THE VMC GROUP Aeroflex International Isolators Amber/Booth Korfund Dynamics Vibration Mountings & Controls
PROJECT: YASKAWA A1000 AND Z1000 VFD DRIVES
REP:
ARCHITECT:
ENGINEER:
CUSTOMER: Yaskawa of America
P.O. NUMBER: 420015865
COMMENTS:
Bolt Sizing for seismic parameters Sds=2.00 z/h (roof installation)=1 lp=1.5 (seismic importance factor) S/O NO.: <u>NJ243008</u>
DATE: 10/25/2012 VMA-47676-01A VMA NO.: Rev1

The VMC Group

Headquarters: 113 Main Street, Bloomingdale, NJ 07403 • Tel: 973-838-1780 • Fax: 973-492-8430 Houston: 11930 Brittmoore Park Dr Houston, TX 77041 • Tel: 713-466-0003 • Fax: 713-466-1355 www.thevmcgroup.com

REV.	DESCRIPTION	SOURCE of CHANGE	DATE
0	Initial Submittal	ASP	04/19/11
1	Rev 1	Matrix rev	10/22/12

SEISMIC RESTRAINT For

Yaskawa Z1000 and A1000 wall mounted Commercial VFDs.

CUSTOMER: YASKAWA OF AMERICA

JOB: YASKAWA A1000 AND Z1000 VFD DRIVES P.O. No: 4200158685

The following report has been performed for compliance with the applicable building codes and job specifications.

Applicable Building Code:	IBC-2009
Applicable Job Specification:	CBC 2010

S 2851		Kenneth T SE28 California Struc	351				
* GPRUCTURAL *		The VMC 113 Main Bloomingdal	Street	t		E VMC GRO the Power of Toget	
12014	CAGE CO	DE	SIZE	DWG NO			REV
EXP 613014		4U931		V	'MA-476	76-01A Rev1	1
	BY	DATE:		SO NO.		SHEET:	
This report reflects information received and reviewed for seismic restraint as of date shown	KMT	10/25/2012	2	NJ24300	8	2 of 43	

PROJECT	0 and 7	1000 VFD drives		VG NUMBER 008-01A Rev1	REV. NO.	SHEET NO. 3 of 43
CUSTOMER	JU and Z		BY	DATE	CHECKED	DATE
askawa of Ar	merica		КМТ	10/25/2012		
		Table of 0	Contents:			
I.	Error	s and Omissions Certificate				4
II.	Units	Reviewed and Results Schedu	le			5
III.	Sumr	nary of Critical Assumptions and	d Directive S	Statements		10
IV.	Purpo	ose				10
V.	Scop	e				10
VI.	Strate	egy and Assumptions				12
VII.	Allow	able Loads				12
VIII.	Seisn	nic Input Forces – LRFD Values	3			13
IX.	Anch	oring Analysis				14
Арре	endix A	Risa Model for A1000 Frame	size 14, usin	ıg ½ " dia. inse	erts`	A1
Appe	endix B	Risa Model for Z1000 Frame	size 8, using	3/8 " dia. inse	rts	B1
Арре	endix C	Risa Model for Z1000 Frame	size 4, using	1/4 " dia. inse	rts	C1
Арре	endix D	Risa Model for Z1000 Frame	size 2, using	10 Ga dia. Ins	serts	D1
Арре	endix E	Calculations for 1/2" dia Hilti K	wick Bolt in	serts		E1
Арре	endix F	Calculations for 3/8" dia Hilti K	wick Bolt in	serts		F1
Арре	endix G	Calculations for 1/4" dia Hilti K	wick Bolt in	serts		G1

kel & Company Hudson Street, 4th Floor York, NY 10014 RED The VMC Group	88-0200 CONTACT (NAME: PHONE (A/C, No, Ext	Gregory): 201-793 Gdowns(INS	Downs 3-4010 @frenkel.c	FAX (A/C, No):	201-356-0052
York, NY 10014 RED The VMC Group	E-MAIL ADDRESS: (Gdowns(INS	@frenkel.c	om	
The vinc Group	INSURER A				
The vinc Group	INSURERA	1 loud'e		DING COVERAGE	NAIC #
Second and the second sec	INSURER B		or London		112200
113 Main Street	INSURER C				
Bloomingdale, NJ 07403-	INSURER D	:			
	INSURER E	ú			
	INSURER F :				
VERAGES CERTIFICATE NUMBER: IIS IS TO CERTIFY THAT THE POLICIES OF INSURANCE LISTED BE DICATED. NOTWITHSTANDING ANY REQUIREMENT, TERM OR CO RTIFICATE MAY BE ISSUED OR MAY PERTAIN, THE INSURANCE	AFFORDED BY THE	POLICIES	THE INSURE OR OTHER D DESCRIBED	OCUMENT WITH RESPEC	ст то which тн
CLUSIONS AND CONDITIONS OF SUCH POLICIES, LIMITS SHOWN M	AY HAVE BEEN REDU	CED BY P	AID CLAIMS.		
TYPE OF INSURANCE INSR WVD POLICY M	NUMBER (MM	DD/YYYY)	POLICY EXP (MM/DD/YYYY)		
GENERAL LIABILITY				EACH OCCURRENCE DAMAGE TO RENTED	\$
				PREMISES (Ea occurrence)	\$
CLAIMS-MADE OCCUR				MED EXP (Any one person)	\$
				PERSONAL & ADV INJURY	\$
				GENERAL AGGREGATE	\$
GEN'L AGGREGATE LIMIT APPLIES PER:				PRODUCTS - COMP/OP AGG	\$
				COMBINED SINGLE LIMIT (Ea accident)	
				(Ea accident) BODILY INJURY (Per person)	\$
ANY AUTO				BODILY INJURY (Per accident)	s
AUTOS AUTOS NON-OWNED				PROPERTY DAMAGE	\$
HIRED AUTOS				(Per accident)	\$
UMBRELLA LIAB OCCUR				EACH OCCURRENCE	\$
EXCESS LIAB CLAIMS-MADE				AGGREGATE	\$
DED RETENTION \$					\$
WORKERS COMPENSATION				WC STATU- TORY LIMITS ER	
AND EMPLOYERS' LIABILITY ANY PROPRIETOR/PARTNER/EXECUTIVE				E.L. EACH ACCIDENT	\$
OFFICER/MEMBER EXCLUDED?			Ì	E.L. DISEASE - EA EMPLOYEE	\$
If yes, describe under DESCRIPTION OF OPERATIONS below				E.L. DISEASE - POLICY LIMIT	\$
Manufacturers Engineering PVMC00112	7.	/1/2012	7/1/2013	Occurrence Limit	3,000
Design Errors & Omissions PVMC00112	7	1/2012	7/1/2013	Deductible	50

The ACORD name and logo are registered marks of ACORD

ROJECT				JOB / DWG NU	JMBER	REV. NO.	SHEET
	1000 and Z1000 VFD d	rives		VMA-243008-01A Rev1 1			
JSTOMER				BY	DATE	CHECKED	DA
askawa o	of America			KMT 10	0/25/2012		
	Certified Produc	t Tables					
	YASKAWA AMEI	RICA CORP.					
	Table 1 -	A1000 Serie	es Standard	VFDs (Indu	strial AC D	rives)	_
	Standard Drive Model Series	Standard Drive Frame Size	Max. Cabinet Dim s L x W x H [in]	Max. Cabinet Weight [lbs]	Anchor size		
	CIMR-AU2A	12	13.8 x 23.2 x 46.0	238			
	CIMR-AU2A			240			
	CIMR-AU4A			233			
	CIMR-AU4A	12	13.8 x 23.2 x	246	1/2" dia		
	CIMR-AU4A	12	46.0	257			
	CIMR-AU5A			233	1		
	CIMR-AU5A			235	1		
	CIMR-AU4A	13	14.6 x 24.1 x 48.3	292	1/2" dia		
	CIMR-AU4A	14	14.6 x 30.4 x 61.3	504	1/2" dia		
			14.6 x 30.4 x	1			

PROJECT			JOB / DWG NU	MBER	REV. NO.	SHEET NO	
Yaskawa A1000 and Z1000 VFD drives				1A-243008-0 ⁻	IA Rev1	1	6 of 43
CUSTOMER			- 1	BY	DATE	CHECKED	DATE
Yaskawa of America	а	K	MT 10	/25/2012			
	Table 2 - Z10	NN Sarias St	andard VFD	s (Commer)rivee)]
		oo Series St					
	Standard Drive Model Series	Standard Drive Frame Size	Max. Cabinet Dims L x W x H [in]	Max. Cabinet Weight [lbs]	Anchor Size		
	CIMR-ZU2A			12.3			
	CIMR-ZU2A	4		13.0			-
	CIMR-ZU4A	1	8.7x4.9x14.1	4.8	#10		-
	CIMR-ZU4A			7.6	1		
	CIMR-ZU4A			11.0	1		
	CIMR-ZU2A			16.3			
	CIMR-ZU2A			17.2	1		
	CIMR-ZU4A	2	9.3x4.9x14.1		#10		
	CIMR-ZU4A	2	5.574.5714.1	16.1	#10		-
				16.7			-
	CIMR-ZU4A			18.5			-
	CIMR-ZU2A			26.0			-
	CIMR-ZU2A	3	9.4x7.9x20.1	00.0	1/4" dia		-
	CIMR-ZU4A			29.0			_
	CIMR-ZU4A						_
	CIMR-ZU2A			59.0			_
	CIMR-ZU2A	4	10.5x10.0x21.3	62.0			
	CIMR-ZU2A			64.0			
	CIMR-ZU4A			59.0	1/4" dia		_
	CIMR-ZU4A	4	10.5x10.0x21.3	64.0			
	CIMR-ZU4A			68.0			
	CIMR-ZU4A			70.0			
	CIMR-ZU4A	5	11.5x10.9x27.6	101	3/8" dia		
	CIMR-ZU2A			143			
	CIMR-ZU2A			150	3/8" dia		
	CIMR-ZU2A			154			
	CIMR-ZU2A	6	15.9x13.4x30.5	161			
	CIMR-ZU4A			161			1
	CIMR-ZU4A			167			
	CIMR-ZU4A			174			1
	CIMR-ZU4A	7	19.0x17.9x41.1	286	3/8" dia		
	CIMR-ZU2A			238			1
	CIMR-ZU2A	8	13.8 x 23.2 x	238	3/8" dia.		
	CIMR-ZU4A		31.5	257	1		
	CIMR-ZU4A	9	14.6 x 24.1 x 37.4	292	1/2" dia.		-
	CIMR-ZU4A		14.6 x 30.4 x				-
	CIMR-ZU4A	10	14.6 X 30.4 X 44.9	504	1/2" dia.		-
	CIMR-ZU4A	10	14.6 x 30.4 x 44.9	515	1/∠ UIA.		-

