 57
1-s OFF-Delay Timer (TOFF[1s]) --------------cc-o-- 5-13
1-s ON-Delay Timer (TON[1S]) -=--=--=---=-ccmcmom-- 5-11

A
Absolute Value (ABS) - -------cmmmm oo 5-53
Add (ADD (+)) == === s = s e e e 524
Add Time (TMADD) - - === - - o e e e 5-44
Address - - -- - - - - e e 4-17
alarms - - - - 7-4
Arc Cosing (ACOS) - == === -mmmmmme oo 5-107
Arc Sine (ASIN) - - - - mm e e e 5-106
Arc Tangent (ATAN) - - - - - mm e e 5-108
arithmetic Operators - - - = = == = == == c oo oo D-5
ASCII Conversion 1(ASCII) - -------mmommmmmaaaaa oo 5-57
ASCII Conversion 2(BINASC) - -------ccoemmmoaaaoo 5-59
ASCII Conversion 3 (ASCBIN) ----------comomononoo- 5-61

B
basic flow of troubleshooting - ----------------------- 72
BCD Conversion (BCD) == -----cocmmmo oo 5-55
Binary Conversion (BIN) - ------ccoommammaaa oo 5-54
Binary Search (BSRCH) - --------ommammmaaa oo 5-128
Bit Rotate left (ROTL) - === ----coommmmm e e o - 5-112
Bit Rotate Right (ROTR) - --------mcmommomaoaaoa - 5-114
Bit Shift Left (SHFTL) --------cmmmmm oo oo o 5-132
Bit Shift Right (SHFTR) - ------ccomooamm oo 5-134
DALS = = = = =« == m m o e e ff oo e oo 4-17
Byte Swap (BSWAP) - - - - oo c e oo e 5-138
Byte-to-word Expansion (BEXTD) ----------ueonnmno- 5-124

C
Call C-language Function (C-FUNC) ----------o-oooo-- 5-281
Call Extended Program (XCALL) ----------cmoammaamox 5-87
Call Motion Program (MSEE) - - - === == - - oo m e oo oo 5-78
Call Sequence Program (SEE) - - - - - - === - - - oo oo - 577
Call User Function (FUNC) - --------mocmoammaoaoo 5-80
calling a user function - -------cooommm 4-12
checking for multiple coils == --------cc-coooao 6-5
child drawings - --------- - oo 43
c-language programs - - - ------- === ----oooooo o 426
C-language Task Control (TSK-CTRL) ---------------- 5-283
Clear Queue Table Pointers (QTBLCL) ---------------- 5223
Clear Table Block (TBLCL) ----------ccmaomaamaaooo 5-209
COil (COIL) ----mmmmmmmm e e m e 5-19
Common Logarithm (LOG) -------------------c---- 5-111
COMPAriSON OPErators - - - = - = === == === == === ===~ =~~~ -~ - - D-5
compiling for MPE720 version 5 - - - - === - - - - oo oo - 69
constant registers - -----------oooooooooooooo 4-14
controlling execution of drawings =------------ccoooo-- 4-5
Copy Word (COPYW) == ---mmmmmmmie e 5-136
Cosing (COS) === == mm e e e 5-103
Counter (COUNTER) - ----ccmmmmmm e 5-225
cross references -------------o o oo 6-4

