GPD 333
Technical Manual


## QUICK REFERENCE - - GPD 333 CONSTANTS

| CONSTANT | FACTORY SETTING | USER SETTING |
| :---: | :---: | :---: |
| no-00 | 01 |  |
| no-01 | 0000 |  |
| no-02 | 60.0 |  |
| no-03 | 230.0 |  |
| no-04 | 60.0 |  |
| no-05 | 1.5 |  |
| no-06 | 12.0 |  |
| no-07 | 1.5 |  |
| no-08 | 12.0 |  |
| no-09 | 10.0 |  |
| no-10 | 10.0 |  |
| no-11 | 10.0 |  |
| no-12 | 10.0 |  |
| no-13 | 0.0 |  |
| no-14 | 0.0 |  |
| no-15 | 0.0 |  |
| no-16 | 0.0 |  |
| no-17 | 6.0 |  |
| no-18 | 0000 |  |
| no-19 | See para. 3.8 in manual |  |
| no-20 | 0000 |  |
| no-21 | 0000 |  |
| no-22 | 1.00 |  |
| no-23 | 0.00 |  |
| no-24 | 100 |  |
| no-25 | 0 |  |
| no-26 | 50 |  |


| CONSTANT | FACTORY <br> SETTING | USER <br> SETTING |
| :---: | :---: | :---: |
| $n o-27$ | 0.0 |  |
| $n o-28$ | 0.0 |  |
| $n o-29$ | 1.0 |  |
| $n o-30$ | 170 |  |
| $n o-31$ | 160 |  |
| $n o-32$ | 13 |  |
| $n o-33$ | 01 |  |
| $n o-34$ | 03 |  |
| $n o-35$ | 00 |  |
| $n o-36$ | 05 |  |
| $n o-37$ | 00 |  |
| $n o-38$ | 01 |  |
| $n o-39$ | 0.0 |  |
| $n o-40$ | 0000 |  |
| $n o-41$ | 160 |  |
| $n o-42$ | 0.1 |  |
| $n o-43$ | 4 <br> $(=10 \mathrm{kHz})$ |  |
| $n$ n |  |  |

Constant no-44 currently NOT USED.

| $n o-45$ | 1.00 |  |
| :---: | :---: | :---: |
| $n o-46$ | 0000 |  |
| $n o-47$ | 0 |  |

Constants no-48 and no-49 are for display-only functions; no user setting possible.

| no-50 | 0.0 |  |
| :--- | :--- | :--- |
| no-51 | 1.0 |  |

Constants no-52 thru no-59 currently NOT USED.

## WARNING

Do not touch circuit components until main input power has been turned off and "CHARGE" lamp is extinguished. The capacitors are still charged for up to 5 minutes and can be quite dangerous.
Do not connect or disconnect wires and connectors while power is applied to the circuit.

## CAUTION

The GPD 333 leaves the factory with constants initialized for external 2-Wire control and constant no-00 set to 01. Before using either initialization function of this constant, know your control wiring configuration :

> 08 = Factory 2-Wire control initialization (maintained Run contact) 09 = Factory 3-Wire control initialization (momentary Start/Stop input)

Entering either initialization code returns all constants to factory settings, and automatically returns constant no-00 setting to 01 . If the GPD 333 is connected for $3-W i r e$ control and this constant is set to 08 (2-Wire control initialization), the motor may run in reverse direction WITHOUT A RUN COMMAND APPLIED.
Equipment damage or personal injury may result.
Constant no-03 must be set for the proper motor voltage. Drive leaves factory with this constant set for 230.0 or 460.0 volts.

## CAUTION

Always ground the GPD 333 using ground terminal G ( E ). See paragraph 1.4.2 "Grounding".
Never connect main circuit output terminals T1 ( U ), T2 ( V ) \& T3 ( W ) to AC main circuit power supply.

## CAUTION

Do not perform a withstanding voltage test on any part of the GPD 333. Equipment uses semi-conductors and is vulnerable to high voltage.
The Control PC board employs CMOS ICs which are easily damaged by static electricity. Use proper electrostatic discharge (ESD) procedures when handling the Control PC board.

## IMPORTANT

All constants have been factory set. Do not change their settings unnecessarily. Changing constant settings requires use of the optional Digital Operator, Model DS039.

## CONTENTS

## SUBJECT

Page
WARNINGS \& CAUTIONS ..... i
GPD 333 NEMA1 DIMENSIONS (Figure 1-1) ..... iv
GPD 333 NEMA 4/ 12 DIMENSIONS and Fusing ..... 56
SECTION 1 INSTALLATION ..... 1
1.1 General ..... 1
1.2 Receiving ..... 1
1.3 Physical Installation ..... 1
1.3.1 Installation or Removal of Digital Operator ..... 1.1
1.4 Electrical Installation ..... 4
1.4.1 Conformance to European EMC Directive ..... 4.1
1.5 Start-up ..... 14
1.6 Start-up Without Digital Operator (2-Wire Control) ..... 15
1.7 Start-up Using Digital Operator, Model DS039 ..... 16
SECTION 2 DIGITAL OPERATOR, MODEL DS039 ..... 18
2.1 General ..... 18
2.2 Drive Mode Operation ..... 20
2.3 Program Mode Operation ..... 20
SECTION 3 PROGRAMMABLE FEATURES ..... 22
3.1 General ..... 22
GPD 333 Constants ..... 22
SECTION 4 FAULT/WARNING FUNCTIONS ..... 49
4.1 General ..... 49
4.2 Troubleshooting ..... 49
4.2 Fault Functions ..... 50
4.3 Warning Functions ..... 52
GPD 333 SPECIFICATIONS ..... 53
APPENDIX 1 DYNAMIC BRAKING OPTION ..... 57
APPENDIX 2 GPD 333 SPARE PARTS ..... 63
Revision Date: 4/98


| RATED INPUT | $\begin{aligned} & \text { MODEL } \\ & \text { NO. } \end{aligned}$ | DIMENSIONS in inches (mm) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | H | W | D | H1 | W1 | d |
| 230 V | DS020, 21 | 5.91 (150) | 4.13 (105) | 3.94 (100) | 5.43 (138) | 3.66 (93) | 0.20 (5) |
|  | DS022, 29 | 5.91 (150) | 5.51 (140) | 5.47 (139) | 5.43 (138) | 5.04 (128) | 0.20 (5) |
|  | DS023-25 | 7.87 (200) | 5.51 (140) | 6.69 (170) | 7.32 (186) | 4.96 (126) | 0.22 (6) |
| 460 V | DS040, 41 | 7.87 (200) | 5.51 (140) | 4.72 (120) | 7.32 (186) | 4.96 (126) | 0.22 (6) |
|  | DS042, 43 | 7.87 (200) | 5.51 (140) | 6.69 (170) | 7.32 (186) | 4.96 (126) | 0.22 (6) |
|  | DS044, 45 | 7.87 (200) | 7.48 (190) | 7.48 (190) | 7.28 (185) | 6.89 (175) | . 024 (7) |

Figure 1-1. GPD 333 NEMA 1 Dimensions
NOTE: For GPD 333 NEMA 4/12 dimensions, see page 56.

## Section 1 INSTALLATION

1.1 GENERAL. The GPD 333 is a high performance pulse width modulated design which generates a sine-coded, adjustable voltage/frequency three phase output for complete speed control of any conventional squirrel cage induction motor. The GPD 333 can maintain a $150 \%$ current overload capability for 60 seconds. The GPD 333 will not induce any voltage line notching distortion back to the utility line and maintains a displacement power factor of not less than 0.98 throughout its speed range.

When properly installed, operated and maintained, the GPD 333 will provide a lifetime of service. It is mandatory that the person who operates or maintains this equipment thoroughly read and understand this manual before proceeding.
1.2 RECEIVING. The GPD 333 is thoroughly tested at the factory. After unpacking, verify the part numbers with the purchase order (invoice). Any damages or shortages evident when the equipment is received must be reported immediately to the commercial carrier who transported the equipment. Assistance is available from your sales representative.

### 1.3 PHYSICAL INSTALLATION. Location of the

 GPD 333 (Figure 1-1) is important to achieve proper performance and normal operating life. The unit should be installed in an area where it will be protected from:- Direct sunlight, rain or moisture.
- Corrosive gases or liquids.
- Vibration, airborne dust or metallic particles.

For effective cooling as well as proper maintenance, the GPD 333 must be installed vertically. There MUST be a MINIMUM 4.0 inch clearance above and below, and a MINIMUM 1.18 inch clearance on each side.

For open type chassis, remove top cover and terminal cover. When mounting units in an enclosure, make sure air entering drive is below $113^{\circ} \mathrm{F}\left(45^{\circ} \mathrm{C}\right)$.

## 1．3．1 Installation or Removal of Digital Operator．

The GPD 333 is shipped with the status panel（shown at right）in place．If programming of con－ stants is to be performed，or if local control via keypad entry is desired，the optional Digital Operator，Model DS039，must be installed．

1．Ensure that input power is not applied to the GPD 333，and the＂CHARGE＂lamp is off．

Status Plate

| DS1 | DS2 | STATUS |
| :---: | :---: | :---: |
| \％ | － | STOP |
| 察 | － | RUN |
| － | \％ | AL．ARM |
| 0 | O | EF |
| 察 | O＇ | OL OH |
| － | 淙 | OV UV |
| 0 | 堂 | OC GF |
| \％ | 無 | CPF |



Ö：BLINK
－：LIGHT OFF

2．Remove the GPD 333 access cover（see Figure 1－2）．

3．Press down on the terminal marker lever（see View B in Figure 1－1．1），and lift upward on the bottom edge of the status plate to remove it from the mounting recess．

4．Locate the Digital Operator in the mounting recess，as shown in View A of Figure 1－1．1，and press until it snaps into place．

5．Reinstall the access cover．
If，after constant programming，the drive is not to be operated or monitored via the Digital Operator，it may be removed with－ out affecting operation．Perform the same procedure as above to remove the Digital Operator and reinstall the status plate．


Figure 1-1.1. Installing/Removing Digital Operator


NOTE: No tools required for cover removal.
Figure 1-1. Access Cover Removal

(1) Control circuit terminals: FLT-A, $-\mathrm{B} \&-\mathrm{C}$.
(2) Control circuit terminals: L1-L3, B1/+, B2, T1-T3.
(3) "CHARGE" lamp.
(4) "G" terminal screws, for drive grounding and shield sheath.
(5) Wire entry grommets.
(6) Control circuit terminals: 1-7.
(7) Control circuit terminals: 8-14.
(8) Optional Digital Operator, in place.

Figure 1-3. Component Identification
1.4 ELECTRICAL INSTALLATION. The GPD 333
leaves the factory with all constants set for 2-Wire external reference control. Figure 1-5 must be used for all external connections.

To use the GPD 333 in a 3-Wire application, drive constants no-00 and no-01 must be reprogrammed, using the optional Digital Operator, Model DS039. Figure 1-6 must then be used for all external connections.

## CAUTION

Use only UL listed or CSA certified closed loop (ring lug) connectors sized for the selected wire gauge. The connectors are to be installed using the correct crimp tool recommended by the connector manufacturer.

| WIRE SIZE |  | TERMINAL | CLOSED-LOOP |
| :---: | :---: | :---: | :---: |
| AWG | $\mathbf{m m}^{\mathbf{2}}$ | SCREW | CONNECTOR |

1.4.1 Conformance to European EMC Directive. As of January 1, 1996, all CE marked products on the European Market had to meet the protection requirement of Electromagnetic Compatibility Directive (EMC) 89/366/EEC. In order for any Electrical system to meet the emission and immunity levels set forth by the European standards, the components that make up the system should individually meet the levels. To meet the required levels of conformance, MagneTek has outlined the methods for the line filter application, cable shielding, and GPD 333 drive installation. The outline of the methods follows:

The line filter and the GPD 333 drive must be mounted on the same metal plate. The filter should be mounted as close to the drive as practical. The cable must be kept as short as possible and the metal plate should be securely grounded. The ground of the line filter and the drive must be bonded to the metal plate with as much area as possible.

For main circuit input cables, a screened cable is recommended at least within the panel. The screen of the calbe should be connected to a solid ground. For the motor cables, a screened cable (max. 20 m ) must be used and the screen of the motor cable should be connected to ground at both ends by a short connection using as large an area as practical.

