YASKAWA

Product Application Note

» » =
« r
- - . - [}
«
| Maares Fosman -1 i (*hefining the three axes in thiz project?)
=l 1
sy ‘ — §
s e . ‘g oy e 4 busLRetbdiste e OINL (fServolist)
|' & 5 ExtEocoder.Ref. hisNan := OINTRLL; (]
LSy . 6 Vicceal.Bef.kxishws := DINTRZE; (™
::: M
P = ann e e
. £ | = [{ & (*Defining the sensor for high speed reg
& [grr—, LA
10
it -

LatchSensor.Latch. Trigger.Biv := UINTF1: (*Sensor wired to EXT1 on servopack?)

H
b
]
i
i
b

< FLEXIBIL 7,
TRONiCg

S0, |

LaR WALTY g,

A A A
IEq NNEE:

Applicable Product: MPiec Controllers with MotionWorks IEC

Rev 1.1

Doc#:TN.MP2000IEC.01 Copyright Yaskawa Electric America ©2010

Page 1 of 58

September 18, 2012

YASKAWA

Subject: Application Note Doc#: TN.MP2000IEC.01

Product: MPiec controllers with
MotionWorks IEC

Title: MPiec Programming Best Practices Guideline

1 APPLICALION OVEIVIEW ...t e e e e e e e e et e et et e aeabb b s e s e e e eaeeaeaeeaeeeeeeesnnes 4
1.1 Why Use a Yaskawa Machine Controller? ... 4
1.2 Whatis in MPiec Programming Best Practices Guideline?ooooviiiiiiiiiiiiinnnenn. 4
1.3 Benefits of USiNg MPIieC BeSt PracCtiCeS:........c.uuuvuuiuiiiiiiiiiiiieeee e 5
- DESIgN LEVEI BENETIS ...ttt e e e e e e e e e e aeeeeeaenes 5
- Implementation Level BENETILS 5
- SUPPOIt LEVEI BENETILS ... e e e e e e e e e e e e e aeaaae 6

2 Getting started — Using the best practices guidelineoouviiiiiiiiiiiiis 7

3 Step 1 — Machine Information Gathering...........oooooeiiiiiiiiiiiii s 8

4 Step 2 — Control System Performance REVIEWooooiiiiiiiiiiiiiiiiiiia e 10
4.1 Key questions to address before starting program design and development: 10
A 11011 T od = U SRRSO PPPPUPPPRPPIN 10
4.3 Sample Application: Planning tasks intervals and prioritieS..........cccccceveevvviiiiiineennns 12

5 Step 3 — Programming Style SeleCtioN.........ccooiiiiiiiiiiiiiiiieeerr e, 16

6 Step 4 - Program Architecture FrameworkK ... 17

7 Step 5 —Code DEVEIOPMENToiiiiiiiiiiiiie ettt e e e e e e e e e e e e eeeeeeeeeneae 19
7.1 Start up Task (INtAliZatioN)ooeeieiiiii e 20
7.2 CONtrol POU (STAUS) ..oiiiieee it e e e e e et e et s e e e e e e e e e e e aaaees 21
%S T @ N [01 (T ¢ £= ol TP P PP PPPPPPPPPPPPPPRN 22
7.4 Communication INTEITACE..........ooiiiiieie e 24
7.5 Power up, alarm management, E-StOP rECOVEIYccooiiiiiiiiiiiiiiiiiiiiae e 26
7.6 AXiS MONItOring @nd STATUSccevviiiiiiiiiiiiiie et a e e e e e e e e aae e 30
AN [0 To [|1 o SRS 31
4= T = (011011 o ISR 32
7.9 AULOMALIC PrOUCTIONt e et e e e e e e e e eaea e 33

7.9.1 PoINtt0 POINT MOTION: ..ottt e e e e e e e e e e 34
7.9.2 SYNCAIONOUS MOTION: ...uuiiiiiiiiiee e e e e e e e ae e eas 34
7.10 Maintenance and UPGIradeooooieeieiuiuiuiiiiae ea e 34
7.10.1 Amplifier replaCemeEnt:ccooiiiiiiii e ——————————————— 34
7.10.2 Servomotor repPlaCeMENT:ccoiiiiiiiiieieiiiiirre e e e e e e as 34

http://www.yaskawa.com/site/dmcontrol.nsf/(DocID)/MPER-83UM8U?opendocument........... 34

8 CodING BESE PraCliCESottt s e e e e e e e e e e e e e eeeeeesnesennnnnn 35
8.1 Assigning variable Names and grOUPSuuiiiiiiiiiieeeeeieee et a e 35
8.2 Use of Task time monitoring in order to Optimize Project.............uvvveveiiiiiiinieeeeeennn. 36
8.3 USE Of PLCOPENTOOIBOXciiiiiiiiiiiiiiieitiiae ettt e e e e e e e 37
8.4 User created function DIOCKS ..o 38

September 18, 2012 Page 2 of 58

YASKAWA

Subject: Application Note Doc#: TN.MP2000IEC.01

Product: MPiec controllers with

MotionWorks IEC

Title: MPiec Programming Best Practices Guideline

8.5 All FB outputs should be connected for easy trouble shootingcccceeeveieieeeeennn. 39
8.6 Latching execute bits for FB @XECULIONuiiiiiiiiiieieii e 39
8.7 Use of local vs. global variables ... 40
8.8 Function BIOCK COPY @and PaS.........uuuuuiuiiiiiiiiiiieieeee ettt a e e e 40
8.9 Use of structures for axis Motion Parametersooooiiiiiiiiiiiiiiiiiii e 42
8.10 Write a coil at only one location in the program ...t 43
8.11 Keep the number of set-reset combinations as low as possible ..., 44
8.12 Tuning and PerfOrMAaNnCEccouiiiiiiiuiiiiiiiiiie st a e e e e e e e eaeaes 44
9 Code Inspirationals and FAQSoouuiuiiuiiiiii ettt a e e e e e e e eeeeeraaraeae 45
9.1 Implementing Enable logic for function bIOCKS..............cooiiiiiiiiiiiii e 45
9.2 Are there limits on POUSs or variables in @ project?ouvvvvvviviviviiiiiiininineeeeeeeeen 46
9.3 What is the effect of using different power rails for ladder rungs?ccccoeeeveeeernn. a7
9.4 How does RETURN work in MotionWorkslEC programming.............ccceeeeeeeneeeeeeeeenn. 50
9.5 Rollover in MOtIoNWOIKS TEC...........uuiiiiiiiiiiiiiiiie e 53
9.6 Can variable descriptions be included in the editor Windowccccceveiiiiiiinnennnn. 54
9.7 Best practices in structured text programming...........cooeeoiiiiiiiiiiiiiiiii e 55
9.8 Best practices in Sequential Function Chart (SFC) programmingccceeeeeeeeen. 56
9.9 Best practices in Ladder Diagram (LD) programming................uuvviviiiiiiiiiiieeeeeeennnnn, 57

September 18, 2012 Page 3 of 58

YASKAWA

- o Product: MPiec controllers with)
Subject: Application Note MotionWorks [EC Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

1 Application Overview

This document is a guide to implement best programming practices during the design and architecture of a
MotionWorkslEC project for the MPiec series controller. The main topics discussed in this document are an
overview of the design process, program architecture, and some good coding practices.

1.1 Why Use a Yaskawa Machine Controller?

General automation machine controllers are beneficial in that they offer a unique flexibility for programming the
operation of functions and sequences within a machine. Whether the application warrants high performance
point-to-point indexing, or complex motion profiling with on-the-fly phase shifting — all benefit from tightly coupled
motion and machine sequence logic control. As factory floor production requirements increase, machine cells
must also increase their own production capability, and precise control of complex motion becomes vitally
important to insure production rates are met and continue high quality product yield. Many independent PLCs and
Motion Controllers reach a limitation when programmers strive to achieve these new and improved line production
performance benchmarks, and unfortunately result in a bottleneck when trying to increase the performance of a
system. This bottleneck can often be caused by control systems latencies in data handshaking or lack of
synchronization, not only from cell controller to cell controller, but also within a single controller’s functional
module interfacing. A good machine control platform tightly couples high performance motion control capabilities
with machine sequence logic, and provides the foundation and scalability necessary to achieve performance in a
changing environment.

True machine control tightly integrates the following: high and low performance features, priority setting and
adjustment, determinism and predictability, synchronization of tasks, scalability without sacrificing performance,
integration of peripheral components, and a focus on precise motion control. The result is smooth motion, less
machine jerk, less mechanical vibration, less heating, smaller and more efficient motor sizes, higher machine
reliability and longer life cycles — all with the advantage of built in future expansion.

To take advantage of the power of total machine synchronization and extend this capability across a wide range
of performance requirements - from low performance, low cost machines to high performance, higher priced
machines, a scalable machine control platform is offered by Yaskawa: the MPiec Series Machine Controller. To
harness the power of flexibility and performance while maintaining an overall ease of use, Yaskawa introduces
the MPiec Programming Best Practices Guideline.

1.2 What is in MPiec Programming Best Practices Guideline?

This document is a guideline to lead the controls engineer down a successful path that will not only increase
programming productivity for any given machine, but also code reusability for an entire line of complementary
machines which can be offered for different user requirements. This document helps the programmer to realize
the benefits of following best practices:

September 18, 2012 Page 4 of 58

YASKAWA

Subject: Application Note Doc#: TN.MP2000IEC.01

Product: MPiec controllers with
MotionWorks IEC

Title: MPiec Programming Best Practices Guideline

1.3

Benefits of Using MPiec Best Practices:

Benefits can be realized at all levels of machine development from design to implementation to field support. In
summary, all benefits work towards lowering the total cost of ownership in the machine’s product lifecycle.
- Design Level Benefits

Programming Method Selection: A flexible machine control allows several ways to program motion control.
This guideline helps the programmer select the best programming method for a given application type
within IEC 61131-3 standard programming environment.

Standardized Model: This guideline helps the programmer develop a robust framework and controls
architecture, and secures a solid platform for code development. In addition, within the guideline are
several examples of standardized programming methodologies that leverage template examples.
Step-By-Step Basic Design: There is a higher probability of getting it right the first time if a step-by-step
approach is followed, reducing the possibility of missing important steps along the way. This guideline
provides a step-by-step flowchart of machine development features.