Index-1

D
D registers == == == === - =2 m e 4-15
data TegiSters - - --- - === - - - - e 4-14
data tracing - -------- - - o e e 428
data types = --- === == m e e 4-17
Dead Zone A(DZA) - -------cmcmmm oo 5-139
Dead Zone B(DZB) - ------mmmmmm e 5-141
Decrement (DEC) - - - === == m s mm e 542
Direct Input String (INS) == === - - o e o e e e 5-81
Direct Output String (OUTS) - ----------cmommoamaann 5-84
Divide (DIV () === === = m s o e e e oo 534
double-length integer - ----------ccoe oo 4-17
drawing A - -----ccm e m e e 43
drawing H - - - - - - oo oo oo 43
drawing I - - = - - - m e e e e 43
drawing L - - - - - -mmm e 43
DWGA == - m s m i m e e 43
DWGH ---- - s mm i 43
DWG = = - mm e mm e 43
DWGLL = === mmmm e 43
E
enabling and disabling ladder programs ------------------ 6-8
Equal (=) - === - - o 5-71
EITOIS = === === === = === = o m o e e e e e oo 7-4
Exchange (XCHG) ----------c--mommmmmama oo 5-120
Exclusive OR (XOR) === - - ccmmmm oo 5-67
execution processing of drawings - ---------------ooo-- 4-6
Exponential (EXP) - ------mommmmm oo 5-109
Expression (EXPRESSION) - - - - - == o oo ommmm e 597
Extended Add (ADDX (++)) === --cmmmmmmm oo o 5-26
Extended Subtract (SUBX (= =) -----------c-moomomn- 5-30
F
Falling-edge Pulses (OFF-PLS) - -----coommmoaammaaoo 5-17
First-in First-out (FINFOUT) -------ccommommmaaamaao 5-228
First-order Lag (LAG) == --------mmmmmmmm e oo 5-161
FOR Construct (FOR, END FOR) -------ncommaamaao 5-91
forcing coils ON and OFF - - - - - - - oo oo 6-5
Function Generator (FGN) == - - === cccomomamao oo 5-167
functional external registers - - --------------------- -~ 4-15
functional input registers - -----=----=-==--=--“--—---- 4-15
functional internal registers --------------c-oooo--- 4-15
functional output registers - -----------------~-—----- 4-15
G
global registers - - - == - =< - oo oo 4-13
grandchild drawings - --------- - oo 43
Greater Than (>) - - - === - === - o oo m oo e e 5-74
Greater Than or Equal (2) - -------coooommomaaa oo 5-73
H
hierarchical configuration of drawings - ------------------ 44
|
@ S 13 7-9
IF Construct (IF, END_IF) --------commomamaaoo o 5-93
IF_ELSE Construct (IF, ELSE, END IF) -----------o---- 5-95
Inclusive AND (AND) === - - cmmmmmmm oo 5-63
Inclusive OR (OR) === - - - m e e 5-65
Increment (INC) = - - - = == - mm o e e e oo 5-40
index registers (i,j) -----------““““-““““-“-“------- 4-19
indicator Status - - - == = === - - c o e oo oo 73
INPUL TE@ISTErS = = = == = == = === o oo oo e oo 4-14
INteEEr === === m s m e e e e e 4-17



Index

Integer Remainder (MOD) - - - - == - - oo oo oo oomo oo 5-36
Inverse Function Generator (IFGN) - - - - - - - - - - - - - - - - 5-172
Invert Sign (INV) = - - - oo oo oo oo 5-51
L
ladder drawings --------------cocoooooo. 43
ladder program - - - - - - == - - oo oo 12
Less Than (<) === == mm e e e e e e e 5-69
Less Than or Equal (€) - --------mmmmmmmm oo 5-70
Linear Accelerator/Decelerator 1 (LAU) --------------- 5-177
Linear Accelerator/Decelerator 2 (SLAU) - ------------- 5-184
local regiSters = - = == = = === - oo oo 4-13
local registers within a user function ------------------- 4-15
10giC OPErators == === === === ===« “ =« <<« oo D-5
M
module synchronization errors ----------------------- 7-10
MOtiON Programs = - - === = == === = == o e e oo 425
Move Bit (MOVB) === - mmm e 5-116
Move Table Block (TBLMV) === --ccommme e oo o 5212
Move Word (MOVW) - - - - - - o oo oo 5-118
MPE720 Version 6 Engineering Tool specifications ---------- 24
Multiply (MUL (X)) ===-=-====-=-2-cccccaoammammo 5-32
N
Natural Logarithm (LN) = - - - - - c - - o oo oo e e 5-110
NC Contact (NCC) == =-----mmmmmmmm oo e oo 5-6
NO contact (NOC) === === =-mmmm e mm oo e 5.5
Not Equal (#) === === - - cm e e e e 5-72
o
One’s Complement (COM) == === == oo mommomamma oo 5-52
operation error drawings - ---------=---cco--oooooo- - 43
OPETation €ITOTS = = = = = = = = = = = = = = = == m oo e e oo 7-6
OULPUL TEZISTETS = = = = = = = = = = = = = = m e e oo 4-14
P
parent drawings = - ---- - - - oo 43
Parity Conversion (PARITY) --------mmommaamaaaaao 5-56
PD Control (PD) === == === = s e e e e e 5-150
Phase Lead Lag (LLAG) ------------mamommmaaa 5-164
PI Control (PI) = - == - - mmmmm e e e e 5-145
PID Control (PID) === - --mm e e e e e e oo 5-156
procedure to convert CP ladder programs - - - -=------------ B3
Pulse Width Modulation (PWM) - - - - - - - - - - - oo oo~ 5-194
R
Range Check (RCHK) === ---commmmm oo 575
Read Data Trace (DTRC-RD) - - === === - ommmmmema oo 5-234
Read Inverter Parameter ICNS-RD) - --------------- - 5-266
Read Inverter Trace ITRC-RD) - --------comoomooooo 5-238
Read Motion Register (MOTREG-R) - - - - - - - - - - - - - - - - 5-278
Read Queue Table (QTBLR and QTBLRI) -------------- 5-215
Read Table Block (TBLBR) - --------nmmmomamaaao 5-197
reading data from and writing data to projects - ------------ 4-23
reading data from the Machine Controller - - - - - = = - - = - - - - - - 423
Real Remainder (REM) - - === - - oo oo oo 5-38
realtime tracing - ---------------ooooo oo 4-28
Receive Message (MSG-RCV) - ---ccommmmmaoa oo 5-253
register lists = - === == - - oo e 6-6
registers (variables) - - - - - - - - - oo oo 4-13
Reset Coil (R-COIL) - -----cmmmmmm oo m oo oo oo 521
Rising-edge Pulses (ON-PLS) = - - === == - oo oo cmema oo 5-15
S
saving data to flash memory ---------------------____ 423