PROJECT					JOB / DWG NUM	1BER	REV. NO.	SHEET NO.
Yaskawa A1000 and Z1000 VFD drives				VI	/IA-243008-01	A Rev1	1	7 of 43
CUSTOMER					ВҮ	DATE	CHECKED	DATE
askawa of A	rnerica			 	(MT 10/	25/2012		
	Table 3 -	Z1000 Serie	es Bypas	s VI	⁻ Ds (Comm	ercial HV	AC Drive	s)
			Max. Cabir					
	Bypass Drive Base Model	Bypass Drive Cabinet Size	Dim s		Max. Cabinet Weight [lbs]	Anchor Siz	ze	
	Z1B1D002							
	Z1B1D003							
	Z1B1D004	1						
	Z1B1D007	1						
	Z1B1D010	1						
	Z1B1D016	W1	41.6x6.8.0x	12.9	70	3/8" dia.		
	Z1B1B001	1						
	Z1B1B002	1						
	Z1B1B003	1						
	Z1B1B004							
	Z1B1B007							
	Z1B1B011							
	Z1B1D024							
	Z1B1D030	1						
	Z1B1B014	W2	45.1x6.8x1	2.9	80	3/8" dia.		
	Z1B1B021							
	Z1B1B027							
	Z1B1D046							
	Z1B1D059	14/2	40.0×10.0×1	2.0	00	0/0" dia		
	Z1B1B034	- W3	48.2x10.2x1	J.2	90	3/8" dia.		
	Z1B1B040	1						
	Z1B1D074	W4	52.8x12.7x1	4.2	160	3/8" dia.		
	Z1B1D088	W5	42.8x25.8x1	6.1	280	1/2" dia		
	Z1B1D114	W5	42.8x25.8x1	6.1	280	1/2" dia		
	Z1B1B052							
	Z1B1B065	W4	52.8x12.7x1	4.2	160	3/8" dia.		
	Z1B1B077							
	Z1B1B096	W5	42.8x25.8x1	6.1	280	1/2" dia		
	Z1B1B124	W5	42.8x25.8x1	6.1	280	1/2" dia		
	Z1B1D143	W6	49.1x28.4x1	9.0	380	1/2" dia		
	Z1B1D169	vvo	43.1X20.4X1	5.0	300			
	Z1B1B156	Me	10 1000 401	<u> </u>	200	1/0" 604		
	Z1B1B180	- W6	49.1x28.4x1	9.0	380	1/2" bolt		

PROJECT Yaskawa A1000 and Z ²	1000 VFD drives			0000 NUMBER 43008-01A Re		REV. NO. 1	SHEET NO. 8 of 43
CUSTOMER			BY	DATE		CHECKED	DATE
Yaskawa of America			KMT	10/25/2	012		
	Table 4 -	Z1000 Serie	s Configure	d VFDs (Co	mmer	cial HVAC [Drives)
	Configured Drive Base Model	Configured Drive Cabinet	Max. Cabinet Dims	Max. Cabinet Weight [lbs]	Ancho	r size	
		Size	L x W x H [in]				
	Z1C1D002						
	Z1C1D003						
	Z1C1D004						
	Z1C1D007						
	Z1C1D010						
	Z1C1D016	W1	41.6x6.8.0x12.9	65	3/8"	dia	
	Z1C1B001						
	Z1C1B002						
	Z1C1B003						
	Z1C1B004						
	Z1C1B007						
	Z1C1B011						
	Z1C1D024						
	Z1C1D030						
	Z1C1B014	W2	45.1x6.8x12.9	75	3/8"	dia	
	Z1C1B021						
	Z1C1B027						
	Z1C1D046						
	Z1C1D059	W3	48.2x10.2x13.2	85	3/8"	dia	
	Z1C1B034		10.EX10.EX10.E				
	Z1C1B040						
	Z1C1D074	W4	52.8x12.7x14.2	160	3/8	dia	
	Z1C1D088	10/4	E0 0v10 7v14 0	100	0/0	dia	
	Z1C1D114 Z1C1B052	W4	52.8x12.7x14.2	160	3/8	uid	
	Z1C1B052 Z1C1B065	W4		160 160			
	Z1C1B065 Z1C1B077		52.8x12.7x14.2	160	3/8"	dia	
	Z1C1B096	W4		180			
	Z1C1B030	W5	42.8x25.8x16.1	240	1/2 "	dia	
	Z1C1D143			385	.,_		
	Z1C1D169			385			
	Z1C1D211			385			
	Z1C1D273	W6	49.1x28.4x19.0	000	1/2"	dia	
		-		450			
	Z1C1B156			385			
	Z1C1B180			385			
	Z1C1B240			450			

		Section II. SCHEDULE	EDULE			
Frame no	Max weight	Attach. to Conc	Attach. to CMU	Attch. To Steel	Attach. to Timber	
A1000 Models Standard Frames 12 Thru 14 & Z1000 By Pass Frames W5 and W6	515 lbs	1/2" dia Hilti Kwik Bolt TZ with 3 1/2" embed.	1/2" Dia Simpson Titen Screw Anchor with 3 1/2" embed.	1/2" Dia A307 Bolt	1/2" Dia A307 bolt	
Z1000 Frames 5 thru 8 and By Pass Frames W1 thru W4	257 lbs	3/8" Dia Hilti Kwik Bolt TZ with 3" of Embed.	3/8" Dia Simpson Titen Screw Anchor with 2" embed.	3/8" dia A307 Bolt	3/8" Dia A307 Bolt	
Z1000 Frames 3 and 4	20 lbs	1/4" Dia Hilti Kwik Bolt TZ with 3 1/2" embed	NA	1/4" dia TEK Screw	1/4"x3" Simpson SDS Screw	
Z1000 Frames 1 and 2	18.5 lbs	NA	NA	#10 TEK Screw	#10 Wood Screw	

	Bloomingdale, NJ	07403		PAGE	-01A 9 OF 43	
	XI	THE VMC GROUP	The Power of Together TM	DWG. NO.	VMA-243008-01A	Rev1
rives				Date		
Z1000 VFD d		America		Checked		
JOB: Yaskawa A1000 and Z1000 VFD drives	243008	. Yaskawa of America		Date	10/25/12	
JOB: Yaskav	S.O. No.: NJ243008	CUSTOMER.		By	KMT	
					Date	
					Description	
		+			Rev By	
					Re]

THE VMC GROUP

Aeroflex International Isolators Amber/Booth Korfund Dynamics Vibration Mountings & Controls

PROJECT	JOB / DV	NG NUMBER	REV. NO.	SHEET NO.
Yaskawa A1000 and Z1000 VFD drives	VMA-2430	008-01A Rev1	1	10 of 43
CUSTOMER	BY	DATE	CHECKED	DATE
Yaskawa of America	КМТ	10/25/2012		

III. SUMMARY OF CRITICAL ASSUMPTIONS AND DIRECTIVE STATEMENTS:

1. This analysis does not certify that the concrete housekeeping pads, building structure, isolated or restrained equipment, or any other attached equipment, such as piping or ductwork, is capable of handling the applied seismic loads. Any non-VMC Group mounting supports, brackets, or other means of attachment must be independently certified. This calculation only certifies the seismic restraint capability of attachment of said equipment.

2. Weight and dimensional data were provided by the customer. Information not provided for in the job specification must be verified by the building engineer. The values used in this analysis should be verified. If they vary, disregard these recommendations and notify The VMC Group of the changes.

3. All accessory attachments (pipe, conduit, etc.) to the equipment shall be attached in a manner that allows relative motion (flex, swing joint/elbow, etc.) to prevent failure due to differential movement between the equipment and attached accessory caused by seismic loading on the system.

4. Unless noted on the drawings, all drawings in this report are considered not to scale.

5. All housekeeping pads must be properly dowelled and reinforced by others to carry the seismic loads.

6. When several pieces of equipment are installed identically, the most critical one is analyzed.

7. When installing concrete expansion anchors, they must be torqued to manufacturer recommended settings to ensure maximum holding capacity in the concrete. Observe concrete edge distance and anchor spacing limitations as expressed by the anchor manufacturer or ICCES rating publication. For anchors installed in the underside of the slab, embedment depth must be at least one half of the slab thickness to ensure the anchor is embedded in the compression zone of the slab.

IV. PURPOSE:

This report is submitted to Yaskawa of America for the Yaskawa A1000 and Z1000 VFD drives project to verify that the seismic restraints provided and/or recommended by The VMC Group will safely accept loads resulting from seismic forces and normal operating loads.

V. SCOPE:

This report covers only seismic restraints and engineering recommendations provided by The VMC Group for use as listed in Schedule table.

This report does not cover equipment supplied by other vendors. The structural design professional must verify the adequacy of the superstructure or substructure to which the specified hardware are attached. The structure must withstand the seismic loads applied at restraint locations.

The following report has been performed for compliance with the applicable building codes and job specification PO4200158685. If there are any specifications or information that supersede the assumptions made herein, this analysis may be invalid, and The VMC Group must be notified for review of changes.

PROJECT	JOB / DWG NUMBER		REV. NO.	SHEET NO.
Yaskawa A1000 and Z1000 VFD drives	VMA-2430	08-01A Rev1	1	11 of 43
CUSTOMER	BY	DATE	CHECKED	DATE
Yaskawa of America	КМТ	10/25/2012		

VI. STRATEGY AND ASSUMPTIONS:

For the purposes of this analysis, it must be assumed that the building and its internal structure have been designed to perform as required by the adopted building code in response to an earthquake and remain intact and functioning after such an event. Per code the equipment must be restrained and not break away from its supports during an earthquake. The forces acting on a piece of equipment are the vertical and lateral forces resulting from the earthquake, the force of gravity, and the forces at the restraints that hold the equipment in place. The analysis assumes that the equipment does not move beyond the restraints during the earthquake. The acceleration at its center of gravity generate forces that must be balanced by reactions at the restraints. The code allows equipment to be analyzed as though it were a rigid component; however, factors (ap, Rp) are applied within the computation to address flexibility issues for particular equipment types or flexible mounting arrangements. Given the above, the problem can be reduced to a static analysis.