Risk Reduction: The probability of completing development projects on time, and on budget will be high

through the use of MPiec Programming Best Practices.

- Implementation Level Benefits

Pre-Defined Code & Scalability: This guideline provides pre-defined code and canned functionality
recommendations, which in turn reduce development and debugging time. More efficient code
development can be realized which affords more time to be spent on process related issues.

Optimized Performance & Robustness: Code efficiency is dependant upon good implementation of well
thought out architecture. If the code is written right, performance of the control system can be optimized
resulting in lower scan times, increased motion performance, and increased performance of device
interfacing. This guideline encourages optimized performance in implementation resulting in robust code
that works.

Organization: This guideline makes programming easier because features are compartmentalized for
streamlined implementation. An organization layout is provided for variable/tag usage, alarm interlocking,

program flow, axis control management, I/O usage, etc.

September 18, 2012 Page 5 of 58

YASKAWA

- o Product: MPiec controllers with)
Subject: Application Note MotionWorks [EC Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

- Support Level Benefits
e Comprehensive Training: Using Best Practices supplements Yaskawa’s product training, allowing the

skills learned to become better utilized.

o Transferable Skills: Using best practices across multiple machine designs reduces risk by taking
advantage of architecture knowledge acquired on previous designs.

e Common Look and Feel: Using commonly defined, standardized methods will make the system easier to
support when the machine is in production. Tech support engineers can leverage the same best practices.
Maintenance and troubleshooting become easier on a global basis. MPiec Best Practices is not meant to

replace open standards, but rather to compliment standards suggested by PLCopen and IEC 61131-3.

September 18, 2012 Page 6 of 58

YASKAWA

- o Product: MPiec controllers with)
Subject: Application Note MotionWorks [EC Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

2 Getting started — Using the best practices guideline

This Best Practices Guideline is designed to help the controls engineer better utilize the strengths of Yaskawa
technology, allowing them to leverage the unique flexibility of functionality that the MPiec platform offers, and best
align the implementation with the specifics of the application requirements. Understanding the control system’s
benefits and constraints early in the design process will result in a higher probability of successful machine design.
This guideline will serve as a machine controller design and development aid, presenting program architecture,
programming recommendations, as well as actual code examples and pre-defined templates to get started. It also
provides experienced controls engineers a benchmark to compare against, allowing them to make more informed
decisions between known practical solutions, and new, unique ideas for a better method.

First time users will find this MPiec Best Practices guideline a useful tool to guide them through a recommended
step-by-step procedure for controls development on for an automated machine with tightly integrated motion
control. More experienced users will find this MPiec Best Practices guideline as a useful reference tool for specific
techniques and code modules that can be readily used. This guideline is formatted to provide the specific
techniques, with a Step-by-Step framework.

The following diagram illustrates the recommended step-by-step procedure when developing a performance
machine control system.

Step 1: Step 2: Step 3: Step 4:
Machine — Control System — Programming —| Program
Information Performance Style Selection Architecture
Gathering Review Design

v

Step & Step 6:
——P>) .
Code ocumentation
&
Development Performance
Verification

Figure 1: Steps for development of machine control code

September 18, 2012 Page 7 of 58

YASKAWA

Subject: Application Note

Product: MPiec controllers with
MotionWorks IEC

Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

3 Step 1 — Machine Information Gathering

In order to implement a structured, reliable and efficient machine control system, the machine requirements
should be gathered thoroughly in a formal manner to ensure that details of the design and functionality are not
overlooked. The sequences of steps in machine requirement gathering are shown in Figure 2.

N
|,/ START)
\ ,/

Machine Block
Diagram

!

Product Data
1. Max/Min machine speed l
2. product sizes
3. product attributes

Machine Timing Diagram

4_machine speed vs. product size l
10 List control block diagram
Each Pt. Description/Function/
Dependancies l

User Interface
Data setting/selection/input
security levels

Axis List
prod. oper. control mode

Fault Diagnostics & Recove
Network Interfacing specifications 1 W%rning indication i

1. Physical Layers 2. Fault indication
2. Protocol Layers ¢

i Data Storage & Data reporting
requirements

Machine State Diagram

i \

Variable/Tag/Symbol/Constant
requirements

Identify MachineSequences
Flowchart sequences of Homing,
Production, Fault Recovery, etc. l

Create Basic Design Document

.

END

I/ |
. __/'

Figure 2: Basic Design process

September 18, 2012 Page 8 of 58

YASKAWA

- o Product: MPiec controllers with)
Subject: Application Note MotionWorks [EC Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

Gathering the above mentioned data thoroughly helps in many ways. A few advantages are:
1) Easy to design machine control algorithm and timing
2) Code can be optimized
3) Easy to startup and validate as Key Performance Indicators (KPI) are clearly defined
4) Easy to understand machine operation and control at a later stage

A worksheet that can be used to start gathering machine requirements is available at:
http://partner.yaskawa.com/site/dmcontrol.nsf/(DoclD)/BFAR-6SSUHB?0pendocument&login

(You must be logged in to view this document, as it is secure. If you are not logged in and you click the link, you
will be asked to login first. Once logged in the file will appear.)

A basic design document serves as a blueprint for all things related to controlling the machine. The design
document contains topics like 10 timing diagrams, conceptual machine sketch, control diagrams, move timings,
BOM, HMI interface variables, machine cycle sequences etc. A template of the basic design document is
available at:
http://partner.yaskawa.com/site/dmcontrol.nsf/(DoclD)/AHAR-6BGQJ7?0pendocument&login

(You must be logged in to view this document, as it is secure. If you are not logged in and you click the link, you
will be asked to login first. Once logged in the file will appear.)

September 18, 2012 Page 9 of 58

YASKAWA

- o Product: MPiec controllers with)
Subject: Application Note MotionWorks [EC Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

4 Step 2 — Control System Performance Review

Once the requirements and functionality of the machine are documented, the controls programmer can evaluate
the optimum methods for implementing machine and motion control. The machine block diagram, sequences,
timing diagram and motion kernel control block diagram will be key in evaluating the programming methods and
application scan intervals to use in the application project.

4.1 Key questions to address before starting program design and development:

1. What is the rate of production you wish to achieve on this machine?

2. Given the rate of production, what is the cycle time?

3. What are the inputs and outputs that are part of a cycle?

4. What rate should the inputs and outputs achieve to keep up with production rate?

5. Should the 10 be tied to the MECHATROLINK network, or on the controller back plane or on
Ethernet with one of the built in communication protocols (OPC, MODBUS TCP, EtherNet/IP)

6. What update rates are required for communication from a PC or HMI?

7. If motion demands synchronous motion like camming, what rate of controller interpolation is
required? (MECHATROLINK/DPRAM update)

8. Does motion or I/O demand higher priority? Do 10 and motion have the same priority?

9. Is MotionWorkslEC Pro or MotionWorkslEC Express required for this application?

MotionWorks IEC Pro allows the user to assign different scan intervals and priorities for up to 16
individual tasks. With multiple tasks fast updates can be achieved for critical tasks by assigning slow
update rates for non critical tasks. This is not achievable through MotionWorkslEC Express which
runs with only one task.

4.2 Timing chart

Once the rate and update intervals are known, the various I/O devices and motion functionality can be assigned
to tasks. Task intervals and individual task priorities can be set. A sample timing chart showing time allocation of
CPU resources for an application with three tasks (fast, medium and slow) is shown in Figure 3a.

Execution sequence and Timing Facts:

1. MECHATROLINK commands get highest priority (user does not have to do anything to set this)
2. User should assign the task requiring the shortest time interval the highest priority (0).
3. If the highest priority task uses almost all of the time allotted to it, there will be less time for lower

priority tasks to execute. If the lower priority tasks do not have enough execution time, PLC watchdog
time outs will occur.

September 18, 2012 Page 10 of 58

YASKAWA

- o Product: MPiec controllers with)
Subject: Application Note MotionWorks [EC Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

4, Inputs are read at the beginning of the task they are associated with and outputs are written when the
task they are assigned to finishes execution. This means that the outputs can get written in unequal
intervals depending on how long it took the particular task to execute. For network 1/0
(MECHATROLINK, MODBUS TCP, Ethernet/IP), the outputs will be updated on the next data
exchange, so those outputs will be synchronous with the network scan.

5. Default or background tasks may or may not run depending on whether other tasks complete executing
within their allotted times. Default/Background tasks execute only after all other tasks complete
executing. They run in the time interval between the completion of the slowest task and the next
interrupt of the highest priority task. This can be seen from Figure 3a.

Slawe tesk

hedium task

Fasttask (FT)

Inputs resd*

RALIMK ! ! !
task | ! !
— i
]

Cutputs written®

MAL I | i
L1 I
[System Task : : : ; | :
Sorvo gl | 1 I (O
= Fast § : i i : : :
E " Priority 0 Wm ! mﬂ : Wﬂ ; ”-m-” i ”-I-H-” E
5 < g Medium B - : ! !
E z < Prinrity 7 Ei% 4 %Ei ' % @ E E
s | g Slow i ii ! i ! ; :
< o Priority 15 i %m% EE | E%ﬁ :
Default / i |3 E

\ Background : : ; : Eir |_H—

*If I is assioned to medium task

Figure 3a: Task sequence and order of operations

It is important to assign I/O drivers to the appropriate task in order to ensure that the 1/0 signals are updated in
the application program at the desired rates. Along with the IO drivers being associated to a task, the Program
Organization Unit (POU) with logic that uses the 10 should also be associated with the same task such that
appropriate updates are seen at the application level. The most common devices that require task assignment
for drivers are:

September 18, 2012 Page 11 of 58

YASKAWA

- o Product: MPiec controllers with)
Subject: Application Note MotionWorks [EC Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

1. Controller 110
2. Servo I/O
3. Communication 1/0 (MODBUS and EtherNet/IP)

10 driver updates can be tied to a particular task in the hardware configuration tool. There is a difference
between poll period (set when the MPiec controller is a client or scanner) and task update. Poll period is the rate
at which the client or scanner requests data from a server or adapter. The task update is the rate at which data
gets refreshed in the application level (in the project).