scheduling execution of scan process drawings - - ----------- 4-5
Search for Table Column (TBLSRC) ------------------ 5-206
Search for Table Row (TBLSRL) -------------------- 5-203
searching and replacing in programs -------------------- 6-3
searching and replacing in project files ------------------ 63
SECUTILY = = = = = = = = = = o e e e e oo 427
Send Message (MSG-SND) - - === - o mmmmmmm e o 5241
Set Coil (S-COIL) == === - m e e 5-20
setting high-speed/low-speed scan times - --------------- 424
Sine (SIN) = = === == e e e 5-101
single-precision real number - --------------o-oooo-- 4-17
SOrt (SORT) === = - o e e e e e e 5-130
Spend Time (SPEND) - - - - - - - - oo oo oo 548
Square Root (SQRT) === === - - mmmmmm e 5-99
Store (STORE) = ------cmmmmmmmm oo 522
substitute Operators - - = = = = = = = === m - e oo D-6
Subtract (=) =-==--==== =" 528
Subtract Time (TMSUB) = === === - cccmmmm oo 5-46
System error status - - - - - --- -2 - oo oo A-7
SYStEM €ITOTS = - = = = = == = = == = o — oo 7-11
SYSEEM Te@IStErs = = = = == = = = = o oo oo oo oo 4-14
System Service registers - -------------------oooooo A2
SYSteM StatUs = = === === = = - s m e e oo A-6
T
tabledata -------cmccce e 421
Table Initialization (SETW) - - == - o= - c e e e o - 5-122
Tangent (TAN) === - - o m e e oo 5-105
Trace (TRACE) - - -- - - m e e e 5-232
transferring data - - - - - = - - - - - oo oo 423
Tuning Panel - - -----ccccmmmm e 6-7
U
Upper/Lower Limit (LIMIT) - ------ncemmmammaaaaa oo 5-143
user functions = - == ===« - == - oo oo 47
user operation error code -1 = - - - - - oo oo A9
user operation error code -2 - - - - - - - - o e oo A-10
user operation error status - -------------------------- A9
w
watchdog timer errors - - - == - === - - - ccmmmoaom o 7-10
WHILE Construct (WHILE, END_WHILE) ------------- 5-88
Word-to-byte Compression (BPRESS) - --------------- 5-126
Write Inverter Parameter (ICNS-WR) - ----------oooo-- 5-261
Write Motion Register (MOTREG-W) - -------comomn-- 5-275
Write Queue Table (QTBLW and QTBLWI) - - ----------- 5-219
Write SERVOPACK Parameter (MLNK-SVW) - --------- 5-270
Write Table Block (TBLBW) - - - - - -cmmmmmee oo - 5-200
writing data to a Machine Controller - ------------------ 423
X
XY tracing = ---- === m e e 428

Index-2



Revision History

The revision dates and numbers of the revised manuals are given on the bottom of the back cover.