The forces acting on the restraints include both shear and tensile components. The application direction of the lateral seismic acceleration can vary and is unknown. Depending on its direction, it is likely that not all of the restraints will be affected or share the load equally. This report will determine the worst case combination of forces at all restraint points for any possible direction that the acceleration can follow to ensure that the restraints are adequate.

It is assumed that the equipment is design to be strong enough to transfer the load path from its center of gravity to the restraint connection points without failure. Under some instances (particularly those relating to life support issues in hospital settings) newer code requirements indicate that critical equipment must be seismically qualified to ensure its continued operation during and after a seismic event. Special care must be taken in these situations to ensure that the equipment has been certified to meet the maximum anticipated seismic load.

VII. ALLOWABLE LOADS:

Unless otherwise specified, allowable bolt loads are per the Manual of Steel Construction - AISC 13th Edition. All concrete is assumed to be 2500 psi.

For Concrete Anchors: Ratings are per ICC ESR reports.

OJECT skawa A1000 and Z1000 VFD drives		WG NUMBER 008-01A Rev1	REV. NO. 1	SHEET NO. 12 of 43
STOMER	BY	DATE	CHECKED	DATE
skawa of America	KMT	10/25/2012		
VIII. SEISMIC INPUT LOADS (LRFD)				
These calculations certify that the VMC constrained properly installed, are capable of safely supportions from ASC and combinations from ASC and com	upporting a	•		
1.2D(+/-)1.0E(Section 2.3.2 E)0.9D(+/-)1.0E(Section 2.3.2 E)	• •			
Where:				
E= pQ _E (+/-).2S _{ds} D p= Reliability factor: taken as 1.0 for Q _E = horizontal seismic force F _p S _{DS} = Design spectral response D= Dead load (0.2S _{DS} D is taken in the vertical direc		and electrical of	component	S
Final Seismic Loading Conditions:				
1: Vertical Load (P _z) = (1.2 + 0.2*S _{DS}) 2: Vertical Load (P _z) = (0.9 - 0.2*S _{DS})		Horizontal L Horizontal L		•
Horizontal Seismic Force per equation 13.3 $F_p = \frac{0.4*a_p*S_{DS}}{(R_p)}$				
Where: a_p = The attachment amplifica S_{DS} = Design Spectral Respo (ASCE 7-05) S_{MS} = Max Earthquake Spectr Section 11.4.3 (ASCE 7 F_a = Site Coefficient from Tabl (Use "D" if unknown)	onse Acc. at ral Respons 7-05)	short period, S e Acc. for Shor	ection 11.4	,
S_s = Mapped Spectral Acc. for z = Height of the equipment a h = Average Roof Height R_p = Component Response M (ASCE 7-05) I_p = Component Importance fa W_p = The operating weight of	attachment t lodification f actor from S	o structure. actor from Tab	le 13.6-1	

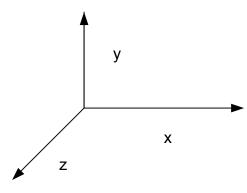
THE VMC GROUP

PROJECT				JOB /	DWG NUME	BER	REV. NO.	SHEET NO
askawa A1000 and Z1000 V	skawa A1000 and Z1000 VFD drives			VMA-24	VMA-243008-01A Rev1		1	13 of 4
CUSTOMER	USTOMER				D	ATE	CHECKED	DATI
askawa of America		KMT	10/2	5/2012				
VIII. SEISMIC INPL		-						
The building is a Site class =		Category		= Ss ore use Seis		n Category	D	
From the appropriate t	ables:	Fa =	1.00	Sds =	2.000			
For: At: Satisfying the upper a 0.3*Sds*lp*Wp < Fp <	Rp = lp = z/h = 0.0 0.2 0.4 0.6 0.8 1.0 md lower bo	2.5 1.5 Fp = 1.20 g's 1.68 g's 2.16 g's 2.64 g's 3.12 g's 3.60 g's unds:	•	5, Fp Min = 5, Fp Max =	-	•	, Fp Min = 0 Fp Max = 3	-
0.0 003 ip wp < i p <	. 1.0 Ous ip	, , , , , , , , , , , , , , , , , , ,		ole 2	4.00 y 3	At ip = 1	1 p Max = c	5.20 y s
Condition 1 At z/h =	Ph	Pz	Ph	Pz	Ph	Pz	Ph	Pz
0.0 0.2 0.4 0.6 0.8 1.0 Condition 2 0.0 0.2 0.4 0.6 0.8 1.0	1.20 g's 1.68 g's 2.16 g's 2.64 g's 3.12 g's 3.60 g's 1.20 g's 1.68 g's 2.16 g's 2.64 g's 3.12 g's 3.60 g's	1.60 g's 1.60 g's 1.60 g's 1.60 g's 1.60 g's 0.50 g's 0.50 g's 0.50 g's 0.50 g's 0.50 g's 0.50 g's						

PROJECT	JOB / DV	VG NUMBER	REV. NO.	SHEET NO.
Yaskawa A1000 and Z1000 VFD drives	VMA-2430	08-01A Rev1	1	14 of 43
CUSTOMER	BY	DATE	CHECKED	DATE
Yaskawa of America	KMT	10/25/2012		

IX. i Anchoring Analysis

Design Criteria

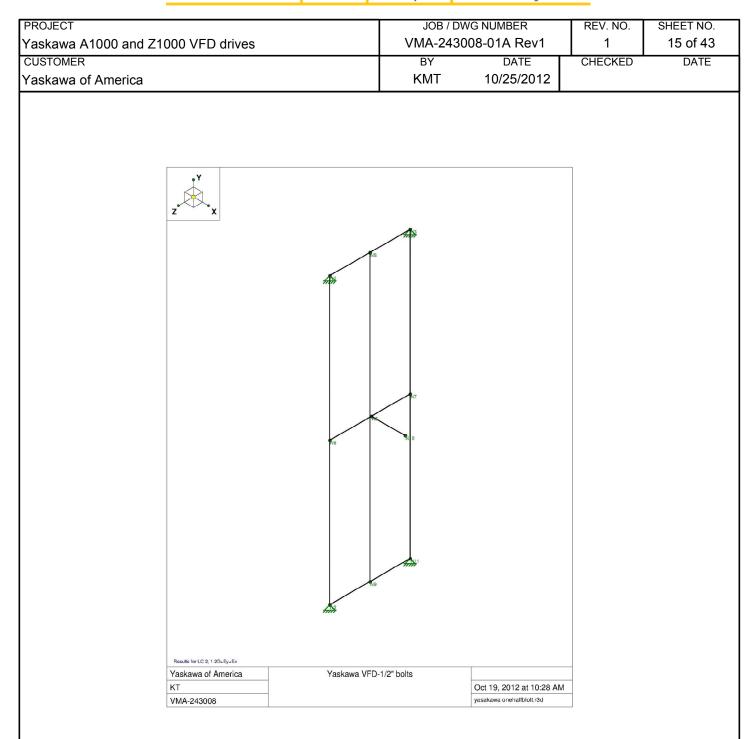

The VFD Drives are all wall mounted with a minimum of 4 bolts. There are 4 different bolt sizes, the bolts getting larger as the weights increase. We have evaluated the largest unit with each bolt size.

The RISA3d program was used to approx. the behavior of the steel box.

All loads were applied at the center of mass of the box to develops appropriate torsion

Loading Combinations

1.2D – EY + Ex	1.2D +EY + Ex	1.2D – EY – Ex	1.2D + EY - Ex
.9D+ EY+ Ex	.9D – EY + Ex	.9D + EY- Ex	.9D – EY – Ex
1.2D – EY + Ez	1.2D +EY + Ez	1.2D – EY – Ez	1.2D + EY - Ez
.9D+ EY+ Ez	.9D – EY + Ez	.9D + EY- Ez	.9D – EY - Ez



Coordinate System

Critical weights largest loads for each connector type.

Standard Drive Model Series	Frame Size	Max Cabinet Dims LxWxH	Max Cabinet weight	Anchor Size
CIMIR-ZU4A	2	9.3x4.9x14.1	18.5 lbs	#10
CIMIR-ZU4A	3	9.4x7.9x20.1	29	1/4" dia.
CIMR-ZU4A	8	13.8x23.2x31.5	257	3/8" dia
CIMR-AU4A	14	14.6 x30.4x 61.3	515 lbs	1/2" dia

The Risa3D model

PROJECT	JOB / DV	NG NUMBER	REV. NO.	SHEET NO.
Yaskawa A1000 and Z1000 VFD drives	VMA-2430	008-01A Rev1	1	16 of 43
CUSTOMER	BY	DATE	CHECKED	DATE
Yaskawa of America	KMT	10/25/2012		

1/2" Dia Anchors

Z1000 Series Frame size 9 thru 14 Z1000 bypass frames sizes W5 thru W6

Weight max=515 lbs

Vseis horiz=3.6w or 3.6x515=1854 lbs Vseis vert= .2Sds=.2x2x1854=206 lbs

Results from Risa3D model see appendix A

Vy=214 Vz=23.5

V tens=530 lbs/ bolt

For Concrete Use 1/2" dia Hilti Kwik Bolt TZ with 3 1/2" Embed See Appendix E

For Masonry (CMU) 1/2" dia Simpson Titen Screw Anchors with 3 1/2" Embed per ESR 1056

For Timber Use 1/2" dia A 307 Bolt

For Steel Use 1/2" Dia A307 Bolt

3/8" Dia Anchors

Z1000 Series Frame size 5 thru 8 Z1000 bypass frames sizes W1 thru W4

Wt.=257 lbs Vseis= 3.6 x 257=925lbs V vert=.4x257= 102.8 lbs

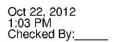
Results From Risa3d model Appendix B

Results Vens=275 lbs Vz=29.1 Vy=102

For Concrete Hilti Kwik Bolt TZ 3/8" dia with 3 " embed see Appendix F

For Masonry 3/8" dia Simpson Titen HD screw anchor with 3" embed @ ESR 1056

For Timber 3/8" lag bolt with 4" Embed.


For Steel 3/8 Dia A307 Bolt.