4.3 Sample Application: Planning tasks intervals and priorities

Consider the rotary knife application detailed in Figure 3b. The hardware consists of an external encoder (master
axis), a servo axis coupled to the tool, an LIO_01 card, a high speed sensor, and an EtherNet/IP bar code reader.
The part arrives along the conveyor and gets scanned by the reader. The bar code is read and data is passed
over to the MPiec controller over EtherNet/IP. The bar code reader is the adapter in this protocol. 50 ms after the
part passes the bar code reader, the part is detected by the latch sensor which is used to latch the position of the
conveyor with the encoder position read in through the LIO card. Once a part is detected, the controller has 50
ms to get the servo ready to synchronize with the master axis such that the tool makes contact with the leading
edge of the part. Once the cam cycle for a part is complete, a digital output is fired based on the bar code reader.
It is important that the digital output be fired within 10 ms of the cam cycle completion for the product. The gap
between successive products is 50 ms with a tolerance of 10 ms.

High speed latch sensor

i
EtherNet/lP bar code reader
/ Servo actuated tool
50 ms 50 ms Q

= Part

Master conveyor

External encoder

Figure 3b: Sample rotary knife application schematic

September 18, 2012 Page 12 of 58

YASKAWA

- o Product: MPiec controllers with)
Subject: Application Note MotionWorks [EC Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

Sample rotary knife application planning:

The first step of control system performance review is to answer the 9 questions from subsection 4.1.

1. What is the rate of production you wish to achieve on this machine?
1800 ppm

2. Given the rate of production, what is the cycle time?
50 ms

3. What are the inputs and outputs that are part of a cycle?
INPUTS: EtherNet/IP data, encoder master position tied into LIO card.
OUTPUTS: Digital outputs

4. What rate should the inputs and outputs achieve to keep up with production rate?
Specification says that ‘the digital output be fired within 10 ms of the cam cycle completion’. Associate
the Digital 10 to a task updating at 4 ms such that outputs are fired as soon as the cam cycle is done.
This will ensure that the outputs go out within 10 ms of the cam profile. Since new bar code data comes
every 50 ms, the EtherNet/IP driver needs to update data at 20 ms such that new data is ready in the
controller for logic to work on. The poll period can be set to 20 ms as well.

5. Should the IO be tied to the MECHATROLINK network, or on the controller back plane or on Ethernet

with one of the built in communication protocols (OPC, MODBUS TCP, EtherNet/IP)

Since no special requests were made regarding the location (remote or local) and number of digital 10,
IO on the controller option slot with the LIO card is assumed to be sufficient. The outputs can be
updated at faster than 10 ms on the LIO card.

6. What update rates are required for communication updates from a PC or HMI?
Since new bar code data comes every 50 ms, a 20 ms poll period for EtherNet/IP will be more than
sufficient.

7. If motion demands synchronous motion like camming, what level of controller interpolation is desired?

(MECHATROLINK/DPRAM update)

Not specified in application spec. 2 ms default MLINK update will be used

8. Does motion or I/O require higher priority? Do 10 and motion have the same priority?
Both have same priority

9. Should MotionWorkslEC Pro be used as opposed to Express?
MotionWorks IEC Pro is required in this application since the impetus is on for fast motion and fast I1O.
With MotionWorks IEC Pro, task intervals can be adjusted individually. Non critical tasks can be
assigned slow update rates. This allows critical tasks that include motion and 10 to be updated at a
higher rate without taxing the controller more.

September 18, 2012 Page 13 of 58

YASKAWA

- o Product: MPiec controllers with)
Subject: Application Note MotionWorks [EC Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

Some of the main motion functions required in this sample application are:
1) MC_TouchProbe

2) Y_CamsShift

3) Y_Camlin

4) Calculation to decide amount of shift for Y_CamShift

I/0 components critical for the application are:
1) Digital IO
2) EtherNet/IP data

The various functions can be associated to tasks as shown in the table below

Table 1: Application scan timing for sample application

Interval
Task (ms)* Priority* Functionality Reason
MC_TouchProbe and MC_TouchProbe.Done will
cam shift calculation trigger cam shift calculation
Fastest 4 0 Digital 10 Output needs to be fired within
10 ms of cam cycle
Y Camin Y_Camin.EndOfProfile is used
- to fire the digital output
Every part is 50 ms apart and
the shift is only 10 ms worth.
Fast 10 1 Y_CamsShift Within range mode can be
used for shifting the cam
profile
Medium 20 2 EtherNet/IP miw data is obtained every 50
AxisControl Applicati time | i
Slow 50 3 Jog pplication scan time is no
- critical for these functions
Homing

* Set by the user

September 18, 2012 Page 14 of 58

YASKAWA

— _— Product: MPiec controllers with)
Subject: Application Note MotionWorks [EC Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

A screen shot of the task tree from a project is shown below in figure 3c. The fastest scan that includes critical
motion functions (like MC_TouchProbe, Y_Camin and digital 10 in the rotary knife application) is set to 4 ms.

2488 Physical Hardware®
E@ Configuration : MP2000_Series”
E1-458 Resource : MP23005iec”
- 38 Tasks
E| Q Imitial : SYSTEM
------ @ Initialize ; Initialize™
|_'_| Iﬂ Slow : CYCLIC
[O] 10_Interface : 10_Interface™

; @ Power_alarm_k anagement : Por Task ool ——
0] ManualMode_lnterLack : Manuz as Sengsior =2ELIES
[0] JawHome : JawHome nterval |4— - -

: @ Jawog : Jawlog®

dildl

------ @ Feedlog : Feedlog® Pricrity: ID_ Cancel
|'_'| . 0T azk : CYCLIC
@E] CIID IDELESEE ‘Watchdog Time: |4l s Help
|_'_| edium
(O] Jawkonitar : J oritar” ~ Stack: — Optiots:
E /0] FeedManitar #Feedianitar”
0] Productionfsuppart © Production, ™ SpALL
E@ Fast: CYCLIC] &+ MEDIUM [JSAvE hPU
~.0[Main - Ma ' LARGE I=| EvPess
----- ih Global_ ariables™ ~ ™ NO SUSPEMD
..... [10_Configuration” = ALARGE

Figure 3c: Task tree from a project

September 18, 2012 Page 15 of 58

YASKAWA

Product: MPiec controllers with
MotionWorks IEC

Title: MPiec Programming Best Practices Guideline

Subject: Application Note Doc#: TN.MP2000IEC.01

5 Step 3 — Programming Style Selection

A key feature of IEC 61131-3 based programming languages is flexibility in language selection. IEC 61131-3
specifies four programming languages and an organizational tool (sometimes defined as a fifth programming
language). The four languages are Structured Text (ST), Function Block Diagram (FBD), Ladder Diagram (LD),
and Instruction List (IL). Sequential Function Charts (SFCs) can be used to organize programs for machine
seguences.

Unlike structured text or ladder, Sequential Function Charts (SFCs) are not a programming method by itself.
SFCs offer a framework where different entities programmed in structured text or ladder can be encompassed in
one flowchart like structure. This can be used for step and sequence based machines (Pick and Place) or to
control processes with a state machine. Programming in structured text versus function block diagram is also a
matter of personal preference. In table 2 below, the qualifications OK, good and best have been made based on
ease of debugging and readability by a second person.

Table 2: Program functionality vs. Programming method

Structured Text Function block and Sequential function
ladder chart

Point To Point OK Good Good
Math Calculations Best OK -
and conditional
programming
Multi axis OK Best -
synchronized
motion
State based - - Best
sequential process
control
Maintenance - OK (for small code) Best
Bit I/0O Interfacing - Best -
Speed of Execution Best - -

OK : Can debug and read to understand logic. (Can be time consuming though)

Good : Easy to debug code and easy to understand logic

Best : Easiest to debug and understand logic

September 18, 2012 Page 16 of 58

YASKAWA

- o Product: MPiec controllers with)
Subject: Application Note MotionWorks [EC Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

6 Step 4 - Program Architecture Framework

An overview of a recommended program structure is given below (Table 3).

SYSTEM TASK: Startup Task
Program and axes constant definitions
HIGH SPEED TASK: Automatic Production

High Speed Motion (Camming gearing, point to point motion etc)
MEDIUM SPEED TASK: Control (optional): To monitor machine state
I0 and communication interface (To verify 10 and HMI global variables)
Manual Mode
Jogging
Homing
LOW SPEED TASK: System Monitoring and Maintenance
Power up, alarm management
E-Stop management
Parameter saving/writing, absolute encoder position management

It is recommended to have projects built with the methods shown below. These basic functions can be
elaborated upon depending on the machine and application requirements.

Table 3: Program architecture

Reason for Language

POU Name Language Selection
Initialization Structured Text Easy to read
Control POU Structured Text Easy to debug and troubleshoot
10 Interface Ladder diagram Easy to debug
Communication interface | Structured text Easy to transfer variables

Power up , alarm
management and E-Stop

recovery Function Block diagram Use of pre-defined PLCopen Toolbox
Axis Monitoring and

Status Function Block diagram Use of pre-defined PLCopen Toolbox
Jogging Function Block diagram Use of pre-defined PLCopen Toolbox
Homing Function Block diagram Use of PLCopen function blocks
Automatic Production Function Block diagram Easy to debug and troubleshoot
Maintenance and

upgrade Function Block diagram Use of PLCopen function blocks

September 18, 2012 Page 17 of 58

YASKAWA

Subject: Application Note

Product: MPiec controllers with
MotionWorks IEC

Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

Make sure that the necessary Yaskawa user libraries are included in the project. It is good practice to save user
libraries in one specific location. When a project that contains user libraries is extracted, the user libraries get
saved to different locations on Windows XP and Windows 7.

XP: C:>Documents and Settings> All Users> Documents> MotionWorks IEC Pro> Libraries> User Library Name.mwt.

Win 7: c:>Users>Public>Public Documents> MotionWorks IEC 2 Pro> Libraries> User Library Name.mwt

This folder is a good candidate to store all user libraries

=23 Project : C:ADocuments and 5 ettings'
Ela Libraries
: ----- @ PLCopenPluz_v_2 2a"

e @ Yazkawa Toolbox w008

Figure 4: User libraries in project tree

September 18, 2012 Page 18 of 58

YASKAWA

— _— Product: MPiec controllers with)
Subject: Application Note MotionWorks [EC Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

7 Step 5 - Code Development

Once the program architecture and programming methods have been designed, the user can start building the
project by developing code. The following sub sections will elaborate on all the elements mentioned in the
recommended program architecture framework. The basic building block of a project is a Program Organization
Unit (POU). This is the code where the logic and commands are created. Once POU instances are created, they
need to be placed in tasks under the resource (MPiec controller). The code in a POU will get executed only if
they are associated with a task. The code gets executed at the scan interval set by the user for the task in which
the code is placed. A screen shot portraying the association of a POU to a task is shown below.