MANUAL NO. SIE-C887-1.2D
Published in Japan February 2014 98-7 -1
L WEB revision number
Revision number

Date of Date of original
publication publication
Date of Rev. WEB . .
g Rev. Section Revised Contents
Publication No.
No.
February 2014 1 5.8.2(1) Revision: Formula for input value and output value related to dead zone
August 2013 @ 0 All chapters Completely revised.
Back cover Revision: Address
February 2013 @ 0 | Back cover Revision: Address
February 2012 @ 0 Back cover Revision: Address
Front Revision: F t
Jane 2011 @ 0 ront cover evision: Forma
Back cover Revision: Address, format
- Based on Japanese user’s manual, SI-C887-1.2E <17> published in October 2009.
Preface Revision: General precautions
Addition: PL on fumigation and warranty
December 2009 @ 0 1.3 Addition: Characteristics of registers in user functions
232 Revision: Integer input for function input registers
o Addition: Notes on the use of registers (X, Y, Z, and D) in functions
52 Revision: Definition of TRACE function
Back cover Revision: Address
October 2008 @ 0 Back cover Revision: Address
March 2007 0 - Based on Japanese user’s manual, SI-C887-1.2D <14> published in July 2006.
Back cover Revision: Address
April 2006 @ 0 - Base.d. on Japanese user’s manual, SI-C88.7-1.2.D <13> published in February 2006.
3.3.1 Revision: RSSEL, MDSEL, and STS designations
August 2005 @ 0 Back cover Revision: Address
March 2005 @ 0 All chapters Completely revised.
Back cover Revision: Address
June 2003 @ 0 Back cover Revision: Address
December 2002 <?> 0 | Back cover Revision: Address
February 2001 @ 0 | All chapters Completely revised.
October 1998 <l> 0 | All chapters Partly revised.
July 1998 - - - First edition




Machine Controller MP2000 Series

USER'S MANUAL
LADDER PROGRAMMING

IRUMA BUSINESS CENTER (SOLUTION CENTER)
480, Kamifujisawa, Iruma, Saitama 358-8555, Japan

Phone 81-4-2962-5151 Fax 81-4-2962-6138
http://www.yaskawa.co.jp

YASKAWA AMERICA, INC.

2121 Norman Drive South, Waukegan, IL 60085, U.S.A.

Phone 1-800-YASKAWA (927-5292) or 1-847-887-7000 Fax 1-847-887-7310
http://www.yaskawa.com

YASKAWA ELETRICO DO BRASIL LTDA.

Avenida Piraporinha 777, Diadema, Sdo Paulo, 09950-000, Brasil
Phone 55-11-3585-1100 Fax 55-11-3585-1187
http://www.yaskawa.com.br

YASKAWA EUROPE GmbH

Hauptstrape 185, Eschborn 65760, Germany
Phone 49-6196-569-300 Fax 49-6196-569-398
http://www.yaskawa.eu.com

YASKAWA ELECTRIC KOREA CORPORATION

9F, Kyobo Securities Bldg. 26-4, Yeouido-dong, Yeongdeungpo-gu, Seoul, 150-737, Korea
Phone 82-2-784-7844 Fax 82-2-784-8495

http://www.yaskawa.co.kr

YASKAWA ELECTRIC (SINGAPORE) PTE. LTD.

151 Lorong Chuan, #04-02A, New Tech Park 556741, Singapore
Phone 65-6282-3003 Fax 65-6289-3003
http://www.yaskawa.com.sg

YASKAWA ELECTRIC (CHINA) CO., LTD.