PROJECT	JOB / D	WG NUMBER	REV. NO.	SHEET NO.
Yaskawa A1000 and Z1000 VFD drives		008-01A Rev1	1	17 of 43
CUSTOMER Yaskawa of America	вү КМТ	DATE 10/25/2012	CHECKED	DATE
<u>1/4" dia anchors</u> Z1000 Series Frame size 3 and 4				
Weight max=70 lbs				
Vseis horiz=3.6w or 3.6x515=252 lbs Vseis vert= .2Sds=.2x2x1854=28 lbs				
Results from Risa3D model see Appendix C				
Vy=28 lbs Vz=4 lbs				
V tens=76.17 lbs				
For Concrete Use 1/4" dia Hilti Kwick Bolt TZ wit	th 3 1/2" Embed	See Appendix	G	
For Masonry (CMU) NA				
For Timber Use ¼" dia Simpson SDS screw @ E	ESR#2236			
For Steel Use ¼" Self tapping Tek Screw				
<u>10 Ga. Dia Anchors</u>				
Z1000 Series Frame size 1 and 2				
Wt.=10 lbs Vseis= 3.6 x 10=36lbs V vert=.4x257= 4 lbs				
Results From Risa3d model Appendix D				
Results Vens= 10 lbs Vz=29.1 Vy=102				
For Concrete NA				
For Masonry NA				
For Timber #10 Wood Screw				
For Steel #12 Tek screw				

Appendix A

Risa3d model, output for Frame type 14

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area (Me	Surface (
1	dead	DĽ		ă.		1				
2	seis x	ELX				1				
3	seis z	ELZ				1				
4	.4Sds	ELY				1				

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]	Footing
1	N4	Reaction	Reaction	Reaction				Ū
2	N3	Reaction	Reaction	Reaction				
3	N2	Reaction	Reaction	Reaction				
4	N1	Reaction	Reaction	Reaction				

Joint Coordinates and Temperatures

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Diap
1	N1	0	0	0	0	
2	N2	0	0	17.3	0	
3	N3	0	61.4	0	0	
4	N4	0	61.4	17.3	0	
5	N5	0	30.7	8.33	0	
6	N6	0	30.7	17.3	0	
7	N7	0	30.7	0	0	
8	N8	0	61.4	8.65	0	
9	N9	0	0	8.65	0	
10	N10	7.25	30.7	8.33	0	
11	N11	0	0	0	0	

Load Combinations

	Description	SolvePD	SRSS	BLC	Factor														
1	1.2D-Ey+Ex	Yes	1	DL	1.2	ELY	-1	ELX	1										
2	1.2D+Ey+Ex	Yes		DL	1.2	ELY	1	ELX	1										
3	1.2D-Ey-Ex	Yes		DL	1.2	ELY	-1	ELX	-1										
4	1.2D+Ey-Ex	Yes		DL	1.2	ELY	1	ELX	-1										
5	.9D-Ey+Ex	Yes		DL	.9	ELY	-1	ELX	1										
6	.9D+Ey+Ex	Yes		DL	.9	ELY	1	ELX	1										
7	.9D-Ey-Ex	Yes		DL	.9	ELY	-1	ELX	-1										
8	.9D+Ey-Ex	Yes		DL	.9	ELY	1	ELX	-1										
9	1.2D-Ey+Ez	Yes		DL	1.2	ELY	-1	ELZ	1										
10	1.2D+Ey+Ez	Yes		DL	1.2	ELY	1	ELZ	1										
11	1.2D-Ey-Ez	Yes		DL	1.2	ELY	-1	ELZ	-1										
12	1.2D+Ey-Ez	Yes		DL	1.2	ELY	1	ELZ	× -1										
13	.9D-Ey+Ez	Yes		DL	.9	ELY	-1	ELZ	1										
14	.9D+Ey+Ez	Yes		DL	.9	ELY	1	ELZ	1										
15	.9D-Ey-Ez	Yes		DL	.9	ELY	-1	ELZ	-1										
16	.9D+Ey-Ez	Yes		DL	.9	ELY	1	ELZ	-1										
17	degad			DL	1														

Joint Loads and Enforced Displacements (BLC 1 : dead)

	Joint Label	L,D,M	Direction	Magnitude[lb,k-ft in,rad lb*s^2/in]
1	N10	L	Ŷ	-515

Designer : KT	1:03 PM
Job Number : VMA-243008 Yaskawa VFD-1/2" bolts	Checked By:

Joint Loads and Enforced Displacements (BLC 2 : seis x)

1	Joint Label N10	L,D,M	Direction X	Magnitude[lb,k-ft in,rad lb*s^2/in] 1854						
Joint Loads and Enforced Displacements (BLC 3 : seis z)										
10	Joint Label	L.D.M	Direction	Magnitude[lb,k-ft in,rad lb*s^2/in]						
1	N10		7	1850						

Joint Loads and Enforced Displacements (BLC 4 : .4Sds)

	Joint Label	L,D,M	Direction	Magnitude[lb,k-ft in,rad lb*s^2/in]
1	N10	L	Y	-206

Joint Reactions (By Combination)

	LC	Joint Label	X [lb]	Y [lb]	Z [lb]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
1	1	N4	-469.885	98.672	11.495	0	0	0
2	1	N3	-505.763	107.328	-11.786	0	0	0
3	1	N2	-422.821	98.672	-11.495	0	0	0
4	1	N1	-455.53	107.328	11.786	0	0	0
5	1	Totals:	-1854	412	0			
6	1	COG (in):	X: 7.25	Y: 30.7	Z: 8.33			
7	2	N4	-493.417	197.344	22.989	0	0	0
8	2	N3	-530.88	214.656	-23.573	0	0	0
9	2	N2	-399.29	197.344	-22.989	0	0	0
10	2	N1	-430.414	214.656	23.573	0	0	0
11	2	Totals:	-1854	824	0			
12	2	COG (in):	X: 7.25	Y: 30.7	Z: 8.33			
13	3	N4	422.821	98.672	11.495	0	0	0
14	3	N3	455.53	107.328	-11.786	0	0	0
15	3	N2	469.885	98.672	-11.495	0	0	0
16	3	N1	505.763	107.328	11.786	0	0	0
17	3	Totals:	1854	412	0			
18	3	COG (in):	X: 7.25	Y: 30.7	Z: 8.33			
19	4	N4	399.29	197.344	22.989	0	0	0
20	4	N3	430.414	214.656	-23.573	0	0	0
21	4	N2	493.417	197.344	-22.989	0	0	0
22	4	N1	530.88	214.656	23.573	0	0	0
23	4	Totals:	1854	824	0			<u> </u>
24	4	COG (in):	X: 7.25	Y: 30.7	Z: 8.33			
25	5	N4	-461.06	61.67	7.184	0	0	0
26	5	N3	-496.345	67.08	-7.367	0	0	0
27	5	N2	-431.646	61.67	-7.184	0	0	0
28	5	_ N1	-464.949	67.08	7.367	0	0	0
29	5	Totals:	-1854	257.5	0			
30	5	COG (in):	X: 7.25	Y: 30.7	Z: 8.33			
31	6	N4	-484.592	160.342	18.679	0	0	0
32	6	N3	-521.461	174.408	-19.153	0	0	0
33	6	N2	-408.114	160.342	-18.679	0	0	0
34	6	<u>N1</u>	-439.832	174.408	19.153	0	0	0
35	6	Totals:	-1854	669.5	0			
36	6	COG (in):	X: 7.25	Y: 30.7	Z: 8.33			
37	7	N4	431.646	61.67	7.184	0	0	0
38	7	N3	464.949	67.08	-7.367	0	0	0
39	7	N2	461.06	61.67	-7.184	0	0	0
40	7	N1	496.345	67.08	7.367	0	0	0
41	7	Totals:	1854	257.5	0			
42	7	COG (in):	X: 7.25	Y: 30.7	Z: 8.33			
43	8	N4	408.114	160.342	18.679	0	0	0

Joint Reactions (By Combination) (Continued)

	LC	Joint Label	X [lb]	Y [lb]	Z [lb]	MX [k-ft]	MY [k-ft]	MZ [k-ft]
44	8	N3	439.832	174.408	-19.153	0	0	0
45	8	N2	484.592	160.342	-18.679	0	0	0
46	8	N1	521.461	174.408	19.153	0	0	0
47	8	Totals:	1854	669.5	0			
48	8	COG (in):	X: 7.25	Y: 30.7	Z: 8.33			
49	9	N4	364.113	-620.323	-450.834	0	0	0
50	9	N3	-412.761	826.681	-474.458	0	0	0
51	9	N2	411.176	817.667	-473.823	Ő	0	0
52	9	N1	-362.528	-612.024	-450.885	0	0	0
53	9	Totals:	0	412	-1850	•	· · · · ·	
54	9	COG (in):	X: 7.25	Y: 30.7	Z: 8.33			
55	10	N4	340.581	-521.651	-439.339	0	0	0
56	10	N3	-437.878	934.009	-486.244	Ő	Ŭ	Ő
57	10	N2	434.708	916.338	-485.318	0	0	0
58	10	N1	-337.411	-504.696	-439.098	0	0	0
59	10	Totals:	0	824	-1850	U	V	0
60	10	COG (in):	X: 7.25	Y: 30.7	Z: 8.33			
61	11	N4	-411.176	817.667	473.823	0	0	0
62	11	N3	362.528	-612.024	473.823	0	0	0
63	11	N2	-364.113				0	0
	11	N2 N1	412.761	-620.323 826.681	450.834	0	0	
64					474.458	U	0	0
65	11	Totals:	0	412	1850			
66	11	COG (in):	X: 7.25	Y: 30.7	Z: 8.33	0		
67	12	N4	-434.708	916.338	485.318	0	0	0
68	12	N3	337.411	-504.696	439.098	0	0	0
69	12	N2	-340.581	-521.651	439.339	0	0	0
70	12	N1	437.878	934.009	486.244	0	0	0
71	12	Totals:	0	824	1850			
72	12	COG (in):	X: 7.25	Y: 30.7	Z: 8.33			
73	13	N4	372.937	-657.325	-455.145	0	0	0
74	13	N3	-403.342	786.432	-470.038	0	0	0
75	13	N2	402.352	780.665	-469.513	0	0	0
76	13	N1	-371.947	-652.272	-455.305	0	0	0
77	13	Totals:	0	257.5	-1850			
78	13	COG (in):	X: 7.25	Y: 30.7	Z: 8.33			
79	14	N4	349.406	-558.653	-443.65	0	0	0
80	14	N3	-428.459	893.761	-481.824	0	0	0
81	14	N2	425.883	879.336	-481.008	0	0	0
82	14	N1	-346.83	-544.944	-443.518	0	0	0
83	14	Totals:	0	669.5	-1850			
84	14	COG (in):	X: 7.25	Y: 30.7	Z: 8.33			
85	15	N4	-402.352	780.665	469.513	0	0	0
86	15	N3	371.947	-652.272	455.305	Ő	Ő	0
87	15	N2	-372.937	-657.325	455.145	Ő	ŏ	0
88	15	N1	403.342	786.432	470.038	Ő	Ő	Ő
89	15	Totals:	0	257.5	1850	<u> </u>	, v	
90	15	COG (in):	X: 7.25	Y: 30.7	Z: 8.33			
91	16	N4	-425.883	879.336	481.008	0	0	0
92	16	N3	346.83	-544.944	443.518	0	0	0
93	16	N2	-349.406	-558.653	443.65	0	0	0
94	16	N1	428.459	893.761	481.824	0	0	0
95	16	Totals:	0	669.5	1850	v	· ·	~
96	16	COG (in):	X: 7.25	Y: 30.7	Z: 8.33			
30	10	000 (iii).	N. 1.20	1.00.7	2.0.00			

