YASNAC LX3

CNC SYSTEM FOR TURNING APPLICATIONS
MAINTENANCE

Before initial operation read these instructions thoroughly, and retain for future reference.

This manual is primarily intended to give operator's maintenance instructions for YASNAC LX3.

The information contained in manual does not provide all details to be met concerning maintenance and troubleshooting. If uncertainties be encountered for particular maintenance operation, refer to the following YASNAC LX3 documents for additional information:

- YASNAC LX3/MX3 PC SYSTEY (TOE-C843-9.1)
- YASNAC LX3 SPECIFICATIONS (SIE-C843-9.20)
- yasnac lX3 operator's manual (TOE-C843-9.20)
- YaSNaC lX3 CONNECTING MANUAL (10e-C843-9.22)

yASNAC l.X3 OPERATOR'S STATION

TABLE OF CONTENTS

1. OUTLINE 1
1.1 COMPONENT ARRANGEMENT 1
1.2 CONSTRUCTION 3
1.3 MAJOR COMPONENTS 5
2. ROUTINE INSPECTION SCHEDULE 7
2.1 TAPE READER 8
2.2 CONTROL PANEL 8
2.3 AC SERVOMOTOR 8
2.4 BATTERY 9
3. MAINTENANCE INSTRUMENTS 10
4. TROUBLESHOOTING 11
4.1 Trouble identification 11
4.2 TROUBLESHOOTING BY ALARM CODES 12
4.3 TROUBLESHOOTING WITHOUT ALARM CODES 28
4.4 MAINTENANCE OF ACGC 45
4.5 SUPPLY VOLTAGE CHECK 47
4.6 INPUT/OUTPUT STATUS DISPLAY BY ON-LINE DIAGNOSTICS FUNCTION (DGN) 48
5. ADJUSTMENTS UPON INSTALLATION 50
5.1 AdJUSTMENT PROCEDURES 50
6. MODULE/UNIT REPLACEMENT PROCEDURE 53
6.1 CPU UNIT 53
6.2 OPERATOR' S PANEL 54
6.3 OPTIONAL MODULES 55
7. SETTING AND ADJUSTMENT FOR MODULE 56
7.1 MB20 BOARD 56
7.2 SP20 BOARD 57
7.3 I020 BOARD 57
7.1102157
7.5 AREA NO SETTING AND I/0 ADDRESS PORT 59
8. NC DATA HANDLING 60
8.1 SYSTEM NO. SETTING (\#6219) 60
8.2 displaying and writing parameters 60
8.3 dISPLAYING AND WRITING KEEP MEMORY 62
8.4 TAPE INPUT OF SETTING DATA AND PARAMETER DATA 62
8.5 PUNCHING-OUT OF SETTING DATA AND
PARAMETERDATA 63
8.6 Summary of storing data and editing OPERATIONS 64

APPENDIX 1 LIST OF ALARM CODE 65
APPENDIX 2 LIST OF DATA 96
appendix 3 LIST of SETTING NOMbers 104
APPENDIX 4 LIST OF PARAMETER NUMBERS 112
APPENDIX 5 STORED LEADSCREW ERROR COMPENSATION 130

APPENDIX 6 LIST Of STANDARD INPUT/ OUTPUT SIGNALS 131
SUBJECT CIIAPTER SECTION PAGE
A AC SERVOMOTOR $2 \cdot 2.3$ 8
ACGC ALARM INDICATION 4.4 .2 45
ADJUSTMENT PROCEDURES 5.1 50
ADJUSTMENTS UPON INSTALLATION 5. 50
ALARM 010 AND 011 (Parity Error) 4.2.1 13
ALARM 075, 076, 077 (RS232C Faul ty) 4.2 .2 14
ALARM 170, 172, 173, 174 AND 175 (Memory Error) 4.2 .3 17
ALARM 179 (Temperature Alarm inside the Panel) 4.2 .4 18
ALARM 310 (Servo Power Supply Incomplete) 4.2 .8 21
ALARM 320 (Control Not Ready) 4.2 .9 21
ALARM 323 (ACGC2 SYNC ERROR) 4.2 .18 27
ALARM 325 (Servo CPU Error) 4.2 .15 26
ALARM 329 (Built-in type PC CPU Error) 4.2 .16 26
ALARM 330 (Emergency Stop) 4.2.10 22
ALARM 820 (ROM/RAM Check Error) 4.2.17 26
ALARMS 231 AND 232 (Zero Point Return Area Error) 4.2.5 19
ALARMS 241 AND 242 (Reference Point Return Area Error) - 4 4.2 .6 20
ALARMS 271 AND 272 (P-SET Error) 4.2 .7 20
ALARMS 331 AND 332 (Servo Fuse Blown) 4.2.11 22
ALARMS 341 AND 342 (Servo Error) 4.2.12 23
ALARMS 351 AND 352 (Motor Overload) 4.2 .13 24
ALARMS 361, 362 AND 366 (PG Disconnection Error) 4.2.14 25
APPENDIX 1 LIST OF ALARM CODE 65
APPENDIX 2 LIST OF DATA 95
APPENDIX 3 LIST OF SETTING NUMBERS 104
APPENDIX 4 LIST OF PARAMETER NUMBERS 112
APPENDIX 5 STORED LEADSCREW ERROR COMPENSATION 130
APPENDIX 6 LIST OF STANDARD INPUT/OUTPUT SIGNALS 131
AREA NO SETTING AND I/O ADDRESS PORT $7 \cdot 7.5$ 59
B BATTERY 2
2.4 9
C CHECK AC POWER SUPPLY VOLTAGE 4
4.5.1 47
CHECK DC POWER SUPPLY VOLTAGE 4.5.3 48
COMPONENT ARRANGEMENT 1 •• 1.1 1
CONSTRUCTION 1 •• 1.2 3
CONTROL PANEL 2
2.2 8
SUBJECT CHAPTER SECTION PAGE
C "CPU ERROR" DISPLAY (Wi thout Alarm Codes) 4.3.3 29
CPU UNIT 6.1 53
CRT SCREEN DOES NOT DISPLAY 4.3.4 30
CYCLE START FAILURE 4.3.9 35
D DISPLAYING AND WRITING KEEP MEMORY 8.3 62
displaying and writing parameters 8.2 60
E EDIT DOES NOT FUNCTION $4 \cdot 4.3 .13$ 40
F FAULTS NOT DISPLAYED ACGC ALARM INDICATION 4.4.3 45
H HANDLE MODE OPERATION FAULTY 4 30
I INDICATION LAMP OF POWER SUPPLY UNIT 4 • 4.5 .2 48
INITIAL DIAGNOSTIC ERROR DISPLAY AT POWER APPLICATION • 4 4.3.2 29
INPUT/OUTPUT STATUS DISPLAY BY ON-LINE DIAGNOSTICS FUNCTION (DGN) 4 •• 4.6 48
IO20 BOARD $7 \cdot 7.3$ 57
1021 $7 \cdot 7.4$ 57
M MAINTENANCE inSTRUMENTS 3 • 3. 10
MAINTENANCE OF ACGC 4 •• 4.4 45
MAJOR COMPONENTS 5$\begin{array}{lll}1 & \cdot & 1.3 \\ 4 & \cdot & 4.3 .6\end{array}$
manual Jog mode operation fadlty 32$\begin{array}{lll}1 & \cdot & 1.3 \\ 4 & \cdot & 4.3 .6\end{array}$
MANUAL RAPID MODE OPERATION FAULTY 4
4.3.7 33
Manual Zero return operation faulty 4.3 .8 34
MB20 BOARD 7.1 56
MODULE/UNIT REPLACEMENT PROCEDURE 6. 53
NC DATA HANDLING 8 60
9" CRT SCREEN IS DARK 4 4.3.12 39
0 OPERATING PROCEDURE TO DISPLAY INPUT/OUTPUT SIGNALS 4.6 .2 49
OPERATION IS NOT AVAILABLE WITII G01, G02 OR G03 4.3 .10 36
OPERATION IS NOT AVAILABLE WITH G32, G76 OR G92 4.3.15 42
OPERATOR'S PANEL 6.2 54
OPTIONAL MODULES 6.3 55
OUTLINE 1 -•1. 1
OUTLINE OF DISPLAYS 4
4.6 .1 48
SUBJECT CIIAPTER SECTION
P PARAMETER DATA DISPLAY 8.2 .2 61
PARAMETER TYPES 8.2 .1 61
POWER CANNOT BE SUPPLIED 4.3.1 28
PUNCHING-OU'T OF SETTING daTA AND PARameter data 8.5 63
R RECOGNITION OF NC SYSTEM 4.1.2 11
RECOGNITION OF TROUBLE STATUS 4.1.1 11
ROUTINE INSPECTION SCHEDULE 2. 7
RS232C DOES NOT FUNCTION WELL 4.3.14 41
S SETTING AND ADJUSTMENT FOR MODULE 7 •• 7. 56
SKIP FUNCTION (G31) OPERATION FAILURL 4.3 .16 43
SOFTWARE VERSION INDICATION 4.4.4 46
SP20 BOARD 7.2 57
SPINDLE DOES NOT ROTATE 4.3.11 37
SUMMARY OF STORING DATA AND EDITING OPERATIONS 64 8 •• 8.6
SUPPLY VOLTAGE CHECK 47
SYSTEM NO. SETTING (\#6219) 8 •• 8.1 60
T TAPE INPUT OF SETTING data and parameter data 8 •• 8.4 62
TAPE MODE DOES NOT FUNCTION 4 •• 4.3 .17 44
tape reader $2 \cdot$. 2.1 8
TROUBLE IDENTIFICATION 4 ••4.1 11
TROUBLESIIOOTING 4 •• 4.
TROUBLESHOOTING BY ALARM CODES 4.2 12
TROUBLESHOOTING SERVICE OF ACGC 4 ••4.4.1 45
TROUBLESHOOTING WITHOUT ALARM CODES 4 •• 4.3 28
W WRITING PARAMETER dATA $8 \cdot 8.2 .3$ 61

1. OUTLINE

The YASNAC LX3 provides you with an internal self-diagnosis function (DGN). System maintenance can easily be accomplished with DGN and other main functions as listed below;
(1) Microprocessor always monitors the machine operations internally and can display the status with function keys. If any failure occurs, NC immediately stops with the blinking of alarm displays. Also the same precedure
can be executed on machine sequence for the apolication of buit-in type programmable controller,
(2) ON/OFF SIGNAL of Input to $\mathrm{NC} / 0 u t p u t$ from NC can be displayed with DGN
(3) Setting value of various parametevs such as accel/decel time constant and rapid speed.

1.1 COMPONENT ARRANGEMENT

Fig. 1.1 Component Arrangement of YASNAC-LX3

1. 1 COMPONENT ARRANGEMENT (Cont'd)

Fig. 1.2 Connection Diagram

1.2 CONSTRUCTION

(1)

Fig. 1.3 CPU Module
(2)

Fig. 1.4 9"CRT Unit (rear view)

Fig. 1.5 Tape Reader Unit

1.2 CONSTRUCTION (Cont'd)

Fig. 1.6 Example of Unit Assembly with High Voltage Units

1.3 MAJOR COMPONENTS

(1) YASNAC MAJOR COMPONENTS

Table 1.1 YASNAC Major Components

Component Name	Type	Code	Remarks
Power Supply Unit	CPS-10N	AVR839	
Tape Reader	MODEL2801	RED18	Option
Tape Reel	MODEL 1500	RED14	Option
	MODEL1402-1	RED13	Option
Main Board	JANCD- MB20C	DTN5270	---
PC Board	JaNCII-PC20	DTN4770	-
Memory Board	Janco Mmz	DTN4790	
Memory Board for Extension	JANCID-MM21-2	DTN5170	Memory length: $80 \mathrm{~m}, 160 \mathrm{~m}$
	J^NCD - MM21-3	DTN5180	Memory length: 320 m
	JANCD-MM21-4	DTN5190	Memory length: 640 m (option)
	JANCD-MM21-5	DTN5200	Memory length: 1280 m
	JANCD-MM21-6	DTN5210	Memory length: 2560 m
Control Station	JZNC-0P101-1	DUN13190	Wi thout Panel 1/0
	JZNC-OP101-2	DUN13200	With Panel $1 / 0$
CRT Display Unit	TR-9DDYB	CRT10	These units are included in the above control station.
Key Board Unit	IIMK3993-12	SW773	
SP Board	JANCD-SP20B-01	DTN5460	
	JANCD-SP20B-02	DTN5470	
General Purpose I/0 Board	JANCD-1020-01	DTN4800	-
	JANCD-1020-02	DTN4810	-
	JANCD-1020-03	DTN4820	-
General Purpose 1/0 Module	Jancl - 1021	DTN5250	Separated type

Table 1.2 ACGC Major Components

Name	Type	Code No.	Remarks
14^{*} CRT Unit	C-5470YE	CRT6	Main Key
Keyboard Unit	IIMK-9993-02	SW677	Main Key
Keyboard Unit	HMK-2293-03	SW678	Soft Key
Keyboard Unit	IIMK-9993-20	SW679	
Power Supply Unit	VST-5-522/ST	AVR738	
CPU Module	JANCD-CG01D	DTN5390	
Graphic Module	JANCD-CG02	DTN4290	
Memory Module	JZNC-MU		
Memory Unit	JANCD-CG03	DTN5100	These units are incorporated into memory module.
	JANCD-CG04	DTN5110	
	JANCD-CG05	DTN5120	
	JANCD-CG06	DTN5130	
	JANCD-CG09	DTN5510	
Battery Unit	JZNC-BAT02	DUN13060	

(3) AC Servo Units

Table 1.3 AC Servo Units

Servopack Type	Code No.	Applied Motor	
		Motor Type	Optical Encoder p/rev
CACR-SR05SB1AF		USAFED-05FA1	6000
CACR-SR05SB1BF	DUA16020	USAFED-05FB1	5000
CACR-SR05SB1DF	DUA16120	USAFED-05FD1	4000
CACR-SR10SB1AF	DUA15940	USAFED-09FA1	6000
CACR-SR10SB1BF	DUA16040	USAFED-09FB1	5000
CACR-SR10SB1DF	DUA16140	USAFED-09FD1	4000
CACR-SR15SB1AF	DUA15950	USAFED-13FA1	6000
CACR-SR15SB1BF	DUA16050	USAFED-13FB1	5000
CACR-SR15SB1DF	DUA16150	USAFED-13FD1	4000
CACR-SR20SB1AF	DUA15960	USAFED-20FA1	6000
CACR-SR20SB1BF	DUA16060	USAFED-20FB1	5000
CACR-SR20SB1DF	DUA16160	USAFED-20FD1	4000
CACR-SR30SB1AF	DUA15970	USAFED-30FA1	6000
CACR-SR30SB1BF	DUA16070	USAFED-30FB1	5000
CACR-SR30SB1DF	DUA16170	USAFED-30FD1	4000
CACR-SR44SB1AF	DUA15980	USAFED-44FA1	6000
CACR-SR44SB1BF	DUA16080	USAFED-44FB1	5000
CACR-SR44SB1DF	DUA16180	USAFED-44FD1	4000

1.3 MAJOR COMPONENTS (Cont'd)
(4) Spindle Drive Units VS-626MTIII

Table 1.4 Spindle Drive Units

Drive Unit Type	Motor Type	Installation
CIMR-MTIII-3.7K	UAASKA-04CA1	Flange Mounted
	UAASKA-04CA3	Foot Mounted
CIMR-MTIII-5.5K	UAASKA-06CA1	Flange Mounted
	UAASKA-06CA3	Foot Mounted
CIMR-MTIII-7.5K	UAASKA-08CA1	Flange Mounted
	UAASKA-08CA3	Foot Mounted
CIMR-MT III-11K	UAASKA-11CA1	Flange Mounted
	UAASKA-11CA3	Foot Mounted
CIMR-MT III-15K	UAASKA-15CA1	Flange Mounted
	UAASKA-15CA3	Foot Mounted

2. ROUTINE INSPECTION SCHEDULE

The following table shows the minimum requirements to be observed for maintenance time in
order to keep the equipment in optimum condition for an extended period.

Table 2.1 Inspection Schedule

	I tems	Frequency	With the sys tem- off	With the sys tem- on	Remarks
Tape Reader	Cleaning of reading head	As required	\bigcirc		Including light source part.
	Cleaning of tape tumble box	As required	\bigcirc		
	Lubricating of tension arm shaft end	As required	\bigcirc		
Control Panel	Tight closing of doors	Daily	\bigcirc		
	Checking for loose fit and gaps of side plates and worn door gaskets	Monthly	\bigcirc		
AC Servomotor	Vibration and noise	Daily		\bigcirc	Feel by hand, and do the audible inspection.
	Motor contamination and breakage	Daily or as required	\bigcirc	0	Inspect visually.
Battery		Daily	\bigcirc	0	See if alarm for BATTERY is displayed on CRT screen.

Except for those checks which can be made with the NC in the energized state, such as checks for external cleanliness, vibration, and noise, be sure to turn off the power supply to the NC before starting to under take routine maintenance service.

For this, turning of the power supply by pushing the POWER OFF button on the NC operator's station is not sufficient, because after this button is pushed, still several areas in the housing are energized, and are potentially dangerous.
2.1. TAPE READER
(1) Cleaning the tape reader head (Daily)
(a) Remove tape rubbish and dust from the glass with a blower brush. If the glass is stained with oil or oily dust, wipe it using agauze or sof t cloth with absolute alcohol. Also clean the tape guide and the tape retainer.
(b) Remove the dust, if any, on LED (light source) on top with a blower brush.
(2) Cleaning of tape tumble box (Weekly) Clean the braided nylon leading tape with a clean, soft cloth.
(3) Lubricating of tension arm shaft

For the control with 6 -inch or 8 -inch diameter reels, lubricate the shaft end of tension arn, when the tension arm does not move smoothly.

(In the case of 8 -inch diameter reel)
Fig. 2.1
NOTE
When trouble occurs in feeding or winding tape with 8 -inch diameter reels, open thefront door and brush away dust around the photo-coupler by using a blower brush.
2.2 CONTROL PANEL
(1) Checks on doors for tight closing (Daily)
(a) The control panel is constructed as a dustproof, sheet-steel enclosure with gasketed doors so as to keep off dust and oil mists.

Keep each door tightly closed at all tines. †Tension arm shaft available as an option.
(b) After inspecting the control with dcor open, close the door and fasten door locks (2 per door) securely using the key provided (No. YEOO1). When opening or closing, insert the key all the way into the keyhole and turn until it clicks (approximately a quarter-turn). The key can be removed from an open or closed position.

With the door
lock on right
side of the door (Left-hand Hinged Door)

OPEN POSITION

With the door lock on left side of the door (Right-hand Hinged Door)

Fig. 2.2
NOTE
If the optional door interlocking switch is provided, opening the door shuts of f the main power supply and stops all operations.
(c) Check gaskets on the rims of front and rear doors.
(d) See if the inside of enclosure is dusty. Clean it, if necessary.
(e) Check for any opening in the door base with the doors shut tightly.

2.3 AC SERVOMOTOR

(1) Vibration and noise (Daily or as required)

Vibration can be checked by resting the hand
on the motors, and for noise, using a listening stick is recommended. If any abnormality is found, contact maintenance personnel immediately.
(2) Motor contamination and impairment (Daily or as required)

Check the motor exterior visually. If dirt or damage should be observed, inspect the motor by removing the machine cover. Refer to the machine tool builder's manual.

2.4 BATTERY

Make sure that ${ }^{\alpha} B A T^{\prime}$ or " A / B " on the rightlow position of CRT screen is not displayed. If it is displayed, the battery must be replaced within a month.

When replacing, never remove the old battery with power off, otherwise the data stored in memory are cleared.

Replacing Procedure

(1) Depress POWER OFF pushbutton to shut off the power supply to the operator's station.
(2) Open the front door of the control. The battery of the memory (printed circuit) board can be seen on the CPU module which is mounted on rear of the front door.
(3) Where the control is equipped with a door interlock switch, pull it out by hand. The power can be turned on, with the door open.
(4) Depress POWER ON pushbutton.
(5) Check to see if 1LED on memory board is illuminated. Fig. 2.3 shows the arrangement of LED and the battery. If illuminated, replace the battery with new one.
(6) With the power on, remove the old battery.
(7) Put the new battery in the holder and set the connector. See Fig. 2.4. Battery connection.
(8) With the power on, make sure that blink display of CRT screen or LED1 goes off. IF they are still illuminated, it is due to the improper battery connection or defective battery.

Fig. 2.3 Arrangement of LED and Battery

Fig. 2.4 Battery Connection

Battery Type: JZNC-GBA01
3. MAINTENANCE INSTRUMENTS
(1) Measuring instruments

Name	Allowable measuring range	Purpose		
	To to 30 VAC (at 40 to 100 Hz) Tolerance $: \pm 2 \%$ or less	To measure AC power vol tages		
Tester or Multi-purpose digital meter	Several mV to 100 VDC Tolerance $: \pm 2 \%$ or less	Several Ω to approx. multiple of $10 M \Omega$ Tolerance $: \quad \pm 5 \%$ or less		To measure currents flowing
:---				
through DC motors				

(2) Tools

Phillips screwdrivers; large, medium and small Standard screwdrivers; medium and small
(3) Chemicals

Cleaning agent for tape reader (absolute alcohol)

4. TROUBLESHOOTING

4.1 TROUBLE IDENTIFICATION

Try to fully analyze the circumstances in which the trouble occurred. This is necessary for identifying the trouble and/or for having the YASNAC service personnel called in to correct the trouble. Verifying the following points will minimize the down time of your system:

4.1.1 RECOGNITION OF TROUBLE STATUS

(1) What operation will cause the trouble?
(Is other operation performed normally?)
(2) When does the trouble occur: every time or frequently?
(3) Was there no external disturbance such as power interruption or lightning when trouble occurred?
(4) Did it occur during or after operation of mode switches such as EDIT or memory, or function such as PRM (parameter) or DGN (diagnose) or key switch on CRT panel?
(5) Ensure the following points if the trouble occurred as related to feed and/or spindle operation:

- Check of LED on the drive unit
- ON/OFF check of fuse or MCCB
- Time of trouble occurrence such as at power application.
at acceleration.
at deceleration.
at steady-state running.
(6) Does it depend on part program?

If so, record also part program, offset and coordinate system settings.

4.1.2 RECOGNITION OF NC SYSTEM

Ensure the following points so as to correctly
recognize the status of machine and equipment regardless of the detail of trouble. The NC unit is provided with an interlock switch. When the operator opens the door, the NC unit power supply is tripped by MCCB and the interlock switch is released.
Do not start the check operation until the interlock switch is released.
(1) Name of machine manufacturer
(2) Time of delivery
(3) Name and type of machine
(4) Name and type of NC unit and others
(Example)
NC unit : YASNAC-LX3 (ENCM-LP332)
Servo drive : CACR-SR053SB
Servo motor : USAFED-05MA
Spindle drive : VS-626MT III
(CIMR-MT III 7.5K)
Spindle motor : UAASKA-08CA3
(5) System No. of NC sof tware

Check procedure
Keep depressing [0RG] button at the time of power application. Then, the screen as shown in Fig. 4.1 appears on the CRT.

Fig. 4.1 NC Screen at Power Application
(6) Ensure that the parameters are the same as those specified in the list attached to the NC unit.

4.2 TROUBLESHOOTING BY ALARM CODES

This description covers the troubles displayed by alarm codes that were recognized by diagnostic function of NC unit during normal operation.
Refer to Appendix 1 "List of Alarm Codes." Some additional explanations are given for especially difficult troubles.