""" u L _ S vidridy e iierig
----- Poweer_alarm_kManagementy™
----- [Power _hanagement”
- 0] Initialize™

Dm InitializeT POU
----- Initialize'y™
----- Initialize™
[—]@ 10T ask”

----- [i] 10TaskT
----- 0T aski™
----- 10T ask”
=-[8] Main"

-5 Physical Hardware®
EI@ Configuration : MP2000_Sernies”
El% Resource : MP23005iec”
El% Tazks
- Initial ; SYSTEM
O niaize - Initiaiz=”3
-8 Slow TT
o @ |0_Interface : 10_Interface™

POU ‘Initialize' in Task 'Initial'

b @ Power_Alarm_kManagement : Po
o] @ kanualtdode_|nterLock : Manuz

~[0] JawHome : JawHame"

. @ Jawlog : Jawlog®

H Al Comdlan - Comdlaa¥

Figure 5a: POU associated with a task

September 18, 2012 Page 19 of 58

YASKAWA

Subject: Application Note

Product: MPiec controllers with
MotionWorks IEC

Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

7.1

In MotionWorkslEC Pro, any POU that needs to be executed only once can be defined to be executed within a
system task that is associated with an event or a system program. Examples of system programs are warm start,
cold start, PLC watchdog etc. Any initialization POU containing axes and/or variable definition can be associated

Start up Task (Initialization)

with a system task tied to a warm start system program. A controller starts in warm start mode on boot up.

3@ Physical Hardware
E@ Configuration : MP2000_Series
E@ Resource : MP23005iec

] Initial: 5YSTEM

(O] Irit Irit
¢ 10Task : CYCLIC
@ 10 10Task
- Task : CYCLIC
(O] Main: Main
4 Global Variables
- 10_Configuration

x|
Fricrity: Cancel |
wiatchdog Time: I s Help |
Stack: Optioms:
-
N S =
= MEDIWK
I BRAss
= LARGE r
 LARGE MO SUSPEHD

Figure 5b: System Task

A few examples of items that can be included in startup system tasks are given below.

Figure 6: ID definitions

1 [(* Defining the three axes in this project?®)

2 [F==1¥

3

4 Axizl.Fef.AxisNum = UINT#1: [*3ervo Axis¥®)

= ExtEncoder .Ref. Axishwn = UTINTHZ1: (#*External Encoder®)

& Virtual.Ref. AxisNum = TINTHZa; (*Wirtual Axis™)

7

[} [(*Defining the sensor for the high speed latch wired to the servopack®)
g t Fe===
10

11 LatchSensor.Bit = UINT#1:

[*zensor wired to the EXT1 pin on the servop

September 18, 2012

Page 20 of 58

YASKAWA

Product: MPiec controllers with

MotionWorks IEC Doci#:

Subject: Application Note

TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

[*Machine constantcs¥)

= LREAL#z4.0:
LRELLEZ .0*Bag Length:
LRELL#G.O;

Bagy Length
Sens_Jaw_Dist :=
Speed Match Ztart Dist :=

Figure 7: Constant declarations

[(*Jaw Axis Parameters?¥)

Jawy.cecel := LREEALHSE00.0:

Jaw.Decel := LRELLH3IG00.0:
Jav.JogSpeed := LRELL#720.0;

Figure 8: Constant parameter definitions

7.2 Control POU (status)

A control POU may act as a centralized location for the operator to determine what state the machine is in at any
given point of time. Proper interlocking of HMI requests and internal variables will help in trouble shooting if the
machine fails to respond to commands in a particular mode. A central location like the one shown in the example
below will help in locating trouble spots in program execution. It is recommended to split up machine operations
into mutually exclusive modes like manual, automatic, maintenance, etc. with clear interlocks. This will prevent

unwanted motion or unforeseen logic execution and hasten troubleshooting.

[*This POT is used to monitor the state of the demo?®)
|:7€ E== ﬂ‘:l

fF Mo1 DI 00 & Axisl.Status THEN

Fervo_Ensbled := TRUE:
ELSE

Servo_Enabled := FALIE;
END_IF;

IF MO1 DI 00 & g gear request & NOT(MO1 DI 02) & NOT(MOL_DI_03)

THEM

Gear Mode := TRUE:
ELZE

Gear Mode := FALL3E:
END_IF;

Figure 9: Interlocks for Control POU

&

September 18, 2012

Page 21 of 58

YASKAWA

Subject: Application Note

Product: MPiec controllers with
MotionWorks IEC

Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

7.3 10 Interface

The controller, servopack or MECHATROLINK inputs (global variables) should be introduced into the project
through one interface POU. This will help in troubleshooting and testing during installation. In the same way,
output variables can be pushed out of the project through this 10 interface POU. A recommended flow chart for
input/output variable usage is shown below. It should be noted that in addition to associating 10 drivers to
particular tasks, the program units in which the 10 variables are used must also be associated to tasks that have

scan rates that match the 10 update requirements of the application.

Control POU
{(Machine States)

I

1/0 INTERFACE GLOBAL VARIABLES

L A

l

A

HMI INTERFAGE GLOBAL VARIABLES

O
=>| 3
o

' =
8

g &= | e
-

=

2
el
3

o

0

o

Set Up Monitor Manual

Mode

Automatic
Mode

Maintenance
& Upgrade

Figure 10: IO interface channels

September 18, 2012

Page 22 of 58

YASKAWA

Product: MPiec controllers with

Subject: Application Note MotionWorks [EC

Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

An example of an 10 interface POU is given below.

F*This POU is the digital IO interface ta the IEC praject™) |

(*DI0 requesting power enable to the axis*)
D'Dl MOll_Dz_DD

g JJDW’BF_FBQ*

(*servo DI requesting axis alarm clear®)

~

Mo1_Do_00
==

O02AX1_SI10 1012
I 1 F

*DI1 requesting gear mode request™
D'DS MOll_D£_Dl (q 99 :)
1

g_AICIr’_ Q\aquest
L

g_gearf request

Figure 11: 10 interface POU

~

MO1 Do 01
=<

September 18, 2012

Page 23 of 58

YASKAWA

Subject: Application Note

Product: MPiec controllers with
MotionWorks IEC

Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

7.4

Communication Interface

Similar to having a POU for 10 interfacing, a POU for communication or network variable interfacing is very
important to help trouble shoot, test and install communication between the MPiec controller and the network
device. With such an interface POU in place, testing for proper communication can be done in a centralized
location. Shown below is an example of transferring HMI variables to global variables that can be used in the

project.

0] Indexing
m IndexingT
--[z2] Indexingy

-[@] Indexing
[—]E] Tuning
m TurningT
-] Turing

@ Turing

[—]E] High_Performance
-] High_PerfarmanceT
High_Perfarmancel!
@ High_Performance
[=-[0] Gearing

m GearingT

Gearingy

[T Gearing

[—]E] Comm_lnterface

m Comr_lnterfaceT

-[T] InitializeT
23] Initializel
Initialize
[-]E] Powerlp
~[i] PowerlpT
Powerlphs
m Powerlp
=[] 10_Interface
m 10_InterfaceT
10_Interfacey
@ 10_Interface
[—]E] 10T ask
m 10TaskT
-zg] 10Tasky
2] 10Task
=-[0] ControlPOU*
¢ 1] ControlPOUT
22 CantealPOIL

\

o_Index Moves

(*Modbus FC 2 wariables®)
0 *)

Performance_ Servo3tatus
Zafety HEB
Cam_V_ReadyToEng
Cam E_ReadyToEng
Cam V_MasterRunning
Cam_OWSelected
Cam TW3elected
Alarm Servollarm

arm Controlllarm

MODBUS VARIAELE

(*Nodbus FC 4 varisbles®)
" *)

Jog_Feedbackdpeed
Torque_ActualTorgue
Torcue_hetualVelocity
Gear V_MasterZpeed
Gear V_GearRatio

Gear V_SlaveSpeed

Gear E MasterZpeed
Gear E GearRatio

Gear E_SlaveSpeed
Registration PartsDone
Performance ibhsPosition
Performance FosError
Performance Speed
Performance_ Alarm
Alarm ServoldlarmID
Alarm ControliAlarmID

[*OPC WVariables from Server?®)

[+

OPC_PowerRequest :=

:= Index Moves;

a_
g_
g_
g
g
g_
g
g_
o

Performance_Servodtatus:
Safety HEE;

Cam V_ReadyToEng;

Cam E_ReadyToEng:

Cam V_MasterRunning;
Cam_OWielected;
Cam_TWielected:
Alarm_SErivaAlarm;

H Alarm Controllerllarm;

Global variable in
project

Lo v 0w w v o o I Lo v v

PowerEnable;

Figure 12: Communication interface POU

10

10

10

10

Jog_Feedbackipeed;
Torgque_iotualTorque;
Torgue_hotualVelocity:
Gear V_MasterdSpeed;
Gear V_GearRatio:
Gear V_SlaveSpeesd:

Gear E_MasterdSpeed;
Gear E GearRatio:

Gear E_SlaveSpeed:
Registration PartsDone;
Performance AbsPosition:
Performance FosError:
Performance_Speed;
Performance_Alarm;

Alarm ServoldlarmID:
ilarm ControllerdlarmID;

a_Alarm_ControllerélarmlC

September 18, 2012

Page 24 of 58

YASKAWA

- o Product: MPiec controllers with)
Subject: Application Note MotionWorks [EC Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

All command bits from an HMI to the controller should be programmed as latched momentary signals. This
provides safety in the event of E-Stop or power off conditions. An example of an HMI input ‘g_HMI_Start’
triggering motion with ‘Motion_Start’ is shown below. Variable ‘System_OK’ indicates that the axis is ready and
there are no alarms on the axis or on the controller.

R_TRIG_1

R_TRIG
g_HMI_Start— CLE [0 —HMI_Start_os

001 HeI_Start_os Systermn Ok Motion_Start I
1 S

1
e I + 1 | LA

Motion_Start

Figure 13: Rising edge signal from HMI

To avoid damage to eh system, limit ranges of motion parameters like position, velocity, acceleration that are
commanded from an HMI.