For more detailed information, refer to MagneTek document TD 4077, "Installation Guidelines For EMC Directive using MagneTek AC Drive Products."

The following charts and Figure 1-3.1 show the line filter list for the EMC standards and the installation/wiring of the GPD 333 drive and line filter.

Line Filters For GPD 333

| Drive | Line Filter |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Model Number | MagneTek Part Number | Rated Current (A) | Mass <br> (kg) | Dimensions in mm $H \times W \times D(1)$ |
| DS020 | 5P325-0041 | 8 | 1.1 | $250 \times 145 \times 38$ |
| DS021 |  |  |  |  |
| DS022 | 5P325-0042 | 15 | 1.2 | $250 \times 190 \times 39$ |
| DS029 |  |  |  |  |
| DS023 |  |  |  |  |
| DS024 |  |  |  |  |
| DS025 |  |  |  |  |
| DS040 | 5P325-0041 | 8 | 1.1 | $250 \times 145 \times 38$ |
| DS041 |  |  |  |  |
| DS042 |  |  |  |  |
| DS043 |  |  |  |  |
| DS044 | 5P325-0042 | 15 | 1.2 | $250 \times 190 \times 39$ |
| DS045 |  |  |  |  |

(1) $D$ is the distance the filter will extend outward from the surface of the metal plate.

Conversion Note: $1 \mathrm{~mm}=.0394 \mathrm{in}$.

## Output Chokes For GPD 333

| MagneTek <br> Part Number | Center <br> Hole $(\mathrm{mm})$ | Width <br> $(\mathrm{mm})$ | Height <br> $(\mathrm{mm})$ | Mounting Hole <br> Spacing $(\mathrm{mm})$ |
| :---: | :---: | :---: | :---: | :---: |
| $5 \mathrm{P} 10-0466$ | 50 | 150 | 110 | 125 |

Pass each wire through the choke 3 times. Additional noise reduction gains can be made by pasing wire through the choke additional times.



Figure 1-3.1. Installation of Line Filter and GPD 333

## WARNING

- The control circuits (inside of the dashed line) are isolated from the power circuits by only basic ${ }^{(1)}$ insulation.

- Make sure to ground the ground terminal $\mathbf{G}(\mathbf{E})$ acording to the local electrical code.
- To conform to CE requirements, make sure to ground the supply neutral. (460V models only)
- If the control circuits are to be connected to circuits classified as Safety Extra Low Voltage (SELV), an additional isolating barrier must be included in order to maintain the SELV classification.
- In order to conform to EMC standards, the exclusive-use methods are required for line filter application, cable shielding and drive installation. For a more detailed explanation, please consult MagneTek.
${ }^{(1)}$ Definition of basic insulation: Insulation applied to live parts to provide basic protection against electric shock.


## Figure 1-3.2. Control Circuit Isolation

### 1.4.2 Grounding.

- The GPD 333 must be solidly grounded using main circuit ground terminal G ( E ) (see Figure 1-3). Ground resistance should be 100 ohms or less. Select lead size suitable for size of terminal screw. Make lead length as short as possible.
- NEVER ground the GPD 333 in common with welding machines, motors, or other large-current electrical equipment.
- Where several GPD 333s are used, ground each directly or daisy-chain to the ground pole(s). DO NOT FORM A LOOP WITH THE GROUND LEADS. See Figure 1-4.


CORRECT


CORRECT


NOT
ACCEPTABLE

Figure 1-4. Grounding of Three GPD 333s
1.4.3 Main Circuit Input/ Output. Observe the following while completing interconnections:

- Use only factory supplied installation instructions to install optional dynamic braking resistors. Failure to do so may cause equipment damage or personal injury.
- Use 600 V vinyl-sheathed lead ( $75^{\circ} \mathrm{C}$ copper wires) or equivalent. Wire size should be determined by considering voltage drop of leads. Size of wire must be suitable for Class 1 circuits.
- Never connect AC main power to output terminals T1 ( U ), T2 ( V ), and T3 ( W ).
- Never allow wire leads to contact the GPD 333 enclosure. Short-circuit may result.
- Never connect power factor correction capacitors or noise filter to GPD 333 output.

Wire Sizing For Main Circuit

| VOLTAGE/ HORSEPOWER | TERMINAL SYMBOL | $\begin{aligned} & \text { SCREW } \\ & \text { SIZE } \end{aligned}$ | WIRE SIZE |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | AWG | mm 2 |
| ALL | FLT-A, FLT-B, FLT-C | M3.5 | 20-14 | 0.5-2 |
| 230V / 1/3-1 | $\begin{aligned} & \text { L1 ( R ), L2 ( S ), L3 (T), B1/+, B2, } \\ & \text { T1 ( U ), T2 (V), T3 (W) } \end{aligned}$ | M4 | 14-10 | 2-5.5 |
| 230V / 2-5 | $\begin{aligned} & \text { L1 ( R ), L2 ( S ), L3 (T), B1/+, B2, } \\ & \text { T1 ( U ), T2 (V), T3 (W) } \end{aligned}$ | M4 | 12-10 | 3.5-5.5 |
|  | G ( E ) | M4 | 14-10 | 2-5.5 |
| 460V / 1/2-5 | $\begin{aligned} & \text { L1 (R), L2 (S), L3 ( T ), B1/+, B2, } \\ & \text { T1 (U), T2 (V), T3 (W), G (E ) } \end{aligned}$ | M4 | 14-10 | 2-5.5 |

- Torque M3.5 screws to $.70 \mathrm{lb}-\mathrm{ft}$.
- Torque M4 screws to $1.055 \mathrm{lb}-\mathrm{ft}$.


## Terminal Functions and Voltages of Main Circuit

| TERMINAL | FUNCTION | VOLTAGE / SIGNAL |
| :---: | :---: | :---: |
| $\begin{aligned} & \text { L1 ( R ) } \\ & \text { L2 ( S ) } \\ & \text { L3 (T) } \end{aligned}$ | Main circuit input power supply | Three Phase 230V Drive: $200 / 208 / 220$ at $50 \mathrm{~Hz} ;$ $200 / 208 / 220 / 230 \mathrm{~V}$ at 60 Hz 460 V Drive: $380 / 400 / 415 / 440 /$ 460 V at $50 / 60 \mathrm{~Hz}$ |
| $\begin{aligned} & \text { T1 (U) } \\ & \text { T2 (V) } \\ & \text { T3(W) } \end{aligned}$ | Main circuit output | Three Phase <br> 230V Drive: 0-200 / 208 / 220 / 230V <br> 460V Drive: $0-380 / 400 / 415 / 440 / 460$ <br> ( matches input voltage ) |
| FLT-A <br> FLT-B <br> FLT-C | Multi-Func. Relay output - NO contact Multi-Func. Relay output - NC contact Multi-Func. Relay output - common | $250 \mathrm{Vac}, 1 \mathrm{~A}$ or less (See Note 1 ) $30 \mathrm{Vdc}, 1 \mathrm{~A}$ or less |
| B1/+, B2 | For connection of braking resistor or braking resistor unit ( option ) |  |
| G ( E ) | Ground terminal ( 100 ohms or less ) | ---- |

## NOTES:

1. Any of 11 functions can be selected for multifunction relay output.
1.4.4 Control Circuit. All basic control circuit (signal) connections are shown in the appropriate diagram:

- Figure 1-5 shows connections for external 2-Wire control.
- Figure 1-6 shows connections for external 3-Wire control.
- Use class 1 twisted shielded or twisted-pair shielded wire, 20-14 AWG (0.5-2 $\mathrm{mm}^{2}$ ), for control circuit leads. Wire size should be determined considering voltage drop in leads. Connect shield sheath AT THE GPD 333 END ONLY; the far end should be dressed neatly and left unconnected.

- Signal leads 1 thru 14 must be separated from main circuit leads L1 ( R ), L2 (S ), L3 ( T ), T1 ( U ), T2 (V ), T3 ( W ), FLT-A, B, \& C leads, and any other power cables, to prevent erroneous operation caused by noise interference.
- Lead length should NOT EXCEED 164 feet ( 50 meters).
- Recommended carrier frequency to reduce nuisance trips caused by leakage current:

Lead
Length $\frac{\text { under } 100 \text { feet }}{100 \text { to } 150 \text { feet }}$ over 150 feet

Carrier Frequency
(set by constant no-43)

| 10.0 kHz |
| :---: |
| 5.0 kHz |
| 2.5 kHz |

## Control Circuit Terminal Functions

| TYPE | TERM. | NAME | FUNCTION DESCRIPTION | SIGNAL LEVEL |
| :---: | :---: | :---: | :---: | :---: |
| Sequence Input Signal <br> (See <br> Note 2 ) | 1 | FWD Run / Stop Command | FWD run at closed, stop at open |  |
|  | 2 | REV Run / Stop Command | REV run at closed, stop at open |  |
|  | 3 | Fault Reset | Reset at closed |  |
|  | 4 | External Fault Input | Fault at closed, normal at open | 24 Vdc 8 mA Photocoupler |
|  | 5 | Multi-step Speed Ref 1 | Multi-step speed ref 1 effective at closed | Isolated |
|  | 6 | Sequence Control Input Common | -- | contact or switch. Apply no external voltage. |
| Analog Input Signal | 10 | Speed Ref Power Supply Terminal | Speed reference power supply | +12 V (Up to 20 mA current) |
|  | 8 | Frequency Reference | $0-+10 \mathrm{~V} / 100 \%$ frequency | $0-+10 \mathrm{~V}(20 \mathrm{k} \Omega$ ) |
|  | 9 |  | 4-20mA / 100\% frequency | 4-20mA ( $250 \Omega$ ) |
|  | 11 | Common Terminal For Control Circuit | OV | -- |
| Sequence Output Signal <br> (See Note 3 ) | 13 | Multifunction Open Collector Output 1 | Factory Setting: "Low" level at run. | Open collector output +48 V , 50 mA or less |
|  | 14 | Multifunction Open Collector Output 2 | Factory Setting: "Low" level at set freq. = output freq. |  |
|  | 7 | Open Collector Output Common | --- |  |
| Analog Output Signal | 12 | Positive | 0-10V/100\% frequency; <br> Possible to select current output | 0-11V Max. 2 mA or less. |
|  | 11 | Common |  |  |

NOTES:

1. When Forward Run/Stop and Reverse Run/Stop inputs are both closed for more than 500 ms , the Digital Operator flashes "EF", or drive's LED display shows DS2 (RED) blinking, and the motor, if rotating, is decelerated to a stop according to constant no-01. This stop condition is not stored by the GPD 333. IF ONE OF THE INPUTS IS OPENED, THE MOTOR WLL RUN.
2. Table is based on 2-Wire Reset. For 3-Wire Reset definitions of terminals 1 thru 5, see Figure 1-6.
3. Any of 11 functions can be selected for each multifunction open collector output.

## ——— NOTES FOR FIGURES 1-5

*     - Indicates components not supplied.
(O) - Indicates main circuit terminal.

O - Indicates control circuit terminal.
( ) - Indicates alternate terminal marking, i.e. ( R ) and L1.

1. Insulated twisted shielded wire is required.

2 -conductor \#18 GA. (Beldon \#8760 or equivalent)
3-conductor \#18 GA. (Beldon \#8770 or equivalent) Connect shield only at GPD 333 end (terminal G ( E ) ). Stub and isolate other end.

2 . +12 V voltage output current capacity of control terminal 10 is 20 mA max.
3. The GPD 333 Electronic Thermal Overload function (no-18 \& no-19) meets the standards set by UL for motor thermal overload protection. If local code requires separate mechanical overload protection, an overload relay should be installed, interlocked with the GPD 333 as shown. It should be the manual reset type to prevent automatic restart following a motor fault and subsequent contact reclosure after cool down.
4. Customer to connect terminal G ( E ) to earth ground.
5. If Digital Operator is used, remote operators which duplicate functions of its command keys (see Figure 2-1) may not be required.
6. For installation of Braking Resistor or Braking Resistor Unit, refer to Appendix 1, "Dynamic Braking Option".


Figure 1-5. Standard Connections ( 2-Wire Control) (Constant no-00 set to 08)

## ——— NOTES FOR FIGURES 1-6

*     - Indicates components not supplied.
(O) - Indicates main circuit terminal.