Display Method
If an alarm condition occurs, a display "ALM" or " A / B " (for battery alarm) blinks on the bottom line of the CRT screen regardless of the mode or function. In this case, detailed information of the alarm condition will be displayed by the following operations: Depress the (ALM) key
This will cause up to 4 pairs of alarm codes and alarm messages to appear in order of importance, with the most serious one at the top. Note: In an alarm state, the alarm screen appears taking priority over any other display. There is no need to operate the (PAGE) key.

Fig. 4.2 Alarm Codes and Messages
Eliminate the cause of the alarm and depress the RESET key, and the alarm state and the alarn display will be reset. Notice that the alarm code " 820 " is displayed regardless of the selected function key. The alarm codes are categorized as in Table 4.1.

Table 4.1

Alarm No.	Spindle Operation	Type of Alarm
000 to 099	Stop at block end	Tape format error alarm
100 to 199	Stop at block end	Macro, operation, external input/output error, sequence error
200 to 299	Decelerated to stop	Overtravel, reference point return, positioning, machine ready
300 to 399	Decelerated to stop	Servo, emergency stop, overload FG, RPG
400 to 499	Decelerated to stop	Sequence error
500 to 599		Unused
600 to 699		Sequencer message
700 to 799		Unused
800 to 899	NC sys tem stop	CPU error, RAM error, ROM error Contact YASNAC Service Personnel.
900 to 999		Off-line error (for our maintenance)

Note: Sequencer messages are the troubles concerned with machine sequence. Refer to the maintenance manual prepared by machine manufacturer for details.
4.2.1 ALARMS 010 AND 011 (Parity Error)

Cause of Trouble	Check Method	Solution
Alarm 010 (TII error)	1) In case of tape operation: The number of data holes for each character is checked on the NC tape. An alarm is issued when the number is: Even: For EIA tape Odd: For ISO tape (The description that follows applies to the EIA code.) 2) In case of memory operation or at time of EDIT. 3) RS232C communication error - Framing error - Overrun	- Clean tape reader. Check tape itself if the feed hole is faulty and/or the nap is raised on the invie. - Failure of tape reader itself - Failure of MB20 board or of expansion memory board (MM21 board) Refer to item 4.3.14.
Alarm 011 (TV error)	In case of tape operation: The tape should be capable of TV check. (Number of characters for one block should be even, including EOB.)	If the tape cannot perform TV check, use it by setting SET $\# 6002$ D6 $=0$ (TV check OFF) or make it so that it can perform TV check.
Others $\text { Alarm } 010$	1) Disagreement between numbers of RS232C baud rates and stop bits 2) Communication error of RS232C (e.a. too Rioh noise level)	- Check the specification of RS232C equipment - Check parameters. Refer to par. 4.3.14. - Check cable grounding.

4.2.2 ALARM 075, 076, 077 (RS232C Faulty)

075: RS232C interface; disagreement between number of bits and number of baud rates

076: RS232C interface; transmission failure
077: RS232C interface; 10 characters or more were read after stop code was issued.

Fig. 4.3

- Setting of Applicable Interface

Set the data transmission baud rate, stop bit length and control code sending command specifications with parameters as shown in Tables 4.3 and 4.4.
(a) Selection of RS232C Interface Port

Select the port of RS232C interface by setting \#6003.
1st RS232C and 2nd RS232C cannot be selected simul taneously.

Table 4.2 Selection of RS232C Interface Port

Interface	Input	Output
1st RS232C	$\# 600300$	$\# 600304$
2nd RS232C	$\# 6003 D 1$	$\# 600305$

Select above bits by parametter setting " 1 ".
(b) Ist RS232C Interface

Baud rate value setting for 1st RS232C interface is shown in Table 4.3.

Table 4.3 Baud Rate Value Setting

Common	Input/	\#6026	\#6026	\#6026	\#6026
	Output	D3	D2	D1	D0
independent	Input	\#6020	\#6026	\#6026	\#6026
		D3	D2	D1	D0
	Output	\#6028	\#6028	\#6028	\#6028
		D3	D2	D1	D0
Baud rate value	50	0	0	0	0
	100	0	0	0	1
	110	0	0	1	0
	150	0	0	1	1
	200	0	1	0	0
	300	0	1	0	1
	600	0	1	1	0
	1200	0	1	1	1
	2400	1	0	0	0
	4800	1	0	0	1
	9600	1	0	1	0

Setting of stop bit length

Common	Input/ Output	\#6026D4	=1: Two bits for stop bit
Independent	Input	\#6026D4	=0: One bits for
	Output	\#6028D4	stop bit

Setting of control code sending command

Common	Input/ Output	$\# 6026 D 5$	$=1:$	Does not send control code.
Independ-				
ent	Input	$\# 602605$	$=0:$	Sends control
	Output	$\# 6028 D 5$	code.	

(c) 2nd RS232C Interface

Baud rate value setting for 2 nd RS232C interface is shown in Table 4.4.

Table 4.4 Baud Rate value Setting

Common	Input/ Output	$\begin{gathered} \hline \# 6027 \\ \text { D3 } \end{gathered}$	$\begin{gathered} \# 6027 \\ D 2 \\ \hline \end{gathered}$	$\begin{gathered} \hline \# 6027 \\ \text { D1 } \end{gathered}$	$\begin{array}{\|c} \hline \text { \#6027 } \\ \hline \end{array}$
independent	Input	$\begin{aligned} & \# 6027 \\ & \text { D3 } \end{aligned}$	$\begin{aligned} & \# 6027 \\ & \text { D2 } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \# 6027 \\ \text { D1 } \end{array}$	$\begin{array}{\|l\|} \hline \# 6027 \\ \text { D0 } \\ \hline \end{array}$
	Output	$\begin{aligned} & \# 6029 \\ & \text { D3 } \end{aligned}$	$\begin{array}{\|l} \hline \# 6029 \\ \text { D2 } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \# 6029 \\ \text { D1 } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \# 6029 \\ \mathrm{DO} \\ \hline \end{array}$
Baud rate value	50	0	0	0	0
	100	0	0	0	1
	110	0	0	1	0
	150	0	0	1	1
	200	0	1	0	0
	300	0	1	0	0
	600	0	1	1	0
	1200	0	1	1	1
	2400	1	0	0	0
	4800	1	0	0	1
	9600	1	0	1	0

4.2.2 ALARM 075, 076, 077 (RS232C Faulty) (Cont'd)

Setting of stop bit length

Common	Input/ Output	$\# 6027 D 4$	$=1:$	Two bits for stop bit
Independ-	Input	$\# 6027 D 4$		
ent	Output	$\# 602904$	$=0$	One bits for stop bit

Setting of control code sending command

Common	Input/ Output	$\# 6027 D 5$	$-1:$	Does not send control code.
Independ- ent	Input	$\# 6027 \mathrm{D} 5$		
	Output	$\# 602905$	Sends control code.	

Table 4.5 RS232C Voltage Level

	$V 0<-3 V$	$V O\rangle+3 V$
Function	OFF	$O \mathrm{~N}$
Signal Status	Mark	Open
Logic	1	1

Table 4.6 Connection Cable(A) for Terminal Connection RS232C Interface

NC Side (DB-25P)			Connection	External Equipment Symbol
Symbol	Signal	Pin No.		
FG	Frame grounding	1	$0 \longrightarrow$	FG
SD	Send data	2		SD
RD	Receive data	3	\bigcirc	RD
RS	Request send	4		RS
CS	Capable of send	5		CS
DR	Data set ready	δ		DR
SG	Signal grounding	7		SG
ER	Equipment ready	20	40	10 BUSY
			\bigcirc	ER

Fig. 4.4 shows connection example of standard RS232C tape reader.

Fig. 4.4 Example of 1st RS232C Interface

1. Use 1st RS232C interface when the built-in type tape reader (PTR) is used.
In this case, RS232C interface freely usable by customers is 2nd RS232C interface only.
2. Keep cable length from tape reader to main board (JANCD-MB20 Type) less than 3m. Contact YASREP in advance if it is necessary to exceed 3 m .
4.2.3 ALARM 170, 172, 173, 174 AND 175 (Memory Error)

170: MEM ERROR (OFS)
Tool offset value total check error
172: MEM ERROR (SET)
Setting area total check error
173: MEM ERROR (PRM)
Parameter area total check error
174: MEM ERROR (KEEP)
Keep memory total check error
175: MEM ERROR (MACR)
Macro total check error
These alarms indicate that tool of fset value, setting data, parameters, keep memory data and/or macro data were rewritten for some reason.
The following points may be considered as their cause.

- Failure of battery unit (battery alarm

display)

- JANCD-MB20 module, -MM20 module or -MM21 module (optional) is not correctly connected.
- Failure of above modules

Contact YASREP in any of above cases.
4.2.4 ALARM 179 (Temperature Alarm inside the Panel)

Cause of Trouble	Check Method	Solution
Anbient temperature of ClU module exceeded the specified value $\left(70^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}\right)$ by measuring at top of CPS10 N as a result of fan failure.	- Open NC panel door and ensure that the fan runs normally. - Ensure that air comes out of exhaust port at the cooling duct. - Ensure that air intake port of cooling duct is not blocked.	- Replace the fan if faulty. Call our service personnel YASREP. - If cooling duct is clogged, remove the cause of clogging and restart the operation.
Failure of power supply unit(CPS-10N) (Temperature detector is built inside the power supply unit.)	- Turn OFF power supply, open the door of NC panel and cool it for about 30 min . If the alarm still lights.	The power supply unit must be NC placed. Contact YASREP.
Ambient temperature of NC panel is too high. (Applicable temperature range is $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.)	- Measure the ambient temperature. - The temperature may rise if NC panel is exposed to direct rays of the sun.	- Reduce the effects of temperature rise by shielding the NC unit, etc.

4.2.5 ALARMS 231 AND 232 (Zero Point Return Area Error)

Cause of Trouble	Check Method	Solution
Zero point return start position was at zero point side rather than at deceleration LS side.	Try zero point return again while observing the deceleration LS: [DGN \#1306 D4 (X) \#1306 D5(Z) As shown below an alarm results when zero point return is made between DECLS and zero point. Note that this error check can be performed only after power supply is turned OFF and the manual return to zero point has been completed.	Return it to the deceleration LS or try the zero point return again from a more distant point.
Final distance of zero point return is too short, or, approach speed is too fast.	Perform the zero point return by jog feed. Try to change parameter for final distance. Compare the parameter for approach speed with parameter list.	Make final distance (parameter) longer: - PRM \#6304 (X) \#6305 (Z) - Approach speed: \#6310 (X) \#6311 (Z) - If MB20, servopack and/ or servo motor are replaced, ensure position loop gain (Kp).

4.2.6 ALARMS 241 AND 242 (Reference Point Return Area Error)

Cause of Trouble	Check Method	Solution
This type of alarm results when reference point return performed manually. It also occurs by reference point return at low speed due to DECLS chattering. 0ccurs at high speed by error of reference point pulse	Observe DECLS chattering: DGN \#1306 D4 (X-axis) \#1306 D5 (Z-axis) Observe reference point pulse: DGN \#1288 D6 (X-axis) X1289 D6 (Z-axis)	Adjustment or replacement of LS - Failure of 1020 or 1021 PCB Replace AC servo. Replace MB20B. Replace AC motor. PG cable failure
The alarm occurs also at automatic reference point return.	In case of G28	Same as above
	In case of Ci27	Check the program.

4.2.7 ALARMS 271 AND 272 (P-SET Error)

P-Set Error results when difference between comnand position and machine position does not fall within parameters $\# 6056$ (X -axis) or X 6057
(Z-axis) at the time of completing positioning wi th G00, G27, G28, G29 and G30.
Check is also required at the time of ERROR DETECT ON ($\overline{D G N} \# 1304$ D5=1) and G4 (dowell).

Cause of Trouble	Check Method	Solution
Machine runs too heavy.	Measure the load current. Observe torque motor in case of AC servo.	Lighten machine load.
Servo error pulse exceeds setting range.	Check error pulse. Refer to par. 3.3.4.8 Display Number of Servo Lag Pulses in Operator's Manual.	Adjust zero point of servo. If it cannot be adjusted, replace MB20 or Servo Pack. Contact YASREP.

4.2.8 ALARM 310 (Servo Power Supply Not Applied)

Cause of Trouble	Check Method	Solution
Secondary power supply is not applied.	This is a normal result when depressing NC RESET af ter initial power application, or resetting emergency stop alarm, etc.	Depress PONER ON button again.
In case of automatic servo power applica- tion I/0 input spec- if ication is not ac- tivated by secondary power supply.	Ensure that it is set to DGN $\# 1322$ D7=1.	Check wiring and sequence.
Emergency stop input.	Check if AlM330 displays, or DGN $\# 1281$ Dl=1.	Reset emergency stop input.
Secondary power supply was tripped by other alarm.	Check for other alarm display.	Take corrective action according to alarm code.

4.2.9 ALARM 320 (Control Not Ready)

This type of alarm results when position lag
does not fall within the range of $[\mathrm{RPM}] \# 6056$ and $\# 6057$ af ter power application and selfdiagnosis.

Cause of Trouble	Check Method	Solution
Faulty zero point adjustment of servo.	Select SET \#6219=4, then, ERROR PULSE display screen from POS display and read the values of X - and Z -axes.	Perform zero point adjustment of servo.
Machine is running.		This is a problem of the machine side rather than failure of NC unit. Contact machine manufacturer.
PG signal keeps feeding.		Replace PG or servo. Contact YASREP.
M 1320 failure.		Replace MB2O. Contact YASREP.

Cause of Trouble	Check Method	Solution
Emergency stop button depressed, or, machine end $L S$ is out of place.	After ensuring $\overline{\mathrm{DCN}} \sharp \# 1281 \mathrm{Dl}=0$ (during emergency stop), check continuity of emergency stop button or machine end LS shown below. For correct connection, refer to connection diagram prepared by machine manufacturer. Example of Emergency Stop	Reset the emergency stop button. Release it from machine end LS according to instruction manual prepared by machine manufacturer. End Release Connection
Failure of MB20	This is MB20 failure if alarm 330 lights even at DGN \#1281=1.	Replace YB 20. Contact YASREP.
Drop of +24V power	Check +24 VDC power. If the voltage is below +20 V , it indicates possible trouble.	Replace CPS-10N (power supply unit). Contact YASREP.

4.2.11 ALARMS 331 AND 332 (Servo Fuse Blown)

Cause of Trouble	Check Method	Solution
Servopack fuse is blown or MCB tripped.	DCN \#1288 D1=1 X-axis alarm \#1289 D1-1 Z-axis alarm Alarm 390 (servopack alarm) should also be displayed simultaneously. DGN \#1231 D2=1	Turn off power supply to machine. Check if servopack fuse is blown or MCB tripped. Contact YASREP.
Erroneous wiring	Check if CN1-43 and/or CN2-43 drop to 0 V .	Correct wiring according to Connection Manual item 12. Servo Unit Feed Connection

4.2.12 ALARMS 341 AND 342 (Servo Error)

Servo error results when the lag of machine
to command value exceeds parameter $\# 6074$ (Xaxis) and \#7075 (Z-axis).

Trouble	Check Method	Solution
Motor load is too large and movement command is too small. E.g. - Excessive drilling load - Machine requires lubricant. - Program error causes tool/work contact.	- Observe motor current or torque monitor if alarm occurs during idle running \oplus / \ominus direction at jog or rapid mode af ter turning 0 N the power. - Check oil film on slide surface of machine and check oil level in tank.	If machine Remove, trouble and restart operation.
Torque is not applied.	- Check torque limit signal. - Check torque monitor and motor current.	- Correct torque limitation. - Replace Servopack. - Replace the motor.
D/A circuit failure (output continues)	Measure check terminal (IN-M) of Servopack with servo power OFF. It is faulty if the voltage exceeds several 10 mV at this status.	Replace main board (MB20) of CPU unit.
Servopack failure (speed command continues.)	When servo power is on, the machine runs away, causes alarm and stops.	Replace Servopack.
Wiring failure		Refer to Connection Manual par. 12. Connection of Feed Servo Unit.
Kp(position loop gain) is not correctly adjusted and it causes excessive position lag.	Determine if Kp value from the $\mathrm{POS}(\mathrm{ER})$ display at the time of jog and rapid feed is correct. $\begin{aligned} & \mathrm{Kp}=16.7 \times \frac{\mathrm{F}}{\mathrm{POS}(\mathrm{ER})} \\ & \left(\mathrm{S}^{-1}\right) \end{aligned} \quad \mathrm{F}=\mathrm{mm} / \mathrm{min}$	Adjust value by VR (LX3) of Servopack if the value is less than the value set as standard by machine manufacturer.

4.2.13 ALARMS 351 AND 352 (Motor Overload)

Trouble	Check Method	Solution
Cutting condition is too severe (Servopack alarm lights and alarm 390 activates.	Did it occur during drilling and/or threadcutling? Check if it recurs at idle running or dry run.	Wait until temperature of servo motor cools down. Then, restart operation by alleviating the condition af ter clearing alarm with alarm reset button of Servopack.
Machine runs heavily due to shortage of lubricant on the guide face of machine.	Check the oil film on the guide face.	Check oil tank and oil pipe according to instruction manual of machine.
Disconnection or contact failure of signal between NC unit and Servopack	- Ensure that alarm lamp of Servopack does not light. - DGN $\# 1288$ D2 $2=0$ causes alarm. \#1289 D2=0 causes alarm.	Check wiring status between NC unit and Servopack according to Connection Manual.
Servopack failure	Servopack alarm activates instantly after power $O N$ even if wiring is correct. It may cause an alarm by [DGN] $\# 1288$ 02 $=0$ \#1289 D2=0 wi thout causing Servopack alarm.	Replace Servopack. Contact YASREP.

4.2.14 ALARMS 361, 362 AND 366 (PG Disconnection Error)

They perform 2 types of checkup: Signal wire
disconnection check of A, B and C phases from PG and check by PG input comparison at the time when TG 0 N signal from Servopack turns 0 N .

Trouble	Check Method	Solution
Disconnection or contact failure of signal wire between NC unit and servopack	- Check for looseness and removal of MB20 board's connectors CN1 (X-axis), CN 2 (2-axis), CN3(spindle) and/or CN4 (spindle PG). - Check looseness and removal of Servopack connectors. - Perform wiring check according to Connection Manual.	- Correct looseness and/or removal of connectors. - Correct wiring as necessary.
Failure of PG detector circuit connection	This type of alarm results when main power is applied though result of check for above item 1 is normal.	Replace MB20. Contact YASREP.
No shorting plug connector even without spindle PG.	Shorting plug connector to CN4 at CPU module is required for such specifications wi thout spindle PG.	Mount shorting plug connector.
Servopack failure	- Check if DGN \#1288 D7=1 (X-axis TG ON) \#1289 D7=1 (Z-axis TG ON) occur at motor stop. - If alarm occurs above the speed to turn 0 N TGON signal, it may be PG output signal failure of Servopack.	Replace Servopack.
PG failure	- If alarm occurs above the speed to turn ON TGON signal, it may be failure of PG.	Replace PG
Setting failure of TGON signal detect level for Servopack (Abnormal case)	This type of alarm results when position detector PPS is low. Motor may reach running speed at TGON signal detect level in case of a large speed change ratio with an external detector (such as Inductosyn, linear scale).	This is a rare case. But, change TGON signal detect level of servopack to 12% from the standard 1%.

4.2.15 ALARM 325 (Servo CPU Error)

Trouble	Check Method	Solution
Servo CPU failure	PRM $\# 6014$ D6=1 causes error.	Replace MB20. Contact YASREP.

4.2.16 ALARM 329 (Built-in type PC CPU error)

Cause of Trouble	Check Method	Solution
PC CPU failure	[PRM $\# 6014$ D7 1 causes error.	Replace PC20. Contact YASREP.

4.2.17 ALARM 820 (ROM/RAM Check Error)

It performs check of ROM constantly and RAM at the time of power application with selfdiagnostic function of NC unit. If there is
any fault, it is displayed together with ROM/ RAM number.
This is one of the major failures. After recording the alarm number, immediately contact YASREP.

Trouble	Check Method	Solution
\#00 to \#05 ROM in failure	$\begin{aligned} & \text { MM-20 ERROR } \\ & \# O N: 820 \\ & \quad(\mathrm{n}=0 \text { to } 5) \end{aligned}$	Replace ROM \#00 to \#05 mounted to MM20.
\#30, \#33 ROM error	$\begin{aligned} & \text { MM-20 ERROR } \\ & \# 30: 820 \\ & (\# 33) \end{aligned}$	Replace ROM \#30(\#33) mounted to MM20.
\#350 RAM error	$\begin{gathered} \text { PC」RAM」ERROR } \\ \# 350820 \end{gathered}$	Failure of RAM mounted to PC20 Replace PC20.
\#36 ROM error	$\begin{gathered} \text { MM-20 ERR0R } \\ \# 36 \text { : } 820 \end{gathered}$	Replace ROM \#36 mounted to MM20.

Trouble	Check Method	Solution
\#500 RAM error	$\begin{aligned} & \text { RAM CHECK ERROR } \\ & \# 0500820 \\ & (\# 501) \end{aligned}$	Failure of RAM mounted to MB20 Replace MB20.
\#40 error	PC_ROM \quad ERROR $\# 40: 820$	Replace ROM \#40 mounted to PC20.
\#44, 45 error	$\begin{gathered} \text { MB-20 ERROR } \\ \# 44: 820 \\ (\# 45) \end{gathered}$	Replace ROM \#44 (\#45) mounted to MB20.
\#100 to \#103 RAM failure \#120 RAM failure \#300 to \#301 RAM failure	RAM CHECK ERROR \#xxx :820	Replace MM20. Replace MB20. Replace PC20.
\#302 RAM failure \#510 to \#511, \#520, \#521, \#530 RAM failure	RAM CHECK ERROR \#xxx :820	Replace PC20. Replace MB20.

4.2.18 ALARM 323 (ACGC2 SYNC ERROR)

Trouble	Check Method	Solution
ACGC2 CPU failure	PRM \#6014 D5=1 causes error.	Contact YASREP.

4.3 TROUBLESHOOTING WITHOUT ALARM CODES

The following examples are instructions for locating and correcting the troubles not indi-
cated by alarm codes.
For further details of signal meanings expressed by the address $D G N$, refer to Section "Details of Signals" in Connection Manual.
4.3.1 POWER CANNOT BE SUPPLIED.

4.3.2 INITIAL DAIAGNOSTIC ERROR DISPLAY AT POWER ON

Trouble	Check Procedure	Solution
Error identified by initial diagnos itics at power ON.	Both diagnostic items passed and diagnostic item lead up to error are displayed and NC unit stops.	Record the diagnostic item lead up to NC unit stop, turn on power again and contact your YASKAWA rep- resentative of its results.

4.3.3 "CPU ERROR" DISPLAY (Wi thout Alarm Codes)

Trouble	Check Procedure	Solution
"CPU ERROR" only is displayed on CRT screen.	CPU cannot function normally and this is major failure. The main system shats off the servo power, but, depress the emergency stop and power OFF buttons to make check for proper AC input vol tage and ensure power is OFF.	Remove any noise source near the NC unit. Turn on the main power under emergency stop condition. Contact our YASKAWA representative immediately if it is "CPU ERROR". If normal, start operation after ensuring correct parameters, settings, off- sets and programs.

4.3.4 CRT SCREEN DOES NOT DISPLAY

CRT screen may not display any data as a result of trouble of CRT unit itself, display circuit and/or connection cable.
If there is no display on the screen even after the NC unit power is applied, check to ensure
that the wire is properly connected to the NC operator's station, connectors are not loose, or fuse inside CRT unit is not blown(refer to Par. 4.3.12, " 9 " CRT SCREEN IS DARK").
Contact YASREP, if the trouble can not be located even af ter the above procedure.