LIMIT
Mirwelocity— MR —Jaw Sxishelocity _CMD

g_Jawefxis_elocity— I ?
Maxtelocity— MX

Figure 14: Safety limits on user input variables

September 18, 2012 Page 25 of 58

YASKAWA

— _— Product: MPiec controllers with)
Subject: Application Note MotionWorks [EC Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

7.5 Power up, alarm management, E-Stop recovery

In the power up sequence to enable an axis, it is important to confirm that:
» The controller is ready without alarms

» The servopack is ready without alarms

» The servopack is in base block state and main power to the servopack is on

The ‘AxisControl’ function block from the PLCopen Toolbox helps in consolidating all axis related warnings and
alarms that affect the servopack and controller. Any controller alarms (not axis related) can be obtained using the
‘ControllerAlarm’ block.

*fxis Corkrol Block: Powers up the servo axis, Used to monitor axis alarms and
warnings, Used ba clea servo alarms®)

AxisControl 1

Axisl.Ref Auis1.Ref

Axis1_SWOk_Crnd -fis 1. Status

TRUE fuis 1, Alarm

TRUE Auis1.Warning

AlarmCleaCmd Axis 1. Drivew arningID

-£uis 1, DriveslarmnID
-Aatis 1. Control&larmID
-Ayis 1ControlErrar

-£uis 1ControlEr D

g_Alarm_s
001 Axisl.Alarm ervoalarm I
[I] Ny

I k A I

Axisl.Orives Iam‘ﬂDﬁ—g_ﬂ]arm_SermAlarmlD

*Controler Alarm and ¥ _ResetAlarms Bocks: Used to monitor and clear contraller
alarms*)

Controlleralarm_1

TRLE: ontrolleralvalid
ontrollerslarm
ontrolleralarmID
ontrolleralErrar

ontroller AIErID

Figure 15: Power up and alarm monitoring

September 18, 2012 Page 26 of 58

YASKAWA

Product: MPiec controllers with

Subject: Application Note MotionWorks [EC

Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

In the code example shown below, ‘AxisNormal’ and ‘ControllerNormal’ are conditions required to enable the
servo. Main power loss, hardware base block (HBB), communication errors or other axis related alarms as well
as controller specific alarms will disable the axis. Also, the user input is in series with a rising edge one shot

variable to prevent rapid toggling of the servo on request signal.

status represent servo health®)

*Rungs to werify controller and servo health, Serwo HBE, main power, and darm

D.DBContrD ller&lam PLCMOCE_RLUIN ControllerMormal
171 | | L2
004 A¥1_HEE AX1_POM Axis1.Alarm Asis IMormal
| 171 1| 141 {2
*power request For servo is sent ko Function blodsif controller and servo
are in a healthy state®)
g_pawer R_TRIG_1
0o0s _request R_TRIG
——| CLE Q) f—pwer_reguest_os
CPC_Powy
erRequest
g_power Axis1_5
00e “request pwet_request_osContrallerMormd AxisiMNormal YWOM _Feq I
= I —— | I o |
OPC_Pow Axisl 5
ErRIIEqL:ESt \-"OI\]_F‘IEC]
Axis1 S Axisl_Sh
007 WOM_Req OM_Crnd I
[I I !

o I

Figure 16: Servo enable command if controller and servopack are normal

Alarm clearing:

Alarms or errors can be from three sources. They are:

1) Servopack: The controller can display servopack alarms and warnings that appear on the servopack

September 18, 2012

Page 27 of 58

YASKAWA

Product: MPiec controllers with
MotionWorks IEC

Title: MPiec Programming Best Practices Guideline

Subject: Application Note Doc#: TN.MP2000IEC.01

display. The controller can also display servopack specific alarms that the controller encountered. These
may not be displayed on the servopack. An example is an invalid watchdog code from a servopack
because of lost MECHATROLINK communication. These alarms and warnings are clearly distinguished
and thay can be cleared if the user uses the axis control block from the PLCopen toolbox.

2) Controller: Any controller specific alarms can be accessed using the Controller alarm function block
(figure 15) from the PLCopen toolbox. YClearAlarms can be used to clear controller specific alarms

3) Function block errors: function block errors can be cleared only if the condition causing the error is
cleared either in the machine operation or in the code.

Sample code that can be followed to initiate an alarm clear request is shown below. AlarmClearCmd commands
a controller alarm clear on ‘Y_ClearAlarms’ and an axis alarm clear through ‘AxisControl’ shown in figure 15.

Y _ClearAlarms_1

SlarmClearCrmd— Exeoute Done —ControllertlarmResetDn
—ControlleralarmRe s=tBz
—ControlleralarmRe setErr

f1p

—ControlleralarmRe sstEnID

(*alarm reset requast is sent to the Function blockif
servo is disabled and servo input D is enabled*)

R_TRIG_2
R_TRIG
g_AICr request— QK Q |—AICk_Request_os

a0eg_AK X g_powwer Ak _Re J-\Flfnﬂcél?sta I

_AIC _reques _request quest_os rRequ

i 1 N gy SN 5 |
AlarmClea
rRequest

AlarmnClea
009 rRequest AlarmClearCrnd
| || LD

Figure 17: Alarm clearing command

September 18, 2012 Page 28 of 58

YASKAWA

- o Product: MPiec controllers with)
Subject: Application Note MotionWorks [EC Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

E-Stop Recovery

It is recommended that an E-Stop recovery (either using HBB or using main power on the servopack) be carried
out by clearing all alarms, then clearing HBB or servopack main power loss conditions. It is recommended that a
new servo on request be sent (with operator intervention) to enable the axis after an E-Stop. This is the
recommended sequence for machines that are brought to a hardware base block condition using light curtains as
well. Such a sequence can be accomplished by the logic shown in the power on sequence above (Figure 17).

September 18, 2012 Page 29 of 58

YASKAWA

Product: MPiec controllers with

Subject: Application Note MotionWorks [EC

Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

7.6 Axis Monitoring and status

The ReadAxisParameters function block in the PLCopen Toolbox lists all the axis parameters in a structure
format. Individual parameters can be extracted as shown below. The axis state can also be determined using

MC_ReadStatus.

ReaddxisParameters_1

Axiz1.Ref Axis1.Ref

Axis1.Prm
TRLE

Axis1.Prm
ServoReadPrmsyalid

ServoReadPrmsErr

ServoReadErr

F*.ﬁ.ctual Yelocity of the servo axis®) |

Axis1.Prm. Actualyelocity

Figure 18: Axis parameter monitoring

ServoReadErrID

_Gear_W_SlaveSpeed

September 18, 2012

Page 30 of 58

YASKAWA

— _— Product: MPiec controllers with)
Subject: Application Note MotionWorks [EC Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

7.7 Jogging

The interlocks for jogging typically involve ensuring that the axis is enabled and the machine is in manual mode.
The Jog function block in the PLCopen Toolbox ensures that the forward and reverse jog commands are not sent
to the axis simultaneously.

IF Servo_Enabled & g Jog Fegquest & NOT(MO1 DI 01)

THEN

Jog Mode := TRUE;
EL3E

Jog Mode := FALZE:
END IF:

Figure 19: Jogging interlock

F*F\xis will jog as long as the HMI bukkon is held ackive™®) |

Jog_1

Axisl.Ref Ayisl.Ref

002 Jog Mode g_Jog_Fwid Pos_CwerTravel
1 11} JogInvel

g_Jlag_:Rev Neg_C:J\ter:Travel
1 I 1 I

JogDn

JogCrdSpeed JogBz
JogCrdAccel JogErr
JogCrndAccel JogErrID

Figure 20: Jogging logic

September 18, 2012 Page 31 of 58

YASKAWA

Product: MPiec controllers with

Subject: Application Note MotionWorks [EC Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

7.8 Homing

A few recommended interlocks for homing are: servo enabled condition, servo in standstill state, Axis not
E-Stopped, servopack and controller normal without alarms. ‘HomeFBReady’ makes sure that the function block
used for homing is ready to start the routine. A one shot from the HMI variable should start the homing routine if
the axis is ready for homing. Once the homing routine starts, busy or error output bits used as contacts to
energize the execute input will hold at least one output high during the execution of the homing routine. Please
refer to the application design guideline for supported PLCopen homing methods. There are two PLCopen
specified homing methods currently supported by MotionWorkslEC
http://partner.yaskawa.com/site/dmcontrol.nsf/(DoclID)/BFAR-7Q3PY5?0pendocument&login

(You must be logged in to view this document, as it is secure. If you are not logged in and you click the link, you
will be asked to login first. Once logged in the file will appear.)

F*Conditions to check For before getting ready For thing*)|

D|Dl Manulal_l:-ﬂode A)ﬂlenalbled AmssltanldStlll E_E;tDeOK AxisMormnal Controllerrormal HomER.{aady I

1 T 1 T 1 T 1 T 1 1 T A

F*Making sure the homing FE is ready to start homing™®) |

002 HomeBusy HorneError HomeFBEReady I
I 1/ I/ 5!

F"‘One shat command From HMI to start homing™) |

R_TRIG_1

002 HomePE_HMI R_TRIG HomeReady HomeFBReady Hormestart I
| 1 E CLE 1 | 1 | it
1 L} 1 L} 1 L} L I
F*A horning FE From PLCOpenToolbox®) |
Home_LS_Pulse_1
Axisl
004 HomeStart
—— | ormelone
HomeDataStruct: omeBLsy
HomeBusy
] | ormeabort
omeErrar
HorneError

ormeErrarID

Figure 21: Home logic

September 18, 2012 Page 32 of 58

YASKAWA

Product: MPiec controllers with
MotionWorks IEC

Title: MPiec Programming Best Practices Guideline

Subject: Application Note Doc#: TN.MP2000IEC.01

7.9 Automatic production

A recommended interlock logic sequence for automatic production is shown below.