O - Indicates control circuit terminal.
( ) - Indicates alternate terminal marking, i.e. ( R ) and L1.

1. Insulated twisted shielded wire is required.

2 -conductor \#18 GA. (Beldon \#8760 or equivalent)
3 -conductor \#18 GA. (Beldon \#8770 or equivalent)
Connect shield only at GPD 333 end (terminal G ( E ) ). Stub and isolate other end.
2. +12 V voltage output current capacity of control terminal 10 is 20 mA max.
3. The GPD 333 Electronic Thermal Overload function (no-18 \& no-19) meets the standards set by UL for motor thermal overload protection. If local code requires separate mechanical overload protection, an overload relay should be installed, interlocked with the GPD 333 as shown. It should be the manual reset type to prevent automatic restart following a motor fault and subsequent contact reclosure after cool down.
4. Customer to connect terminal G ( E ) to earth ground.
5. If Digital Operator is used, remote operators which duplicate functions of its command keys (see Figure 2-1) may not be required.
6. For installation of Braking Resistor or Braking Resistor Unit, refer to Appendix 1, "Dynamic Braking Option".

## CAUTION

Constant no-32 must be set to " 00 ", AND constant no-00 must be set to " 09 ". Resetting drive constant no-00 to " 08 " may cause the motor to run in reverse direction WITHOUT A RUN COMMAND, and possibly result in equipment damage or personal injury.


Figure 1-6. Standard Connections (3-Wire Control) (Constant no-00 set to 09)

### 1.5 START-UP.

### 1.5.1 Pre-power Checks.

- Wires properly connected and no erroneous grounds exist.
- Motor not connected to load. After start-up procedure is completed, motor can be connected to load, and normal operation can begin.
1.5.2 Status Display LEDs. The standard GPD 333 has two LEDs that can be monitored on the status plate. They are DS1 (GREEN) and DS2 (RED). The GPD 333 has been factory set for external 2-Wire control and external speed reference (as shown in Figure 1-5). The LEDs are the only status indicators available without the optional Digital Operator. The chart below explains GPD 333 status while monitoring the LEDs.

| Drive Status | Status Plate |  | Display Meaning |
| :---: | :---: | :---: | :---: |
|  | $\begin{array}{\|c\|} \hline \text { DS1 } \\ \text { (GREEN) } \\ \hline \end{array}$ | $\begin{gathered} \hline \text { DS2 } \\ \text { (RED ) } \end{gathered}$ |  |
| Normal | BLINKING | Off | Drive ready for operation, while in stopped condition. |
|  | LIT | Off | Drive running. |
| Alarm | Off | BLINKING | Low input power, ext. base block input, etc., while in stopped condition. |
| Protective Operation | BLINKING | BLINKing | External fault signal is present at a drive input terminal (EF). |
|  | LIT | BLINKING | Overload protection (drive overload (OL), fin overheat (OH), etc.). |
|  | Off | BLINKING | Voltage protection (overvoltage (OV), undervoltage (UV), etc.). |
|  | BLINKING | LIT | Overcurrent (OC), ground fault (GF). |
| Drive <br> Fault | LIT | LIT | Digital hardware memory fault (CPF). |
|  | Off | Off | Hardware fault, such as control power fault, CPU initialization, etc. |

### 1.6 START-UP WITHOUT DIGITAL OPERATOR

(2-Wire control; see Figure 1-5) (constant no-01 set to 0000 [factory setting])

| ACTION | DESCRIPTION | Status Plate |  |
| :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \text { DS1 } \\ & \text { (GREEN) } \end{aligned}$ | $\begin{aligned} & \text { DS2 } \\ & \text { (RED ) } \end{aligned}$ |
| Freq. Ref. set at zero; FWD RUN and REV RUN inputs open. Apply Power. | Ready for operation. | BLINKING | Off |
| Close FWD RUN or REV RUN input; increase Freq. Ref. until motor rotates. | Check that motor is rotating in the correct direction. See Note 1. | LIT | Off |
| Increase Freq. Ref. input to maximum. | GPD 333 output increases at programmed accel rate (constant no-09 ; factory setting $=10.0 \mathrm{sec}-$ onds accel time from 1.5 Hz to 60 Hz ) to level commanded by frequency reference input. Motor speed increases accordingly. | LIT | Off |
| Open FWD RUN or REV RUN input. | Motor speed decreases under GPD 333 control, at programmed decel rate (constant no-10; factory setting $=10.0$ seconds decel time from 60 Hz to 1.5 Hz ). Motor then remains stopped. | (during decel) |  |
|  |  | BLINKING (when s | Off <br> pped) |

NOTES:

1. If motor is not rotating in proper direction, stop motor and turn off power to the GPD 333. Switch motor connections T1
(U) \& T2 (V) at the GPD 333 to change direction.

### 1.7 START-UP USING DIGITAL OPERATOR, <br> MODEL DS039 (constant no-01 set to 0011) (See Note 2)

| ACTION | DESCRIPTION | DISPLAY |
| :---: | :---: | :---: |
| Apply Power. | The Main Frequency <br> Reference (constant no-13) set value appears. | $\text { F } 000.0$ |
| Use $\boldsymbol{\nabla}, \mathbf{\Delta}$, and $\boldsymbol{\nabla}$ keys as necessary until display shows desired run frequency $(6.0 \mathrm{~Hz})$. | Blinking position of display shifts to the right ( $>$ ), value of blinking digit increases $(\mathbf{\Delta})$ or decreases ( $\mathbf{\nabla})$, when keys are pressed. | $\begin{gathered} :: \\ \hline F 006.0 \\ :: \end{gathered}$ |
| Press $\frac{\text { DATA }}{\text { ENTER }}$ key to write new value into memory. | Digit stops blinking for a short time; then digit resumes blinking. | $\begin{gathered} F 006.0 \\ :: ~ \end{gathered}$ |
| Press $\frac{\text { FWD }}{\text { REV }}$ key to <br> select desired direction of motor rotation. | Observe FWD and REV indicator lamps on Digital Operator to see which direction motor should rotate when GPD 333 is started. | Run selected. |
| Press DSPL key. | Present output frequency is displayed. | 0.0 |
| Press RUN key. | Motor accels to 6.0 Hz . <br> Check for correct rotation of motor. See Note 1. | $6.0$ |


| ACTION | DESCRIPTION | DISPLAY |
| :---: | :---: | :---: |
| Press DSPL key 3 <br> times; change Freq. <br> Ref. value to FO60.0, <br> and press $\frac{\text { DATA }}{\text { ENTER }}$ key. <br> Press DSPL key again. | GPD 333 output increases to Frequency Reference level, at programmed accel rate. <br> Motor speed increases accordingly. |  |
| Press STOP key. | Motor speed decreases under GPD 333 control, at preset deceleration rate, to zero. Motor remains stopped. | 60.0 1 0.0 |

## NOTES:

1. If motor is not rotating in proper direction, stop motor and turn off power to the GPD 333. Switch motor connections T1 (U) \& T2 (V) at the GPD 333 to change direction.
2. If constant no-01 is programmed with a " 0 " for either of the $00 \underline{X} \underline{X}$ digits, Digital Operator commands will be replaced by external inputs. See paragraph 3.3.

## SECTION 2 DIGITAL OPERATOR (DS039)

2.1 GENERAL. This section describes the function of the Digital Operator, Model DS039. The GPD 333 can be operated by remote signal inputs without the need for the Digital Operator; however, for operation by means of keypad entry, or for changing of constant settings from the factory preset values (via Program mode), the Digital Operator must be connected to the GPD 333.

## Mode Display LEDs:

Red lamp, lights in DRIVE mode and goes out in PRGM mode.

Red lamp, lights at FWD run.
Red lamp, lights at REV run.
Red lamps, light when control is by external terminal commands:


Figure 2-1. Digital Operator

## Digital Operator Keypad Functions (ref. Figure 2-1):

Mode Selection Key ( (1) ). Press to change mode (DRIVE or PRGM). Active only when GPD 333 is in stopped condition.

Display Selection Key ( (2) ). In DRIVE mode, press to change the monitor display selection. In PRGM mode, it returns to display of presently selected constant.

Read / Write Key ( 3 ). In DRIVE mode, press to enter new frequency reference value ( $\boldsymbol{F X X X}$. $\boldsymbol{X}$ ) into memory. In PRGM mode, pressing this key recalls and displays constant setting from memory. Press to enter displayed set value into memory.

Numeral Change Keys (4) and (5) ) change value of blinking digit in display: $\boldsymbol{\wedge}$ : Increment by $1 \mathbf{v}$ : Decrement by 1

Digit Selection / RESET Key ( © ). Selects "changeable" (i.e. blinking) digit in display. Depress key to move one position to the right; "wraps around" from far right to far left position. This key resets operation of faults, in DRIVE mode only.

## Command Keys:

( 7 ) : Initiates STOP command (in DRIVE mode).
( 8) ): Initiates RUN command (in DRIVE mode).
( (9) ): Selects FWD or REV run (in DRIVE mode).
( (10) ): Press to change operation from remote to local.
Effective only in DRIVE mode, while in stopped condition.

## NOTE

To disable the LOC/ RMT (Local/Remote) key on the Digital Operator, program any one of the multi-function inputs, terminals 3,4 , or 5 (constants no-32, no-33, or no-34, respectively) for data 12 (Local/Remote), and leave that input terminal open. See page 37.

### 2.2 DRIVE MODE OPERATION.

A) This flow chart shows the display items in the Drive mode after the power supply is turned on. Press DSPL key to cycle.

B) Frequency Reference Display.

Frequency reference is displayed in units of
F060.0 0.1 Hz . See paragraph 1.7 to change frequency reference.
C) Output Frequency Display.

Output frequency is displayed in units of 0.1 Hz .
The far left digit indicates the rotating direction while running (blank = forward; " - " = reverse).
D) Output Current Display.

Output current is displayed in units of 0.1 Amp.

### 2.3 PROGRAM MODE OPERATION.

## IMPORTANT

Constant no-00 determines which constants can be read or set. Therefore, it should always be the first constant read, and set if necessary.

Constants are read / set in the Program mode by the following procedures:

1. Press the PRGM/ DRIVE key during stop to enter the Program mode.
2. Press $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ key to select the constant number to be read/set.
3. Press the DATA/ ENTER key and the selected constant data are displayed.
4. Press $\boldsymbol{>} /$ RESET, $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ key to set the data.

- To change the sign of data (constant no-23 only), press $\boldsymbol{\Delta}$ or $\boldsymbol{\nabla}$ key when the far left digit is selected.

Minus data: Far left digit = "-"
Plus data: Far left digit is blank

5. Press the DATA/ ENTER key to write-in the data. If the set value exceeds the setting range, the whole display blinks for 3 seconds, then the original value is again displayed. When the set value is within the setting range, " End " will appear on the Digital Display for 1 second, then the new set value is displayed.
6. Press the DSPL key to display the constant number again.
7. Repeat steps 2-5 to read/set other constants.
8. When finished with constant programming, press the PRGM/ DRIVE key to return to Drive mode.

Displays appearing only on the Digital Operator:

| CONSTANT STATUS | MONITOR DISPLAY | RESULT |
| :---: | :---: | :--- |
| Accepted | "End" <br> $(\mathbf{1 s e c})$ | Indicates constant setting was <br> written into EEPROM. |
| Not accepted | Blinking for 3 seconds, <br> then return to former <br> data display | Indicates constant setting was <br> not written into EEPROM. |

## SECTION 3 PROGRAMMABLE FEATURES

3.1 GENERAL. Paragraphs in this section provide a description of the GPD 333 features which are defined by programmed settings in memory. These feature descriptions appear in numerical order by constant number, based on 2 -Wire factory reset.