4.3.5 HANDLE MODE OPERATION FAULTY

Trouble	Check Procedure	Solution
Parameter not set correctly.	PRM $\# 6222$ Max. speed at handling (Reference) PRM \#6009 D4 1: Magnification to be set with PRM \#6223 at handle $\times 100$ 0 : Magnification $\times 100$	Set parameter according to YASNAC LX3 Operator's Manual (TOE-C843-9.20)
SW1 of SP20 not set to ENB.	SWI setup is shown below. 1 HPG power is fixed to +5 V . 2 SW1 on SP20 board is set as below by specification of manual pulse generator. (SW1) Simultaneous 1 axis manual pulse generator	Specification for simultaneous 1 axis manual pulse generator. (Use this terface.)

4.3.6 MANUAL JOG MODE OPERATION FAULTY

Trouble	Check Procedure			Solution
Jag mode not selected	[DCN $\# 1300 \mathrm{D}_{1}$			Select the mode. Check wiring.
Axial direction not specified.	$\begin{aligned} & +X D G N \# 1302 D_{2} \\ & -X \overline{D G N} \# 1302 D_{3} \\ & +Z D G N \# 1302 D_{4} \\ & -Z D G N=1302 D_{5} \end{aligned}$			Select axial direction. Check wiring.
Jag override not entered				Set jog override to move value other than 0 . Check wire.
Parameter not set correctly.	Ensure that[PRM] \#6233 to $\# 6264$ are set according to Table 4.9.			Set parameter
Not at machine lock.	[DGN \#1303 D_{1}			Check the switch to ensure that PRM $\# 6000 \mathrm{D}_{1}$ is at 1.

4.3.7 MANUAL RAPID MODE OPERATION FAULTY

4.3.8 MANUAL ZERO RETURN OPERATION FAULTY

Trouble	Check Procedure	Solution
Mode not set to zero return.	DGN \#1304 D	Select the mode. Check wiring.
Rapid or jog mode not selected.	$\begin{aligned} & \text { RAPID DGN } \# 1300 \mathrm{D}_{0} \\ & \text { JOG DGN } \# 1300 \mathrm{D}_{1} \end{aligned}$	Select the rapid or jog mode at the time of zero return on sequence.
Axial direction not specified.	$\begin{aligned} & +X \text { DGN } \# 1302 \mathrm{D}_{2} \\ & -X \text { DGN } \# 1302 \mathrm{D}_{3} \\ & +Z \text { DGN } \# 1302 \mathrm{D}_{4} \\ & -\mathrm{ZDGN} \# 1302 \mathrm{D}_{5} \end{aligned}$	Select axial direction. Check wiring.
Deceleration LS not in order of 1 to 0 to 1 ?	$\begin{aligned} & \text { X-axis DGN } \# 1306 \mathrm{D}_{4} \\ & \text { Z-axis DGN \#1306 } \mathrm{D}_{5} \end{aligned}$	Check the limit switch. Check wiring.
Parameter not set correctly?		Set parameter correctly.

Trouble	Check Procedure	Solution
Motor run slips one turn.	Move from zero point to deceleration LS direcction, read the point where $\overline{D G N}$ $\# 1306 \mathrm{D}_{4}$ (X-axis) and D_{5} (Z-axis) turn to 0 and ensure the positional relation between zero point pulse position and deceleration LS position.	Locate the point where deceleration LS turns to 1 from 0 to the medium of zero point pulses.
Position slips at random.	- Ensure that coupling and dog are not loose. Check to ensure that the wire is shielded.	

4.3.9 CYCLE START FAILURE

Trouble	Check Procedure	Solution
No start signal.	Check if DGN \#1304 Do becomes 1 .	Release the interlock with reference to instruction manual of machine manufacturer. Check the sequence and also ensure to be correctly wired.
Feed hold signal is fed.	Check if DGN \#1304 D_{1} is set to 1 (normal if it is set to 1).	Check that feed hold button is not depressed and that wiring is not disconnected. If there is any fault, correct it.
Mode is erroneous.	Monitor on PROG screen if the mode is set to MEM, TAPE and MDI.	Check the mode switch. Refer to $\# 1300$ in DGN table.
Reset signal is fed.	Check if DGN $\# 1202 D_{1}$ is set to 1 (normal if it is set to 0).	Check that external reset input of $\# 1305 \mathrm{D}_{2}$ is set to 0 .
System number switch set erroneously.	Normal if SET \#6219 is at 0 or 4. Normal is the system number switch on MB20 is set to 0 or 4.	Correct setting.

4.3.10 OPERATION IS NOT AVAILABLE WITH G01, G02 or 03.

Trouble	Check Procedure	Solution
Spindle stops at feed per revolution.	Check on COM screen if the mode is set to C 99.	Turn the spindle. Make sure of revolution by POS spindle revolution display. (Spindle PG monitor DGN \#1287 D4, D_{5})
Spindle revolution is checked by feed per minute.	Check if PRM \#6006 D_{4} is at 1 (spindle revolution is checked if it is at 1). SAGR \#1306 D_{7}	Turn the spindle. If it is at dry run, make spindle revolution not be checked by setting \#6006 $D_{4}=0$.
Cutting feed override is set to 0%.	Ensure if DGN $\# 1301 D_{0}$ to D_{4} is set correctly. Feed override/Manual JOG feed rate Selection	Turn the override switch. Correct wiring if disconnected. Check parameter setting.
Manual jog feedrate is not set correctly at dry run status.		
Interlock signal is entered.	Check if DGN $\# 1305 D_{5}$ is at 1 (normal if it is 0).	Release interlock with reference to instruction.
Servo system is erroneously set.	Check if manual spindle feed is workable (check its function by manual mode).	Manual of machine manufac turer. Refer to the item for manual feed.

Trouble	Check Procedure	Solution
Program failure - No S command. - No start M code(e.g. M03, M04).	Check on PROG screen and COM screen.	Modify the program.
No start signal.	Check the output signal on DGN screen (numbers in \#1100).	Release the interlock with reference to instruction manual of machine manufacturer.
Spindle speed command is not given.		Correct wiring and sequence properly to apply instruc-
S2 digit specification. S4 digit specification A.	Check instruction voltage with spindle unit.	unit.
S4 digit specification B.	Check \#1216, \#1217, \#1323 and \#1324 on [DGN] screen.	
Spindle drive is at alarm.	Check the alarm of spindle drive unit.	Remove the cause of alarm for spindle drive unit.
Combination of SSTP, GRS and GSC inputs is erroneous. 0 is enterd to parameters $\# 6270$ and $\# 6275$.	Ensure DGN \#1307 by the following table. SSTP, GRS \& GSC Inputs And S4 Digit Command Analogue Voltage - Be careful for SSTP to cause reverse input if 1 is set to parameter SSTPAB ($\# 6020 \mathrm{D}_{4}$).	It may be caused by failure of limit switch or sequencer. Adjust input signal with reference to instruction manual of machine manufacturer. Also refer to item 8.2 Spindle S command Input... in Connecting Manual (TOE-C843-9.22) Set the correct value to parameters \#6270 and \#6275.

4.3.11 SPINDLE DOES NOT ROTATE (Cont ${ }^{\text {d }}$ d)

4.3.12 $9^{\prime \prime}$ CRT SCREEN IS DARK.

Cause of Trouble	Check Procedure	Solution
Power voltage is too low.	Check it with CN3 on SP20 board at rear side of $9^{\prime \prime}$ CRT unit.	- If the voltage drops at power cable, replace the cable. - If CPS-10N output vol tage is also low, it may be caused by failure of CPS10 N . Call our service personnel if it is so.
Escutcheon is dirty.	Check visually if the surface of escutcheon and section between escutcheon and CRT are dirty.	Clean up CRT display and escutcheon.
Brightness is not proproperly adjusted.		$\left(\begin{array}{l} \text { Do not perform setup } \\ \text { change of CRT as a } \\ \text { rule. } \end{array}\right)$ So, perform adjustment wi th VR1 (BRIGHT) on SP20 board.
Hardware failure	(Trouble other than above)	Replace CRT unit or SP20 board. Call our YASREP.

Trouble	Check Procedure	Solution
Failure of input signal Mode input (EDT) is not correct. Edit lock is input.	DGN $\# 1300 \mathrm{D}_{7}$ should be 1 and all $\# 1300$ D_{0} to D_{6} should be 0 . \#1303 D_{7} should be 0 and SET $\# 6000 \mathrm{D}_{7}$ should be 0 .	Check mode input rotary switch, etc. Release edit lock input.
Parameter setting	Operator tries to edit number 0 that cannot edit data. 08000 to 08999 PRM \#6002 D D_{4} : Edit interlock $\# 6004 \mathrm{D}_{2}$: Edit, display and output interlock 09000 to 090000 PRM \#6002 D_{5} : Edit interlock $\# 6021 \mathrm{D}_{7}$: Edit, display and output interlock	Release interlock for setting. Release interlock for setting and parameter.
Connection \& material failure	Alarm 010 lights if operator tries to edit. The program characters registered turn to other characters. Key entry is not made correctly. Key entry turns to other characters.	Failure of CMOS memory Replace MB20. Replace MM21 in case of mass storage. Failure of keyboard Failure of SP20 Plug-in failure of SP20 flat cable
0ther failures	The trouble caused by exceeding memory capacity or by exceeding number of registered programs. Check the number of characters left and number of registered programs by alarm directory screen.	Erase the program with OXXXX ERS.

4.3.14 RS232C DOES NOT FUNCTION WELL

Trouble	Check Procedure	Solution			
Cable failure	Refer to connection examples of connecting Manual. The cable is too long.	Readjust cable wiring. Limit cable length to within 15 m .			
Parameters	Check if 1 st and 2nd RS232Cs and I/0 settings can make proper selection. Ensure the value of SET \#6003. Check if baud rate, stop bit and control codes are properly set. 1st RS232C input \#6026 D_{0} to D_{5} 2nd RS232C input \#6027 D_{0} to D_{5} 1st RS232C output \#6028 D_{0} to D_{5} 2nd RS232C output $\# 6029 D_{0}$ to D_{5}				
		Input	0	0	It does not operate
			0	1	1st RS-232C
			1	0	2nd RS-232C
			1	1	Unsettable
		Output	D_{5}	D_{4}	Status
			0	0	It does not operate
			0	1	1st RS-232C
			1	0	2nd RS-232C
			1	1	Unsettable
	\#6021 D	Regard M02, M30 and M99 as end of program.			
	\#6021 D	Regard NXXXX as OXXXX.			
	\#6021 D4	Ensure DR(data set ready).			
	\#6021 D	Turn ON/OFF RS signal (request for sending) by \%.			
	\#6022 D	Disregard or not disregard ISO parity at the time of IN operation.			
	\#6022 ${ }^{\text {d }}$	Output or not output ISO parity at the time of OUT operation.			
Noise	If TH error, framing error and/or overrun error occur, connecting equipment may require noise solution.	Install a line filter in $A C$ input line of connecting equipment.			

4.3.15 OPERATION IS NOT AVAILABLE WITH G32, G76 OR G92

Cause of Trouble	Check Method	Solution
Pulse of spindle encoder does not return.	Check POS S on POS screen (failure of A and/or B phase). Can be observed by DGN \#1287 if at low speed revolution such as manual rota-tion. C phase is faulty if $\mathrm{GO1}(\mathrm{~mm} / \mathrm{rev})$ is proper and G32 is faulty.	Failure of encoder, loosen cable, timing belt or connector, or PG interface Failure of MB20.
Unevenness of starting point pulse (C phase)	Occurs when thread is shifted.	Replace the spindle PG. Check wiring.
Slip of chuck or spindle	Occurs when thread pitch is shifted.	Check the function of machine.
Servo response	Ensure the servo response with TG-M.	Adjust KP(L-GAIN).
Staggering of spindle revolution	Check if POS S staggers on the POS screen.	Failure of spindle drive unit, spindle drive unit, spindle motor, DA output of MB20, or noise
Failure of thread cutting bias or acceleration/deceleration setting	PRM \#6306 X-axis acceleration/deceleration at thread cutting \#6307 Z-axis acceleration/deceleration at thread cutting \#6308 X-axis bias at thread cutting X6309 Z-axis bias at thread cutting	Adjust parameters.
Spindle speed $\times \mathrm{F}$ (pitch) exceeds maximum rating of machine.	Check the program.	Reduce the command for spindle speed.

4.3.16 SKIP FUNCTION(G31) OPERATION FAILURE

Trouble	Check Procedure	Solution
Input failure of skip signal	Check DGN \#1280 D0. - Chattering must be eliminated. - Signal should exceed 5 m Sec.	- Replace LS and/or proximity switch. - Check noise level. Change wiring route.
Parameters	PRM) \#6232 (G31F) value is not set. \#6031 D_{4} setting \#6032 setting D_{1} only should be at 1 , but all D_{0}, D_{2} and D_{3} should be at 0 .	Correct parameter settings.
Others	Optional	Contact machine manufacturer.

4.3.17 TAPE MODE DOES NOT FUNCTION

4.4 MAINTENANCE OF ACGC

4.4.1 ACGC TROUBLESHOOTING

ACGC failure may be caused by any one of following conditions:
(1) Hardware failure
(2) System sof tware failure
(3) Application program failure

For (1) or (2) above, contact your YASKANA representative.
If the cause appears to be application program failure, contact the service agent of the machine tool manufacturer.

4.4.2 ACGC ALARM INDICATION

(1) A YASNAC system equipped with ACCC may indicate what appears to be a machine-triggered alarm. Refer to the Instruction Manual of the machine manufacturer for details of such alarm.
(2) If such machine-triggered alarm does not appear, the screen displays an alarm code with the same meaning as that for the $9^{\prime \prime}$ CRT NC Operator's Panel. Refer to Par. 4.2 TROUBLESHOOTING BY ALARM CODE for further details.
(3) ACGC performs self-diagnosis and data check, and any trouble in ACGC is indicated by an alarm. Table 4.7 describes alarm displays and their meanings.

Table 4.7 ACGC Alarms

Alarm Display/Meaning	Solution
SYSTEM PROM TOTAL ERROR:	
The PROM containing the sys-	Contact YASREP.
tem sof tware is faulty. The	
faulty PROM No. appears on.	
+12 V/12 V POWER DOWN	
The power supply for RS232C	
interface is faulty.	

4.4.3 FAULTS NOT DISPLAYED BY ACGC ALARM INDICATION

(1) CRT screen remains blank:

If nothing appears on the CRT screen after power is turned on, check the following:
(1) AC power supply, e.g. one phase is open.
(2) CRT fuse blown.
(3) Supply voltage at the ACGC rear panel terminal is 230 VAC $\pm 15 \%$.
(4) DC supply in ACGC is normal. (Voltages are $+5 \mathrm{~V},+12 \mathrm{~V}$, and -12 V .)
(5) Wiring between the $P C B$ and CRT is correct.

After checking these items, turn on power again. If the normal operation cannot be achieved, contact YASREP.
(2) No keyboard operation is accepted (hang up)
(a) Although message may appear on the CRT screen af ter power is turned on, no keyboard operation is accepted:
(1) Check keyboard wiring for loose or open connections.
(2) Check the terminals of the $D C$ supply unit for $+5 \mathrm{~V},+12 \mathrm{~V}$, and -12 V .

4.4.3 FAULTS NOT DISPLAYED BY ACGC ALARM indICATION (Cont'd)

(3) Depress a key and check for a beep.

Fig. 4.5 Rear View of ACGC Unit
CAUTION

The brightness has been preset to the bestcondition at the factory.
Adjustments may be made to compensate for local light conditions. If the bright control is maintained at a high setting, it may reduce the life of that circuit.

4.4.4 SOFTWARE VERSION INDICATION

If memory-related hardware such as the bubble memory fails, it is of ten desirable af ter repair to recover the stored sof tware. For easy identification, sof tware is managed with a version number, and can be determined by one of two methods:
(1) Indicated on "System No. Label" on the nameplate on the back of the CRT.

Fig. 4.6 Nameplate On Back of CRT
(2) Displayed on the CRT screen
(a) A sample indication in NC mode is shown below. This appears only when power is turned on.

YASNAC LX3

SIMSSSTEM	VERSHON No.
NC SIBSYSSTEM	18\%!11. 11
P't	u124. sii
Accic Main	1129. 516
Al'गICATON	119:31. 5im

Fig. 4.7 Sample of Various, Sof tware Version Nos. in NC Mode
(b) A sample indication in ACGC mode is shown below.

Fig, 4.8 Sample of ACGC Main Sof tware Version Nos. in ACGC Mode

When memory-related hardware fails, notify the service agent of machine tool manufacturer or your YASNAC service office and report the latest version number of the related sof tware.

4.5 SUPPLY VOLTAGE CHECK

4.5.1 CHECK AC POWER SUPPLY VOLTAGE

The voltage between terminals $\mathrm{CN13-1}$ and $\mathrm{CN} 13-$ 5 in the power supply unit CPS-10N should be within $200 / 220$ VAC $\pm 15 \%$ (170 to 253 VAC) at $50 / 60 \mathrm{~Hz} \pm 2 \mathrm{~Hz}$.

Fig. 4.9 External View of Power Supply Unit CPS-10N
4.5.2 INDICATION LAMP OF POWER SUPPLY UNIT

Table 4.8 Indication Lamp

INDICATION	Color	MEANING
SOURCE	Green	With this lamp on, AC input is executed or DC high vol tage will still be applied even if AC input of f.
POWER ON	Green	Power on with normal DC output
+5 V,	Red	+5 V or $\pm 12 \mathrm{~V}$ abnormal output
+12 V	Red	+24 V abnormal output
+24 V	Red	Alarm input from external power supply etc. is on.
EXT. ALARM		

4.5.3 CHECK DC POWER SUPPLY VOLTAGE

Measure at check terminals on MB20 board.
4.6 STATUS DISPLAY BY ON-LINE DIAGNOSTICS FUNCTION (DGN)

When the I/0 section of the NC unit is suspected of failure, diagnostic numbers can be keyedin on the NC control panel to display and check I/0 signals for status.

4.6.1 OUTLINE OF DISPLAYS

Table 4.9 Diagnostic Nos and Contents

Diagnostic No.	Display Contents	Remarks
$\# 1000-\# 1061$	Input signals for machine tool	Refer to machine tool builder's
$\# 1100-\# 1155$	Output signals to machine tool	manual.
$\# 1200-\# 1295$	Output signals to power se- quence (PC)	Refer to par. 9.6 or con- nec ting man- ual TOE-C843-9.22.
$\# 1300-\# 1329$	Input signals from power se- quence (PC)	

Notes:

1. With a power sequence (PC) setup built-in, signals \#1000 to \#1061 and \#1100 to \#1155 in meaning depending on each power sequence program. Read the machine tool builder's manual.

2. For keep memory, refer to Par. 8, "NC DATA PROCESSING."
4.6.2 OPERATING Procedure to display input/ OUTPUT SIGNALS
3. Depress the (DCN) key.

A page containing the diagnostic number specified previously will appear on the CRT screen, with the status of I/0 signals displayed " 1 ," " 0 " and hexadecimal digits.
2. Key-in the diagnostic number to be displayed, and depress the CURSOR \triangle or key. This will change the screen to the page containing keyed-in number.
The data on each line is displayed in hexadecimal digits in the rightmost positions on the screen.

Fig. 4.10 Example of Input/0utput Signal Display

3. Press the $\begin{gathered}\text { CURSOR } \\ \downarrow\end{gathered}$ key.

The cursor will move down by line to the next diagnostic number. Keeping this key depressed continuously moves down the cursor. When the cursor reaches the last lower line, the screen switches to the next page.
4. Press the $\begin{gathered}\uparrow \\ \text { CURSOR }\end{gathered}$ key.

The cursor will move up by 1 line to the previous diagnostic number. Keeping this key depressed continuously moves up the cursor.

When the cursor reaches top line, the screen switches to the previous page.
5. Depress the $\begin{gathered}\text { PAGE } \\ \downarrow\end{gathered}$ key.

The next page will be displayed.
6. Depress the

key.
The previous page will be displayed.

5. ADJUSTMENTS UPON INSTALLATION

5.1 ADJUSTMENT PROCEDURES

Upon installation, make adjustments in refer-•
ence to the adjustment procedures given in the table below.

Table 5.1 adjustment Procedures

No.	Procedure	Remarks.
1	Check the interior and exterior of the control cabinet.	
2	Check screw terminals for tightness.	
3	Connect external cables and check.	
4	Connect the power input cable.	
5	Check connector and module locations to be sure of	
6	positive connections.	
7	Check settings.	
8	Check the input power supply voltage and frequency.	
9	Check that the composite power supply unit outputs are not	
10	Short-circuited.	
	Check the output voltages after a first power application.	
11	tool.	
12	Check parameters and setting data.	
13	Perform a second power application.	
14	Check to be sure the emergency stop functions.	
15	Check movement on each axis by manual feed.	
16	Check the servo system.	

(1) Check the interior and exterior of the control cabinet.

- Check the control panel exterior for contamination and damage.
- Check the module connections inside the cabinet for tighteness.
- Check the cables and lead bunch inside the cabinet for damage.
(2) Check screw terminals for loose connections.
- Power input unit terminal block
- Power on/off pushbutton switches on MDI and CRT unit.
- Control power transformer terminal block
- Check each terminal block cover, if any, for dislocation.
(3) Connect external cables.
- Check that the cable shield is connected to the ground block through clamp.
- Check that a protective ground wire is installed between the control unit and the machine tool.
- Check that the protective ground wire is of a one-point ground type.
(4) Connect the power input cable. Before connecting the power input cable, verify that power input terminals R, S and T inside the control unit are not shorted.
(5) Check connector and module locations and insertions.
- Check that the screws on the module clamps are tightened on the CPU rack.
- Check that the clamp claws on Honda connectors are tightened and that clamp screws are securely in place.
- Check that the clamp claws on power supply connectors are in place.
- Check that the clamp claws on flat cables are in place.
(6) Check settings.

Verify the control power transformer setting in reference to the input power supply voltage (see Par. 3.2).
(7) Check input power supply voltage and frequency.

- Check that the power supply voltage and frequency meet ratings.
- Check that the input power supply capacity is high enough for power consumption of the control unit.
(8) Check that the composite power supply unit outputs are not short-circuited. Check for short-circuit between:
$\cdot+5 \mathrm{~V}$ and $0 \mathrm{~V}:+24 \mathrm{~V}$ and 0 V
$\cdot+12 \mathrm{~V}$ and $0 \mathrm{~V}:-12 \mathrm{~V}$ and 0 V
(9) Check the output voltages after a first power application. Depress the POWER ON pushbutton for first power application.
- Check that the air flow from the cooling air exhaust port is normal.
- Verify the output voltages of the composite power supply unit.

Rated Output	Output Vol tage Range
+5 V	4.75 to 5.25 V
+12 V	11.4 to 12.6 V
-12 V	-12.0 to -13.8 V
+24 V	22.8 to 25.2 V

(10) Check the I/0 signals between the control unit and the machine tool.
Check the $I / 0$ signals according to the list of I/0 signals (see 9.6 standard $1 / 0$ Diagnostic No.
(11) Check parameters and setting data. Conduct checkups according to the list of parameters (see 9.4 Parameter).
(12) Perform a second power application.

Press the POWER-ON pushbutton again for second power application.

- An alarm, if displayed, should be dealt with according to the list of alarms.
- Check that each axis can be placed under servo clamp.
- Adjust the ZERO ADJ potentiometer on the servo drive unit so that the servo position deviation comes within 0 ± 2 pulses in the servo clamp state.