F*Conditions to check For before getting ready For production*)l

Producti
005 Auto_Mode AxisEnabled E_StopOk AxisMormal ControllerMormal AxisStandStil onReady
— Il 11 Il I} I} '$:
ALTORUR
F i
L
F*Latched ckk: For production *)|
R_TRIG_2
ProdStart TR Producti O ProdStop
o0& _PE_HMI — orReady ALtoRUN _PE_HMI ProdRun
171 CLK Q 1 1 1 1 I}"I il
1 r 1 r 1 r 1 r T
ProdRun |
| |

Figure 22: Automatic production interlocks

The assignment of motion POUs (with motion function blocks) to particular tasks has to be carried out prudently.
It is important to understand how function blocks in MotionWorkslEC interact with the motion engine and motion
is executed by the motion engine in MPiec series controllers.

Function blocks like MC_MoveAbsolute, MC_MoveVelocity, and Y_Camin are used to configure the motion
profile and prepare the motion engine to calculate the profile which is then commanded. Once the motion engine
is configured to execute a motion profile calculations are carried out every MECHATROLINK cycle and
commands are sent out to the servopack at the MECHATROLINK rate. Therefore, contrary to intuition,
associating motion POUs to fast high priority tasks is not a requirement to obtain accurate deterministic motion at
the servo. This is because motion profile calculations are carried out at the MECHATROLINK update rate
irrespective of what task interval the POU or motion function block is placed under.

Assigning manual mode motion operations like jogging, HMI communication, homing, power up sequence etc to
low priority slower tasks gives the controller more resources to be utilized for fast tasks that require frequent
updates if and when required. Placing all motion POUs in fast tasks will end up causing CPU watchdog timeouts
and does not improve precision for the servo axis.

September 18, 2012 Page 33 of 58

YASKAWA

- o Product: MPiec controllers with)
Subject: Application Note MotionWorks [EC Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

7.9.1 Point to Point motion:
Typical point to point motion blocks can be used in POUs assigned to tasks which have medium priority. The
cases where motion blocks need to be updated at fast rates are:

a) If moves are being aborted based on a high speed input and the profile change needs to be immediate
b) If a certain frequency or cycle time needs to be achieved for throughput. The task will have to update

faster than the move frequency.

7.9.2 Synchronous motion:

The cam engage block Y_Camin is used to prepare the motion engine with the slave and master axes IDs, the
cam table to use and when to engage the slave to the master. The actual engage and cam table interpolation
calculation are performed at the MECHATROLINK update rate. This function block needs to be updated only
with medium priority. The only case where high update rates are required are:

a) If a cam adjustment needs to be carried out immediately based on a high speed input. For example, if a
shift needs to be carried out based on an input and the shift needs to be carried out as soon as possible,

the shift block will have to be in a high priority task.

7.10 Maintenance and upgrade

A few function blocks and lines of logic in the project on a machine can ensure easy replacement of amplifiers
and motors if needed without having to worry about having to go thorough difficult machine start up and
configuration steps. Please consult the documents from the links given below for recommendations on
programming for amplifier and motor replacement at maintenance.

7.10.1 Amplifier replacement:
http://www.yaskawa.com/site/dmcontrol.nsf/(DocID)/JSOT-7ZXTNM?opendocument

7.10.2 Servomotor replacement:

http://www.vaskawa.com/site/dmcontrol.nsf/(DocID)/MPER-83UM8U?opendocument

September 18, 2012 Page 34 of 58

YASKAWA

Product: MPiec controllers with

Subject: Application Note MotionWorks [EC Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

8 Coding Best Practices

8.1 Assigning variable names and groups

If a variable does not have to be a global variable keep it local. One may use a distinguishing feature when
naming global variables. (eg: g_newvariable)

For every new global variable created, assign the group it needs to go into in the global variable worksheet

¥ariable Properties

I arne: — Definition scope 0K

INEW"-.-"EI['I j % Local) Global
Data Type: Local Wariable Groups:

[BO0L = | & |pefau - Help

Global Yariable Groups:

Cancel

F it

|zage:

iR GLOBA [~ RETAIM % Phyzical Hardware
” =8 Configuration
Initial walue: E@ Fresouroe
I = «MP2600iecy - Controller
/0 address: E <Sigma - Rotanys - Cont

b odbus FCHOZ Gty 128 1
Description: - Modbus FCHO4 Qhy: 1024
b
b

odbuz FCHOD Qb 128 (
odbuz FCHOB,1E Qe 10

o o

™ FOD I~ oFC v Show all variables of worksheets

Figure 23: Variable declaration

September 18, 2012 Page 35 of 58

YASKAWA

- o Product: MPiec controllers with)
Subject: Application Note MotionWorks [EC Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

8.2 Use of Task time monitoring in order to optimize project
The MP2600iec and MP23xxiec controllers have different methods for reading the high resolution task times.

For the MP2600iec controller, the task interval can be monitored with microsecond precision using variables in
the global variable list. MaxDuration_us is the maximum time that particular task took to execute. CurDuration is
the time that task is taking to run in real time. These variables can be used to decide on whether a task requires
to be given more time to run or if some other non urgent tasks can be moved to lower priority levels.

| Glcubal_\iaria...l

: Wariable Walue De
-~ PLC_TASK_4
"""" TazkStack 1]
"""" T azkPrin 0

"""" TaskPeriod_uz | 10000
"""" TazkMatchdog_y 10000
"""" T azkPenod 110

"""" Tazk atchdog | 10

"""" MinDuration_uz | 3395
"""" MaxDuration_us | 2417
"""" CurDuration_us | 483
"""" MinDelay uz a

Figure 24: Task time real time monitoring for task 4

For the the MP2300iec and the MP2310iec controllers can be obtained as follows: Add two variables (one for
MECHATROLINK timing and one for task timing) with the data types and addresses in the global variable list of
the project as shown in Figure 24a below

El User Variables

: bk Timing SYS_TIMIMG _IRFO YWAR_GLOBAL D3 65536
[TaskTiming |HIRES_TASK _TIMING_MFO_ARRAY WAR_GLOBAL D3 65702
Figure 24a

Add the two variables to the watch window to view timings of individual tasks in the user program.

W arniable W alue Default value Type =
(= T sk Tirming[2] TASE_TI...

"""" curent 2671 IDIMT

"""" minimurn | 241 IDIMT

"""" rnasimurn | B0ET LDIMT

"""" rezerved] | O IDIMT ﬂ

September 18, 2012 Page 36 of 58

YASKAWA

- o Product: MPiec controllers with)
Subject: Application Note MotionWorks [EC Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

Figure 24b
An example of how to interpret data for a project with MECHATROLINK update of 1 ms, fast task update of 4 ms
and a medium task update of 20 ms is shown below.

A slcloleleflelufafs]kle[m[n[ofelalr]s[tlu]v[w]x]v]z[#aas]ac[ap]ae]ar
0.25 05 075 1 125 15 175 2 2.25 2.5 275 3 3.25 3.5 375 4 425 45 475 5 525 55 575 6 625 65 675 7 725 7.5 775

MLINK (1ms)

FAST (4 ms)

MEDIUM (20ms)] []

MLINK Current Duration

Fast current duration | 2.25ms (=1.75 +0.5 ISR time)] 225]

Medium current duration

Variable Value Defa
[E1 :Tiring
CuDuration_us 500
MirDuration_us 290
MaxDuration_us 800
CumulativeDuation_us 2877000787
CyclicPeriod_us 1000
Reserved] i
= TaskTiming
=R
CuDuration_us 2250
MinDuration_us 1485
MaxDuration_us 2500
Fieserved] i
TaskPrio 0
TaskFeriod 4
Taskwatchdag 4
Fieserved2 il
Rl -
CuDuration_us 1000
MinDuration_us 155
MarDuration_us 74
Fieserved] 0
TaskFiio 3
TaskPeriod 20
Taskwatchdog 20
Feserved2 0

Fig 24c: Interpretation of task timing data

8.3 Use of PLCopenToolBox

This toolbox is built from standard basic PLCopen motion function blocks resulting in easy to-use higher-level
function blocks. A few examples are:

AxisControl: Used to enable an axis and monitor the state of the axis to verify if there are axis alarms or warnings.
Axis Alarms can be cleared from this function block as well

September 18, 2012 Page 37 of 58

YASKAWA

- o Product: MPiec controllers with)
Subject: Application Note MotionWorks [EC Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

ReadAxisParameters: All axis parameters have been listed with appropriate data types such that the user can
use this one function block and get a structure with all parameters as an output. This saves the user from having
to use multiple read parameter blocks for multiple axis parameters

Jog: Built from the PLCopen MC_MoveVelocity. This function blocks enables the user to switch commanded
velocity as well as direction on the fly.

Please refer to
http://yaskawa.com/site/products.nsf/ProductDetailPages/Multi-Axis%20Motion%20Controllers~MP2000i
ec%20Series~MP2000iec_Application Toolboxes.html

for details about the function blocks in the toolbox including the manual explaining functionality of all the function
blocks

8.4 User created function blocks

It is recommended that users create user defined function blocks and store it in a separate library that can be
reused. Most programmers program machines that have similar core motion functionality and logic. The
advantage of creating one’s own function block is that the code can be reused for machines that have similar
logic or motion functionality. It is beneficial to create function blocks adhering to PLCopen standards. General
rules for inputs and outputs for function blocks can be obtained at

plcopen.org

There are general rules about the way function blocks execute like output exclusivity, behavior of the output bits
when the execute bit turns off before the function block is done etc. If such rules are followed during code
development, such code will be scalable and easy to understand. The behavior of user defined function blocks
and Yaskawa’s motion function blocks will be similar. This makes code readable and easy to understand. A
good practice can be seen in the function blocks in the PLCopen Toolbox.

Always include comments about the working of user defined function block in the source code. If the function
block has complex motion and complex structures being input or output from the block, a short manual
explaining the inputs, outputs and functionality along with a timing diagram of the interacting signals is
recommended.

September 18, 2012 Page 38 of 58

YASKAWA

— _— Product: MPiec controllers with)
Subject: Application Note MotionWorks [EC Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

JogCmdaccel

JogCmdaccel

PLCopen motion FB User defined motion FB

Figure 25: User created function block: Jog
8.5 All FB outputs should be connected for easy trouble shooting

If outputs of function blocks are not mapped to variables, it will be difficult to trouble shoot motion or machine
functionality. In the case of the example provided below, without the outputs to the MC_TorqueControl block
connected, it would be difficult to trouble shoot torque mode motion if the axis does not behave as expected. It is
not possible to say if the function block is executing or not since the outputs are missing. This is equivalent to not
connecting the feedback loop in a closed loop circuit.