## GPD 333 Constants

|  | CONSTANT | SETTING RANGE AND (UNIT) (NOTE 3) | INCREMENT | $\begin{aligned} & \text { FACT. } \\ & \text { SET } \\ & \text { (NOTE 3) } \end{aligned}$ | $\begin{gathered} \text { REF } \\ \text { PARA. } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| no-00 | Password / Inititalization | 00-09 | 1 | 01 | 3.2 |
| no-01 | Operation Signal Selection 1 | FOUR DIGIT BINARY CODE | - - | 0000 | 3.3 |
| no-02 | Maximum Frequency ( Fmax) | 50.0-400.0 ( Hz ) | . 1 | 60.0 | 3.4 |
| no-03 | Maximum Voltage ( Vmax ) | 0.1-255.0 (V) | . 1 | 230.0 | 3.4 |
|  |  | 0.1-510.0 (V) |  | 460.0 |  |
| no-04 | Max. Voltage Frequency ( Fa ) | 0.2-400.0 ( Hz ) | . 1 | 60.0 | 3.4 |
| no-05 | Frequency Midpoint ( Fb ) | $0.1-399.9$ ( Hz ) | . 1 | 1.5 | 3.4 |
| no-06 | Voltage Midpoint ( Vc ) | 0.1-255.0 ( V ) | . 1 | 12.0 | 3.4 |
|  |  | 0.1-510.0 (V) |  | 24.0 |  |
| no-07 | Min. Output Frequency ( Fmin ) | 0.1-10.0 ( Hz ) | . 1 | 1.5 | 3.4 |
| no-08 | Min. Output Freq. Voltage ( Vmin ) | 0.1-50.0 ( V ) | . 1 | 12.0 | 3.4 |
|  |  | 0.1-100.0 (V) |  | 24.0 |  |
| no-09 | Accel Time 1 | 0.0-600.0 ( s ) | . 1 | 10.0 | 3.5 |
| no-10 | Decel Time 1 | 0.0-600.0 ( s ) | . 1 | 10.0 | 3.5 |
| no-11 | Accel Time 2 | 0.0-600.0 ( s ) | . 1 | 10.0 | 3.5 |
| no-12 | Decel Time 2 | 0.0-600.0 ( s ) | . 1 | 10.0 | 3.5 |
| no-13 | Frequency Reference 1 | 0.0-400.0 ( Hz ) | . 1 | 0.0 | 3.6 |
| no-14 | Frequency Reference 2 | 0.0-400.0 ( Hz ) | . 1 | 0.0 | 3.6 |
| no-15 | Frequency Reference 3 | 0.0-400.0 ( Hz ) | . 1 | 0.0 | 3.6 |
| no-16 | Frequency Reference 4 | 0.0-400.0 ( Hz ) | . 1 | 0.0 | 3.6 |
| no-17 | Jog Frequency Reference | 0.0-400.0 ( Hz ) | . 1 | 6.0 | 3.6 |
| no-18 | Motor Protection Selection | FOUR DIGIT BINARY CODE | - - | 0000 | 3.7 |

## GPD 333 Constants - Continued

|  | DATA NAME | SETTING RANGE AND (UNIT) (NOTE 3) | INCREMENT | $\begin{aligned} & \text { FACT. } \\ & \text { SET } \\ & \text { (NOTE 3) } \end{aligned}$ | $\begin{aligned} & \text { REF } \\ & \text { PARA. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| no-19 | Motor Rated Current ( See Note 1) | $\begin{aligned} & \text { ( } 10 \% \text { to } 120 \% \text { of } \\ & \text { GPD } 333 \text { Rated } \\ & \text { Output Current ) } \end{aligned}$ | . 1 Amp | See Para. $3.8$ | 3.8 |
| no-20 | Operation Selection Signal 2 | FOUR DIGIT BINARY CODE | - - | 0000 | 3.9 |
| no-21 | Output Monitor Selection / S-Curve | FOUR DIGIT BINARY CODE | - - | 0000 | 3.10 |
| no-22 | Freq. Command Gain | 0.01-2.00 | . 01 | 1.00 | 3.11 |
| no-23 | Freq. Command Bias (See Note 2) | -1.00-1.00 | . 01 | 0.00 | 3.11 |
| no-24 | Freq. Command Upper Limit | 0-110 (\%) | 1 | 100 | 3.11 |
| no-25 | Freq. Command Lower Limit | 0-110 (\%) | 1 | 0 | 3.11 |
| no-26 | DC Injection Braking Current | 0-100 (\%) | 1 | 50 | 3.12 |
| no-27 | DC Injection Braking Time at Stop | 0.0-5.0 ( s ) | . 1 | 0.0 | 3.12 |
| no-28 | DC Injection Braking Time at Start | 0.0-5.0 (s) | . 1 | 0.0 | 3.12 |
| no-29 | Automatic Torque Boost Gain | 0.0-3.0 | . 1 | 1.0 | 3.13 |
| no-30 | Stall Prevention Level During Accel | 30-200 (\%) | 1 | 170 | 3.14 |
| no-31 | Stall Prevention Level at Set Speed | 30-200 (\%) | 1 | 160 | 3.14 |
| no-32 | Multi-function Input - Terminal 3 | 00-13 | 1 | 13 | 3.15 |
| no-33 | Multi-function Input - Terminal 4 | 01-13 | 1 | 01 | 3.15 |
| no-34 | Multi-function Input - Terminal 5 | 01-14 | 1 | 03 | 3.15 |
| no-35 | Multi-function Analog Input | 00-04 | 1 | 00 | 3.16 |
| no-36 | Multi-function Output Relay | 00-10 | 1 | 05 | 3.17 |
| no-37 | Multi-function Output - Terminal 13 | 00-10 | 1 | 00 | 3.18 |
| no-38 | Multi-function Output - Terminal 14 | 00-10 | 1 | 01 | 3.18 |
| no-39 | Frequency Detection Level | 0.0-400.0( Hz ) | . 1 | 0.0 | 3.19 |
| no-40 | Overtorque Detection Function Select | FOUR DIGIT BINARY CODE | - - | 0000 | 3.20 |
| no-41 | Overtorque Detection Level | 30-200 (\%) | 1 | 160 | 3.20 |
| no-42 | Overtorque Detection Time | 0.1-10.0 (s) | . 1 | 0.1 | 3.20 |
| no-43 | Carrier Frequency | 1-6 (x 2.5 kHz ) | 1 | 4 | $\begin{aligned} & \text { 3.21, } \\ & \text { 1.4.4 } \end{aligned}$ |

## GPD 333 Constants - Continued

|  | CONSTANT | SETTING RANGE <br> AND (UNIT) <br> (NOTE 3) | INCRE- <br> MENT | FACT. <br> SET <br> (NOTE 3) | REF <br> PARA. |
| :--- | :--- | :---: | :---: | :---: | :---: |
| no-44 | NOT USED | -- | -- | -- | -- |
| no-45 | Analog Monitor Gain | $0.01-2.00$ | .01 | 1.00 | $\mathbf{3 . 1 0}$ |
| no-46 | Momentary Power Loss Function <br> Selection | FOUR DIGIT <br> BINARY CODE | -- | 0000 | $\mathbf{3 . 2 2}$ |
| no-47 | No. of Auto-restart Attempts | $0-10$ | 1 | 0 | $\mathbf{3 . 2 3}$ |
| no-48 | Fault Record | $\mathrm{N} / \mathrm{A}$ | $\mathrm{N} / \mathrm{A}$ | $\mathrm{N} / \mathrm{A}$ | $\mathbf{3 . 2 4}$ |
| no-49 | PROM No. | $0.0-400.0(\mathrm{~Hz})$ | 0.1 | 0.0 | $\mathbf{N} / \mathrm{A}$ |
| no-50 | Prohibited Frequency | $0.0-25.5(\mathrm{~Hz})$ | 0.1 | 1.0 | $\mathbf{3 . 2 6}$ |
| no-51 | Prohibited Frequency Deadband | -- | -- | -- | -- |
| no-52 <br> thru <br> no-59 | NOT USED |  |  |  |  |

## NOTES:

1. Initial value depends upon GPD 333 Capacity. See paragraph 3-8.
2. To change to negative setting, select the far left digit ("X" X . X X ). Press A key to change it to "- ".
3. Where two setting ranges and two factory settings are listed for a constant, the upper ones are for a 230 V drive and the lower ones are for a 460 V drive.

### 3.2 PASSWORD / INITIALIZATION

$\begin{array}{ll}\text { Constant } & \begin{array}{l}\text { This constant determines } \\ \text { no-00 }\end{array} \\ \text { which of the constants can }\end{array} \quad$ Factory Setting : 01 be examined in the Drive mode, and read/set in the Program mode.

| SETTING | FUNCTION |
| :---: | :--- |
| 00 | Password reading / setting enabled <br> (constant no-00); <br> constants no-01 thru no-19 can be read only |
| 01 | Constants no-00 thru no-19 can be read / set; <br> no other constants can be read / set <br> ( NOTE: this is factory setting ) |
| 02 | Constants no-00 thru no-29 can be read / set; <br> no other constants can be read / set |
| 03 | Constants no-00 thru no-59 can all be read / set |
| 04 | NOT USED |
| 05 | NOT USED |
| 06 | Clear Fault Record ( then return to factory setting ) |
| 07 | NOT USED |
| 08 | Initialization for 2-Wire Control <br> ( then return to factory setting ) |
| 09 | Initialization for 3-Wire Control <br> ( then return to factory setting ) |

When 06 is entered, the GPD 333's internal fault record is cleared; then the setting value automatically returns to 01 .

When either 08 or 09 is entered (initialization settings), the definitions of inputs at terminals $1-5$ are changed. Constants no-32, no-33 \& no-34, (Multi-function Input - Terminal 3, 4 \& 5) settings are also changed, according to the requirements of the control configuration (see Figures 1-5 and 1-6). All other constants are returned to FACTORY SETTINGS; constant no-00 setting then returns to 01.

### 3.3 OPERATION SIGNAL SELECTION 1

Constant This four-digit binary
Factory Setting : 0000 no-01 code determines the source of frequency reference, Run/Stop signals, the method of stopping the motor when the Stop command is issued, and whether the output voltage limiter is enabled or disabled.

| DIGIT | FUNCTION |
| :---: | :---: |
| X X X X | $\begin{aligned} 0= & \text { External frequency reference } \\ & (0-10 \mathrm{Vdc} \text { or } 4-20 \mathrm{~mA}) \text { (Term. } 8 \text { or } 9) \end{aligned}$ |
|  | $1=\begin{gathered} \text { Internal Frequency Reference } \\ \\ (\text { set by Digital Operator }) \end{gathered}$ |
| X X X X | 0 = External Run / Stop commands |
|  | 1 = Run / Stop by Digital Operator |
| $\mathrm{X} \times \mathrm{X} \times$ | 0 = Ramp to stop at Stop command |
|  | 1 = Coast stop at Stop command |
| $\underline{\mathrm{X} \times \times \mathrm{X}}$ | $0=\mathrm{V} / \mathrm{f}$ with output voltage limiter |
|  | $1=\mathrm{V} / \mathrm{f}$ without output voltage limiter |

Note: If X X X X is set to 1, the V/f pattern (see paragraph 3.4) must be set to match motor data.

### 3.4 V/ f PATTERN

Constants no-02 thru no-08

These constants define the V/f pattern, and are related to each other as shown below.

| CONSTANT | DATA NAME | SETTING RANGE (NOTE 1) | FACTORY SETTING (NOTE 1) |
| :---: | :---: | :---: | :---: |
| no-02 | Maximum Frequency ( Fmax ) | 50.0-400.0 ( Hz ) | 60.0 |
| no-03 | Maximum Voltage ( Vmax ) | 0.1-255.0 ( V ) | 230.0 |
|  |  | 0.1-510.0 ( V ) | 460.0 |
| no-04 | Maximum Voltage Frequency ( Fa) | 0.2-400.0 ( Hz ) | 60.0 |
| no-05 | Frequency Midpoint ( Fb ) | 0.1-399.9 ( Hz ) | 1.5 |
| no-06 | Voltage Midpoint ( Vc ) | 0.1-255.0 ( V ) | 12.0 |
|  |  | 0.1-510.0 (V) | 24.0 |
| no-07 | Minimum Output Frequency ( Fmin ) | 0.1-10.0 ( Hz ) | 1.5 |
| no-08 | Minimum Output Frequency Voltage ( Vmin ) | 0.1-50.0 ( V ) | 12.0 |
|  |  | 0.1-100.0 (V) | 24.0 |

NOTES:

1. Where two setting ranges and two factory settings are listed for a constant, the upper ones are for a 230 V drive and the


To establish a V/f pattern with a straight line from Fmin to Fa, set $\mathrm{Fb}=\mathrm{Fmin}$, and $\mathrm{Vc}=\mathrm{Vmin}$.