12F, Carlton Bld., No.21 HuangHe Road, HuangPu District, Shanghai 200003, China
Phone 86-21-5385-2200 Fax 86-21-5385-3299

http://www.yaskawa.com.cn

YASKAWA ELECTRIC (CHINA) CO., LTD. BEIJING OFFICE
Room 1011, Tower W3 Oriental Plaza, No.1 East Chang An Ave.,

Dong Cheng District, Beijing 100738, China

Phone 86-10-8518-4086 Fax 86-10-8518-4082

YASKAWA ELECTRIC TAIWAN CORPORATION
9F, 16, Nanking E. Rd., Sec. 3, Taipei 104, Taiwan
Phone 886-2-2502-5003 Fax 886-2-2505-1280

7 YASKAWA YASKAWA ELECTRIC CORPORATION

In the event that the end user of this product is to be the military and said product is to be employed in any weapons systems or the manufacture
thereof, the export will fall under the relevant regulations as stipulated in the Foreign Exchange and Foreign Trade Regulations. Therefore, be sure
to follow all procedures and submit all relevant documentation according to any and all rules, regulations and laws that may apply.

Specifications are subject to change without notice for ongoing product modifications and improvements.

© 1998-2014 YASKAWA ELECTRIC CORPORATION. All rights reserved.

MANUAL NO. SIE-C887-1.2D

Published in Japan February 2014 98-7 @—1
13-6-9



	Front Cover 
	About this Manual
	Using this Manual
	MP2000-series Manuals
	Safety Information
	Safety Precautions
	Warranty
	Contents
	1 Introduction to Ladder Programming
	1.1 What Is a Ladder Program?
	1.2 Features of Ladder Programming for MP2000-series Machine Controllers
	1.2.1 Types of Ladder Drawings and Their Different Execution Timing
	1.2.2 Program Modules
	1.2.3 Programming Complicated Numeric Operations
	1.2.4 Communications Control with External Devices
	1.2.5 Complete Synchronization with Motion Control


	2 Specifications for Ladder Programs
	2.1 MP2000-series Machine Controller Specifications
	2.1.1 Applicable Machine Controllers
	2.1.2 Machine Controller Program Specifications

	2.2 Engineering Tool Specifications
	2.2.1 Applicable Engineering Tool
	2.2.2 MPE720 Version 6 Engineering Tool Specifications

	2.3 Ladder Programming Instructions

	3 Ladder Program Development Flow
	3.1 Ladder Program Design Procedures
	3.1.1 Connecting the Hardware
	3.1.2 Installing MPE720 Version 6
	3.1.3 Communications Settings
	3.1.4 System Startup
	3.1.5 Creating a Project
	3.1.6 Creating Ladder Programs
	3.1.7 Transferring Ladder Programs
	3.1.8 Checking the Operation of the Ladder Programs
	3.1.9 Saving the Ladder Programs to Flash Memory


	4 Programming
	4.1 Ladder Program Editor
	4.2 Ladder Drawings
	4.2.1 Types of Ladder Drawings
	4.2.2 Controlling the Execution of Drawings

	4.3 User Functions
	4.3.1 What Is a User Function?
	4.3.2 Creating User Functions
	4.3.3 Calling a User Function

	4.4 Registers (Variables)
	4.4.1 What Are Registers?
	4.4.2 Register Types
	4.4.3 Data Types
	4.4.4 Index Registers (i, j)

	4.5 Table Data
	4.5.1 What Is Table Data?
	4.5.2 Creating Table Data

	4.6 Transferring Data
	4.7 Setting the High-speed/Low-speed Scan Times
	4.8 Advanced Programming
	4.8.1 Motion Programs
	4.8.2 C-language Programs
	4.8.3 Security
	4.8.4 Tracing


	5 Instructions
	5.1 How to Read the Instructions
	5.2 Relay Circuit Instructions
	5.2.1 NO Contact (NOC)
	5.2.2 NC Contact (NCC)
	5.2.3 10-ms ON-Delay Timer (TON[10ms])
	5.2.4 10-ms OFF-Delay Timer (TOFF[10ms])
	5.2.5 1-s ON-Delay Timer (TON[1s])
	5.2.6 1-s OFF-Delay Timer (TOFF[1s])
	5.2.7 Rising-edge Pulses (ON-PLS)
	5.2.8 Falling-edge Pulses (OFF-PLS)
	5.2.9 Coil (COIL)
	5.2.10 Set Coil (S-COIL)
	5.2.11 Reset Coil (R-COIL)