OutputDrivesxisID- utpuitDriveAxisID
OutputDrive TargqueC

OutputDriveTorguese:

TorqueActive OutputTorgueRamp:
TorqueCmdvel TorqueCmdabrt OutputDr iveSpeedSP:

Torquesccel OutputDrivesccel

Torquelecel CutputDr ivedccel

Good Practice Difficult to trouble shoot

Figure 26: Function block outputs should be connected

8.6 Latching execute bits for FB execution

In case a function is being executed by a momentary bit, it is recommended to have the execute input latched
with outputs bits of the same function block that can demonstrate the status of that function blocks impact on the

September 18, 2012 Page 39 of 58

YASKAWA

- o Product: MPiec controllers with)
Subject: Application Note MotionWorks [EC Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

axis. The PLCopen specification states that if the execute bit is held high, one of the following output bits must be
high (only one at a time). The specified outputs bits are done, busy, aborted and error. Having these outputs bits
latch the execute bit will help the programmer monitor the status of the function block as it controls the axis even
if it gets activated by a momentary contact.

T _Stop
Aisl— dls ————— Anis—Auis1

oo4 anque?tnp
| .

Execute Done |—TorgueStopDn

TorqueDecel—{ Deceleration: Busy [—TorgueStopBz
TorqueStopBz
+—] +— Jerk Active —TorqueStopActive

+— BufferMode Commandaborted —TorqueStopC mdabrt
TorqueStopErr
] Error [—TorqueStopErr

ErrorlD —TorgueStopErrid

TorgueCmdabrt
]

Figure 27: Latching execute bits

8.7 Use of local vs. global variables

It is recommended to keep the number of global variables to the bare minimum. Try to decide on the variables
that need to be shared between POUs before starting to program. This way programming errors due to data
overwriting can be kept to a minimum. If a variable can be kept local, it should be.

8.8 Function Block Copy and Paste

Caution should be exercised while copying and pasting function blocks. Instance names should be checked in
the case of copying function blocks. The figure shown below can lead to bad logic and may be difficult to trouble
shoot if care is not taken while programming itself. It is recommended to avoid copying and pasting without
planning and monitoring what is being copied.

September 18, 2012 Page 40 of 58

YASKAWA

Subject: Application Note

MotionWorks IEC

Product: MPiec controllers with

Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

R_TEIG
a— CLE 0 b

R_TRIG

C CLk O 1—d

Avoid copying and pasting
function blocks. If function
blocks are copied and
pasted, edit the
instantiation of pasted
function block.

Figure 28: Rename instances if function blocks are copied and pasted

September 18, 2012 Page 41 of 58

YASKAWA

Product: MPiec controllers with

Subject: Application Note MotionWorks [EC

Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

8.9 Use of structures for axis motion parameters

The use of structures will make the project scalable and easy to manage. Some examples of structures used to
manage different modes of machine operation are shown in the PLCopen Toolbox data types file. Structures for
homing, cams, point to point motion etc are provided in the tool box. The programmer will benefit from using
structures if the project needs to be scaled to use multiple axes.

Home_LS_1

Axisl

Axisl
StartHome omeln
AxislHomeData omelz
ormeaborted
omeErr

omeErriD

(*OR*¥) +

Structure

MC_SteplimitSwitch_1

Axis1HomeData, SwitchMode—
AxisIHomeData, Offsetvelocity—
axis1HomeData, TorqueLimit—

anisIHomeData, CreepTimeLimit—

axisIHomeData. ApproachDistancelimit—

'\

Figure 29: Use of structures for scalability

September 18, 2012 Page 42 of 58

YASKAWA

Product: MPiec controllers with

Subject: Application Note MotionWorks [EC

Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

8.10

Write a coil at only one location in the program

It is recommended that a coil or a register be written only at one instance in a program. It can get difficult to track
the value of the coil or register if it is written to in multiple places through out the program. This is true for MOVE
blocks as well. If a variable gets values at various locations in the program, it will be difficult to track which value
is being used in the controller execution at specific scans. Use cross referencing to check if there are multiple

instances where a coil or a register is getting written to.

cooz Coo4

MoveExecute ’ |
e
~

Avoid writing coils in
more than one place

e e e L s e
cooz
| \
COo06
{ | /
002 Coo7 MoveE e |
7 || | ORI | |
MC_Mavesbsolute_1
Ax Axisl
MaoveExecute Execute Done oveDn
oo1 Ccooo ooz CO04 MoweExecute |
coo2 Coos
1 bt o »J 7

?
Co0&6
= __

MC_Movesbsolute_1

Axis1 Axis

Execute

Al
Done

-AXis1

MoveExecute: oveDn

Recommended

Figure 30: Write to a coil only in one place in a program

September 18, 2012

Page 43 of 58

YASKAWA

- o Product: MPiec controllers with)
Subject: Application Note MotionWorks [EC Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

8.11 Keep the number of set-reset combinations as low as possible

It is recommended to keep set-reset combinations as low as possible. If possible, use input latching to avoid
set-reset combinations. If unavoidable, use set-reset coils physically close in a POU such that they can be
verified in one debug window. Do not use only a set coil. Make sure every coil that is set has a corresponding
reset.

8.12 Tuning and Performance

It is possible to set sub-interpolation at the servopack level by setting controller parameters and amplifier
parameters. For details on the specific parameters, refer subsection 2.1.4 of the MP2000iec Application Design
Guideline:

http://partner.yaskawa.com/site/dmcontrol.nsf/(DocID)/BFAR-7Q3PY5?0opendocument&login

(You must be logged in to view this document, as it is secure. If you are not logged in and you click the link, you
will be asked to login first. Once logged in the file will appear.)

September 18, 2012 Page 44 of 58

YASKAWA

- o Product: MPiec controllers with)
Subject: Application Note MotionWorks [EC Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

9 Code Inspirationals and FAQs
9.1 Implementing Enable logic for function blocks

The following figure illustrates the recommended technique to implement logic based bit operations. In this
example, a Greater Than (GT) function block is enabled based on logic.

AND GT_True I
e

o

o1 a b
i 2

a7

C—
—

Figure 31: Boolean operations using enable logic

The following code is recommended for non bit data type operations which require enable logic. The first
example is the code for an LREAL MOVE function block.

VAR_OUTPUT of type BOOL \/

ENC:=EN;
IF NOT(EN) THEW RETUEN: END IF:
Output:=Input;

VAR_IH_OUT of type LREAL -j K VAR_INPUT of type LREAL

Figure 32: Floating point operations using enable logic

VAR_INPUT of type BOOL

The LREAL MOVE function block will appear as shown below.

September 18, 2012 Page 45 of 58

YASKAWA

Product: MPiec controllers with
MotionWorks IEC Doc#: TN.MP2000IEC.01

Subject: Application Note

Title: MPiec Programming Best Practices Guideline

eCLR_MOWE_LREAL_1
eC[R_MOWE_[REAL

EM EMO o

t

+— Input

«— Output — Outputg—e

Figure 33: LREAL move with enable logic

It should be noted that an exclusive function block will have to be made for each data type to implement logically
enabled MOVE. Examples of adding and data type conversion are shown below.

ENO: =EN: ADD

IF NOT(EN) THEN RETURN; END IF;

Output := Input + Inputi:

ENG: =EN:)
DIHT to INT

IF MOT(EN] THEN RETURN: END IF: o RE conwersion

Output:=DINT TO INT{Input) ;[
Figure33: Code for INT add and DINT to INT conversion with enable logic

9.2 Are there limits on POUs or variables in a project?

Yes there are. 2000 POUs and 15000 global variables per project. Please search ‘Project limits for ProConOS
targets’ in PLC help.

September 18, 2012 Page 46 of 58

YASKAWA

- o Product: MPiec controllers with)
Subject: Application Note MotionWorks [EC Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

9.3 What is the effect of using different power rails for ladder rungs?

The effect of different power rail is shown in the example shown below.

R_TRIG_1
ool a R THIC b
| | CLiz |0 &
[
F™
N
1
] est
| 1 Ty
1 I O
C a]
| | o

.

Figure 34: Coils on the same power rung

The coils b and ¢ which go high in scan 1, act as contacts only in scan 2 if they are used in the same power rail
as shown from the plot below. Note that there is only one power rail in the above logic.

September 18, 2012 Page 47 of 58

YASKAWA

- o Product: MPiec controllers with)
Subject: Application Note MotionWorks [EC Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

1.0
e
06

0.4
0.2

b - Task Main

H
f=)

]
0.2
0.6
0.4
0.2

test - Task Main

ol
=1

BT
08
0.6
0.4
023

a- Task.Main

E]
[=]

1.0H
0.8
0.6
0.4
0.2

¢ - Task.Main
I

o

| | U | U | U | U
252 254 256 258 260

Figure 35: Results of coils on same power rung

FR_TRIGE_ 1

ool a RTINS =]
1 | ClLiz [o &>

[=
™y
el

1

=] tEst
1 | S

ooz [=]
3| 1 | -

Figure 36: Coils on separate power rungs

September 18, 2012 Page 48 of 58

YASKAWA

- o Product: MPiec controllers with)
Subject: Application Note MotionWorks [EC Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

Note that there are two power rails in this above logic. In the above scenario, coil ¢ which goes high in scan 1
acts as a contact in scan 1 to reset b in scan 1 (last rung). Coil b is used as a contact in the same power rail. So,
b would get a chance to be a high contact only in the next scan (scan 2). Since b is reset by c in scan 1, b never
becomes high in scan 1 or 2. As b never becomes high, test never goes high either.

1.0
0.5
0.6
0.4
0.2
0.0
1.0
0.5
0.6
0.4
0.2
0.0
N
0.6
0.6
0.4
0.2

b - Tazk.Main

Gl

tezt - Tazk.Main

Tl

a- Tazk.Main

k2]
-

1.0
0.5
0.6
0.4
0.2

o - Tazk.Main
!

=]

I T I T T
8 320 322 324 326 32
Samples

Figure 37: Results of coils on separate power rungs

September 18, 2012 Page 49 of 58

YASKAWA

- o Product: MPiec controllers with)
Subject: Application Note MotionWorks [EC Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

9.4 How does RETURN work in MotionWorksIlEC programming

A return object in a ladder rung in a POU will make the scan control to exit from the particular POU and go to the
next POU in the task. For example in a project where the POU order of execution is as shown in the following
figure, POU *first’ gets executed first and ‘second’ gets executed second.