## IMPORTANT

When entering a setting for one of these constants, an improper constant fault will occur if any part of the following relationships among constants no-02 thru no-08 is NOT TRUE:
a) $\mathrm{Fmax} \geq \mathrm{Fa} \geq \mathrm{Fb} \geq \mathrm{Fmin}$
b) $V \max >\mathrm{Vc} \geq$ Vmin

The attempted setting value will blink for approx. 3 seconds, then the display will again show the previous constant setting.

### 3.5 ACCEL / DECEL TIMES

## Constants

no-09 Accel Time 1 Range (ea.) : 0.0 to 600.0 ( s )
no-10 Decel Time 1 Factory Setting (ea.) : 10.0
These constants set the normal accel and decel times required for the GPD 333 output to ramp from Fmin to Fmax or from Fmax to Fmin, respectively.

## Constants

no-11 Accel Time 2 Range (ea.): 0.0 to 600.0 ( s ) no-12 Decel Time 2 Factory Setting (ea.) : 10.0

If a Multi-function Input (terminal 3, 4 or 5) is programmed as Accel/Decel Time Change command (see paragraph 3.15), the GPD 333 uses the settings in these constants as its accel and decel times when that input is closed.

### 3.6 MULTI-STEP SPEED PRESETS

## Constants no-13 thru no-17

In order to use multi-step
speed presets, constants no-32, no-33 \& no-34 must be programmed accordingly for 2-Wire or 3-Wire control. (Constant no-01 must be set to X X X 1.)

To use the maximum of 5 preset speeds (in 2-Wire control only), constant no-32 must be set to 03 ( Multi-step Speed Ref 1 ), constant no-33 must be set to 04 (Multi-step Speed Ref 2 ), and constant no-34 must be set to 05 ( Jog ).

Multi-step (5 preset speeds) in 2-Wire control

| CONSTANT | EXTERNAL TERMINAL |  |  |
| :---: | :---: | :---: | :---: |
| and NAME | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ |
| no-13 <br> Frequency Ref 1 | 0 | 0 | 0 |
| no-14 <br> Frequency Ref 2 | 0 | 0 | 1 |
| no-15 <br> Frequency Ref 3 | 0 | 1 | 0 |
| no-16 <br> Frequency Ref 4 | 0 | 1 | 1 |
| no-17 <br> Reference | 1 | 0 | 0 |

$1=$ Closed (ref terminal 6) $0=$ Open (ref terminal 6 ) In Drive mode, each Frequency Ref setting can be changed on the fly, while selected by input commands, by use of the Frequency Reference display (see paragraph 1.7).

For 3-Wire control, constant no-32 must be 00 ( FWD/REV ). Therefore, a maximum of 4 preset speeds can be used, if constant no-33 is set to 03 ( Multi-step Speed Ref 1) and constant no34 is set to 04 (Multistep Speed Ref 2 ).

Multi-step (4 preset speeds) in 3-Wire control

| CONSTANT <br> and NAME | EXTERNAL TERMINAL <br> $\mathbf{5}$ |  |
| :---: | :---: | :---: |
| no-13 <br> Frequency Ref 1 | 0 | 0 |
| no-14 <br> Frequency Ref 2 | 0 | 1 |
| no-15 <br> Frequency Ref 3 | 1 | 0 |
| no-16 <br> Frequency Ref 4 | 1 | 1 |



NOTE: The JOG command takes priority over multistep speed select inputs.

## Typical Multi-step Speed Operation (2-Wire Control Example)

### 3.7 MOTOR PROTECTION SELECTION

Constant This four-digit binary no-18 code determines whether

Factory Setting : 0000
thermal overload protection is provided for the motor and whether it is for constant or variable torque load.

| DIGIT | FUNCTION |
| :---: | :--- |
| $\times \times \times \underline{x}$ | $0=$ Electronic thermal overload motor protection enabled |
|  | $1=$ Electronic thermal overload motor protection disabled |
| $\times \times \underline{x}$ | $0=$ Electronic thermal overload is for variable torque |
|  | $1=$ Electronic thermal overlaod is for constant torque |
| $\underline{x} \times \times \times$ | NOT USED |

### 3.8 MOTOR RATED CURRENT

Constant Factory set no-19 according to
the horse-
power rating of the
GPD 333. Should be set

Range (in Amps) : From 10\% to $120 \%$ of drive's continuous output current rating.
Increment: . 1 Amp according to user's motor. The motor rated current setting is used by the electronic thermal overload circuit (if enabled; see paragraph 3.7) to protect the motor by means of oL1 fault shutdown.

Motor Rated Current Settings

| INPUT VOLTS | HORSEPOWER ${ }^{1}$ | GPD 333 CONTINUOUS OUTPUT CURRENT 100\% RATED AMPS | MOTOR RATED CURRENT - AMPS ( CONSTANT no-19 ) FACTORY SETTING |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & 2 \\ & 3 \\ & 0 \end{aligned}$ | 1/4 | 1.5 | 1.1 |
|  | 3/4 | 3 | 1.9 |
|  | 1 | 5 | 3.3 |
|  | 1.5 | 6.5 | 6.2 |
|  | 3 | 11 | 8.5 |
|  | 5 | 17.5 | 14.1 |
| $\begin{aligned} & 4 \\ & 6 \\ & 0 \end{aligned}$ | 1/2 | 1 | 0.6 |
|  | 3/4 | 1.6 | 1.0 |
|  | 1.5 | 2.6 | 1.6 |
|  | 2 | 4 | 3.1 |
|  | 3 | 4.8 | 4.2 |
|  | 5 | 8 | 7.0 |

[^0]
### 3.9 OPERATION SIGNAL SELECTION 2

Constant no-20

This four-digit binary code determines reverse run capability and decel stall prevention.

Factory Setting : 0000

| DIGIT | FUNCTION |
| :---: | :---: |
| X X X X | 0 = Reverse run enabled |
|  | 1 = Reverse run disabled |
| X X X X | NOT USED |
| $\underline{X} \times \times \mathrm{X}$ | $0=$ Stall prevention during deceleration enabled |
|  | 1 = Stall prevention during deceleration disabled ( braking resistor connected ) |

Stall prevention during deceleration automatically adjusts the deceleration rate while monitoring the DC bus voltage to prevent overvoltage during deceleration. This digit must be set to 1 when connecting dynamic braking (DB) resistor.

When the motor load is larger or decel time is shorter, decel time may be longer than the set value because of the stall preventive function.

### 3.10 OUTPUT MONITORING

Constant
no-21

Output Monitor Selection
Factory Setting : 0000

This four-digit binary code establishes which output parameter will be applied to the Analog Monitor Output

| DIGIT | FUNCTION |
| :---: | :--- |
| $\times \times \times \underline{x}$ | NOT USED |
| $\times \underline{\times} \times$ | $0=$ Analog monitor output : output frequency |
|  | $1=$ Analog monitor display : output current |
| $\times \underline{x} \times \times$ | S-Curve Accel/Decel Selection: <br> $0=$ Not Provided; $1=.2$ sec. S-curve |
| $\underline{x} \times \times \times$ | NOT USED | at terminals $12 \& 11$, and whether S-Curve is provided (see illustration on next page).

The Analog Monitor output is a 0-10Vdc signal, proportional to the output parameter selected.


Note: S-Curve characteristic time refers to the time from the acceleration rate 0 to regular acceleration rate determined by the set acceleration time. It can reduce shock while a machine is starting or stopping

Constant Analog Monitor Gain no-45

Range : 0.01 to 2.00
Factory Setting : 1.00

This constant calibrates the output signal for the external metering circuit.

### 3.11 FREQUENCY COMMAND

Constant Frequency Command no-22

Range : 0.01 to 2.00
Factory Setting : 1.00

Sets the External Speed Frequency Reference gain, in increments of 0.01.
Constant no-23

Frequency Command
Bias

Range: -1.00 to (+) 1.00 Factory Setting : 0.00

Sets the External Speed Frequency Reference bias, in increments of 0.01.


BIAS


GAIN

## Constants

no-24
no-25

Frequency Command Upper Limit
Frequency Command Lower Limit
Both constants set the range for the

Range (ea.) :

$$
0 \text { to } 110 \text { (\%) }
$$

Factory Settings : no-24 = 100 ; no-25 $=0$ frequency command signal. Each is set as a percentage of maximum frequency ( Fmax ) as established by the setting of constant no-02 (see paragraph 3.4). All references are affected by the upper and lower limit.

```
EXAMPLE:
    Constant no-02 = 60(Hz) (100%)
    Constant no-24 = 80 (%) = 48Hz
    Constant no-25 = 10(%)=6Hz
```



### 3.12 DC INJ ECTION BRAKING

$\begin{array}{ll}\text { Constant } & \begin{array}{l}\text { DC Injection } \\ \text { no-26 }\end{array} \\ \text { Braking Current }\end{array}$
Range : 0.0 to 100.0 (\%)
Factory Setting : 50.0
Limits the DC current level that the GPD 333 produces at DC braking time. Time and current level must be set to provide adequate stopping without excessive motor heating.

## Constant DC Injection Braking no-27 Time at Stopping <br> Range: 0.0 to 5.0 ( s) <br> Factory Setting : 0.0

Sets the time, in increments of 0.1 second, during which DC injection braking current is applied at ramp to stop. This time starts when output frequency reaches Fmin ( constant no-07). If set to zero, then operation is coast stop after Fmin. This function is disabled if coast stop is enabled in constant no-01.

| Constant | DC Injection Braking | Range : 0.0 to 5.0 ( s ) |
| :--- | :--- | :--- |
| no-28 | Time at Starting | Factory Setting: 0.0 |

Sets the time, in increments of 0.1 second, during which DC injection braking current is applied at starting (by inputting a Forward or Reverse run command). When set to zero, acceleration begins immediately with the minimum output frequency.


### 3.13 AUTOMATIC TORQUE BOOST GAIN

Constant no-29

Sets the torque compensation, in increments of 0.1. When the motor has the

Range : 0.0 to 3.0
Factory Setting : 1.0 same capacity as that of the GPD 333 , the gain is 1.0 . When a smaller motor is used, the gain should be set to 1.5 (typical). Except for the most demanding of high torque applications, the factory setting of this constant will be adequate. The factory setting is programmed to match the performance characteristics of typical AC motors.
3.14 STALL PREVENTION automatically adjusts output frequency according to the load so as to continue operation of the machine without stalling the motor.
$\begin{array}{lll}\text { Constant } & \text { Stall Prevention Level } & \text { Range : } 30 \text { to } 200 \text { ( \%) } \\ \text { no-30 } & \text { During Accel } & \text { Factory Setting : 170 }\end{array}$

Determines the actual GPD 333 output current level during an accelerating condition. Set in percent of GPD 333 rated output current (see paragraph 3.8).


Constant no-31

Stall Prevention Level at Set Speed

Range: 30 to 200 (\%)
Factory Setting : 160

Determines the actual output current level of the GPD 333 while operating at set speed (frequency). Also set in percent of GPD 333 rated output current (see paragraph 3.8).


### 3.15 MULTI-FUNCTION INPUTS

Constants
no-32
no-33
no-34
Inputs to these three terminals are defined by these constants. When a terminal is closed to sequence common (term. 6), the selected function is enabled. To disable the function, the input must be opened.

Multi-function Input Factory Settings
2-Wire 3-Wire
Terminal 3
Terminal 4
Terminal 5

| SETTING | FUNCTION |
| :---: | :--- |
| 00 | Fwd / Rev Select Command; <br> Open = Fwd , Closed = Rev <br> (for 3-Wire control configuration) |
| 01 | External Fault ( NO contact input ) |
| 02 | External Fault ( NC contact input ) |
| 03 | Mutli-step Speed Ref 1 |
| 04 | Mutli-step Speed Ref 2 |
| 05 | Jog |
| 06 | Accel / Decel Time Change |
| 07 | External Baseblock ( NO contact input ) |
| 08 | External Baseblock ( NC contact input ) |
| 09 | Speed Search from max freq. |
| 10 | Speed Search from set freq. |
| 11 | Accel / Decel Prohibit |
| 12 | Local / Remote |
| 13 | Fault Reset |
| 14 | Up / Down Function |

## IMPORTANT

- Program ONLY ONE of the multi-function terminals for speed search; a second speed search setting will not be accepted.
- No two of the above constants can have the same setting value entered.
- Constants no-32 and no-33 cannot be set to 14 .
- When constant no-34 is set to $\mathbf{1 4}$ ( Up / Down ), terminal 4 becomes the UP command input and terminal 5 becomes the DOWN command input, regardless of the previous setting in constant no-33.