Appendix B

Risa3D Model and out put for Frame Size 8

Oct 22, 2012 1:38 PM Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area (Me	.Surface (
1	dead	DĽ				1				A
2	seis x	ELX				1				
3	seis z	ELZ				1				
4	.4Sds	ELY				1				

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]	Footing
1	N4	Reaction	Reaction	Reaction				
2	N3	Reaction	Reaction	Reaction	-			
3	N2	Reaction	Reaction	Reaction				
4	N1	Reaction	Reaction	Reaction				

Joint Coordinates and Temperatures

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Diap
1	N1	0	0	0	0	
2	N2	0	0	23.2	0	
3	N3	0	31.5	0	0	
4	N4	0	31.5	23.2	0	
5	N5	0	15.7	11.6	0	
6	N6	0	15.7	23.2	0	
7	N7	0	15.7	0	0	
8	N8	0	31.5	11.6	0	
9	N9	0	0	11.6	0	
10	N10	6.9	15.7	11.6	0	
11	N11	0	0	0	0	

Load Combination Design

	Description	ASIF	CD	ABIF	Service	Hot Rolled	Cold Formed	Wood	Concrete	Footings
1	1.2D-Ey+Ex					Yes	Yes	Yes	Yes	Yes
2	1.2D+Ey+Ex					Yes	Yes	Yes	Yes	Yes
3	1.2D-Ey-Ex					Yes	Yes	Yes	Yes	Yes
4	1.2D+Ey-Ex					Yes	Yes	Yes	Yes	Yes
5	.9D-Ey+Ex					Yes	Yes	Yes	Yes	Yes
6	.9D+Ey+Ex					Yes	Yes	Yes	Yes	Yes
7	.9D-Ey-Ex					Yes	Yes	Yes	Yes	Yes
8	.9D+Ey-Ex					Yes	Yes	Yes	Yes	Yes
9	1.2D-Ey+Ez					Yes	Yes	Yes	Yes	Yes
10	1.2D+Ey+Ez					Yes	Yes	Yes	Yes	Yes
11	1.2D-Ey-Ez					Yes	Yes	Yes	Yes	Yes
12	1.2D+Ey-Ez					Yes	Yes	Yes	Yes	Yes
13	.9D-Ey+Ez					Yes	Yes	Yes	Yes	Yes
14	9D+Ey+Ez					Yes	Yes	Yes	Yes	Yes
15	.9D-Ey-Ez					Yes	Yes	Yes	Yes	Yes
16	.9D+Ey-Ez					Yes	Yes	Yes	Yes	Yes
17	degad					Yes	Yes	Yes	Yes	Yes

Joint Loads and Enforced Displacements (BLC 1 : dead)

12 12	Joint Label	L,D,M	Direction	Magnitude[lb,lb-in in,rad lb*s^2/in]
1	N10	L	Y	-257

Company : Yaskawa of America Designer : KT		Oct 22, 2012 1:38 PM
Job Number: VMA-243008	Yaskawa VFD-3/8" bolt	Checked By:

oint		N10		<u>L,D,M</u>		ection X		<u>in,rad lb*s^2/in</u> 5
	Logi	is and Enforced	Disnlacomor	te (BI C 3 ·				
	Loat	Joint Label	Displacemen	L.D.M		ection	Magnitude[lb,lb-in	in rad lb*s^2/in
1		N10		L		Z	92	
oint	Load	s and Enforced	Displacemen	ts (BLC 4 :	.4Sds)			
		Joint Label		L,D,M		ection	Magnitude[lb,lb-in	in,rad lb*s^2/ir
1		N10		L		Y	-10	2
oint	Read	ctions (By Comb	ination)					
• · · · ·	LC	Joint Label	X [lb]	Y [lb]	Z [lb]	MX [lb-in]	MY [lb-in]	MZ [lb-in]
1	1	N4	-253.122	51.516	14.651	0	0	0
2	1	N3	-253.122	51.516	-14.651	Ő	Ő	Ő
3	1	N2	-209.378	51.684	-14.759	0	0	0
4	1	N1	-209.378	51.684	14.759	Ő	Ő	Ő
5	1	Totals:	-925	206.4	0			
6	1	COG (in):	X: 6.9	Y: 15.7	Z: 11.6			
7	2	N4	-275.464	102.433	29.132	0	0	0
8	2	N3	-275.464	102.433	-29,132	0	0	0
9	2	N2	-187.036	102.767	-29.346	0	0	0
10	2	N1	-187.036	102.767	29.346	0	Ő	0
11	2	Totals:	-925	410.4	0			
12	2	COG (in):	X: 6.9	Y: 15.7	Z: 11.6			
13	3	N4	207.91	51.516	14.651	0	0	0
14	3	N3	207.91	51.516	-14.651	Ő	Ŏ	Ŏ
15	3	N2	254.59	51.684	-14.759	Ő	Ŏ	Ő
16	3	N1	254.59	51.684	14.759	0	Ŏ	0
17	3	Totals:	925	206.4	0	- v	- V	
18	3	COG (in):	X: 6.9	Y: 15.7	Z: 11.6			
19	4	N4	185.567	102.433	29.132	0	0	0
20	4	N3	185.567	102.433	-29.132	0	0	0
21	4	N2	276.933	102.767	-29.346	0	0	0
22	4	N1	276.933	102.767	29.346	0	0	Ő
23	4	Totals:	925	410.4	0	· · · ·	0	
24	4	COG (in):	X: 6.9	Y: 15.7	Z: 11.6			
25	5	N4	-244.677	32.272	9.178	0	0	0
26	5	N3	-244.677	32.272	-9.178	0	0	0
27	5	N2	-217.823	32.378	-9.246	0	0	0
28	5	N1	-217.823	32.378	9.246	0	0	0
29	5	Totals:	-925	129.3	0	0	0	0
30	5	COG (in):	X: 6.9	Y: 15.7	Z: 11.6			
31	6	N4	-267.02	83.189	23.659	0	0	0
32	6	N3	-267.02	83.189	-23.659	0	0	0
33	6	N2	-195.48	83.461	-23.833	0	0	0
34	6	N1	-195.48	83.461	23.833	0	0	0
35	6	Totals:	-925	333.3	0	0	U	U
36	6	COG (in):	X: 6.9	Y: 15.7	Z: 11.6			
37	7	N4	216.354	32.272	9.178	0	0	0
38	7	N3	216.354	32.272	-9.178	0	0	0
39	7	N2	246.146	32.378	-9.176	0	0	0
	7	N1		32.378	9.246	0	0	0
40	7	Totals:	246.146		9.246	U	U	0
41			925	129.3 V: 15 7				
42 43	7 8	<u>COG (in):</u> N4	X: 6.9 194.012	Y: 15.7 83.189	Z: 11.6 23.659	0	0	0

Company : Yaskawa of America	Oct 22, 2012
Designer : KT	1:38 PM
Job Number : VMA-243008 Yaskawa VFD-3/8" bolt	Checked By:

Joint Reactions (By Combination) (Continued)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						1994 - 1995 - 195			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							0	0	0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					333.3	0			
			COG (in):	X: 6.9		Z: 11.6			
	49		N4	114.442	-77.414	-215.348	0	0	0
	50	9	N3	-159.654	180.446	-244.65	0	0	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	51	9	N2	160.665	182.017	-247.259	0	0	0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			N1					0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						Z: 11.6			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							0	0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						217.742			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							0	U	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		12			-26.498				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							191 C		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				183.008			0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Totals:	0					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			COG (in):		Y: 15.7	Z: 11.6			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		13		122.887	-96.658	-220.821			0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	74	13	N3	-151.21	161.202	-239.178	0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	75	13	N2	152.221	162.71	-241.746	0	0	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			N1						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Totals:						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	78			X: 6.9					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							0	0	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						-253 658			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							× ·	, v	· ·
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
86 15 N3 122.887 -96.658 220.821 0 0 0 87 15 N2 -123.898 -97.955 223.255 0 0 0 88 15 N1 152.221 162.71 241.746 0 0 0 89 15 Totals: 0 129.3 925 - - 90 15 COG (in): X: 6.9 Y: 15.7 Z: 11.6 - - 91 16 N4 -173.552 212.119 253.658 0 0 0 92 16 N3 100.544 -45.741 206.34 0 0 0 93 16 N2 -101.555 -46.872 208.668 0 0 0 94 16 N1 174.564 213.794 256.334 0 0 0 95 16 Totals: 0 333.3 925							0	0	0
87 15 N2 -123.898 -97.955 223.255 0 0 0 88 15 N1 152.221 162.71 241.746 0 0 0 89 15 Totals: 0 129.3 925 925 90 15 COG (in): X: 6.9 Y: 15.7 Z: 11.6 91 16 N4 -173.552 212.119 253.658 0 0 0 0 92 16 N3 100.544 -45.741 206.34 0 0 0 93 16 N2 -101.555 -46.872 208.668 0 0 0 94 16 N1 174.564 213.794 256.334 0 0 0 95 16 Totals: 0 333.3 925 925 925 925								610	
88 15 N1 152.221 162.71 241.746 0 0 0 89 15 Totals: 0 129.3 925									
89 15 Totals: 0 129.3 925 90 15 COG (in): X: 6.9 Y: 15.7 Z: 11.6 91 16 N4 -173.552 212.119 253.658 0 0 0 92 16 N3 100.544 -45.741 206.34 0 0 0 93 16 N2 -101.555 -46.872 208.668 0 0 0 94 16 N1 174.564 213.794 256.334 0 0 0 95 16 Totals: 0 333.3 925									
90 15 COG (in): X: 6.9 Y: 15.7 Z: 11.6 91 16 N4 -173.552 212.119 253.658 0 0 0 92 16 N3 100.544 -45.741 206.34 0 0 0 93 16 N2 -101.555 -46.872 208.668 0 0 0 94 16 N1 174.564 213.794 256.334 0 0 0 95 16 Totals: 0 333.3 925							U	U	U
91 16 N4 -173.552 212.119 253.658 0 0 0 92 16 N3 100.544 -45.741 206.34 0 0 0 93 16 N2 -101.555 -46.872 208.668 0 0 0 94 16 N1 174.564 213.794 256.334 0 0 0 95 16 Totals: 0 333.3 925		15							
92 16 N3 100.544 -45.741 206.34 0 0 0 93 16 N2 -101.555 -46.872 208.668 0 0 0 94 16 N1 174.564 213.794 256.334 0 0 0 95 16 Totals: 0 333.3 925							0	<u>^</u>	0
93 16 N2 -101.555 -46.872 208.668 0 0 0 94 16 N1 174.564 213.794 256.334 0 0 0 95 16 Totals: 0 333.3 925									
94 16 N1 174.564 213.794 256.334 0 0 0 0 95 16 Totals: 0 333.3 925									
95 16 Totals: 0 333.3 925							V.09		105-1
95 16 Totals: 0 333.3 925							0	0	0
96 16 COG (in): X 69 Y 157 7 116									
	96	16	COG (in):	X: 6.9	Y: 15.7	Z: 11.6			

Appendix C

Risa3D model for frame size 4

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area (Me	Surface (
1	dead	DĽ				1				
2	seis x	ELX				1				
3	seis z	ELZ				1				
4	.4Sds	ELY				1				

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]	Footing
1	N4	Reaction	Reaction	Reaction				
2	N3	Reaction	Reaction	Reaction				
3	N2	Reaction	Reaction	Reaction				
4	N1	Reaction	Reaction	Reaction				

Joint Coordinates and Temperatures

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Diap
1	N1	0	0	0	0	
2	N2	0	0	10	0	
3	N3	0	21.3	0	0	
4	N4	0	21.3	10	0	
5	N5	0	10.65	5	0	
6	N6	0	10.65	10	0	
7	N7	0	10.65	0	0	
8	N8	0	21.3	5	0	
9	N9	0	0	5	0	
10	N10	5	10.65	5	0	

Load Combination Design

	Description	ASIF	CD	ABIF	Service	Hot Rolled	Cold Formed	Wood	Concrete	Footings
1	1.2D-Ey+Ex					Yes	Yes	Yes	Yes	Yes
2	1.2D+Ey+Ex					Yes	Yes	Yes	Yes	Yes
3	1.2D-Ey-Ex					Yes	Yes	Yes	Yes	Yes
4	1.2D+Ey-Ex					Yes	Yes	Yes	Yes	Yes
5	.9D-Ey+Ex					Yes	Yes	Yes	Yes	Yes
6	.9D+Ey+Ex					Yes	Yes	Yes	Yes	Yes
7	.9D-Ey-Ex					Yes	Yes	Yes	Yes	Yes
8	.9D+Ey-Ex					Yes	Yes	Yes	Yes	Yes
9	1.2D-Ey+Ez					Yes	Yes	Yes	Yes	Yes
10	1.2D+Ey+Ez					Yes	Yes	Yes	Yes	Yes
11	1.2D-Ey-Ez					Yes	Yes	Yes	Yes	Yes
12	1.2D+Ey-Ez					Yes	Yes	Yes	Yes	Yes
13	.9D-Ey+Ez					Yes	Yes	Yes	Yes	Yes
14	.9D+Ey+Ez					Yes	Yes	Yes	Yes	Yes
15	.9D-Ey-Ez					Yes	Yes	Yes	Yes	Yes
16	.9D+Ey-Ez					Yes	Yes	Yes	Yes	Yes
17	degad					Yes	Yes	Yes	Yes	Yes

Joint Loads and Enforced Displacements (BLC 1 : dead)

7	Joint Label	L,D,M	Direction	Magnitude[lb,lb-ft in,rad lb*s^2/in]
1	N10	L	Y	-70

Joint Loads and Enforced Displacements (BLC 2 : seis x)

Company Designer Job Numbe	: Yaskawa of Ame : KT er : VMA-243008	rica Yaskawa VFD-Largest load or	n 1/4" dia bolt	Oct 22, 2012 1:40 PM Checked By:
oint Load	ds and Enforced L	Displacements (BLC 2 : seis	s x) (Continued)
	Joint Label N10	L,D,M	Direction	Magnitude[lb,lb-ft in,rad lb*s^2/in] 252
oint Load		Displacements (BLC 3 : seis		Magnitude[]b lb.ft in rad lb*e^22/in
loint Load	ds and Enforced L Joint Label N10	Displacements (BLC 3 : seis L,D,M L	s z) Direction Z	Magnitude[lb,lb-ft in,rad lb*s^2/in 252
1	Joint Label N10		Direction Z	Magnitude[lb,lb-ft in,rad lb*s^2/in 252
1	Joint Label N10	L,D,M L	Direction Z	

Joint Reactions (By Combination)

JUIII	l nea	ICTIONS (BY COMDI	lation)					
	LC	Joint Label	X [lb]	Y [lb]	Z [lb]	MX [lb-ft]	MY [lb-ft]	MZ [lb-ft]
1	1	N4	-69.573	14	2.019	0	Ö .	Ö .
2	1	N3	-69.573	14	-2.019	0	0	0
3	1	N2	-56.427	14	-2.019	0	0	0
4	1	N1	-56.427	14	2.019	0	0	0
5	1	Totals:	-252	56	0			
6	1	COG (in):	X:5	Y: 10.65	Z: 5			
7	2	N4	-76.146	28	4.038	0	0	0
8	2	N3	-76.146	28	-4.038	0	0	0
9	2	N2	-49.854	28	-4.038	0	0	0
10	2	N1	-49.854	28	4.038	0	0	0
11	2	Totals:	-252	112	0			
12	2	COG (in):	X: 5	Y: 10.65	Z: 5			
13	3	N4	56.427	14	2.019	0	0	0
14	3	N3	56.427	14	-2.019	0	0	0
15	3	N2	69.573	14	-2.019	0	0	0
16	3	N1	69.573	14	2.019	0	0	0
17	3	Totals:	252	56	0			
18	3	COG (in):	X:5	Y: 10.65	Z: 5			
19	4	N4	49.854	28	4.038	0	0	0
20	4	N3	49.854	28	-4.038	0	0	0
21	4	N2	76.146	28	-4.038	0	0	0
22	4	N1	76.146	28	4.038	0	0	0
23	4	Totals:	252	112	0	Na l		
24	4	COG (in):	X:5	Y: 10.65	Z: 5			
25	5	N4	-67.108	8.75	1.262	0	0	0
26	5	N3	-67.108	8.75	-1.262	0	0	0
27	5	N2	-58.892	8.75	-1.262	0	0	0
28	5	N1	-58.892	8.75	1.262	0	0	0
29	5	Totals:	-252	35	0			
30	5	COG (in):	X: 5	Y: 10.65	Z: 5			
31	6	N4	-73.681	22.75	3.281	0	0	0
32	6	N3	-73.681	22.75	-3.281	0	0	0
33	6	N2	-52.319	22.75	-3.281	0	0	0
34	6	N1	-52.319	22.75	3.281	0	0	0
35	6	Totals:	-252	91	0			
36	6	COG (in):	X:5	Y: 10.65	Z: 5			
37	7	N4	58.892	8.75	1.262	0	0	0
38	7	N3	58.892	8.75	-1.262	0	0	0
39	7	N2	67.108	8.75	-1.262	0	0	0
40	7	N1	67.108	8.75	1.262	0	0	0
41	7	Totals:	252	35	0			
42	7	COG (in):	X:5	Y: 10.65	Z: 5			
43	8	N4	52.319	22.75	3.281	0	0	0

Page 2

Company: Yaskawa of AmericaOct 22, 2012Designer: KT1:40 PMJob Number: VMA-243008Yaskawa VFD-Largest load on 1/4" dia boltChecked By:____

Joint Reactions (By Combination) (Continued)