-8 Physical Hardware
=458 Configuration : MP2000_Series
=88 Resource | MP23005iec
E@ Tasks
CE Task : CYCLIC

=t

-7y Global Variables

------ 10_Configuration

Figure 38: Sequence of execution
A return encountered in ‘first’ will make the scan ignore the ladder rungs and logic that is waiting to be scanned
in first’ and go to ‘second’. This is shown using an example below. POU ‘first’ has the following logic. (All
variables are of type BOOL)

et
W

Ao
v

Figure 39: Return in logic in POU first’

September 18, 2012 Page 50 of 58

YASKAWA

- o Product: MPiec controllers with)
Subject: Application Note MotionWorks [EC Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

If ‘a’ and ‘c’ are TRUE, ‘g’ will not be TRUE even if ‘e’ is true because the return interrupts the scan of POU ‘first’
and transfers the scan to ‘second whose logic is as follows.

oot e h |
L 1 L Ko W
1) e |

Figure 40: Logic in POU ‘second’

Variable ‘h’ in POU ‘second’ will become TRUE since ‘e’ (a global variable) is TRUE.

The result of running the project is shown below.

1

2

3

oo4
I—————@Eruram
Figure 41: POU ffirst’ in debug mode
It can be seen that ‘g’ did not get triggered because the scan jumped to the next POU ‘second’ after line 4.

Figure 42: POU ‘second’ in debug mode

[y
i1

.

The sequence of bits is shown in the following figure.

September 18, 2012 Page 51 of 58

YASKAWA

- o Product: MPiec controllers with)
Subject: Application Note MotionWorks [EC Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

. 1o

- 043

o —

E_o00q |
.10

] = c

T on4g

o —3

s_ ooy |
T

s g

D 04=

(=] —

FF_ 00=
. 103

i = e

o043

Lul —

B 0049 | |

h
Ll T T T T L T T L I T
0 500 1000

Figure 43: Results of RETURN

September 18, 2012 Page 52 of 58

YASKAWA

- o Product: MPiec controllers with)
Subject: Application Note MotionWorks [EC Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

9.5 Rollover in MotionWorks IEC

Integers defined in MotionWorks IEC automatically rollover

The rollover limit is dependent on the data type of the variable being used. For example, a variable defined as an
Integer (INT: 16 bit) in MotionWorks IEC has an operating range of -32768 to 32767. Other limits can be seen in
the table provided below

Table 4: Elementary data types and limits

Data type Description Size Range Default initial value
BOOL Boclean 1 0.1 0
SINT Short integer 8 -128...127 0
INT Integer 16 -32,768...32,767 0
DINT Double integer 32 -2,147,483,648 up to 2,147,483,647 0
USINT Unsigned short integer 8 0 up to 255 1]
UINT Unsigned integer 16 0 up to 65,535 0
UDINT Unsigned double integer 32 0 up to 4,294,967,295 o]
REAL Real numbers 32 -3.402823466 E+38 0.0

up to

-1.175484351 E-38

and

+1.175494351 E-38

up to

+3.402823466 E+38
LREAL Long real numbers B4 -1.7976931348623158 E+308 0.0

up to

-2.2250738585072014 E-308
and

+2.2250738585072014 E-308

up to
+1.7976931348623158 E+308

TIME Duration 32 0... 4,294,967,295 ms t=0s

BYTE Bit string of length 8 8 0...255 o]
(16200...162FF)

WORD Bit string of length 16 16 0...65,535 o
(16#00...162FFFF)

DWORD Bit string of length 32 32 0...4,294,967,295 o

(16#00....16 £FFFFFFFF)

Real numbers do not rollover

A variable defined as an LREAL (64 bit) in MotionWorks IEC has a maximum operating range of -1.7E308 to
1.7E308. The variable will have to be reset before these limits are reached. If not, the value of the variable
beyond these limits goes to — Inf or + Inf depending on how the count was progressing. Realizing these limits on
LREAL variables that command position should not be of any practical concern to users because the MPiec
controller series uses double precision floating point format for position definition and calculations.

Consider an application configured with a feed constant of 6 mm/rev. If the axis runs at 6000 rpm (peak speed)
starting from position 0.0, the maximum distance it will travel without losing precision of 1 mm is
999,999,999,999,999 mm. It will take the axis 52849 years to reach that position running at peak speed. In short
it will take the axis at least 528 years to lose precision by 0.01 mm.

September 18, 2012 Page 53 of 58

YASKAWA

Subject: Application Note

MotionWorks

Product: MPiec controllers with

Doc#: TN.MP2000IEC.01

IEC

Title: MPiec Programming Best Practices Guideline

9.6

Can variable descriptions be included in the editor window

The description option can be selected by going to Extras>Options> ToolTips as shown below:

L e
line | Extras Window 2
Pagelavout Editar g

cumentsie

Shortouts. .,
Qptions...

Figure 44: Editor Options

Text editar I Text colors I
Toolbarz I Commands I Gene

Direu:tu:uriesl Del:uugl Backup

x|

[Graphical editor I [Graphical editor colars I
References I FPagelayoutsz I Build I
Toolips § Logic Analyzer Colors I Yarables Grid

Check the warablez attributes to

Attributes:

be shown in tooltips.

eCLR_ADD_DINT_1

b—

eC[R_ADD_DINT
EM EMO

Fic b

ow

2

b (*testert)

The description will not be displayed

- Cutput - Output

— 2 tool tip is hovered around the

variable in question as shown below.

September 18, 2012

Page 54 of 58

YASKAWA

Subject: Application Note

Product: MPiec controllers with

MotionWorks IEC Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

9.7 Best practices in structured text programming

Care should be exercised if a function block is enabled inside an IF ELSE structure. The state transition may
never be scanned if the logic does not sweep through the IF ELSE structure.

Care should be exercised while implementing any one shot trigger based logic inside an IF-ELSE loop in

structured text programming.

Put each input on its own line, so more debug information will be available.

247
248
243
250 FALSE
251 [u]
252
253
254
255 FALSE
256 FALSE
257 a]
258

T_Camitructielect_1

{
CamTable:=XCamTahle,
Execute:=hotive AND (F_TRIG SelectX.Q OR ¥ CamStructielect 1.Busy OR Y CamStruccielect 1.Error),
BlockZ3ize:=UDINT#1024

1

EZCamTable:=Y Camdtruct3elect 1.CamTable;

F_TRIG SelectY¥(CLEK:=Y_Cam3tructielect_l.Done):

IF F_TRIG_3elect¥.Q THEN
PathID.XAxisTahle:=Y_CamStructSelect 1.CamTsablelD;

EMD IF:

Figure 46: Structured text practices

September 18, 2012 Page 55 of 58

YASKAWA

Subject: Application Note

Product: MPiec controllers with
MotionWorks IEC

Doc#. TN.M

P2000IEC.01

Title: MPiec Programming Best Practices Guideline

9.8 Best practices in Sequential Function Chart (SFC) programming

Use of the ‘Step.X’ bit in action instances is recommended for SFC programming. This will ensure that the action
is not held in a state of limbo if thes step is not active. Use of the Step.X bit (‘FwdStep.X’ in this example) will
ensure that when FwdStep stops being active, the contact FwdStep.X in the action block will be low and will
prevent that particular rung from being stuck in one state. If another variable were being used in place of
FwdStep.X, there is a possibility of that variable being in a stuck state if it did not change state while FwdStep

” T |H M ‘ Stentheck | [*Action ta verify if the step move can be executed®)

‘FWdStep | T*le ‘ [| [*Action For Forward indesx moves*)l

//

was active.
no1 StepOK

L (] L
1 I
ooz FrecdDin

| |
o3 Rnlelen

1 I

1 Tnitial |

REVSE‘—{ T-)E‘)ls ‘ RevMove | [*Action For fBﬂQEB index mowes*) |

==

LREAL#7200.0—
LREAL #72000.0—
LREAL #72000.0—

—

]

Mi__THoveRelative

Axisl— Axls —————————————— Axis

001 FwdStep.x FuwrdDn
— /| Execute Done
LREAL#90,.0— Distance BLisy

Welocity Active

Acceleration Commandibarted

Deceleration Error
Jerk ErrorID
BuffertMode

—ouisl
—FwdiDn
—Fwd1bz
—Fwdlactive
—Fwdlabrt
—Fwd1Er

——Fuwdl1EnID

Figure 47: SFC practices

September 18, 2012

Page 56 of 58

YASKAWA

_— I Product: MPiec controllers with]
Subject: Application Note MotionWorks [EC Doc#: TN.MP2000IEC.01
Title: MPiec Programming Best Practices Guideline

9.9 Best practices in Ladder Diagram (LD) programming

1)

Please follow the following practice when coding parallel rungs in logic when there is a function block
on at least one rung.

This will not work in IEC 61131 because you
cannot connect the output of a function block
with the output from another source (second

R_TRIG_1 rung contacts.)
[F_TRIG |
012 Start =T B
i ak @ 3 |l
" R

Initiating condition

Use this instead. The vertical line is
S the same as an COR function.

013 SIII_IPB
I

-c_ .‘_m: : Ok Rani |
i i <> |
Run Fault Stop_PE
1 | 141 1/}
% il < A v 4
Seal in Condition Drop Out Conditions

i U

Figure 48: LD practices

2) Try to write code in a top — down format such that it is readable without having to scroll (on the

monitor) from side to side. Code is easier to trouble shoot this way. This also gives the developer a better feel for
execution sequence.

September 18, 2012 Page 57 of 58

YASKAWA

— _— Product: MPiec controllers with)
Subject: Application Note MotionWorks [EC Doc#: TN.MP2000IEC.01

Title: MPiec Programming Best Practices Guideline

ki _m_n Twel TRLIF TRIF
LRCAL#2.0 velz LIMT #1010

LEEAL LU wilact

LEEAL T LILLU welshrt

et
uEr

R_"3IG 2
AtyalP os [| ST
LH=4L 1.0

LRC2L #2002

Ik Al

(Rl N
LALAL #1000 Abrt
13ral #1n.n

Good Practice

M _Mcvengalacity L

Yirtal

Mol Ll J1
LILAL # 1.

I RCAL #1710
I RFal #1710

September 18, 2012 Page 58 of 58