### 3.16 MULTI-FUNCTION ANALOG INPUT

## Constant

 no-35Factory Setting : 00
IMPORTANT: An optional Analog Input PCB is required for operation using analog input.

Programming this constant per the chart below configures the optional Analog Input PCB for analog control. The four figures show how each setting configures the analog input.


| SETTING | FUNCTION | REMARKS |
| :---: | :--- | :--- |
| 00 | Option PCB not present | Factory setting |
| 01 | Manual Reference | External reference input |
| 02 | Frequency Reference <br> Gain ( FGAINE ) | Total gain = Internal gain <br> (no-22 ) x FGAINE |
| 03 | Frequency Reference <br> Bias ( FBIAS ) (+/- $)^{*}$ | Total bias = Internal bias <br> (no-23 ) + FBIAS |
| 04 | VBIAS | VBIAS addition after V/f conversion |


no- $35=02$

$n \mathbf{n o - 3 5 = 0 3}$

FBIAS

no-35 = 04


### 3.17 MULTI-FUNCTION OUTPUT RELAY

## Constant

no-36
This relay can be programmed to change state upon any of the conditions listed below.

Factory Setting : 05


Relay contacts are Form-C.

| SETTING | FUNCTION |
| :---: | :--- |
| 00 | Running |
| 01 | Speed at set frequency |
| 02 | Zero speed |
| 03 | Frequency detection ( output <br> frequency > or = constant no-39 setting ) |
| 04 | Overtorque detection |
| 05 | Fault output |
| 06 | Frequency detection ( output <br> frequency < or = constant no-39 setting ) |
| 07 | During base block |
| 08 | During undervoltage ( UV ) |
| 09 | During speed search |
| 10 | In Local operating mode ( selected by <br> "LOC / RMT" key of Digital Operator ) |

### 3.18 MULTI-FUNCTION OUTPUTS

## Constants

no-37
and
no-38

> Multi-function Output $1-$ Terminal 13 (ref term. 7) Multi-function Output $2-$
> Terminal 14 (ref term. 7)

Factory Settings :
no-37 = 00
no-38 = 01

Multi-function output terminals $13 \& 14$ are defined by the settings of these two constants. Each open collector output will switch low (with respect to terminal 7, common) when the selected condition is met.

| SETTING | FUNCTION |
| :---: | :--- |
| 00 | Running |
| 01 | Speed at set frequency |
| 02 | Zero speed |
| 03 | Frequency detection ( output <br> frequency > or = constant no-39 setting ) |
| 04 | Overtorque detection |
| 05 | Fault output |
| 06 | Frequency detection ( output <br> frequency < or = constant no-39 setting ) |
| 07 | During base block |
| 08 | During undervoltage ( UV ) |
| 09 | During speed search |
| 10 | In Local operating mode ( selected by <br> "LOC / RMT" key of Digital Operator ) |

Multi-function Output Terminals

Recommended Configuration for DC Relays


48VDC MAX. *


RELAY

* Customer
supplied


### 3.19 FREQUENCY DETECTION LEVEL

Constant Establishes the fre-no-39 quency level used as a reference when

Range: 0.0 to $400.0(\mathrm{~Hz})$
Factory Setting : 0.0
programming a multi-function output terminal or contact to change state at Frequency Detection (see paragraphs 3.17 and 3.18).
3.20 OVERTORQUE DETECTION. Overtorque detection compares GPD 333 rated output current with the overtorque detection level. When the output current is equal to or greater than the detection level, an overtorque condition exists. This will be indicated as an oL3 fault or warning on the Digital Operator or status LEDs. (The detection level is a percent of GPD 333 rated output current; see paragraph 3.8.)

## Constant no-40

Overtorque Detection Function Selection

This fourdigit binary code determines how the overtorque detection function of the
GPD 333 will operate.
See Timing Diagram.

| DIGIT | FUNCTION |
| :---: | :---: |
| X X X X | 0 = Overtorque detection function disabled |
|  | 1 = Overtorque detection function enabled |
| X X X 1 | $0=$ Overtorque detection only when output is at set frequency |
|  | 1 = Overtorque detection at all times ( except during stopping or DC injection braking ) |
| X $\times \times 1$ | $0=\begin{aligned} & \text { Operation continues after overtorque } \\ & \text { detection }\end{aligned}$ |
|  | 1 = Coast stop after overtorque detection |
| $\underline{x} \times \times \times$ | NOT USED |

NOTE: Descriptions of constants no-41 and no-42 follow the timing diagram.

## EXAMPLE:

Constant no-38 = 04 (See paragraph 3.18)
Constant no-40 = 0101 ; Overtorque enabled, only at set frequency, coast to stop
Constant no-41 = 160 (\%)
Constant no-42 $=1.0(\mathrm{~s})$


Overtorque Detection Timing Diagram

### 3.20 OVERTORQUE DETECTION - CONTINUED

## Constant Overtorque Detection Range: 30 to 200 (\%) no-41 Level <br> This is the reference

point for determining that an overtorque condition exists. Set as a percent of GPD 333 rated current (see paragraph 3.8).

| Constant | Overtorque Detection | Range : 0.1 to 10.0 ( s ) |
| :--- | :--- | :--- |
| no-42 | Time | Factory Setting : 0.1 | an overtorque condition must exist before another event will occur, i.e. coast stop, multi-function output change of state, or oL3 warning or fault displayed.

### 3.21 CARRIER FREQUENCY

| Constant | Range : 1 to $6(x 2.5 \mathrm{kHz})$ |
| :--- | :--- |
| no-43 | Factory Setting : $4(=10 \mathrm{kHz})$ |

The user can select a higher or lower carrier frequency, depending on allowable operating noise levels for the application. Adjusts in increments of 2.5 kHz (set value $\times 2.5 \mathrm{kHz}=$ carrier frequency).

NOTE: Also see paragraph 1.4.4.
IMPORTANT: Setting 5 or $\mathbf{6}$ will reduce maximum continuous output current of the GPD 333.

| SETTING | MAXIMUM CONTUINUOUS OUTPUT CURRENT |
| :---: | :---: |
| 1 to 4 | Up to $100 \%$ of GPD 333 output current |
| 5 | Up to $90 \%$ of GPD 333 output current |
| 6 | Up to $80 \%$ of GPD 333 output current |

## - Constant no-44 : NOT USED.

- Constant no-45 : see paragraph 3.10.


### 3.22 MOMENTARY POWER LOSS RIDE-THRU

Constant Momentary Power Loss Factory Setting : 0000 no-46 Function Selection

This four-digit binary code determines how the momentary power loss ride-thru function of the GPD 333 will function.

| DIGIT | FUNCTION |
| :---: | :---: |
|  | 0 = Operation during momentary power loss disabled |
| X X X X | 1 = Operation during momentary power loss enabled <br> 1/4-1 HP : 1 sec. power loss ride-thru <br> 2-5 HP : 2 sec. power loss ride-thru |
| X X X X | Not Used |

### 3.23 NO. OF AUTO-RESTART ATTEMPTS

Constant GPD 333 can be programmed Range: 0 to 10 no-47 for an auto-restart operation Factory Setting : 0 to automatically reset a fault
which occurs during operation. Auto-restart operation will use the number of restart attempts set in this constant, up to the maximum of ten. When set to $\mathbf{0}$, no auto-restart will be attempted.

- Only the following faults can be automatically reset:
oC : Overcurrent oH: Overheat
ou: Overvoltage (OV) GF: Ground Fault
- The number of restart attempts available will reset to the constant no-47 setting when:

1. 10 minutes have elapsed without a fault occurring.
2. An external Fault Reset push button is pressed (or the RESET key of optional Digital Operator is pressed).
3. The power supply is turned off long enough for the GPD 333 to re-initialize itself when power is returned.

### 3.24 FAULT RECORD

Constant Display-only function which cannot be pro-no-48 grammed by the user. When this constant number is selected and the DATA/ ENTER key is pressed, the fault code for the most recent fault is displayed.

Only the following types of faults can be stored in the fault record: oC (overcurrent), ou (overvoltage), $\mathbf{o H}$ (cooling fin overheat), oL1 (motor overload), oL2 (drive overload), oL3 (overtorque detection), EF4, EF5 (external fault), or CPF05 (A/D converter fault).

To clear the fault record, enter setting 6 into constant no. $\mathbf{0 0}$.
NOTE: The fault record is also cleared automatically when an initialization setting is entered into constant no. 00 .

### 3.25 PROM NO.

Constant Display-only function which cannot be pro-no-49 grammed by the user. When this constant number is selected and the DATA/ ENTER key is pressed, the code number ( 5 digits) of the PROM that is installed on the Control PC board is displayed.

### 3.26 CRITICAL FREQUENCY REJ ECTION

| Constants | Prohibited <br> no-50 | Frequency |
| :--- | :--- | :--- |$\quad$| Range : 0.0 to $400.0(\mathrm{~Hz})$ |
| :--- |
| Factory Setting : 0.0 |

Allows programming of one prohibited frequency point, in increments of 0.1 Hz , for eliminating problems with resonant vibration of the motor/machine. This feature does not actually eliminate the selected frequency values, but will accelerate and decelerate the motor through the prohibited bandwidth.
$\begin{array}{lll}\text { Constant } & \text { Prohibited Frequency } & \text { Range: } 0.0 \text { to } 25.5(\mathrm{~Hz}) \\ \text { no-51 } & \text { Deadband } & \text { Factory Setting : } 1.0\end{array}$
Determines the width of the deadband, in increments of 0.1 Hz , around the prohibited frequency point. The factory setting of 1.0 establishes a deadband of $\pm 1.0 \mathrm{~Hz}$.

EXAMPLE: Vibration encountered between 30.0 and 36.0 Hz . SOLUTION:

Set constant no-50 to 33.0. This is the center of the problem frequency band.
Set constant no-51 to 3.0. This will cause the GPD 333 to reject all frequency command values between 30.0 and 36.0 Hz .

A frequency command in the deadband will be converted to the bottom value of the deadband, e.g. a command of 33 Hz would result in a run frequency of 30 Hz .


This page intentionally left blank.

## SECTION 4 FAULT/ WARNING FUNCTIONS

4.1 GENERAL. The GPD 333's Fault circuit monitors operating parameters and initiates drive shutdown (Fault contacts change state) when allowable limits are exceeded, or provides a warning indication when conditions exist which may lead to a Fault shutdown. The status LEDs on the front of the GPD 333, or the 5-digit display on the Digital Operator (when present), provides a coded display related to the Fault or Warning Function which has occurred.
4.2 TROUBLESHOOTING. If a fault shutdown of the GPD 333 has occurred, observe the LED indication or Digital Operator display; find the same indication or display in the Fault Functions or Warning Functions table, and take the appropriate corrective action based on the description given.

## WARNING

Oscilloscope chassis may be at voltages potentially hazardous to life if not properly grounded. If oscilloscope is used to measure high voltage waveforms, use only a dual channel oscilloscope in the differential mode with X100 probes. Always connect oscilloscope chassis to earth ground.

## WARNING

Voltages dangerous to life exist when equipment is open and energized. Do not work alone.

## CAUTION

To prevent equipment damage always remove incoming threephase power before test equipment is connected or removed.