	LC	Joint Label	X [lb]	Y [lb]	Z [lb]	MX [lb-ft]	MY [lb-ft]	MZ [lb-ft]
44	8	N3	52.319	22.75	-3.281	0		0
45	8	N2	73.681	22.75	-3.281	Ő	Ő	0
46	8	N1	73.681	22.75	3.281	0	0	0
47	8	Totals:	252	91	0			
48	8	COG (in):	X:5	Y: 10.65	Z: 5			
49	9	N4	56.427	-33.11	-60.981	0	0	0
50	9	N3	-69.573	61.11	-65.019	0	0	0
51	9	N2	69.573	61.11	-65.019	0	0	0
52	9	N1	-56.427	-33.11	-60.981	0	0	0
53	9	Totals:	0	56	-252			
54	9	COG (in):	X:5	Y: 10.65	Z: 5			
55	10	N4	49.854	-19.11	-58.962	0	0	0
56	10	N3	-76.146	75.11	-67.038	0	0	0
57	10	N2	76.146	75.11	-67.038	0	0	0
58	10	N1	-49.854	-19.11	-58.962	0	0	0
59	10	Totals:	0	112	-252			
60	10	COG (in):	X:5	Y: 10.65	Z: 5	-	-	6
61	11	N4	-69.573	61.11	65.019	0	0	0
62	11	N3	56.427	-33.11	60.981	0	0	0
63	11	N2	-56.427	-33.11	60.981	0	0	0
64	11	N1	69.573	61.11	65.019	0	0	0
65	11	Totals:	0	56	252			
66	11	COG (in):	X:5	Y: 10.65	Z: 5	0	0	0
67	12 12	N4 N3	-76.146 49.854	75.11	67.038	0	0	0
68 69	12	N2	-49.854	-19.11 -19.11	58.962 58.962	0	0	0
70	12	N1	76.146	75.11	67.038	0	0	0
71	12	Totals:	0	112	252	0	0	U
72	12	COG (in):	X:5	Y: 10.65	Z: 5			
73	13	N4	58.892	-38.36	-61.738	0	0	0
74	13	N3	-67.108	55.86	-64.262	ŏ	0	0
75	13	N2	67.108	55.86	-64.262	ŏ	Ő	Ő
76	13	N1	-58.892	-38.36	-61.738	Ő	0	Ő
77	13	Totals:	0	35	-252	- V	Ŭ	v
78	13	COG (in):	X:5	Y: 10.65	Z: 5			
79	14	N4	52.319	-24.36	-59.719	0	0	0
80	14	N3	-73.681	69.86	-66.281	Ŏ	Ŏ	Ő
81	14	N2	73.681	69.86	-66.281	Ŏ	Ŏ	Ő
82	14	N1	-52.319	-24.36	-59.719	0	0	0
83	14	Totals:	0	91	-252			
84	14	COG (in):	X:5	Y: 10.65	Z: 5			
85	15	N4	-67.108	55.86	64.262	0	0	0
86	15	N3	58.892	-38.36	61.738	0	0	0
87	15	N2	-58.892	-38.36	61.738	0	0	0
88	15	N1	67.108	55.86	64.262	0	0	0
89	15	Totals:	0	35	252			
90	15	COG (in):	X:5	Y: 10.65	Z: 5			
91	16	N4	-73.681	69.86	66.281	0	0	0
92	16	N3	52.319	-24.36	59.719	0	0	0
93	16	N2	-52.319	-24.36	59.719	0	0	0
94	16	<u>N1</u>	73.681	69.86	66.281	0	0	0
95	16	Totals:	0	91	252			
96	16	COG (in):	X:5	Y: 10.65	Z: 5			

Appendix D

Risa 3D Analysis for Frame Size 2

Basic Load Cases

-	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area (Me	.Surface (
1	dead	DĽ				1			,	
2	seis x	ELX				1				
3	seis z	ELZ				1				
4	.4Sds	ELY				1				

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]	Footing
1	N4	Reaction	Reaction	Reaction				
2	N3	Reaction	Reaction	Reaction				
3	N2	Reaction	Reaction	Reaction				
4	N1	Reaction	Reaction	Reaction				

Joint Coordinates and Temperatures

	Label	X [in]	Y [in]	Z [in]	Temp [F]	Detach From Diap
1	N1	0	0	0	0	
2	N2	0	0	10	0	
3	N3	0	20.1	0	0	
4	N4	0	20.1	10	0	
5	N5	0	10.05	5	0	
6	N6	0	10.05	10	0	
7	N7	0	10.05	0	0	
8	N8	0	20.1	5	0	
9	N9	0	0	5	0	
10	N10	7.25	10.65	5	0	

Load Combination Design

	Description	ASIF	CD	ABIF	Service	Hot Rolled	Cold Formed	Wood	Concrete	Footings
1	1.2D-Ey+Ex					Yes	Yes	Yes	Yes	Yes
2	1.2D+Ey+Ex					Yes	Yes	Yes	Yes	Yes
3	1.2D-Ey-Ex					Yes	Yes	Yes	Yes	Yes
4	1.2D+Ey-Ex					Yes	Yes	Yes	Yes	Yes
5	.9D-Ey+Ex					Yes	Yes	Yes	Yes	Yes
6	.9D+Ey+Ex					Yes	Yes	Yes	Yes	Yes
7	.9D-Ey-Ex					Yes	Yes	Yes	Yes	Yes
8	.9D+Ey-Ex					Yes	Yes	Yes	Yes	Yes
9	1.2D-Ey+Ez					Yes	Yes	Yes	Yes	Yes
10	1.2D+Ey+Ez					Yes	Yes	Yes	Yes	Yes
11	1.2D-Ey-Ez					Yes	Yes	Yes	Yes	Yes
12	1.2D+Ey-Ez					Yes	Yes	Yes	Yes	Yes
13	9D-Ey+Ez					Yes	Yes	Yes	Yes	Yes
14	.9D+Ey+Ez					Yes	Yes	Yes	Yes	Yes
15	.9D-Ey-Ez					Yes	Yes	Yes	Yes	Yes
16	.9D+Ey-Ez					Yes	Yes	Yes	Yes	Yes
17	degad					Yes	Yes	Yes	Yes	Yes

Joint Loads and Enforced Displacements (BLC 1 : dead)

	Joint Label	L,D,M	Direction	Magnitude[lb,lb-ft in,rad lb*s^2/in]
1	N10	L	Y	0

Joint Loads and Enforced Displacements (BLC 2 : seis x)

1.0	loint Labol			Diroction	Magnitudo[]b lb ft in rad lb*cA'	
- 2						
	RISA-3D Version 7.0.0	[C:\aaaprojec:	ts\243008-Yaskawa\anc	horing\yasakawa nu	mber10.r3d]	Page 1

Company Designer Job Numbe	: Yaskawa of America : KT er : VMA-243008	Yaskawa VFD 10 C	àa	Oct 22, 2012 1:43 PM Checked By:
Joint Load	Is and Enforced Displa	acements (BLC 2 : seis	s x) (Continued)
	Joint Label	L,D,M	Direction	Magnitude[lb.lb-ft in.rad lb*s^2/in]
1	N10	L	Х	66.6
Joint Loac	is and Enforced Displa	acements (BLC 3 : seis	s z)	
Cont Louis	Joint Label	L.D.M	Direction	Magnitude[lb.lb-ft in.rad lb*s^2/in]


Joint Loads and Enforced Displacements (BLC 4 : .4Sds)

	Joint Label	L,D,M	Direction	Magnitude[lb,lb-ft in,rad lb*s^2/in]
1	N10	L	Y	7.4

Joint Reactions (By Combination)

00111	11100							
	LC	Joint Label	X [lb]	Y [lb]	Z [lb]	MX [lb-ft]	MY [lb-ft]	MZ [lb-ft]
1	1	N4	-18.979	1.85	.281	0	0	0
2	1	N3	-18.979	1.85	281	0	Ő	0
3	1	N2	-14.321	1.85	281	0	0	0
4	1	N1	-14.321	1.85	.281	0	0	0
5	1	Totals:	-66.6	7.4	0			
6	1	COG (in):	X: 7.25	Y: 10.65	Z: 5			
7	2	N4	-16.309	-1.85	281	0	0	0
8	2	N3	-16.309	-1.85	.281	0	0	0
9	2	N2	-16.991	-1.85	.281	0	0	0
10	2	N1	-16.991	-1.85	281	0	0	0
11	2	Totals:	-66.6	-7.4	0			
12	2	COG (in):	X: 7.25	Y: 10.65	Z: 5			
13	3	N4	16.309	1.85	.281	0	0	0
14	3	N3	16.309	1.85	281	0	Ő	0
15	3	N2	16.991	1.85	281	0	0	0
16	3	N1	16.991	1.85	.281	0	0	0
17	3	Totals:	66.6	7.4	0		5 0	
18	3	COG (in):	X: 7.25	Y: 10.65	Z: 5			
19	4	N4	18.979	-1.85	281	0	0	0
20	4	N3	18.979	-1.85	.281	0	0	0
21	4	N2	14.321	-1.85	.281	0	0	0
22	4	N1	14.321	-1.85	281	0	0	0
23	4	Totals:	66.6	-7.4	0	C-4		
24	4	COG (in):	X: 7.25	Y: 10.65	Z: 5			
25	5	N4	-18.979	1.85	.281	0	0	0
26	5	N3	-18.979	1.85	281	0	0	0
27	5	N2	-14.321	1.85	281	0	0	0
28	5	N1	-14.321	1.85	.281	0	0	0
29	5	Totals:	-66.6	7.4	0			
30	5	COG (in):	X: 7.25	Y: 10.65	Z: 5			
31	6	N4	-16.309	-1.85	281	0	0	0
32	6	N3	-16.309	-1.85	.281	0	0	0
33	6	N2	-16.991	-1.85	.281	0	0	0
34	6	N1	-16.991	-1.85	281	0	0	0
35	6	Totals:	-66.6	-7.4	0			
36	6	COG (in):	X: 7.25	Y: 10.65	Z: 5			
37	7	N4	16.309	1.85	.281	0	0	0
38	7	N3	16.309	1.85	281	0	0	0
39	7	N2	16.991	1.85	281	0	0	0
40	7	N1	16.991	1.85	.281	0	0	0
41	7	Totals:	66.6	7.4	0			
42	7	COG (in):	X: 7.25	Y: 10.65	Z: 5			
43	8	N4	18.979	-1.85	281	0	0	0

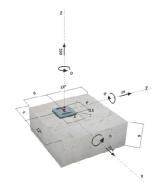
Yaskawa VFD 10 Ga

Joint Reactions (By Combination) (Continued)