	5.3 Numeric Operation Instructions
	5.3.1 Store (STORE)
	5.3.2 Add (ADD (+))
	5.3.3 Extended Add (ADDX (++))
	5.3.4 Subtract (SUB (-))
	5.3.5 Extended Subtract (SUBX (- -))
	5.3.6 Multiply (MUL (x))
	5.3.7 Divide (DIV (÷))
	5.3.8 Integer Remainder (MOD)
	5.3.9 Real Remainder (REM)
	5.3.10 Increment (INC)
	5.3.11 Decrement (DEC)
	5.3.12 Add Time (TMADD)
	5.3.13 Subtract Time (TMSUB)
	5.3.14 Spend Time (SPEND)
	5.3.15 Invert Sign (INV)
	5.3.16 One’s Complement (COM)
	5.3.17 Absolute Value (ABS)
	5.3.18 Binary Conversion (BIN)
	5.3.19 BCD Conversion (BCD)
	5.3.20 Parity Conversion (PARITY)
	5.3.21 ASCII Conversion 1 (ASCII)
	5.3.22 ASCII Conversion 2 (BINASC)
	5.3.23 ASCII Conversion 3 (ASCBIN)

	5.4 Logic Operations and Comparison Instructions
	5.4.1 Inclusive AND (AND)
	5.4.2 Inclusive OR (OR)
	5.4.3 Exclusive OR (XOR)
	5.4.4 Less Than (<)
	5.4.5 Less Than or Equal (≤)
	5.4.6 Equal (=)
	5.4.7 Not Equal (≠)
	5.4.8 Greater Than or Equal (≥)
	5.4.9 Greater Than (>)
	5.4.10 Range Check (RCHK)

	5.5 Program Control Instructions
	5.5.1 Call Sequence Program (SEE)
	5.5.2 Call Motion Program (MSEE)
	5.5.3 Call User Function (FUNC)
	5.5.4 Direct Input String (INS)
	5.5.5 Direct Output String (OUTS)
	5.5.6 Call Extended Program (XCALL)
	5.5.7 WHILE Construct (WHILE, END_WHILE)
	5.5.8 FOR Construct (FOR, END_FOR)
	5.5.9 IF Construct (IF, END_IF)
	5.5.10 IF-ELSE Construct (IF, ELSE, END_IF)
	5.5.11 Expression (EXPRESSION)

	5.6 Basic Function Instructions
	5.6.1 Square Root (SQRT)
	5.6.2 Sine (SIN)
	5.6.3 Cosine (COS)
	5.6.4 Tangent (TAN)
	5.6.5 Arc Sine (ASIN)
	5.6.6 Arc Cosine (ACOS)
	5.6.7 Arc Tangent (ATAN)
	5.6.8 Exponential (EXP)
	5.6.9 Natural Logarithm (LN)
	5.6.10 Common Logarithm (LOG)

	5.7 Data Shift Instructions
	5.7.1 Bit Rotate Left (ROTL)
	5.7.2 Bit Rotate Right (ROTR)
	5.7.3 Move Bit (MOVB)
	5.7.4 Move Word (MOVW)
	5.7.5 Exchange (XCHG)
	5.7.6 Table Initialization (SETW)
	5.7.7 Byte-to-word Expansion (BEXTD)
	5.7.8 Word-to-byte Compression (BPRESS)
	5.7.9 Binary Search (BSRCH)
	5.7.10 Sort (SORT)
	5.7.11 Bit Shift Left (SHFTL)
	5.7.12 Bit Shift Right (SHFTR)
	5.7.13 Copy Word (COPYW)
	5.7.14 Byte Swap (BSWAP)

	5.8 DDC Instructions
	5.8.1 Dead Zone A (DZA)
	5.8.2 Dead Zone B (DZB)
	5.8.3 Upper/Lower Limit (LIMIT)
	5.8.4 PI Control (PI)
	5.8.5 PD Control (PD)
	5.8.6 PID Control (PID)
	5.8.7 First-order Lag (LAG)
	5.8.8 Phase Lead Lag (LLAG)
	5.8.9 Function Generator (FGN)
	5.8.10 Inverse Function Generator (IFGN)
	5.8.11 Linear Accelerator/Decelerator 1 (LAU)
	5.8.12 Linear Accelerator/Decelerator 2 (SLAU)
	5.8.13 Pulse Width Modulation (PWM)