NOTE

Servo deviation pulses can be displayed on theMDI \& CRT unit by following the steps given below:

1. Write "4" to SET $\# 6219$.
2. Depress the POS key.
3. Depress the $\begin{gathered}\text { PAGE } \\ \downarrow\end{gathered}$ of $\begin{gathered}\uparrow \\ \text { PAGE }\end{gathered}$ key to select the display (POSITION "ERROR") of a servo position deviation value.
4. Reset SET $\# 6219$ to 0.
(13) Verify the emergency stop.

With emergency stop activated (e.g., by emergency stop pushbutton, machine end LS), check that the second power supply (servo power supply) is turned of f and that the alarm display "330: EMERGENCY STOP" appears.

5.1 ADJUSTMENT PROCEDURES (Cont'd)

(14) Check movement on each axis by manual feed.

- Check that the machine tool properly follows up on the movement made by handle or step feed.
- Operate the machine tool by manual jog feed. Activate its 0T limit switch intentionally, and check to see that the machine is stopped by detection of an overtravel alarm.
- Check that the machine tool follows in the entire feedrate range in manual jog and rapid feed.
(15) Adjust the servo system.
- Operate the machine tool by F4-digit feed or GOO feed in the MDI mode. Check the servo position deviation on the MDI \& CRT unit. With the feedrate and servo position deviation, the position gain $K p$ is obtained by the formula:

$$
K p=16.7 \times \frac{F}{E}
$$

```
Where, F: feedrate (mm/min)
    E: servo position deviation(0.001 mm)
    Kp: position gain (sec. - ')
```

6. MODULE/UNIT REPLACEMENT PROCEDURE
6.1 CPU UNIT

Component Name	Function	Cautions for Replacement
Power supply unit CPS10N	$\begin{aligned} & \text { Input vol tage: } 170 \text { to } 253 \mathrm{ACV}, \\ & 300 \mathrm{VA} \\ & \text { Output vol tage/current: } \\ & +5 \mathrm{~V}, 10 \mathrm{~A} \cdot+12 \mathrm{~V}, 1.7 \\ & -12 \mathrm{~V}, 0.3 \mathrm{~A} \cdot+24 \mathrm{~V}, 2.5 \mathrm{~A} \end{aligned}$	Replace it af ter checking input voltage and load short-circuit if faulty Refer to Par. 4.5, "SUPPLY VOLTAGE CHECK."
Main Board JANCD-MB20	- Data controller - Function generator - Servo controller - Spindle interface unit - RS232C interface unit - HDLC interface unit - Direct-in interface unit - Power supply signal - Parameter memory - Machining tape memroy	When replacing MB208 - Parameters and machining tape data are required to enter again. - Check version no. of function generator (ROM \#44, \#45) ; servo controller (ROM \#48) ; and that required ROM is mounted. - Set SW5 correctly for selecting CRT $14^{*} / 9^{n}$, power 0N/OFF and internal/external device.
PC board JANCD-PC20	- Built-in type PC - CRT controller - Remote I/0 controller	- Ensure version no. of PC manager (ROM \#40); character generator (ROM \#90) ; and that required ROM is mounted.
Memory board JANCD-MM20	- Data controller ROM, RAM - Servo controller ROM - PC ladder ROM	- Ensure version no. of data controller (ROM \#00 to \#) ; servo controller (ROM \#36 to \#37); PC ladder (ROM \#30 to \#33); and that each required number of ROMs is mounted.

6.1 CPU UNIT (Cont' ${ }^{2}$)

Component Name	Function	Cautions for Replacement
Memory board JANCD-MM20	- Data controller ROM, RAM - Serro controller ROM - PC ladder ROM	- When changing ROMs from the old PCB to new PCB, be sure the ROMs are plugged securely into IC socket before mounting new PCB.
1/0 board JANCD-1020	- Input 112 points - Output 64 points (polarized and contactless type)	- Mount after ensuring that I/0 area no. (SWI) is correctly set.

6.2 OPERATOR'S PANEL

Component Name	Function	Cautions for Replacement
Panel Interface Board (JANCD-SP-20)	- 9^{*} CRT interface unit - Keyboard interface unit - Single-axis handle PG interface unit - I/0 unit for the panel (input: 64 points output: 32 points)	- Adjust brightness of CRT as required af ter completing replacement. (BRT: VR, CONTRAST: UR) Ensure that ENABLE/DISABLE (SW1) and I/0 area No. (SH2) of single-axis handle PG are correctly set.
CRT Unit (TR-9DDYB)	$9^{\prime \prime}$ CRT monochrome (yellow)	- Make replacement only af ter turning OFF the main power supply; CRT has high voltage generating section.
Keyboard Unit	- Function key and LED - Address key - Data key - Buzzer	

Componect Name	Function	Cautions for Replacement
Large capacity memory module Model: JANCD-MM21-:	Addition of machining tape area	- Requires reentry of the machining tape data.
External I/0 module Model: JANCD-I021	- Input : 112 points Output: 68 points (Polarized and contactless type: 64 points Contact type: 4 points)	Before replacement set according to Par. 7.3.
Tape reader unit Model-2801	- RS-232C Interface output 200 char/s	Ensure that the dip switch (DS) is set as standard according to the Table 4.12.

\(\left.\begin{array}{l|l}(1) SW1 (System No. Switch) Setting

Set this switch to 0 for normal

operation, since this switch is

provided only for maintenance

and creation of sequence ladder.\end{array}\right]\)

(2) SW5 Setting

This switch can select 14^{*} CRT (with ACGC) or $9^{\prime \prime}$ CRT (standard) on operator's panel. It can also select if POWER OFF signal is entered on operator's panel (POS), from external device (EOF) or by both POF and EOF.

(Standard setting)

	Use panel (POF) only	Use external device (EOF) only	Use both
SW5	1 0 0 0 3 4 0 0 0 6 7 0 0 0 y 0 0 0 0 12		1 7 110 0 0 0

(3) Adjustment of VR1 to VR6

Function	X-axis	Z-axis	Spindle
Gain adjustment	VR1	VR3	VR5
Zero point adjustment	VR2	VR4	VR6

These are VRs for adjusting D/A of each axis and spindle. They have been already been adjusted at the factory prior to shipment. Readjustment is not required.
(1) SW1 (HPG)

Simul taneous single axis manual pulse generator standard setting

Simultaneous 3-axis manual pulse generator oplional setting

This switch selects use or prohibition of manual pulse generator interface. Use it by standard setting for all except for simultaneous 3 -axis manual pulse generator specification (optional).
(2) SW2 (Remote I/0 address)

	SW2		
1			No area selection
2			
3	$0 \quad 0$	14	Area No.1-1 selection
4		13 …........	Area No.1-2 selection
5		12 --........-	Area No.2-1 selection
6		11 .-..........	Area No.2-2 selection
7		$10 \cdots$	Area No.3-1 selection
8		9 …........	Area No.3-2 selection

This switch selects I/0 area for using SP20-2 (operator's panel with I/0).
The diagram at the left shows shorting plug (SW2) setting and I/0 area no.

- SW1 (Remote I/0 address)

	SWI		
1			No area selection
2	$0 \quad 0$		Area No. 1 selection
3			Area No. 2 selection
4			Area No. 3 selection
5			Area No. 4 selection
6			
7			Spare areas
8			

The above diagram shows shorting plug (SW1) setting and I/0 area no.
Note: Normal input cannot be made if the same I/0 area no. is selected for selection of $\mathrm{I} / 0$ area.

7.41021

(1) SW1 (Remote I/0 address)

The above diagram shows shorting plug (SW1) setting and $\mathrm{I} / 0$ area No.

7.41021 （Cont＇d）
（2）SW2（Logic reverse）
This switch turns the function ON／OFF to make logic at the time of contact closing to logic
＂ 1 ＂，regardless of $+24 V$ common $/ 0_{24}$ common．
（3）SW3（Terminator）
Terminator ON／OFF must be selected when one remote I／0 board（JANCD－1021）is used，or if several boards are used，or if signal is trans－ ferred to an other remote $1 / 0$ board．

The above setting makes reverses logic in case of input contact closing similar to YASNAC X2 series．

	SH2		Logic at contact closed	
			0_{2} ，Common	＋24 V Common
1	$\bigcirc 0$	16		
2	$\bigcirc 0$	15		
3	0	14		
4	$\bigcirc 0$	13	「1」	「1］
5	$0 \quad 0$	12		
6	00	11		
7	0 －	10		
8	0 －	9		

Left setting makes logic＂1＂in case of in－ put contact closing．
Use 3 for standard setting，although the re－ sult is the same even if any one of SW2 to SW8 is short－circuited．

SW3

Note：All four circuits should be set in a same side．
＜Example＞

Input port				Output port			
	-						
SP 20-02		1020, 1021		SP20-02		1020, 1021	
Area No.	Address port						
1-1	$\begin{gathered} \# 1000 \\ \text { to } \\ \# 1007 \end{gathered}$	1	$\begin{gathered} \# 1000 \\ \text { to } \\ \# 1013 \end{gathered}$	1-1	$\begin{gathered} \# 1100 \\ \text { to } \\ \# 1103 \end{gathered}$	1	\#1100 to \#1107 (\#1108)
1-2	$\begin{gathered} \# 1008 \\ \text { to } \\ \# 1015 \end{gathered}$			1-2	$\begin{gathered} \# 1108 \\ \text { to } \\ \# 1111 \end{gathered}$		
2-1	$\begin{gathered} \# 1016 \\ \text { to } \\ \# 1023 \end{gathered}$	2	\#1016 to \#1029	2-1	$\begin{gathered} \# 1116 \\ \text { to } \\ \# 1119 \end{gathered}$	2	$\begin{gathered} \# 1116 \\ \text { to } \\ \# 1123 \\ (\# 1124) \end{gathered}$
2-2	$\begin{gathered} \# 1024 \\ \text { to } \\ \# 1031 \end{gathered}$			2-2	$\begin{gathered} \# 1124 \\ \text { to } \\ \# 1127 \end{gathered}$		
3-1	$\begin{gathered} \# 1032 \\ \text { to } \\ \# 1039 \end{gathered}$	3	$\begin{gathered} \# 1032 \\ \text { to } \\ \# 1045 \end{gathered}$	3-1	$\begin{gathered} \# 1132 \\ \text { to } \\ \# 1135 \end{gathered}$	3	$\begin{gathered} \# 1132 \\ \text { to } \\ \# 1139 \\ (\# 1140) \end{gathered}$
3-2	$\begin{gathered} \# 1040 \\ \text { to } \\ \# 1047 \end{gathered}$			3-2	$\begin{gathered} \# 1140 \\ \text { to } \\ \# 1143 \end{gathered}$		
		4	$\begin{gathered} \# 1048 \\ \text { to } \\ \# 1061 \end{gathered}$			4	$\begin{gathered} \# 1148 \\ \text { to } \\ \# 1155 \\ (\# 1156) \end{gathered}$

Precautions:

(1) In case of 1021, more points output are added than for 1020 value () of output board.
(2) Normal input cannot be made if game area No. is erroneously set.

8. NC DATA HANDLING

8.1 SYSTEM NO. SETTING (\#6219)

Set system No. at " 1 " to write parameter number. System number can be set by setting the value of $\# 6219$ through the operator's panel.
(1) Setting of $\# 6219$
${ }^{*}()^{n}$: SYSTEM

For normal operation. Writing parameters is prevented.
" 1 ": PARAMETER

To write parameters. At this position, Cycle start is prevented.
"4": TEST (0) (Maintenance mode)
Normal operation is similar to the case of " 0 " SYSTEM, but available only for maintenance mode.

Note:

1. Setting values other than those described above will prevent correct operation.
2. Setting can be effective only when the system number switch provided on the control unit main module (MB20) is set at " 0 ." Refer to Par. 7, "SETTING AND ADJUSTMENT FOR MODULE."
(2) Alarm Display of System No. Setting (\#6219) When setting \#6219 is set at " 1 ", Cycle Start is prohibited, causing unexpected errors.

To prevent this, alarm status is displayed if $\# 6219$ is set at a value other than " 0. "

ALARM 01234 N0003

SYSTEM NO. SETTING (\#6219) : (1)

MESSAGE

LSK

Fig. 8.1 Typical Alarm Display

System number \#6219 should be set at "0" except for writing parameters.

8.2 DISPLAYING AND WRITING PARAMETERS

This system has various parameters stored in memory. They determine operating conditions such as tape coding and feedrate. The parameters can always be displayed regardless of the mode even during automatic operation. For details, see Par. 9.4, "LIST OF PARAMETER NUMBERS." For sequence parameters \#7000 to \#7099, see machine tool builder's manual.

8.2.1 PARAMETER TYPES

Parameters are displayed either in binary or in decimal digits.

Fig. 8.2 Typical Parameter Display (in binary digits)

Parameters $\# 6005$ to $\# 6049$ are displayed in binary digits.

Fig. 8.3 Typical Parameter Display (in decimal digits)

Parameters \#6050 and larger are displayed in decimal digits.

8.2.2 PARAMETER DATA DISPLAY

1. Key-in a parameter number and press the | CURSOR | |
| :---: | :---: |
| \downarrow | or $\begin{array}{c}\uparrow \\ \text { CURSOR }\end{array}$ |
| key. The symbol "\#" | | need not be typed. Up to ten parameter numbers and their contents can be displayed.
2. The parameter number specification can be updated by operating the $\left.\begin{array}{c}\text { CURSOR } \\ \downarrow\end{array}\right]$ or $\left[\begin{array}{c}\uparrow \\ \text { CURSOR }\end{array}\right.$ key.
The screen can be updated by operating the \dagger
PAGE or $\begin{gathered}\text { PAGE } \\ \downarrow\end{gathered}$ key.

8.2.3 WRITING PARAMETER DATA

Set the parameter \#6219 to "1."
For display in binary disgits

1. Specify a desired parameter number.
2. Depress the INSRT key. The cursor will move from the parameter number to the binary digit display, indicating the bit position of D7 first.
3. Depress the $\left.\begin{array}{c}\text { CURSOR } \\ \downarrow\end{array}\right]$ key. The cursor moves by 1 bit towards the bit position $D 0$ every time this key is pressed. Keeping this key depressed can continuously move the cursor to the desired position.
4. Depress the WR key, and the designated bit data reverses (0 to 1 or 1 to 0). Pressing the key again will reverse the data. Generally, " 1 " represents the function being on and " 0 " being off.
5. Only when the cursor is set to the rightmost decimal position, decimal data can be keyed in.

8.2.3 writing parameter data (Cont'd)

6. Repeat steps 2 to 5 to write desired parameter data.
Keeping the $\begin{gathered}\text { CURSOR } \\ \downarrow\end{gathered}$ or $\begin{gathered}1 \\ \text { CURSOR }\end{gathered}$ key depresed moves the cursor continuously on the screen.
7. With the writing completed, depress the INSRT key in a "sandwitching" manner (INSRT, data, and INSRT in that order).

For display in decimal digits

1. Specify a desired parameter number.
2. key-in the data and depress the $W R$ key. The data will be written to the parameter number indicated by the cursor.
3. The parameter number specification can be updated by operating the $\begin{gathered}\text { CURSOR } \\ \downarrow\end{gathered}, \begin{gathered}\uparrow \\ \text { CURSOR }\end{gathered}$ or $\left.\begin{array}{c}\text { PAGE } \\ \downarrow\end{array}\right], \begin{gathered}\uparrow \\ \text { PAGE }\end{gathered}$ key.
Check that the writing has normally completed, and set the parameter $\# 6219$ back to " 0 ."

8.3 DISPLAYING AND WRITING KEEP MEMORY

In keep memory to control machine sequence, vital important information are set and still stored even if power off.
The wrong setting results in machine failure, so display and write with care according to machine tool builder's manual.
(1) Keep memory's area.

DGN function address $\# 7100$ to $\# 7999$
(2) Displaying and Writing keep memory

Refer to Par. 8.2 because of the same procedure.

8.4 TAPE INPUT OF SETTING DATA AND PARAMETER dATA

Although setting data and parameter data are generally input through MDI operation, they can also be entered by means of punched paper tape. The two types of data may be input from a single tape.
If something wrong with the data transfer by RS-232C, refer to Par. 4.2.3.
(1) The tape format is as follows:

Fig. 8.4
(2) The input operation procedure is as follows: Set the parameter $\# 6219$ to " 1. "
(a) Select the EDIT mode.
(b) Depress the PRM key.
(c) Set the setting/parameter data tape onto the tape reader.
(d) Depress the RESET key.
(e) Depress the IN key. The tape reader will start reading the tape. "IN" blinks on the CRT screen while the data is being read.
(f) On completion of reading symbol \% (or characters ER), the tape reader comes to a stop and causes the " $I N^{\prime}$ display to disappear from the CRT screen. This completes the data input. Set the parameter $\# 6219$ back to "0."

8．5 PUNCIING－OUT OF SETTING DATA AND PARAMETER DATA

If something wrong with the data transfer by RS－232C，refer to Par．4．2．3．
The punching out procedure is as follows：
1．Select the EDIT mode．
2．Depress the PRM key．
3．Depress the RESET key．

4．Confirm puncher is ready．
5．Depress the 0UT key．The setting and parameter data will be continuously punched out．

6．To interrupt the punching operation，depress the RESET key．
Punching cannot be resumed．Restart operations from the beginning after interruption． Set the parameter \＃6219 back to＂0．＂

8．6 SUMMARY OF STORING DATA AND EDITING OPERATIONS

	Operation			Edit Lock	Parameter 16219 Setting	Hode	Func－ tion	Procedure
$\begin{aligned} & \text { H } \\ & \stackrel{\rightharpoonup}{U} \\ & \text { H } \\ & \text { 留 } \end{aligned}$	Storing from NC operator＇s panel keyboard				1		PRM	Parameter number \rightarrow CUPSOR Data \rightarrow Wh
	Storing from tape（Nate 4）（Note 6）				1	EDIT		［RSET \rightarrow［ IN
	Punch out（Note 3）							HESET \rightarrow OUT
	Matching with tape（Note 4）							［RESET \rightarrow VER
	Storing from NC operator＇s panel keyboard						SET	Setting number \rightarrow CURSOR Data \rightarrow WR
	Storing from tape				1	EDIT		RESET \rightarrow IN
	Punch out							［RESET \rightarrow OUT
	Hatching with tape							RESET \rightarrow YER
$\begin{aligned} & \text { 苟 } \\ & \text { 㟧 } \end{aligned}$	Storing from NC operator＇s panel keyboard							offset number \rightarrow CUISSOR Data \rightarrow HR
	Storing from tape							［RESET \rightarrow IN
	Punch out						OFS	RESET \rightarrow OUT
	Matching with tape							RESET \rightarrow VER
	Clear of all offsets							［0］$\rightarrow-9999 \rightarrow$ ORG
慁品品品品．	Storing from NC operator＇s panel keyboard			OFF				［0］\rightarrow Program number \rightarrow WR Repeat of edit opeation＂addition of address data＂
	Storing from tape	One part program	Tape with number 0	OFP				［EESET \rightarrow［N
			Tape without number 0	OFP				［ESET \rightarrow［0］Program number \rightarrow IN
		All part programs on tape		OFF				［RESET \rightarrow［0］$\rightarrow-999 \rightarrow$ IN
		Addition	to registered part program	Off				［RESET \rightarrow NEXT \rightarrow IN
	Punch Out	Designate	d part program					［RESET $\rightarrow 0]$ Program nuaber \rightarrow OUT
		All part	program					RESET \rightarrow［0 $\rightarrow-9999 \rightarrow$ OUT

8.6 SUMMARY OF STORING DATA AND EDITING OPERATIONS (Cont'd)

Notes:

1. Storing of a part program having a program number different from program number 0 on tape is performed by the same operation as for "tape without program number 0."
2. Within the liait of 32 characters, addition of multiple address data and the change to one address data are permitted.
3. Setting is punched out at the same time.
4. If the tape contains setting information, it is also stored and matched at the same time.
5. When the cursor to the address data in the middle of a block and EOB and ERASE keys are depressed, the data following the cursor position is deleted.
6. When data has been stored from a parameter tape, turn the power on and of f.

APPENDIX 1 LIST OF ALARM CODE
APPENDIX 1 LIST OF ALARM CODES

Causes	Code
000	006

APPENDIX 1 LIST OF ALARM CODE (Cont'd)

Cade Causes	Code	Causes
012 OVERFLOW (128 CH) BUFFER CAPACITY OVERFLOW IN A BLOCK (128 CHARACTERS). CORRECT PROGRAM.	018	
013 PROG ERROR (NO ADDRESS) address plus no data and next address command. OR NO ADDRESS PLUS dATA. SEE OPERATOR'S MANUAL (TOE-C843-9.20) PAR. 2.1.1 AND CORRECT PROGRAM.	019	
014 PROG ERROR ("- "".") SIGN "-," AND "." NOT CORRECTLY USED. SEE ORERATOR'S MANUAL (TOE-C843-9.20) PAR. 2.1.1 AND CORRECT PROGRAM.	020 PROG ERROR (G) unusable g code or g code not included in OPTIONS PROGRAMMED. SEE ORERATOR'S MANUAL (TOE-C843-9.20) PAR. 2.8.1 AND CORRECT PROGRAM.	
015 PROG ERROR (UNUSABLE CH) unusable character programyed in insignificant data area. SEE OPERATOR'S MANUAL (TOE-C843-9.20) PAR. 2.1.2 AND CORRECT PROGRAM.	021 PROG ERROR (G) g codes in 1, and * groups programiad simULTANEOUSLY in a block. SEE ORERATOR'S MANUAL (TOE-C843-9.20) PAR. 2.8.2 AND CORRECT PROGRAM.	
016	022	
017 PROG ERROR (8 DIGITS)	023	
InPuT data overflow (more than 8 CharacterS). SEE ORERATOR'S MANUAL (TOE-C843-9.20) PAR. 2.1.1 AND CORRECT PROGRAM.		

Code Causes	Code Causes
024 PROG ERROR (G, G41-44) UNUSABLE G CODE COMMANDED DURING NOSE Radius compensation. SEE ORERATOR'S MANUAL (TOE-C843-9.20) PAR. 2.8.19 AND CORRECT PROGRAM.	030 PROG ERROR (F/E) NO F OR E COMMAND IN FEED COMMAND. E COMMANDED IN G98 MODE. SEE TOE-C843-9.20 PAR.2.4.2
025	031 PROG ERROR ($\mathrm{R}=0$) CIRCLE WITH RADIUS 0 COMMANDED IN CIRCULAR ARC COMMAND, RADIUS 0 CIRCULAR ARC COMMAND IMPOSSİBLE, CORRECT PROGRAM
026 PROG ERROR (G41-44) RISE ERROR IN NOSE RADIUS COMPENSATION START. SEE ORERATOR'S MANUAL (TOE-C843-9.20) PAR. 2.8.19 AND CORRECT PROGRAM.	032
027 PROG ERROR (G41-44) ERROR DURING NOSE RADIUS COMPENSATION CANCELLATION. (ERROR IN CIRCULAR INTERPOLATION MODE). SEE ORERATOR'S MANUAL (TOE-C843-9.20) PAR. 2.8.19 and CORRECT PROGRAM.	033
028	034 PROG ERROR (G02/03) CIRCULAR ARC R DESIGNATION ERROR. SEE TOE-C843-9.20 PAR.2.8.9 AND CORRECT PROGRAM
029	035 PROG ERROR (T OFS) TOO LARGE NO. OF T OFS CODE FOR TOOL RADIUS COMPENSATION AND TOOL LENGTH COMPENSATION. SEE TOE-C843-9.20 PAR.2.6.1

APPENDIX 1 LIST OF ALARM CODE (Cont'd)

Code Causes	Code Causes
036 PROG ERROR (P-G 10) TOO LARGE P (Number designation) WHEN OFFSET IS PROGRAM-INPUT. OR P NOT PROGRAMMED. SEE TOE-C843-9.20 PAR. 2.62 AND 2.86 AND CORRECT PROGRAM.	042 PROG ERROR (M98, G65/66 NEST) SUBPROGRAM (M98) OR MACRO CALL (G65/G66) FIVE-NESTED. SEE TOE-C843-9.20 PAR. 2.7.5 NOTE 4 OR 2.8.23.10
037 PROG ERROR (G 10) TOO LARGE R WHEN WORK COORDINATE SYSTEM IS PROGRAM-INPUT. SEE TOE-C843-9.20 PAR. 2.62 AND 2.86 AND CORRECT PROGRAM.	
038	044 TOOL DATA ERROR (R AND C) NOSE R IS WRITTEN IN OFFSET NO. SPECIFIED BY [.]C] OF T**TC] COMMAND.
039	045
040 PROG ERROR (M98, G65/66)	046
P NOT PROGRAMMED IN G65/66 BLOCK. P OR Q NOT PROGRAMMED IN M 98 BLOCK. SEE TOE-C843-9.20 PAR. 2.75 OR 2.8.23.2	
041 NO PROG	047 PROG ERROR (G41-44)
PROGRAM NO. (SEQUENCE NO.) NOT FOUND WHEN PROGRAM IS CALLED BY M98, M99, G65, G66, G M, AND T. SEE TOE-C843-9.20 PAR. 2.75 0R 2.8.23.2	SEE TOE-C843-9.20 PAR.2.8.19 NOTES.