•••				(11)(4)(4)				
	LC	Joint Label	X [lb]	Y [lb]	Z [lb]	MX [lb-ft]	MY [lb-ft]	MZ [lb-ft]
44	8	N3	18.979	-1.85	.281	0	0	0
45	8	N2	14.321	-1.85	.281	0	0	0
46	8	N1	14.321	-1.85	281	0	0	0
47	8	Totals:	66.6	-7.4	0			
48	8	COG (in):	X: 7.25	Y: 10.65	Z: 5			
49	9	N4	22.808	-9.009	-17.021	0	0	0
50	9	N3	-25.477	12.709	-17.583	0	0	0
51	9	N2	25.477	14.084	-16.279	0	0	0
52	9	N1	-22.808	-10.384	-15.717	0	0	0
53	9	Totals:	0	7.4	-66.6			
54	9	COG (in):	X: 7.25	Y: 10.65	Z: 5			
55	10	N4	25.477	-12.709	-17.583	0	0	0
56	10	N3	-22.808	9.009	-17.021	0	0	0
57	10	N2	22.808	10.384	-15.717	0	0	0
58	10	N1	-25.477	-14.084	-16.279	0	0	0
59	10	Totals:	0	-7.4	-66.6			
60	10	COG (in):	X: 7.25	Y: 10.65	Z: 5			
61	11	N4	-25.477	12.709	17.583	0	0	0
62	11	N3	22.808	-9.009	17.021	0	0	0
63	11	N2	-22.808	-10.384	15.717	0	0	0
64	11	N1	25.477	14.084	16.279	0	0	0
65	11	Totals:	0	7.4	66.6			
66	11	COG (in):	X: 7.25	Y: 10.65	Z: 5			
67	12	N4	-22.808	9.009	17.021	0	0	0
68	12	N3	25.477	-12.709	17.583	0	0	0
69	12	N2	-25.477	-14.084	16.279	0	0	0
70	12	N1	22.808	10.384	15.717	0	0	0
71	12	Totals:	0	-7.4	66.6			
72	12	COG (in):	X: 7.25	Y: 10.65	Z: 5			
73	13	N4	22.808	-9.009	-17.021	0	0	0
74	13	N3	-25.477	12.709	-17.583	0	0	0
75	13	N2	25.477	14.084	-16.279	0	0	0
76	13	N1	-22.808	-10.384	-15.717	0	0	0
77	13	Totals:	0	7.4	-66.6			
78	13	COG (in):	X: 7.25	Y: 10.65	Z: 5			
79	14	N4	25.477	-12.709	-17.583	0	0	0
80	14	N3	-22.808	9.009	-17.021	0	0	0
81	14	N2	22.808	10.384	-15.717	0	0	0
82	14	N1	-25.477	-14.084	-16.279	0	0	0
83	14	Totals:	0	-7.4	-66.6			
84	14	COG (in):	X: 7.25	Y: 10.65	Z: 5			
85	15	N4	-25.477	12.709	17.583	0	0	0
86	15	N3	22.808	-9.009	17.021	0	0	0
87	15	N2	-22.808	-10.384	15.717	0	0	0
88	15	N1	25.477	14.084	16.279	0	0	0
89	15	Totals:	0	7.4	66.6			
90	15	COG (in):	X: 7.25	Y: 10.65	Z: 5			
91	16	N4	-22.808	9.009	17.021	0	0	0
92	16	N3	25.477	-12.709	17.583	0	0	0
93	16	N2	-25.477	-14.084	16.279	0	0	0
94	16	N1	22.808	10.384	15.717	0	0	0
95	16	Totals:	0	-7.4	66.6			
96	16	COG (in):	X: 7.25	Y: 10.65	Z: 5			

Appendix E

Calculations for 1/2" Dia Hilti Kwik Bolt inserts


www.hilti.us			Profis Anchor 2	•
Company:	The VMC Froup	Page:	1	Ī
Specifier:		Project:	Yaskawa	
Address:		Sub-Project I Pos. No.:		
Phone I Fax: E-Mail:	I	Date:	10/19/2012	

Specifier's comments:

1 Input data

•		
Anchor type and diameter:	Kwik Bolt TZ - CS 1/2 (3 1/4)	
Effective embedment depth:	h_{ef} = 3.250 in., h_{nom} = 3.625 in.	
Material:	Carbon Steel	
Evaluation Service Report::	ESR 1917	
Issued I Valid:	4/1/2012 5/1/2013	
Proof:	design method ACI 318 / AC193	
Stand-off installation:	e _b = 0.000 in. (no stand-off); t = 0.500 in.	
Anchor plate:	$I_x \ge I_y \ge t = 4.000$ in. ≥ 4.000 in. ≥ 0.500 in.; (Recommended	d plate thickness: not calculated)
Profile:	S shape (AISC); (L x W x T x FT) = 3.000 in. x 2.330 in. x	0.170 in. x 0.260 in.
Base material:	cracked concrete, 2500, $f_{\rm c}{}^{\prime}$ = 2500 psi; h = 6.000 in.	
Reinforcement:	tension: condition B, shear: condition B; no supplemental	splitting reinforcement present
	edge reinforcement: none or < No. 4 bar	
Seismic loads (cat. C, D, E, or F)	yes (D.3.3.6)	

Geometry [in.] & Loading [lb, in.lb]

2 Proof I Utilization (Governing Cases)

			Design values [lb]				
Loading	Proof		Load	Capacity	β _N / β _V [%]	Status	
Tension	Pullout Strength		530	958	56 / -	OK	
Shear	Concrete edge failu	re in direction x+	215	771	- / 28	OK	
Loading		βn	βv	ζ	Utilization $\beta_{N,V}$ [%]	Status	
Combined tensior	n and shear loads	0.553	0.279	5/3	50	OK	

3 Warnings

• Please consider all details and hints/warnings given in the detailed report!

Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor (c) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.us			Profis Anchor 2.	
Company:	The VMC Froup	Page:	2	
Specifier:		Project:	Yaskawa	
Address:		Sub-Project I Pos. No.:		
Phone I Fax:	1	Date:	10/19/2012	
E-Mail:				

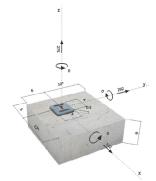
Fastening meets the design criteria!

4 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hitti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case
 by carrying out manual updates via the Hitti Website. Hitti will not be liable for consequences, such as the recovery of lost or damaged data or
 programs, arising from a culpable breach of duty by you.

Appendix F

3/8" dia Hilti Kwik bolt Calculation



www.hilti.us			Profis Anchor
Company: Specifier: Address: Phone I Fax: E-Mail:	The VMC Froup	Page: Project: Sub-Project I Pos. No.: Date:	1 Yaskawa 3/8 inch anchor 10/19/2012

Specifier's comments:

1 Input data	
Anchor type and diameter:	Kwik Bolt TZ - CS 3/8 (2)
Effective embedment depth:	h _{ef} = 2.000 in., h _{nom} = 2.313 in.
Material:	Carbon Steel
Evaluation Service Report::	ESR 1917
Issued I Valid:	4/1/2012 5/1/2013
Proof:	design method ACI 318 / AC193
Stand-off installation:	$e_{b} = 0.000$ in. (no stand-off); t = 0.500 in.
Anchor plate:	$I_x \times I_y \times t = 4.000$ in. x 4.000 in. x 0.500 in.; (Recommended plate thickness: not calculated)
Profile:	S shape (AISC); (L x W x T x FT) = 3.000 in. x 2.330 in. x 0.170 in. x 0.260 in.
Base material:	cracked concrete, 2500, f_c = 2500 psi; h = 6.000 in.
Reinforcement:	tension: condition B, shear: condition B; no supplemental splitting reinforcement present
Seismic loads (cat. C, D, E, or F)	edge reinforcement: none or < No. 4 bar yes (D.3.3.6)

Geometry [in.] & Loading [lb, in.lb]

2 Proof I Utilization (Governing Cases)

			Design values [lb]		Utilization		
Loading	Proof		Load	Capacity	β _N / β _V [%]	Status	
Tension	Pullout Strength		275	443	63 / -	OK	
Shear	Pryout Strength		309	505	- / 62	OK	
Loading		βN	βv	ζ	Utilization _{βν,ν} [%]	Status	
Combined tensior	and shear loads	0.621	0.613	5/3	90	OK	

3 Warnings

Please consider all details and hints/warnings given in the detailed report!

Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor (c) 2003-2009 Hilti AG, FL-9494 Schaan Hilti ar registered Trademark of Hilti AG, Schaan

www.hilti.us			Profis Anchor 2.
Company:	The VMC Froup	Page:	2
Specifier:		Project:	Yaskawa
Address:		Sub-Project I Pos. No.:	3/8 inch anchor
Phone I Fax:		Date:	10/19/2012
E-Mail:			

Fastening meets the design criteria!

4 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case
 by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or
 programs, arising from a culpable breach of duty by you.

Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor (c) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

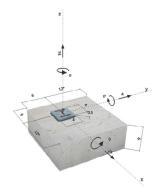
Appendix G

Calculation for 1/4" dia Hilt Kwik Bolts

www.hilti.us Company: Specifier: Address: Phone I Fax: E-Mail:

The VMC Froup I

Page: Project: Sub-Project I Pos. No.: Date:


1 Yaskawa 1/4 inch anchor 10/19/2012

Specifier's comments:

1 Input data

1 Input data		
Anchor type and diameter:	KWIK HUS-EZ (KH-EZ) 1/4 (2 1/2)	
Effective embedment depth:	h_{ef} = 1.920 in., h_{nom} = 2.500 in.	
Material:	Carbon Steel	
Evaluation Service Report::	ESR 3027	
Issued I Valid:	6/1/2012 12/1/2012	
Proof:	design method ACI 318 / AC193	
Stand-off installation:	e _b = 0.000 in. (no stand-off); t = 0.500 in.	
Anchor plate:	l _x x l _y x t = 4.000 in. x 4.000 in. x 0.500 in.; (Recomm	nended plate thickness: not calculated)
Profile:	S shape (AISC); (L x W x T x FT) = 3.000 in. x 2.330) in. x 0.170 in. x 0.260 in.
Base material:	cracked concrete, 2500, f_c ' = 2500 psi; h = 6.000 in.	
Reinforcement:	tension: condition B, shear: condition B; no supplem	ental splitting reinforcement present
	edge reinforcement: none or < No. 4 bar	
Seismic loads (cat. C, D, E, or F)	yes (D.3.3.6)	

Geometry [in.] & Loading [lb, in.lb]

2 Proof I Utilization (Governing Cases)

			Design	values [lb]	Utilization	
Loading	Proof		Load	Capacity	β _N / β _V [%]	Status
Tension	Pullout Strength		76	227	34 / -	OK
Shear	Steel Strength		28	334	- / 9	OK
Loading		βn	βv	ζ	Utilization _{βN,V} [%]	Status
Combined tension	n and shear loads	0.334	0.085	5/3	18	OK

3 Warnings

• Please consider all details and hints/warnings given in the detailed report!

Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor (c) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.us			Profis Anchor 2.		
Company:	The VMC Froup	Page:	2		
Specifier:		Project:	Yaskawa		
Address:		Sub-Project I Pos. No.:	1/4 inch anchor		
Phone I Fax: E-Mail:	I	Date:	10/19/2012		

Fastening meets the design criteria!

4 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case
 by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or
 programs, arising from a culpable breach of duty by you.

SUBMITTED BY