### 4.3 FAULT FUNCTIONS.

| FUNCTION | STATUS LEDS |  | DIGITAL OPERATOR DISPLAY | DESCRIPTION |
| :---: | :---: | :---: | :---: | :---: |
|  | DS1 (GRN) | DS2 (RED) |  |  |
| Undervoltage | Off | LIT | U u I | GPD 333 drive shutdown; main circuit DC voltage was lower than 210 V for 230 V rated drive, or lower than 420 V for 460 V rated drive. |
| Overcurrent | Blinking | LIT | o C | GPD 333 drive shutdown; output current exceeded 200\% of GPD 333 rated current. |
| Grounding | Blinking | LIT | G F | GPD 333 drive shutdown; grounding occured at GPD 333 output side and grounding current flowed. |
| Overvoltage | Off | LIT | O u | GPD 333 drive shutdown; main circuit DC voltage exceeded 410 V for 230 V rated drive, or exceeded 820 V for 460 V rated drive. |
| Fuse Blown | Off | Off | No display | GPD 333 drive shutdown; blown fuse. |
| Fin Overheat | LIT | Blinking | OH | GPD 333 drive shutdown; thermistor exceeded rating. |
| Overload <br> ( Motor) | LIT | Blinking | O L I | GPD 333 drive shutdown; electronic thermal overload detected. |
| Overload ( Drive ) | LIT | Blinking | - L 2 | GPD 333 drive shutdown; electronic overload operated (at $150 \%$ for one minute ). |
| Overload ( Overtorque) | LIT | Blinking | o L 3 | GPD 333 drive shutdown; overtorque detection programmed for shutdown ( coast stop ), and GPD 333 output current exceeded detection level ( constant no-41) for longer than overtorque detection time ( constant no-42). |

### 4.3 FAULT FUNCTIONS - Continued

| FUNCTION | STATUS LEDS |  | DIGITAL OPERATOR DISPLAY | DESCRIPTION |
| :---: | :---: | :---: | :---: | :---: |
|  | DS1 (GRN) | DS2 (RED) |  |  |
| External Fault Signal Input | Blinking | Blinking | E F 3, 4 or 5 | GPD 333 drive shutdown; external fault signal input is present at control circuit terminal 3, 4 or 5. |
| Initial Memory Fault | Off | Off | CPFOO | GPD 333 Failure. * |
| Transmission Error | Off | Off | CPFOI | GPD 333 Failure. * |
| Improper Constant | LIT | LIT | CPFO4 | GPD 333 CPU not properly initialized. * |
| A/D Converter Fault | LIT | LIT | CPFO5 | GPD 333 Failure. * |

* Make sure that all constant settings have been recorded. Then enter an initialization setting into constant no. $\mathbf{0 0}$. Cycle power off and back on once to see if the CPF fault has cleared; if not, the drive must be replaced.


### 4.4 WARNING FUNCTIONS.

| FUNCTION | STATUS LEDS |  | DIGITAL OPERATOR DISPLAY | DESCRIPTION |
| :---: | :---: | :---: | :---: | :---: |
|  | DS1 (GRN) | DS2 (RED) |  |  |
| Overtorque Detection | Off | Blinking | (Blinks) o L 3 | Overtorque detection programmed to continue operation after overtorque detection, and GPD 333 output current has exceeded overtorque detection level for longer than overtorque detection time. |
| FWD / REV <br> Simultaneous On | Off | Blinking | (Blinks) E F | Motor stops according to selected GPD 333 stopping method, when FWD RUN and REV RUN commands are closed at the same time. ( If either input is removed, motor operation will resume.) |
| Undervoltage Display | Off | Blinking | (Blinks) Uu | Displayed, while GPD 333 is in stopped condition, when main circuit DC voltage is less than 210 V for 230 V rated drive, or less than 420 V for 460 V rated drive. |
| External Base Block | Off | Blinking | (Blinks) $\boldsymbol{b} \boldsymbol{b}$ | Displayed when external Base Block signal is applied. ( Motor operation will resume when Base Block input is removed. ) |
| Overvoltage | Off | Blinking | (Blinks) ou | Displayed, while GPD 333 is in stoped condition, when main circuit DC bus voltage is more than 410 V for 230 V rated drive, or more than 820 V for 460 V rated drive. |
| Overheat | Off | Blinking | (Blinks) $\mathbf{O H}$ | Displayed, while GPD 333 is in stopped condition, when thermistor has exceeded rating. |

NOTE: A set of detailed fault troubleshooting flowcharts can be obtained from MagneTek, by sending in the reply card located inside the back cover of this manual. If the reply card has already been removed, contact your MagneTek sales representative for assistance.

## GPD 333 SPECIFICATIONS For 230V Drives

|  | MODEL DS | 020 | 021 | 022 | 029 | 023 | 024 | 025 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Max. Applicable <br> Motor HP (kW) (Note 1) |  | $\begin{gathered} 1 / 4 \\ (0.2) \end{gathered}$ | $\begin{gathered} 1 / 2 \\ (0.6) \end{gathered}$ | $\begin{gathered} 1 \\ (0.75) \end{gathered}$ | $\begin{gathered} 1.5 \\ (1.1) \end{gathered}$ | $\begin{gathered} 2 \\ (1.5) \end{gathered}$ | $\begin{gathered} 3 \\ (2.2) \end{gathered}$ | $\begin{gathered} 5 \\ (3.7) \end{gathered}$ |
| Weight Lb (kg) |  | $\begin{gathered} 2.43 \\ (1.1) \end{gathered}$ | $\begin{gathered} 2.43 \\ (1.1) \end{gathered}$ | $\begin{aligned} & 4.41 \\ & (2.0) \end{aligned}$ | $\begin{gathered} 4.41 \\ (2.0) \end{gathered}$ | $\begin{gathered} 4.41 \\ (2.0) \end{gathered}$ | $\begin{aligned} & 13.23 \\ & (6.0) \end{aligned}$ | $\begin{aligned} & 13.23 \\ & (6.0) \end{aligned}$ |
| MCCB Rated Current ( A ) |  | 3 | 7 | 15 | 15 | 15 | 30 | 30 |
| Cooling Method |  | Self-cooling |  |  |  |  | Forced fan cooling |  |
| $\begin{aligned} & \mathrm{O} \\ & \mathrm{U} \\ & \mathrm{~T} \\ & \mathrm{P} \\ & \mathrm{U} \end{aligned}$ | Rated output capacity (kVA) | 0.6 | 1.2 | 2 | 2.6 | 2.8 | 4.4 | 6.8 |
|  | Max. continuous output current ( A ) | 1.5 | 3 | 5 | 6.5 | 7.3 | 11 | 17.5 |
|  | Max. output voltage | 3-phase, 200 to 230V (Proportional to max. input voltage ) |  |  |  |  |  |  |
|  | Max. output frequency | Up to 400 Hz available by constant setting |  |  |  |  |  |  |
| $\begin{array}{ll} \mathrm{P} & \mathrm{~S} \\ \mathrm{O} & \mathrm{P} \\ \mathrm{~W} & \mathrm{P} \\ \mathrm{E} & \mathrm{P} \\ \mathrm{R} & \mathrm{Y} \end{array}$ | Rated voltage / rated frequency | $\begin{gathered} \text { 3-phase, } 200 \text { / } 208 \text { / 230V, 50Hz, } \\ 200 / 208 / 220 / 230 \mathrm{~V}, 60 \mathrm{~Hz} \end{gathered}$ |  |  |  |  |  |  |
|  | Allowable volt. variation | $\pm 10$ \% |  |  |  |  |  |  |
|  | Allowable freq. variation | $\pm 5$ \% |  |  |  |  |  |  |

## GPD 333 SPECIFICATIONS For 460V Drives

|  | MODEL DS | 040 | 041 | 042 | 043 | 044 | 045 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Max. Applicable <br> Motor HP (kW) (Note 1) |  | $\begin{gathered} 1 / 4 \\ (0.4) \end{gathered}$ | $\begin{gathered} 3 / 4 \\ (0.6) \end{gathered}$ | $\begin{gathered} 1 \\ (1.1) \end{gathered}$ | $\begin{gathered} 2 \\ (1.5) \end{gathered}$ | $\begin{gathered} 3 \\ (2.2) \end{gathered}$ | $\begin{gathered} 5 \\ (3.7) \end{gathered}$ |
| Weight Lb (kg) |  | $\begin{gathered} \hline 6.61 \\ (3.0) \end{gathered}$ | $\begin{gathered} 6.61 \\ (3.0) \end{gathered}$ | $\begin{aligned} & \hline 6.61 \\ & (3.0) \end{aligned}$ | $\begin{gathered} 6.61 \\ (3.0) \end{gathered}$ | $\begin{aligned} & 13.23 \\ & (6.0) \end{aligned}$ | $\begin{aligned} & 13.23 \\ & (6.0) \end{aligned}$ |
| MCCB Rated Current ( A ) |  | 3 | 3 | 7 | 7 | 7 | 15 |
| Cooling Method |  | Self-cooling |  |  |  |  | Fan |
| $\begin{aligned} & \mathrm{O} \\ & \mathrm{U} \\ & \mathrm{~T} \\ & \mathrm{P} \\ & \mathrm{U} \\ & \mathrm{~T} \end{aligned}$ | Rated output capacity (kVA) | 0.9 | 1.4 | 2.2 | 3.4 | 4.1 | 6.9 |
|  | Max. continuous output current ( A ) | 1 | 1.6 | 2.6 | 4 | 4.8 | 8 |
|  | Max. output voltage | 3-phase, 380 to 460V ( Proportional to max. input voltage ) |  |  |  |  |  |
|  | Max. output frequency | Up to 400 Hz available by constant setting |  |  |  |  |  |
| $\begin{array}{lll}  & S \\ P & U \\ O & \mathrm{P} \\ \text { W } & \mathrm{P} \\ \mathrm{E} & \mathrm{~L} \\ R & Y \end{array}$ | Rated voltage / rated frequency | 3-phase, 380 / 400 / 415 / $440 / 460 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ |  |  |  |  |  |
|  | Allowable volt. variation | $\pm 10$ \% |  |  |  |  |  |
|  | Allowable freq. variation | $\pm 5$ \% |  |  |  |  |  |

Notes:

1. A standard 4 pole motor is used for determination of maximum applicable motor horsepower.

## GPD 333 SPECIFICATIONS - All Drives

## CONTROL CHARACTERISTICS

- Control Method: Sine Wave PWM
- Frequency Control Range: $0.1-400 \mathrm{~Hz}$
- Frequency Accuracy: Digital Reference: $0.01 \%\left(-10\right.$ to $+40^{\circ} \mathrm{C}$ ); Analog Reference: $0.1 \%\left(25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}\right)$
- Frequency Setting Resolution: Digital Operator: 0.1 Hz ; Analog reference: $0.06 \mathrm{~Hz} / 60 \mathrm{~Hz}$
- Output Frequency Resolution: 0.1 Hz
- Overload Rating: 150\% rated output current for one minute
- Frequency Setting Signal: 0 to +10 Vdc (20K ohms); 4-20mA (250 ohms)
- Accel / Decel Time: 0.1-600 sec. (Accel and decel time set independently)
- Braking Torque: Approximately 20\% (braking transistor built in). Up to $150 \%$ possible with braking resistor option.
- Voltage/frequency Pattern: Any desired program V/f pattern can be set
- Stall Prevention Level: Stall level can be adjusted


## PROTECTIVE FUNCTIONS

- Momentary Overcurrent: Coast stop at approximately 200\% rated current
- Overload: Coast stop at approximately $150 \%$ rated current for one minute
- Motor Protection: Protection by programmable electronic thermal overload
- Overvoltage: Coast stop at main circuit DC voltage of exceeding 410V for 230V drives, 820 V for 460 V drives
- Undervoltage: Coast stop at main circuit DC voltage below 210V for 230V drives, 420V for 460V drives
- Momentary Power Loss: Factory Setting: 15 ms ; for $1 / 4-1 \mathrm{HP}$, 1 sec . ride-thru when enabled; for 2-5HP, 2 sec . ride-thru when enabled
- Radiation Fin Overheat: Protection by thermistor (only in forced fan cooled drives)
- Grounding Protection: Protection by electronic circuit
- Charging Display: "CHARGE" lamp remains lit until main circuit DC voltage is 50 V or less


## GPD 333 SPECIFICATIONS - All Drives - Continued

## OPERATIONAL SPECIFICATIONS

- Input:

Operation Signal: 2-Wire or 3-Wire
External Fault: Output stopped (coast stop) by external fault input (programmable)
Reset: Fault reset input terminal (programmable)
Multi-step Speed Setting: Up to 5 preset speeds can be used in 2-Wire control; up to 4 preset speeds in 3-Wire control
Multi-function Input Selection: 15 functions can be selected (3 items) as multi-function input

- Output:

Operation Status (open collector output: Qty 2)
One Form-C contact

- | 10 programmable |
| :--- |
| -functions can be <br> selected |
- Built-in Functions: Frequency reference bias \& gain setting; frequency upper \& lower limit setting; DC injection current setting at start \& stop; analog monitor gain setting; speed search
- Display Function:

Analog Output Monitor (programmable): 0-10Vdc output, proportional frequency or current
Digital Operator, Model DS039 (optional): Setting frequency; programming constants; output current display; output frequency and rotating direction display; fault display

ENCLOSURE: NEMA 1

## ENVIRONMENT

- Location: Indoor (no corrosive gasses or dust)
- Ambient Temperature: NEMA 1: $-10^{\circ}$ to $+40^{\circ} \mathrm{C}\left(+14^{\circ}\right.$ to $\left.+104^{\circ} \mathrm{F}\right)$; Open chassis: $-10^{\circ}$ to $+45^{\circ} \mathrm{C}\left(+14\right.$ to $\left.+113^{\circ} \mathrm{F}\right)$; (no freezing)
- Storage Temperature: $-20^{\circ}$ to $+60^{\circ} \mathrm{C}\left(-4^{\circ}\right.$ to $\left.+140^{\circ} \mathrm{F}\right)$ temperature during shipping (for short period)
- Humidity: $90 \%$ RH (no condensation)
- Vibration: 1 G at less than 20 Hz ; up to 0.2 G at $20-50 \mathrm{~Hz}$


| Rated Input | ModelNo.GPD333- | Dimensions in Inches (mm) |  |  |  |  |  | Approx Weight lbs (kg) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | H | W | D | H1 | W1 | d |  |
| 230V | AOP3N4 | 6.77 (172) | 4.45 (113) | 4.07 (103.5) | 5.43 (138) | 3.66 (93) | 0.16 (4) | 4.4 (2.0) |
|  | AOP7N4, A001N4 | 6.77 (172) | 5.83 (148) | 5.59 (142) | 5.43 (138) | 5.04 (128) | 0.16 (4) | 6.6 (3.0) |
|  | A002N4, A003N4 | 8.94 (227) | 5.83 (148) | 6.83 (173.5) | 7.32 (186) | 4.96 (126) | 0.16 (4) | 8.8 (4.0) |
|  | A005N4 | 9.06 (230) | 7.87 (200) | 7.62 (193.5) | 7.28 (185) | 6.89 (175) | 0.16 (4) | 13.2 (5.9) |
| 460 V | $\begin{aligned} & \hline \text { BOP5N4, } \\ & \text { BOP7N4 } \\ & \hline \end{aligned}$ | 8.94 (227) | 5.83 (148) | 4.86 (123.5) | 7.32 (186) | 4.96 (126) | 0.16 (4) | 5.7 (2.6) |
|  | B001N4, B002N4 | 8.94 (227) | 5.83 (148) | 6.83 (173.5) | 7.32 (186) | 4.96 (126) | 0.16 (4) | 8.8 (4.0) |
|  | B003N4, B005N4 | 9.06 (230) | 7.87 (200) | 7.62 (193.5) | 7.28 (185) | 6.89 (175) | 0.20 (5) | 12.3 (5.5) |

GPD 333 NEMA 4/12 Dimensions

The standard GPD 333 NEMA 4/12 models include the DS039 Digital Operator factory-installed, as shown on page 56. Additionally, all GPD 333 NEMA 4/12 drives are provided with fuses for customer mounting. Although the drives have built-in short circuit protection, these fuses are provided as additional personnel protection in the event of a catastrophic output shorting condition.

## WARNING

Failure to utilize recommended input fusing could result in severe personal injury.

The following table provides recommended fuse block and replacement fuse data.

| Phase | Voltage | Drive Model <br> GPD333- | Fuse <br> Part No. | Fuse <br> Rating | Fuse Block <br> Part No. | Mfr |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 230 | A0P3N4 | ATM25 | 600 V 25 A | 30323 | Gould |
| 3 | 230 | A0P7N4 | ATM25 | 600 V 25 A | 30323 | Gould |
| 3 | 230 | A001N4 | ATM25 | 600 V 25 A | 30323 | Gould |
| 3 | 230 | A002N4 | ATM25 | 600 V 25 A | 30323 | Gould |
| 3 | 230 | A003N4 | CR2LS-50 | 250 V 50A | CM-1A | Fuji |
| 3 | 230 | A005N4 | CR2LS-50 | 250 V 50 A | CM-1A | Fuji |
| 3 | 460 | B0P5N4 | ATM15 | 600 V 15A | 30323 | Gould |
| 3 | 460 | B0P7N4 | ATM15 | 600 V 15A | 30323 | Gould |
| 3 | 460 | B001N4 | ATM15 | 600 V 15A | 30323 | Gould |
| 3 | 460 | B002N4 | ATM15 | 600 V 15A | 30323 | Gould |
| 3 | 460 | B003N4 | ATM25 | 600 V 25 A | 30323 | Gould |
| 3 | 460 | B005N4 | ATM25 | 600 V 25 A | 30323 | Gould |

## APPENDIX 1 DYNAMIC BRAKING OPTION

GENERAL. Dynamic braking (DB) enables the motor to be brought to a smooth and rapid stop. This is achieved by dissipating the regenerative energy of the AC motor across the resistive components of the Dynamic Braking option. For further details on dynamic braking, see the option instruction sheet shipped with the dynamic braking components.

The GPD 333 has an integral braking transistor. However, to make use of the Dynamic Braking function requires addition of either a MagneTek Braking Resistor (for 3\% duty cycle) or Braking Resistor Unit (for 10\% duty cycle). See Table A1-1. In either case, interface to external control circuitry is necessary to ensure that dynamic brake resistor overheating is communicated to the drive as a fault condition.

Table A1-1. GPD 333 DB Components

| $\begin{gathered} \hline \text { GPD } 333 \\ \text { Drive } \end{gathered}$ |  | MagneTek DB Components |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Braking Resistor |  | Braking Resistor Unit |  |
| Voltage | HP(CT) | Part No. | Qty Reqd | Part No. | Qty Reqd |
| 2 | 1/3 | 50185531 | 1 | N/A | - |
|  | 3/4 | 50185430 | 1 | 5P41-0742 | 1 |
| 3 | 1 | 50185430 | 1 | 5P41-0742 | 1 |
|  | 2 | 50185431 | 1 | 5P41-0743 | 1 |
| 0 | 3 | 50185432 | 1 | 5P41-0744 | 1 |
|  | 5 | 50185433 | 1 | 5P41-0745 | 1 |
| 4 | 1/2 | 50185530 | 1 | N/A | - |
|  | 3/4 | 50185530 | 1 | 5P41-0752 | 1 |
| 6 | 1.5 | 50185530 | 1 | 5P41-0752 | 1 |
|  | 2 | 50185531 | 1 | 5P41-0753 | 1 |
| 0 | 3 | 50185532 | 1 | 5P41-0754 | 1 |
|  | 5 | 50185531 | 2 (1) | 5P41-0755 | 1 |

(1) The two braking resistors required by this drive are to be wired to drive terminals in parallel.

## INSTALLATION

This option must be installed by a TECHNICALLY QUALIFIED INDIVIDUAL who is familiar with this type of equipment and the hazards involved.

## WARNING

HAZARDOUS VOLTAGE CAN CAUSE SEVERE INJURY OR DEATH.

LOCK ALL POWER SOURCES FEEDING THE DRIVE IN THE "OFF " POSITION.

## CAUTION

FAILURE TO FOLLOW THESE INSTALLATION STEPS MAY CAUSE EQUIPMENT DAMAGE OR PERSONNEL INJURY.

## Preliminary Procedures

1. Disconnect all electrical power to the drive.
2. Remove the GPD 333 access cover.
3. Verify that voltage has been disconnected by using a voltmeter to check for voltage at the incoming power terminals.

## Braking Resistor (3\% Duty Cycle) Installation

NOTE: The 3\% duty cycle Braking Resistor is supplied with 6 inch leads.

1. Mount the Braking Resistor, along with an overload or thermostat, in a suitable metal enclosure.
2. Connect leads from the Braking Resistor to drive terminals, and make connections to external control circuit, as shown in Figure A1-1.
3. Reinstall the GPD 333 access cover.
4. Proceed to "ADJUSTMENTS" on page 61.


Figure A1-1. Typical Wiring of Braking Resistor (for 3\% Duty Cycle) to Drive

## Braking Resistor Unit (10\% Duty Cycle) Installation

## IMPORTANT

Since the Braking Resistor Unit generates heat during the dynamic braking operation, install it in a location away from other equipment which emits heat.

1. Mount the Braking Resistor Unit on a vertical surface, maintaining minimum 1.18 inch ( 30 mm ) clearance on each side and 5.91 inch ( 150 mm ) clearance top and bottom.
2. Open the Braking Resistor Unit terminal box to acess its terminal block. Connect the Braking Resistor Unit to the drive and external control circuit according to Table A1-2 and Figure A1-2.

Table A1-2 Wire Sizing For Braking Resistor Unit

| Terminals | $\mathbf{B , P}$ | $\mathbf{1 , 2}{ }^{\text {* }}$ |
| :--- | :---: | :---: |
| Lead Size (AWG) | $12-10$ | $18-14{ }^{*}$ |
| Lead Type | 600V etheylene propylene <br> rubber insulated, or equivalent |  |
| Terminal Screw | M4 |  |

* Power leads for the Braking Resistor Unit generate high levels of electrical noise; these signal leads must be grouped separately.

3. Close and secure the cover of the Braking Resistor Resistor Unit terminal box. Reinstall the GPD 333 access cover.
4. Proceed to "ADJUSTMENTS" on page 61.


Figure A1-2. Typical Wiring of Braking Resistor Unit (for 10\% Duty Cycle) to Drive

## ADJ USTMENTS

Program constant no-20 to $1 X X X$ : this disables stall prevention during deceleration.

This page intentionally left blank.

## APPENDIX 2 GPD 333 SPARE PARTS

MagneTek does not offer spare parts for the GPD 333. Because of the compact size of the drive and the inherent difficulty of properly installing replacement parts, MagneTek recommends changing out the complete drive unit if troubleshooting determines that it is defective.

A MagneTek authorized repair shop may be able to repair a defective drive, but this would necessitate longer down-time.

When changing out a drive unit, make sure that any of the following separately priced options are transferred to the replacement unit, unless they are already present on the replacement unit:

- Attached to control terminals:
- 24 Vdc Interface board
- 115 Vac Interface board
- Auxiliary Potentiometer Card
- Attached to heat sink:
- Din Rail Mount
- Mounted on front of drive:
- Digital Operator (DS039) [ Note: This is a standard part of a NEMA 4/12 GPD 333; therefore, DO NOT remove it. ]
- Remote Interface Panel (DS090)
- Analog Speed Input board (DS091)
- Any serial communication intereface board (NCL/Modbus Plus, DeviceNet, SDS, etc.)

NOTE: If the defective GPD 333 has Modbus RTU interface (a factory installed option), the replacement GPD 333 must also have the interface factory installed.

Be sure to program the replacement drive unit as required for installed options; see their separate instruction sheets, which should already be on hand.

Please send more information on the following MagneTek products:
$\qquad$ Adjustable Frequency Drives HP
for $\qquad$
(Application)

## Direct Current Drives for (Application)

$\qquad$

Name
Position / Title $\qquad$
Company
Address
City
State ZIP
Telephone ( ) $\qquad$

## Please send a free set of GPD 333 Troubleshooting Flowcharts

Name
Position / Title $\qquad$
Company $\qquad$
Address
City
$\qquad$
$\qquad$
State ZIP
Telephone
( ) $\qquad$

Drive used on: $\qquad$
Purchased from: $\qquad$

# Ken Cook Co. to print properly sized preaddressed mailer in this area. 

> Ken Cook Co. to print properly sized preaddressed mailer in this area.

## GPD 333

Data subject to change without notice. GPD and Century are trademarks of MagneTek, Inc..

## MagneTek

Drives \& Systems
16555 W. Ryerson Road, New Berlin, Wisconsin 53151 (800) 541-0939, (414) 782-0200, FAX (414) 782-1283

## MagneTek


[^0]:    ${ }^{1}$ A standard 4-pole motor is used to determine applicable motor horsepower.