Code Causes	Code Causes
048 PROG ERROR (G41-44) INTERSECTION POINT NOT OBTAINED BY INTERSECTION COMPUTATION SEE TOE-C843-9.20 PAR.2.8.19.	054
049 PROG ERROR (G41-44) REVERSE OR ALMOST REVERSE COMMANDED IN M97 MODE. SEE TOE-C843-9.20 PAR.2.8.19.	055 PROG ERROR (M, S, T) M, S, T COMMANDS IN THE BLOCK IN WHICH M, S, T CODE CANNOT BE COMMANDED. NOT AVAILABLE FOR M, T COMMANDS OF G70 T0 G76 G90 T0 G94, and G111 T0 G112. CORRECT PROGRAM.
050 PROG ERROR (G11/12) I, K, R NOT CORRECTLY COMMANDED FOR BEVELING AND ROUNDING. VALUES OF $\mathrm{I}, \mathrm{K}, \mathrm{R}$ T00 LARGE. SEE TOE-C843-9.20 PAR.2.8.7.	056 PROG ERROR (AXIS) AXIS COMMAND IN G20, G21 BLOCKS. AXIS NOT CORRECTLY COMMANDED IN G04, G36-G38. SEE TOE-C843-9.20 PAR.2.8.8. (2)
051 PROG ERROR (G11/12) tapering command in blocks for beveling and ROUNDING. SEE TOE-C843-9.20 PAR.2.8.7.	057
052 PROG ERROR (G01) angle programming not correct during angle PROGRAMMING LINEAR INTERPOLATION BY GO1. SEE TOE-C843-9.20 PAR.2.8.3(3)	058
053 PROG ERROR (G50T/G92T) VALUES OF TOOL COORDINATE MEMORY OUT OF THE Range between 51 TO 80 IN WORK COORDINaTE SYSTEM SETTING BY G50T. SEE TOE-C843-9.20 PAR.2.8.22.	ZR UNREADY G28 NOT COMPLETED ON THE AXIS WIIICH HAS G2 COMMAND OR REFERENCE POINT RETURN NOT COMpleted On the axis wilich has g3o command. SEE TOE-C843-9.20 PAR.2.8.12.

appendix 1 LIST Of alarm CODE (Cont'd)

Code Causes	Code Causes
060 PROG ERROR (G34) LEAD InCREASE/DECREASE VALUE EXCEEDING maximum programmable value during variable lead thread cutting. minus value of lead commanded. SEE TOE-C843-9.20 PAR.2.8.17.	066 CANNOT CONTINUOUS TIIREAD TOO SHORT TIME FOR 1 BLOCK OF CONTINUOUS threadcutting. CHANGE SPINDLE SPEED COMMAND NOT TO OCCUR THIS ERROR.
061 PROG ERROR (G11/G12IN THREAD) rounding, beveling commanded in thread CUTTING BLOCK. THESE COMMANDS PROHIBITED.	067
062 PROG ERROR (G32/33) THREAD CUTTING COMMANDED IN G98 MODE. multi-start thread cutting command b out of SPECIFIED RANGE. SEE TOE-C843-9.20 PAR.2.8.15 AND 2.8.16.	068
063 PROG ERROR (G92/G78/G21) RAPID THREAD PULL-UP VALUE IN X-AXIS DIRECTION IN THREAD CUTTING WITH BEVELING SMALLER than beveling value set by parameter. SEE TOE-C843-9.20 PAR.2.8.26.2.	069
064 PROG ERROR (G92/G78/G21) rapid thread pull-up value in Z-axis direction in thread cutting witil beveling value SET BY PARAMETER. SEE TOE-C843-9.20 PAR.2.8.26.2.	070 PROG ERROR (MO2/M30/M99) MEMORY OPERATION COMPLETION COMMANJ NOT GIVEN. PROGRAM MODES M02/M30/M99.
065	071

APPENDIX 1 LIST OF ALARM CODE (Cont'd)

Code Causes	Code Causes
086	091 PROG ERROR (70-76/G72-78) BLOCK OF SEQUENCE NO. SPECIFIED BY P, A IN G70 NOT FOUND PROG NO. INCLUDING IN G70 BLOCK. SEE TOE-C843-9.20 PAR.2.8.25.2
087 PROG ERROR (G31/G35) TOUCH SWITCII NOT ON WHEN MOTION REACHES END POINT BY SKIP. CONFIRM COMMAND, THEN TOUCH SWITCH MOTION IF NO PROBLEMS. CHECK IF DGN \#1280 D_{0} BECOMES 1 TO 0 BY TOUCH SWITCH ON/OFF.	092 PROG ERROR (G70-76/G72-78) NO. OF BLOCKS INCLUDING FINISHED SHAPE PROGRAM SPECIFIED BY P, \& IN G70, G71, G72 AND G73, OUER 46. SEE TOE-C843-9.20 PAR.2.8.25.1
088	093 PROG ERROR (G70-76/G72-78) UNABLE G- AND M-CODE IN FINISHED SHAPE PROGRAM SPECIFIED BY P, Q IN G70, G71, G72, AND G73. CORRECT PROGRAM.
089 PROG ERROR (G90/G92/G94) UNUSABLE ADDRESSES SPECIFIED IN G90, G92, AND G94 BLOCKS. R, B, C, P, Q, L NOT AVAILABLE.	094 PROG ERROR (G70-76/G72-78) beveling and rounding commands as last move COMMAND FOR FINISHED SHAPE PROGRAM SPECIFIED BY P, Q IN G70, G71, G72 AND G73. CORRECT PROGRAM.
090 PROG ERROR (G70-76/G72-78) P, a NOT COMMANDED IN G70, 71, 72, 73 BLOCK SEE TOE-C843-9.20 PAR.2.8.25.2,3,4. CORRECT PROGRAM AFTER CHECKING SEQUENCE NO.	095 PROG ERROR (G70-76/G72-78) FAULTS IN FINISHED SHAPE PROGRAM SPECIFIED BY P, 0 IN G71, G72. G29 COMMANDED IN FINISHING SHAPE PRogram SPECIFIED BY P AND Q IN G70, G71, G72, AND G73. CORRECT PROGRAM.

Code Causes	Code Causes
096 PROG ERROR (G70-76/G72-78) D (CUTTING FREQUENCY) SPECIFIED BY G73 ZER OR 128 OR MORE. I, K (ROUGH CUTTING) SPEC FIED BY G73 BOTH ZERO. D, K OF G76 EXCEED ING PROGRAMMABLE RANGE. SEE TOE-C843-9.20 PAR.2.8.25.4, PAR.2.8.25.8.	102 CAL ERROR (DIVISION) CALCULATION DIVISOR ZERO OR OVERFLOW ERROR. CORRECT PROGRAM.
097 PROG ERROR (G70-76/G72-78) FOUR OR MORE PROCESSING INTERRUPTIONS BY FINISHED SHAPE PROGRAM IN STOCK REMOVAL CYCLE BY G71, OR G72 R1. SEE TOE-C843-9.20 PAR.2.8.25.2(2)	103 CAL ERROR (SQUARE ROOT) ROOT VALUE IS A NEGATIVE $\sqrt{(-)}$ CORRECT PROGRAM.
098 PROG ERROR (G70-76/G72-78) data specified by g70 p, a not registered IN INTERNAL KEEP MEMORY. SEE TOE-C843-9.20 PAR.2.8.25.5(3)	104 PROG ERROR (DOUBLE ADR) CHARACTER WHICH CANNOT BE REPEATED IN A BLOCK COMMAND IN REPETITION. CORRECT PROGRAM.
099 PROG ERROR (G70-76/G72-78) unusable addresses specified in g70 T0 g76 BLOCKS. ADDRESS REQUIRED IN THE BLOCK NOT SPECIFIED. CHECK FORMAT AND CORRECT PROGRAM.	105 MACRO ERROR (CONSTANT) CONSTANTS EXCEEDING THE LIMIT. SEE TOE-C843-9.20 PAR.2.8.23.10 (1) b, c, AND CORRECT PROGRAM.
100 CAL ERROR (FIXED POINT) Magnitude of rixed point data by calculaTION EXCEEDING UPPER LIMIT. RECHECK PROGRAM.	106 MACRO ERROR TOO MANY CODES FOR CANCELLING G67. CHECK NUMBERS OP G66 AND G67 AND CORRECT PROGRAM.
101 CAL ERROR (FLOATING) EXPONENT OF FLOATING POINT DATA BY CALCULATION EXCEEDING ALLOWABLE RANGE. RECHECK PROGRAM.	107 MACRO ERROR (FORMAT) ERROR IN TIIE FORMAT EXCEPT FOR EQUATION. SEE TOE-C843-9.20 PAR.2.8.23 AND CORRECT PROGRAM.

APPENDIX 1 LIST OF ALARM CODE (Cont'd)

Code Causes	Code Causes
108 MACRO ERROR (UNDEFIN \#NO.) UNDEFINED VARIABLE NO. DESIGNATED. SEE TOE-C843-9.20 PAR.2.8.23.5 TABLE 1.66. CARRECT PROGRAM.	114 MACRO ERROR (D0-FORMAT) "DO" NOT CORRESPONDING TO "END." SEE TOE-C843-9.20 PAR.2.8.23.7 AND CORRECT PROGRAM.
109 MACRO ERROR (\# NO NOT LEFT) PROHIBITED VARIABLE DESIGNATED AS SUBSTITUTION. SEE TOE-C843-9.20 PAR.2.8.23.5 (3), (4) AND CORRECT PROGRAM.	115 MACRO ERROR ([] UNMATCH) FORMAT ERROR IN <EQUATION>. CHECK NUMBER OF MARK () TO MEET AND CORRECT PROGRAM.
110 MACRO ERROR ([] 5 LIMIT) MULTIPLE LAYERS OF PARENTHESES EXCEEDING THE UPPER LIMITS (5). SEE TOE-C843-9.20 PAR.2.8.23.6 (6) CORRECT PROGRAM.	116 MACRO ERROR (DO END NO.) " m " IN DO m OUT OF RANGE $1 \leqq m \leqq 3$. SEE TOE-C843-9.20 PAR.2.8.23.7 AND CORRECT PROGRAM.
111 MACRO ERROR (MOVE G66-M99) MOVE COMMAND IN M99 FINISHING COMMAND OF MACRO CALLED BY G66. NO MOVE IN M99 BLOCK.	117
112 MACRO ERROR mULTIPLE LEVELS OF MACRO CALL EXCEEDING THE UPPER LIMIT 4. SEE TOE-C843-9.20 PAR.2.8.23.10 (2), c, d, and correct program.	118 MACRO ERROR (GO TO N) " n " in GOTO n OUT OF RANGE $0 \leqq n \leqq 9999$. OR APPROPRIATE SEQUENCE NO. NOT FOUND.
113	119 AS AFTER READ SUBPROG/MACRO ADDRESS SEARCHED DURING EXECUTION OF SUBPROGRAM OR MACRO PPOGRAM. THIS OPERATION PROHIBITED.

APPENDIX 1 LIST OF ALARM CODE (Cont'd)

Code Causes	Code Causes
135 EXT DATA ERROR in data given by external data input. need machine sequence's or hardware's check contact machine tool builder or our yasrep.	141 PROG ERROR (G111/G112) ANGLE FOR ANGLE PROGRAMMING A, B BY G111 OUT OF RANGE $-360 \leqq \mathrm{~A}, \mathrm{~B} \leqq 360$. SEE TOE-C843-9.20 PAR.2.8.30. CORRECT PROGRAM.
136	142 PROG ERROR (G111/G112) IST BEVELING PORTION OUTSIDE RECTANGLE COMPOSED BY START AND END POINTS OR BETHEEN 45° STRAIGHT LINES OF START TO END POINTS AND END TO START PONTS. SEE TOE-C843-9.20 PAR.2.8.30. CORRECT PROGRAM.
137	143 PROG ERROR (G111/G112) ERROR IN G111 COMMAND BLOCK. CORRECT PROGRAM.
138	144 PROG ERROR (G111/G112) M, S, T COMMAND IN G111, G112 BLOCK. SEE TOE-C843-9.20 PAR.2.8.30.1, 2. CORRECT PROGRAM.
139	145 PROG ERROR (G111/G112) ERROR IN COMMANDING ADDRESS WORD FOR G112 BLOCK. CORRECT PROGRAM.
140 PROG ERROR (G111/G112) ERROR IN ADDRESS WORD COMMANDING OF G111 BLOCK. SEE TOE-C843-9.20 PAR.2.8.30. CORRECT PROGRAM.	146 PROG ERROR (G111/G112) error in commanding programmed shape formed BY G112 BLOCK. CORRECT PROGRAM.

Code Causes	Code Causes
147	152 A VALUE 0 THER THAN $1 \leqq$ TOOL NUMBER $\leqq 50$ IS DESIGNATED FOR THE TOOL NUMBER. A VALUE OTHER THAN $1 \leqq$ COMPENSATION MEMORY NUMBER $\leqq 50$ IS DESIGNATED FOR THE COMPENSATION MEMORY NUMBER. ZERO OR A VALUE GREATER THAN 20 IS DESIGNATED IN (GROUP NUMBER) OF T 90 THROUGH T 95, OR T 99.
148	153 the tool inforhation of the same group number is registered twice.
149	154 IT WAS ATTEMPTED TO REGISTER MORE THAN 16 PAIRS OF "TOOL NUMBER + COMPENSATION MEMORY NUMBER" IN A SINGLE GROUP NUMBER.
150 G122 OR G123 COMMAND IS NOT SPECIFIED ON A SINGIE BLOCK BASIS. an address other than p, L, and T is dESIGNATED IN THE TOOL INFORMATION REGISTRATION PROGRAM.	155 THE TOOL OF THE SPECIFIED GROUP NUMBER IS NOT REGISTERED. $T \square \square 92$, $\square \square \square 93$, T $\square \square 94$, or T $\square \square 95$ IS SPECIFIED BUT THE CORRESPONDING COMPENSATION MEMORY NUMBER IS NOT REGISTERED.
151 THE DESIGNATION OF GROUP NUMBER P IS NOT PROVIDED. OR A VALUE OTHER THAN $1 \leqq P$ $\leqq 19$ IS DESIGNATED. THE DESIGNATION OF LIFE PER TOOL L IS NOT PROVIDED. OR A VALUE OTHER THAN $1 \leqq \mathrm{~L} \leqq$ 9999 IS DESIGNATED.	156 TOOL LIFE CONTROL IS DESIGNATED IN THE CONTROL HAVING NO "T 4-dIGIT DESIGNATION AND" OFFSET MEMORY ADDITION" OPTIONS.

APPENDIX 1 LIST OF ALARM CODE (Cont'd)

Code Causes	Code Causes
157 the tool replacement request output is on.	174 MEM ERROR (KEEP) KEEP MEMORY TOTAL CHECK ERROR. SEE THIS PAR.4.2.3
158 SOME REGISTERED TOOL IN THE TOOL GROUP DESIGNATED IN $\square \square$ OF WORK COORDINATE SYSTEM SETTING (G50 TD] 90) HAS A TOOL NUMBER GREATER THAN " 31 ".	175 MEM ERROR (MACR) USER MACRO TOTAL CHECK ERROR IN VARIABLE AREA. SEE THIS PAR.4.2.3
159 MORE THAN 6 PAIRS OF COMPENSATION MEMORY numbers are registered for a single tool.	176
170 MEM ERROR (OFS) TOOL OFFSET TOTAL CIECK ERROR. SEE THIS MANUAL PAR.4.2.3.	177
171	178 TOOL NO SET ERROR 51 and above from tool no input signal \#1317 (D4 T0 D7) \#1342 (D4 T0 D6)
172 MEM ERROR (SET) setting area total check error. SEE THIS PAR.4.2.3	179 OVER TEMP PANEL INSIDE TEMPERATURE TOO HIGH IN CASE OF " 1 " FOR DGN \#1281 Do. SEE THIS MANUAL PAR.4.2.4.
173 MEM ERROR (PRM) PaRAMETER AREA TOTAL CHECK ERROR. SEE THIS PAR.4.2.3	180 SEQ ERROR SEQUENCE ERROR (1) IN CASE OF "1" DGN \#1305 D6. CONTACT MACHiNE TOOL BUILDER OR SEE that builder's manual.

Code Causes	Code Causes
190 HDLC SYSTEM SOFT ERROR TRANSMISSION SYSTEM SOFTWARE ERROR CONTACT OUR YASREP.	197 hDLC NC REQUEST ERROR WRONG REQUEST COMMAND ACGC TO NC. CONTACT YASREP.
191 HDLC SOFT COMMAND ERROR NC RECEIVED DATA EXCEPT TRANSMISSION PROTOCOL BETHEEN ACGC AND NC. CONTACT OUR YASREP.	198 HDLC OPERATION ERROR data sending time acge to nc over one minuTE. CONTACT YASREP.
192 HDLC 8530 SEND ERROR transmission nc sending hardware error. CONTACT OUR YASREP.	201 or (X) OVERTRAVEL X FOR "0" OF DGN \#1306 D0, D1. SEE MACIINE TOOL BUILDER'S MANUAL.
193 HDLC 8530 RECEIVE ERROR transmission nc receiving hardware error. CONTACT OUR YASREP.	202 0T (Z) OVERTRAVEL 2 FOR " 0 " OF DGN \#1306 D2, D3. see machine tool builder's manual.
194 HDLC NAR ERROR (10 TIMES) SENT SAME DATA 10 TIMES NC TO ACGC ONLY TO FAIL. CONTACT OUR YASREP.	203
195 HDLC CMOS FILE ERROR reading and writing cmos file from acgi to NC NOT EXCECUTED. CONTACT OUR YASREP.	204
196 HDLC I/O DATA ERROR reading system variable from acci to nc not EXCECUTED. CONTACT YASREP.	205

APPENDIX 1 LIST OF ALARM CODE (Cont'd)

Code Causes	Code	Causes
206	213	
207	214	
208	215	
209	216	
210	217	
211 S-0T1 (X)	218	
stored stroke limit first area x. SEE TOE-C843-9.20 PAR.2.8.18.		
212 S-0T1 (Z)	219	
stored stroke limit first area z. SEE TOE-C843-9.20 PAR.2.8.18.		

Code Causes	Code Causes
220 S-0T2 (INSIDE) STORED STROKE LIMIT SECOND AREA (INSIDE INHIBIT). SEE TOE-C843-9.20 PAR.2.8.18.	227
221 S-0T2 (X) STORED STROKE LIMIT SECOND AREA (OUTSIDE INIIBIT) X. SEE TOE-C843-9.20 PAR.2.8.18.	228
$222 \quad \mathrm{~S}-0 \mathrm{~T} 2(\mathrm{Z})$ STORED STROKE LIMIT SECOND AREA (OUTSIDE INHIBIT) 2. SEE TOE-C843-9.20 PAR.2.8.18.	229
223 S-0T3 (INSIDE) stored stroke limit third area (OUTSIDE INHIBIT). SEE TOE-C843-9.20 PAR.2.8.18.	230
224 S-0T3 (X) STORED STROKE LIMIT THIRD AREA (OUTSIDE INHIBIT) X. SEE TOE-C843-9.20 PAR.2.8.18.	231 ZR ERROR-AREA (X) reference point return area error x. SEE TOE-C843-9.20 PAR.4.2.6.
225 S-0T3 (Z) stored stroke limit third area (OUTSIDE INIIIBIT) Z. SEE TOE-C843-9.20 PAR.2.8.18.	232 ZR ERROR-AREA (Z) REFERENCE POINT RETURN AREA ERROR Z. SEE TOE-C843-9.20 PAR.4.2.6.
226	233

APPENDIX 1 LIST OF ALARM CODE (Cont'd)

Code	Causes	Code	Causes
234		241 RE	(X) RETURN POSITION ERROR X. PAR.4.2.6.
235		242 RE SE	(Z) RETURN POSITION ERFOR 2. PAR.4.2.6.
236		243	
237		244	
238		245	
239		246	
240		247	

Code Causes	Code Causes
248	275
249	276
270	277
271 P-SET ERROR (X)	278
P SET ERROR X. SEE THIS PAR.4.2.7.	
272 P-SET ERROR (Z)	279
P SET ERROR Z. SEE THIS PAR.4.2.7.	
273	280 MACH UNREADY mach rdy off For "0" of dgn \#1305 do. CONTACT MACHINE TOOL BUILDER.
274	281

APPENDIX 1 LIST OF ALARM CODE (Cont'd)

Code	Causes	Code Causes
282		288
283		289
284		310 SERVO OFF SERVO POWER NOT SUPPLIED. SEE THIS MANUAL PAR.4.2.8.
285		311
286		312
287		313

Causes	Code
314	321
315	
316	Causes

APPENDIX 1 LIST OF ALARM CODE (Cont'd)

Code Causes	Code Causes
328 UNFINISHED MH21 program memory region setting not accord WITH PHISICAL CAPACITY OF MEMORY MODULE. CONTACT YASREP.	334
329 PC CPU ERROR PC AND CPU ERROR. CPU FAILURE FOR SEQUENCE CONTROL OR KEEP MEMORY CONTENTS DELETED. SEE THIS MANUAL PAR.4.2.16.	335
330 EMERGENCY STOP EMERGENCY STOP INPUTTED FOR "0" OF DGN \#1281 D1. SEE THIS PAR.4.2.10.	336
331 FUSE (X) FUSE BLOWN X: FUSE BLOWN OR MCCB TRIPPED IN X-AXIS WHEN DGN \#1288 D1 IS "1", SERVOPACK. SEE THIS PAR.4.2.11.	337
332 FUSE (Z) FUSE BLOWN 2. WHEN DGN \#1289 D1 IS " 1 ", FUSE BLOWN OR MCCB TRIPPED IN Z-AXIS SERVOPACK. SEE THIS PAR.4.2.11.	338
333	339

APPENDIX 1 LIST OF ALARM CODE (Cont'd)

Code Causes	Code Causes
354	360 PG ERROR (X) PG ERROR X. dISCONNECTION IN X-AXIS PG DETECTED. SEE THIS PAR.4.2.14.
355	361 PG ERROR (X) PG ERROR X. DISCONNECTION IN X-AXIS PG DETECTED. SEE THIS PAR.4.2.14.
356	362 PG ERROR (Z) PG ERROR 2. dISCONNECTION IN Z-AXIS PG DETECTED. SEE THIS PAR.4.2.14.
357 OL (OTHER) OVERLOAD (2). OUERLOAD FOR MULTI PURPOSE WIIEN DGN \#1281 D3 " 0 ". CONTACT MACHINE TOOL BUILDER.	363
358	364
359	365

Code Causes	Code	Causes
366 PG ERROR (S)	373	
PG ERROR S. DISCONNECTION IN SPINDLE PG DETECTED. SEE THIS PAR.4.2.14.		
367	374	
368	375	
369	376	
370	377	
371 FG ERROR (1)	378	
FG ERROR 1. CONTACT OUR YASREP FOR CHECKING MB 20 MODULE.		
372 FG NOT READY	379	
FG CONTACT OUR YASREP FOR CHECKING MB 20 MODULE.		