	5.9 Table Manipulation Instructions
	5.9.1 Read Table Block (TBLBR)
	5.9.2 Write Table Block (TBLBW)
	5.9.3 Search for Table Row (TBLSRL)
	5.9.4 Search for Table Column (TBLSRC)
	5.9.5 Clear Table Block (TBLCL)
	5.9.6 Move Table Block (TBLMV)
	5.9.7 Read Queue Table (QTBLR and QTBLRI)
	5.9.8 Write Queue Table (QTBLW and QTBLWI)
	5.9.9 Clear Queue Table Pointers (QTBLCL)

	5.10 System Function Instructions
	5.10.1 Counter (COUNTER)
	5.10.2 First-in First-out (FINFOUT)
	5.10.3 Trace (TRACE)
	5.10.4 Read Data Trace (DTRC-RD)
	5.10.5 Read Inverter Trace (ITRC-RD)
	5.10.6 Send Message (MSG-SND)
	5.10.7 Receive Message (MSG-RCV)
	5.10.8 Write Inverter Parameter (ICNS-WR)
	5.10.9 Read Inverter Parameter (ICNS-RD)
	5.10.10 Write SERVOPACK Parameter (MLNK-SVW)
	5.10.11 Write Motion Register (MOTREG-W)
	5.10.12 Read Motion Register (MOTREG-R)

	5.11 C-language Control Instructions
	5.11.1 Call C-language Function (C-FUNC)
	5.11.2 C-language Task Control (TSK-CTRL)


	6 Features of the MPE720 Engineering Tool
	6.1 Ladder Program Runtime Monitoring
	6.2 Searching/Replacing
	6.3 Cross References
	6.4 Checking for Multiple Coils
	6.5 Forcing Coils ON and OFF
	6.6 Viewing Called Programs
	6.7 Register Lists
	6.8 Tuning Panel
	6.9 Enabling and Disabling Ladder Programs
	6.10 Compiling for MPE720 Version 5

	7 Troubleshooting
	7.1 Basic Flow of Troubleshooting
	7.2 Indicator Status
	7.3 Problem Classifications
	7.3.1 Overview
	7.3.2 Error Checking Flowchart for MP2000-series Machine Controllers

	7.4 Detailed Troubleshooting
	7.4.1 Operation Errors
	7.4.2 I/O Errors
	7.4.3 Watchdog Timer Errors
	7.4.4 Module Synchronization Errors
	7.4.5 System Errors


	Appendix A System Registers
	A.1 System Service Registers
	A.2 System Status
	A.3 System Error Status
	A.4 Overview of User Operation Error Status
	A.5 System Service Execution Status
	A.6 Detailed User Operation Error Status
	A.7 System I/O Error Status
	A.8 CF Card-related System Registers (MP2200-series CPU-02 and CPU-03 only)
	A.9 Interrupt Status
	A.9.1 Interrupt Status List
	A.9.2 Details on Interrupting Module

	A.10 Module Information
	A.11 MPU-01 System Status
	A.12 Motion Program Information

	Appendix B CP (Previous) Ladder Instructions and New Ladder Instructions
	B.1 Correspondence between CP (Previous) Ladder Instructions and New Ladder Instructions
	B.2 Converting CP (Previous) Ladder Programs to New Ladder Programs

	Appendix C Sample Programming
	C.1 Jogging from the Control Panel
	C.2 Motion Program Control
	C.3 Simple Synchronized Operation of Two Axes with a Virtual Axis
	C.4 Transferring Project Files to Different Models

	Appendix D Format for EXPRESSION Instruction
	D.1 Elements That You Can Use in Numeric Expressions
	D.2 National Limitations
	D.2.1 Arithmetic Operators
	D.2.2 Comparison Operators
	D.2.3 Logic Operators
	D.2.4 Substitution Operator
	D.2.5 Functions
	D.2.6 Others


	Appendix E Precautions
	E.1 General Precautions
	E.2 Precautions on Motion Parameters

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	X

	Revision History
	Back Cover