APPENDIX 1 LIST OF ALARM CODE (Cont'd)

APPENDIX 1 LIST OF ALARM CODE (Cont'd)

Code Causes	Code	
406	814	
407	815	
408		Causes 409 816 812

SUPPLEMENTAL ALARM CODE

ALARM "095"

X-coordinates differnt between G71 command cutting start point and last block for finished shape program.

Z-coordinates different between G72 command cutting start point and last block for finished shape program.

Z-coordinate for cutting start point by G71 command different from Z-coordinate for the first block of the finished shape program. (Command G71 ... R1 is excepted.)

X-coordinate for cutting start point by G72 command different from X-coordinate for the first block of the finished shape program. (Command G72 ... R1 is excepted.)
X-coordinate for finished shape program by G71 ... R1. Command exceeding cutting start point.

Z-coordinate for finished shape program by G72 ... R1 command exceeding cutting start point.

ALARM" $140^{\prime \prime}$

- Commanding one or no address of addresses B, $X(U), Z(W)$ specifying second straight line.
- Commanding two addresses of addresses B, $X(U), Z(W)$ specifying second straight line. In addition to this, one or no address commanded among addresses A, I, K, specifying first straight line.
- Address D specifying second beveling and address 0 specifying second rounding commanded.
- Commanding addresses X and Z specifying second straight line and Q and D specifying second beveling and rounding.

ALARM " 143 "

Command values for addresses A, I, K specifying first straight are determined as follows, and programmed shape cannot be formed.

Command Value for A	-
$-360.000,-180.000$,	
$0,180.000,360.000$	Address I commanded for specifying first straight line.
$-270.000,-90.000$,	Address K commanded for specifying first straight line.

APPENDIX 1 LIST OF ALARM CODE (Cont'd)
Command values for addresses $B, X(U), Z(W)$ specifying second straight line are determined as follows, and programmed shape cannot be formed.

Command value for B	-
$-360.000,-180.000$	Address $X(\mathrm{U})$ commanded for specifying second straight line.
$-270.000,-90.000$	Address $\mathrm{Z}(\mathrm{W})$ commanded for specifying second straight line.

Command values for addresses C and D for beveling too large for the programmed shape. Operation cannot be made according to the command.

Command values for address P and Q specifyi ng radius for rounding too large for the programmed shape. Operation cannot be made according to the command.

No intersecting point for first straight line and second straight line.

First straight line and second straight line on the same line.

ALARM " 145 "

- $X(U)$ or $Z(W)$ not commanded.
- $X(U)$ and $Z(W)$ both commanded.
- R not commanded. Or " 0 " commanded for R .
- I and K not commanded. " 0 " commanded for I and K .
- P and C both commanded.
- Q and D both commanded.

ALARM " 146 "

Beveling for command C cannot be made.

Beveling for command D cannot be made.

No intersecting point between circular arc and straight line.

No intersecing point between circular arc and end point.

Table A.2.1 Address Characters

Address	Meaning	B: Basic 0: Optional
A	Angle designation for G01 and G111, included angle for G76	0
B	Spindle shift angle 01 multiple thread, angle designation for multiple cornering	0
C	User macro character	0
D	Depth of cut and number of cutting cycles for G71 to G76	0
E	Specifications for precise feed and precise lead for cutting	B
F	Specifications for normal feed and normal lead for cutting	B
G	Preparatory function (G-function)	B
H	User macro character	0
I	X-component of arc center, canned cycle parameter, beveling value (radius value)	B, 0
J	User macro character	0
K	Z-component of arc center, canned cycle parameter, beveling value	B, 0
	Incremental value of variable lead thread	0
L	Number of subprogram repetition, G13 to G16 angle and coordinate	B, 0
M	Miscellaneous function (M-function)	B
N	Sequence number	B
0	Program number	B
P	Dwell, canned cycle starting sequence number, program number, user macro number	B, 0
0	Subprogram starting sequence number, canned cycle ending sequence number	B, 0
R	Radius of arc, rounding value, tool radius value	B, 0
S	Spindle function (S-function), maximum spindle revolution	B

Address	Meaning	B: Basic $0 ;$ Optional
T	Tool function (T-function), tool coordinate memory number	B, 0
U	X-axis incremental command value, dwell, canned cycle parameter	B, 0
V	User macro character	0
W	Z-axis incremental command value, canned cycle parameter	B, 0
X	X-axis coordinate value	B
Y	User macro character	0
Z	Z-axis coordinate value	B

APPENDIX 2 LIST OF DATA (Cont'd)

Table A.2.2 Function Characters

EIA Code	ISO Code	Punction	Remarks
Blank	NuL	Error in significant data area in EIA Disregarded in ISO)	
BS	BS	Disregarded	
Tab	TH	Disregarded	
CR	LF/NL	End of Block (EOB)	
-	CR	Disregarded	
SP	SP	Space	
ER	\%	Rewind stop	
UC	-	Upper shift	
LC	r	Lower shift	
2-4-5 bits	(Control out (comment start)	EIA: Special code
2-4-7 bits)	Control in (comment start)	
+	$+$	Disregarded, User macro operator	
-	-	Minus sign, User macro operator	
0 to 9	0 to 9	Numerals	
a to 2	A to Z	Address characters	
0	:	User macro comment	
1	1	Optional block skip	
Del	DEL	Disregarded (Including All Mark)	
-	-	Decimal point	

EIA Code	ISO Code	Function	Remarks
Parameter starting	$\#$	Sharp (Variable designation)	
$*$	$*$	Asterisk (Multiplication operator)	
$=$	$=$	Equal mark	
$[$	$[$	Left bracket	EIA: Special code
$]$	$]$	Right bracket	
$\$$	$\$$	User macro operator	
$?$	a	User macro operator	
$?$	$?$	User macro operator	

Notes:

1. Characters other than the above cause error in significant data area.
2. Information between Control Out and Control In is ignored as insignificant data.
3. Tape code (EIA or ISO) is automatically recognized.

\bigcirc				-	0			\bigcirc		-	I	$!$	O				-	O	O	\bigcirc	O	O	
				-	-			\bigcirc			H	4					-	-			\bigcirc	-	
\bigcirc	O		O	-				0			\bigcirc	${ }^{3}$	\bigcirc		O	\bigcirc	-				\bigcirc	-	
	\bigcirc		O	-				\bigcirc		-	${ }^{\text {d }}$	ғ			O	\bigcirc	-			-	-	O	
O			O	-				\bigcirc		-	a	${ }^{\circ}$	\bigcirc			\bigcirc	-			-	-	O	
			0	-				\bigcirc			a	P				\bigcirc	-				\bigcirc	O	
\bigcirc	0			-				\bigcirc		0	0	,	O		-		-			-	-	O	
	\bigcirc			-				\bigcirc			g	4			0		-				\bigcirc	O	
\bigcirc				-				\bigcirc			v	${ }^{\circ}$	-				-				\bigcirc	O	
\bigcirc				-	O	0	\bigcirc						O				-	O		-			
				-	O	0	O			0							-	O					
O	O		0	-		\bigcirc	-			0			O		O	0	-						
	\bigcirc	-	-	-		\bigcirc	\bigcirc								0	O	-			\bigcirc			
\bigcirc			\bigcirc	-		\bigcirc	\bigcirc						O			0	-			O			
			\bigcirc	0		\bigcirc	\bigcirc			0						0	-						
O	\bigcirc			-		\bigcirc	-						0		0		-			\bigcirc			
	-			-		\bigcirc	O			\bigcirc					-		-						
\bigcirc				0		O	-			\bigcirc			O				-						
				-		\bigcirc	-										-	-			\bigcirc		
1	2		ε	${ }^{\circ}$	†	9	9	L		8			I		2	\&	-	-	-	G	9	L	8
ga00 OSI													g000 \%ia										

Bia Code								claractres		ISO Cons								
8	${ }^{7} 6$	${ }_{6} 5$	$5{ }_{5} 4$	\bigcirc	，	2	1			8	7	${ }_{7} 6$	5	4.		32	2	1
	\bigcirc		－	－			\bigcirc	j	J		－			\bigcirc	。		\bigcirc	
	－		－	－		－		k	к		－			－	－		\bigcirc	\bigcirc
	－			－			\bigcirc	1	L	－	0			\bigcirc		－		
	－		－		\bigcirc			m	м		－			－		－		－
	\bigcirc				－		\bigcirc	n	N		－			\bigcirc	－	－	－	
	－			－	－	－		－	\bigcirc		－			－		－ 0	－	0
	\bigcirc		－	－	\bigcirc	－	0	p	P		－		\bigcirc		－			
	\bigcirc		00	－				q	Q		O		－		－			\bigcirc
	\bigcirc		\bigcirc	－			\bigcirc	r	R	－	－		\bigcirc		－		－	
		\bigcirc		－		\bigcirc		s	s		－		\bigcirc		－		－	0
		－		－			\bigcirc	t	т	－	－		\bigcirc		－ 0	－		
		－ 0		－	－			u	u		－		\bigcirc		－	－		0
		－		－	－		\bigcirc	v	v		\bigcirc		\bigcirc		－	－	－	
		－		－	－	－		w	w		－		\bigcirc		－ 0	－ 0	－	－
		－ 0		－	－	O	\bigcirc	x	x		－		－ 0	0	。			
		－ 0	0	－				y	Y		－		－ 0	0	。			－
		－	\bigcirc	－			\bigcirc	z	z		－		\bigcirc	\bigcirc 。	－		－	
				－				Blank	wut									
		－	\bigcirc			\bigcirc			s	\bigcirc								

Table A.2.3 Tape Code (Cont ${ }^{\text { }} \mathrm{d}$)

	EIA CODE									CHARACTERS		ISO CODE								
			6	5	4	0	3	2	1			8	7	6	5	4	-	3	2	1
			O	\bigcirc	-	-	\bigcirc	\bigcirc		Tab	нT					\bigcirc	-			0
						-				CR	LF/NL					\bigcirc	-		O	
										-	CR	\bigcirc				\bigcirc	-	-		\bigcirc
				0		-						O		0			-			
					\bigcirc	-		\bigcirc	0	ER	\%	-		O			-	O		\bigcirc
			\bigcirc	0	\bigcirc	-	0			uc	-									
			-	0	\bigcirc	-		\bigcirc		LC	-									
										-	(0		\bigcirc	-			
										-)	O		0		\bigcirc	-			\bigcirc
		\bigcirc	\bigcirc	0		-	-							0		\bigcirc	-		\bigcirc	\bigcirc
		-				-	-							0		\bigcirc	-	0		\bigcirc
		-				-	- 0	0		0	:			\bigcirc	O	\bigcirc	-		\bigcirc	
			\bigcirc	O		-	-		\bigcirc			\bigcirc		\bigcirc		\bigcirc	-	0	O	\bigcirc
		-	\bigcirc	\bigcirc	\bigcirc	。	- 0	\bigcirc	\bigcirc	Del	del	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	O	\bigcirc	0
		O	0	0	\bigcirc	-	- 0	-	-	411		O	-	0	O	\bigcirc	-	O	0	O
	See Note 2.											\bigcirc		\bigcirc			-		0	\bigcirc
				\bigcirc	O	-	-					\bigcirc		\bigcirc		\bigcirc	-		0	
					\bigcirc	。	- 0					\bigcirc		O	0	\bigcirc	-	0		0
			\bigcirc	O		-	-					O	\bigcirc		0	\bigcirc	-		0	\bigcirc

eia code									CHARACTERS	ISO CODE								
8	7	6	5	4	-	3	2	1		8	7	6	5	4	-	3	2	1
0		\bigcirc			-		O]	\bigcirc	\bigcirc		\bigcirc	O	-	0		\bigcirc
0			O		-	O			\$			0			-	O		
0				O	-	O	O	O	(a)	O	O				0			
O			O	0	-	O	O		?			0	O	\bigcirc	-	O	0	0
	0	0		0	-		O	O	.			0		\bigcirc	-	O	\bigcirc	

Notes:

1. For the hole pattern of EIA code of the characters with an asterisk, the pattern shown in the table is standard. However, other patterns may be specified by parameters.
2. EIA code of character \# can be designated by the parameter $\# 6017$.
appendix 3 LIST OF SETTING NUMBERS

INHEDTT D_{7}
1: Turns on Edit Lock function.
0 : Turns of f Edit Lock function.

AFLT $\quad D_{6}$

1: Turns on Auxiliary Function Lock.
0 : Turns off Auxiliary Function Lock.

ABST $\quad D_{5}$

1: Turns on Manual Absolute function.
0 : Turns of Manual Absolute function.

DRN: $\quad \mathrm{D}_{4}$

1: Turns on Dry Run function.
0 : Turns off Dry Run function.

BDTT $\quad D_{3}$

1: Turns on Block Delete function.
Q: Turns off Block Delete function.
DLKTl $\quad D_{2}$
1: Turns on Display lock function.
0: Turns off Display Lock function.
MLK'T $\quad D_{1}$
1: Turns on Machine Lock function.
0 : Turns off Machine Lock function.

SBK' $\quad D_{0}$
1: Turns on Single Block function.
0 : Turns of fingle Block function.

Notes:

1. These settings are for setting internal toggle switches.
2. When each switch is provided with machine control station, the logical sum of these settings and toggle switch setting determines function on/off state.

Internal toggle switch	$0 F F$	$0 N$	OFF	$0 N$
Toggle switch on machine	OFF	0 FF	0 N	0 O
Resul tant ON/OFF state	OFF	0 N	0 ON	0 ON

$\# 6001$	D_{7}					D_{2}	D_{1}	D_{0}

BUZON D_{7}
1: Turns on touch buzzer (key switch on operator's panel).
0 : Turns of f touch buzzer.

SLT 3: D_{2}

1: Effective on the third Stored Stroke Limit.
0 : Ineffective on the third Stored Stroke Limit.
The value of limit automatically changes by G38 or G39 command in part program.

SLT 2: D_{1}
1: Effective on the second Stored Stroke Limit.
0: Ineffective on the second Stored Stroke Limit.
The value of limit automatically changes by G36 or G37 command in part program.

INCHMM Do
1: Selects inch input increment.
0 : Selects metric input increment.

| $\# 6002$ | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| D_{7} | D_{6} | D_{5} | D_{4} | | | | |

ISOEIA D_{7}
1: Punches out tape code with ISO code.
0 : Punches out tape code with EIA code.

TVCHK D_{6}

1: Executes TV check.
0 : Does not execute TV check.

UMO9000E D_{5}
1: Effective on the edit interlock in 09000's.
0 : Ineffective on the edit interlock in 09000's.
UMOB000E D_{4}
1: Effective on the edit interlock in 08000 's.
0: Ineffective on the edit interlock in 08000 's.

C0V161	Cov81	C0V41	CoV21	COV11	Cut Depth Override
0	0	0	0	0	0%
0	0	0	0	1	10%
0	0	0	1	0	20%
0	0	0	1	1	30%
0	0	1	0	0	40%
0	0	1	0	1	50%
0	0	1	1	0	60%
0	0	1	1	1	70%
0	1	0	0	0	80%
0	1	0	0	1	90%
0	1	0	1	0	100%
0	1	0	1	1	110%
0	1	1	0	0	120%
0	1	1	0	1	130%
0	1	1	1	0	140%
0	1	1	1	1	150%
1	0	0	0	0	160%
1	0	0	0	1	170%
1	0	0	1	0	180%
1	0	0	1	1	190%
1	0	1	0	0	200%

Note: These settings are effective when parameter $\# 6023 \mathrm{D}_{2}$ (COUP) is " 0 ."

UM08000 D_{2}
1: Inhibits editing and punchout operations of the part program of program No. 8000 to 8999.

0 : Permits editing and punchout operations.
UMSBK $\quad D_{1}$
1: Makes Single Block Stop effective for the programs in user macro when single block input is on.
0: Does not permit Single Block Stop for the user macro blocks commanding operation and control.

APPENDIX 3 LIST OF SETTING NUMBERS (Cont'd)
SKIPIN D_{0}
1: Executes the next block when the skip signal is not given before completion of movement of block including Skip Function (G31) or if the touch switch does not trip beyond the limit position in the direction of motion for tool set error compensation (G35).
0: Alarm "087" is displayed.

\#6165 TG5LF
\#6170
TG10LF

\#6171
TG11LF
\#6172
TG12LF
TG13LP

\square

TG14LF

\#6175 TG15LF
\#6176 TG16LF
\#6177 \quad TG17LP

\#6178
TG18LF
6179

TG10LF to TG19LF:
Individual life expectancy for tools in groups 10 to 19 is set by part program.
Setting range: $0-9999$ (Tool life control)
Setting: "1" = 1 minute

TG1LF to TG9LF:
Individual life expectancy for tools in groups 1 to 9 is set by part program.
Setting range: 0-9999 (Tool life control)
Setting: "1" = 1

TG1CNT to TG19CNT:
No. of times used and operating times are indicated individually for tools in groups 1 to 19. Note: Writing is not permitted in this setting.
\#6202 G710FL

G710FL:
Sets retraction value af ter completion of each cutting cycle in Stock Removal in Turning (G71). Setting range: $0-65536$
Setting: Least input increment
\#6203 G720FL

G720FL:
Sets retraction value after completion of each cutting cycle in Stock Removal in Facing (G72). Setting range: $0-65536$ Setting: Least input increment

\#6204

\square
G740FL

G740FL:
Sets retraction value (δ) in Peck Drilling in Z-axis (G74).
Setting range: $0-65536$
Setting: least input increment

G750FL:
Sets retraction value (δ) in Grooving in X -axis (G75).
Setting range: $0-65536$
Setting: Least input increment
\#6206 \quad G760FL

G760FL:
Sets cut depth (in X-axis) "a" in Automatic Threadcutting (G76).
Setting range: $0-65536$
Setting: Least input increment
\#6207 \quad TINON

When the tape without program no. is stored, program no. is set for the tape.
\#6219 \quad SNSW

Setting: 0,1 , or 4 of system No. switch
"0": SYSTEM
For usual operation. Writing parameters is prevented.

"1": PARAMETER

To write parameters. At this position, the Cycle Start is prevented.

APPENDIX 3 LIST OF SETTING NUMBERS (Cont'd)

"4": TEST (0)
The usual operation is similar to case of " 0 " SYSTEM. Self-diagnostics of the memory contents and checking of reference zero return point are omitted.

Note:

1. Setting the values other than described above cannot permit the correct operation.
2. Setting can be effective only when the system number switch provided on the upper part of the unit is set at "0."

XSL2P, 2SL2P:
Sets the boundary area in positive direction of Stored Stroke Limit second prohibit area on X -axis and Z-axis, respectively.
Setting range: 0 to ± 99999999
Setting: Least output increment

XSL2M, ZSL2M:
Sets the boundary area in minus direction of Stored Stroke Limit second prohibit area on X-axis and Z-axis, respectively.
Setting range: 0 to ± 99999999
Setting: Least output increment

XSL3P, ZSL3P:
Sets the boundary area in positive direction of Stored Stroke Limit third prohibit area on X-axis and Z-axis, respectively. Setting range: 0 to ± 99999999 Setting: Least output increment

KSL3M, ZSL3M:
Sets the boundary area in minus direction of Stored Stroke Limit third prohibit area on X -axis and Z -axis, respectively. Setting range: 0 to ± 99999999 Setting: Least output increment

\#6508	T1XSLP	\#6524	T5XSLP
\#6509	T1ZSLP	\#6525	T52SLP
\#6510	T1XSLM	\#6526	T5XSLM
\#6511	T1ZSLM	\#6527	T5ZSLM
\#6512	T2XSLP	\#6528	T6XSLP
\#6513	T2ZSLP	\#6529	T6ZSLP
\#6514	T2XSLM	\#6530	T6XSLM
\#6515	T2ZSLM	\#6531	T6ZSLM
\#6516	T3XSLP	\#6532	T7XSLP
\#6517	T3ZSLP	\#6533	T7ZSLP
\#6518	T3XSLM	\#6534	T7XSLM
\#6519	T3ZSLM	\#6535	T72SLM
\#6520	T4XSLP	\#6536	T8XSLP
\#6521	T4ZSLP	\#6537	T8ZSLP
\#6522	T4XSLM	\#6538	T8XSLM
\#6523	T4ZSLM	\#6539	T8ZSLM

APPENDIX 3 LIST OF SETTING NUMBERS (Cont'd)

\#6540	T9XSLP	\#6554	T12XSLM
\#6541	T9ZSLP	\#6555	T12ZSLM
\#6542	T9XSLM	\#6556	T13XSLP
\#6543	TSZSLM	\#6557	T13ZSLP
\#6544	T10XSLP	\#6558	T13XSLM
\#6545	T102SLP	\#6559	T13ZSLM
\#6546	T10XSLM	\#6560	T14XSLP
\#6547	T10ZSLM	\#6561	T14ZSLP
\#6548	T11XSLP	\#6562	T14XSLM
\#6549	T11ZSLP	\#6563	T14ZSLM
\#6550	T11XSLM	\#6564	T15XSLP
\#6551	T112SLM	\#6565	T15ZSLP
\#6552	T.12XSLP	\#6566	T15XSLM
\#6553	T12ZSLP	\#6567	T15ZSLM

$\mathrm{T} \square \square \mathrm{SL} \square$

P: Positive direction:
M : Minus direction
X: X -axis
Z: Z-axis
nth tool
Sets the distance of Stores Stroke Limit from reference point.
Setting range: 0 to ± 99999999
Setting: Least output increment
\#6568 \quad XSKIP

Indicates X -axis coordinate value when the skip signal is detected.
\#6569 \quad 2SKIP

Indicates 2 -axis coordinate value when the skip signal is detected.

TGPNOI to TGPN50:
Part program determines the number of groups including tools (number 01 to 50).
Setting range: 0 to 20
(Tool life control)

TOPNO1 to TOFN50:
Part program sets tool number using of feet valwe of of feet memory numbers 01 to 50 orderly. Setting range: 0 to 50 (Tool life control)

TOF001 to TOFO50:
Part program sets the order of using offset values in offset memories " 01 " to " 50 ," sequentially.
Setting range: 0 to 5
(Tool life control)

APPENDIX 4 LIST OF PARAMETER NUMBERS

GCDSP D_{7}
1: Uses special G code I as G code.
0 : Uses standard G code I as G code.
RSTGO1 D_{6}
1: Determines G code of 01 group as G01 when resetting.
0 : Determines G code of 01 group as $G 00$ when resetting.

POSEXT D_{5}
1: Presets position external display by setting coordinate system.
0 : Does not preset position external display by setting coordinate system.

EXTSET D4

1: Resets the value at POSITION EXTERNAL display to "0."
0: Does not reset the value at POSITION EXTERNAL display to "0."

PONGO4 D_{1}
1: Sets the G code in the 05 group to $G 99$ when power is applied.
0: Sets the G code in the 05 group to G98 when power is applied.

PONGO3 Do
1: Sets the G code in the 03 group to $G 91$ when power is applied.
0: Sets the G code in the 03 group to $G 90$ when power is applied.

Note: Where the control is provided with special G code II option, determination of setting is changed as follows.

1: Uses special G code II.
D: Uses standard G code.

SDASGN2, SDASGN1: D_{7}, D_{6} Setting of S4-digit (analog output) output.

SDASGN	SDASGN	At M03 Output	At M03 Output
2	1	Plus	Plus
0	0	Monus	
0	1	Monus	Monus
1	0	Plus	Minus
1	1	Minus	Plus

$10 \mathrm{~N} \quad \mathrm{D}_{5}$

1: Sets ten times the least input increment.
0 : Sets the least input increment.
SÂGRCH D_{4}
1: Checks to see if the spindle speed match signal (SAGR) is off upon transition from a rapid traverse block to a cutting feed block. 0 : Provides no check on the spindle speed match signal (SAGR).

XRAD $\quad D_{3}$
1: Radius designation.
0: Diameter designation.
RPDDRN D_{z}
1: Enables Dry Run in response to the rapid traverse command.
0 : Disables dry Run in response to the rapid traverse command.

ZZRNILK D_{1}

1: Causes an alarm (" $002^{\prime \prime}$) upon Cycle Start when Reference Point Return on Z -axis is not made manually after power is applied.
0 : Causes no alarm.

XZRNILK D_{0}

1: Causes an alarm ("001") upon Cycle Start. when Reference Point Return on X-axis is not made manually af ter power is applied.
0 : Causes no alarm.

Note: Set "1" when Stored Lead Screw Error Compensation or Stored Stroke Limit is provided, set ZZRNILK at 1, XZRNILK at 1.
\#6007

EDTSTLK D_{7}

1: Does not cause an alarm upon Cycle Start without reset operation af ter part program edit operation.
0: Causes an alarm 005.
STUD D_{6}
1: Effective on Cycle Start when cycle start signal " 1 " changes to " 0 ."
0: Effective on Cycle Start when cycle start signal " 0 " changes to " 1 ."

RWDOUT D_{4}
1: Provides Rewinding Activate Signal when NC program is rewound by RESET \& REWIND signal.
0: Provides no Rewinding Activate Signal when when NC progran is rewound by RESET \& REWIND signal.

OUTPUT D_{3}
1: Sets the least output increment at 0.0001 inch.
1: Sets the least output increment at 0.001 mm .
SCRSOV D_{2}
1: Makes the Spindle 0verride 100% during tapping.
0: Does not make the Spindle Override 100% during tapping.

SLT3I0 D_{1}
1: Establishes the prohibited area of the Stored Stroke Limit 3 outside the boundary.
0 : Establishes the prohibited area of the Stored Stroke Limit 3 inside the boundary.

SLT210 $\mathrm{D}_{\mathbf{2}}$
1: Establishes the prohibited area of the Stored Stroke Limit 2 outside the boundary.
0 : Establishes the prohibited area of the Stored Stroke Limit 2 inside the boundary.

PONM97 D_{5}
1: M97 command (calculation of intersection) is selected at power-on.
0: M96 command (circular arc) is selected at power-on.

CUSAVE D_{1}

1: Does not clear user macro command variable \#100 thru \#149 by reset.
0 : Clears user macro common variables $\# 100$ thru $\# 140$ by reset operation.

2RNOFS Do

1: Cancels the commanded block when the second reference point by G30 is commanded during Tool Position Offset or Tool Nose Radius Compensation.
0 : Cancels the blocks following the commanded block.

$\# 6009$								
	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}		D_{1}	D_{0}

ZMOVILK D_{7}
1: After turning on power, if move command except by G28 is executed without returning Z-axis to reference point manually or automatically, alarm " 001 " will be caused.
0 : Does not cause alarm in the same condition shown above.

APPENDIX 4 LIST OF PARAMETER NUMBERS (Cont'd)
XMOVILD D ${ }_{6}$
1: After turning on power, if move command except by G28 is executed without returning X-axis to reference point manually or automatically, alarm "001" will be caused.
0: Does not cause alarm.
OTALILK D_{5}
1: Does not cause an alarm at overtravel.
0: Causes an alarm at overtravel.

HPMUL $\quad D_{4}$

1: Sets the value set by $\# 6223$ when MANUAL PULSE MULTIPLY switch is set at x100.
0 : Regards multiplication factor as x100 when MANUAL PULSE MULTIPLY switch is set at $\times 100$.

ZRNRPD D_{3}
1: Provides JOG command instead of RAPID command until reference point return for each axis is completed after the power is turned on. In the reference point return mode, usual RAPID operation is executed in both negative and positive directions.
0 : Provides usual RAPID TRAVERSE rate.
BLZDR, BLXDR $\mathrm{D}_{1}, \mathrm{D}_{0}$
Specify the start direction of backlash compensation on Z-, and X-axis, respectively.
1: Minus direction
0 : Positive direction

| $\$ 6010$ | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | D_{5} | D_{4} | | | D_{1} | D_{0} |

AZRNHS D_{5}

1: Executes the first reference point return (deceleration limit switch) and the subsequent automatic reference point returns in the same way when power is applied.
0: Executes high-speed reference point return (position at reference point).

MZRNHS D_{4}
1: Executes the first reference point return and the subsequent automatic reference point returns in the same way when power is applied.
0: Executes high-speed reference point return.
ZRNDRZ, ZRNDRX D_{1}, D_{0}
Specify the start direction of Backlash Conpensation on Z -, and X -axis, respectively.
1: Minus direction
0 : Plus direction

PCMEM D_{7} :
Stores PC unit malfunction. (Maintenance Parameter)

ATSUPZ, ATSUPX D_{1}, D_{0}
Specify whether or not the Automatic Coordinate System Setting is effective on the \mathcal{Z} - and X-axis, respectively.
1: Effective
0: Ineffective

Note: The Automatic Coordinate System is established with the following parameters:
Inch system: \#6631, \#6630
Metric system: \#6637, \#6636

NOSERR D_{2}

1: Effective on interference check.
0 : Ineffective on interference check.

MRVDRN D_{1}

1: Dryrun shift during operation possible with mode MM/REV.
0 : Dry run shift during operation impossible with mode MM/REV.

| $\# 6017$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad| D_{7} | D_{6} |
| :--- | :--- |

\#EIA\#B7-B0 D_{7} - D_{0}
Specify whether or not a hole is to be made on channels $8-1$, respectively, in a code corresponding to symbol "\#" (used with user macro) in the EIA code.
1: Hole
0: No hole
Example: EIA\#B7-B0=01001001
The code with holes on channels 7, 4, and 1 is considered equivalent to symbol " $\#$ " in the EIA code. No code for use by the unit can be set.

Note: The specification of EIA\#B7-B0 $=00000000$ assumes that symbol "\#" is not used in the EIA code.

G50WST D_{7}

1: Does not add workpiece shift value at G50 coordinate system setting or resetting by ORG key.
0 : Adds workpiece shift value at G50 coordinate system setting or resetting by ORG key.

WSTSGN D_{6}
1: Reverses U and W input code for work coordinate system shift value.
0 : Does not reverse U and W input code for work coordinate system shift value.

OFSCYC D_{5}
1: Displays cyclically by pressing offset function.
0: Does not display cyclically by pressing of fset function.

G32ALM D4

1: Activates alarm due to too short cutting time of 1 block for continuous threadcutting.

0: Executes without waiting for cycle start if cutting time is too short for continuous threadcutting.

MAXUM D_{3}
1: Warning if U or W input exceeds parameter \#6626
0 : Regards U or W input to of fet data as usual input.

RPDOV D ${ }_{2}$
1: Provides six steps of rapid override (F0, 25, 50, 100\%)
0 : Provides four steps of rapid override (F0, 25, 50, 100\%)

SPDOV D 1
1: Sets spindle speed override range of 50 to 200\% (10% increments)
0 : Sets spindle speed override range of 10 to 120% (10% override increments)

| $\# 6019$ | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| D_{7} | | D_{5} | D_{4} | D_{3} | D_{2} | | |

G92FHP D_{7}
Specifies the position of temporary stop of threadcutting.
1: Stops at the position B where Threading-up is completed.

APPENDIX 4 LIST OF PARAMETER NUMBERS (Cont'd)
0: Returns to start point A and stops after Threading-up is completed.

SCRDRN D_{5}
1: Enables Dry Run at thread cutting.
0 : Disables Dry Run at thread cutting.
SKPFED D4
1: Employs the feedrate set in parameter \#62:32 (G31F) for the Skip Function command (G31).
0 : Employs the F code command as the feedrate for the Skip Function command (G31).

ESPRST D_{3}
1: Does not turn on RST output with ESP inpe.t ON.
0: Turns on RST output with ESP input ON.

G31SKP D_{2}

1: Inputs the specified value to macro system variables \#5001, 5002 during G31 execution.
0 : Inputs the current value to macro system variables \#5001, 5002 during G31 execution.

OFSDSP D_{7}
1: Displays programmed position in current position display (POSITION ABSOLUTE).
0: Displays programmed position modified with tool position offset in current position display (POSITION ABSOLUTE).

FOVAB D_{5}
1: Effective with feedrate override signal "0."
0 : Effective with feedrate override signal "1."

SSTPAB D_{4}

1: Analog output zero with spindle S command zero input signal SSTP "0."
0 : Analog output zero with spindle S command zero input signal SSTP "1."

PSTSGN D_{2}
Shown in the calculation formula of storing data during MDI of measured work point into tool offset memories 00 to 50 .

1 :

$\left(\begin{array}{l}\text { Current value } \\ \text { temporarily } \\ \text { stored in the } \\ \text { register }\end{array}\right)-\left(\begin{array}{l}\text { Written } \\ \text { measurement } \\ \text { value }\end{array}\right)$
0

OFSG96 D_{1}
1: Specifies the surface speed calculated by the X-axis coordinate value modified by tool position offset value in Constant Surface Speed Control.
0 : Specifies the surface speed calculated by the programmed X-axis coordinate value in Constant Surface Speed Control.

POSG96 D_{0}
1: Surface Speed Control functions on the block including Rapid Traverse (G 00).
0 : Surface Speed Control functions on the block including Rapid Traverse (G 00), if programmed before the Cutting Feed block.
\#6021

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}

UMO9000 D ${ }_{7}$
1: Inhibts editing and punchout operations of the part program of program No. 9000 to 9999. 0: Permits editing and punchout operations

MERSIN D_{6}

1: Replaces the stored program with a new one when part program is already stored.
0 : Displays ALREADY ALARM.
PSONOF D_{5}
1: Sets on and off RS (RS232C signal) by " $\chi^{\prime \prime}$ character.
0: Keeps RS signal on until reading-in is finished.

CHKDR D_{4}

1: Recognizes DR.
0 : Does not recognize DR.
$0-99990 \mathrm{D}_{3}$
1: Punches 00 when tape is punched with $0,-$, $9,9,9,9$ keyed in and OUT key depressed.
0 : Does not punch 00 when tape is punched with $0,-, 9,9,9$, and 9 keyed in and OUT key depressed.

PONON D_{2}
1: Does not clear program No. on power application.
(program number is stored at power supply shut off.)
0: Clears program No. on power application.
PRGNO D_{1}
1: Employs the value following address 0 or N as the program number (specifiable in one block).
0 : Employs the value following address 0 as the program number.

M02M99 D_{o}
1: Considers M02, M30 and M99 as the program end when part program is stored into memory.
0: Does not consider M02, M03 and M99 as the program end when part program is stored into memory.

| $\# 6022$ | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| D_{7} | D_{6} | D_{5} | D_{4} | D_{3} | D_{2} | D_{1} | D_{0} |

HOFSHV D_{7}
1: Enables the movement of automitic mode handle offset during cutting feed by interpolation.
0 : Enables the movement of automatic mode handle of fset except during execution of rapid traverse.

TLCC D_{6}

1: Effective on the next T code when offset amount is changed.
0: Effective on the next block when offset amount is changed.

TRDFII D_{5}

1: Executes the block next to the block specifying thread, and stops at single block operation or feedhold during thread cutting.
0 : Stops on completion of the block specifying thread at single block operation or feedhold during thread cutting.

MABIN D_{4}
1: Ignores manual absolute function for incremental command by U and W .
0: Does not ignore manual absolute function for incremental command by U and W.

ISOPO $\quad D_{3}$
1: Does not output parity bit (8th bit) when outputting ISO codes from NC by operating OUT key (in the EDIT mode).
0 : Outputs parity bit.

APPENDIX 4 LIST OF PARAMETER NUMBERS (Cont'd)
ISOPI $\quad D_{2}$
1: Ignores parity bit (8th bit) when outputting ISO codes by operating IN key (in the EDIT mode) and when reading-in ISO tape data in the TAPE mode.
0: Performs parity check.
HOFSZ HOFSX D_{1}, D_{0}
Specifies whether automatic made handle offset movement is effective or ineffective.
1: Effective automatic mode handle offset movement.
0: Ineffective automatic mode handle offset movement.

PERIAB D_{7}
1: Incremental setting of offset value for Stored Leadscrew Error Compensation.
0 : Absolute setting of offset value for Stored Leadscrew Error Compensation.

PERST DG

1: Regards "\%" code as M30, if "\%" is commanded before M02 or M30 in TAPE mode operaiton.
0: Ignores "\%" code if cummanded before M02 or M30 in TAPE or MEM mode operation.

MCIMST D_{5}
1: Lights feedhold lamp and stores M, S, and T commands when manual operation mode is selected during automatic operation.
0 : Does not light feedhold lamp and M, S, and T commands are forced to reset when manual operation mode is selected during automatic operation.

ONOCHG D_{3}
1: Changes No. 0 by pressing 0 , program number and ALT keys.
0 : Does not change No. 0 by pressing 0 , program number, and ALT keys.

CovP $\quad D_{2}$
1: Sets cut depth value override with cut depth override input in Stroke Removal in Turning (G71) and stock removal in facing (G72).
0 : Sets cut depth value override with setting \#6004.

CLNO D_{1}
1: Outputs "0" by inputting ":" and outputs ": " by inputting " 0 ," in ISO code.
0 : Does not perfrom the conversion above.
HSRWD Do
1: Automatically starts at high speed in high speed rewinding.
0: Does not start automatically at high speed in high-speed rewinding.

Input for RS232C No. 1

SIFICI D5
Determines whether the input control code for RS232C interface is given or not.
1: Does not send control code.
0 : Sends control code.
SIF1SI D_{4}
Detrtmines the input stop bit for RS232C interface No. 1 as two bits or one bit. 1: Determines stop bit as two bits. 0: Determines stop bit as one bit.

SIFIBID - SIFIBIA $D_{3}-D_{0}$
Sets input baud rate for RS232C interface No. 1

Baud Rate	SIF 1	SIF 1	SIF 1	SIF 1
	BID	BIC	BIB	BIA
50	0	0	0	0
100	0	0	0	1
110	0	0	1	0
150	0	0	1	1
200	0	1	0	0
300	0	1	0	1
600	0	1	1	0
1200	0	1	1	1
2400	1	0	0	0
4800	1	0	0	1
9600	1	0	1	0

Output for RS232C No. 2

SIF2CI D
Determines whether output control code for RS232C No. 2 interface is sent or not.
1: Does not send control code.
0 : Sends control code.

SIFISO D_{4}
Determines output stop bit for RS232C interface
No. 2 as two bits or one bit.
1: Determines stop bit as two bits.
0: Determines stop bit as one bit.

SIF2BID - SIF2BIA $D_{3}-D_{0}$
Sets output band rate for RS232C interface No. 2.

Baud Rate	$\begin{array}{r} \hline \text { SIF } 2 \\ \text { BID } \\ \hline \end{array}$	$\begin{array}{r} \hline \text { SIF } 2 \\ \text { BIC } \\ \hline \end{array}$	$\begin{array}{r} \hline \text { SIF 2 } \\ \text { BIB } \\ \hline \end{array}$	$\begin{array}{r} \hline \text { SIF } 2 \\ \text { BIA } \end{array}$
50	0	0	0	0
100	0	0	0	1
110	0	0	1	0
150	0	0	1	1
200	0	1	0	0
300	0	1	0	1
600	0	1	1	0
1200	0	1	1	1
2400	1	0	0	0
4800	1	0	0	1
9600	1	0	1	0

Output for RS232C No. 1

SIFIC0 D_{5}
Determines whether output control code for current loop and RS232C interface is sent or not.
1: Does not send control code.
0 : Sends control code.
SIF1SO D_{4}
Determines output stop bit for current loop and RS232C interface as two bits or one bit.
1: Determines stop bit as two bits.
0 : Determines stop bit as one bit.

APPENDIX 4 LIST OF PARAMETER NUMBERS (Cont'd)
SIFIBOD - SIFIBOA D_{3} - D_{0} Sets output baud rate for current loop and RS232C interface.

Baud Rate	$\begin{array}{r} \hline \text { SIF } 1 \\ \text { BOD } \\ \hline \end{array}$	$\begin{array}{r} \hline \text { SIF } 1 \\ \text { BOC } \\ \hline \end{array}$	$\begin{array}{r} \hline \text { SIF } 1 \\ \text { BOB } \end{array}$	$\begin{array}{r} \text { SIF } 1 \\ \text { BOA } \end{array}$
50	0	0	0	0
100	0	0	0	1
110	0	0	1	0
150	0	0	1	1
200	0	1	0	0
300	0	1	0	1
600	0	1	1	0
1200	0	1	1	1
2400	1	0	0	0
4800	1	0	0	1
9600	1	0	1	0

Output for RS232C No. 2

| $\# 6029$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

SIF2CO $\quad D_{5}$
Determines whether output control code for RS232C interface No. 2 is sent or not.
1: Does not send control code.
0 : Sends control code.
SIF2SO D
Determines output stop bit RS232C interface No. 2 as two bits or one bit.
1: Determines stop bit as two bits.
0 : Determines stop bit as one bit.

SIF2BOD - SIF2BOA $\mathrm{D}_{3}-\mathrm{D}_{0}$ Sets output baud rate for RS232C interface.

Baud Rate	$\begin{array}{r} \text { SIF } 2 \\ \text { BOD } \end{array}$	$\begin{array}{r} \hline \text { SIF } 2 \\ \text { BOC } \end{array}$	$\begin{array}{r} \text { SIF 2 } \\ \text { BOB } \end{array}$	$\begin{array}{r} \text { SIF } 2 \\ \text { BOA } \\ \hline \end{array}$
50	0	0	0	0
100	0	0	0	1
110	0	0	1	0
150	0	0	1	1
200	0	1	0	0
300	0	1	0	1
600	0	1	1	0
1200	0	1	1	1
2400	1	0	0	0
4800	1	0	0	1
9600	1	0	1	0

XBLP, ZBLP:
Sets backlash compensation value for X -and Z axis.
Setting range: 0-255
Setting: Least output increment

XPSET, ZPSET, SPSET:
Sets position error range for X -, Z -axis and spindle (at indexing).
Setting range: $0-255$
Setting: Least output increment

BSX, BSZ, BSS:
Sets D/A conversion bit for X-, Z-axis, and spindle (at indexing).

$\# 6062$ $\# \# 063$ $\# 6064$	Bit	Max No. of Error Pulses
4	12 bit	2047
5	13 bit	4095
6	14 bit	8191
7	15 bit	16383
8	16 bit	32765

$\begin{aligned} & \text { Max No. of } \\ & \text { Error Pulses }\end{aligned}=\begin{aligned} & \text { Max Feedrate (pulse/s) } \\ & \text { Position Loop Gain (1/s) }\end{aligned}$
Setting range: $0-255$
Setting: Least output increment

XPERML, ZPERML:
Sets leadscrew error compensation multiplication factor for X - and Z-axis. Outputs the result of the preset compensation value multiplied by the multiplication factor as the error compensation value.

Setting range: 0-255
(Setting 0 will not execute compensation.)

XSVER, ZSVER, SSVER:
Sets servo error limit for X-, Z-axis, and spindle. Position deviation exceeding the preset value activates an alarm " 34Δ."
Setting range: 0-255
Standard setting: 16
Setting: $1 / 16 \times(D / A$ saturation value)
$\# 6080 \quad$ CUPRD

Rapid threading pull-out width during threadcutting.
Setting range: 0-255
Setting: 0.1 lead

\square

APPENDIX 4 LIST OF PARAMETER NUMBERS (Cont'd)
\#6113 UMEIA)

UMEIAs:
Specify the punching pattern in EIA for special characters employed in user macro; (, 〕, *, =, (,), used in turn, beginning with \#6108.
Setting range: 0 -- 255
Setting: Sets the punching pattern using the decimal value converted from the binary value which defines the pattern.

Note: When " 0 " is set for each character, punching pattern will be as 1 isted below.

Special Character	8	7	6	5	4	0	3	2	1
1				0	0	0	0		
3		0			0	0	0		
$*$					0	0	0	0	
-			0	0	0	0		0	0
1				0	0	0		0	
1		0			0	0		0	

\#6118 \quad NBUFM5
\#6119 \quad NBUFM6

NBUFM1, 2, 3, 4, 5, 6:
Sets up to 6 M codes for stopping advance reading function (buffering).
Setting range: $0-255$
\#6120 UMG1
\#6121 \quad UMG2
\#6122 UMG3
\#6123 UMG4
\#6124 \quad UMG5
$\# 6125 \quad$ UMG6

\#6126	UMG7
\#6127	UMG8
\#6128	UMG9
\#6129	UMG10

UMG1-10:
Sets G codes for calling user macro of program No. 09001 to 09004.
Setting range: $0-255$

UMM1, UMM2, UMM3, UMM4:
Sets M codes for calling user macro of program No. 09001 to 09004.
Setting range: $0-255$

UMT
1: Regards T-code command as macro call command calling the macro of program No. 09000.
0 : Regards T-code command as basic T-code.
Note: This selection is effective only for the user macro option.

MSTF:
Sets the interval from the time M, S, and T codes are transmitted until the time MF, SF, and TF are transmitted. Setting range: $0-65536 \mathrm{msec}$

HPMAX:
Specifies the maximum handle feedrate, which is common to the all axes.
Setting: "1" = 125 pulses/sec

HPMUL:
Sets the value when Manual pulse multiply switch is set at x100.
Setting: " 1 " = x 1 time

SAGTR:
Specifies the delay time for checking the spindle speed reaching signal (SAGR). Setting range: $0-65536 \mathrm{msec}$

KPX, KPZ, KPS:
Set position loop gain for the control units of X-, Z-axis, and spindle (at indexing). Setting: 1024
\#6228 G98MAX

G98MAX:

Specifies the maximum feedrate at $G 98$ command (feed per minute) common to all axes.
Setting range:
Setting: "1" $=1000$ pulses $/ \mathrm{min}$

APPEXDIX 4 LIST OF PARAMETER NUMBERS (Cont' cl)
$\$ 6230$ NEGNR

NEGNR:
When a circular path is drawn in Tool Radius Compensation outside a corner approaching 180° the movement follows describing a very small circular arc. This parameter is used to set the critical arc value, if this arc movement is considered to affect the workpiece surface machining.
Setting range: $0-65536$
Setting: Least input increnent
The corner arc setting is ignored when:
$\Delta X \leqq \quad$ NEGNR $\triangle Y \leqq$ NEGNR Standard setting $=5$

\#6231 ROWF0

ROVFO:
Specifies the F0 speed for Rapid Traverse Override.
Setting range:
Setting: "1" $=125$ pulses $/ \mathrm{sec}$
\#6232 G31F

G31F:

Specifies the feedrate in the skip function (G31).

Setting range:
Setting: " 1 " $=1000$ pulses $/ \mathrm{min}$
This setting is effective when parameter $\# 6019 D_{4}$ $($ SKPFED $)=1$.

JOG0~JOG31:
Specify the feedrates for the respective positions on the jog feedrate select switch.
Setting range:
Setting: " 1 " $=0.5 \mathrm{~mm} / \mathrm{min}$ (metric output)
" 1 " $=0.05 \mathrm{in} / \mathrm{min}$ (inch output)

Switch Position	Feedrate Override \%	Parameter		ContinuousManeal Feedrate	
		Number	Setting	$\mathrm{mm} / \mathrm{min}$	
0	0	\# 6233	0	0	
1.	10	\#6234	1	1	
2	20	\#6235	2	2	
3	30	\#6236	4	4	
4	40	\#6237	6	6	
5	50	\# $\$ 238$	8	8	
6	60	\#6239	10	10	
7	70	\#6240	12	12	
8	80	\#6241	15	15	
9	90	\#6242	20	20	
10	100	\#6243	25	25	
11	110	\#6244	30	30	
12	120	\#6245	40	40	
13	130	\#6246	50	50	
14	140	\#6247	60	60	
15	150	\#6248	80	80	
16	160	\#6249	100	100	
17	170	\#6250	120	120	
18	180	\#6251	150	150	
19	190	\#6252	200	200	
20	200	\#6253	250	250	
21	0	\#6254	300	300	
22	0	\#6255	400	400	
23	0	\#6256	500	500	
24	0	\#6257	600	600	
25	0	\#6258	800	800	
26	0	\#6259	1000	1000	
27	0	\#6260	1200	1200	
28	0	\#6261	1500	1500	
29	0	\#6262	2000	2000	
30	0	\#6263	2500	2500	
31	0	\#6264	3000	3000	

MACGR1 - MACGR4:
Sets spindle speed upper limit for gear 1, 2, 3 , and 4 orderly.
Setting range: $0-6000$ (rpm)
When the setting is at 0 , the speed is not clamped.
$\# 6270 \quad$ GRSREV

GRSREV:

Sets the speed command output to spindle motor when gear shift input (GRS) is given.
Setting value: $\frac{\text { Gear shift spindle motor speed }}{\text { Spindle motor max speed }}$
(Command $=10 \mathrm{~V}$)
x 2047 ….. 12-bit output
Gear shift spindle motor speed
Spindle motor max speed
(Command $=10 \mathrm{~V}$)
x $32512 \cdots$ Analog output
Setting range: $0-6000$

\square

GR1REV - GR4REV:
Specify the maximum speed of the spindle, respectively, for gears $1,2,3$ and 4 each selected by an input signal. Set the spindle speed applicable when the speed command voltage is 10 V .
Setting range: $0-6000$ (rpm)
\#6275 \quad GSCREV

GSCREV:
Specifies the spindle motor speed in effect when a spindle operation (GSC) input is entered. Setting range: $0-6000(\mathrm{rpm})$

Specify the minimum speed of the spindle, re spectively for gears, $1,2,3$ and 4 each selected by an input signal. Setting range: $0-6000$ (rpm)
appendix 4 LIST of parameter numbers (Cont'd)

RPDX, RPDZ:
Specify the rapid traverse rate for X - and Zaxis, respectively.
Setting range: 0-3200
Setting: "1" = 125 pulses $/ \mathrm{sec}$

XBLP, ZBLP:
Sets amount of backlash for X -, and Z -axis. Setting range: - 8192 to 8191 P
P : Least output increment
Note: When negative value is set, $65536+$ "Setting value" is indicated.

ACCX1, ACCZ1:
Set the time constant for Linear Accel/Decel for X - and Z-axis, respectively. Setting range:
Setting: "1" $=125 / 8 \times 10^{3} \mathrm{P} / \mathrm{sec}^{2}$
(P : least output increment)

XREFP, ZREFP:
Sets the traverse distance for Reference Point Return, respectively, on the X - and Z-axis. Setting range: $0-32767$
Setting: "1" = 1 pulse

SCRKACG, SCRZACC:
Sets accel/decel time constant at thread cutting on X -, and Z -axis.
Setting: 131,070/time constsnt (ms)
Always read the notes for \#6314, \#6315.

SCRXBAS, SCRZBAS:
Sets accel/decel bias at thread cutting on X -, and Z - axis.
Setting: $1=500 \mathrm{pulses} / \mathrm{s}$
Always read the notes for $\# 6314, \# 6315$.

XREFV1, ZREFVI:
Specify the approach speed 1 for Reference Point Return, respectively, on the X - and Z axes.
Setting range: 0-200
Setting: "1" = 125 pulses $/ \mathrm{sec}$

CUTXACC, CUTZACC:
Sets accel/decel time constant at normal thread cutting on X -, and Z -axis. Setting: 131,070/time constant ms Always read the notes for $\# 6314, \# 6315$.

CUTXBAS, CUTZBAS:
Sets accel/decel bias at usual thread cutting on X -, and Z -axis.

Notes for Setting Accel/Decel Time Constant and Bias at Normal Thread cutting (\#6306 -- $\# 6309$, \#6312 - \#6315)

1. Sets the same values for X - and Z-axix as a rule to ensure motion path accuracy.
2. When accel/decel time constant or bias is set under the different conditions between thread cutting and normal thread cutting, direct changing these two types cutting may influence speed factor at selected point. Be sure to program dwell or positioning code between these two types.

XREFV2, ZREFV2:
Specify the approach speed 2 for Referefce Point Return, respectively, on the X - and Z axes.
Setting range: $0-200$
Setting: "1" = 125 pulses/sec

Reference point return direction: \#6010 (ZRNDRX, ZRNDRZ)

Setting: $1=500 \mathrm{p} / \mathrm{s}$

APPENDIX 4 LIST OF PARAMETER NUMBERS (Cont'd)

RPDX2, RPDZ2:
Set change speed for 1 inear accel/decel of X. and Z -axis, respectively.
Setting: "1" = 125 pulses $/ \mathrm{s}$

ACCX2, ACCZ2:
Set 2nd time constant for linear accel/decel of X - and Z-axis, respectively.

Note: Parameters \#6318 to \#6321 must be set under the following conditions: 2nd Step Constant $=$ Rapid Accel/Decel Constant Change Speed $=\frac{\text { Speed Constant }}{}$
$\times \mathrm{n}(1,2,3 \ldots . \mathrm{n})$

XPERED, ZPERED:
Specify the number of the end point for leadscrew Error Compensation, respectively, on the X -and Z -axes.
Setting range: $0-255$

XPERED, ZPERED:
Specify the number of the start point for Leadscrew Error Compensation, respectively, on X-and Z-axes.
Setting range: 0-255

XPEROR, ZPEROR:
Specify the reference point for Leadscrew Error compensation, respectively, on the X - and 2 axes.
Setting range: $0-255$

SIDREF:
Sets the reference point for spindle indexing. Setting range: 0-4095
Setting: " 1 " $=1$ pulse ($=360 / 4096$ deg.)

Sets the spindle speed for spindle indexing. Setting range: $0-32512$
Setting: $1=0.31 \mathrm{mV}$
\#6344 \quad SIDCRP

SIDCRP
Sets the spindle indexing creep speed.
Setting range: $0-32512$
Setting: "1" $=0.31 \mathrm{mV}$

XSL1P, ZSL1P:
Specify the plus direction boundary value for Stored Stroke Limit 1, respectively, on the Xand Z -axes.
Setting range: $0-99999999$
Setting: "1" = 1 pulse

XSLIM, ZSL1M:
Specify the minus direction boundary value for Stored Stroke Limit 1, respectively, on the X-, Z-axes.
Setting range: $0-99999999$
Setting: "1" = 1 pulse

XZP2L, ZZP2L:
Specify the distance between the first and the second reference point, respectively, on the X-, Z-axes.
Setting range: - 99999999 to 99999999 Setting: "1" = 1 pulse

MaxDUM:
Sets upper limit of U and W for offset data. The input of the value exceeding the limit will cause an alarm.

Note: Paramter \#6018 D_{3} is set to " 1 ," the parameter setting is effective.

XESTI, ZSETI:
Specify the value for Automatic Coordinate System Setting at the time of inch input, respectively, on the X -, and Z -axes. A desired value should be set in inches for the distance between the first refersnce point and the reference point of the coordinate system to be established.
Setting range: - 99999999 to 99999999
Setting: " 1 " $=0.0001 \mathrm{in}$.

appendix 4 LIST of parameter numbers (Cont' d)

XESTM, ZSETM:
Specify the value for Automatic Coordinate System Setting at the time of metric input, respectively, on the X-, and Z-axes. A desired value should be set in millimeters for the distance between the first reference point and the reference point of the coordinate system to be established.
Setting range: - 99999999 to 99999999
Setting: "1" $=0.001 \mathrm{~mm}$

XPEINT, ZPEINT:
Spedify the compensation interval in Leadscrew Error Compensation, respectively, on the X- and Z-axes.
Setting renge: - 99999999 to 99999999
Setting: "1" $=1$ pulse

$\# 8000$	
s	PEMNO
$\$ 8255$	

PEMNO - PEMN255:
Specify the respective values of Leadscrew Error Compensation.
Setting range: 0 to ± 15 (ncremental designation)
0 to ± 128 (Absolute designation)
Setting: " 1 " $=0$ utput increment
Incremental/absolute designation is selected by parameter \#6023D7 (PERIAB).
Axis for compensation is specified by parameters \#6322, 6323, 6328, and 6329.

APPENDIX 5 STORED LEADSCREW ERROR
COMPENSATION

This function automatically compensate for leadscrew error on each axis according to the compensation data set by parameter and is effective af ter completion of reference point return. The compensation data are made on the distances between the reference point on each axis and specified points.
Compensation axes: X, Z axes
No. of corrsection points: 256 Max. Compensation base point: Reference point Compensation interval: 6000 Pulses or more Data setting system: Absolute/incremental (Set by Parameter $\# 6023 D_{7}$ PERIAB)
Compensation value:
Minimum compensation unit: 1 pulse (least output increment)
Compensation multiplication factor: 3 X max. One-time-compensation value: 15 pulses max.
(Compensation multiplication)

Notes:

1. Regardless of absolute/incremental setting, the difference between neighboring compensation values should be (15 pulses x compensation multiplication) and below.
2. Maximum set value in case of absolute setting is ± 127, pulses. Compensation multiplication is taken on this value.
3. No. of correction points on each axis can be arbitrary as far as the total compensation points are within 256.

Table A. 5

	Axis	Parameter \#	Functions
Compensation Interval	X	\#6642 (XPEINT)	6000 OR MORE " 1 " = 1 Pulse
	Z	$\begin{aligned} & \# 6642 \\ & \text { (ZPEINT) } \end{aligned}$	
Absolute/ln- cremantal Setting Swi tchable		$\begin{aligned} & \# 6023 \mathrm{D}_{7} \\ & \text { (PERIAB) } \end{aligned}$	$\begin{aligned} & \text { "0" = Incre- } \\ & \text { ment } 1 \text { tal setting } \\ & " 1 "=\text { Absolute } \\ & \text { setting } \end{aligned}$
Compensation Reference Na	X	\#6334 (XPEROR)	Value of parameter \# of compensation on each point minus 8000 will be written.
	Z	$\begin{aligned} & \# 6335 \\ & \text { (ZPEROR) } \end{aligned}$	
Compensation Max. Point	X	$\begin{aligned} & \# 6322 \\ & \text { (XPERED) } \end{aligned}$	
	Z	$\begin{aligned} & \# 6323 \\ & \text { (XPERED) } \end{aligned}$	
Compensation Min. Point	X	$\begin{aligned} & \# 6328 \\ & \text { (XPERST) } \end{aligned}$	
	Z	$\begin{aligned} & \# 6329 \\ & \text { (ZPERST) } \end{aligned}$	
Compensation Value on Each Point	X Z	$\begin{aligned} & \# 8000- \\ & \# 8255 \end{aligned}$	0 to ± 7 (Incremental setting 0 to ± 127 (Absolute setting ${ }^{*} 1$ " $=1$ pulse
Compensation Miltiplication Factor	X	$\begin{aligned} & \# 6068 \\ & \text { (XPERML) } \end{aligned}$	$\begin{aligned} & 0 \text { to } 3 \\ & { }^{\prime} 1 "=1 \mathrm{X} \end{aligned}$
	Z	\#6069 (ZPERML)	

APPENDIX 6 LIST OF STANDARD INPUT/ OUTPUT SIGNALS

Table A. 6 shows the list of diagnostic numbers and signal names of standard input/output signals and monitor signals.

Table A. 6

Diagnostic Number	Display
$\# 1000-\# 1096$	Input signals from machine
$\# 1100-\# 1157$	Output signals to machine
$\# 1200-\# 1223$	Output signals to machine interface (PC)
$\# 1300-\# 1331$	Input signals to machine interface (PC)
$\# 1280-\# 1295$	Monitor signals

Notes:

1. Monitor signals are used to check the internal condition of the control.
2. The functions of signals $\# 1000-\# 1096$, \#1100 - \#1157

Refer to machine tool builder's manual.

Fig.A. 6 Status Display of Input/Output Signals

APPENDIX 6 LIST OF STANDARD INPUT/OUTPUT SIGNALS (Cont'd)
Table A. 7 List of Standard Input/0utput Signals
Input Signals

\$1300	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D
	EDT	MEM	D	T		H/S	J	RT
	EDIT	MEMORY	MDI	TAPE		HANDLE STEP	$\begin{aligned} & \text { MANUAL } \\ & \text { JOG } \end{aligned}$	$\begin{aligned} & \text { MANUAL } \\ & \text { RAPID } \end{aligned}$

\#1301

MP1	R0V2	ROV1	FV16	FV8	FV4	FV2	FV1
RAPID SPEED OVERRIDE							

\#1302	HZ	HX	-Z	$+2$	-X	+ X	MP4	MP2

; 1303

INHEDT	AFL	ABS	DRN	BDT	DLK	MLK	SBK
INHIBIT	M.S.T	MANUAL	DRY	BLOCK	DISPLAY	MACHINE	SINGLE
EDIT	LOCK	ABS.	RUN	DELETE	LOCK	LOCK	BLOCK

\#1304

ZRN	CDZ	SWZ	RWDH	SRN	PST	*SP	ST
RETURN	THREAD	ERROR	HIGH-SPEED	SET UP POSITION	FEED	CYCLE	
T0	CUT UP	DETECT	REWIND	POINT	SET	HOLD	START
REFER-				RETURN			
ENCE							

Input Signals

\#1305	D_{7}	D6	D_{5}	D_{4}	D_{3}	D_{2}	D1	D_{0}
	ERR1	ERRO	STLK	RWD	EOP	ERS	FIN	MRD
EXTERNAL ERROR INPUT			INTERRUPT	REWIND	END OF PROGRAM	EXTERNAL RESET	$\begin{aligned} & \text { MST } \\ & \text { FIN } \end{aligned}$	maciline READY

\#1306	SAGR		*DCZ	* DCX	*-17	* +LZ	*-- LX	* + L X
	SPINDLE							
	SPEED		dECREASE INPUT FOR			OVERTRAVEL INPUT		
	AGREE-		REFERENCE POINT					

\#1307 | GRS | GSC | SSTP | SINV | GR4 | GR3 | GR2 | GR1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | | S- | SPINDLE | S- | S- | |
| :--- | :--- | :--- | :--- | :--- |

\#1308	EOUT	Ever	EIN	DRSZ	DRSX		EXTC
	NC PROGRAM PUNCH OUT	NC PROGRAM VERIFY	NC PROGRAM INPUT	DISPLAY RESET			TIME COUNT

\#1309	BDT9	BDT8	BDT7	BDT6	BDT5	BDT4	BUT3	BDT2

APPENDIX 6 LIST OF STANDARD INPUT/OUTPUT SIGNALS (Cont'd)

Table A. 7 List of Standard Input/Output Signals (Cont'd)
Input Signals

\#1312

			cov16	Cov8	Cov4	Cov2	COV1

G 71/G 72 CUTTING Override
\#1313

\#1316

SID8	SID7	SID6	SID5	SID4	SID3	SID2	SID1
SPINDLE INDEX POSITION SET							

Input Signals

TOOL NO. SET FOR STORED STROKE LIMIT

\#1320

\#1321

appendix 6 LIST OF STANDARD INPUT/OUTPUT SIGNALS (Cont'd)
Table A. 7 List of Standard Input/Output Signals (Cont'd)
Input Signals

\#1324 | (SDI15) | (SDI14) | (SDI13) | (SDI12) | (SDI11) | (SDI10) | (SDI9) | (SDI8) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

EXTERNAL INPUT FOR S- COMMAND (S4 DIGIT) NO. 2

INPUT FOF! "USER'S MACRO" NO. 1
\#1326

UI15	UI14	UI13	UI12	UI11	UI10	UI9	UI8
INPUT FOR "USER'S MACR0" N0. 2							

Input Signals

EXTERNAL DATA INPUT NO. 1

EXTERNAL DATA INPUT NO. 2
\#1329

EDCL	EDS2	EDS1	EDS0	EDSD	EDSC	EDSB	EDSA
CONTROL SIGNAL FOR EXTERNAL DATA INPUT							

\#1330

\#1331

APPENDIX 6 LIST OF STANDARD INPUT/OUTPUT SIGNALS (Cont'd)
Table A. 7 List of Standard lnput/0utput Signals (Cont'd)
Output Signals
\#1200

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
M28	M24	M22	M21	M18	M14	M12	M11

\#1203	EITS	AUT0	MAN	THC	RWDS	OP	DEN
	EDIT OPERAT- ING STAYUS	AUT0	MANUAL	THREAD	REWIND	FEEDING	$\begin{aligned} & \text { POSITION- } \\ & \text { ING END } \end{aligned}$
		MODE	MODE	CUTTING	STATUS		
		STATUS	STATUS	STATUS			

\#1204

S28	S24	S 22	S 21	S 18	S 14	S 12	S 11
S-FUNCTION BCD OUTPUT							

Output Signals

T-FUNCTION BCD OUTPUT

\#1206	2ZPZ	2ZPX	2PZ	ZPX	G96S	SPL	STL
	Z AXIS X AXIS		Z AXIS	X AXIS	CONSTANT	FEED	CYCLE
					SURFACE	HOLD	START
	N0. 2	FERENCE	REFE	NCE	SPEED	LAMP	LAMP
	POSIT		P0SI		CONTROL		

\square
\#1216

\#1217

(SDD15)	(SDD14)	(SDD13)	(SDD12)	R012 (SUD11)	RO11 (SDD10) R010 (SDD9)	R09 (SDD8)

EXTERNAL OUTPUT FOR S-COMMAND (S4 DIGIT) NO. 2

APPENDIX 6 LIST OF STANDARD INPUT/OUTPUT SIGNALS (Cont'd)
Table A. 7 List of Standard Input/Output Signals (Cont'd)

Output Signals

\#1219	ESEND	EREND			TLCH	SIDXO	TPSA
	EXTERNAL	EXTERNAL		SIDXA			

\#1221

U015	0014	U013	U012	U011	$\cup 010$	v09	U08

OUTPUT FOR "USER'S MACRO" NO. 2
\#1222

Output Signals

\#1280

\#1281

0	*0FFPB	ONPB	*0LD	SUAM	*ESP	*0HT
POWER POWER OVERLOAD SERVO EMER- OVERHEAT OFF PB. ON PB. ALARM GENCY STOP						

\#1282

$1 \mathrm{HP7}$	$1 \mathrm{HP6}$	1 HP 5	$1 \mathrm{HP4}$	1 HP 3	$1 \mathrm{HP2}$	$1 \mathrm{HP1}$	$1 \mathrm{HP0}$

NO. 1 MANUAL PULSE GENERATOR MONITOR
\#1283

				SET3	SET2	SET1	SET0

APPENDIX 6 LIST OF STANDARD INPUT/OUTPUT SIGNALS (Cont'd)
Table A. 7 List of Standard Input/Output Signals (Cont'd)
Output Signals

SIGNAL FROM SPINDLE PG
\#1288

TGONX	PCX	PBX	PAX	$*$ ALX	$* 0 L X$	FUX	SRDX
X-AXIS TGON PHASE-C PHASE-B \quad PHASE-A							
$\underbrace{\text { SHONITOR FOR SERVO UNIT OF X AXIS }}_{\text {SIGNAL FROM X-AXIS PG }}$							

Output Signals
\#1289

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
TGONZ	PCZ	PBZ	PAZ	$* A L Z$	$* O L Z$	FUZ	SRDZ

Z-AXIS TGON PHASE-C PHASE-B PHASE-A \qquad
 SIGNAL FROM Z-AXIS PG

\#1290 | SCOM28 | SCOM24 | SCOM22 | SCOM21 | SCOM18 | SCOM14 | SCOM12 | SCOM11 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S-COMMAND MONITOR | | | | | | | |

\#1291 | SCOM48 | SCOM44 | SCOM42 | SCOM41 | SCOM38 | SCOM34 | SCOM32 | SCOM31 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

\#1292 | S028 | S024 | S022 | S021 | S018 | S014 | S012 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

\#1293 | S048 | S044 | S042 | S041 | S038 | S034 | S032 | S031 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

APPENDIX 6 LIST OF STANDARD INPUT/OUTPUT SIGNALS (Cont'd)
Table A. 7 List of Standard Input/Output Signals (Cont'd)
Output Signals

				ALM38	ALM34	ALM32	ALM31

ALARM CODE MONITOR

YASNAC LX3

CNC SYSTEM FOR TURNING APPLICATIONS
mAINTENANCE

TOKYO OFFICE Onterrachi Bldg. i-6.? Onterracn: Chyoda-ku, Toxyo 100 Japan
Fhone (03, 3284-9111 Telex YASKAWA i33530 Fax 103: 3284-9034
SEOUL OFFICE 8tr: Foor Seoul Center Bldg, 91-1. Sogong-Dong, Chung-ku Seou. Korea 100 070
Phone (02) 7 76-7844 Fax (02) 753-2639
TAIPEI OFFICE Sher Hsiang Tang Sung Criang Bilong 10F 146 Sung Chiang Roac TE pei Tawan
Fhone :02) 563-0010, -7732 Fax (02) 567-4677
YASKAWA ELECTRIC AMERICA, INC.
Chicago-Corporate Headquarters 2942 MacArthur Blvd. Northorook, IL 60062-2028, USA
Fhone (70B) 291-2340 Fax (708) 498-2430
Chicago-Technical Center 3160 MacArthur Blvd. Northbrook, IL 60062-1917. U.S A
Phore 17081 291-0411 Fax (708) 291-1018
MOTOMAN INC.
805 L Derty tane West Carroltion OH 45449 USA
Phone :513) 847-6200 Fax (513) 847-6277
YASKAWA ELECTRIC EUROPE GmbH
Nederhocnstadter Straße 73, 61476 Kronburc-Obemochstadt. Germany
Phone 106173,9380 Telex 415660 YASE C Fax 06173 ; 68421
YASKAWA ELËTRICO DO BRASIL COMËRCIO LTDA.
Rua Corde Do Pinhal 8-5*. Andar Sala 51 CEP 01501-São Paulc-SP. Brasil
Phore 1041 35-:911 Fax (011) 37-7375
YASKAWA ELECTRIC (SINGAPORE) PTE LTD.
Head Office : CPF Blda, 79 Robinson Road $=13-05$, Singapore 0106, SINGAPORE
Pnone 221-7530 Telex (87) 24890 YASKAviA RS Fax 224-5854
Service Center : 221 Henderson Road, $707-20$ Henderson Building Singapore 0315, SNGAPORE
Phone 276-7407 Fax 276-7406
YATEC ENGINEERING CORPORATION
Shen Hsarg Tang Sung Chiang Builoing 10F-46 Sugg Chiang Road Taipei Taiwan
Phone 102, 563-0010 $=\mathrm{F} \times(02) 567-4677$

